A review of Sb2Se3 photovoltaic absorber materials and thin-film solar cells
Energy generated from environmentally friendly, cost-effective solar cells is a key aspect for developing a clean renewable-energy economy. Non-toxic and Earth-abundant materials with high absorption coefficient (>105 cm−1) and optimal bandgap (1–1.5 eV) have received great attention as photovolt...
Saved in:
Published in | Solar Energy Vol. 201; pp. 227 - 246 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Elsevier Ltd
01.05.2020
Elsevier BV Pergamon Press Inc Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Energy generated from environmentally friendly, cost-effective solar cells is a key aspect for developing a clean renewable-energy economy. Non-toxic and Earth-abundant materials with high absorption coefficient (>105 cm−1) and optimal bandgap (1–1.5 eV) have received great attention as photovoltaic (PV) absorber layers during the last few decades. Among them, antimony selenide (Sb2Se3) has been a promising PV absorber, with steadily increasing power-conversion efficiency (PCE) compared to other emerging compounds. Very recent studies showed that high-quality ZnO:Al/ZnO/CdS/TiO2/Sb2Se3/MoSe2/Mo devices with PCE of 9.2% can be fabricated using cost-effective novel compounds. Considering these recent advances, this article provides an overview of the material properties of Sb2Se3 thin films and the recent progress made with Sb2Se3-based solar cells. Analysis of Sb2Se3-based thin-film solar cells has also shown that the devices have relatively good light management due to their suitable bandgap and high absorption coefficient, whereas carrier management, i.e. collection efficiency of photo-generated carriers, needs significant improvement. Overall, this study provides background knowledge on material properties and device performance and suggests main research directions to overcome the limiting factors of solar cell performance. |
---|---|
AbstractList | Energy generated from environmentally friendly, cost-effective solar cells is a key aspect for developing a clean renewable-energy economy. Non-toxic and Earth-abundant materials with high absorption coefficient (>105 cm−1) and optimal bandgap (1–1.5 eV) have received great attention as photovoltaic (PV) absorber layers during the last few decades. Among them, antimony selenide (Sb2Se3) has been a promising PV absorber, with steadily increasing power-conversion efficiency (PCE) compared to other emerging compounds. Very recent studies showed that high-quality ZnO:Al/ZnO/CdS/TiO2/Sb2Se3/MoSe2/Mo devices with PCE of 9.2% can be fabricated using cost-effective novel compounds. Considering these recent advances, this article provides an overview of the material properties of Sb2Se3 thin films and the recent progress made with Sb2Se3-based solar cells. Analysis of Sb2Se3-based thin-film solar cells has also shown that the devices have relatively good light management due to their suitable bandgap and high absorption coefficient, whereas carrier management, i.e. collection efficiency of photo-generated carriers, needs significant improvement. Overall, this study provides background knowledge on material properties and device performance and suggests main research directions to overcome the limiting factors of solar cell performance. Energy generated from environmentally friendly, cost-effective solar cells is a key aspect for developing a clean renewable-energy economy. Non-toxic and Earth-abundant materials with high absorption coefficient (>105 cm-1) and optimal bandgap (1-1.5 eV) have received great attention as photovoltaic (PV) absorber layers during the last few decades. Among them, antimony selenide (Sb2Se3) has been a promising PV absorber, with steadily increasing power-conversion efficiency (PCE) compared to other emerging compounds. Very recent studies showed that high-quality ZnO:Al/ZnO/CdS/TiO2/Sb2Se3/MoSe2/Mo devices with PCE of 9.2% can be fabricated using cost-effective novel compounds. Considering these recent advances, this article provides an overview of the material properties of Sb2Se3 thin films and the recent progress made with Sb2Se3-based solar cells. Furthermore, analysis of Sb2Se3-based thin-film solar cells has also shown that the devices have relatively good light management due to their suitable bandgap and high absorption coefficient, whereas carrier management, i.e. collection efficiency of photo-generated carriers, needs significant improvement. Overall, this study provides background knowledge on material properties and device performance and suggests main research directions to overcome the limiting factors of solar cell performance. |
Author | Mavlonov, Abdurashid Minemoto, Takashi Razykov, Takhir Zu, Xiaotao Wei, Haoming Nishimura, Takahito Chantana, Jakapan Kawano, Yu Gan, Jiantuo Zakutayev, Andriy Li, Sean Raziq, Fazal Qiao, Liang |
Author_xml | – sequence: 1 givenname: Abdurashid orcidid: 0000-0001-7486-6382 surname: Mavlonov fullname: Mavlonov, Abdurashid email: mavlonov@uestc.edu.cn organization: School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China – sequence: 2 givenname: Takhir surname: Razykov fullname: Razykov, Takhir organization: Physical-Technical Institute, Uzbekistan Academy of Sciences, Bodomzor Yoli 2“B”, Tashkent 100084, Uzbekistan – sequence: 3 givenname: Fazal surname: Raziq fullname: Raziq, Fazal organization: School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China – sequence: 4 givenname: Jiantuo surname: Gan fullname: Gan, Jiantuo organization: School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China – sequence: 5 givenname: Jakapan orcidid: 0000-0001-9062-0577 surname: Chantana fullname: Chantana, Jakapan organization: Department of Electrical and Electronic Engineering, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan – sequence: 6 givenname: Yu orcidid: 0000-0002-5711-4979 surname: Kawano fullname: Kawano, Yu organization: Department of Electrical and Electronic Engineering, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan – sequence: 7 givenname: Takahito orcidid: 0000-0002-3054-5525 surname: Nishimura fullname: Nishimura, Takahito organization: Ritsumeikan Global Innovation Research Organization, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan – sequence: 8 givenname: Haoming surname: Wei fullname: Wei, Haoming organization: School of Physics and Physical Engineering, Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, Qufu Normal University, Qufu 273165, China – sequence: 9 givenname: Andriy orcidid: 0000-0002-3343-7538 surname: Zakutayev fullname: Zakutayev, Andriy email: andriy.zakutayev@nrel.gov organization: National Renewable Energy Laboratory, Golden, CO 80401, USA – sequence: 10 givenname: Takashi surname: Minemoto fullname: Minemoto, Takashi organization: Department of Electrical and Electronic Engineering, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan – sequence: 11 givenname: Xiaotao surname: Zu fullname: Zu, Xiaotao organization: School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China – sequence: 12 givenname: Sean surname: Li fullname: Li, Sean organization: School of Materials, University of New South Wales, Sydney 2052, NSW, Australia – sequence: 13 givenname: Liang surname: Qiao fullname: Qiao, Liang email: liang.qiao@uestc.edu.cn organization: School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China |
BackLink | https://cir.nii.ac.jp/crid/1872272492633937152$$DView record in CiNii https://www.osti.gov/servlets/purl/1606129$$D View this record in Osti.gov |
BookMark | eNqFkU9r3DAQxUVJoZu0H6Egml7tjiRbsumhhNB_sNBDWuhNyNKY1eKVtpKS0m9fGeeUSy4zl9-bN_PmklyEGJCQtwxaBkx-OLY5LhgwtRw4tCBagPEF2bFOsYbxXl2QHYAYGhj571fkMucjAFNsUDuyv6EJHzz-pXGmdxO_Q0HPh1jiQ1yK8ZaaKcc0YaInUzB5s2RqgqPl4EMz--VEq7dJ1OKy5Nfk5VwBfPPYr8ivL59_3n5r9j--fr-92Te2B1maSdrZmW4UbhqmCWbuxtmO3DprUCrEaYbeOSYHpgYYjOKcWeydZP2EputRXJF329yYi9fZ-oL2YGMIaItmEiTjY4WuN-ic4p97zEUf430KdS_NO6E60YlhqNTHjbIp5pxw1nWaKT6GkoxfNAO9ZqyP-jFjvWasQeiacVX3T9Tn5E8m_XtW937TBe-r4VrrNzhXvBu5FGIUivW8Yp82DGuY9UlpvRWDRefTeqqL_hmj_xaDpgA |
CitedBy_id | crossref_primary_10_1016_j_optlastec_2023_110107 crossref_primary_10_1002_adfm_202100265 crossref_primary_10_1016_j_jallcom_2021_160523 crossref_primary_10_1007_s11837_022_05219_x crossref_primary_10_1016_j_heliyon_2022_e09120 crossref_primary_10_1016_j_jqsrt_2023_108508 crossref_primary_10_3390_nano12111903 crossref_primary_10_3390_su132112320 crossref_primary_10_1016_j_solener_2020_10_019 crossref_primary_10_1039_D3NR04623K crossref_primary_10_1039_D3MA00479A crossref_primary_10_1088_1402_4896_ad1669 crossref_primary_10_1016_j_matlet_2023_135806 crossref_primary_10_1140_epjp_s13360_024_05391_w crossref_primary_10_1002_ente_202400006 crossref_primary_10_1039_D1CP05373F crossref_primary_10_1016_j_ccr_2022_214968 crossref_primary_10_1007_s00339_024_07737_8 crossref_primary_10_1002_adts_202300594 crossref_primary_10_1140_epjp_s13360_023_04739_y crossref_primary_10_1007_s40843_022_2066_5 crossref_primary_10_1016_j_mtcomm_2025_111517 crossref_primary_10_15251_CL_2024_214_305 crossref_primary_10_1016_j_mtcomm_2024_109041 crossref_primary_10_1016_j_matpr_2022_04_289 crossref_primary_10_1016_j_solener_2022_06_042 crossref_primary_10_1002_sia_7017 crossref_primary_10_1002_pssb_202300087 crossref_primary_10_1016_j_solener_2020_10_001 crossref_primary_10_1016_j_enmm_2022_100711 crossref_primary_10_1016_j_solener_2025_113377 crossref_primary_10_1002_tcr_202300285 crossref_primary_10_1021_acsami_1c13223 crossref_primary_10_1039_D5TA00683J crossref_primary_10_1002_advs_202105142 crossref_primary_10_1016_j_ceramint_2022_02_262 crossref_primary_10_2139_ssrn_4102865 crossref_primary_10_1016_j_solener_2023_111990 crossref_primary_10_1016_j_solener_2022_11_049 crossref_primary_10_1021_acsaem_1c02301 crossref_primary_10_1021_acssuschemeng_3c06210 crossref_primary_10_1016_j_jsamd_2023_100533 crossref_primary_10_1142_S1793604724510512 crossref_primary_10_1016_j_jechem_2022_02_013 crossref_primary_10_1002_solr_202400151 crossref_primary_10_1007_s11082_025_08088_1 crossref_primary_10_1002_solr_202100419 crossref_primary_10_1021_acsaem_1c03055 crossref_primary_10_1002_ange_202206816 crossref_primary_10_1021_acsaelm_0c01035 crossref_primary_10_1016_j_solmat_2020_110724 crossref_primary_10_1021_acsaem_1c01300 crossref_primary_10_1039_D2CC04810H crossref_primary_10_1016_j_mtener_2023_101288 crossref_primary_10_1021_acs_chemmater_1c00741 crossref_primary_10_1016_j_vacuum_2024_113808 crossref_primary_10_1016_j_jallcom_2025_179841 crossref_primary_10_1021_acs_chemrev_2c00346 crossref_primary_10_1021_acsomega_2c07211 crossref_primary_10_1002_advs_202102530 crossref_primary_10_1088_2516_1083_ac9eff crossref_primary_10_1002_solr_202300436 crossref_primary_10_1088_2515_7655_ac91a6 crossref_primary_10_1016_j_mssp_2023_107430 crossref_primary_10_1016_j_tsf_2024_140554 crossref_primary_10_1039_D3QM00333G crossref_primary_10_1021_acs_jpcc_4c06007 crossref_primary_10_1088_1402_4896_ad155e crossref_primary_10_1039_D1TC01433A crossref_primary_10_3103_S0003701X23601515 crossref_primary_10_1016_j_solmat_2022_112150 crossref_primary_10_1016_j_solener_2021_11_009 crossref_primary_10_1039_D3TA03179A crossref_primary_10_1038_s41598_022_18579_w crossref_primary_10_1002_smll_202102429 crossref_primary_10_1016_j_ceramint_2024_01_129 crossref_primary_10_7498_aps_70_20202016 crossref_primary_10_1039_D4NJ03041A crossref_primary_10_1002_smll_202310584 crossref_primary_10_1088_1674_1056_ac4022 crossref_primary_10_1063_5_0008879 crossref_primary_10_1002_solr_202100911 crossref_primary_10_1016_j_tsf_2025_140660 crossref_primary_10_1016_j_cej_2022_137161 crossref_primary_10_1016_j_solener_2020_08_004 crossref_primary_10_1002_er_7276 crossref_primary_10_1016_j_inoche_2021_108787 crossref_primary_10_3390_coatings13020338 crossref_primary_10_1364_OME_504959 crossref_primary_10_1016_j_apcatb_2021_120568 crossref_primary_10_1002_smll_202302721 crossref_primary_10_1002_adfm_202420261 crossref_primary_10_1002_solr_202200094 crossref_primary_10_1039_D1RA04997F crossref_primary_10_1140_epjp_s13360_022_02804_6 crossref_primary_10_1002_solr_202300417 crossref_primary_10_3390_nano12142506 crossref_primary_10_1007_s10854_022_08483_4 crossref_primary_10_1016_j_solmat_2023_112430 crossref_primary_10_1039_D4SE00602J crossref_primary_10_1002_solr_202000220 crossref_primary_10_1088_2631_8695_ac2353 crossref_primary_10_1002_app_51310 crossref_primary_10_1021_acscatal_4c01762 crossref_primary_10_1016_j_ijleo_2023_170594 crossref_primary_10_1016_j_tsf_2023_139844 crossref_primary_10_1021_acsami_3c17115 crossref_primary_10_1002_adma_202404826 crossref_primary_10_1002_ente_202300333 crossref_primary_10_1016_j_joule_2024_05_004 crossref_primary_10_1016_j_surfin_2024_104793 crossref_primary_10_1016_j_cej_2024_149526 crossref_primary_10_1016_j_solmat_2024_112828 crossref_primary_10_3390_en16196862 crossref_primary_10_1007_s12598_022_01969_4 crossref_primary_10_1109_JPHOT_2024_3508052 crossref_primary_10_1002_nano_202000288 crossref_primary_10_26565_2312_4334_2024_1_36 crossref_primary_10_3390_app15062930 crossref_primary_10_1109_TDMR_2024_3405659 crossref_primary_10_1051_epjconf_202431000007 crossref_primary_10_1016_j_mseb_2024_117319 crossref_primary_10_1002_advs_202100552 crossref_primary_10_1016_j_colsurfa_2023_131889 crossref_primary_10_1016_j_optmat_2023_113668 crossref_primary_10_1080_15435075_2021_1954008 crossref_primary_10_3390_ijms232415529 crossref_primary_10_1016_j_inoche_2024_113773 crossref_primary_10_1051_epjconf_202226800006 crossref_primary_10_26599_EMD_2024_9370027 crossref_primary_10_1039_D2TA00893A crossref_primary_10_1021_acsaem_1c04078 crossref_primary_10_1007_s42247_020_00146_6 crossref_primary_10_1007_s11468_023_01932_8 crossref_primary_10_1002_smll_202311644 crossref_primary_10_1039_D1TA07207B crossref_primary_10_1039_D4EE02877E crossref_primary_10_1038_s41598_021_89944_4 crossref_primary_10_1016_j_physb_2024_416058 crossref_primary_10_1016_j_solmat_2021_111520 crossref_primary_10_1016_j_physb_2023_415221 crossref_primary_10_1021_acsami_1c20764 crossref_primary_10_1088_2515_7655_ac8578 crossref_primary_10_3390_cryst12111509 crossref_primary_10_1007_s00339_021_05201_5 crossref_primary_10_1016_j_optlastec_2022_108942 crossref_primary_10_1021_acs_chemmater_2c01550 crossref_primary_10_1021_acs_jpcc_2c00336 crossref_primary_10_3390_nano13142106 crossref_primary_10_1016_j_solener_2021_10_012 crossref_primary_10_1016_j_solener_2024_112950 crossref_primary_10_1021_acsenergylett_0c00940 crossref_primary_10_1016_j_electacta_2021_138290 crossref_primary_10_1039_D4TA08978B crossref_primary_10_1021_acs_jpclett_4c02414 crossref_primary_10_1140_epjb_s10051_022_00381_2 crossref_primary_10_1140_epjp_s13360_022_03291_5 crossref_primary_10_1039_D0TA03160G crossref_primary_10_1016_j_jmst_2021_05_083 crossref_primary_10_1007_s12200_020_1050_y crossref_primary_10_1021_acs_jpclett_2c02226 crossref_primary_10_1007_s10825_020_01595_2 crossref_primary_10_1002_anie_202206816 crossref_primary_10_1021_acsaem_3c01584 crossref_primary_10_1002_apxr_202400080 crossref_primary_10_1002_aenm_202003569 crossref_primary_10_1016_j_solmat_2020_110919 crossref_primary_10_1039_D3TA00554B crossref_primary_10_3390_ma15186272 crossref_primary_10_1007_s11082_024_07498_x crossref_primary_10_1016_j_solener_2021_11_070 crossref_primary_10_1016_j_solener_2022_04_011 crossref_primary_10_1002_admt_202301281 crossref_primary_10_1016_j_solener_2024_112945 crossref_primary_10_1063_5_0214349 crossref_primary_10_1007_s00339_024_07478_8 crossref_primary_10_1021_acs_jpclett_2c03308 crossref_primary_10_1016_j_solmat_2024_112891 crossref_primary_10_1016_j_apsusc_2021_150859 crossref_primary_10_1016_j_matchemphys_2024_129571 crossref_primary_10_3390_nano13152257 crossref_primary_10_1007_s10854_022_09763_9 crossref_primary_10_1007_s10853_023_08593_2 crossref_primary_10_1016_j_jpcs_2024_112370 crossref_primary_10_1016_j_sna_2022_113750 crossref_primary_10_1088_1674_4926_42_3_031701 crossref_primary_10_1021_acsami_5c00008 crossref_primary_10_1088_1361_6463_ac0eb5 crossref_primary_10_1021_acsaem_2c02131 crossref_primary_10_1021_acsami_3c10868 crossref_primary_10_1515_nanoph_2023_0725 crossref_primary_10_1002_adts_202200438 crossref_primary_10_1016_j_jcis_2022_08_072 crossref_primary_10_1016_j_optmat_2021_111098 crossref_primary_10_1016_j_jallcom_2024_173500 crossref_primary_10_3103_S0003701X23600959 crossref_primary_10_1007_s11664_023_10858_0 crossref_primary_10_1016_j_solmat_2023_112464 crossref_primary_10_1016_j_optmat_2021_111659 crossref_primary_10_1002_jccs_202100207 crossref_primary_10_3390_su14116780 crossref_primary_10_1039_D4TA00133H crossref_primary_10_1002_pssb_202000630 crossref_primary_10_1016_j_matchemphys_2024_129344 crossref_primary_10_3390_solar3040031 crossref_primary_10_1016_j_solmat_2024_112757 crossref_primary_10_1016_S1872_5805_23_60785_1 crossref_primary_10_1021_acsaem_4c02205 crossref_primary_10_1016_j_mssp_2024_109193 crossref_primary_10_1063_5_0095547 crossref_primary_10_1016_j_ijleo_2024_171723 crossref_primary_10_15251_CL_2024_2110_819 crossref_primary_10_1002_advs_202100868 crossref_primary_10_1039_D4TA07389D crossref_primary_10_1016_j_apcatb_2022_121149 crossref_primary_10_1038_s41598_023_49269_w crossref_primary_10_1002_solr_202400499 crossref_primary_10_1016_j_ccr_2023_215466 crossref_primary_10_1016_j_solener_2022_01_010 crossref_primary_10_1002_admi_202200448 crossref_primary_10_1021_acsami_0c14256 crossref_primary_10_1088_2053_1591_ad371a crossref_primary_10_1007_s40042_022_00521_y crossref_primary_10_1063_5_0032867 crossref_primary_10_1002_solr_202100517 crossref_primary_10_1016_j_solener_2020_06_114 crossref_primary_10_3103_S0003701X22040132 crossref_primary_10_1016_j_solener_2025_113324 crossref_primary_10_1021_acs_langmuir_0c03653 crossref_primary_10_1039_D2YA00232A crossref_primary_10_1557_s43580_021_00115_z crossref_primary_10_1016_j_apsusc_2020_148726 crossref_primary_10_1007_s11082_024_07997_x crossref_primary_10_1088_2631_8695_ada0a9 crossref_primary_10_1109_ACCESS_2024_3472843 crossref_primary_10_3390_nano13111756 crossref_primary_10_1016_j_jallcom_2022_168284 crossref_primary_10_1016_j_isci_2021_103594 crossref_primary_10_1039_D3CP04490D crossref_primary_10_1002_solr_202200235 crossref_primary_10_1016_j_rinp_2020_103647 crossref_primary_10_1016_j_solener_2022_07_035 crossref_primary_10_1016_j_solener_2023_03_010 crossref_primary_10_1002_adom_202100107 crossref_primary_10_1016_j_fuproc_2022_107427 crossref_primary_10_1007_s10854_022_08163_3 crossref_primary_10_1016_j_optcom_2024_130410 crossref_primary_10_1002_adma_202108261 crossref_primary_10_1088_1361_6641_abc7d0 crossref_primary_10_1007_s11082_022_04246_x crossref_primary_10_1016_j_cap_2022_12_011 crossref_primary_10_3390_en16237722 crossref_primary_10_1016_j_solmat_2021_111223 crossref_primary_10_1021_acsaem_1c01777 crossref_primary_10_1021_acsami_0c21365 crossref_primary_10_1364_OME_456428 crossref_primary_10_1016_j_solmat_2023_112399 crossref_primary_10_1002_adom_202202625 crossref_primary_10_1140_epjp_s13360_023_04407_1 crossref_primary_10_1016_j_heliyon_2022_e12043 crossref_primary_10_1016_j_apmt_2024_102338 crossref_primary_10_1016_j_solener_2022_07_047 crossref_primary_10_1140_epjp_s13360_024_05079_1 crossref_primary_10_1016_j_renene_2022_10_068 crossref_primary_10_1021_acs_chemmater_3c02114 crossref_primary_10_1016_j_jpowsour_2020_228835 crossref_primary_10_1016_j_solener_2020_10_077 crossref_primary_10_1002_solr_202200265 crossref_primary_10_1021_jacs_1c03032 crossref_primary_10_1088_1361_648X_ac3db3 crossref_primary_10_1021_acs_jpclett_4c00257 crossref_primary_10_1039_D4NR03880K crossref_primary_10_1002_adfm_202423909 crossref_primary_10_1002_smll_202408978 crossref_primary_10_26565_2312_4334_2024_4_29 crossref_primary_10_1002_adfm_202112184 crossref_primary_10_1088_1402_4896_ad4751 crossref_primary_10_1002_ente_202401475 crossref_primary_10_1002_adfm_202316292 crossref_primary_10_1007_s11051_024_06085_1 crossref_primary_10_1016_j_solener_2021_09_025 crossref_primary_10_1021_acsaem_2c00420 crossref_primary_10_1016_j_jallcom_2022_165201 crossref_primary_10_1007_s10854_022_09296_1 crossref_primary_10_1021_acsaem_1c03023 crossref_primary_10_1016_j_cej_2022_135971 crossref_primary_10_1016_j_apsusc_2021_151640 crossref_primary_10_1016_j_solmat_2024_112796 crossref_primary_10_1007_s00339_023_06656_4 crossref_primary_10_1016_j_physb_2024_416214 crossref_primary_10_3390_en17020406 crossref_primary_10_1016_j_solmat_2023_112492 crossref_primary_10_1016_j_fuproc_2022_107451 crossref_primary_10_1016_j_jpcs_2023_111353 crossref_primary_10_3103_S0003701X22010157 crossref_primary_10_1088_2515_7655_acf688 crossref_primary_10_1002_smtd_202300728 crossref_primary_10_1039_D2TA01465C |
Cites_doi | 10.1039/C6CC06475B 10.1002/solr.201800144 10.1063/1.1702619 10.1039/c0ce00381f 10.1063/1.4894170 10.1021/acs.chemmater.9b02085 10.1016/j.solidstatesciences.2012.06.003 10.1007/s11664-003-0065-7 10.1039/C8TC01683F 10.26577/RCPh-2019-1-1093 10.1016/S0254-0584(01)00350-9 10.1186/s40064-016-2256-8 10.1023/B:INTS.0000028655.11608.c7 10.1007/BF02708491 10.1039/C6TA09602F 10.1016/j.enconman.2014.03.020 10.1016/j.matlet.2018.10.173 10.1016/j.apcatb.2018.06.009 10.1016/j.nanoen.2019.103929 10.1002/aelm.201700329 10.1016/j.solener.2018.12.023 10.1002/pssr.201600199 10.1016/j.materresbull.2017.11.014 10.1134/S1063782617120107 10.1038/srep22109 10.1103/PhysRevApplied.4.044017 10.1016/j.solener.2018.03.081 10.1063/1.3653616 10.1016/j.joule.2018.04.003 10.1016/S1452-3981(23)13140-3 10.1016/j.egypro.2015.07.368 10.1039/C5SC00825E 10.1088/0268-1242/31/6/063001 10.1016/0042-207X(93)90358-H 10.1002/adfm.201304238 10.1116/1.571928 10.1063/1.4864415 10.1016/j.solener.2018.01.018 10.1016/j.solmat.2019.110157 10.1016/j.solener.2016.08.020 10.1016/j.tsf.2006.12.071 10.1016/j.cap.2018.02.008 10.1063/1.4932544 10.1016/j.solmat.2011.06.026 10.1002/adma.201306281 10.1016/0022-3697(57)90090-2 10.1038/s41598-017-03281-z 10.1016/j.solmat.2017.07.014 10.1007/s00269-005-0470-y 10.1039/C6TA10543B 10.1002/pip.2911 10.1016/j.solmat.2016.02.013 10.1002/pip.2952 10.1007/s10008-017-3768-z 10.1063/1.4953435 10.1007/s00269-001-0227-1 10.1039/C3TC31883D 10.1016/j.solener.2018.02.038 10.1557/mrc.2018.94 10.1016/j.solmat.2017.07.004 10.1016/j.solmat.2018.08.003 10.1016/0165-1633(82)90037-5 10.1016/S0921-4526(96)00850-2 10.1038/nenergy.2016.35 10.1016/j.cogsc.2017.01.002 10.1007/s40243-015-0058-5 10.1016/j.nanoen.2018.01.047 10.1002/aenm.201501203 10.1002/pip.2978 10.1039/C6RA04834J 10.1109/PVSC.2018.8547653 10.1002/aenm.201600457 10.1016/j.joule.2019.02.010 10.1021/acsenergylett.8b02323 10.1038/nenergy.2016.15 10.1016/j.apsusc.2018.04.152 10.1016/S0022-0248(98)00503-X 10.1016/j.solmat.2017.09.008 10.1016/j.solmat.2018.10.006 10.1002/aenm.201601935 10.1039/c0ee00488j 10.1016/j.solmat.2016.11.033 10.1007/s11467-018-0790-2 10.1039/C9TA02022E 10.1002/adma.201806164 10.1002/pssb.201046225 10.1002/adfm.201101103 10.1002/cplx.20306 10.1002/pip.2900 10.1007/s10853-012-6385-3 10.1021/nl1020848 10.1007/s12200-017-0702-z 10.1021/am405416a 10.1016/j.solmat.2018.06.022 10.1109/PVSC.2017.8366746 10.1016/0022-3093(73)90002-1 10.1063/1.4874878 10.1126/science.aad4424 10.1039/C5TA09640E 10.1016/j.surfcoat.2018.12.102 10.1016/j.tsf.2003.10.137 10.1016/j.solmat.2018.08.006 10.1016/j.solener.2016.06.067 10.1016/j.electacta.2009.10.046 10.1039/C5TC01364J 10.1155/2012/983150 10.7567/JJAP.54.042302 10.1021/acsenergylett.8b01456 10.1016/S0927-0248(00)00266-X 10.1016/j.physb.2011.07.005 10.1016/j.solmat.2018.09.020 10.1016/j.jelechem.2012.02.018 10.1126/science.aad5845 10.1016/S0254-0584(99)00173-X 10.1063/1.1736034 10.1002/pssb.2220540215 10.1149/1.3089358 10.7567/JJAP.54.032301 10.1016/j.pmatsci.2016.03.005 10.1126/science.aah5557 10.1016/j.solmat.2017.04.040 10.1016/j.solmat.2017.09.035 10.3390/en9040254 10.1039/c4cp00614c 10.1016/0022-3093(72)90266-9 10.1038/s41467-018-04634-6 10.1016/j.solener.2019.04.029 10.1016/j.jallcom.2017.12.039 10.1016/S0927-0248(02)00120-4 10.1002/aenm.201700866 10.1103/PhysRevLett.29.485 10.1155/2013/739078 10.1016/j.matchemphys.2012.06.024 10.1016/j.solmat.2014.01.047 10.1016/j.rser.2014.11.101 10.1016/j.solmat.2016.10.042 10.1016/j.pmatsci.2017.02.003 10.1039/C6SE00076B 10.1016/S0040-6090(97)00415-X 10.1016/j.solener.2016.02.015 10.1016/S0022-3697(74)80175-7 10.1016/j.pmatsci.2018.03.004 10.1063/1.1525866 10.1016/j.solmat.2004.08.017 10.1016/S0022-3093(00)00156-3 10.1021/nl101284k 10.1016/j.jallcom.2015.01.205 10.1063/1.1366655 10.1021/am502427s 10.1016/0079-6425(91)90001-A 10.1002/solr.201800208 10.1016/j.solmat.2014.04.027 10.1016/j.tsf.2006.10.012 10.1016/j.solmat.2014.10.036 10.1038/nphoton.2012.11 10.1039/C6RA20690E 10.1016/j.physb.2008.11.086 10.1016/j.electacta.2011.07.042 10.1002/pssa.200306691 10.1002/pip.823 10.1021/acsenergylett.7b00648 10.1103/PhysRevB.9.4392 10.1016/j.tsf.2010.12.117 10.1002/pip.2879 10.1007/BF01597220 10.1038/nenergy.2017.46 10.1016/j.cap.2017.10.009 10.1016/j.solener.2019.09.069 10.1088/1757-899X/271/1/012063 10.1002/solr.201900026 10.1016/j.solmat.2016.12.044 10.1016/S0254-0584(99)00160-1 10.1016/j.apmt.2018.05.003 10.1002/adfm.201606242 10.1088/0022-3727/28/4/022 10.7567/APEX.8.082301 10.1016/j.solener.2019.02.050 10.1016/j.apsusc.2012.08.046 10.1016/j.jechem.2017.09.031 10.1002/pssa.201532217 10.1063/1.4927741 10.1088/0022-3727/33/4/201 10.1002/celc.201700511 10.1016/j.pmatsci.2013.12.003 10.1038/nphoton.2015.85 10.1016/j.ijleo.2016.06.109 10.1088/0022-3727/43/21/215403 10.1186/1556-276X-8-141 10.1002/adma.200803436 10.1021/acsami.8b01247 10.1016/j.solener.2017.11.053 10.1016/S0040-6090(00)00716-1 10.1002/aenm.201301680 10.1016/j.tsf.2017.06.044 10.1107/S1600576719001006 10.1016/j.tsf.2005.07.238 10.1016/j.solmat.2018.09.004 10.7567/APEX.9.052302 10.1038/nphoton.2015.78 10.1039/C7EE00826K 10.1016/j.solener.2018.07.082 10.1002/aenm.201200538 10.1016/j.colsurfa.2011.09.018 10.1016/j.ijleo.2013.10.114 10.1002/pip.2627 10.1016/0022-3093(81)90119-8 10.1063/1.4991539 10.1016/j.nanoen.2018.04.044 10.1002/pip.2239 10.1016/j.pmatsci.2018.02.007 10.1021/acs.chemmater.5b03614 10.1002/aenm.201301846 10.1107/S0365110X57000298 10.1002/ange.201308331 10.1063/1.4971388 |
ContentType | Journal Article |
Copyright | 2020 International Solar Energy Society Copyright Pergamon Press Inc. May 1, 2020 |
Copyright_xml | – notice: 2020 International Solar Energy Society – notice: Copyright Pergamon Press Inc. May 1, 2020 |
CorporateAuthor | National Renewable Energy Lab. (NREL), Golden, CO (United States) |
CorporateAuthor_xml | – name: National Renewable Energy Lab. (NREL), Golden, CO (United States) |
DBID | RYH AAYXX CITATION 7SP 7ST 8FD C1K FR3 KR7 L7M SOI OIOZB OTOTI |
DOI | 10.1016/j.solener.2020.03.009 |
DatabaseName | CiNii Complete CrossRef Electronics & Communications Abstracts Environment Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts OSTI.GOV - Hybrid OSTI.GOV |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Electronics & Communications Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace Environmental Sciences and Pollution Management |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1471-1257 |
EndPage | 246 |
ExternalDocumentID | 1606129 10_1016_j_solener_2020_03_009 S0038092X20302401 |
GroupedDBID | --K --M -ET -~X .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAHCO AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AATTM AAXKI AAXUO ABJNI ABMAC ABXRA ACDAQ ACGFS ACGOD ACIWK ACRLP ADBBV ADEZE ADHUB AEBSH AEIPS AEKER AENEX AEZYN AFRAH AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AXJTR BELTK BKOJK BKOMP BLXMC BNPGV CS3 EBS EFJIC EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA H~9 IHE J1W JARJE KOM LY6 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ RXW SDF SDG SDP SES SPC SPCBC SSH SSM SSR SSZ T5K TAE TN5 WH7 XPP YNT ZMT ~02 ~G- ~KM ~S- AAYWO ACVFH ADCNI AEUPX AFPUW AFXIZ AGCQF AGRNS AIIUN AKBMS AKYEP APXCP RYH 6TJ AAQXK AAYXX ABDPE ABFNM ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AFJKZ AGQPQ AIGII AZFZN CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ NEJ R2- RIG SAC SEW UKR VOH WUQ XOL ZY4 ~A~ 7SP 7ST 8FD C1K EFKBS FR3 KR7 L7M SOI AAIAV AALMO ABPIF ABPTK ABYKQ AFKWA AJOXV AMFUW OIOZB OTOTI PQEST TAF |
ID | FETCH-LOGICAL-c506t-b6cfda493db8bb0f2d9fc92cdcae67eebf05dd16817808a7221ce5d615bea45e3 |
IEDL.DBID | .~1 |
ISSN | 0038-092X |
IngestDate | Thu May 18 22:27:26 EDT 2023 Fri Jul 25 06:15:59 EDT 2025 Thu Apr 24 23:01:43 EDT 2025 Tue Jul 01 00:39:35 EDT 2025 Thu Jun 26 22:19:16 EDT 2025 Sun Apr 06 06:53:19 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Thin-film solar cells Sb2Se3 Open-circuit voltage deficit Carrier management Photovoltaics |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c506t-b6cfda493db8bb0f2d9fc92cdcae67eebf05dd16817808a7221ce5d615bea45e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 NREL/JA-5K00-76203 AC36-08GO28308; 21850410460; 11774044; U1630126; F3-003 USDOE Office of Energy Efficiency and Renewable Energy (EERE), Fuel Cell Technologies Program NSAF Joint Foundation of China Basic Research Foundation of the Uzbekistan Academy of Sciences USDOE National Natural Science Foundation of China (NNSFC) |
ORCID | 0000-0002-3054-5525 0000-0002-5711-4979 0000-0002-3343-7538 0000-0001-7486-6382 0000-0001-9062-0577 0000-0003-4800-0758 0000-0001-5764-8631 0000-0003-2400-2986 0000000174866382 0000000257114979 0000000230545525 0000000233437538 0000000190620577 |
OpenAccessLink | https://www.osti.gov/servlets/purl/1606129 |
PQID | 2437434388 |
PQPubID | 9393 |
PageCount | 20 |
ParticipantIDs | osti_scitechconnect_1606129 proquest_journals_2437434388 crossref_citationtrail_10_1016_j_solener_2020_03_009 crossref_primary_10_1016_j_solener_2020_03_009 nii_cinii_1872272492633937152 elsevier_sciencedirect_doi_10_1016_j_solener_2020_03_009 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-05-01 2020-05-00 20200501 |
PublicationDateYYYYMMDD | 2020-05-01 |
PublicationDate_xml | – month: 05 year: 2020 text: 2020-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States |
PublicationTitle | Solar Energy |
PublicationYear | 2020 |
Publisher | Elsevier Ltd Elsevier BV Pergamon Press Inc Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV – name: Pergamon Press Inc – name: Elsevier |
References | Lai, Han, Lv, Yang, Liu, Li, Liu (b0510) 2012; 671 Costa, de Souza Lucas, Mascaro (b0225) 2018; 22 Torane, Rajpure, Bhosale (b0985) 1999; 61 Zeng, Xue, Tang (b1140) 2016; 31 El-Sayad, Moustafa, Marzouk (b0255) 2009; 404 Kondrotas, R., Chen, C., Tang, J., 2018. Progress and Prospects of Sb2S3-Based Thin Film and Tandem Solar Cells. Joule. Zhang, Kondrotas, Lu, Wang, Chen, Tang (b1145) 2019; 182 Bosio, Rosa, Menossi, Romeo (b0090) 2016; 9 Rimmaudo, Salavei, Artegiani, Menossi, Giarola, Mariotto, Gasparotto, Romeo (b0860) 2017; 162 Bhattacharya, Pramanik (b0075) 1982; 6 Hutter, O.S., Phillips, L.J., Yates, P., Major, J.D., Durose, K., 2018b. CSS Antimony Selenide Film Morphology and High Efficiency PV Devices, WCPEC-7 Conference Paper. Leng, Luo, Chen, Qin, Chen, Zhong, Tang (b0530) 2014; 105 Butt, Li, Haq, Tariq, Aleem (b0105) 2018; 13 Bosio, Rosa, Romeo (b0095) 2018 Zardetto, Williams, Perrotta, Di Giacomo, Verheijen, Andriessen, Kessels, Creatore (b1130) 2017; 1 Sun, He, Kong, Yue, Yang, Chu (b0950) 2011; 95 Fernandez, Merino (b0275) 2000; 366 Yang, Wang, Li, Wan, Huang (b1085) 2012; 47 Li, Chen, Yan, Hao (b0570) 2015; 632 Kim, Yang, Oh, Lee, Lee, Shin, Kim, Moon (b0460) 2017; 5 Liu, Chen, Wang, Zhong, Luo, Chen, Xue, Li, Zhou, Tang (b0620) 2015; 23 Wood, Shaffer, Proctor (b1060) 1972; 29 Choi, Lee, Im, Noh, Mandal, Yang, Seok (b0210) 2014; 4 Shimakawa (b0920) 1981; 43 Yao, He (b1095) 2014; 61 Liang, Zhang, Ma, Hu, Fan, Luo, Zheng, Luo, Fan (b0600) 2017; 160 Shockley, Queisser (b0925) 1961; 32 Hurych, Davis, Buczek, Wood, Lapeyre, Baer (b0390) 1974; 9 Liang, Zheng, Fan, Luo, Hu, Zhang, Ma, Fan, Luo, Zhang (b0605) 2018; 174 Akari, Chantana, Nakatsuka, Nose, Minemoto (b0005) 2018; 174 Wen, Chen, Lu, Li, Kondrotas, Zhao, Chen, Gao, Wang, Zhang (b1045) 2018; 9 Hübler, Osuagwu (b0385) 2010; 15 Ojo, Dharmadasa (b0770) 2016; 136 Rodriguez-Lazcano, Peña, Nair, Nair (b0865) 2005; 493 Yuan, Zhang, Liu, Zhu (b1120) 2016; 137 Savory, C.N., Scanlon, D.O., 2019. The complex defect chemistry of antimony selenide. J. Mater. Chem. A. Burst, Duenow, Albin, Colegrove, Reese, Aguiar, Jiang, Patel, Al-Jassim, Kuciauskas (b0100) 2016; 1 Cebriano, MÚndez, Piqueras (b0120) 2012; 135 Mahuli, Halder, Paul, Sarkar (b0675) 2019; 31 Chen, Zhao, Lu, Li, Li, Yang, Chen, Wang, Li, Deng (b0190) 2017; 7 Li, Chen, Zhu, Chen, Guo, Zhang, Zhang, Niu, Mai (b0585) 2017; 161 Mallick, Basak (b0680) 2018; 96 Luo, Luan, Yuan, Zhang, Jin (b0655) 2015; 75 Li, Zhu, Yang (b0550) 2012; 6 Li, Zhou, Luo, Chen, Yang, Wen, Lu, Chen, Zeng, Song (b0575) 2016; 6 Lindahl, Wätjen, Hultqvist, Ericson, Edoff, Törndahl (b0610) 2013; 21 Chantana, Kato, Sugimoto, Minemoto (b0135) 2017; 25 Chen, Li, Zhou, Chen, Luo, Liu, Zeng, Yang, Zhang, Han (b0180) 2015; 107 Shongalova, Muratov, Rakhmetov, Aimaganbetov, Zhantuarov (b0940) 2019; 68 Wang, Tang, Wu, Zhu, Chen (b1025) 2018; 27 Hu, Tao, Chen, Xue, Weng, Hu, Jiang, Chen, Zhu, Chu (b0365) 2018; 187 Shongalova, Correia, Teixeira, Leitão, González, Ranjbar, Garud, Vermang, Cunha, Salomé (b0930) 2018; 187 Li, Wang, Liu, Yang, Li, Liu, Jia, Lai, Liu (b0555) 2011; 56 Nishimura, Kim, Chantana, Kawano, Ishizuka, Minemoto (b0765) 2019; 202 Wood, Mueller, Gilbert (b1055) 1973; 12 Hamri, Bourezig, Medles, Ameri, Toumi, Ameri, Al-Douri, Voon (b0315) 2019; 178 Welch, Baranowski, Zawadzki, Lany, Wolden, Zakutayev (b1040) 2015; 8 Sajid-ur-Rehman, Butt, Li, Haq, Tariq, Aleem (b0880) 2018; 13 López-Marino, Sánchez, Espindola-Rodriguez, Alcobé, Xie, Neuschitzer, Becerril, Giraldo, Dimitrievska, Placidi (b0645) 2016; 4 Yu, Chen, Fu (b1105) 2010; 55 Chantana, Kawano, Nishimura, Kimoto, Kato, Sugimoto, Minemoto (b0155) 2019 Sankapal, Pathan, Lokhande (b0890) 2001; 8 Hu, Zhang, Patterson, Hu, Chen, Chen, Li, Hu, Ge, Chen (b0360) 2018; 46 Wu, Lee, Chiu, Chen, Chen (b1065) 2015; 3 Zhou, Wang, Chen, Qin, Liu, Chen, Xue, Luo, Cao, Cheng (b1170) 2015; 9 Wang, Tang, Yin, Ju, Zhu, Chen (b1030) 2019; 189 Fernandes, Salomé, Da Cunha (b0270) 2010; 43 Liu, Gibbs, Puthussery, Gaik, Ihly, Hillhouse, Law (b0640) 2010; 10 Poplavskyy, Nelson (b0815) 2003; 93 Tan, Tang, Zou, Long, Zhang, Ouyang, Chen (b0955) 2017; 7 Kyono, Kimata, Matsuhisa, Miyashita, Okamoto (b0495) 2002; 29 Voutsas, Papazoglou, Rentzeperis, Siapkas (b1005) 1985; 171 Al-Douri, Khasawneh, Kiwan, Hashim, Hamid, Reshak, Bouhemadou, Ameri, Khenata (b0010) 2014; 82 Versluys, Clauws, Nollet, Degrave, Burgelman (b1000) 2004; 451 Yin, Shi, Yan (b1100) 2014; 26 Kulkarni, Arote, Pathan, Patil (b0480) 2015; 4 Rajpure, Bhosale (b0820) 2000; 62 Chen, Wang, Gao, Nam, Li, Li, Zhao, Ge, Cheong, Liu (b0185) 2017; 2 Luo, Leng, Liu, Chen, Chen, Qin, Tang (b0660) 2014; 104 Furlong, Froment, Bernard, Cortes, Tiwari, Krejci, Zogg, Lincot (b0285) 1998; 193 Ishizuka, Sakurai, Yamada, Matsubara, Fons, Iwata, Nakamura, Kimura, Baba, Nakanishi (b0425) 2005; 87 Murata, Chantana, Ashida, Hironiwa, Minemoto (b0745) 2015; 54 Haque, Elumalai, Wright, Mahmud, Wang, Upama, Xu, Uddin (b0330) 2018; 99 Li, Zhu, Guo, Niu, Chen, Zhang, Zhang, Liang, Zhou, Chen (b0595) 2016; 9 Kato, T., Kitani, K., Tai, K.F., Kamada, R., Hiroi, H., Sugimoto, H., 2016. Characterization of the back contact of CIGS solar cell as the origin of rollover effect. In: 32nd European Photovoltaic Solar Energy Conference and Exhibition. pp. 1085–1088. Alemi, Hanifehpour, Joo, Min (b0025) 2011; 406 Terheggen, Heinrich, Kostorz, Baetzner, Romeo, Tiwari (b0970) 2004; 12 Minemoto, Okamoto, Takakura (b0725) 2011; 519 Ou, Yang, Xiong, Zheng, Pan, Jin, Liu, Huang (b0775) 2017; 27 Wang, Luo, Qin, Liu, Chen, Yang, Leng, Xue, Zhou, Gao, Song, Tang (b1015) 2015; 107 Ishaq, M., Deng, H., Yuan, S., Zhang, H., Khan, J., Farooq, U., Song, H., Tang, J., 2018. Efficient Double Buffer Layer Sb2(SexS1–x)3 Thin Film Solar Cell Via Single Source Evaporation. Solar RRL, 1800144. Minemoto, Hashimoto, Satoh, Negami, Takakura, Hamakawa (b0705) 2001; 89 Shaaban, Abdel-Rahman, Dessouky (b0905) 2007; 515 Mustafa, F.I., Gupta, S., Goyal, N., Tripathi, S., 2011. Non‐Ideal p‐n junction Diode of SbxSe1−x (x= 0.4, 0.5, 0.6, 0.7) Thin Films. In: AIP Conference Proceedings. AIP, pp. 75–76. Choi, Lee, Noh, Kim, Seok (b0205) 2014; 24 Chen, Guo, Guo, Ma, Qiu, Yuan, Ding (b0200) 2019; 236 Chantana, Kato, Sugimoto, Minemoto (b0130) 2017; 25 Chen, S., Qiao, X., Zheng, Z., Cathelinaud, M., Ma, H., Fan, X., Zhang, X., 2018. Enhanced electrical conductivity and photoconductive properties of Sn-doped Sb2Se3 crystals. J. Mater. Chem. C. Zakutayev (b1125) 2017; 4 Honma, Sato, Benino, Komatsu, Dimitrov (b0350) 2000; 272 Razykov, Boltaev, Bosio, Ergashev, Kouchkarov, Mamarasulov, Mavlonov, Romeo, Romeo, Tursunkulov (b0850) 2018; 159 Deringer, Stoffel, Wuttig, Dronskowski (b0235) 2015; 6 Ganose, Savory, Scanlon (b0290) 2017; 53 Shen, Ou, Huang, Zhu, Li, Li, Mai (b0915) 2018; 186 Li, Zhou, Zhu, Chen, Luo, Ma, Yang, Wang, Xia, Tang (b0580) 2016; 109 Green (b0300) 2019; 3 Chandrasekharan, Kunjomana (b0125) 2009; 33 Belas, Grill, Franc, Turjanska, Turkevych, Moravec, Höschl (b0070) 2003; 32 Choi, Mandal, Yang, Lee, Im, Noh, Seok (b0215) 2014; 126 Lawal, Shaari, Ahmed, Taura (b0520) 2018; 18 Huang, Xu, Han, Tang, Chen (b0375) 2019 Hutter, Phillips, Durose, Major (b0395) 2018; 188 Huang, Li, Chen, Xia, Huang, Dun, Li, Carroll (b0380) 2014; 127 Kazmerski, Hallerdt, Ireland, Mickelsen, Chen (b0455) 1983; 1 Patrick, Giustino (b0790) 2011; 21 Minemoto, Matsui, Takakura, Hamakawa, Negami, Hashimoto, Uenoyama, Kitagawa (b0715) 2001; 67 Phillips, L., Yates, P., Hutter, O.S., Baines, T., Bowen, L., Durose, K., Major, J.D., 2017. Close-spaced sublimation for Sb2Se3 solar cells, In: 2017 IEEE 44rd Photovoltaic Specialists Conference (PVSC). Saliba, Matsui, Domanski, Seo, Ummadisingu, Zakeeruddin, Correa-Baena, Tress, Abate, Hagfeldt (b0885) 2016; 354 Li, Kondrotas, Chen, Lu, Wen, Li, Luo, Zhao, Tang (b0565) 2018; 167 Chantana, Suzuki, Minemoto (b0160) 2017; 168 Chen, Bobela, Yang, Lu, Zeng, Ge, Yang, Gao, Zhao, Beard (b0170) 2017; 10 Alharbi, Kais (b0040) 2015; 43 Wu, Xu, Ong, Bhatnagar, Chan (b1070) 2019; 31 Matsuo, Hironiwa, Chantana, Sakai, Kato, Sugimoto, Minemoto (b0685) 2015; 54 Hofmann (b0345) 1933; 86 Yuan, Jin, Jiang, Liu, Zhu (b1115) 2016; 27 Shaffer, Van Pelt, Wood, Freeouf, Murase, Osmun (b0910) 1972; 54 Banu, Cho, Kim, Ahn, Cho, Gwak, Cho (b0060) 2019; 189 Steinmann, Brandt, Buonassisi (b0945) 2015; 9 Hutter, O.S., Phillips, L.J., Yates, P.J., Major, J.D., Durose, K., 2018c. CSS Antimony selenide film morphology and high efficiency PV devices. In: 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC). IEEE, pp. 0027–0031. Mohamed, Rohani (b0730) 2011; 4 Alemi, Hanifehpour, Joo, Min, Oh (b0035) 2012; 2012 Liu, Chen, Luo, Leng, Xia, Zhou, Qin, Xue, Lv, Huang (b0625) 2014; 6 El-Salam, Afifi, El-Wahabb (b0250) 1993; 44 Hanifehpour, Joo, Min (b0325) 2013; 8 Romeo, Artegiani, Menossi (b0870) 2018 Zayed, Abo-Elsoud, Ibrahim, Kenawy (b1135) 1995; 28 Green, Hishikawa, Dunlop, Levi, Hohl-Ebinger, Ho-Baillie (b0305) 2018; 26 Li, Yin, Grice, Guan, Song, Wang, Chen, Li, Cimaroli, Awni, Zhao, Song, Tang, Yan, Tang (b0535) 2018; 49 Al-Douri, Waheb, Ameri, Khenata, Bouhemadou, Reshak (b0015) 2013; 8 Kaur, Kumar, Kumar (b0450) 2017; 5 Faheem, Khan, Feng, Farooq, Raziq, Xiao, Li (b0265) 2019 Rühle (b0875) 2016; 130 Altamura, Wang, Choy (b0045) 2016; 6 Bibin, Kunjomana (b0080) 2019; 52 Jackson, Wuerz, Hariskos, Lotter, Witte, Powalla (b0430) 2016; 10 Polman, Knight, Garnett, Ehrler, Sinke (b0810) 2016; 352 Minemoto, Hashimoto, Shams-Kolahi, Satoh, Negami, Takakura, Hamakawa (b0710) 2003; 75 Park, Yang, Oh, Tan, Lee, Boppella, Moon (b0780) 2019 Wang, Li, Li, Chen, Deng, Gao, Zhao, Jiang, Li, Huang (b1010) 2017; 2 Liu, Xiao, Yang, Xue, Li, Chen, Lu, Gao, He, Beard (b0630) 2017; 25 Tang, Zheng, Su, Li, Wei, Zhang, Fu, Luo, Fan, Liang (b0965) 2019; 64 Chantana, Uegaki, Minemoto (b0165) 2017; 636 Hironiwa, Matsuo, Chantana, Sakai, Kato, Sugimoto, Minemoto (b0340) 2015; 212 Li, Liang, Li, Liu, Zhang, Guo, Chen, Shen, San, Yu (b0590) 2019; 10 Mehta, Karthik, Jiang, Singh, Shi, Siegel, Borca-Tasciuc, Raman Mahuli (10.1016/j.solener.2020.03.009_b0675) 2019; 31 Tang (10.1016/j.solener.2020.03.009_b0965) 2019; 64 Chen (10.1016/j.solener.2020.03.009_b0200) 2019; 236 Hartnauer (10.1016/j.solener.2020.03.009_b0335) 2016; 4 Banu (10.1016/j.solener.2020.03.009_b0055) 2016; 151 Caracas (10.1016/j.solener.2020.03.009_b0115) 2005; 32 Shaaban (10.1016/j.solener.2020.03.009_b0905) 2007; 515 Kim (10.1016/j.solener.2020.03.009_b0460) 2017; 5 McMeekin (10.1016/j.solener.2020.03.009_b0690) 2016; 351 Shimakawa (10.1016/j.solener.2020.03.009_b0920) 1981; 43 Tideswell (10.1016/j.solener.2020.03.009_b0980) 1957; 10 Messina (10.1016/j.solener.2020.03.009_b0700) 2009; 156 Choi (10.1016/j.solener.2020.03.009_b0210) 2014; 4 Li (10.1016/j.solener.2020.03.009_b0560) 2014; 124 Ramanujam (10.1016/j.solener.2020.03.009_b0835) 2017; 10 Wang (10.1016/j.solener.2020.03.009_b1020) 2018 Liang (10.1016/j.solener.2020.03.009_b0600) 2017; 160 Wang (10.1016/j.solener.2020.03.009_b1010) 2017; 2 Chen (10.1016/j.solener.2020.03.009_b0175) 2018; 3 Zhao (10.1016/j.solener.2020.03.009_b1150) 2018; 450 Park (10.1016/j.solener.2020.03.009_b0780) 2019 Polman (10.1016/j.solener.2020.03.009_b0810) 2016; 352 Mustafa (10.1016/j.solener.2020.03.009_b0750) 2009; 11 Choi (10.1016/j.solener.2020.03.009_b0215) 2014; 126 Ramanujam (10.1016/j.solener.2020.03.009_b0840) 2016; 82 Poplavskyy (10.1016/j.solener.2020.03.009_b0815) 2003; 93 Chantana (10.1016/j.solener.2020.03.009_b0155) 2019 Deringer (10.1016/j.solener.2020.03.009_b0235) 2015; 6 Yang (10.1016/j.solener.2020.03.009_b1085) 2012; 47 Pathan (10.1016/j.solener.2020.03.009_b0785) 2004; 27 Wood (10.1016/j.solener.2020.03.009_b1055) 1973; 12 Bibin (10.1016/j.solener.2020.03.009_b0080) 2019; 52 Kyono (10.1016/j.solener.2020.03.009_b0495) 2002; 29 Kwon (10.1016/j.solener.2020.03.009_b0490) 2017; 172 Wen (10.1016/j.solener.2020.03.009_b1045) 2018; 9 10.1016/j.solener.2020.03.009_b0400 10.1016/j.solener.2020.03.009_b0755 Minemoto (10.1016/j.solener.2020.03.009_b0705) 2001; 89 Ibraheam (10.1016/j.solener.2020.03.009_b0410) 2016; 127 Kamruzzaman (10.1016/j.solener.2020.03.009_b0440) 2017; 51 Wang (10.1016/j.solener.2020.03.009_b1025) 2018; 27 Lai (10.1016/j.solener.2020.03.009_b0505) 2012; 261 Tian (10.1016/j.solener.2020.03.009_b0975) 2019 10.1016/j.solener.2020.03.009_b0195 Alharbi (10.1016/j.solener.2020.03.009_b0040) 2015; 43 Chen (10.1016/j.solener.2020.03.009_b0180) 2015; 107 Faheem (10.1016/j.solener.2020.03.009_b0265) 2019 Yin (10.1016/j.solener.2020.03.009_b1100) 2014; 26 Ma (10.1016/j.solener.2020.03.009_b0665) 2011; 13 Alemi (10.1016/j.solener.2020.03.009_b0030) 2011; 390 Al-Douri (10.1016/j.solener.2020.03.009_b0015) 2013; 8 Chantana (10.1016/j.solener.2020.03.009_b0145) 2018; 26 Costa (10.1016/j.solener.2020.03.009_b0220) 2017; 4 Liu (10.1016/j.solener.2020.03.009_b0630) 2017; 25 Chen (10.1016/j.solener.2020.03.009_b0185) 2017; 2 Koc (10.1016/j.solener.2020.03.009_b0465) 2012; 14 Sun (10.1016/j.solener.2020.03.009_b0950) 2011; 95 Green (10.1016/j.solener.2020.03.009_b0300) 2019; 3 Uphoff (10.1016/j.solener.2020.03.009_b0990) 1963; 34 Leng (10.1016/j.solener.2020.03.009_b0530) 2014; 105 Black (10.1016/j.solener.2020.03.009_b0085) 1957; 2 Welch (10.1016/j.solener.2020.03.009_b1040) 2015; 8 10.1016/j.solener.2020.03.009_b0540 10.1016/j.solener.2020.03.009_b0420 Cao (10.1016/j.solener.2020.03.009_b0110) 2016; 1 Li (10.1016/j.solener.2020.03.009_b0545) 2018; 737 Möller (10.1016/j.solener.2020.03.009_b0735) 1991; 35 Chantana (10.1016/j.solener.2020.03.009_b0130) 2017; 25 Zhou (10.1016/j.solener.2020.03.009_b1160) 2014; 4 Hironiwa (10.1016/j.solener.2020.03.009_b0340) 2015; 212 Burst (10.1016/j.solener.2020.03.009_b0100) 2016; 1 Tang (10.1016/j.solener.2020.03.009_b0960) 2019; 360 10.1016/j.solener.2020.03.009_b0895 Minemoto (10.1016/j.solener.2020.03.009_b0710) 2003; 75 10.1016/j.solener.2020.03.009_b0525 Romeo (10.1016/j.solener.2020.03.009_b0870) 2018 10.1016/j.solener.2020.03.009_b0405 Li (10.1016/j.solener.2020.03.009_b0565) 2018; 167 Bosio (10.1016/j.solener.2020.03.009_b0095) 2018 Welch (10.1016/j.solener.2020.03.009_b1035) 2017; 7 Terheggen (10.1016/j.solener.2020.03.009_b0970) 2004; 12 Zeng (10.1016/j.solener.2020.03.009_b1140) 2016; 31 Grundmann (10.1016/j.solener.2020.03.009_b0310) 2015 Yuan (10.1016/j.solener.2020.03.009_b1120) 2016; 137 Rajpure (10.1016/j.solener.2020.03.009_b0825) 2002; 73 Minemoto (10.1016/j.solener.2020.03.009_b0720) 2015; 133 Altamura (10.1016/j.solener.2020.03.009_b0045) 2016; 6 Ganose (10.1016/j.solener.2020.03.009_b0290) 2017; 53 Kumar (10.1016/j.solener.2020.03.009_b0485) 2019; 193 Li (10.1016/j.solener.2020.03.009_b0595) 2016; 9 Lakhdar (10.1016/j.solener.2020.03.009_b0515) 2014; 125 Hanifehpour (10.1016/j.solener.2020.03.009_b0325) 2013; 8 Voutsas (10.1016/j.solener.2020.03.009_b1005) 1985; 171 Yu (10.1016/j.solener.2020.03.009_b1110) 2013; 3 Hurych (10.1016/j.solener.2020.03.009_b0390) 1974; 9 Cebriano (10.1016/j.solener.2020.03.009_b0120) 2012; 135 10.1016/j.solener.2020.03.009_b0435 Vadapoo (10.1016/j.solener.2020.03.009_b0995) 2011; 248 Chantana (10.1016/j.solener.2020.03.009_b0140) 2018; 10 Chantana (10.1016/j.solener.2020.03.009_b0135) 2017; 25 Green (10.1016/j.solener.2020.03.009_b0305) 2018; 26 Dönges (10.1016/j.solener.2020.03.009_b0245) 1950; 263 Zhou (10.1016/j.solener.2020.03.009_b1170) 2015; 9 Shaffer (10.1016/j.solener.2020.03.009_b0910) 1972; 54 Wang (10.1016/j.solener.2020.03.009_b1015) 2015; 107 Liu (10.1016/j.solener.2020.03.009_b0615) 2016; 6 Butt (10.1016/j.solener.2020.03.009_b0105) 2018; 13 Torane (10.1016/j.solener.2020.03.009_b0985) 1999; 61 Yuan (10.1016/j.solener.2020.03.009_b1115) 2016; 27 Wu (10.1016/j.solener.2020.03.009_b1070) 2019; 31 Shongalova (10.1016/j.solener.2020.03.009_b0940) 2019; 68 Han (10.1016/j.solener.2020.03.009_b0320) 2017; 87 Hu (10.1016/j.solener.2020.03.009_b0360) 2018; 46 Rühle (10.1016/j.solener.2020.03.009_b0875) 2016; 130 Li (10.1016/j.solener.2020.03.009_b0575) 2016; 6 Kazmerski (10.1016/j.solener.2020.03.009_b0455) 1983; 1 Shen (10.1016/j.solener.2020.03.009_b0915) 2018; 186 Sajid-ur-Rehman (10.1016/j.solener.2020.03.009_b0880) 2018; 13 Luo (10.1016/j.solener.2020.03.009_b0660) 2014; 104 Shongalova (10.1016/j.solener.2020.03.009_b0935) 2018; 8 López-Marino (10.1016/j.solener.2020.03.009_b0645) 2016; 4 Zhou (10.1016/j.solener.2020.03.009_b1165) 2017; 111 Asaduzzaman (10.1016/j.solener.2020.03.009_b0050) 2016; 5 Hu (10.1016/j.solener.2020.03.009_b0365) 2018; 187 Fernandez (10.1016/j.solener.2020.03.009_b0275) 2000; 366 Lawal (10.1016/j.solener.2020.03.009_b0520) 2018; 18 Tan (10.1016/j.solener.2020.03.009_b0955) 2017; 7 Al-Douri (10.1016/j.solener.2020.03.009_b0010) 2014; 82 Razykov (10.1016/j.solener.2020.03.009_b0855) 2018; 173 Wood (10.1016/j.solener.2020.03.009_b1060) 1972; 29 Kulkarni (10.1016/j.solener.2020.03.009_b0480) 2015; 4 Lai (10.1016/j.solener.2020.03.009_b0510) 2012; 671 Kosek (10.1016/j.solener.2020.03.009_b0475) 1978; 28 Steinmann (10.1016/j.solener.2020.03.009_b0945) 2015; 9 Hamri (10.1016/j.solener.2020.03.009_b0315) 2019; 178 Huang (10.1016/j.solener.2020.03.009_b0375) 2019 Gilbert (10.1016/j.solener.2020.03.009_b0295) 1974; 35 10.1016/j.solener.2020.03.009_b0445 Pianezzi (10.1016/j.solener.2020.03.009_b0805) 2014; 16 Alemi (10.1016/j.solener.2020.03.009_b0035) 2012; 2012 Liu (10.1016/j.solener.2020.03.009_b0620) 2015; 23 Rajpure (10.1016/j.solener.2020.03.009_b0820) 2000; 62 Zardetto (10.1016/j.solener.2020.03.009_b1130) 2017; 1 Paudel (10.1016/j.solener.2020.03.009_b0795) 2014; 115 Hutter (10.1016/j.solener.2020.03.009_b0395) 2018; 188 Rodriguez-Lazcano (10.1016/j.solener.2020.03.009_b0865) 2005; 493 Ellmer (10.1016/j.solener.2020.03.009_b0260) 2000; 33 Yang (10.1016/j.solener.2020.03.009_b1090) 2009; 21 Ou (10.1016/j.solener.2020.03.009_b0775) 2017; 27 Honma (10.1016/j.solener.2020.03.009_b0350) 2000; 272 Li (10.1016/j.solener.2020.03.009_b0590) 2019; 10 Shongalova (10.1016/j.solener.2020.03.009_b0930) 2018; 187 Li (10.1016/j.solener.2020.03.009_b0555) 2011; 56 Zhang (10.1016/j.solener.2020.03.009_b1145) 2019; 182 Xia (10.1016/j.solener.2020.03.009_b1075) 2015; 27 Xue (10.1016/j.solener.2020.03.009_b1080) 2015; 5 Chen (10.1016/j.solener.2020.03.009_b0170) 2017; 10 10.1016/j.solener.2020.03.009_b0470 Wu (10.1016/j.solener.2020.03.009_b1065) 2015; 3 Hofmann (10.1016/j.solener.2020.03.009_b0345) 1933; 86 Ishizuka (10.1016/j.solener.2020.03.009_b0425) 2005; 87 Fernandes (10.1016/j.solener.2020.03.009_b0270) 2010; 43 Liu (10.1016/j.solener.2020.03.009_b0640) 2010; 10 Mehta (10.1016/j.solener.2020.03.009_b0695) 2010; 10 Lahmar (10.1016/j.solener.2020.03.009_b0500) 2016; 6 Alemi (10.1016/j.solener.2020.03.009_b0025) 2011; 406 Zayed (10.1016/j.solener.2020.03.009_b1135) 1995; 28 Iovu (10.1016/j.solener.2020.03.009_b0415) 2007; 4 Li (10.1016/j.solener.2020.03.009_b0585) 2017; 161 Hübler (10.1016/j.solener.2020.03.009_b0385) 2010; 15 Baranowski (10.1016/j.solener.2020.03.009_b0065) 2015; 4 Li (10.1016/j.solener.2020.03.009_b0535) 2018; 49 Choi (10.1016/j.solener.2020.03.009_b0205) 2014; 24 Li (10.1016/j.solener.2020.03.009_b0580) 2016; 109 Liang (10.1016/j.solener.2020.03.009_b0605) 2018; 174 Sankapal (10.1016/j.solener.2020.03.009_b0890) 2001; 8 Liu (10.1016/j.solener.2020.03.009_b0635) 2014; 2 Bosio (10.1016/j.solener.2020.03.009_b0090) 2016; 9 Fouad (10.1016/j.solener.2020.03.009_b0280) 1997; 229 Patrick (10.1016/j.solener.2020.03.009_b0790) 2011; 21 Matsuo (10.1016/j.solener.2020.03.009_b0685) 2015; 54 Chandrasekharan (10.1016/j.solener.2020.03.009_b0125) 2009; 33 Ojo (10.1016/j.solener.2020.03.009_b0770) 2016; 136 Haque (10.1016/j.solener.2020.03.009_b0330) 2018; 99 Mohamed (10.1016/j.solener.2020.03.009_b0730) 2011; 4 Minemoto (10.1016/j.solener.2020.03.009_b0715) 2001; 67 Schmidt (10.1016/j.solener.2020.03.009_b0900) 2008; 16 Mueller (10.1016/j.solener.2020.03.009_b0740) 1972; 7 Kaur (10.1016/j.solener.2020.03.009_b0450) 2017; 5 10.1016/j.solener.2020.03.009_b0800 Bhattacharya (10.1016/j.solener.2020.03.009_b0075) 1982; 6 Chantana (10.1016/j.solener.2020.03.009_b0165) 2017; 636 Dittrich (10.1016/j.solener.2020.03.009_b0240) 2007; 515 Huang (10.1016/j.solener.2020.03.009_b0380) 2014; 127 Jackson |
References_xml | – volume: 137 start-page: 256 year: 2016 end-page: 260 ident: b1120 article-title: Rapid thermal process to fabricate Sb publication-title: Sol. Energy – volume: 96 start-page: 86 year: 2018 end-page: 110 ident: b0680 article-title: Revisiting the electrical and optical transmission properties of co-doped ZnO thin films as n-type TCOs publication-title: Prog. Mater Sci. – volume: 4 start-page: 109 year: 2007 end-page: 113 ident: b0415 article-title: Photoconductivity of amorphous Sb publication-title: Chalcogenide Lett – volume: 43 start-page: 215403 year: 2010 ident: b0270 article-title: A study of ternary Cu publication-title: J. Phys. D Appl. Phys. – volume: 451 start-page: 434 year: 2004 end-page: 438 ident: b1000 article-title: Characterization of deep defects in CdS/CdTe thin film solar cells using deep level transient spectroscopy publication-title: Thin Solid Films – volume: 31 start-page: 1806164 year: 2019 ident: b1070 article-title: Thermochromism from Ultrathin Colloidal Sb publication-title: Adv. Mater. – volume: 61 start-page: 219 year: 1999 end-page: 222 ident: b0985 article-title: Preparation and characterization of electrodeposited Sb publication-title: Mater. Chem. Phys. – volume: 6 start-page: 5255 year: 2015 end-page: 5262 ident: b0235 article-title: Vibrational properties and bonding nature of Sb publication-title: Chem. Sci. – volume: 189 start-page: 5 year: 2019 end-page: 10 ident: b1030 article-title: Interfacial engineering for high efficiency solution processed Sb publication-title: Sol. Energy Mater. Sol. Cells – volume: 29 start-page: 254 year: 2002 end-page: 260 ident: b0495 article-title: Low-temperature crystal structures of stibnite implying orbital overlap of Sb 5s publication-title: Phys. Chem. Miner. – volume: 21 start-page: 3170 year: 2009 end-page: 3174 ident: b1090 article-title: Pulsed vapor-liquid-solid growth of antimony selenide and antimony sulfide nanowires publication-title: Adv. Mater. – volume: 632 start-page: 178 year: 2015 end-page: 184 ident: b0570 article-title: The effect of ZnS segregation on Zn-rich CZTS thin film solar cells publication-title: J. Alloy. Compd. – volume: 95 start-page: 42 year: 2018 end-page: 131 ident: b0230 article-title: Transparent heat regulating (THR) materials and coatings for energy saving window applications: Impact of materials design, micro-structural, and interface quality on the THR performance publication-title: Prog. Mater Sci. – volume: 5 start-page: 3069 year: 2017 end-page: 3090 ident: b0450 article-title: Strategic review of interface carrier recombination in earth abundant Cu–Zn–Sn–S–Se solar cells: current challenges and future prospects publication-title: J. Mater. Chem. A – volume: 450 start-page: 228 year: 2018 end-page: 235 ident: b1150 article-title: Efficient Sb publication-title: Appl. Surf. Sci. – volume: 12 start-page: 295 year: 1973 end-page: 313 ident: b1055 article-title: The amorphous Sb-Se system publication-title: J. Non-Cryst. Solids – volume: 3 start-page: 10488 year: 2015 end-page: 10493 ident: b1065 article-title: Self-assisted nucleation and growth of [010]-oriented Sb publication-title: J. Mater. Chem. C – volume: 21 start-page: 1588 year: 2013 end-page: 1597 ident: b0610 article-title: The effect of Zn publication-title: Prog. Photovoltaics Res. Appl. – volume: 8 start-page: 865 year: 2018 end-page: 870 ident: b0935 article-title: On the identification of Sb publication-title: MRS Commun. – volume: 5 start-page: 578 year: 2016 ident: b0050 article-title: An investigation into the effects of band gap and doping concentration on Cu(In, Ga)S publication-title: SpringerPlus – volume: 54 start-page: 032301 year: 2015 ident: b0745 article-title: Influence of conduction band minimum difference between transparent conductive oxide and absorber on photovoltaic performance of thin-film solar cell publication-title: Jpn. J. Appl. Phys. – volume: 31 start-page: 7434 year: 2019 end-page: 7442 ident: b0675 article-title: Atomic Layer Deposition of an Sb publication-title: Chem. Mater. – volume: 156 start-page: H327 year: 2009 end-page: H332 ident: b0700 article-title: Antimony selenide absorber thin films in all-chemically deposited solar cells publication-title: J. Electrochem. Soc. – volume: 18 start-page: 567 year: 2018 end-page: 575 ident: b0520 article-title: Investigation of excitonic states effects on optoelectronic properties of Sb publication-title: Curr. Appl Phys. – volume: 130 start-page: 139 year: 2016 end-page: 147 ident: b0875 article-title: Tabulated values of the Shockley-Queisser limit for single junction solar cells publication-title: Sol. Energy – volume: 107 start-page: 143902 year: 2015 ident: b1015 article-title: Ambient CdCl publication-title: Appl. Phys. Lett. – reference: Kamaruddin, N., Yusoff, Y., Hossain, T., Amin, N., Akhtaruzzaman, M., 2017. Surface morphological properties of CdxZn(1-x)S thin films deposited by low-cost atmospheric pressure metal organic chemical vapour deposition technique (AP-MOCVD). In: IOP Conference Series: Materials Science and Engineering. IOP Publishing, p. 012063. – volume: 10 year: 2019 ident: b0590 article-title: 9.2%-efficient core-shell structured antimony selenide nanorod array solar cells publication-title: Nature Commun. – volume: 4 start-page: 070701 year: 2016 ident: b0335 article-title: Research update: stable single-phase Zn-rich Cu publication-title: APL Mater. – reference: Li, D.-F., Luo, M., Li, B.-L., Wu, C.-B., Deng, B., Dong, H.-N., 2013. Low-resistivity p-type doping in wurtzite ZnS using codoping method. Advances in Condensed Matter Physics 2013. – volume: 25 start-page: 861 year: 2017 end-page: 870 ident: b0630 article-title: Enhanced Sb publication-title: Prog. Photovoltaics Res. Appl. – volume: 10 start-page: 1306 year: 2017 end-page: 1319 ident: b0835 article-title: Copper indium gallium selenide based solar cells–a review publication-title: Energy Environ. Sci. – year: 2019 ident: b0155 article-title: 22%-efficient Cd-free Cu(In, Ga)(S, Se)2 solar cell by all-dry process using Zn0. 8Mg0.2O and Zn0. 9Mg0.1O: B as buffer and transparent conductive oxide layers publication-title: Progress Photovolt.: Res. Appl. – volume: 171 start-page: 261 year: 1985 end-page: 268 ident: b1005 article-title: The crystal structure of antimony selenide, Sb publication-title: Materials – volume: 13 start-page: 137805 year: 2018 ident: b0880 article-title: First-principles calculations of nitrogen-doped antimony triselenide: A prospective material for solar cells and infrared optoelectronic devices publication-title: Front. Phys. – volume: 229 start-page: 249 year: 1997 end-page: 255 ident: b0280 article-title: The relationship between optical gap and chemical composition in Sb publication-title: Physica B – volume: 109 start-page: 232104 year: 2016 ident: b0580 article-title: Characterization of Mg and Fe doped Sb publication-title: Appl. Phys. Lett. – volume: 21 start-page: 4663 year: 2011 end-page: 4667 ident: b0790 article-title: Structural and electronic properties of semiconductor-sensitized solar-cell interfaces publication-title: Adv. Funct. Mater. – volume: 27 start-page: 8906 year: 2016 end-page: 8910 ident: b1115 article-title: Sb publication-title: J. Mater. Sci.: Mater. Electron. – volume: 6 start-page: 317 year: 1982 end-page: 322 ident: b0075 article-title: A photoelectrochemical cell based on chemically deposited Sb publication-title: Solar Energy Materials – volume: 193 start-page: 452 year: 2019 end-page: 457 ident: b0485 article-title: Effects of post-deposition annealing and copper inclusion in superstrate Sb publication-title: Sol. Energy – volume: 351 start-page: 151 year: 2016 end-page: 155 ident: b0690 article-title: A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells publication-title: Science – volume: 7 start-page: 3281 year: 2017 ident: b0955 article-title: Sb publication-title: Sci. Rep. – volume: 8 start-page: 141 year: 2013 ident: b0325 article-title: Lu publication-title: Nanoscale Res. Lett. – volume: 404 start-page: 1119 year: 2009 end-page: 1127 ident: b0255 article-title: Effect of heat treatment on the structural and optical properties of amorphous Sb publication-title: Physica B – volume: 5 start-page: 1501203 year: 2015 ident: b1080 article-title: CuSbSe publication-title: Adv. Energy Mater. – volume: 55 start-page: 1258 year: 2010 end-page: 1264 ident: b1105 article-title: Pulsed laser deposited heterogeneous mixture of Li publication-title: Electrochim. Acta – volume: 2 start-page: 240 year: 2014 end-page: 244 ident: b0635 article-title: Facile microwave-assisted synthesis of uniform Sb publication-title: J. Mater. Chem. C – volume: 11 start-page: 2019 year: 2009 ident: b0750 article-title: Effect of temperature on the optical parameter of amorphous Sb-Se thin films publication-title: J. Optoelectron. Adv. Mater. – volume: 10 start-page: 1960 year: 2010 end-page: 1969 ident: b0640 article-title: Dependence of carrier mobility on nanocrystal size and ligand length in PbSe nanocrystal solids publication-title: Nano Lett. – volume: 186 start-page: 58 year: 2018 end-page: 65 ident: b0915 article-title: Mechanisms and modification of nonlinear shunt leakage in Sb publication-title: Sol. Energy Mater. Sol. Cells – volume: 178 start-page: 150 year: 2019 end-page: 156 ident: b0315 article-title: Improved efficiency of Cu (In, Ga) Se2 thinfilm solar cells using a buffer layer alternative to CdS publication-title: Sol. Energy – volume: 8 start-page: 10688 year: 2013 end-page: 10696 ident: b0015 article-title: Morphology, analysis and properties studies of CdS nanostructures under thiourea concentration effect for photovoltaic applications publication-title: Int. J. Electrochem. Sci – year: 2018 ident: b0870 article-title: Low substrate temperature CdTe solar cells: A review publication-title: Sol. Energy – volume: 151 start-page: 14 year: 2016 end-page: 23 ident: b0055 article-title: Fabrication and characterization of cost-efficient CuSbS publication-title: Sol. Energy Mater. Sol. Cells – volume: 13 start-page: 137805 year: 2018 ident: b0105 article-title: First-principles calculations of nitrogen-doped antimony triselenide: A prospective material for solar cells and infrared optoelectronic devices publication-title: Front. Phys. – volume: 49 start-page: 346 year: 2018 end-page: 353 ident: b0535 article-title: Stable and efficient CdS/Sb publication-title: Nano Energy – volume: 493 start-page: 77 year: 2005 end-page: 82 ident: b0865 article-title: Polycrystalline thin films of antimony selenide via chemical bath deposition and post deposition treatments publication-title: Thin Solid Films – volume: 4 start-page: 1301680 year: 2014 ident: b0210 article-title: Efficient Inorganic-Organic Heterojunction Solar Cells Employing Sb publication-title: Adv. Energy Mater. – volume: 27 start-page: 713 year: 2018 end-page: 721 ident: b1025 article-title: Development of antimony sulfide–selenide Sb publication-title: J. Energy Chem. – volume: 10 start-page: 11361 year: 2018 end-page: 11368 ident: b0140 article-title: 20% Efficient Zn0. 9Mg0.1O: Al/Zn0.8Mg0.2O/Cu(In, Ga)(S, Se)2 Solar Cell Prepared by All-Dry Process through a Combination of Heat-Light-Soaking and Light-Soaking Processes publication-title: ACS Appl. Mater. Interfaces – volume: 107 start-page: 043905 year: 2015 ident: b0180 article-title: Optical properties of amorphous and polycrystalline Sb publication-title: Appl. Phys. Lett. – volume: 43 start-page: 1073 year: 2015 end-page: 1089 ident: b0040 article-title: Theoretical limits of photovoltaics efficiency and possible improvements by intuitive approaches learned from photosynthesis and quantum coherence publication-title: Renew. Sustain. Energy Rev. – volume: 182 start-page: 96 year: 2019 end-page: 101 ident: b1145 article-title: Alternative back contacts for Sb publication-title: Sol. Energy – volume: 200 start-page: 352 year: 2003 end-page: 360 ident: b0020 article-title: The growth of CdTe thin film by close space sublimation system publication-title: Physica Status Solidi (A) – volume: 1 start-page: 395 year: 1983 end-page: 398 ident: b0455 article-title: Optical properties and grain boundary effects in CuInSe publication-title: J. Vacuum Sci. Technol. A: Vacuum, Surf., Films – volume: 28 start-page: 325 year: 1978 end-page: 330 ident: b0475 article-title: Optical, photoelectric and electric properties of single-crystalline Sb publication-title: Czechoslovak J. Phys. B – volume: 16 start-page: 461 year: 2008 end-page: 466 ident: b0900 article-title: Surface passivation of high-efficiency silicon solar cells by atomic-layer-deposited Al publication-title: Prog. Photovoltaics Res. Appl. – volume: 53 start-page: 20 year: 2017 end-page: 44 ident: b0290 article-title: Beyond methylammonium lead iodide: prospects for the emergent field of ns 2 containing solar absorbers publication-title: Chem. Commun. – volume: 82 start-page: 294 year: 2016 end-page: 404 ident: b0840 article-title: Inorganic photovoltaics–planar and nanostructured devices publication-title: Prog. Mater Sci. – volume: 51 start-page: 1615 year: 2017 end-page: 1624 ident: b0440 article-title: A comparative study on the electronic and optical properties of Sb publication-title: Semiconductors – volume: 75 start-page: 2181 year: 2015 end-page: 2186 ident: b0655 article-title: High efficient and stable solid solar cell: based on FeS publication-title: Energy Procedia – volume: 9 start-page: 2179 year: 2018 ident: b1045 article-title: Vapor transport deposition of antimony selenide thin film solar cells with 7.6% efficiency publication-title: Nature Commun. – start-page: 1800208 year: 2018 ident: b1020 article-title: Promising Sb publication-title: Solar RRL – volume: 352 start-page: aad4424 year: 2016 ident: b0810 article-title: Photovoltaic materials: Present efficiencies and future challenges publication-title: Science – volume: 8 start-page: 082301 year: 2015 ident: b1040 article-title: CuSbSe publication-title: Appl. Phys Express – volume: 4 start-page: 1895 year: 2016 end-page: 1907 ident: b0645 article-title: Alkali doping strategies for flexible and light-weight Cu publication-title: J. Mater. Chem. A – volume: 35 start-page: 1629 year: 1974 end-page: 1632 ident: b0295 article-title: The thermal activation energy of crystalline Sb publication-title: J. Phys. Chem. Solids – volume: 33 start-page: R17 year: 2000 ident: b0260 article-title: Magnetron sputtering of transparent conductive zinc oxide: relation between the sputtering parameters and the electronic properties publication-title: J. Phys. D Appl. Phys. – volume: 174 start-page: 263 year: 2018 end-page: 270 ident: b0605 article-title: Thermally induced structural evolution and performance of Sb publication-title: Sol. Energy Mater. Sol. Cells – volume: 10 start-page: 18 year: 2017 end-page: 30 ident: b0170 article-title: Characterization of basic physical properties of Sb publication-title: Front. Optoelectron. – volume: 87 start-page: 246 year: 2017 end-page: 291 ident: b0320 article-title: Towards high efficiency thin film solar cells publication-title: Prog. Mater Sci. – volume: 10 start-page: 4417 year: 2010 end-page: 4422 ident: b0695 article-title: High electrical conductivity antimony selenide nanocrystals and assemblies publication-title: Nano Lett. – volume: 14 start-page: 1211 year: 2012 end-page: 1220 ident: b0465 article-title: First principles prediction of the elastic, electronic, and optical properties of Sb publication-title: Solid State Sci. – volume: 4 start-page: 044017 year: 2015 ident: b0065 article-title: Effects of disorder on carrier transport in Cu publication-title: Phys. Rev. Appl – volume: 1 start-page: 16035 year: 2016 ident: b0110 article-title: The role of surface passivation for efficient and photostable PbS quantum dot solar cells publication-title: Nat. Energy – volume: 7 start-page: 1700866 year: 2017 ident: b0190 article-title: Accelerated optimization of TiO publication-title: Adv. Energy Mater. – volume: 212 start-page: 2766 year: 2015 end-page: 2771 ident: b0340 article-title: Annealing effect on Cu publication-title: Phys. Status Solidi (A) – volume: 87 start-page: 541 year: 2005 end-page: 548 ident: b0425 article-title: Fabrication of wide-gap Cu(In publication-title: Sol. Energy Mater. Sol. Cells – volume: 159 start-page: 834 year: 2018 end-page: 840 ident: b0850 article-title: Characterisation of SnSe thin films fabricated by chemical molecular beam deposition for use in thin film solar cells publication-title: Sol. Energy – volume: 99 start-page: 232 year: 2018 end-page: 238 ident: b0330 article-title: Annealing induced microstructure engineering of antimony tri-selenide thin films publication-title: Mater. Res. Bull. – volume: 26 start-page: 127 year: 2018 end-page: 134 ident: b0145 article-title: Heterointerface recombination of Cu(In, Ga)(S, S publication-title: Prog. Photovoltaics Res. Appl. – volume: 6 start-page: 153 year: 2012 ident: b0550 article-title: Polymer solar cells publication-title: Nat. Photonics – volume: 354 start-page: 206 year: 2016 end-page: 209 ident: b0885 article-title: Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance publication-title: Science – volume: 9 start-page: 254 year: 2016 ident: b0090 article-title: How the chlorine treatment and the stoichiometry influences the grain boundary passivation in polycrystalline CdTe thin films publication-title: Energies – volume: 9 start-page: 052302 year: 2016 ident: b0595 article-title: Efficiency enhancement of Sb publication-title: Appl. Phys Express – reference: Mustafa, F.I., Gupta, S., Goyal, N., Tripathi, S., 2011. Non‐Ideal p‐n junction Diode of SbxSe1−x (x= 0.4, 0.5, 0.6, 0.7) Thin Films. In: AIP Conference Proceedings. AIP, pp. 75–76. – volume: 187 start-page: 219 year: 2018 end-page: 226 ident: b0930 article-title: Growth of Sb publication-title: Sol. Energy Mater. Sol. Cells – volume: 104 start-page: 173904 year: 2014 ident: b0660 article-title: Thermal evaporation and characterization of superstrate CdS/Sb publication-title: Appl. Phys. Lett. – reference: Hutter, O.S., Phillips, L.J., Yates, P., Major, J.D., Durose, K., 2018b. CSS Antimony Selenide Film Morphology and High Efficiency PV Devices, WCPEC-7 Conference Paper. – volume: 4 start-page: 1301846 year: 2014 ident: b1160 article-title: Solution-processed antimony selenide heterojunction solar cells publication-title: Adv. Energy Mater. – reference: Ishaq, M., Deng, H., Yuan, S., Zhang, H., Khan, J., Farooq, U., Song, H., Tang, J., 2018. Efficient Double Buffer Layer Sb2(SexS1–x)3 Thin Film Solar Cell Via Single Source Evaporation. Solar RRL, 1800144. – volume: 161 start-page: 190 year: 2017 end-page: 196 ident: b0585 article-title: Sb publication-title: Sol. Energy Mater. Sol. Cells – volume: 73 start-page: 6 year: 2002 end-page: 12 ident: b0825 article-title: Preparation and characterization of spray deposited photoactive Sb publication-title: Mater. Chem. Phys. – volume: 168 start-page: 207 year: 2017 end-page: 213 ident: b0160 article-title: Introduction of Na into Cu publication-title: Sol. Energy Mater. Sol. Cells – volume: 4 start-page: 1700329 year: 2018 ident: b0650 article-title: Sb publication-title: Adv. Electron. Mater. – volume: 2 start-page: 2125 year: 2017 end-page: 2132 ident: b0185 article-title: 6.5% Certified efficiency Sb publication-title: ACS Energy Lett. – volume: 366 start-page: 202 year: 2000 end-page: 206 ident: b0275 article-title: Preparation and characterization of Sb publication-title: Thin Solid Films – volume: 737 start-page: 67 year: 2018 end-page: 73 ident: b0545 article-title: Self-powered, high-speed Sb publication-title: J. Alloy. Compd. – volume: 162 start-page: 127 year: 2017 end-page: 133 ident: b0860 article-title: Improved stability of CdTe solar cells by absorber surface etching publication-title: Sol. Energy Mater. Sol. Cells – volume: 8 start-page: 223 year: 2001 end-page: 227 ident: b0890 article-title: Growth of multilayer Bi publication-title: Indian Journal of Engineering and Materials Sciences – volume: 193 start-page: 114 year: 1998 end-page: 122 ident: b0285 article-title: Aqueous solution epitaxy of CdS layers on CuInSe publication-title: J. Cryst. Growth – volume: 4 start-page: 1065 year: 2011 end-page: 1086 ident: b0730 article-title: Modified TiO publication-title: Energy Environ. Sci. – volume: 6 start-page: 10687 year: 2014 end-page: 10695 ident: b0625 article-title: Thermal evaporation and characterization of Sb publication-title: ACS Appl. Mater. Interfaces – volume: 6 start-page: 2836 year: 2014 end-page: 2841 ident: b0760 article-title: Electrodeposition of antimony selenide thin films and application in semiconductor sensitized solar cells publication-title: ACS Appl. Mater. Interfaces – volume: 172 start-page: 74 year: 2017 end-page: 81 ident: b1050 article-title: Magnetron sputtered ZnO buffer layer for Sb publication-title: Sol. Energy Mater. Sol. Cells – reference: Kato, T., Kitani, K., Tai, K.F., Kamada, R., Hiroi, H., Sugimoto, H., 2016. Characterization of the back contact of CIGS solar cell as the origin of rollover effect. In: 32nd European Photovoltaic Solar Energy Conference and Exhibition. pp. 1085–1088. – volume: 202 start-page: 110157 year: 2019 ident: b0765 article-title: Application of Al-Doped (Zn, Mg)O on pure-sulfide Cu(In, Ga publication-title: Sol. Energy Mater. Sol. Cells – volume: 52 year: 2019 ident: b0080 article-title: Facile synthesis of novel antimony selenide nanocrystals with hierarchical architecture by physical vapor deposition technique publication-title: J. Appl. Crystallogr. – volume: 95 start-page: 2907 year: 2011 end-page: 2913 ident: b0950 article-title: Structure, composition and optical properties of Cu publication-title: Sol. Energy Mater. Sol. Cells – volume: 23 start-page: 1828 year: 2015 end-page: 1836 ident: b0620 article-title: Improving the performance of Sb publication-title: Prog. Photovoltaics Res. Appl. – volume: 515 start-page: 5745 year: 2007 end-page: 5750 ident: b0240 article-title: Sulfosalts—a new class of compound semiconductors for photovoltaic applications publication-title: Thin Solid Films – volume: 111 start-page: 013901 year: 2017 ident: b1165 article-title: Buried homojunction in CdS/Sb publication-title: Appl. Phys. Lett. – volume: 4 start-page: 2507 year: 2017 end-page: 2514 ident: b0220 article-title: Thermal treatment effects on electrodeposited Sb publication-title: ChemElectroChem – reference: Lei, H., Chen, J., Tan, Z., Fang, G., 2019. Review of Recent Progress in Antimony Chalcogenide‐Based Solar Cells: Materials and Devices. Solar RRL, 1900026. – volume: 115 start-page: 064502 year: 2014 ident: b0795 article-title: Post-deposition processing options for high-efficiency sputtered CdS/CdTe solar cells publication-title: J. Appl. Phys. – volume: 32 start-page: 295 year: 2005 end-page: 300 ident: b0115 article-title: First-principles study of the electronic properties of A publication-title: Phys. Chem. Minerals – volume: 46 start-page: 212 year: 2018 end-page: 219 ident: b0360 article-title: Achieving high-performance PbS quantum dot solar cells by improving hole extraction through Ag doping publication-title: Nano Energy – reference: Phillips, L., Yates, P., Hutter, O.S., Baines, T., Bowen, L., Durose, K., Major, J.D., 2017. Close-spaced sublimation for Sb2Se3 solar cells, In: 2017 IEEE 44rd Photovoltaic Specialists Conference (PVSC). – reference: Chen, S., Qiao, X., Zheng, Z., Cathelinaud, M., Ma, H., Fan, X., Zhang, X., 2018. Enhanced electrical conductivity and photoconductive properties of Sn-doped Sb2Se3 crystals. J. Mater. Chem. C. – volume: 2012 start-page: 70 year: 2012 ident: b0035 article-title: Structural studies and optical and electrical properties of novel Gd publication-title: J. Nanomater. – volume: 12 start-page: 191 year: 2018 end-page: 197 ident: b1155 article-title: Improving the performance of Sb publication-title: Appl. Mater. Today – volume: 272 start-page: 1 year: 2000 end-page: 13 ident: b0350 article-title: Electronic polarizability, optical basicity and XPS spectra of Sb publication-title: J. Non-Cryst. Solids – volume: 519 start-page: 7568 year: 2011 end-page: 7571 ident: b0725 article-title: Sputtered ZnO-based buffer layer for band offset control in Cu(In, Ga)S publication-title: Thin Solid Films – volume: 7 start-page: 1601935 year: 2017 ident: b1035 article-title: Trade-offs in thin film solar cells with layered chalcostibite photovoltaic absorbers publication-title: Adv. Energy Mater. – volume: 31 start-page: 063001 year: 2016 ident: b1140 article-title: Antimony selenide thin-film solar cells publication-title: Semicond. Sci. Technol. – volume: 671 start-page: 73 year: 2012 end-page: 79 ident: b0510 article-title: Electrodeposition of antimony selenide thin films from aqueous acid solutions publication-title: J. Electroanal. Chem. – volume: 636 start-page: 431 year: 2017 end-page: 437 ident: b0165 article-title: Influence of Na in Cu publication-title: Thin Solid Films – volume: 3 start-page: 2335 year: 2018 end-page: 2341 ident: b0175 article-title: Efficiency Improvement of Sb publication-title: ACS Energy Lett. – volume: 406 start-page: 3831 year: 2011 end-page: 3835 ident: b0025 article-title: Structural studies and physical properties of novel Sm publication-title: Physica B – volume: 2 start-page: 17046 year: 2017 ident: b1010 article-title: Stable 6%-efficient Sb publication-title: Nat. Energy – volume: 56 start-page: 8597 year: 2011 end-page: 8602 ident: b0555 article-title: Preparation and characterization of Bi-doped antimony selenide thin films by electrodeposition publication-title: Electrochim. Acta – volume: 174 start-page: 412 year: 2018 end-page: 417 ident: b0005 article-title: ZnSnP publication-title: Sol. Energy Mater. Sol. Cells – volume: 54 start-page: 042302 year: 2015 ident: b0685 article-title: Evaluation of sputtering damage in Cu publication-title: Jpn. J. Appl. Phys. – volume: 27 start-page: 1606242 year: 2017 ident: b0775 article-title: A new rGO-overcoated Sb publication-title: Adv. Funct. Mater. – volume: 64 start-page: 103929 year: 2019 ident: b0965 article-title: Highly efficient and stable planar heterojunction solar cell based on sputtered and post-selenized Sb publication-title: Nano Energy – volume: 167 start-page: 10 year: 2018 end-page: 17 ident: b0565 article-title: Improved efficiency by insertion of Zn publication-title: Sol. Energy – volume: 248 start-page: 700 year: 2011 end-page: 705 ident: b0995 article-title: Electronic structure of antimony selenide (Sb publication-title: Phys. Status Solidi (B) – volume: 236 start-page: 503 year: 2019 end-page: 505 ident: b0200 article-title: Fabrication of a semi-transparent thin-film Sb publication-title: Mater. Lett. – year: 2019 ident: b0780 article-title: Efficient Solar to Hydrogen Conversion from Neutral Electrolytes using Morphology-Controlled Sb publication-title: ACS Energy Lett. – volume: 135 start-page: 1096 year: 2012 end-page: 1103 ident: b0120 article-title: Micro-and nanostructures of Sb publication-title: Mater. Chem. Phys. – volume: 25 start-page: 431 year: 2017 end-page: 440 ident: b0135 article-title: Thin-film Cu(In, Ga)(Se, S)2-based solar cell with (Cd, Zn)S buffer layer and Zn1−xMgxO window layer publication-title: Prog. Photovoltaics Res. Appl. – volume: 10 start-page: 99 year: 1957 end-page: 102 ident: b0980 article-title: The crystal structure of antimony selenide, Sb publication-title: Acta Crystallogr. A – volume: 263 start-page: 280 year: 1950 end-page: 291 ident: b0245 article-title: Über Chalkogenohalogenide des dreiwertigen Antimons und Wismuts. II. Über Selenohalogenide des dreiwertigen Antimons und Wismuts und über Antimon (III)-selenid Mit 2 Abbildungen. Zeitschrift für anorganische und allgemeine publication-title: Chemie – year: 2019 ident: b0265 article-title: All-inorganic perovskite solar cells: energetics, key challenges and strategies towards commercialization publication-title: ACS Energy Lett. – volume: 133 start-page: 8 year: 2015 end-page: 14 ident: b0720 article-title: Theoretical analysis on effect of band offsets in perovskite solar cells publication-title: Sol. Energy Mater. Sol. Cells – volume: 75 start-page: 121 year: 2003 end-page: 126 ident: b0710 article-title: Control of conduction band offset in wide-gap Cu(In, Ga)S publication-title: Sol. Energy Mater. Sol. Cells – volume: 184 start-page: 553 year: 2019 end-page: 560 ident: b0150 article-title: Characteristics of Zn1−xMgxO: B and its application as transparent conductive oxide layer in Cu(In, Ga)(S, Se)2 solar cells with and without CdS buffer layer publication-title: Sol. Energy – volume: 311 start-page: 114 year: 1997 end-page: 118 ident: b0830 article-title: Effect of the substrate temperature on the properties of spray deposited Sb–Se thin films from non-aqueous medium publication-title: Thin Solid Films – year: 2015 ident: b0310 article-title: The Physics of Semiconductors: AN Introduction Including Nanophysics and Applications – volume: 1 start-page: 30 year: 2017 end-page: 55 ident: b1130 article-title: Atomic layer deposition for perovskite solar cells: research status, opportunities and challenges publication-title: Sustainable Energy Fuels – volume: 9 start-page: 409 year: 2015 ident: b1170 article-title: Thin-film Sb publication-title: Nat. Photonics – volume: 47 start-page: 7085 year: 2012 end-page: 7089 ident: b1085 article-title: CuSbSe publication-title: J. Mater. Sci. – volume: 16 start-page: 8843 year: 2014 end-page: 8851 ident: b0805 article-title: Unveiling the effects of post-deposition treatment with different alkaline elements on the electronic properties of CIGS thin film solar cells publication-title: PCCP – volume: 32 start-page: 510 year: 1961 end-page: 519 ident: b0925 article-title: Detailed balance limit of efficiency of p-n junction solar cells publication-title: J. Appl. Phys. – volume: 82 start-page: 238 year: 2014 end-page: 243 ident: b0010 article-title: Structural and optical insights to enhance solar cell performance of CdS nanostructures publication-title: Energy Convers. Manage. – volume: 125 start-page: 2295 year: 2014 end-page: 2301 ident: b0515 article-title: Thickness effect on the structural and optical constants of stibnite thin films prepared by sulfidation annealing of antimony films publication-title: Optik-Int. J. Light Electron Opt. – volume: 6 start-page: 1600457 year: 2016 ident: b0615 article-title: Inverted perovskite solar cells: progresses and perspectives publication-title: Adv. Energy Mater. – reference: Hutter, O.S., Phillips, L.J., Yates, P.J., Major, J.D., Durose, K., 2018c. CSS Antimony selenide film morphology and high efficiency PV devices. In: 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC). IEEE, pp. 0027–0031. – volume: 33 start-page: 209 year: 2009 end-page: 217 ident: b0125 article-title: Growth and microindentation analysis of pure and doped Sb publication-title: Turkish J. Phys. – volume: 2 start-page: 240 year: 1957 ident: b0085 article-title: Bismuth sulfide (Bi publication-title: J. Phys. Chem. Solids – volume: 35 start-page: 205 year: 1991 end-page: 418 ident: b0735 article-title: Semiconductors for solar cell applications publication-title: Prog. Mater Sci. – reference: Savory, C.N., Scanlon, D.O., 2019. The complex defect chemistry of antimony selenide. J. Mater. Chem. A. – volume: 390 start-page: 142 year: 2011 end-page: 148 ident: b0030 article-title: Synthesis of novel Ln publication-title: Colloids Surf., A – volume: 237 start-page: 1082 year: 2018 end-page: 1090 ident: b0845 article-title: Synthesis of S-Doped porous g-C3N4 by using ionic liquids and subsequently coupled with Au-TiO2 for exceptional cocatalyst-free visible-light catalytic activities publication-title: Appl. Catal. B – volume: 188 start-page: 177 year: 2018 end-page: 181 ident: b0395 article-title: 6.6% efficient antimony selenide solar cells using grain structure control and an organic contact layer publication-title: Sol. Energy Mater. Sol. Cells – volume: 4 start-page: 15 year: 2015 ident: b0480 article-title: Sb publication-title: Mater. Renewable Sustainable Energy – volume: 9 start-page: 4392 year: 1974 ident: b0390 article-title: Photoemission studies of crystalline and amorphous Sb publication-title: Physical Review B – volume: 93 start-page: 341 year: 2003 end-page: 346 ident: b0815 article-title: Nondispersive hole transport in amorphous films of methoxy-spirofluorene-arylamine organic compound publication-title: J. Appl. Phys. – volume: 22 start-page: 1557 year: 2018 end-page: 1562 ident: b0225 article-title: Electrodeposition of Fe-doped Sb publication-title: J. Solid State Electrochem. – volume: 127 start-page: 188 year: 2014 end-page: 192 ident: b0380 article-title: Surface modification enabled carrier mobility adjustment in CZTS nanoparticle thin films publication-title: Sol. Energy Mater. Sol. Cells – volume: 189 start-page: 214 year: 2019 end-page: 223 ident: b0060 article-title: Effect of Cu content in CuSbS publication-title: Sol. Energy Mater. Sol. Cells – volume: 24 start-page: 3587 year: 2014 end-page: 3592 ident: b0205 article-title: Highly improved Sb publication-title: Adv. Funct. Mater. – volume: 127 start-page: 8907 year: 2016 end-page: 8915 ident: b0410 article-title: Characterization and analysis of wheat-like CdS nanostructures under temperature effect for solar cells applications publication-title: Optik – volume: 68 start-page: 47 year: 2019 end-page: 51 ident: b0940 article-title: On thermal stability of antimony thin films for solar cells applications. Recent Contributions to publication-title: Physics (Rec. Contr. Phys.) – volume: 89 start-page: 8327 year: 2001 end-page: 8330 ident: b0705 article-title: Cu(In, Ga)S publication-title: J. Appl. Phys. – volume: 6 start-page: 87288 year: 2016 end-page: 87293 ident: b0575 article-title: The effect of sodium on antimony selenide thin film solar cells publication-title: RSC Adv. – reference: Kondrotas, R., Chen, C., Tang, J., 2018. Progress and Prospects of Sb2S3-Based Thin Film and Tandem Solar Cells. Joule. – volume: 34 start-page: 390 year: 1963 end-page: 395 ident: b0990 article-title: Thermoelectric Properties of Diphasal Systems Combining As publication-title: J. Appl. Phys. – volume: 13 start-page: 2369 year: 2011 end-page: 2374 ident: b0665 article-title: One-dimensional Sb publication-title: CrystEngComm – volume: 43 start-page: 229 year: 1981 end-page: 244 ident: b0920 article-title: On the compositional dependence of the optical gap in amorphous semiconducting alloys publication-title: J. Non-Cryst. Solids – volume: 62 start-page: 169 year: 2000 end-page: 174 ident: b0820 article-title: Effect of Se source on properties of spray deposited Sb publication-title: Mater. Chem. Phys. – volume: 360 start-page: 68 year: 2019 end-page: 72 ident: b0960 article-title: Magnetron sputtering deposition and selenization of Sb publication-title: Surf. Coat. Technol. – volume: 6 start-page: 22109 year: 2016 ident: b0045 article-title: Influence of alkali metals (Na, Li, Rb) on the performance of electrostatic spray-assisted vapor deposited Cu publication-title: Sci. Rep. – volume: 44 start-page: 111 year: 1993 end-page: 116 ident: b0250 article-title: Electrical resistivity of crystalline Sb publication-title: Vacuum – volume: 86 start-page: 225 year: 1933 end-page: 245 ident: b0345 article-title: Die struktur der minerale der antimonitgruppe. Zeitschrift für Kristallographie-Crystalline publication-title: Materials – volume: 5 start-page: 2180 year: 2017 end-page: 2187 ident: b0460 article-title: Self-oriented Sb publication-title: J. Mater. Chem. A – volume: 187 start-page: 170 year: 2018 end-page: 175 ident: b0365 article-title: Improving the efficiency of Sb publication-title: Sol. Energy Mater. Sol. Cells – volume: 7 start-page: 301 year: 1972 end-page: 308 ident: b0740 article-title: The preparation of amorphous thin films publication-title: J. Non-Cryst. Solids – volume: 29 start-page: 485 year: 1972 ident: b1060 article-title: Electron Energy States in Sb publication-title: Phys. Rev. Lett. – volume: 27 start-page: 85 year: 2004 end-page: 111 ident: b0785 article-title: Deposition of metal chalcogenide thin films by successive ionic layer adsorption and reaction (SILAR) method publication-title: Bull. Mater. Sci. – volume: 61 start-page: 94 year: 2014 end-page: 143 ident: b1095 article-title: Recent progress in antireflection and self-cleaning technology–From surface engineering to functional surfaces publication-title: Prog. Mater Sci. – volume: 173 start-page: 225 year: 2018 end-page: 228 ident: b0855 article-title: Growth and characterization of Sb publication-title: Sol. Energy – volume: 26 start-page: 4653 year: 2014 end-page: 4658 ident: b1100 article-title: Unique properties of halide perovskites as possible origins of the superior solar cell performance publication-title: Adv. Mater. – volume: 25 start-page: 996 year: 2017 end-page: 1004 ident: b0130 article-title: Aluminum-doped Zn publication-title: Prog. Photovoltaics Res. Appl. – volume: 27 start-page: 8048 year: 2015 end-page: 8057 ident: b1075 article-title: Generalized water-processed metal chalcogenide complexes: synthesis and applications publication-title: Chem. Mater. – volume: 105 start-page: 083905 year: 2014 ident: b0530 article-title: Selenization of Sb publication-title: Appl. Phys. Lett. – volume: 160 start-page: 257 year: 2017 end-page: 262 ident: b0600 article-title: Facile preparation and enhanced photoelectrical performance of Sb publication-title: Sol. Energy Mater. Sol. Cells – volume: 26 start-page: 3 year: 2018 end-page: 12 ident: b0305 article-title: Solar cell efficiency tables (version 51) publication-title: Prog. Photovoltaics Res. Appl. – volume: 12 start-page: 259 year: 2004 end-page: 266 ident: b0970 article-title: Analysis of bulk and interface phenomena in CdTe/CdS thin-film solar cells publication-title: Interface Sci. – volume: 4 start-page: 8 year: 2017 end-page: 15 ident: b1125 article-title: Brief review of emerging photovoltaic absorbers publication-title: Curr. Opin. Green Sustainable Chem. – year: 2012 ident: b0670 article-title: Semiconductors: Data Handbook – volume: 126 start-page: 1353 year: 2014 end-page: 1357 ident: b0215 article-title: Sb publication-title: Angew. Chem. – volume: 67 start-page: 83 year: 2001 end-page: 88 ident: b0715 article-title: Theoretical analysis of the effect of conduction band offset of window/CIS layers on performance of CIS solar cells using device simulation publication-title: Sol. Energy Mater. Sol. Cells – volume: 1 start-page: 16015 year: 2016 ident: b0100 article-title: CdTe solar cells with open-circuit voltage breaking the 1 V barrier publication-title: Nat. Energy – volume: 18 start-page: 79 year: 2018 end-page: 89 ident: b0355 article-title: Performance assessment of Cu publication-title: Curr. Appl Phys. – volume: 28 start-page: 770 year: 1995 ident: b1135 article-title: Transport properties of Sb publication-title: J. Phys. D Appl. Phys. – year: 2019 ident: b0375 article-title: Complicated and Unconventional Defect Properties of the Quasi-One-Dimensional Photovoltaic Semiconductor Sb publication-title: ACS Appl. Mater. Interfaces – volume: 32 start-page: 752 year: 2003 end-page: 755 ident: b0070 article-title: Electrical properties of CdTe near the melting point publication-title: J. Electron. Mater. – volume: 6 start-page: 68663 year: 2016 end-page: 68674 ident: b0500 article-title: Effect of the thickness of the ZnO buffer layer on the properties of electrodeposited p-Cu publication-title: RSC Adv. – volume: 3 start-page: 631 year: 2019 end-page: 640 ident: b0300 article-title: How did solar cells get so cheap? publication-title: Joule – year: 2019 ident: b0975 article-title: Low-Bandgap Se-Deficient Antimony Selenide as a Multifunctional Polysulfide Barrier toward High-Performance Lithium-Sulfur Batteries publication-title: Adv. Mater. – volume: 172 start-page: 11 year: 2017 end-page: 17 ident: b0490 article-title: Crystal growth direction-controlled antimony selenide thin film absorbers produced using an electrochemical approach and intermediate thermal treatment publication-title: Sol. Energy Mater. Sol. Cells – volume: 515 start-page: 3810 year: 2007 end-page: 3815 ident: b0905 article-title: Compositional dependence of the optical properties of amorphous antimony selenide thin films using transmission measurements publication-title: Thin Solid Films – volume: 261 start-page: 510 year: 2012 end-page: 514 ident: b0505 article-title: Preparation and characterization of Sb publication-title: Appl. Surf. Sci. – volume: 136 start-page: 10 year: 2016 end-page: 14 ident: b0770 article-title: 15.3% efficient graded bandgap solar cells fabricated using electroplated CdS and CdTe thin films publication-title: Sol. Energy – volume: 15 start-page: 48 year: 2010 end-page: 55 ident: b0385 article-title: Digital quantum batteries: Energy and information storage in nanovacuum tube arrays publication-title: Complexity – volume: 124 start-page: 143 year: 2014 end-page: 149 ident: b0560 article-title: A recombination analysis of Cu(In, Ga)S publication-title: Sol. Energy Mater. Sol. Cells – volume: 3 start-page: 43 year: 2013 end-page: 48 ident: b1110 article-title: Inverse design of high absorption thin-film photovoltaic materials publication-title: Adv. Energy Mater. – volume: 10 start-page: 583 year: 2016 end-page: 586 ident: b0430 article-title: Effects of heavy alkali elements in Cu(In, Ga)S publication-title: Phys. Status Solidi (RRL)–Rapid Res. Lett. – volume: 54 start-page: 511 year: 1972 end-page: 518 ident: b0910 article-title: Electronic structure of single crystal and amorphous Sb publication-title: Phys. Status Solidi (B) – year: 2018 ident: b0095 article-title: Past, present and future of the thin film CdTe/CdS solar cells publication-title: Sol. Energy – volume: 9 start-page: 355 year: 2015 ident: b0945 article-title: Photovoltaics: Non-cubic solar cell materials publication-title: Nat. Photonics – volume: 53 start-page: 20 issue: 1 year: 2017 ident: 10.1016/j.solener.2020.03.009_b0290 article-title: Beyond methylammonium lead iodide: prospects for the emergent field of ns 2 containing solar absorbers publication-title: Chem. Commun. doi: 10.1039/C6CC06475B – ident: 10.1016/j.solener.2020.03.009_b0420 doi: 10.1002/solr.201800144 – volume: 34 start-page: 390 issue: 2 year: 1963 ident: 10.1016/j.solener.2020.03.009_b0990 article-title: Thermoelectric Properties of Diphasal Systems Combining As2Te3 and Tl2Se with Sb2Te3, Bi2Te3, or Sb2Se3 publication-title: J. Appl. Phys. doi: 10.1063/1.1702619 – volume: 13 start-page: 2369 issue: 7 year: 2011 ident: 10.1016/j.solener.2020.03.009_b0665 article-title: One-dimensional Sb2Se3 nanostructures: solvothermal synthesis, growth mechanism, optical and electrochemical properties publication-title: CrystEngComm doi: 10.1039/c0ce00381f – volume: 105 start-page: 083905 issue: 8 year: 2014 ident: 10.1016/j.solener.2020.03.009_b0530 article-title: Selenization of Sb2Se3 absorber layer: An efficient step to improve device performance of CdS/Sb2Se3 solar cells publication-title: Appl. Phys. Lett. doi: 10.1063/1.4894170 – year: 2019 ident: 10.1016/j.solener.2020.03.009_b0375 article-title: Complicated and Unconventional Defect Properties of the Quasi-One-Dimensional Photovoltaic Semiconductor Sb2Se3 publication-title: ACS Appl. Mater. Interfaces – volume: 31 start-page: 7434 issue: 18 year: 2019 ident: 10.1016/j.solener.2020.03.009_b0675 article-title: Atomic Layer Deposition of an Sb2Se3 Photoabsorber Layer Using Selenium Dimethyldithiocarbamate as a New Se Precursor publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.9b02085 – volume: 14 start-page: 1211 issue: 8 year: 2012 ident: 10.1016/j.solener.2020.03.009_b0465 article-title: First principles prediction of the elastic, electronic, and optical properties of Sb2S3 and Sb2Se3 compounds publication-title: Solid State Sci. doi: 10.1016/j.solidstatesciences.2012.06.003 – volume: 32 start-page: 752 issue: 7 year: 2003 ident: 10.1016/j.solener.2020.03.009_b0070 article-title: Electrical properties of CdTe near the melting point publication-title: J. Electron. Mater. doi: 10.1007/s11664-003-0065-7 – ident: 10.1016/j.solener.2020.03.009_b0195 doi: 10.1039/C8TC01683F – volume: 68 start-page: 47 issue: 1 year: 2019 ident: 10.1016/j.solener.2020.03.009_b0940 article-title: On thermal stability of antimony thin films for solar cells applications. Recent Contributions to publication-title: Physics (Rec. Contr. Phys.) doi: 10.26577/RCPh-2019-1-1093 – volume: 73 start-page: 6 issue: 1 year: 2002 ident: 10.1016/j.solener.2020.03.009_b0825 article-title: Preparation and characterization of spray deposited photoactive Sb2S3 and Sb2Se3 thin films using aqueous and non-aqueous media publication-title: Mater. Chem. Phys. doi: 10.1016/S0254-0584(01)00350-9 – volume: 5 start-page: 578 issue: 1 year: 2016 ident: 10.1016/j.solener.2020.03.009_b0050 article-title: An investigation into the effects of band gap and doping concentration on Cu(In, Ga)Se2 solar cell efficiency publication-title: SpringerPlus doi: 10.1186/s40064-016-2256-8 – volume: 12 start-page: 259 issue: 2–3 year: 2004 ident: 10.1016/j.solener.2020.03.009_b0970 article-title: Analysis of bulk and interface phenomena in CdTe/CdS thin-film solar cells publication-title: Interface Sci. doi: 10.1023/B:INTS.0000028655.11608.c7 – volume: 27 start-page: 85 issue: 2 year: 2004 ident: 10.1016/j.solener.2020.03.009_b0785 article-title: Deposition of metal chalcogenide thin films by successive ionic layer adsorption and reaction (SILAR) method publication-title: Bull. Mater. Sci. doi: 10.1007/BF02708491 – volume: 5 start-page: 2180 issue: 5 year: 2017 ident: 10.1016/j.solener.2020.03.009_b0460 article-title: Self-oriented Sb2Se3 nanoneedle photocathodes for water splitting obtained by a simple spin-coating method publication-title: J. Mater. Chem. A doi: 10.1039/C6TA09602F – volume: 82 start-page: 238 year: 2014 ident: 10.1016/j.solener.2020.03.009_b0010 article-title: Structural and optical insights to enhance solar cell performance of CdS nanostructures publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2014.03.020 – volume: 236 start-page: 503 year: 2019 ident: 10.1016/j.solener.2020.03.009_b0200 article-title: Fabrication of a semi-transparent thin-film Sb2Se3 solar cell publication-title: Mater. Lett. doi: 10.1016/j.matlet.2018.10.173 – volume: 237 start-page: 1082 year: 2018 ident: 10.1016/j.solener.2020.03.009_b0845 article-title: Synthesis of S-Doped porous g-C3N4 by using ionic liquids and subsequently coupled with Au-TiO2 for exceptional cocatalyst-free visible-light catalytic activities publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2018.06.009 – volume: 64 start-page: 103929 year: 2019 ident: 10.1016/j.solener.2020.03.009_b0965 article-title: Highly efficient and stable planar heterojunction solar cell based on sputtered and post-selenized Sb2Se3 thin film publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.103929 – volume: 4 start-page: 1700329 issue: 1 year: 2018 ident: 10.1016/j.solener.2020.03.009_b0650 article-title: Sb2Se3 thin-film photovoltaics using aqueous solution sprayed SnO2 as the buffer layer publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.201700329 – volume: 178 start-page: 150 year: 2019 ident: 10.1016/j.solener.2020.03.009_b0315 article-title: Improved efficiency of Cu (In, Ga) Se2 thinfilm solar cells using a buffer layer alternative to CdS publication-title: Sol. Energy doi: 10.1016/j.solener.2018.12.023 – volume: 10 start-page: 583 issue: 8 year: 2016 ident: 10.1016/j.solener.2020.03.009_b0430 article-title: Effects of heavy alkali elements in Cu(In, Ga)Se2 solar cells with efficiencies up to 22.6% publication-title: Phys. Status Solidi (RRL)–Rapid Res. Lett. doi: 10.1002/pssr.201600199 – volume: 99 start-page: 232 year: 2018 ident: 10.1016/j.solener.2020.03.009_b0330 article-title: Annealing induced microstructure engineering of antimony tri-selenide thin films publication-title: Mater. Res. Bull. doi: 10.1016/j.materresbull.2017.11.014 – volume: 51 start-page: 1615 issue: 12 year: 2017 ident: 10.1016/j.solener.2020.03.009_b0440 article-title: A comparative study on the electronic and optical properties of Sb2Se3 thin film publication-title: Semiconductors doi: 10.1134/S1063782617120107 – volume: 6 start-page: 22109 year: 2016 ident: 10.1016/j.solener.2020.03.009_b0045 article-title: Influence of alkali metals (Na, Li, Rb) on the performance of electrostatic spray-assisted vapor deposited Cu2ZnSn(S, Se)4 solar cells publication-title: Sci. Rep. doi: 10.1038/srep22109 – volume: 4 start-page: 044017 issue: 4 year: 2015 ident: 10.1016/j.solener.2020.03.009_b0065 article-title: Effects of disorder on carrier transport in Cu2SnS3 publication-title: Phys. Rev. Appl doi: 10.1103/PhysRevApplied.4.044017 – volume: 167 start-page: 10 year: 2018 ident: 10.1016/j.solener.2020.03.009_b0565 article-title: Improved efficiency by insertion of Zn1−xMgxO through sol-gel method in ZnO/Sb2Se3 solar cell publication-title: Sol. Energy doi: 10.1016/j.solener.2018.03.081 – ident: 10.1016/j.solener.2020.03.009_b0755 doi: 10.1063/1.3653616 – ident: 10.1016/j.solener.2020.03.009_b0470 doi: 10.1016/j.joule.2018.04.003 – volume: 8 start-page: 10688 year: 2013 ident: 10.1016/j.solener.2020.03.009_b0015 article-title: Morphology, analysis and properties studies of CdS nanostructures under thiourea concentration effect for photovoltaic applications publication-title: Int. J. Electrochem. Sci doi: 10.1016/S1452-3981(23)13140-3 – volume: 75 start-page: 2181 year: 2015 ident: 10.1016/j.solener.2020.03.009_b0655 article-title: High efficient and stable solid solar cell: based on FeS2 nanocrystals and P3HT: PCBM publication-title: Energy Procedia doi: 10.1016/j.egypro.2015.07.368 – volume: 6 start-page: 5255 issue: 9 year: 2015 ident: 10.1016/j.solener.2020.03.009_b0235 article-title: Vibrational properties and bonding nature of Sb2Se3 and their implications for chalcogenide materials publication-title: Chem. Sci. doi: 10.1039/C5SC00825E – volume: 31 start-page: 063001 issue: 6 year: 2016 ident: 10.1016/j.solener.2020.03.009_b1140 article-title: Antimony selenide thin-film solar cells publication-title: Semicond. Sci. Technol. doi: 10.1088/0268-1242/31/6/063001 – volume: 44 start-page: 111 issue: 2 year: 1993 ident: 10.1016/j.solener.2020.03.009_b0250 article-title: Electrical resistivity of crystalline Sb2Se3 publication-title: Vacuum doi: 10.1016/0042-207X(93)90358-H – year: 2019 ident: 10.1016/j.solener.2020.03.009_b0265 article-title: All-inorganic perovskite solar cells: energetics, key challenges and strategies towards commercialization publication-title: ACS Energy Lett. – volume: 24 start-page: 3587 issue: 23 year: 2014 ident: 10.1016/j.solener.2020.03.009_b0205 article-title: Highly improved Sb2S3 sensitized-inorganic–organic heterojunction solar cells and quantification of traps by deep-level transient spectroscopy publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201304238 – volume: 1 start-page: 395 issue: 2 year: 1983 ident: 10.1016/j.solener.2020.03.009_b0455 article-title: Optical properties and grain boundary effects in CuInSe2 publication-title: J. Vacuum Sci. Technol. A: Vacuum, Surf., Films doi: 10.1116/1.571928 – volume: 115 start-page: 064502 issue: 6 year: 2014 ident: 10.1016/j.solener.2020.03.009_b0795 article-title: Post-deposition processing options for high-efficiency sputtered CdS/CdTe solar cells publication-title: J. Appl. Phys. doi: 10.1063/1.4864415 – year: 2018 ident: 10.1016/j.solener.2020.03.009_b0095 article-title: Past, present and future of the thin film CdTe/CdS solar cells publication-title: Sol. Energy doi: 10.1016/j.solener.2018.01.018 – volume: 202 start-page: 110157 year: 2019 ident: 10.1016/j.solener.2020.03.009_b0765 article-title: Application of Al-Doped (Zn, Mg)O on pure-sulfide Cu(In, Ga)S2 solar cells for enhancement of open-circuit voltage publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2019.110157 – volume: 137 start-page: 256 year: 2016 ident: 10.1016/j.solener.2020.03.009_b1120 article-title: Rapid thermal process to fabricate Sb2Se3 thin film for solar cell application publication-title: Sol. Energy doi: 10.1016/j.solener.2016.08.020 – volume: 515 start-page: 5745 issue: 15 year: 2007 ident: 10.1016/j.solener.2020.03.009_b0240 article-title: Sulfosalts—a new class of compound semiconductors for photovoltaic applications publication-title: Thin Solid Films doi: 10.1016/j.tsf.2006.12.071 – volume: 18 start-page: 567 issue: 5 year: 2018 ident: 10.1016/j.solener.2020.03.009_b0520 article-title: Investigation of excitonic states effects on optoelectronic properties of Sb2Se3 crystal for broadband photo-detector by highly accurate first-principles approach publication-title: Curr. Appl Phys. doi: 10.1016/j.cap.2018.02.008 – volume: 107 start-page: 143902 issue: 14 year: 2015 ident: 10.1016/j.solener.2020.03.009_b1015 article-title: Ambient CdCl2 treatment on CdS buffer layer for improved performance of Sb2Se3 thin film photovoltaics publication-title: Appl. Phys. Lett. doi: 10.1063/1.4932544 – volume: 95 start-page: 2907 issue: 10 year: 2011 ident: 10.1016/j.solener.2020.03.009_b0950 article-title: Structure, composition and optical properties of Cu2ZnSnS4 thin films deposited by Pulsed Laser Deposition method publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2011.06.026 – volume: 26 start-page: 4653 issue: 27 year: 2014 ident: 10.1016/j.solener.2020.03.009_b1100 article-title: Unique properties of halide perovskites as possible origins of the superior solar cell performance publication-title: Adv. Mater. doi: 10.1002/adma.201306281 – volume: 2 start-page: 240 year: 1957 ident: 10.1016/j.solener.2020.03.009_b0085 article-title: Bismuth sulfide (Bi2Se3) optical properties, dielectric constants publication-title: J. Phys. Chem. Solids doi: 10.1016/0022-3697(57)90090-2 – volume: 7 start-page: 3281 issue: 1 year: 2017 ident: 10.1016/j.solener.2020.03.009_b0955 article-title: Sb2Se3 assembling Sb2O3@ attapulgite as an emerging composites for catalytic hydrogenation of p-nitrophenol publication-title: Sci. Rep. doi: 10.1038/s41598-017-03281-z – volume: 172 start-page: 74 year: 2017 ident: 10.1016/j.solener.2020.03.009_b1050 article-title: Magnetron sputtered ZnO buffer layer for Sb2Se3 thin film solar cells publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2017.07.014 – volume: 32 start-page: 295 issue: 4 year: 2005 ident: 10.1016/j.solener.2020.03.009_b0115 article-title: First-principles study of the electronic properties of A2B3 minerals, with A= Bi, Sb and B= S, Se publication-title: Phys. Chem. Minerals doi: 10.1007/s00269-005-0470-y – volume: 171 start-page: 261 issue: 1–4 year: 1985 ident: 10.1016/j.solener.2020.03.009_b1005 article-title: The crystal structure of antimony selenide, Sb2Se3. Zeitschrift für Kristallographie-Crystalline publication-title: Materials – volume: 5 start-page: 3069 issue: 7 year: 2017 ident: 10.1016/j.solener.2020.03.009_b0450 article-title: Strategic review of interface carrier recombination in earth abundant Cu–Zn–Sn–S–Se solar cells: current challenges and future prospects publication-title: J. Mater. Chem. A doi: 10.1039/C6TA10543B – volume: 25 start-page: 996 issue: 12 year: 2017 ident: 10.1016/j.solener.2020.03.009_b0130 article-title: Aluminum-doped Zn1−xMgxO as transparent conductive oxide of Cu(In, Ga)(S, Se)2-based solar cell for minimizing surface carrier recombination publication-title: Prog. Photovoltaics Res. Appl. doi: 10.1002/pip.2911 – volume: 151 start-page: 14 year: 2016 ident: 10.1016/j.solener.2020.03.009_b0055 article-title: Fabrication and characterization of cost-efficient CuSbS2 thin film solar cells using hybrid inks publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2016.02.013 – volume: 26 start-page: 127 issue: 2 year: 2018 ident: 10.1016/j.solener.2020.03.009_b0145 article-title: Heterointerface recombination of Cu(In, Ga)(S, Se)2-based solar cells with different buffer layers publication-title: Prog. Photovoltaics Res. Appl. doi: 10.1002/pip.2952 – volume: 22 start-page: 1557 issue: 5 year: 2018 ident: 10.1016/j.solener.2020.03.009_b0225 article-title: Electrodeposition of Fe-doped Sb2Se3 thin films for photoelectrochemical applications and study of the doping effects on their properties publication-title: J. Solid State Electrochem. doi: 10.1007/s10008-017-3768-z – volume: 4 start-page: 070701 issue: 7 year: 2016 ident: 10.1016/j.solener.2020.03.009_b0335 article-title: Research update: stable single-phase Zn-rich Cu2ZnSnSe4 through In doping publication-title: APL Mater. doi: 10.1063/1.4953435 – volume: 29 start-page: 254 issue: 4 year: 2002 ident: 10.1016/j.solener.2020.03.009_b0495 article-title: Low-temperature crystal structures of stibnite implying orbital overlap of Sb 5s2 inert pair electrons publication-title: Phys. Chem. Miner. doi: 10.1007/s00269-001-0227-1 – volume: 2 start-page: 240 issue: 2 year: 2014 ident: 10.1016/j.solener.2020.03.009_b0635 article-title: Facile microwave-assisted synthesis of uniform Sb2Se3 nanowires for high performance photodetectors publication-title: J. Mater. Chem. C doi: 10.1039/C3TC31883D – year: 2018 ident: 10.1016/j.solener.2020.03.009_b0870 article-title: Low substrate temperature CdTe solar cells: A review publication-title: Sol. Energy doi: 10.1016/j.solener.2018.02.038 – volume: 8 start-page: 865 issue: 3 year: 2018 ident: 10.1016/j.solener.2020.03.009_b0935 article-title: On the identification of Sb2Se3 using Raman scattering publication-title: MRS Commun. doi: 10.1557/mrc.2018.94 – volume: 172 start-page: 11 year: 2017 ident: 10.1016/j.solener.2020.03.009_b0490 article-title: Crystal growth direction-controlled antimony selenide thin film absorbers produced using an electrochemical approach and intermediate thermal treatment publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2017.07.004 – volume: 187 start-page: 219 year: 2018 ident: 10.1016/j.solener.2020.03.009_b0930 article-title: Growth of Sb2Se3 thin films by selenization of RF sputtered binary precursors publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2018.08.003 – volume: 6 start-page: 317 issue: 3 year: 1982 ident: 10.1016/j.solener.2020.03.009_b0075 article-title: A photoelectrochemical cell based on chemically deposited Sb2Se3 thin film electrode and dependence of deposition on various parameters publication-title: Solar Energy Materials doi: 10.1016/0165-1633(82)90037-5 – year: 2015 ident: 10.1016/j.solener.2020.03.009_b0310 – volume: 229 start-page: 249 issue: 3–4 year: 1997 ident: 10.1016/j.solener.2020.03.009_b0280 article-title: The relationship between optical gap and chemical composition in SbxSe1−x system publication-title: Physica B doi: 10.1016/S0921-4526(96)00850-2 – volume: 263 start-page: 280 issue: 5–6 year: 1950 ident: 10.1016/j.solener.2020.03.009_b0245 article-title: Über Chalkogenohalogenide des dreiwertigen Antimons und Wismuts. II. Über Selenohalogenide des dreiwertigen Antimons und Wismuts und über Antimon (III)-selenid Mit 2 Abbildungen. Zeitschrift für anorganische und allgemeine publication-title: Chemie – volume: 1 start-page: 16035 issue: 4 year: 2016 ident: 10.1016/j.solener.2020.03.009_b0110 article-title: The role of surface passivation for efficient and photostable PbS quantum dot solar cells publication-title: Nat. Energy doi: 10.1038/nenergy.2016.35 – volume: 4 start-page: 8 year: 2017 ident: 10.1016/j.solener.2020.03.009_b1125 article-title: Brief review of emerging photovoltaic absorbers publication-title: Curr. Opin. Green Sustainable Chem. doi: 10.1016/j.cogsc.2017.01.002 – volume: 4 start-page: 15 issue: 3 year: 2015 ident: 10.1016/j.solener.2020.03.009_b0480 article-title: Sb2Se3 sensitized heterojunction solar cells publication-title: Mater. Renewable Sustainable Energy doi: 10.1007/s40243-015-0058-5 – volume: 46 start-page: 212 year: 2018 ident: 10.1016/j.solener.2020.03.009_b0360 article-title: Achieving high-performance PbS quantum dot solar cells by improving hole extraction through Ag doping publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.01.047 – volume: 5 start-page: 1501203 issue: 23 year: 2015 ident: 10.1016/j.solener.2020.03.009_b1080 article-title: CuSbSe2 as a potential photovoltaic absorber material: studies from theory to experiment publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201501203 – volume: 26 start-page: 3 issue: 1 year: 2018 ident: 10.1016/j.solener.2020.03.009_b0305 article-title: Solar cell efficiency tables (version 51) publication-title: Prog. Photovoltaics Res. Appl. doi: 10.1002/pip.2978 – volume: 4 start-page: 109 year: 2007 ident: 10.1016/j.solener.2020.03.009_b0415 article-title: Photoconductivity of amorphous Sb2Se3 and Sb2Se3: Sn thin films publication-title: Chalcogenide Lett – volume: 6 start-page: 68663 issue: 73 year: 2016 ident: 10.1016/j.solener.2020.03.009_b0500 article-title: Effect of the thickness of the ZnO buffer layer on the properties of electrodeposited p-Cu2O/n-ZnO/n-AZO heterojunctions publication-title: RSC Adv. doi: 10.1039/C6RA04834J – ident: 10.1016/j.solener.2020.03.009_b0400 doi: 10.1109/PVSC.2018.8547653 – volume: 6 start-page: 1600457 issue: 17 year: 2016 ident: 10.1016/j.solener.2020.03.009_b0615 article-title: Inverted perovskite solar cells: progresses and perspectives publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201600457 – volume: 3 start-page: 631 year: 2019 ident: 10.1016/j.solener.2020.03.009_b0300 article-title: How did solar cells get so cheap? publication-title: Joule doi: 10.1016/j.joule.2019.02.010 – year: 2019 ident: 10.1016/j.solener.2020.03.009_b0780 article-title: Efficient Solar to Hydrogen Conversion from Neutral Electrolytes using Morphology-Controlled Sb2Se3 Light Absorber publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b02323 – volume: 1 start-page: 16015 issue: 3 year: 2016 ident: 10.1016/j.solener.2020.03.009_b0100 article-title: CdTe solar cells with open-circuit voltage breaking the 1 V barrier publication-title: Nat. Energy doi: 10.1038/nenergy.2016.15 – volume: 450 start-page: 228 year: 2018 ident: 10.1016/j.solener.2020.03.009_b1150 article-title: Efficient Sb2Se3 sensitized solar cells prepared through a facile SILAR process and improved performance by interface modification publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.04.152 – volume: 193 start-page: 114 issue: 1–2 year: 1998 ident: 10.1016/j.solener.2020.03.009_b0285 article-title: Aqueous solution epitaxy of CdS layers on CuInSe2 publication-title: J. Cryst. Growth doi: 10.1016/S0022-0248(98)00503-X – volume: 174 start-page: 263 year: 2018 ident: 10.1016/j.solener.2020.03.009_b0605 article-title: Thermally induced structural evolution and performance of Sb2Se3 films and nanorods prepared by an easy sputtering method publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2017.09.008 – volume: 189 start-page: 214 year: 2019 ident: 10.1016/j.solener.2020.03.009_b0060 article-title: Effect of Cu content in CuSbS2 thin films using hybrid inks: Their photovoltaic properties and defect characteristics publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2018.10.006 – volume: 7 start-page: 1601935 issue: 11 year: 2017 ident: 10.1016/j.solener.2020.03.009_b1035 article-title: Trade-offs in thin film solar cells with layered chalcostibite photovoltaic absorbers publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201601935 – volume: 4 start-page: 1065 issue: 4 year: 2011 ident: 10.1016/j.solener.2020.03.009_b0730 article-title: Modified TiO2 nanotube arrays (TNTAs): progressive strategies towards visible light responsive photoanode, a review publication-title: Energy Environ. Sci. doi: 10.1039/c0ee00488j – volume: 8 start-page: 223 year: 2001 ident: 10.1016/j.solener.2020.03.009_b0890 article-title: Growth of multilayer Bi2Se3-Sb2Se3 thin films by SILAR technique publication-title: Indian Journal of Engineering and Materials Sciences – volume: 161 start-page: 190 year: 2017 ident: 10.1016/j.solener.2020.03.009_b0585 article-title: Sb2Se3 thin film solar cells in substrate configuration and the back contact selenization publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2016.11.033 – volume: 13 start-page: 137805 issue: 3 year: 2018 ident: 10.1016/j.solener.2020.03.009_b0880 article-title: First-principles calculations of nitrogen-doped antimony triselenide: A prospective material for solar cells and infrared optoelectronic devices publication-title: Front. Phys. doi: 10.1007/s11467-018-0790-2 – year: 2012 ident: 10.1016/j.solener.2020.03.009_b0670 – ident: 10.1016/j.solener.2020.03.009_b0895 doi: 10.1039/C9TA02022E – volume: 31 start-page: 1806164 issue: 4 year: 2019 ident: 10.1016/j.solener.2020.03.009_b1070 article-title: Thermochromism from Ultrathin Colloidal Sb2Se3 Nanowires Undergoing Reversible Growth and Dissolution in an Amine-Thiol Mixture publication-title: Adv. Mater. doi: 10.1002/adma.201806164 – volume: 248 start-page: 700 issue: 3 year: 2011 ident: 10.1016/j.solener.2020.03.009_b0995 article-title: Electronic structure of antimony selenide (Sb2Se3) from GW calculations publication-title: Phys. Status Solidi (B) doi: 10.1002/pssb.201046225 – volume: 21 start-page: 4663 issue: 24 year: 2011 ident: 10.1016/j.solener.2020.03.009_b0790 article-title: Structural and electronic properties of semiconductor-sensitized solar-cell interfaces publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201101103 – volume: 15 start-page: 48 issue: 5 year: 2010 ident: 10.1016/j.solener.2020.03.009_b0385 article-title: Digital quantum batteries: Energy and information storage in nanovacuum tube arrays publication-title: Complexity doi: 10.1002/cplx.20306 – volume: 25 start-page: 861 issue: 10 year: 2017 ident: 10.1016/j.solener.2020.03.009_b0630 article-title: Enhanced Sb2Se3 solar cell performance through theory-guided defect control publication-title: Prog. Photovoltaics Res. Appl. doi: 10.1002/pip.2900 – volume: 47 start-page: 7085 issue: 20 year: 2012 ident: 10.1016/j.solener.2020.03.009_b1085 article-title: CuSbSe2-assisted sintering of CuInSe2 at low temperature publication-title: J. Mater. Sci. doi: 10.1007/s10853-012-6385-3 – volume: 10 start-page: 4417 issue: 11 year: 2010 ident: 10.1016/j.solener.2020.03.009_b0695 article-title: High electrical conductivity antimony selenide nanocrystals and assemblies publication-title: Nano Lett. doi: 10.1021/nl1020848 – volume: 10 start-page: 18 issue: 1 year: 2017 ident: 10.1016/j.solener.2020.03.009_b0170 article-title: Characterization of basic physical properties of Sb2Se3 and its relevance for photovoltaics publication-title: Front. Optoelectron. doi: 10.1007/s12200-017-0702-z – volume: 6 start-page: 2836 issue: 4 year: 2014 ident: 10.1016/j.solener.2020.03.009_b0760 article-title: Electrodeposition of antimony selenide thin films and application in semiconductor sensitized solar cells publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am405416a – volume: 186 start-page: 58 year: 2018 ident: 10.1016/j.solener.2020.03.009_b0915 article-title: Mechanisms and modification of nonlinear shunt leakage in Sb2Se3 thin film solar cells publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2018.06.022 – ident: 10.1016/j.solener.2020.03.009_b0800 doi: 10.1109/PVSC.2017.8366746 – volume: 12 start-page: 295 issue: 3 year: 1973 ident: 10.1016/j.solener.2020.03.009_b1055 article-title: The amorphous Sb-Se system publication-title: J. Non-Cryst. Solids doi: 10.1016/0022-3093(73)90002-1 – volume: 104 start-page: 173904 issue: 17 year: 2014 ident: 10.1016/j.solener.2020.03.009_b0660 article-title: Thermal evaporation and characterization of superstrate CdS/Sb2Se3 solar cells publication-title: Appl. Phys. Lett. doi: 10.1063/1.4874878 – volume: 352 start-page: aad4424 issue: 6283 year: 2016 ident: 10.1016/j.solener.2020.03.009_b0810 article-title: Photovoltaic materials: Present efficiencies and future challenges publication-title: Science doi: 10.1126/science.aad4424 – volume: 4 start-page: 1895 issue: 5 year: 2016 ident: 10.1016/j.solener.2020.03.009_b0645 article-title: Alkali doping strategies for flexible and light-weight Cu2ZnSnSe4 solar cells publication-title: J. Mater. Chem. A doi: 10.1039/C5TA09640E – volume: 360 start-page: 68 year: 2019 ident: 10.1016/j.solener.2020.03.009_b0960 article-title: Magnetron sputtering deposition and selenization of Sb2Se3 thin film for substrate Sb2Se3/CdS solar cells publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2018.12.102 – volume: 451 start-page: 434 year: 2004 ident: 10.1016/j.solener.2020.03.009_b1000 article-title: Characterization of deep defects in CdS/CdTe thin film solar cells using deep level transient spectroscopy publication-title: Thin Solid Films doi: 10.1016/j.tsf.2003.10.137 – volume: 187 start-page: 170 year: 2018 ident: 10.1016/j.solener.2020.03.009_b0365 article-title: Improving the efficiency of Sb2Se3 thin-film solar cells by post annealing treatment in vacuum condition publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2018.08.006 – volume: 136 start-page: 10 year: 2016 ident: 10.1016/j.solener.2020.03.009_b0770 article-title: 15.3% efficient graded bandgap solar cells fabricated using electroplated CdS and CdTe thin films publication-title: Sol. Energy doi: 10.1016/j.solener.2016.06.067 – volume: 55 start-page: 1258 issue: 3 year: 2010 ident: 10.1016/j.solener.2020.03.009_b1105 article-title: Pulsed laser deposited heterogeneous mixture of Li2Se–Sb2Se3 nanocomposite as a new storage lithium material publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2009.10.046 – volume: 3 start-page: 10488 issue: 40 year: 2015 ident: 10.1016/j.solener.2020.03.009_b1065 article-title: Self-assisted nucleation and growth of [010]-oriented Sb2Se3 whiskers: the crystal structure and thermoelectric properties publication-title: J. Mater. Chem. C doi: 10.1039/C5TC01364J – volume: 2012 start-page: 70 year: 2012 ident: 10.1016/j.solener.2020.03.009_b0035 article-title: Structural studies and optical and electrical properties of novel Gd3+-doped Sb2Se3 nanorods publication-title: J. Nanomater. doi: 10.1155/2012/983150 – volume: 54 start-page: 042302 issue: 4 year: 2015 ident: 10.1016/j.solener.2020.03.009_b0685 article-title: Evaluation of sputtering damage in Cu2ZnSn(S, Se)4 solar cells with CdS and (Cd, Zn)S buffer layers by photoluminescence measurement publication-title: Jpn. J. Appl. Phys. doi: 10.7567/JJAP.54.042302 – volume: 3 start-page: 2335 issue: 10 year: 2018 ident: 10.1016/j.solener.2020.03.009_b0175 article-title: Efficiency Improvement of Sb2Se3 Solar Cells via Grain Boundary Inversion publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b01456 – volume: 67 start-page: 83 issue: 1–4 year: 2001 ident: 10.1016/j.solener.2020.03.009_b0715 article-title: Theoretical analysis of the effect of conduction band offset of window/CIS layers on performance of CIS solar cells using device simulation publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/S0927-0248(00)00266-X – volume: 406 start-page: 3831 issue: 20 year: 2011 ident: 10.1016/j.solener.2020.03.009_b0025 article-title: Structural studies and physical properties of novel Sm3+-doped Sb2Se3 nanorods publication-title: Physica B doi: 10.1016/j.physb.2011.07.005 – year: 2019 ident: 10.1016/j.solener.2020.03.009_b0155 article-title: 22%-efficient Cd-free Cu(In, Ga)(S, Se)2 solar cell by all-dry process using Zn0. 8Mg0.2O and Zn0. 9Mg0.1O: B as buffer and transparent conductive oxide layers publication-title: Progress Photovolt.: Res. Appl. – volume: 189 start-page: 5 year: 2019 ident: 10.1016/j.solener.2020.03.009_b1030 article-title: Interfacial engineering for high efficiency solution processed Sb2Se3 solar cells publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2018.09.020 – volume: 671 start-page: 73 year: 2012 ident: 10.1016/j.solener.2020.03.009_b0510 article-title: Electrodeposition of antimony selenide thin films from aqueous acid solutions publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2012.02.018 – volume: 351 start-page: 151 issue: 6269 year: 2016 ident: 10.1016/j.solener.2020.03.009_b0690 article-title: A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells publication-title: Science doi: 10.1126/science.aad5845 – volume: 62 start-page: 169 issue: 2 year: 2000 ident: 10.1016/j.solener.2020.03.009_b0820 article-title: Effect of Se source on properties of spray deposited Sb2Se3 thin films publication-title: Mater. Chem. Phys. doi: 10.1016/S0254-0584(99)00173-X – volume: 32 start-page: 510 issue: 3 year: 1961 ident: 10.1016/j.solener.2020.03.009_b0925 article-title: Detailed balance limit of efficiency of p-n junction solar cells publication-title: J. Appl. Phys. doi: 10.1063/1.1736034 – volume: 54 start-page: 511 issue: 2 year: 1972 ident: 10.1016/j.solener.2020.03.009_b0910 article-title: Electronic structure of single crystal and amorphous Sb2Se3 publication-title: Phys. Status Solidi (B) doi: 10.1002/pssb.2220540215 – volume: 156 start-page: H327 issue: 5 year: 2009 ident: 10.1016/j.solener.2020.03.009_b0700 article-title: Antimony selenide absorber thin films in all-chemically deposited solar cells publication-title: J. Electrochem. Soc. doi: 10.1149/1.3089358 – volume: 54 start-page: 032301 issue: 3 year: 2015 ident: 10.1016/j.solener.2020.03.009_b0745 article-title: Influence of conduction band minimum difference between transparent conductive oxide and absorber on photovoltaic performance of thin-film solar cell publication-title: Jpn. J. Appl. Phys. doi: 10.7567/JJAP.54.032301 – volume: 82 start-page: 294 year: 2016 ident: 10.1016/j.solener.2020.03.009_b0840 article-title: Inorganic photovoltaics–planar and nanostructured devices publication-title: Prog. Mater Sci. doi: 10.1016/j.pmatsci.2016.03.005 – volume: 354 start-page: 206 issue: 6309 year: 2016 ident: 10.1016/j.solener.2020.03.009_b0885 article-title: Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance publication-title: Science doi: 10.1126/science.aah5557 – volume: 13 start-page: 137805 issue: 3 year: 2018 ident: 10.1016/j.solener.2020.03.009_b0105 article-title: First-principles calculations of nitrogen-doped antimony triselenide: A prospective material for solar cells and infrared optoelectronic devices publication-title: Front. Phys. doi: 10.1007/s11467-018-0790-2 – volume: 168 start-page: 207 year: 2017 ident: 10.1016/j.solener.2020.03.009_b0160 article-title: Introduction of Na into Cu2SnS3 thin film for improvement of its photovoltaic performances publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2017.04.040 – volume: 174 start-page: 412 year: 2018 ident: 10.1016/j.solener.2020.03.009_b0005 article-title: ZnSnP2 solar cell with (Cd, Zn)S buffer layer: Analysis of recombination rates publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2017.09.035 – volume: 9 start-page: 254 issue: 4 year: 2016 ident: 10.1016/j.solener.2020.03.009_b0090 article-title: How the chlorine treatment and the stoichiometry influences the grain boundary passivation in polycrystalline CdTe thin films publication-title: Energies doi: 10.3390/en9040254 – volume: 16 start-page: 8843 issue: 19 year: 2014 ident: 10.1016/j.solener.2020.03.009_b0805 article-title: Unveiling the effects of post-deposition treatment with different alkaline elements on the electronic properties of CIGS thin film solar cells publication-title: PCCP doi: 10.1039/c4cp00614c – volume: 7 start-page: 301 issue: 4 year: 1972 ident: 10.1016/j.solener.2020.03.009_b0740 article-title: The preparation of amorphous thin films publication-title: J. Non-Cryst. Solids doi: 10.1016/0022-3093(72)90266-9 – volume: 9 start-page: 2179 issue: 1 year: 2018 ident: 10.1016/j.solener.2020.03.009_b1045 article-title: Vapor transport deposition of antimony selenide thin film solar cells with 7.6% efficiency publication-title: Nature Commun. doi: 10.1038/s41467-018-04634-6 – volume: 184 start-page: 553 year: 2019 ident: 10.1016/j.solener.2020.03.009_b0150 article-title: Characteristics of Zn1−xMgxO: B and its application as transparent conductive oxide layer in Cu(In, Ga)(S, Se)2 solar cells with and without CdS buffer layer publication-title: Sol. Energy doi: 10.1016/j.solener.2019.04.029 – volume: 737 start-page: 67 year: 2018 ident: 10.1016/j.solener.2020.03.009_b0545 article-title: Self-powered, high-speed Sb2Se3/Si heterojunction photodetector with close spaced sublimation processed Sb2Se3 layer publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2017.12.039 – volume: 75 start-page: 121 issue: 1–2 year: 2003 ident: 10.1016/j.solener.2020.03.009_b0710 article-title: Control of conduction band offset in wide-gap Cu(In, Ga)Se2 solar cells publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/S0927-0248(02)00120-4 – volume: 7 start-page: 1700866 issue: 20 year: 2017 ident: 10.1016/j.solener.2020.03.009_b0190 article-title: Accelerated optimization of TiO2/Sb2Se3 thin film solar cells by high-throughput combinatorial approach publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201700866 – volume: 29 start-page: 485 issue: 8 year: 1972 ident: 10.1016/j.solener.2020.03.009_b1060 article-title: Electron Energy States in Sb2Se3 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.29.485 – ident: 10.1016/j.solener.2020.03.009_b0540 doi: 10.1155/2013/739078 – volume: 135 start-page: 1096 issue: 2–3 year: 2012 ident: 10.1016/j.solener.2020.03.009_b0120 article-title: Micro-and nanostructures of Sb2O3 grown by evaporation–deposition: Self assembly phenomena, fractal and dendritic growth publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2012.06.024 – volume: 124 start-page: 143 year: 2014 ident: 10.1016/j.solener.2020.03.009_b0560 article-title: A recombination analysis of Cu(In, Ga)Se2 solar cells with low and high Ga compositions publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2014.01.047 – volume: 43 start-page: 1073 year: 2015 ident: 10.1016/j.solener.2020.03.009_b0040 article-title: Theoretical limits of photovoltaics efficiency and possible improvements by intuitive approaches learned from photosynthesis and quantum coherence publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2014.11.101 – volume: 160 start-page: 257 year: 2017 ident: 10.1016/j.solener.2020.03.009_b0600 article-title: Facile preparation and enhanced photoelectrical performance of Sb2Se3 nano-rods by magnetron sputtering deposition publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2016.10.042 – ident: 10.1016/j.solener.2020.03.009_b0445 – volume: 87 start-page: 246 year: 2017 ident: 10.1016/j.solener.2020.03.009_b0320 article-title: Towards high efficiency thin film solar cells publication-title: Prog. Mater Sci. doi: 10.1016/j.pmatsci.2017.02.003 – volume: 1 start-page: 30 issue: 1 year: 2017 ident: 10.1016/j.solener.2020.03.009_b1130 article-title: Atomic layer deposition for perovskite solar cells: research status, opportunities and challenges publication-title: Sustainable Energy Fuels doi: 10.1039/C6SE00076B – volume: 311 start-page: 114 issue: 1–2 year: 1997 ident: 10.1016/j.solener.2020.03.009_b0830 article-title: Effect of the substrate temperature on the properties of spray deposited Sb–Se thin films from non-aqueous medium publication-title: Thin Solid Films doi: 10.1016/S0040-6090(97)00415-X – volume: 130 start-page: 139 year: 2016 ident: 10.1016/j.solener.2020.03.009_b0875 article-title: Tabulated values of the Shockley-Queisser limit for single junction solar cells publication-title: Sol. Energy doi: 10.1016/j.solener.2016.02.015 – volume: 35 start-page: 1629 issue: 12 year: 1974 ident: 10.1016/j.solener.2020.03.009_b0295 article-title: The thermal activation energy of crystalline Sb2Se3 publication-title: J. Phys. Chem. Solids doi: 10.1016/S0022-3697(74)80175-7 – volume: 96 start-page: 86 year: 2018 ident: 10.1016/j.solener.2020.03.009_b0680 article-title: Revisiting the electrical and optical transmission properties of co-doped ZnO thin films as n-type TCOs publication-title: Prog. Mater Sci. doi: 10.1016/j.pmatsci.2018.03.004 – volume: 93 start-page: 341 issue: 1 year: 2003 ident: 10.1016/j.solener.2020.03.009_b0815 article-title: Nondispersive hole transport in amorphous films of methoxy-spirofluorene-arylamine organic compound publication-title: J. Appl. Phys. doi: 10.1063/1.1525866 – volume: 87 start-page: 541 issue: 1–4 year: 2005 ident: 10.1016/j.solener.2020.03.009_b0425 article-title: Fabrication of wide-gap Cu(In1−xGax)Se2 thin film solar cells: a study on the correlation of cell performance with highly resistive i-ZnO layer thickness publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2004.08.017 – volume: 272 start-page: 1 issue: 1 year: 2000 ident: 10.1016/j.solener.2020.03.009_b0350 article-title: Electronic polarizability, optical basicity and XPS spectra of Sb2O3–B2O3 glasses publication-title: J. Non-Cryst. Solids doi: 10.1016/S0022-3093(00)00156-3 – volume: 10 start-page: 1960 issue: 5 year: 2010 ident: 10.1016/j.solener.2020.03.009_b0640 article-title: Dependence of carrier mobility on nanocrystal size and ligand length in PbSe nanocrystal solids publication-title: Nano Lett. doi: 10.1021/nl101284k – volume: 632 start-page: 178 year: 2015 ident: 10.1016/j.solener.2020.03.009_b0570 article-title: The effect of ZnS segregation on Zn-rich CZTS thin film solar cells publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2015.01.205 – volume: 89 start-page: 8327 issue: 12 year: 2001 ident: 10.1016/j.solener.2020.03.009_b0705 article-title: Cu(In, Ga)Se2 solar cells with controlled conduction band offset of window/Cu(In, Ga)Se2 layers publication-title: J. Appl. Phys. doi: 10.1063/1.1366655 – volume: 6 start-page: 10687 issue: 13 year: 2014 ident: 10.1016/j.solener.2020.03.009_b0625 article-title: Thermal evaporation and characterization of Sb2Se3 thin film for substrate Sb2Se3/CdS solar cells publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am502427s – volume: 35 start-page: 205 issue: 3-4 year: 1991 ident: 10.1016/j.solener.2020.03.009_b0735 article-title: Semiconductors for solar cell applications publication-title: Prog. Mater Sci. doi: 10.1016/0079-6425(91)90001-A – start-page: 1800208 year: 2018 ident: 10.1016/j.solener.2020.03.009_b1020 article-title: Promising Sb2(S, Se)3 solar cells with high open voltage by application of a TiO2/CdS double buffer layer publication-title: Solar RRL doi: 10.1002/solr.201800208 – volume: 127 start-page: 188 year: 2014 ident: 10.1016/j.solener.2020.03.009_b0380 article-title: Surface modification enabled carrier mobility adjustment in CZTS nanoparticle thin films publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2014.04.027 – volume: 515 start-page: 3810 issue: 7–8 year: 2007 ident: 10.1016/j.solener.2020.03.009_b0905 article-title: Compositional dependence of the optical properties of amorphous antimony selenide thin films using transmission measurements publication-title: Thin Solid Films doi: 10.1016/j.tsf.2006.10.012 – volume: 133 start-page: 8 year: 2015 ident: 10.1016/j.solener.2020.03.009_b0720 article-title: Theoretical analysis on effect of band offsets in perovskite solar cells publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2014.10.036 – volume: 6 start-page: 153 issue: 3 year: 2012 ident: 10.1016/j.solener.2020.03.009_b0550 article-title: Polymer solar cells publication-title: Nat. Photonics doi: 10.1038/nphoton.2012.11 – volume: 6 start-page: 87288 issue: 90 year: 2016 ident: 10.1016/j.solener.2020.03.009_b0575 article-title: The effect of sodium on antimony selenide thin film solar cells publication-title: RSC Adv. doi: 10.1039/C6RA20690E – volume: 404 start-page: 1119 issue: 8–11 year: 2009 ident: 10.1016/j.solener.2020.03.009_b0255 article-title: Effect of heat treatment on the structural and optical properties of amorphous Sb2Se3 and Sb2Se2S thin films publication-title: Physica B doi: 10.1016/j.physb.2008.11.086 – volume: 56 start-page: 8597 issue: 24 year: 2011 ident: 10.1016/j.solener.2020.03.009_b0555 article-title: Preparation and characterization of Bi-doped antimony selenide thin films by electrodeposition publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2011.07.042 – volume: 200 start-page: 352 issue: 2 year: 2003 ident: 10.1016/j.solener.2020.03.009_b0020 article-title: The growth of CdTe thin film by close space sublimation system publication-title: Physica Status Solidi (A) doi: 10.1002/pssa.200306691 – volume: 16 start-page: 461 issue: 6 year: 2008 ident: 10.1016/j.solener.2020.03.009_b0900 article-title: Surface passivation of high-efficiency silicon solar cells by atomic-layer-deposited Al2O3 publication-title: Prog. Photovoltaics Res. Appl. doi: 10.1002/pip.823 – volume: 2 start-page: 2125 issue: 9 year: 2017 ident: 10.1016/j.solener.2020.03.009_b0185 article-title: 6.5% Certified efficiency Sb2Se3 solar cells using PbS colloidal quantum dot film as hole-transporting layer publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.7b00648 – volume: 9 start-page: 4392 issue: 10 year: 1974 ident: 10.1016/j.solener.2020.03.009_b0390 article-title: Photoemission studies of crystalline and amorphous Sb2Se3 publication-title: Physical Review B doi: 10.1103/PhysRevB.9.4392 – volume: 519 start-page: 7568 issue: 21 year: 2011 ident: 10.1016/j.solener.2020.03.009_b0725 article-title: Sputtered ZnO-based buffer layer for band offset control in Cu(In, Ga)Se2 solar cells publication-title: Thin Solid Films doi: 10.1016/j.tsf.2010.12.117 – volume: 25 start-page: 431 issue: 6 year: 2017 ident: 10.1016/j.solener.2020.03.009_b0135 article-title: Thin-film Cu(In, Ga)(Se, S)2-based solar cell with (Cd, Zn)S buffer layer and Zn1−xMgxO window layer publication-title: Prog. Photovoltaics Res. Appl. doi: 10.1002/pip.2879 – ident: 10.1016/j.solener.2020.03.009_b0405 doi: 10.1109/PVSC.2018.8547653 – volume: 28 start-page: 325 issue: 3 year: 1978 ident: 10.1016/j.solener.2020.03.009_b0475 article-title: Optical, photoelectric and electric properties of single-crystalline Sb2Se3 publication-title: Czechoslovak J. Phys. B doi: 10.1007/BF01597220 – volume: 2 start-page: 17046 issue: 4 year: 2017 ident: 10.1016/j.solener.2020.03.009_b1010 article-title: Stable 6%-efficient Sb2Se3 solar cells with a ZnO buffer layer publication-title: Nat. Energy doi: 10.1038/nenergy.2017.46 – volume: 18 start-page: 79 issue: 1 year: 2018 ident: 10.1016/j.solener.2020.03.009_b0355 article-title: Performance assessment of Cu2SnS3 (CTS) based thin film solar cells by AMPS-1D publication-title: Curr. Appl Phys. doi: 10.1016/j.cap.2017.10.009 – volume: 193 start-page: 452 year: 2019 ident: 10.1016/j.solener.2020.03.009_b0485 article-title: Effects of post-deposition annealing and copper inclusion in superstrate Sb2Se3 based solar cells by thermal evaporation publication-title: Sol. Energy doi: 10.1016/j.solener.2019.09.069 – year: 2019 ident: 10.1016/j.solener.2020.03.009_b0975 article-title: Low-Bandgap Se-Deficient Antimony Selenide as a Multifunctional Polysulfide Barrier toward High-Performance Lithium-Sulfur Batteries publication-title: Adv. Mater. – volume: 33 start-page: 209 issue: 4 year: 2009 ident: 10.1016/j.solener.2020.03.009_b0125 article-title: Growth and microindentation analysis of pure and doped Sb2Se3 crystals publication-title: Turkish J. Phys. – ident: 10.1016/j.solener.2020.03.009_b0435 doi: 10.1088/1757-899X/271/1/012063 – ident: 10.1016/j.solener.2020.03.009_b0525 doi: 10.1002/solr.201900026 – volume: 162 start-page: 127 year: 2017 ident: 10.1016/j.solener.2020.03.009_b0860 article-title: Improved stability of CdTe solar cells by absorber surface etching publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2016.12.044 – volume: 61 start-page: 219 issue: 3 year: 1999 ident: 10.1016/j.solener.2020.03.009_b0985 article-title: Preparation and characterization of electrodeposited Sb2Se3 thin films publication-title: Mater. Chem. Phys. doi: 10.1016/S0254-0584(99)00160-1 – volume: 11 start-page: 2019 issue: 12 year: 2009 ident: 10.1016/j.solener.2020.03.009_b0750 article-title: Effect of temperature on the optical parameter of amorphous Sb-Se thin films publication-title: J. Optoelectron. Adv. Mater. – volume: 12 start-page: 191 year: 2018 ident: 10.1016/j.solener.2020.03.009_b1155 article-title: Improving the performance of Sb2Se3 sensitized solar cells with a versatile CdSe layer modification publication-title: Appl. Mater. Today doi: 10.1016/j.apmt.2018.05.003 – volume: 27 start-page: 1606242 issue: 13 year: 2017 ident: 10.1016/j.solener.2020.03.009_b0775 article-title: A new rGO-overcoated Sb2Se3 nanorods anode for Na+ battery: in Situ X-ray diffraction study on a live sodiation/desodiation process publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201606242 – volume: 28 start-page: 770 issue: 4 year: 1995 ident: 10.1016/j.solener.2020.03.009_b1135 article-title: Transport properties of SbxSe1-x thin films publication-title: J. Phys. D Appl. Phys. doi: 10.1088/0022-3727/28/4/022 – volume: 8 start-page: 082301 issue: 8 year: 2015 ident: 10.1016/j.solener.2020.03.009_b1040 article-title: CuSbSe2 photovoltaic devices with 3% efficiency publication-title: Appl. Phys Express doi: 10.7567/APEX.8.082301 – volume: 182 start-page: 96 year: 2019 ident: 10.1016/j.solener.2020.03.009_b1145 article-title: Alternative back contacts for Sb2Se3 solar cells publication-title: Sol. Energy doi: 10.1016/j.solener.2019.02.050 – volume: 261 start-page: 510 year: 2012 ident: 10.1016/j.solener.2020.03.009_b0505 article-title: Preparation and characterization of Sb2Se3 thin films by electrodeposition and annealing treatment publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2012.08.046 – volume: 27 start-page: 713 issue: 3 year: 2018 ident: 10.1016/j.solener.2020.03.009_b1025 article-title: Development of antimony sulfide–selenide Sb2(S, Se)3-based solar cells publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2017.09.031 – volume: 212 start-page: 2766 issue: 12 year: 2015 ident: 10.1016/j.solener.2020.03.009_b0340 article-title: Annealing effect on Cu2ZnSn(S, Se)4 solar cell with Zn1–xMgxO buffer layer publication-title: Phys. Status Solidi (A) doi: 10.1002/pssa.201532217 – volume: 107 start-page: 043905 issue: 4 year: 2015 ident: 10.1016/j.solener.2020.03.009_b0180 article-title: Optical properties of amorphous and polycrystalline Sb2Se3 thin films prepared by thermal evaporation publication-title: Appl. Phys. Lett. doi: 10.1063/1.4927741 – volume: 33 start-page: R17 issue: 4 year: 2000 ident: 10.1016/j.solener.2020.03.009_b0260 article-title: Magnetron sputtering of transparent conductive zinc oxide: relation between the sputtering parameters and the electronic properties publication-title: J. Phys. D Appl. Phys. doi: 10.1088/0022-3727/33/4/201 – volume: 4 start-page: 2507 issue: 10 year: 2017 ident: 10.1016/j.solener.2020.03.009_b0220 article-title: Thermal treatment effects on electrodeposited Sb2Se3 photovoltaic thin films publication-title: ChemElectroChem doi: 10.1002/celc.201700511 – volume: 61 start-page: 94 year: 2014 ident: 10.1016/j.solener.2020.03.009_b1095 article-title: Recent progress in antireflection and self-cleaning technology–From surface engineering to functional surfaces publication-title: Prog. Mater Sci. doi: 10.1016/j.pmatsci.2013.12.003 – volume: 9 start-page: 355 issue: 6 year: 2015 ident: 10.1016/j.solener.2020.03.009_b0945 article-title: Photovoltaics: Non-cubic solar cell materials publication-title: Nat. Photonics doi: 10.1038/nphoton.2015.85 – volume: 127 start-page: 8907 issue: 20 year: 2016 ident: 10.1016/j.solener.2020.03.009_b0410 article-title: Characterization and analysis of wheat-like CdS nanostructures under temperature effect for solar cells applications publication-title: Optik doi: 10.1016/j.ijleo.2016.06.109 – volume: 43 start-page: 215403 issue: 21 year: 2010 ident: 10.1016/j.solener.2020.03.009_b0270 article-title: A study of ternary Cu2SnS3 and Cu3SnS4 thin films prepared by sulfurizing stacked metal precursors publication-title: J. Phys. D Appl. Phys. doi: 10.1088/0022-3727/43/21/215403 – volume: 8 start-page: 141 issue: 1 year: 2013 ident: 10.1016/j.solener.2020.03.009_b0325 article-title: Lu3+/Yb3+ and Lu3+/Er3+ co-doped antimony selenide nanomaterials: synthesis, characterization, and electrical, thermoelectrical, and optical properties publication-title: Nanoscale Res. Lett. doi: 10.1186/1556-276X-8-141 – volume: 21 start-page: 3170 issue: 31 year: 2009 ident: 10.1016/j.solener.2020.03.009_b1090 article-title: Pulsed vapor-liquid-solid growth of antimony selenide and antimony sulfide nanowires publication-title: Adv. Mater. doi: 10.1002/adma.200803436 – volume: 10 start-page: 11361 issue: 13 year: 2018 ident: 10.1016/j.solener.2020.03.009_b0140 article-title: 20% Efficient Zn0. 9Mg0.1O: Al/Zn0.8Mg0.2O/Cu(In, Ga)(S, Se)2 Solar Cell Prepared by All-Dry Process through a Combination of Heat-Light-Soaking and Light-Soaking Processes publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b01247 – volume: 159 start-page: 834 year: 2018 ident: 10.1016/j.solener.2020.03.009_b0850 article-title: Characterisation of SnSe thin films fabricated by chemical molecular beam deposition for use in thin film solar cells publication-title: Sol. Energy doi: 10.1016/j.solener.2017.11.053 – volume: 366 start-page: 202 issue: 1–2 year: 2000 ident: 10.1016/j.solener.2020.03.009_b0275 article-title: Preparation and characterization of Sb2Se3 thin films prepared by electrodeposition for photovoltaic applications publication-title: Thin Solid Films doi: 10.1016/S0040-6090(00)00716-1 – volume: 4 start-page: 1301680 issue: 7 year: 2014 ident: 10.1016/j.solener.2020.03.009_b0210 article-title: Efficient Inorganic-Organic Heterojunction Solar Cells Employing Sb2(Sx/Se1-x)3 Graded-Composition Sensitizers publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201301680 – volume: 636 start-page: 431 year: 2017 ident: 10.1016/j.solener.2020.03.009_b0165 article-title: Influence of Na in Cu2SnS3 film on its physical properties and photovoltaic performances publication-title: Thin Solid Films doi: 10.1016/j.tsf.2017.06.044 – volume: 52 issue: 2 year: 2019 ident: 10.1016/j.solener.2020.03.009_b0080 article-title: Facile synthesis of novel antimony selenide nanocrystals with hierarchical architecture by physical vapor deposition technique publication-title: J. Appl. Crystallogr. doi: 10.1107/S1600576719001006 – volume: 493 start-page: 77 issue: 1–2 year: 2005 ident: 10.1016/j.solener.2020.03.009_b0865 article-title: Polycrystalline thin films of antimony selenide via chemical bath deposition and post deposition treatments publication-title: Thin Solid Films doi: 10.1016/j.tsf.2005.07.238 – volume: 188 start-page: 177 year: 2018 ident: 10.1016/j.solener.2020.03.009_b0395 article-title: 6.6% efficient antimony selenide solar cells using grain structure control and an organic contact layer publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2018.09.004 – volume: 9 start-page: 052302 issue: 5 year: 2016 ident: 10.1016/j.solener.2020.03.009_b0595 article-title: Efficiency enhancement of Sb2Se3 thin-film solar cells by the co-evaporation of Se and Sb2Se3 publication-title: Appl. Phys Express doi: 10.7567/APEX.9.052302 – volume: 9 start-page: 409 issue: 6 year: 2015 ident: 10.1016/j.solener.2020.03.009_b1170 article-title: Thin-film Sb2Se3 photovoltaics with oriented one-dimensional ribbons and benign grain boundaries publication-title: Nat. Photonics doi: 10.1038/nphoton.2015.78 – volume: 10 start-page: 1306 issue: 6 year: 2017 ident: 10.1016/j.solener.2020.03.009_b0835 article-title: Copper indium gallium selenide based solar cells–a review publication-title: Energy Environ. Sci. doi: 10.1039/C7EE00826K – volume: 86 start-page: 225 issue: 1–6 year: 1933 ident: 10.1016/j.solener.2020.03.009_b0345 article-title: Die struktur der minerale der antimonitgruppe. Zeitschrift für Kristallographie-Crystalline publication-title: Materials – volume: 10 issue: 1 year: 2019 ident: 10.1016/j.solener.2020.03.009_b0590 article-title: 9.2%-efficient core-shell structured antimony selenide nanorod array solar cells publication-title: Nature Commun. – volume: 173 start-page: 225 year: 2018 ident: 10.1016/j.solener.2020.03.009_b0855 article-title: Growth and characterization of Sb2Se3 thin films for solar cells publication-title: Sol. Energy doi: 10.1016/j.solener.2018.07.082 – volume: 3 start-page: 43 issue: 1 year: 2013 ident: 10.1016/j.solener.2020.03.009_b1110 article-title: Inverse design of high absorption thin-film photovoltaic materials publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201200538 – volume: 390 start-page: 142 issue: 1–3 year: 2011 ident: 10.1016/j.solener.2020.03.009_b0030 article-title: Synthesis of novel LnxSb2−xSe3 (Ln: Lu3+, Ho3+, Nd3+) nanomaterials via co-reduction method and investigation of their physical properties publication-title: Colloids Surf., A doi: 10.1016/j.colsurfa.2011.09.018 – volume: 125 start-page: 2295 issue: 10 year: 2014 ident: 10.1016/j.solener.2020.03.009_b0515 article-title: Thickness effect on the structural and optical constants of stibnite thin films prepared by sulfidation annealing of antimony films publication-title: Optik-Int. J. Light Electron Opt. doi: 10.1016/j.ijleo.2013.10.114 – volume: 23 start-page: 1828 issue: 12 year: 2015 ident: 10.1016/j.solener.2020.03.009_b0620 article-title: Improving the performance of Sb2Se3 thin film solar cells over 4% by controlled addition of oxygen during film deposition publication-title: Prog. Photovoltaics Res. Appl. doi: 10.1002/pip.2627 – volume: 43 start-page: 229 issue: 2 year: 1981 ident: 10.1016/j.solener.2020.03.009_b0920 article-title: On the compositional dependence of the optical gap in amorphous semiconducting alloys publication-title: J. Non-Cryst. Solids doi: 10.1016/0022-3093(81)90119-8 – volume: 111 start-page: 013901 issue: 1 year: 2017 ident: 10.1016/j.solener.2020.03.009_b1165 article-title: Buried homojunction in CdS/Sb2Se3 thin film photovoltaics generated by interfacial diffusion publication-title: Appl. Phys. Lett. doi: 10.1063/1.4991539 – volume: 27 start-page: 8906 issue: 9 year: 2016 ident: 10.1016/j.solener.2020.03.009_b1115 article-title: Sb2Se3 solar cells prepared with selenized dc-sputtered metallic precursors publication-title: J. Mater. Sci.: Mater. Electron. – volume: 49 start-page: 346 year: 2018 ident: 10.1016/j.solener.2020.03.009_b0535 article-title: Stable and efficient CdS/Sb2Se3 solar cells prepared by scalable close space sublimation publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.04.044 – volume: 21 start-page: 1588 issue: 8 year: 2013 ident: 10.1016/j.solener.2020.03.009_b0610 article-title: The effect of Zn1−xSnxOy buffer layer thickness in 18.0% efficient Cd-free Cu(In, Ga)Se2 solar cells publication-title: Prog. Photovoltaics Res. Appl. doi: 10.1002/pip.2239 – volume: 95 start-page: 42 year: 2018 ident: 10.1016/j.solener.2020.03.009_b0230 article-title: Transparent heat regulating (THR) materials and coatings for energy saving window applications: Impact of materials design, micro-structural, and interface quality on the THR performance publication-title: Prog. Mater Sci. doi: 10.1016/j.pmatsci.2018.02.007 – volume: 27 start-page: 8048 issue: 23 year: 2015 ident: 10.1016/j.solener.2020.03.009_b1075 article-title: Generalized water-processed metal chalcogenide complexes: synthesis and applications publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b03614 – volume: 4 start-page: 1301846 issue: 8 year: 2014 ident: 10.1016/j.solener.2020.03.009_b1160 article-title: Solution-processed antimony selenide heterojunction solar cells publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201301846 – volume: 10 start-page: 99 issue: 2 year: 1957 ident: 10.1016/j.solener.2020.03.009_b0980 article-title: The crystal structure of antimony selenide, Sb2Se3 publication-title: Acta Crystallogr. A doi: 10.1107/S0365110X57000298 – volume: 126 start-page: 1353 issue: 5 year: 2014 ident: 10.1016/j.solener.2020.03.009_b0215 article-title: Sb2Se3-sensitized inorganic–organic heterojunction solar cells fabricated using a single-source precursor publication-title: Angew. Chem. doi: 10.1002/ange.201308331 – volume: 109 start-page: 232104 issue: 23 year: 2016 ident: 10.1016/j.solener.2020.03.009_b0580 article-title: Characterization of Mg and Fe doped Sb2Se3 thin films for photovoltaic application publication-title: Appl. Phys. Lett. doi: 10.1063/1.4971388 |
SSID | ssj0017187 ssib006542964 ssib023146691 ssib036357013 ssib057237915 ssib011602162 ssib017387515 ssib000199863 |
Score | 2.6749494 |
SecondaryResourceType | review_article |
Snippet | Energy generated from environmentally friendly, cost-effective solar cells is a key aspect for developing a clean renewable-energy economy. Non-toxic and... |
SourceID | osti proquest crossref nii elsevier |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 227 |
SubjectTerms | Absorbers (materials) Absorption Absorptivity Antimony Antimony compounds Carrier management Clean energy Energy conversion efficiency Energy gap Limiting factors Material properties MATERIALS SCIENCE Open-circuit voltage deficit Photovoltaic cells Photovoltaics Sb2Se3 Selenide Selenides Solar cells SOLAR ENERGY Thin films Thin-film solar cells Titanium dioxide Zinc oxide |
Title | A review of Sb2Se3 photovoltaic absorber materials and thin-film solar cells |
URI | https://dx.doi.org/10.1016/j.solener.2020.03.009 https://cir.nii.ac.jp/crid/1872272492633937152 https://www.proquest.com/docview/2437434388 https://www.osti.gov/servlets/purl/1606129 |
Volume | 201 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYoXNoDoqWoWx7yodewjh07znGFQEtbcQGkvVl-RQQtyWo3vfa3dyYPHkIIqZcoiTSWNTP-PJPMfCbkh-QsCqkgO3FdSw7EcNqmaeJEiKrMC2l9x_Z5pea32c-FXGyRs7EXBssqB-zvMb1D6-HNdNDmdFVV2OMrNCv4goOfwr7UdbBnOXr56d_HMo8UsLfnzRT4m58vnrp4pveQxC6R3BnSRM56rtPirf3pQ11VANsNLLxXsN3tRRd7ZHcIIumsn-dnshXrL-TTM2rBffJ7RvuuFNqU9Nrx6yjo6q5pG4Cj1laeWrdp1i6uKYSsvRdSWwfa3lV1UlbLB7rBpJfih_3NV3J7cX5zNk-GkxMSL5lqE6d8GWxWiOC0c6zkoSh9wX3wNqo8RlcyGUKqdJprpm3OeeqjDBDduGgzGcUB2a6bOn4jFCIgFXkQFjNHkQkrVID7yEIshZB2QrJRX8YPtOJ4usXSjPVj92ZQs0E1GyYMqHlCTh_FVj2vxnsCejSGeeEgBrD_PdFjMB7MDq_gDpznHU-i6MgAJZ-QQzQrDovEuR4rjGDcVGH4B9JHo7XNsL43BmkcURtaf___eR2Sj_jUl08eke12_SceQ4jTupPOh0_Izuzy1_zqHyNz-CY |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbacgAOiKe6fYAPcEw3sWPHOXCogGpLl17aSnszfkVNtSSrTSrEhT_FH2QmjwJCqBJSL1GUaKzom_E8lJnPhLwWLA5cSKhObDeSAzmcMkkSWe6DLLJcGNexfZ7K2UX6cSEWG-THOAuDbZWD7-99euethyfTAc3pqixxxperOGcLBnYKcSkZOitPwrevULc1b4_fg5LfMHb04fzdLBqOFoiciGUbWekKb9Kce6usjQvm88LlzHlngsxCsEUsvE-kSjIVK5MxlrggPIR_G0wqAod1N8m9FNwFHptw8P2mryQBZ98TdXLsK2CLX2ND0yuompfIJg11KYt7ctX8XwFxsypLiBM17PS_4kQX_I4ek0dD1koPe2CekI1QPSUPf-MyfEbmh7Qfg6F1Qc8sOwucri7rtgb_15rSUWObem3DmkKO3Js9NZWn7WVZRUW5_EIbrLIp_klonpOLO8HzBdmq6ipsEwoplwzMc4OlKk-54dLDfYh9KDgXZkLSES_tBh5zPE5jqceGtSs9wKwRZh1zDTBPyMGN2Kon8rhNQI3K0H9YpIZgc5voPigPvg6vYA6MZR0xI-_YBwWbkF1UKy6LTL0OW5pg3URivgnSe6O29eBQGo28kYiGUjv__12vyP3Z-ae5nh-fnuySB_im793cI1vt-jrsQ37V2pedPVPy-a430E_ZdDaX |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+review+of+Sb2Se3+photovoltaic+absorber+materials+and+thin-film+solar+cells&rft.jtitle=Solar+energy&rft.au=Mavlonov%2C+Abdurashid&rft.au=Razykov%2C+Takhir&rft.au=Raziq%2C+Fazal&rft.au=Gan%2C+Jiantuo&rft.date=2020-05-01&rft.issn=0038-092X&rft.volume=201&rft.spage=227&rft.epage=246&rft_id=info:doi/10.1016%2Fj.solener.2020.03.009&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_solener_2020_03_009 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-092X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-092X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-092X&client=summon |