A review of Sb2Se3 photovoltaic absorber materials and thin-film solar cells

Energy generated from environmentally friendly, cost-effective solar cells is a key aspect for developing a clean renewable-energy economy. Non-toxic and Earth-abundant materials with high absorption coefficient (>105 cm−1) and optimal bandgap (1–1.5 eV) have received great attention as photovolt...

Full description

Saved in:
Bibliographic Details
Published inSolar Energy Vol. 201; pp. 227 - 246
Main Authors Mavlonov, Abdurashid, Razykov, Takhir, Raziq, Fazal, Gan, Jiantuo, Chantana, Jakapan, Kawano, Yu, Nishimura, Takahito, Wei, Haoming, Zakutayev, Andriy, Minemoto, Takashi, Zu, Xiaotao, Li, Sean, Qiao, Liang
Format Journal Article
LanguageEnglish
Published New York Elsevier Ltd 01.05.2020
Elsevier BV
Pergamon Press Inc
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Energy generated from environmentally friendly, cost-effective solar cells is a key aspect for developing a clean renewable-energy economy. Non-toxic and Earth-abundant materials with high absorption coefficient (>105 cm−1) and optimal bandgap (1–1.5 eV) have received great attention as photovoltaic (PV) absorber layers during the last few decades. Among them, antimony selenide (Sb2Se3) has been a promising PV absorber, with steadily increasing power-conversion efficiency (PCE) compared to other emerging compounds. Very recent studies showed that high-quality ZnO:Al/ZnO/CdS/TiO2/Sb2Se3/MoSe2/Mo devices with PCE of 9.2% can be fabricated using cost-effective novel compounds. Considering these recent advances, this article provides an overview of the material properties of Sb2Se3 thin films and the recent progress made with Sb2Se3-based solar cells. Analysis of Sb2Se3-based thin-film solar cells has also shown that the devices have relatively good light management due to their suitable bandgap and high absorption coefficient, whereas carrier management, i.e. collection efficiency of photo-generated carriers, needs significant improvement. Overall, this study provides background knowledge on material properties and device performance and suggests main research directions to overcome the limiting factors of solar cell performance.
AbstractList Energy generated from environmentally friendly, cost-effective solar cells is a key aspect for developing a clean renewable-energy economy. Non-toxic and Earth-abundant materials with high absorption coefficient (>105 cm−1) and optimal bandgap (1–1.5 eV) have received great attention as photovoltaic (PV) absorber layers during the last few decades. Among them, antimony selenide (Sb2Se3) has been a promising PV absorber, with steadily increasing power-conversion efficiency (PCE) compared to other emerging compounds. Very recent studies showed that high-quality ZnO:Al/ZnO/CdS/TiO2/Sb2Se3/MoSe2/Mo devices with PCE of 9.2% can be fabricated using cost-effective novel compounds. Considering these recent advances, this article provides an overview of the material properties of Sb2Se3 thin films and the recent progress made with Sb2Se3-based solar cells. Analysis of Sb2Se3-based thin-film solar cells has also shown that the devices have relatively good light management due to their suitable bandgap and high absorption coefficient, whereas carrier management, i.e. collection efficiency of photo-generated carriers, needs significant improvement. Overall, this study provides background knowledge on material properties and device performance and suggests main research directions to overcome the limiting factors of solar cell performance.
Energy generated from environmentally friendly, cost-effective solar cells is a key aspect for developing a clean renewable-energy economy. Non-toxic and Earth-abundant materials with high absorption coefficient (>105 cm-1) and optimal bandgap (1-1.5 eV) have received great attention as photovoltaic (PV) absorber layers during the last few decades. Among them, antimony selenide (Sb2Se3) has been a promising PV absorber, with steadily increasing power-conversion efficiency (PCE) compared to other emerging compounds. Very recent studies showed that high-quality ZnO:Al/ZnO/CdS/TiO2/Sb2Se3/MoSe2/Mo devices with PCE of 9.2% can be fabricated using cost-effective novel compounds. Considering these recent advances, this article provides an overview of the material properties of Sb2Se3 thin films and the recent progress made with Sb2Se3-based solar cells. Furthermore, analysis of Sb2Se3-based thin-film solar cells has also shown that the devices have relatively good light management due to their suitable bandgap and high absorption coefficient, whereas carrier management, i.e. collection efficiency of photo-generated carriers, needs significant improvement. Overall, this study provides background knowledge on material properties and device performance and suggests main research directions to overcome the limiting factors of solar cell performance.
Author Mavlonov, Abdurashid
Minemoto, Takashi
Razykov, Takhir
Zu, Xiaotao
Wei, Haoming
Nishimura, Takahito
Chantana, Jakapan
Kawano, Yu
Gan, Jiantuo
Zakutayev, Andriy
Li, Sean
Raziq, Fazal
Qiao, Liang
Author_xml – sequence: 1
  givenname: Abdurashid
  orcidid: 0000-0001-7486-6382
  surname: Mavlonov
  fullname: Mavlonov, Abdurashid
  email: mavlonov@uestc.edu.cn
  organization: School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China
– sequence: 2
  givenname: Takhir
  surname: Razykov
  fullname: Razykov, Takhir
  organization: Physical-Technical Institute, Uzbekistan Academy of Sciences, Bodomzor Yoli 2“B”, Tashkent 100084, Uzbekistan
– sequence: 3
  givenname: Fazal
  surname: Raziq
  fullname: Raziq, Fazal
  organization: School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China
– sequence: 4
  givenname: Jiantuo
  surname: Gan
  fullname: Gan, Jiantuo
  organization: School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China
– sequence: 5
  givenname: Jakapan
  orcidid: 0000-0001-9062-0577
  surname: Chantana
  fullname: Chantana, Jakapan
  organization: Department of Electrical and Electronic Engineering, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
– sequence: 6
  givenname: Yu
  orcidid: 0000-0002-5711-4979
  surname: Kawano
  fullname: Kawano, Yu
  organization: Department of Electrical and Electronic Engineering, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
– sequence: 7
  givenname: Takahito
  orcidid: 0000-0002-3054-5525
  surname: Nishimura
  fullname: Nishimura, Takahito
  organization: Ritsumeikan Global Innovation Research Organization, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
– sequence: 8
  givenname: Haoming
  surname: Wei
  fullname: Wei, Haoming
  organization: School of Physics and Physical Engineering, Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, Qufu Normal University, Qufu 273165, China
– sequence: 9
  givenname: Andriy
  orcidid: 0000-0002-3343-7538
  surname: Zakutayev
  fullname: Zakutayev, Andriy
  email: andriy.zakutayev@nrel.gov
  organization: National Renewable Energy Laboratory, Golden, CO 80401, USA
– sequence: 10
  givenname: Takashi
  surname: Minemoto
  fullname: Minemoto, Takashi
  organization: Department of Electrical and Electronic Engineering, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
– sequence: 11
  givenname: Xiaotao
  surname: Zu
  fullname: Zu, Xiaotao
  organization: School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China
– sequence: 12
  givenname: Sean
  surname: Li
  fullname: Li, Sean
  organization: School of Materials, University of New South Wales, Sydney 2052, NSW, Australia
– sequence: 13
  givenname: Liang
  surname: Qiao
  fullname: Qiao, Liang
  email: liang.qiao@uestc.edu.cn
  organization: School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China
BackLink https://cir.nii.ac.jp/crid/1872272492633937152$$DView record in CiNii
https://www.osti.gov/servlets/purl/1606129$$D View this record in Osti.gov
BookMark eNqFkU9r3DAQxUVJoZu0H6Egml7tjiRbsumhhNB_sNBDWuhNyNKY1eKVtpKS0m9fGeeUSy4zl9-bN_PmklyEGJCQtwxaBkx-OLY5LhgwtRw4tCBagPEF2bFOsYbxXl2QHYAYGhj571fkMucjAFNsUDuyv6EJHzz-pXGmdxO_Q0HPh1jiQ1yK8ZaaKcc0YaInUzB5s2RqgqPl4EMz--VEq7dJ1OKy5Nfk5VwBfPPYr8ivL59_3n5r9j--fr-92Te2B1maSdrZmW4UbhqmCWbuxtmO3DprUCrEaYbeOSYHpgYYjOKcWeydZP2EputRXJF329yYi9fZ-oL2YGMIaItmEiTjY4WuN-ic4p97zEUf430KdS_NO6E60YlhqNTHjbIp5pxw1nWaKT6GkoxfNAO9ZqyP-jFjvWasQeiacVX3T9Tn5E8m_XtW937TBe-r4VrrNzhXvBu5FGIUivW8Yp82DGuY9UlpvRWDRefTeqqL_hmj_xaDpgA
CitedBy_id crossref_primary_10_1016_j_optlastec_2023_110107
crossref_primary_10_1002_adfm_202100265
crossref_primary_10_1016_j_jallcom_2021_160523
crossref_primary_10_1007_s11837_022_05219_x
crossref_primary_10_1016_j_heliyon_2022_e09120
crossref_primary_10_1016_j_jqsrt_2023_108508
crossref_primary_10_3390_nano12111903
crossref_primary_10_3390_su132112320
crossref_primary_10_1016_j_solener_2020_10_019
crossref_primary_10_1039_D3NR04623K
crossref_primary_10_1039_D3MA00479A
crossref_primary_10_1088_1402_4896_ad1669
crossref_primary_10_1016_j_matlet_2023_135806
crossref_primary_10_1140_epjp_s13360_024_05391_w
crossref_primary_10_1002_ente_202400006
crossref_primary_10_1039_D1CP05373F
crossref_primary_10_1016_j_ccr_2022_214968
crossref_primary_10_1007_s00339_024_07737_8
crossref_primary_10_1002_adts_202300594
crossref_primary_10_1140_epjp_s13360_023_04739_y
crossref_primary_10_1007_s40843_022_2066_5
crossref_primary_10_1016_j_mtcomm_2025_111517
crossref_primary_10_15251_CL_2024_214_305
crossref_primary_10_1016_j_mtcomm_2024_109041
crossref_primary_10_1016_j_matpr_2022_04_289
crossref_primary_10_1016_j_solener_2022_06_042
crossref_primary_10_1002_sia_7017
crossref_primary_10_1002_pssb_202300087
crossref_primary_10_1016_j_solener_2020_10_001
crossref_primary_10_1016_j_enmm_2022_100711
crossref_primary_10_1016_j_solener_2025_113377
crossref_primary_10_1002_tcr_202300285
crossref_primary_10_1021_acsami_1c13223
crossref_primary_10_1039_D5TA00683J
crossref_primary_10_1002_advs_202105142
crossref_primary_10_1016_j_ceramint_2022_02_262
crossref_primary_10_2139_ssrn_4102865
crossref_primary_10_1016_j_solener_2023_111990
crossref_primary_10_1016_j_solener_2022_11_049
crossref_primary_10_1021_acsaem_1c02301
crossref_primary_10_1021_acssuschemeng_3c06210
crossref_primary_10_1016_j_jsamd_2023_100533
crossref_primary_10_1142_S1793604724510512
crossref_primary_10_1016_j_jechem_2022_02_013
crossref_primary_10_1002_solr_202400151
crossref_primary_10_1007_s11082_025_08088_1
crossref_primary_10_1002_solr_202100419
crossref_primary_10_1021_acsaem_1c03055
crossref_primary_10_1002_ange_202206816
crossref_primary_10_1021_acsaelm_0c01035
crossref_primary_10_1016_j_solmat_2020_110724
crossref_primary_10_1021_acsaem_1c01300
crossref_primary_10_1039_D2CC04810H
crossref_primary_10_1016_j_mtener_2023_101288
crossref_primary_10_1021_acs_chemmater_1c00741
crossref_primary_10_1016_j_vacuum_2024_113808
crossref_primary_10_1016_j_jallcom_2025_179841
crossref_primary_10_1021_acs_chemrev_2c00346
crossref_primary_10_1021_acsomega_2c07211
crossref_primary_10_1002_advs_202102530
crossref_primary_10_1088_2516_1083_ac9eff
crossref_primary_10_1002_solr_202300436
crossref_primary_10_1088_2515_7655_ac91a6
crossref_primary_10_1016_j_mssp_2023_107430
crossref_primary_10_1016_j_tsf_2024_140554
crossref_primary_10_1039_D3QM00333G
crossref_primary_10_1021_acs_jpcc_4c06007
crossref_primary_10_1088_1402_4896_ad155e
crossref_primary_10_1039_D1TC01433A
crossref_primary_10_3103_S0003701X23601515
crossref_primary_10_1016_j_solmat_2022_112150
crossref_primary_10_1016_j_solener_2021_11_009
crossref_primary_10_1039_D3TA03179A
crossref_primary_10_1038_s41598_022_18579_w
crossref_primary_10_1002_smll_202102429
crossref_primary_10_1016_j_ceramint_2024_01_129
crossref_primary_10_7498_aps_70_20202016
crossref_primary_10_1039_D4NJ03041A
crossref_primary_10_1002_smll_202310584
crossref_primary_10_1088_1674_1056_ac4022
crossref_primary_10_1063_5_0008879
crossref_primary_10_1002_solr_202100911
crossref_primary_10_1016_j_tsf_2025_140660
crossref_primary_10_1016_j_cej_2022_137161
crossref_primary_10_1016_j_solener_2020_08_004
crossref_primary_10_1002_er_7276
crossref_primary_10_1016_j_inoche_2021_108787
crossref_primary_10_3390_coatings13020338
crossref_primary_10_1364_OME_504959
crossref_primary_10_1016_j_apcatb_2021_120568
crossref_primary_10_1002_smll_202302721
crossref_primary_10_1002_adfm_202420261
crossref_primary_10_1002_solr_202200094
crossref_primary_10_1039_D1RA04997F
crossref_primary_10_1140_epjp_s13360_022_02804_6
crossref_primary_10_1002_solr_202300417
crossref_primary_10_3390_nano12142506
crossref_primary_10_1007_s10854_022_08483_4
crossref_primary_10_1016_j_solmat_2023_112430
crossref_primary_10_1039_D4SE00602J
crossref_primary_10_1002_solr_202000220
crossref_primary_10_1088_2631_8695_ac2353
crossref_primary_10_1002_app_51310
crossref_primary_10_1021_acscatal_4c01762
crossref_primary_10_1016_j_ijleo_2023_170594
crossref_primary_10_1016_j_tsf_2023_139844
crossref_primary_10_1021_acsami_3c17115
crossref_primary_10_1002_adma_202404826
crossref_primary_10_1002_ente_202300333
crossref_primary_10_1016_j_joule_2024_05_004
crossref_primary_10_1016_j_surfin_2024_104793
crossref_primary_10_1016_j_cej_2024_149526
crossref_primary_10_1016_j_solmat_2024_112828
crossref_primary_10_3390_en16196862
crossref_primary_10_1007_s12598_022_01969_4
crossref_primary_10_1109_JPHOT_2024_3508052
crossref_primary_10_1002_nano_202000288
crossref_primary_10_26565_2312_4334_2024_1_36
crossref_primary_10_3390_app15062930
crossref_primary_10_1109_TDMR_2024_3405659
crossref_primary_10_1051_epjconf_202431000007
crossref_primary_10_1016_j_mseb_2024_117319
crossref_primary_10_1002_advs_202100552
crossref_primary_10_1016_j_colsurfa_2023_131889
crossref_primary_10_1016_j_optmat_2023_113668
crossref_primary_10_1080_15435075_2021_1954008
crossref_primary_10_3390_ijms232415529
crossref_primary_10_1016_j_inoche_2024_113773
crossref_primary_10_1051_epjconf_202226800006
crossref_primary_10_26599_EMD_2024_9370027
crossref_primary_10_1039_D2TA00893A
crossref_primary_10_1021_acsaem_1c04078
crossref_primary_10_1007_s42247_020_00146_6
crossref_primary_10_1007_s11468_023_01932_8
crossref_primary_10_1002_smll_202311644
crossref_primary_10_1039_D1TA07207B
crossref_primary_10_1039_D4EE02877E
crossref_primary_10_1038_s41598_021_89944_4
crossref_primary_10_1016_j_physb_2024_416058
crossref_primary_10_1016_j_solmat_2021_111520
crossref_primary_10_1016_j_physb_2023_415221
crossref_primary_10_1021_acsami_1c20764
crossref_primary_10_1088_2515_7655_ac8578
crossref_primary_10_3390_cryst12111509
crossref_primary_10_1007_s00339_021_05201_5
crossref_primary_10_1016_j_optlastec_2022_108942
crossref_primary_10_1021_acs_chemmater_2c01550
crossref_primary_10_1021_acs_jpcc_2c00336
crossref_primary_10_3390_nano13142106
crossref_primary_10_1016_j_solener_2021_10_012
crossref_primary_10_1016_j_solener_2024_112950
crossref_primary_10_1021_acsenergylett_0c00940
crossref_primary_10_1016_j_electacta_2021_138290
crossref_primary_10_1039_D4TA08978B
crossref_primary_10_1021_acs_jpclett_4c02414
crossref_primary_10_1140_epjb_s10051_022_00381_2
crossref_primary_10_1140_epjp_s13360_022_03291_5
crossref_primary_10_1039_D0TA03160G
crossref_primary_10_1016_j_jmst_2021_05_083
crossref_primary_10_1007_s12200_020_1050_y
crossref_primary_10_1021_acs_jpclett_2c02226
crossref_primary_10_1007_s10825_020_01595_2
crossref_primary_10_1002_anie_202206816
crossref_primary_10_1021_acsaem_3c01584
crossref_primary_10_1002_apxr_202400080
crossref_primary_10_1002_aenm_202003569
crossref_primary_10_1016_j_solmat_2020_110919
crossref_primary_10_1039_D3TA00554B
crossref_primary_10_3390_ma15186272
crossref_primary_10_1007_s11082_024_07498_x
crossref_primary_10_1016_j_solener_2021_11_070
crossref_primary_10_1016_j_solener_2022_04_011
crossref_primary_10_1002_admt_202301281
crossref_primary_10_1016_j_solener_2024_112945
crossref_primary_10_1063_5_0214349
crossref_primary_10_1007_s00339_024_07478_8
crossref_primary_10_1021_acs_jpclett_2c03308
crossref_primary_10_1016_j_solmat_2024_112891
crossref_primary_10_1016_j_apsusc_2021_150859
crossref_primary_10_1016_j_matchemphys_2024_129571
crossref_primary_10_3390_nano13152257
crossref_primary_10_1007_s10854_022_09763_9
crossref_primary_10_1007_s10853_023_08593_2
crossref_primary_10_1016_j_jpcs_2024_112370
crossref_primary_10_1016_j_sna_2022_113750
crossref_primary_10_1088_1674_4926_42_3_031701
crossref_primary_10_1021_acsami_5c00008
crossref_primary_10_1088_1361_6463_ac0eb5
crossref_primary_10_1021_acsaem_2c02131
crossref_primary_10_1021_acsami_3c10868
crossref_primary_10_1515_nanoph_2023_0725
crossref_primary_10_1002_adts_202200438
crossref_primary_10_1016_j_jcis_2022_08_072
crossref_primary_10_1016_j_optmat_2021_111098
crossref_primary_10_1016_j_jallcom_2024_173500
crossref_primary_10_3103_S0003701X23600959
crossref_primary_10_1007_s11664_023_10858_0
crossref_primary_10_1016_j_solmat_2023_112464
crossref_primary_10_1016_j_optmat_2021_111659
crossref_primary_10_1002_jccs_202100207
crossref_primary_10_3390_su14116780
crossref_primary_10_1039_D4TA00133H
crossref_primary_10_1002_pssb_202000630
crossref_primary_10_1016_j_matchemphys_2024_129344
crossref_primary_10_3390_solar3040031
crossref_primary_10_1016_j_solmat_2024_112757
crossref_primary_10_1016_S1872_5805_23_60785_1
crossref_primary_10_1021_acsaem_4c02205
crossref_primary_10_1016_j_mssp_2024_109193
crossref_primary_10_1063_5_0095547
crossref_primary_10_1016_j_ijleo_2024_171723
crossref_primary_10_15251_CL_2024_2110_819
crossref_primary_10_1002_advs_202100868
crossref_primary_10_1039_D4TA07389D
crossref_primary_10_1016_j_apcatb_2022_121149
crossref_primary_10_1038_s41598_023_49269_w
crossref_primary_10_1002_solr_202400499
crossref_primary_10_1016_j_ccr_2023_215466
crossref_primary_10_1016_j_solener_2022_01_010
crossref_primary_10_1002_admi_202200448
crossref_primary_10_1021_acsami_0c14256
crossref_primary_10_1088_2053_1591_ad371a
crossref_primary_10_1007_s40042_022_00521_y
crossref_primary_10_1063_5_0032867
crossref_primary_10_1002_solr_202100517
crossref_primary_10_1016_j_solener_2020_06_114
crossref_primary_10_3103_S0003701X22040132
crossref_primary_10_1016_j_solener_2025_113324
crossref_primary_10_1021_acs_langmuir_0c03653
crossref_primary_10_1039_D2YA00232A
crossref_primary_10_1557_s43580_021_00115_z
crossref_primary_10_1016_j_apsusc_2020_148726
crossref_primary_10_1007_s11082_024_07997_x
crossref_primary_10_1088_2631_8695_ada0a9
crossref_primary_10_1109_ACCESS_2024_3472843
crossref_primary_10_3390_nano13111756
crossref_primary_10_1016_j_jallcom_2022_168284
crossref_primary_10_1016_j_isci_2021_103594
crossref_primary_10_1039_D3CP04490D
crossref_primary_10_1002_solr_202200235
crossref_primary_10_1016_j_rinp_2020_103647
crossref_primary_10_1016_j_solener_2022_07_035
crossref_primary_10_1016_j_solener_2023_03_010
crossref_primary_10_1002_adom_202100107
crossref_primary_10_1016_j_fuproc_2022_107427
crossref_primary_10_1007_s10854_022_08163_3
crossref_primary_10_1016_j_optcom_2024_130410
crossref_primary_10_1002_adma_202108261
crossref_primary_10_1088_1361_6641_abc7d0
crossref_primary_10_1007_s11082_022_04246_x
crossref_primary_10_1016_j_cap_2022_12_011
crossref_primary_10_3390_en16237722
crossref_primary_10_1016_j_solmat_2021_111223
crossref_primary_10_1021_acsaem_1c01777
crossref_primary_10_1021_acsami_0c21365
crossref_primary_10_1364_OME_456428
crossref_primary_10_1016_j_solmat_2023_112399
crossref_primary_10_1002_adom_202202625
crossref_primary_10_1140_epjp_s13360_023_04407_1
crossref_primary_10_1016_j_heliyon_2022_e12043
crossref_primary_10_1016_j_apmt_2024_102338
crossref_primary_10_1016_j_solener_2022_07_047
crossref_primary_10_1140_epjp_s13360_024_05079_1
crossref_primary_10_1016_j_renene_2022_10_068
crossref_primary_10_1021_acs_chemmater_3c02114
crossref_primary_10_1016_j_jpowsour_2020_228835
crossref_primary_10_1016_j_solener_2020_10_077
crossref_primary_10_1002_solr_202200265
crossref_primary_10_1021_jacs_1c03032
crossref_primary_10_1088_1361_648X_ac3db3
crossref_primary_10_1021_acs_jpclett_4c00257
crossref_primary_10_1039_D4NR03880K
crossref_primary_10_1002_adfm_202423909
crossref_primary_10_1002_smll_202408978
crossref_primary_10_26565_2312_4334_2024_4_29
crossref_primary_10_1002_adfm_202112184
crossref_primary_10_1088_1402_4896_ad4751
crossref_primary_10_1002_ente_202401475
crossref_primary_10_1002_adfm_202316292
crossref_primary_10_1007_s11051_024_06085_1
crossref_primary_10_1016_j_solener_2021_09_025
crossref_primary_10_1021_acsaem_2c00420
crossref_primary_10_1016_j_jallcom_2022_165201
crossref_primary_10_1007_s10854_022_09296_1
crossref_primary_10_1021_acsaem_1c03023
crossref_primary_10_1016_j_cej_2022_135971
crossref_primary_10_1016_j_apsusc_2021_151640
crossref_primary_10_1016_j_solmat_2024_112796
crossref_primary_10_1007_s00339_023_06656_4
crossref_primary_10_1016_j_physb_2024_416214
crossref_primary_10_3390_en17020406
crossref_primary_10_1016_j_solmat_2023_112492
crossref_primary_10_1016_j_fuproc_2022_107451
crossref_primary_10_1016_j_jpcs_2023_111353
crossref_primary_10_3103_S0003701X22010157
crossref_primary_10_1088_2515_7655_acf688
crossref_primary_10_1002_smtd_202300728
crossref_primary_10_1039_D2TA01465C
Cites_doi 10.1039/C6CC06475B
10.1002/solr.201800144
10.1063/1.1702619
10.1039/c0ce00381f
10.1063/1.4894170
10.1021/acs.chemmater.9b02085
10.1016/j.solidstatesciences.2012.06.003
10.1007/s11664-003-0065-7
10.1039/C8TC01683F
10.26577/RCPh-2019-1-1093
10.1016/S0254-0584(01)00350-9
10.1186/s40064-016-2256-8
10.1023/B:INTS.0000028655.11608.c7
10.1007/BF02708491
10.1039/C6TA09602F
10.1016/j.enconman.2014.03.020
10.1016/j.matlet.2018.10.173
10.1016/j.apcatb.2018.06.009
10.1016/j.nanoen.2019.103929
10.1002/aelm.201700329
10.1016/j.solener.2018.12.023
10.1002/pssr.201600199
10.1016/j.materresbull.2017.11.014
10.1134/S1063782617120107
10.1038/srep22109
10.1103/PhysRevApplied.4.044017
10.1016/j.solener.2018.03.081
10.1063/1.3653616
10.1016/j.joule.2018.04.003
10.1016/S1452-3981(23)13140-3
10.1016/j.egypro.2015.07.368
10.1039/C5SC00825E
10.1088/0268-1242/31/6/063001
10.1016/0042-207X(93)90358-H
10.1002/adfm.201304238
10.1116/1.571928
10.1063/1.4864415
10.1016/j.solener.2018.01.018
10.1016/j.solmat.2019.110157
10.1016/j.solener.2016.08.020
10.1016/j.tsf.2006.12.071
10.1016/j.cap.2018.02.008
10.1063/1.4932544
10.1016/j.solmat.2011.06.026
10.1002/adma.201306281
10.1016/0022-3697(57)90090-2
10.1038/s41598-017-03281-z
10.1016/j.solmat.2017.07.014
10.1007/s00269-005-0470-y
10.1039/C6TA10543B
10.1002/pip.2911
10.1016/j.solmat.2016.02.013
10.1002/pip.2952
10.1007/s10008-017-3768-z
10.1063/1.4953435
10.1007/s00269-001-0227-1
10.1039/C3TC31883D
10.1016/j.solener.2018.02.038
10.1557/mrc.2018.94
10.1016/j.solmat.2017.07.004
10.1016/j.solmat.2018.08.003
10.1016/0165-1633(82)90037-5
10.1016/S0921-4526(96)00850-2
10.1038/nenergy.2016.35
10.1016/j.cogsc.2017.01.002
10.1007/s40243-015-0058-5
10.1016/j.nanoen.2018.01.047
10.1002/aenm.201501203
10.1002/pip.2978
10.1039/C6RA04834J
10.1109/PVSC.2018.8547653
10.1002/aenm.201600457
10.1016/j.joule.2019.02.010
10.1021/acsenergylett.8b02323
10.1038/nenergy.2016.15
10.1016/j.apsusc.2018.04.152
10.1016/S0022-0248(98)00503-X
10.1016/j.solmat.2017.09.008
10.1016/j.solmat.2018.10.006
10.1002/aenm.201601935
10.1039/c0ee00488j
10.1016/j.solmat.2016.11.033
10.1007/s11467-018-0790-2
10.1039/C9TA02022E
10.1002/adma.201806164
10.1002/pssb.201046225
10.1002/adfm.201101103
10.1002/cplx.20306
10.1002/pip.2900
10.1007/s10853-012-6385-3
10.1021/nl1020848
10.1007/s12200-017-0702-z
10.1021/am405416a
10.1016/j.solmat.2018.06.022
10.1109/PVSC.2017.8366746
10.1016/0022-3093(73)90002-1
10.1063/1.4874878
10.1126/science.aad4424
10.1039/C5TA09640E
10.1016/j.surfcoat.2018.12.102
10.1016/j.tsf.2003.10.137
10.1016/j.solmat.2018.08.006
10.1016/j.solener.2016.06.067
10.1016/j.electacta.2009.10.046
10.1039/C5TC01364J
10.1155/2012/983150
10.7567/JJAP.54.042302
10.1021/acsenergylett.8b01456
10.1016/S0927-0248(00)00266-X
10.1016/j.physb.2011.07.005
10.1016/j.solmat.2018.09.020
10.1016/j.jelechem.2012.02.018
10.1126/science.aad5845
10.1016/S0254-0584(99)00173-X
10.1063/1.1736034
10.1002/pssb.2220540215
10.1149/1.3089358
10.7567/JJAP.54.032301
10.1016/j.pmatsci.2016.03.005
10.1126/science.aah5557
10.1016/j.solmat.2017.04.040
10.1016/j.solmat.2017.09.035
10.3390/en9040254
10.1039/c4cp00614c
10.1016/0022-3093(72)90266-9
10.1038/s41467-018-04634-6
10.1016/j.solener.2019.04.029
10.1016/j.jallcom.2017.12.039
10.1016/S0927-0248(02)00120-4
10.1002/aenm.201700866
10.1103/PhysRevLett.29.485
10.1155/2013/739078
10.1016/j.matchemphys.2012.06.024
10.1016/j.solmat.2014.01.047
10.1016/j.rser.2014.11.101
10.1016/j.solmat.2016.10.042
10.1016/j.pmatsci.2017.02.003
10.1039/C6SE00076B
10.1016/S0040-6090(97)00415-X
10.1016/j.solener.2016.02.015
10.1016/S0022-3697(74)80175-7
10.1016/j.pmatsci.2018.03.004
10.1063/1.1525866
10.1016/j.solmat.2004.08.017
10.1016/S0022-3093(00)00156-3
10.1021/nl101284k
10.1016/j.jallcom.2015.01.205
10.1063/1.1366655
10.1021/am502427s
10.1016/0079-6425(91)90001-A
10.1002/solr.201800208
10.1016/j.solmat.2014.04.027
10.1016/j.tsf.2006.10.012
10.1016/j.solmat.2014.10.036
10.1038/nphoton.2012.11
10.1039/C6RA20690E
10.1016/j.physb.2008.11.086
10.1016/j.electacta.2011.07.042
10.1002/pssa.200306691
10.1002/pip.823
10.1021/acsenergylett.7b00648
10.1103/PhysRevB.9.4392
10.1016/j.tsf.2010.12.117
10.1002/pip.2879
10.1007/BF01597220
10.1038/nenergy.2017.46
10.1016/j.cap.2017.10.009
10.1016/j.solener.2019.09.069
10.1088/1757-899X/271/1/012063
10.1002/solr.201900026
10.1016/j.solmat.2016.12.044
10.1016/S0254-0584(99)00160-1
10.1016/j.apmt.2018.05.003
10.1002/adfm.201606242
10.1088/0022-3727/28/4/022
10.7567/APEX.8.082301
10.1016/j.solener.2019.02.050
10.1016/j.apsusc.2012.08.046
10.1016/j.jechem.2017.09.031
10.1002/pssa.201532217
10.1063/1.4927741
10.1088/0022-3727/33/4/201
10.1002/celc.201700511
10.1016/j.pmatsci.2013.12.003
10.1038/nphoton.2015.85
10.1016/j.ijleo.2016.06.109
10.1088/0022-3727/43/21/215403
10.1186/1556-276X-8-141
10.1002/adma.200803436
10.1021/acsami.8b01247
10.1016/j.solener.2017.11.053
10.1016/S0040-6090(00)00716-1
10.1002/aenm.201301680
10.1016/j.tsf.2017.06.044
10.1107/S1600576719001006
10.1016/j.tsf.2005.07.238
10.1016/j.solmat.2018.09.004
10.7567/APEX.9.052302
10.1038/nphoton.2015.78
10.1039/C7EE00826K
10.1016/j.solener.2018.07.082
10.1002/aenm.201200538
10.1016/j.colsurfa.2011.09.018
10.1016/j.ijleo.2013.10.114
10.1002/pip.2627
10.1016/0022-3093(81)90119-8
10.1063/1.4991539
10.1016/j.nanoen.2018.04.044
10.1002/pip.2239
10.1016/j.pmatsci.2018.02.007
10.1021/acs.chemmater.5b03614
10.1002/aenm.201301846
10.1107/S0365110X57000298
10.1002/ange.201308331
10.1063/1.4971388
ContentType Journal Article
Copyright 2020 International Solar Energy Society
Copyright Pergamon Press Inc. May 1, 2020
Copyright_xml – notice: 2020 International Solar Energy Society
– notice: Copyright Pergamon Press Inc. May 1, 2020
CorporateAuthor National Renewable Energy Lab. (NREL), Golden, CO (United States)
CorporateAuthor_xml – name: National Renewable Energy Lab. (NREL), Golden, CO (United States)
DBID RYH
AAYXX
CITATION
7SP
7ST
8FD
C1K
FR3
KR7
L7M
SOI
OIOZB
OTOTI
DOI 10.1016/j.solener.2020.03.009
DatabaseName CiNii Complete
CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Electronics & Communications Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
DatabaseTitleList
Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1471-1257
EndPage 246
ExternalDocumentID 1606129
10_1016_j_solener_2020_03_009
S0038092X20302401
GroupedDBID --K
--M
-ET
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AATTM
AAXKI
AAXUO
ABJNI
ABMAC
ABXRA
ACDAQ
ACGFS
ACGOD
ACIWK
ACRLP
ADBBV
ADEZE
ADHUB
AEBSH
AEIPS
AEKER
AENEX
AEZYN
AFRAH
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AXJTR
BELTK
BKOJK
BKOMP
BLXMC
BNPGV
CS3
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
H~9
IHE
J1W
JARJE
KOM
LY6
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
RXW
SDF
SDG
SDP
SES
SPC
SPCBC
SSH
SSM
SSR
SSZ
T5K
TAE
TN5
WH7
XPP
YNT
ZMT
~02
~G-
~KM
~S-
AAYWO
ACVFH
ADCNI
AEUPX
AFPUW
AFXIZ
AGCQF
AGRNS
AIIUN
AKBMS
AKYEP
APXCP
RYH
6TJ
AAQXK
AAYXX
ABDPE
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AFJKZ
AGQPQ
AIGII
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
NEJ
R2-
RIG
SAC
SEW
UKR
VOH
WUQ
XOL
ZY4
~A~
7SP
7ST
8FD
C1K
EFKBS
FR3
KR7
L7M
SOI
AAIAV
AALMO
ABPIF
ABPTK
ABYKQ
AFKWA
AJOXV
AMFUW
OIOZB
OTOTI
PQEST
TAF
ID FETCH-LOGICAL-c506t-b6cfda493db8bb0f2d9fc92cdcae67eebf05dd16817808a7221ce5d615bea45e3
IEDL.DBID .~1
ISSN 0038-092X
IngestDate Thu May 18 22:27:26 EDT 2023
Fri Jul 25 06:15:59 EDT 2025
Thu Apr 24 23:01:43 EDT 2025
Tue Jul 01 00:39:35 EDT 2025
Thu Jun 26 22:19:16 EDT 2025
Sun Apr 06 06:53:19 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Thin-film solar cells
Sb2Se3
Open-circuit voltage deficit
Carrier management
Photovoltaics
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c506t-b6cfda493db8bb0f2d9fc92cdcae67eebf05dd16817808a7221ce5d615bea45e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
NREL/JA-5K00-76203
AC36-08GO28308; 21850410460; 11774044; U1630126; F3-003
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Fuel Cell Technologies Program
NSAF Joint Foundation of China
Basic Research Foundation of the Uzbekistan Academy of Sciences
USDOE
National Natural Science Foundation of China (NNSFC)
ORCID 0000-0002-3054-5525
0000-0002-5711-4979
0000-0002-3343-7538
0000-0001-7486-6382
0000-0001-9062-0577
0000-0003-4800-0758
0000-0001-5764-8631
0000-0003-2400-2986
0000000174866382
0000000257114979
0000000230545525
0000000233437538
0000000190620577
OpenAccessLink https://www.osti.gov/servlets/purl/1606129
PQID 2437434388
PQPubID 9393
PageCount 20
ParticipantIDs osti_scitechconnect_1606129
proquest_journals_2437434388
crossref_citationtrail_10_1016_j_solener_2020_03_009
crossref_primary_10_1016_j_solener_2020_03_009
nii_cinii_1872272492633937152
elsevier_sciencedirect_doi_10_1016_j_solener_2020_03_009
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-05-01
2020-05-00
20200501
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Solar Energy
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier BV
Pergamon Press Inc
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
– name: Pergamon Press Inc
– name: Elsevier
References Lai, Han, Lv, Yang, Liu, Li, Liu (b0510) 2012; 671
Costa, de Souza Lucas, Mascaro (b0225) 2018; 22
Torane, Rajpure, Bhosale (b0985) 1999; 61
Zeng, Xue, Tang (b1140) 2016; 31
El-Sayad, Moustafa, Marzouk (b0255) 2009; 404
Kondrotas, R., Chen, C., Tang, J., 2018. Progress and Prospects of Sb2S3-Based Thin Film and Tandem Solar Cells. Joule.
Zhang, Kondrotas, Lu, Wang, Chen, Tang (b1145) 2019; 182
Bosio, Rosa, Menossi, Romeo (b0090) 2016; 9
Rimmaudo, Salavei, Artegiani, Menossi, Giarola, Mariotto, Gasparotto, Romeo (b0860) 2017; 162
Bhattacharya, Pramanik (b0075) 1982; 6
Hutter, O.S., Phillips, L.J., Yates, P., Major, J.D., Durose, K., 2018b. CSS Antimony Selenide Film Morphology and High Efficiency PV Devices, WCPEC-7 Conference Paper.
Leng, Luo, Chen, Qin, Chen, Zhong, Tang (b0530) 2014; 105
Butt, Li, Haq, Tariq, Aleem (b0105) 2018; 13
Bosio, Rosa, Romeo (b0095) 2018
Zardetto, Williams, Perrotta, Di Giacomo, Verheijen, Andriessen, Kessels, Creatore (b1130) 2017; 1
Sun, He, Kong, Yue, Yang, Chu (b0950) 2011; 95
Fernandez, Merino (b0275) 2000; 366
Yang, Wang, Li, Wan, Huang (b1085) 2012; 47
Li, Chen, Yan, Hao (b0570) 2015; 632
Kim, Yang, Oh, Lee, Lee, Shin, Kim, Moon (b0460) 2017; 5
Liu, Chen, Wang, Zhong, Luo, Chen, Xue, Li, Zhou, Tang (b0620) 2015; 23
Wood, Shaffer, Proctor (b1060) 1972; 29
Choi, Lee, Im, Noh, Mandal, Yang, Seok (b0210) 2014; 4
Shimakawa (b0920) 1981; 43
Yao, He (b1095) 2014; 61
Liang, Zhang, Ma, Hu, Fan, Luo, Zheng, Luo, Fan (b0600) 2017; 160
Shockley, Queisser (b0925) 1961; 32
Hurych, Davis, Buczek, Wood, Lapeyre, Baer (b0390) 1974; 9
Liang, Zheng, Fan, Luo, Hu, Zhang, Ma, Fan, Luo, Zhang (b0605) 2018; 174
Akari, Chantana, Nakatsuka, Nose, Minemoto (b0005) 2018; 174
Wen, Chen, Lu, Li, Kondrotas, Zhao, Chen, Gao, Wang, Zhang (b1045) 2018; 9
Hübler, Osuagwu (b0385) 2010; 15
Ojo, Dharmadasa (b0770) 2016; 136
Rodriguez-Lazcano, Peña, Nair, Nair (b0865) 2005; 493
Yuan, Zhang, Liu, Zhu (b1120) 2016; 137
Savory, C.N., Scanlon, D.O., 2019. The complex defect chemistry of antimony selenide. J. Mater. Chem. A.
Burst, Duenow, Albin, Colegrove, Reese, Aguiar, Jiang, Patel, Al-Jassim, Kuciauskas (b0100) 2016; 1
Cebriano, MÚndez, Piqueras (b0120) 2012; 135
Mahuli, Halder, Paul, Sarkar (b0675) 2019; 31
Chen, Zhao, Lu, Li, Li, Yang, Chen, Wang, Li, Deng (b0190) 2017; 7
Li, Chen, Zhu, Chen, Guo, Zhang, Zhang, Niu, Mai (b0585) 2017; 161
Mallick, Basak (b0680) 2018; 96
Luo, Luan, Yuan, Zhang, Jin (b0655) 2015; 75
Li, Zhu, Yang (b0550) 2012; 6
Li, Zhou, Luo, Chen, Yang, Wen, Lu, Chen, Zeng, Song (b0575) 2016; 6
Lindahl, Wätjen, Hultqvist, Ericson, Edoff, Törndahl (b0610) 2013; 21
Chantana, Kato, Sugimoto, Minemoto (b0135) 2017; 25
Chen, Li, Zhou, Chen, Luo, Liu, Zeng, Yang, Zhang, Han (b0180) 2015; 107
Shongalova, Muratov, Rakhmetov, Aimaganbetov, Zhantuarov (b0940) 2019; 68
Wang, Tang, Wu, Zhu, Chen (b1025) 2018; 27
Hu, Tao, Chen, Xue, Weng, Hu, Jiang, Chen, Zhu, Chu (b0365) 2018; 187
Shongalova, Correia, Teixeira, Leitão, González, Ranjbar, Garud, Vermang, Cunha, Salomé (b0930) 2018; 187
Li, Wang, Liu, Yang, Li, Liu, Jia, Lai, Liu (b0555) 2011; 56
Nishimura, Kim, Chantana, Kawano, Ishizuka, Minemoto (b0765) 2019; 202
Wood, Mueller, Gilbert (b1055) 1973; 12
Hamri, Bourezig, Medles, Ameri, Toumi, Ameri, Al-Douri, Voon (b0315) 2019; 178
Welch, Baranowski, Zawadzki, Lany, Wolden, Zakutayev (b1040) 2015; 8
Sajid-ur-Rehman, Butt, Li, Haq, Tariq, Aleem (b0880) 2018; 13
López-Marino, Sánchez, Espindola-Rodriguez, Alcobé, Xie, Neuschitzer, Becerril, Giraldo, Dimitrievska, Placidi (b0645) 2016; 4
Yu, Chen, Fu (b1105) 2010; 55
Chantana, Kawano, Nishimura, Kimoto, Kato, Sugimoto, Minemoto (b0155) 2019
Sankapal, Pathan, Lokhande (b0890) 2001; 8
Hu, Zhang, Patterson, Hu, Chen, Chen, Li, Hu, Ge, Chen (b0360) 2018; 46
Wu, Lee, Chiu, Chen, Chen (b1065) 2015; 3
Zhou, Wang, Chen, Qin, Liu, Chen, Xue, Luo, Cao, Cheng (b1170) 2015; 9
Wang, Tang, Yin, Ju, Zhu, Chen (b1030) 2019; 189
Fernandes, Salomé, Da Cunha (b0270) 2010; 43
Liu, Gibbs, Puthussery, Gaik, Ihly, Hillhouse, Law (b0640) 2010; 10
Poplavskyy, Nelson (b0815) 2003; 93
Tan, Tang, Zou, Long, Zhang, Ouyang, Chen (b0955) 2017; 7
Kyono, Kimata, Matsuhisa, Miyashita, Okamoto (b0495) 2002; 29
Voutsas, Papazoglou, Rentzeperis, Siapkas (b1005) 1985; 171
Al-Douri, Khasawneh, Kiwan, Hashim, Hamid, Reshak, Bouhemadou, Ameri, Khenata (b0010) 2014; 82
Versluys, Clauws, Nollet, Degrave, Burgelman (b1000) 2004; 451
Yin, Shi, Yan (b1100) 2014; 26
Kulkarni, Arote, Pathan, Patil (b0480) 2015; 4
Rajpure, Bhosale (b0820) 2000; 62
Chen, Wang, Gao, Nam, Li, Li, Zhao, Ge, Cheong, Liu (b0185) 2017; 2
Luo, Leng, Liu, Chen, Chen, Qin, Tang (b0660) 2014; 104
Furlong, Froment, Bernard, Cortes, Tiwari, Krejci, Zogg, Lincot (b0285) 1998; 193
Ishizuka, Sakurai, Yamada, Matsubara, Fons, Iwata, Nakamura, Kimura, Baba, Nakanishi (b0425) 2005; 87
Murata, Chantana, Ashida, Hironiwa, Minemoto (b0745) 2015; 54
Haque, Elumalai, Wright, Mahmud, Wang, Upama, Xu, Uddin (b0330) 2018; 99
Li, Zhu, Guo, Niu, Chen, Zhang, Zhang, Liang, Zhou, Chen (b0595) 2016; 9
Kato, T., Kitani, K., Tai, K.F., Kamada, R., Hiroi, H., Sugimoto, H., 2016. Characterization of the back contact of CIGS solar cell as the origin of rollover effect. In: 32nd European Photovoltaic Solar Energy Conference and Exhibition. pp. 1085–1088.
Alemi, Hanifehpour, Joo, Min (b0025) 2011; 406
Terheggen, Heinrich, Kostorz, Baetzner, Romeo, Tiwari (b0970) 2004; 12
Minemoto, Okamoto, Takakura (b0725) 2011; 519
Ou, Yang, Xiong, Zheng, Pan, Jin, Liu, Huang (b0775) 2017; 27
Wang, Luo, Qin, Liu, Chen, Yang, Leng, Xue, Zhou, Gao, Song, Tang (b1015) 2015; 107
Ishaq, M., Deng, H., Yuan, S., Zhang, H., Khan, J., Farooq, U., Song, H., Tang, J., 2018. Efficient Double Buffer Layer Sb2(SexS1–x)3 Thin Film Solar Cell Via Single Source Evaporation. Solar RRL, 1800144.
Minemoto, Hashimoto, Satoh, Negami, Takakura, Hamakawa (b0705) 2001; 89
Shaaban, Abdel-Rahman, Dessouky (b0905) 2007; 515
Mustafa, F.I., Gupta, S., Goyal, N., Tripathi, S., 2011. Non‐Ideal p‐n junction Diode of SbxSe1−x (x= 0.4, 0.5, 0.6, 0.7) Thin Films. In: AIP Conference Proceedings. AIP, pp. 75–76.
Choi, Lee, Noh, Kim, Seok (b0205) 2014; 24
Chen, Guo, Guo, Ma, Qiu, Yuan, Ding (b0200) 2019; 236
Chantana, Kato, Sugimoto, Minemoto (b0130) 2017; 25
Chen, S., Qiao, X., Zheng, Z., Cathelinaud, M., Ma, H., Fan, X., Zhang, X., 2018. Enhanced electrical conductivity and photoconductive properties of Sn-doped Sb2Se3 crystals. J. Mater. Chem. C.
Zakutayev (b1125) 2017; 4
Honma, Sato, Benino, Komatsu, Dimitrov (b0350) 2000; 272
Razykov, Boltaev, Bosio, Ergashev, Kouchkarov, Mamarasulov, Mavlonov, Romeo, Romeo, Tursunkulov (b0850) 2018; 159
Deringer, Stoffel, Wuttig, Dronskowski (b0235) 2015; 6
Ganose, Savory, Scanlon (b0290) 2017; 53
Shen, Ou, Huang, Zhu, Li, Li, Mai (b0915) 2018; 186
Li, Zhou, Zhu, Chen, Luo, Ma, Yang, Wang, Xia, Tang (b0580) 2016; 109
Green (b0300) 2019; 3
Chandrasekharan, Kunjomana (b0125) 2009; 33
Belas, Grill, Franc, Turjanska, Turkevych, Moravec, Höschl (b0070) 2003; 32
Choi, Mandal, Yang, Lee, Im, Noh, Seok (b0215) 2014; 126
Lawal, Shaari, Ahmed, Taura (b0520) 2018; 18
Huang, Xu, Han, Tang, Chen (b0375) 2019
Hutter, Phillips, Durose, Major (b0395) 2018; 188
Huang, Li, Chen, Xia, Huang, Dun, Li, Carroll (b0380) 2014; 127
Kazmerski, Hallerdt, Ireland, Mickelsen, Chen (b0455) 1983; 1
Patrick, Giustino (b0790) 2011; 21
Minemoto, Matsui, Takakura, Hamakawa, Negami, Hashimoto, Uenoyama, Kitagawa (b0715) 2001; 67
Phillips, L., Yates, P., Hutter, O.S., Baines, T., Bowen, L., Durose, K., Major, J.D., 2017. Close-spaced sublimation for Sb2Se3 solar cells, In: 2017 IEEE 44rd Photovoltaic Specialists Conference (PVSC).
Saliba, Matsui, Domanski, Seo, Ummadisingu, Zakeeruddin, Correa-Baena, Tress, Abate, Hagfeldt (b0885) 2016; 354
Li, Kondrotas, Chen, Lu, Wen, Li, Luo, Zhao, Tang (b0565) 2018; 167
Chantana, Suzuki, Minemoto (b0160) 2017; 168
Chen, Bobela, Yang, Lu, Zeng, Ge, Yang, Gao, Zhao, Beard (b0170) 2017; 10
Alharbi, Kais (b0040) 2015; 43
Wu, Xu, Ong, Bhatnagar, Chan (b1070) 2019; 31
Matsuo, Hironiwa, Chantana, Sakai, Kato, Sugimoto, Minemoto (b0685) 2015; 54
Hofmann (b0345) 1933; 86
Yuan, Jin, Jiang, Liu, Zhu (b1115) 2016; 27
Shaffer, Van Pelt, Wood, Freeouf, Murase, Osmun (b0910) 1972; 54
Banu, Cho, Kim, Ahn, Cho, Gwak, Cho (b0060) 2019; 189
Steinmann, Brandt, Buonassisi (b0945) 2015; 9
Hutter, O.S., Phillips, L.J., Yates, P.J., Major, J.D., Durose, K., 2018c. CSS Antimony selenide film morphology and high efficiency PV devices. In: 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC). IEEE, pp. 0027–0031.
Mohamed, Rohani (b0730) 2011; 4
Alemi, Hanifehpour, Joo, Min, Oh (b0035) 2012; 2012
Liu, Chen, Luo, Leng, Xia, Zhou, Qin, Xue, Lv, Huang (b0625) 2014; 6
El-Salam, Afifi, El-Wahabb (b0250) 1993; 44
Hanifehpour, Joo, Min (b0325) 2013; 8
Romeo, Artegiani, Menossi (b0870) 2018
Zayed, Abo-Elsoud, Ibrahim, Kenawy (b1135) 1995; 28
Green, Hishikawa, Dunlop, Levi, Hohl-Ebinger, Ho-Baillie (b0305) 2018; 26
Li, Yin, Grice, Guan, Song, Wang, Chen, Li, Cimaroli, Awni, Zhao, Song, Tang, Yan, Tang (b0535) 2018; 49
Al-Douri, Waheb, Ameri, Khenata, Bouhemadou, Reshak (b0015) 2013; 8
Kaur, Kumar, Kumar (b0450) 2017; 5
Faheem, Khan, Feng, Farooq, Raziq, Xiao, Li (b0265) 2019
Rühle (b0875) 2016; 130
Altamura, Wang, Choy (b0045) 2016; 6
Bibin, Kunjomana (b0080) 2019; 52
Jackson, Wuerz, Hariskos, Lotter, Witte, Powalla (b0430) 2016; 10
Polman, Knight, Garnett, Ehrler, Sinke (b0810) 2016; 352
Minemoto, Hashimoto, Shams-Kolahi, Satoh, Negami, Takakura, Hamakawa (b0710) 2003; 75
Park, Yang, Oh, Tan, Lee, Boppella, Moon (b0780) 2019
Wang, Li, Li, Chen, Deng, Gao, Zhao, Jiang, Li, Huang (b1010) 2017; 2
Liu, Xiao, Yang, Xue, Li, Chen, Lu, Gao, He, Beard (b0630) 2017; 25
Tang, Zheng, Su, Li, Wei, Zhang, Fu, Luo, Fan, Liang (b0965) 2019; 64
Chantana, Uegaki, Minemoto (b0165) 2017; 636
Hironiwa, Matsuo, Chantana, Sakai, Kato, Sugimoto, Minemoto (b0340) 2015; 212
Li, Liang, Li, Liu, Zhang, Guo, Chen, Shen, San, Yu (b0590) 2019; 10
Mehta, Karthik, Jiang, Singh, Shi, Siegel, Borca-Tasciuc, Raman
Mahuli (10.1016/j.solener.2020.03.009_b0675) 2019; 31
Tang (10.1016/j.solener.2020.03.009_b0965) 2019; 64
Chen (10.1016/j.solener.2020.03.009_b0200) 2019; 236
Hartnauer (10.1016/j.solener.2020.03.009_b0335) 2016; 4
Banu (10.1016/j.solener.2020.03.009_b0055) 2016; 151
Caracas (10.1016/j.solener.2020.03.009_b0115) 2005; 32
Shaaban (10.1016/j.solener.2020.03.009_b0905) 2007; 515
Kim (10.1016/j.solener.2020.03.009_b0460) 2017; 5
McMeekin (10.1016/j.solener.2020.03.009_b0690) 2016; 351
Shimakawa (10.1016/j.solener.2020.03.009_b0920) 1981; 43
Tideswell (10.1016/j.solener.2020.03.009_b0980) 1957; 10
Messina (10.1016/j.solener.2020.03.009_b0700) 2009; 156
Choi (10.1016/j.solener.2020.03.009_b0210) 2014; 4
Li (10.1016/j.solener.2020.03.009_b0560) 2014; 124
Ramanujam (10.1016/j.solener.2020.03.009_b0835) 2017; 10
Wang (10.1016/j.solener.2020.03.009_b1020) 2018
Liang (10.1016/j.solener.2020.03.009_b0600) 2017; 160
Wang (10.1016/j.solener.2020.03.009_b1010) 2017; 2
Chen (10.1016/j.solener.2020.03.009_b0175) 2018; 3
Zhao (10.1016/j.solener.2020.03.009_b1150) 2018; 450
Park (10.1016/j.solener.2020.03.009_b0780) 2019
Polman (10.1016/j.solener.2020.03.009_b0810) 2016; 352
Mustafa (10.1016/j.solener.2020.03.009_b0750) 2009; 11
Choi (10.1016/j.solener.2020.03.009_b0215) 2014; 126
Ramanujam (10.1016/j.solener.2020.03.009_b0840) 2016; 82
Poplavskyy (10.1016/j.solener.2020.03.009_b0815) 2003; 93
Chantana (10.1016/j.solener.2020.03.009_b0155) 2019
Deringer (10.1016/j.solener.2020.03.009_b0235) 2015; 6
Yang (10.1016/j.solener.2020.03.009_b1085) 2012; 47
Pathan (10.1016/j.solener.2020.03.009_b0785) 2004; 27
Wood (10.1016/j.solener.2020.03.009_b1055) 1973; 12
Bibin (10.1016/j.solener.2020.03.009_b0080) 2019; 52
Kyono (10.1016/j.solener.2020.03.009_b0495) 2002; 29
Kwon (10.1016/j.solener.2020.03.009_b0490) 2017; 172
Wen (10.1016/j.solener.2020.03.009_b1045) 2018; 9
10.1016/j.solener.2020.03.009_b0400
10.1016/j.solener.2020.03.009_b0755
Minemoto (10.1016/j.solener.2020.03.009_b0705) 2001; 89
Ibraheam (10.1016/j.solener.2020.03.009_b0410) 2016; 127
Kamruzzaman (10.1016/j.solener.2020.03.009_b0440) 2017; 51
Wang (10.1016/j.solener.2020.03.009_b1025) 2018; 27
Lai (10.1016/j.solener.2020.03.009_b0505) 2012; 261
Tian (10.1016/j.solener.2020.03.009_b0975) 2019
10.1016/j.solener.2020.03.009_b0195
Alharbi (10.1016/j.solener.2020.03.009_b0040) 2015; 43
Chen (10.1016/j.solener.2020.03.009_b0180) 2015; 107
Faheem (10.1016/j.solener.2020.03.009_b0265) 2019
Yin (10.1016/j.solener.2020.03.009_b1100) 2014; 26
Ma (10.1016/j.solener.2020.03.009_b0665) 2011; 13
Alemi (10.1016/j.solener.2020.03.009_b0030) 2011; 390
Al-Douri (10.1016/j.solener.2020.03.009_b0015) 2013; 8
Chantana (10.1016/j.solener.2020.03.009_b0145) 2018; 26
Costa (10.1016/j.solener.2020.03.009_b0220) 2017; 4
Liu (10.1016/j.solener.2020.03.009_b0630) 2017; 25
Chen (10.1016/j.solener.2020.03.009_b0185) 2017; 2
Koc (10.1016/j.solener.2020.03.009_b0465) 2012; 14
Sun (10.1016/j.solener.2020.03.009_b0950) 2011; 95
Green (10.1016/j.solener.2020.03.009_b0300) 2019; 3
Uphoff (10.1016/j.solener.2020.03.009_b0990) 1963; 34
Leng (10.1016/j.solener.2020.03.009_b0530) 2014; 105
Black (10.1016/j.solener.2020.03.009_b0085) 1957; 2
Welch (10.1016/j.solener.2020.03.009_b1040) 2015; 8
10.1016/j.solener.2020.03.009_b0540
10.1016/j.solener.2020.03.009_b0420
Cao (10.1016/j.solener.2020.03.009_b0110) 2016; 1
Li (10.1016/j.solener.2020.03.009_b0545) 2018; 737
Möller (10.1016/j.solener.2020.03.009_b0735) 1991; 35
Chantana (10.1016/j.solener.2020.03.009_b0130) 2017; 25
Zhou (10.1016/j.solener.2020.03.009_b1160) 2014; 4
Hironiwa (10.1016/j.solener.2020.03.009_b0340) 2015; 212
Burst (10.1016/j.solener.2020.03.009_b0100) 2016; 1
Tang (10.1016/j.solener.2020.03.009_b0960) 2019; 360
10.1016/j.solener.2020.03.009_b0895
Minemoto (10.1016/j.solener.2020.03.009_b0710) 2003; 75
10.1016/j.solener.2020.03.009_b0525
Romeo (10.1016/j.solener.2020.03.009_b0870) 2018
10.1016/j.solener.2020.03.009_b0405
Li (10.1016/j.solener.2020.03.009_b0565) 2018; 167
Bosio (10.1016/j.solener.2020.03.009_b0095) 2018
Welch (10.1016/j.solener.2020.03.009_b1035) 2017; 7
Terheggen (10.1016/j.solener.2020.03.009_b0970) 2004; 12
Zeng (10.1016/j.solener.2020.03.009_b1140) 2016; 31
Grundmann (10.1016/j.solener.2020.03.009_b0310) 2015
Yuan (10.1016/j.solener.2020.03.009_b1120) 2016; 137
Rajpure (10.1016/j.solener.2020.03.009_b0825) 2002; 73
Minemoto (10.1016/j.solener.2020.03.009_b0720) 2015; 133
Altamura (10.1016/j.solener.2020.03.009_b0045) 2016; 6
Ganose (10.1016/j.solener.2020.03.009_b0290) 2017; 53
Kumar (10.1016/j.solener.2020.03.009_b0485) 2019; 193
Li (10.1016/j.solener.2020.03.009_b0595) 2016; 9
Lakhdar (10.1016/j.solener.2020.03.009_b0515) 2014; 125
Hanifehpour (10.1016/j.solener.2020.03.009_b0325) 2013; 8
Voutsas (10.1016/j.solener.2020.03.009_b1005) 1985; 171
Yu (10.1016/j.solener.2020.03.009_b1110) 2013; 3
Hurych (10.1016/j.solener.2020.03.009_b0390) 1974; 9
Cebriano (10.1016/j.solener.2020.03.009_b0120) 2012; 135
10.1016/j.solener.2020.03.009_b0435
Vadapoo (10.1016/j.solener.2020.03.009_b0995) 2011; 248
Chantana (10.1016/j.solener.2020.03.009_b0140) 2018; 10
Chantana (10.1016/j.solener.2020.03.009_b0135) 2017; 25
Green (10.1016/j.solener.2020.03.009_b0305) 2018; 26
Dönges (10.1016/j.solener.2020.03.009_b0245) 1950; 263
Zhou (10.1016/j.solener.2020.03.009_b1170) 2015; 9
Shaffer (10.1016/j.solener.2020.03.009_b0910) 1972; 54
Wang (10.1016/j.solener.2020.03.009_b1015) 2015; 107
Liu (10.1016/j.solener.2020.03.009_b0615) 2016; 6
Butt (10.1016/j.solener.2020.03.009_b0105) 2018; 13
Torane (10.1016/j.solener.2020.03.009_b0985) 1999; 61
Yuan (10.1016/j.solener.2020.03.009_b1115) 2016; 27
Wu (10.1016/j.solener.2020.03.009_b1070) 2019; 31
Shongalova (10.1016/j.solener.2020.03.009_b0940) 2019; 68
Han (10.1016/j.solener.2020.03.009_b0320) 2017; 87
Hu (10.1016/j.solener.2020.03.009_b0360) 2018; 46
Rühle (10.1016/j.solener.2020.03.009_b0875) 2016; 130
Li (10.1016/j.solener.2020.03.009_b0575) 2016; 6
Kazmerski (10.1016/j.solener.2020.03.009_b0455) 1983; 1
Shen (10.1016/j.solener.2020.03.009_b0915) 2018; 186
Sajid-ur-Rehman (10.1016/j.solener.2020.03.009_b0880) 2018; 13
Luo (10.1016/j.solener.2020.03.009_b0660) 2014; 104
Shongalova (10.1016/j.solener.2020.03.009_b0935) 2018; 8
López-Marino (10.1016/j.solener.2020.03.009_b0645) 2016; 4
Zhou (10.1016/j.solener.2020.03.009_b1165) 2017; 111
Asaduzzaman (10.1016/j.solener.2020.03.009_b0050) 2016; 5
Hu (10.1016/j.solener.2020.03.009_b0365) 2018; 187
Fernandez (10.1016/j.solener.2020.03.009_b0275) 2000; 366
Lawal (10.1016/j.solener.2020.03.009_b0520) 2018; 18
Tan (10.1016/j.solener.2020.03.009_b0955) 2017; 7
Al-Douri (10.1016/j.solener.2020.03.009_b0010) 2014; 82
Razykov (10.1016/j.solener.2020.03.009_b0855) 2018; 173
Wood (10.1016/j.solener.2020.03.009_b1060) 1972; 29
Kulkarni (10.1016/j.solener.2020.03.009_b0480) 2015; 4
Lai (10.1016/j.solener.2020.03.009_b0510) 2012; 671
Kosek (10.1016/j.solener.2020.03.009_b0475) 1978; 28
Steinmann (10.1016/j.solener.2020.03.009_b0945) 2015; 9
Hamri (10.1016/j.solener.2020.03.009_b0315) 2019; 178
Huang (10.1016/j.solener.2020.03.009_b0375) 2019
Gilbert (10.1016/j.solener.2020.03.009_b0295) 1974; 35
10.1016/j.solener.2020.03.009_b0445
Pianezzi (10.1016/j.solener.2020.03.009_b0805) 2014; 16
Alemi (10.1016/j.solener.2020.03.009_b0035) 2012; 2012
Liu (10.1016/j.solener.2020.03.009_b0620) 2015; 23
Rajpure (10.1016/j.solener.2020.03.009_b0820) 2000; 62
Zardetto (10.1016/j.solener.2020.03.009_b1130) 2017; 1
Paudel (10.1016/j.solener.2020.03.009_b0795) 2014; 115
Hutter (10.1016/j.solener.2020.03.009_b0395) 2018; 188
Rodriguez-Lazcano (10.1016/j.solener.2020.03.009_b0865) 2005; 493
Ellmer (10.1016/j.solener.2020.03.009_b0260) 2000; 33
Yang (10.1016/j.solener.2020.03.009_b1090) 2009; 21
Ou (10.1016/j.solener.2020.03.009_b0775) 2017; 27
Honma (10.1016/j.solener.2020.03.009_b0350) 2000; 272
Li (10.1016/j.solener.2020.03.009_b0590) 2019; 10
Shongalova (10.1016/j.solener.2020.03.009_b0930) 2018; 187
Li (10.1016/j.solener.2020.03.009_b0555) 2011; 56
Zhang (10.1016/j.solener.2020.03.009_b1145) 2019; 182
Xia (10.1016/j.solener.2020.03.009_b1075) 2015; 27
Xue (10.1016/j.solener.2020.03.009_b1080) 2015; 5
Chen (10.1016/j.solener.2020.03.009_b0170) 2017; 10
10.1016/j.solener.2020.03.009_b0470
Wu (10.1016/j.solener.2020.03.009_b1065) 2015; 3
Hofmann (10.1016/j.solener.2020.03.009_b0345) 1933; 86
Ishizuka (10.1016/j.solener.2020.03.009_b0425) 2005; 87
Fernandes (10.1016/j.solener.2020.03.009_b0270) 2010; 43
Liu (10.1016/j.solener.2020.03.009_b0640) 2010; 10
Mehta (10.1016/j.solener.2020.03.009_b0695) 2010; 10
Lahmar (10.1016/j.solener.2020.03.009_b0500) 2016; 6
Alemi (10.1016/j.solener.2020.03.009_b0025) 2011; 406
Zayed (10.1016/j.solener.2020.03.009_b1135) 1995; 28
Iovu (10.1016/j.solener.2020.03.009_b0415) 2007; 4
Li (10.1016/j.solener.2020.03.009_b0585) 2017; 161
Hübler (10.1016/j.solener.2020.03.009_b0385) 2010; 15
Baranowski (10.1016/j.solener.2020.03.009_b0065) 2015; 4
Li (10.1016/j.solener.2020.03.009_b0535) 2018; 49
Choi (10.1016/j.solener.2020.03.009_b0205) 2014; 24
Li (10.1016/j.solener.2020.03.009_b0580) 2016; 109
Liang (10.1016/j.solener.2020.03.009_b0605) 2018; 174
Sankapal (10.1016/j.solener.2020.03.009_b0890) 2001; 8
Liu (10.1016/j.solener.2020.03.009_b0635) 2014; 2
Bosio (10.1016/j.solener.2020.03.009_b0090) 2016; 9
Fouad (10.1016/j.solener.2020.03.009_b0280) 1997; 229
Patrick (10.1016/j.solener.2020.03.009_b0790) 2011; 21
Matsuo (10.1016/j.solener.2020.03.009_b0685) 2015; 54
Chandrasekharan (10.1016/j.solener.2020.03.009_b0125) 2009; 33
Ojo (10.1016/j.solener.2020.03.009_b0770) 2016; 136
Haque (10.1016/j.solener.2020.03.009_b0330) 2018; 99
Mohamed (10.1016/j.solener.2020.03.009_b0730) 2011; 4
Minemoto (10.1016/j.solener.2020.03.009_b0715) 2001; 67
Schmidt (10.1016/j.solener.2020.03.009_b0900) 2008; 16
Mueller (10.1016/j.solener.2020.03.009_b0740) 1972; 7
Kaur (10.1016/j.solener.2020.03.009_b0450) 2017; 5
10.1016/j.solener.2020.03.009_b0800
Bhattacharya (10.1016/j.solener.2020.03.009_b0075) 1982; 6
Chantana (10.1016/j.solener.2020.03.009_b0165) 2017; 636
Dittrich (10.1016/j.solener.2020.03.009_b0240) 2007; 515
Huang (10.1016/j.solener.2020.03.009_b0380) 2014; 127
Jackson
References_xml – volume: 137
  start-page: 256
  year: 2016
  end-page: 260
  ident: b1120
  article-title: Rapid thermal process to fabricate Sb
  publication-title: Sol. Energy
– volume: 96
  start-page: 86
  year: 2018
  end-page: 110
  ident: b0680
  article-title: Revisiting the electrical and optical transmission properties of co-doped ZnO thin films as n-type TCOs
  publication-title: Prog. Mater Sci.
– volume: 4
  start-page: 109
  year: 2007
  end-page: 113
  ident: b0415
  article-title: Photoconductivity of amorphous Sb
  publication-title: Chalcogenide Lett
– volume: 43
  start-page: 215403
  year: 2010
  ident: b0270
  article-title: A study of ternary Cu
  publication-title: J. Phys. D Appl. Phys.
– volume: 451
  start-page: 434
  year: 2004
  end-page: 438
  ident: b1000
  article-title: Characterization of deep defects in CdS/CdTe thin film solar cells using deep level transient spectroscopy
  publication-title: Thin Solid Films
– volume: 31
  start-page: 1806164
  year: 2019
  ident: b1070
  article-title: Thermochromism from Ultrathin Colloidal Sb
  publication-title: Adv. Mater.
– volume: 61
  start-page: 219
  year: 1999
  end-page: 222
  ident: b0985
  article-title: Preparation and characterization of electrodeposited Sb
  publication-title: Mater. Chem. Phys.
– volume: 6
  start-page: 5255
  year: 2015
  end-page: 5262
  ident: b0235
  article-title: Vibrational properties and bonding nature of Sb
  publication-title: Chem. Sci.
– volume: 189
  start-page: 5
  year: 2019
  end-page: 10
  ident: b1030
  article-title: Interfacial engineering for high efficiency solution processed Sb
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 29
  start-page: 254
  year: 2002
  end-page: 260
  ident: b0495
  article-title: Low-temperature crystal structures of stibnite implying orbital overlap of Sb 5s
  publication-title: Phys. Chem. Miner.
– volume: 21
  start-page: 3170
  year: 2009
  end-page: 3174
  ident: b1090
  article-title: Pulsed vapor-liquid-solid growth of antimony selenide and antimony sulfide nanowires
  publication-title: Adv. Mater.
– volume: 632
  start-page: 178
  year: 2015
  end-page: 184
  ident: b0570
  article-title: The effect of ZnS segregation on Zn-rich CZTS thin film solar cells
  publication-title: J. Alloy. Compd.
– volume: 95
  start-page: 42
  year: 2018
  end-page: 131
  ident: b0230
  article-title: Transparent heat regulating (THR) materials and coatings for energy saving window applications: Impact of materials design, micro-structural, and interface quality on the THR performance
  publication-title: Prog. Mater Sci.
– volume: 5
  start-page: 3069
  year: 2017
  end-page: 3090
  ident: b0450
  article-title: Strategic review of interface carrier recombination in earth abundant Cu–Zn–Sn–S–Se solar cells: current challenges and future prospects
  publication-title: J. Mater. Chem. A
– volume: 450
  start-page: 228
  year: 2018
  end-page: 235
  ident: b1150
  article-title: Efficient Sb
  publication-title: Appl. Surf. Sci.
– volume: 12
  start-page: 295
  year: 1973
  end-page: 313
  ident: b1055
  article-title: The amorphous Sb-Se system
  publication-title: J. Non-Cryst. Solids
– volume: 3
  start-page: 10488
  year: 2015
  end-page: 10493
  ident: b1065
  article-title: Self-assisted nucleation and growth of [010]-oriented Sb
  publication-title: J. Mater. Chem. C
– volume: 21
  start-page: 1588
  year: 2013
  end-page: 1597
  ident: b0610
  article-title: The effect of Zn
  publication-title: Prog. Photovoltaics Res. Appl.
– volume: 8
  start-page: 865
  year: 2018
  end-page: 870
  ident: b0935
  article-title: On the identification of Sb
  publication-title: MRS Commun.
– volume: 5
  start-page: 578
  year: 2016
  ident: b0050
  article-title: An investigation into the effects of band gap and doping concentration on Cu(In, Ga)S
  publication-title: SpringerPlus
– volume: 54
  start-page: 032301
  year: 2015
  ident: b0745
  article-title: Influence of conduction band minimum difference between transparent conductive oxide and absorber on photovoltaic performance of thin-film solar cell
  publication-title: Jpn. J. Appl. Phys.
– volume: 31
  start-page: 7434
  year: 2019
  end-page: 7442
  ident: b0675
  article-title: Atomic Layer Deposition of an Sb
  publication-title: Chem. Mater.
– volume: 156
  start-page: H327
  year: 2009
  end-page: H332
  ident: b0700
  article-title: Antimony selenide absorber thin films in all-chemically deposited solar cells
  publication-title: J. Electrochem. Soc.
– volume: 18
  start-page: 567
  year: 2018
  end-page: 575
  ident: b0520
  article-title: Investigation of excitonic states effects on optoelectronic properties of Sb
  publication-title: Curr. Appl Phys.
– volume: 130
  start-page: 139
  year: 2016
  end-page: 147
  ident: b0875
  article-title: Tabulated values of the Shockley-Queisser limit for single junction solar cells
  publication-title: Sol. Energy
– volume: 107
  start-page: 143902
  year: 2015
  ident: b1015
  article-title: Ambient CdCl
  publication-title: Appl. Phys. Lett.
– reference: Kamaruddin, N., Yusoff, Y., Hossain, T., Amin, N., Akhtaruzzaman, M., 2017. Surface morphological properties of CdxZn(1-x)S thin films deposited by low-cost atmospheric pressure metal organic chemical vapour deposition technique (AP-MOCVD). In: IOP Conference Series: Materials Science and Engineering. IOP Publishing, p. 012063.
– volume: 10
  year: 2019
  ident: b0590
  article-title: 9.2%-efficient core-shell structured antimony selenide nanorod array solar cells
  publication-title: Nature Commun.
– volume: 4
  start-page: 070701
  year: 2016
  ident: b0335
  article-title: Research update: stable single-phase Zn-rich Cu
  publication-title: APL Mater.
– reference: Li, D.-F., Luo, M., Li, B.-L., Wu, C.-B., Deng, B., Dong, H.-N., 2013. Low-resistivity p-type doping in wurtzite ZnS using codoping method. Advances in Condensed Matter Physics 2013.
– volume: 25
  start-page: 861
  year: 2017
  end-page: 870
  ident: b0630
  article-title: Enhanced Sb
  publication-title: Prog. Photovoltaics Res. Appl.
– volume: 10
  start-page: 1306
  year: 2017
  end-page: 1319
  ident: b0835
  article-title: Copper indium gallium selenide based solar cells–a review
  publication-title: Energy Environ. Sci.
– year: 2019
  ident: b0155
  article-title: 22%-efficient Cd-free Cu(In, Ga)(S, Se)2 solar cell by all-dry process using Zn0. 8Mg0.2O and Zn0. 9Mg0.1O: B as buffer and transparent conductive oxide layers
  publication-title: Progress Photovolt.: Res. Appl.
– volume: 171
  start-page: 261
  year: 1985
  end-page: 268
  ident: b1005
  article-title: The crystal structure of antimony selenide, Sb
  publication-title: Materials
– volume: 13
  start-page: 137805
  year: 2018
  ident: b0880
  article-title: First-principles calculations of nitrogen-doped antimony triselenide: A prospective material for solar cells and infrared optoelectronic devices
  publication-title: Front. Phys.
– volume: 229
  start-page: 249
  year: 1997
  end-page: 255
  ident: b0280
  article-title: The relationship between optical gap and chemical composition in Sb
  publication-title: Physica B
– volume: 109
  start-page: 232104
  year: 2016
  ident: b0580
  article-title: Characterization of Mg and Fe doped Sb
  publication-title: Appl. Phys. Lett.
– volume: 21
  start-page: 4663
  year: 2011
  end-page: 4667
  ident: b0790
  article-title: Structural and electronic properties of semiconductor-sensitized solar-cell interfaces
  publication-title: Adv. Funct. Mater.
– volume: 27
  start-page: 8906
  year: 2016
  end-page: 8910
  ident: b1115
  article-title: Sb
  publication-title: J. Mater. Sci.: Mater. Electron.
– volume: 6
  start-page: 317
  year: 1982
  end-page: 322
  ident: b0075
  article-title: A photoelectrochemical cell based on chemically deposited Sb
  publication-title: Solar Energy Materials
– volume: 193
  start-page: 452
  year: 2019
  end-page: 457
  ident: b0485
  article-title: Effects of post-deposition annealing and copper inclusion in superstrate Sb
  publication-title: Sol. Energy
– volume: 351
  start-page: 151
  year: 2016
  end-page: 155
  ident: b0690
  article-title: A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells
  publication-title: Science
– volume: 7
  start-page: 3281
  year: 2017
  ident: b0955
  article-title: Sb
  publication-title: Sci. Rep.
– volume: 8
  start-page: 141
  year: 2013
  ident: b0325
  article-title: Lu
  publication-title: Nanoscale Res. Lett.
– volume: 404
  start-page: 1119
  year: 2009
  end-page: 1127
  ident: b0255
  article-title: Effect of heat treatment on the structural and optical properties of amorphous Sb
  publication-title: Physica B
– volume: 5
  start-page: 1501203
  year: 2015
  ident: b1080
  article-title: CuSbSe
  publication-title: Adv. Energy Mater.
– volume: 55
  start-page: 1258
  year: 2010
  end-page: 1264
  ident: b1105
  article-title: Pulsed laser deposited heterogeneous mixture of Li
  publication-title: Electrochim. Acta
– volume: 2
  start-page: 240
  year: 2014
  end-page: 244
  ident: b0635
  article-title: Facile microwave-assisted synthesis of uniform Sb
  publication-title: J. Mater. Chem. C
– volume: 11
  start-page: 2019
  year: 2009
  ident: b0750
  article-title: Effect of temperature on the optical parameter of amorphous Sb-Se thin films
  publication-title: J. Optoelectron. Adv. Mater.
– volume: 10
  start-page: 1960
  year: 2010
  end-page: 1969
  ident: b0640
  article-title: Dependence of carrier mobility on nanocrystal size and ligand length in PbSe nanocrystal solids
  publication-title: Nano Lett.
– volume: 186
  start-page: 58
  year: 2018
  end-page: 65
  ident: b0915
  article-title: Mechanisms and modification of nonlinear shunt leakage in Sb
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 178
  start-page: 150
  year: 2019
  end-page: 156
  ident: b0315
  article-title: Improved efficiency of Cu (In, Ga) Se2 thinfilm solar cells using a buffer layer alternative to CdS
  publication-title: Sol. Energy
– volume: 8
  start-page: 10688
  year: 2013
  end-page: 10696
  ident: b0015
  article-title: Morphology, analysis and properties studies of CdS nanostructures under thiourea concentration effect for photovoltaic applications
  publication-title: Int. J. Electrochem. Sci
– year: 2018
  ident: b0870
  article-title: Low substrate temperature CdTe solar cells: A review
  publication-title: Sol. Energy
– volume: 151
  start-page: 14
  year: 2016
  end-page: 23
  ident: b0055
  article-title: Fabrication and characterization of cost-efficient CuSbS
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 13
  start-page: 137805
  year: 2018
  ident: b0105
  article-title: First-principles calculations of nitrogen-doped antimony triselenide: A prospective material for solar cells and infrared optoelectronic devices
  publication-title: Front. Phys.
– volume: 49
  start-page: 346
  year: 2018
  end-page: 353
  ident: b0535
  article-title: Stable and efficient CdS/Sb
  publication-title: Nano Energy
– volume: 493
  start-page: 77
  year: 2005
  end-page: 82
  ident: b0865
  article-title: Polycrystalline thin films of antimony selenide via chemical bath deposition and post deposition treatments
  publication-title: Thin Solid Films
– volume: 4
  start-page: 1301680
  year: 2014
  ident: b0210
  article-title: Efficient Inorganic-Organic Heterojunction Solar Cells Employing Sb
  publication-title: Adv. Energy Mater.
– volume: 27
  start-page: 713
  year: 2018
  end-page: 721
  ident: b1025
  article-title: Development of antimony sulfide–selenide Sb
  publication-title: J. Energy Chem.
– volume: 10
  start-page: 11361
  year: 2018
  end-page: 11368
  ident: b0140
  article-title: 20% Efficient Zn0. 9Mg0.1O: Al/Zn0.8Mg0.2O/Cu(In, Ga)(S, Se)2 Solar Cell Prepared by All-Dry Process through a Combination of Heat-Light-Soaking and Light-Soaking Processes
  publication-title: ACS Appl. Mater. Interfaces
– volume: 107
  start-page: 043905
  year: 2015
  ident: b0180
  article-title: Optical properties of amorphous and polycrystalline Sb
  publication-title: Appl. Phys. Lett.
– volume: 43
  start-page: 1073
  year: 2015
  end-page: 1089
  ident: b0040
  article-title: Theoretical limits of photovoltaics efficiency and possible improvements by intuitive approaches learned from photosynthesis and quantum coherence
  publication-title: Renew. Sustain. Energy Rev.
– volume: 182
  start-page: 96
  year: 2019
  end-page: 101
  ident: b1145
  article-title: Alternative back contacts for Sb
  publication-title: Sol. Energy
– volume: 200
  start-page: 352
  year: 2003
  end-page: 360
  ident: b0020
  article-title: The growth of CdTe thin film by close space sublimation system
  publication-title: Physica Status Solidi (A)
– volume: 1
  start-page: 395
  year: 1983
  end-page: 398
  ident: b0455
  article-title: Optical properties and grain boundary effects in CuInSe
  publication-title: J. Vacuum Sci. Technol. A: Vacuum, Surf., Films
– volume: 28
  start-page: 325
  year: 1978
  end-page: 330
  ident: b0475
  article-title: Optical, photoelectric and electric properties of single-crystalline Sb
  publication-title: Czechoslovak J. Phys. B
– volume: 16
  start-page: 461
  year: 2008
  end-page: 466
  ident: b0900
  article-title: Surface passivation of high-efficiency silicon solar cells by atomic-layer-deposited Al
  publication-title: Prog. Photovoltaics Res. Appl.
– volume: 53
  start-page: 20
  year: 2017
  end-page: 44
  ident: b0290
  article-title: Beyond methylammonium lead iodide: prospects for the emergent field of ns 2 containing solar absorbers
  publication-title: Chem. Commun.
– volume: 82
  start-page: 294
  year: 2016
  end-page: 404
  ident: b0840
  article-title: Inorganic photovoltaics–planar and nanostructured devices
  publication-title: Prog. Mater Sci.
– volume: 51
  start-page: 1615
  year: 2017
  end-page: 1624
  ident: b0440
  article-title: A comparative study on the electronic and optical properties of Sb
  publication-title: Semiconductors
– volume: 75
  start-page: 2181
  year: 2015
  end-page: 2186
  ident: b0655
  article-title: High efficient and stable solid solar cell: based on FeS
  publication-title: Energy Procedia
– volume: 9
  start-page: 2179
  year: 2018
  ident: b1045
  article-title: Vapor transport deposition of antimony selenide thin film solar cells with 7.6% efficiency
  publication-title: Nature Commun.
– start-page: 1800208
  year: 2018
  ident: b1020
  article-title: Promising Sb
  publication-title: Solar RRL
– volume: 352
  start-page: aad4424
  year: 2016
  ident: b0810
  article-title: Photovoltaic materials: Present efficiencies and future challenges
  publication-title: Science
– volume: 8
  start-page: 082301
  year: 2015
  ident: b1040
  article-title: CuSbSe
  publication-title: Appl. Phys Express
– volume: 4
  start-page: 1895
  year: 2016
  end-page: 1907
  ident: b0645
  article-title: Alkali doping strategies for flexible and light-weight Cu
  publication-title: J. Mater. Chem. A
– volume: 35
  start-page: 1629
  year: 1974
  end-page: 1632
  ident: b0295
  article-title: The thermal activation energy of crystalline Sb
  publication-title: J. Phys. Chem. Solids
– volume: 33
  start-page: R17
  year: 2000
  ident: b0260
  article-title: Magnetron sputtering of transparent conductive zinc oxide: relation between the sputtering parameters and the electronic properties
  publication-title: J. Phys. D Appl. Phys.
– volume: 174
  start-page: 263
  year: 2018
  end-page: 270
  ident: b0605
  article-title: Thermally induced structural evolution and performance of Sb
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 10
  start-page: 18
  year: 2017
  end-page: 30
  ident: b0170
  article-title: Characterization of basic physical properties of Sb
  publication-title: Front. Optoelectron.
– volume: 87
  start-page: 246
  year: 2017
  end-page: 291
  ident: b0320
  article-title: Towards high efficiency thin film solar cells
  publication-title: Prog. Mater Sci.
– volume: 10
  start-page: 4417
  year: 2010
  end-page: 4422
  ident: b0695
  article-title: High electrical conductivity antimony selenide nanocrystals and assemblies
  publication-title: Nano Lett.
– volume: 14
  start-page: 1211
  year: 2012
  end-page: 1220
  ident: b0465
  article-title: First principles prediction of the elastic, electronic, and optical properties of Sb
  publication-title: Solid State Sci.
– volume: 4
  start-page: 044017
  year: 2015
  ident: b0065
  article-title: Effects of disorder on carrier transport in Cu
  publication-title: Phys. Rev. Appl
– volume: 1
  start-page: 16035
  year: 2016
  ident: b0110
  article-title: The role of surface passivation for efficient and photostable PbS quantum dot solar cells
  publication-title: Nat. Energy
– volume: 7
  start-page: 1700866
  year: 2017
  ident: b0190
  article-title: Accelerated optimization of TiO
  publication-title: Adv. Energy Mater.
– volume: 212
  start-page: 2766
  year: 2015
  end-page: 2771
  ident: b0340
  article-title: Annealing effect on Cu
  publication-title: Phys. Status Solidi (A)
– volume: 87
  start-page: 541
  year: 2005
  end-page: 548
  ident: b0425
  article-title: Fabrication of wide-gap Cu(In
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 159
  start-page: 834
  year: 2018
  end-page: 840
  ident: b0850
  article-title: Characterisation of SnSe thin films fabricated by chemical molecular beam deposition for use in thin film solar cells
  publication-title: Sol. Energy
– volume: 99
  start-page: 232
  year: 2018
  end-page: 238
  ident: b0330
  article-title: Annealing induced microstructure engineering of antimony tri-selenide thin films
  publication-title: Mater. Res. Bull.
– volume: 26
  start-page: 127
  year: 2018
  end-page: 134
  ident: b0145
  article-title: Heterointerface recombination of Cu(In, Ga)(S, S
  publication-title: Prog. Photovoltaics Res. Appl.
– volume: 6
  start-page: 153
  year: 2012
  ident: b0550
  article-title: Polymer solar cells
  publication-title: Nat. Photonics
– volume: 354
  start-page: 206
  year: 2016
  end-page: 209
  ident: b0885
  article-title: Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance
  publication-title: Science
– volume: 9
  start-page: 254
  year: 2016
  ident: b0090
  article-title: How the chlorine treatment and the stoichiometry influences the grain boundary passivation in polycrystalline CdTe thin films
  publication-title: Energies
– volume: 9
  start-page: 052302
  year: 2016
  ident: b0595
  article-title: Efficiency enhancement of Sb
  publication-title: Appl. Phys Express
– reference: Mustafa, F.I., Gupta, S., Goyal, N., Tripathi, S., 2011. Non‐Ideal p‐n junction Diode of SbxSe1−x (x= 0.4, 0.5, 0.6, 0.7) Thin Films. In: AIP Conference Proceedings. AIP, pp. 75–76.
– volume: 187
  start-page: 219
  year: 2018
  end-page: 226
  ident: b0930
  article-title: Growth of Sb
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 104
  start-page: 173904
  year: 2014
  ident: b0660
  article-title: Thermal evaporation and characterization of superstrate CdS/Sb
  publication-title: Appl. Phys. Lett.
– reference: Hutter, O.S., Phillips, L.J., Yates, P., Major, J.D., Durose, K., 2018b. CSS Antimony Selenide Film Morphology and High Efficiency PV Devices, WCPEC-7 Conference Paper.
– volume: 4
  start-page: 1301846
  year: 2014
  ident: b1160
  article-title: Solution-processed antimony selenide heterojunction solar cells
  publication-title: Adv. Energy Mater.
– reference: Ishaq, M., Deng, H., Yuan, S., Zhang, H., Khan, J., Farooq, U., Song, H., Tang, J., 2018. Efficient Double Buffer Layer Sb2(SexS1–x)3 Thin Film Solar Cell Via Single Source Evaporation. Solar RRL, 1800144.
– volume: 161
  start-page: 190
  year: 2017
  end-page: 196
  ident: b0585
  article-title: Sb
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 73
  start-page: 6
  year: 2002
  end-page: 12
  ident: b0825
  article-title: Preparation and characterization of spray deposited photoactive Sb
  publication-title: Mater. Chem. Phys.
– volume: 168
  start-page: 207
  year: 2017
  end-page: 213
  ident: b0160
  article-title: Introduction of Na into Cu
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 4
  start-page: 1700329
  year: 2018
  ident: b0650
  article-title: Sb
  publication-title: Adv. Electron. Mater.
– volume: 2
  start-page: 2125
  year: 2017
  end-page: 2132
  ident: b0185
  article-title: 6.5% Certified efficiency Sb
  publication-title: ACS Energy Lett.
– volume: 366
  start-page: 202
  year: 2000
  end-page: 206
  ident: b0275
  article-title: Preparation and characterization of Sb
  publication-title: Thin Solid Films
– volume: 737
  start-page: 67
  year: 2018
  end-page: 73
  ident: b0545
  article-title: Self-powered, high-speed Sb
  publication-title: J. Alloy. Compd.
– volume: 162
  start-page: 127
  year: 2017
  end-page: 133
  ident: b0860
  article-title: Improved stability of CdTe solar cells by absorber surface etching
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 8
  start-page: 223
  year: 2001
  end-page: 227
  ident: b0890
  article-title: Growth of multilayer Bi
  publication-title: Indian Journal of Engineering and Materials Sciences
– volume: 193
  start-page: 114
  year: 1998
  end-page: 122
  ident: b0285
  article-title: Aqueous solution epitaxy of CdS layers on CuInSe
  publication-title: J. Cryst. Growth
– volume: 4
  start-page: 1065
  year: 2011
  end-page: 1086
  ident: b0730
  article-title: Modified TiO
  publication-title: Energy Environ. Sci.
– volume: 6
  start-page: 10687
  year: 2014
  end-page: 10695
  ident: b0625
  article-title: Thermal evaporation and characterization of Sb
  publication-title: ACS Appl. Mater. Interfaces
– volume: 6
  start-page: 2836
  year: 2014
  end-page: 2841
  ident: b0760
  article-title: Electrodeposition of antimony selenide thin films and application in semiconductor sensitized solar cells
  publication-title: ACS Appl. Mater. Interfaces
– volume: 172
  start-page: 74
  year: 2017
  end-page: 81
  ident: b1050
  article-title: Magnetron sputtered ZnO buffer layer for Sb
  publication-title: Sol. Energy Mater. Sol. Cells
– reference: Kato, T., Kitani, K., Tai, K.F., Kamada, R., Hiroi, H., Sugimoto, H., 2016. Characterization of the back contact of CIGS solar cell as the origin of rollover effect. In: 32nd European Photovoltaic Solar Energy Conference and Exhibition. pp. 1085–1088.
– volume: 202
  start-page: 110157
  year: 2019
  ident: b0765
  article-title: Application of Al-Doped (Zn, Mg)O on pure-sulfide Cu(In, Ga
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 52
  year: 2019
  ident: b0080
  article-title: Facile synthesis of novel antimony selenide nanocrystals with hierarchical architecture by physical vapor deposition technique
  publication-title: J. Appl. Crystallogr.
– volume: 95
  start-page: 2907
  year: 2011
  end-page: 2913
  ident: b0950
  article-title: Structure, composition and optical properties of Cu
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 23
  start-page: 1828
  year: 2015
  end-page: 1836
  ident: b0620
  article-title: Improving the performance of Sb
  publication-title: Prog. Photovoltaics Res. Appl.
– volume: 515
  start-page: 5745
  year: 2007
  end-page: 5750
  ident: b0240
  article-title: Sulfosalts—a new class of compound semiconductors for photovoltaic applications
  publication-title: Thin Solid Films
– volume: 111
  start-page: 013901
  year: 2017
  ident: b1165
  article-title: Buried homojunction in CdS/Sb
  publication-title: Appl. Phys. Lett.
– volume: 4
  start-page: 2507
  year: 2017
  end-page: 2514
  ident: b0220
  article-title: Thermal treatment effects on electrodeposited Sb
  publication-title: ChemElectroChem
– reference: Lei, H., Chen, J., Tan, Z., Fang, G., 2019. Review of Recent Progress in Antimony Chalcogenide‐Based Solar Cells: Materials and Devices. Solar RRL, 1900026.
– volume: 115
  start-page: 064502
  year: 2014
  ident: b0795
  article-title: Post-deposition processing options for high-efficiency sputtered CdS/CdTe solar cells
  publication-title: J. Appl. Phys.
– volume: 32
  start-page: 295
  year: 2005
  end-page: 300
  ident: b0115
  article-title: First-principles study of the electronic properties of A
  publication-title: Phys. Chem. Minerals
– volume: 46
  start-page: 212
  year: 2018
  end-page: 219
  ident: b0360
  article-title: Achieving high-performance PbS quantum dot solar cells by improving hole extraction through Ag doping
  publication-title: Nano Energy
– reference: Phillips, L., Yates, P., Hutter, O.S., Baines, T., Bowen, L., Durose, K., Major, J.D., 2017. Close-spaced sublimation for Sb2Se3 solar cells, In: 2017 IEEE 44rd Photovoltaic Specialists Conference (PVSC).
– reference: Chen, S., Qiao, X., Zheng, Z., Cathelinaud, M., Ma, H., Fan, X., Zhang, X., 2018. Enhanced electrical conductivity and photoconductive properties of Sn-doped Sb2Se3 crystals. J. Mater. Chem. C.
– volume: 2012
  start-page: 70
  year: 2012
  ident: b0035
  article-title: Structural studies and optical and electrical properties of novel Gd
  publication-title: J. Nanomater.
– volume: 12
  start-page: 191
  year: 2018
  end-page: 197
  ident: b1155
  article-title: Improving the performance of Sb
  publication-title: Appl. Mater. Today
– volume: 272
  start-page: 1
  year: 2000
  end-page: 13
  ident: b0350
  article-title: Electronic polarizability, optical basicity and XPS spectra of Sb
  publication-title: J. Non-Cryst. Solids
– volume: 519
  start-page: 7568
  year: 2011
  end-page: 7571
  ident: b0725
  article-title: Sputtered ZnO-based buffer layer for band offset control in Cu(In, Ga)S
  publication-title: Thin Solid Films
– volume: 7
  start-page: 1601935
  year: 2017
  ident: b1035
  article-title: Trade-offs in thin film solar cells with layered chalcostibite photovoltaic absorbers
  publication-title: Adv. Energy Mater.
– volume: 31
  start-page: 063001
  year: 2016
  ident: b1140
  article-title: Antimony selenide thin-film solar cells
  publication-title: Semicond. Sci. Technol.
– volume: 671
  start-page: 73
  year: 2012
  end-page: 79
  ident: b0510
  article-title: Electrodeposition of antimony selenide thin films from aqueous acid solutions
  publication-title: J. Electroanal. Chem.
– volume: 636
  start-page: 431
  year: 2017
  end-page: 437
  ident: b0165
  article-title: Influence of Na in Cu
  publication-title: Thin Solid Films
– volume: 3
  start-page: 2335
  year: 2018
  end-page: 2341
  ident: b0175
  article-title: Efficiency Improvement of Sb
  publication-title: ACS Energy Lett.
– volume: 406
  start-page: 3831
  year: 2011
  end-page: 3835
  ident: b0025
  article-title: Structural studies and physical properties of novel Sm
  publication-title: Physica B
– volume: 2
  start-page: 17046
  year: 2017
  ident: b1010
  article-title: Stable 6%-efficient Sb
  publication-title: Nat. Energy
– volume: 56
  start-page: 8597
  year: 2011
  end-page: 8602
  ident: b0555
  article-title: Preparation and characterization of Bi-doped antimony selenide thin films by electrodeposition
  publication-title: Electrochim. Acta
– volume: 174
  start-page: 412
  year: 2018
  end-page: 417
  ident: b0005
  article-title: ZnSnP
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 54
  start-page: 042302
  year: 2015
  ident: b0685
  article-title: Evaluation of sputtering damage in Cu
  publication-title: Jpn. J. Appl. Phys.
– volume: 27
  start-page: 1606242
  year: 2017
  ident: b0775
  article-title: A new rGO-overcoated Sb
  publication-title: Adv. Funct. Mater.
– volume: 64
  start-page: 103929
  year: 2019
  ident: b0965
  article-title: Highly efficient and stable planar heterojunction solar cell based on sputtered and post-selenized Sb
  publication-title: Nano Energy
– volume: 167
  start-page: 10
  year: 2018
  end-page: 17
  ident: b0565
  article-title: Improved efficiency by insertion of Zn
  publication-title: Sol. Energy
– volume: 248
  start-page: 700
  year: 2011
  end-page: 705
  ident: b0995
  article-title: Electronic structure of antimony selenide (Sb
  publication-title: Phys. Status Solidi (B)
– volume: 236
  start-page: 503
  year: 2019
  end-page: 505
  ident: b0200
  article-title: Fabrication of a semi-transparent thin-film Sb
  publication-title: Mater. Lett.
– year: 2019
  ident: b0780
  article-title: Efficient Solar to Hydrogen Conversion from Neutral Electrolytes using Morphology-Controlled Sb
  publication-title: ACS Energy Lett.
– volume: 135
  start-page: 1096
  year: 2012
  end-page: 1103
  ident: b0120
  article-title: Micro-and nanostructures of Sb
  publication-title: Mater. Chem. Phys.
– volume: 25
  start-page: 431
  year: 2017
  end-page: 440
  ident: b0135
  article-title: Thin-film Cu(In, Ga)(Se, S)2-based solar cell with (Cd, Zn)S buffer layer and Zn1−xMgxO window layer
  publication-title: Prog. Photovoltaics Res. Appl.
– volume: 10
  start-page: 99
  year: 1957
  end-page: 102
  ident: b0980
  article-title: The crystal structure of antimony selenide, Sb
  publication-title: Acta Crystallogr. A
– volume: 263
  start-page: 280
  year: 1950
  end-page: 291
  ident: b0245
  article-title: Über Chalkogenohalogenide des dreiwertigen Antimons und Wismuts. II. Über Selenohalogenide des dreiwertigen Antimons und Wismuts und über Antimon (III)-selenid Mit 2 Abbildungen. Zeitschrift für anorganische und allgemeine
  publication-title: Chemie
– year: 2019
  ident: b0265
  article-title: All-inorganic perovskite solar cells: energetics, key challenges and strategies towards commercialization
  publication-title: ACS Energy Lett.
– volume: 133
  start-page: 8
  year: 2015
  end-page: 14
  ident: b0720
  article-title: Theoretical analysis on effect of band offsets in perovskite solar cells
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 75
  start-page: 121
  year: 2003
  end-page: 126
  ident: b0710
  article-title: Control of conduction band offset in wide-gap Cu(In, Ga)S
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 184
  start-page: 553
  year: 2019
  end-page: 560
  ident: b0150
  article-title: Characteristics of Zn1−xMgxO: B and its application as transparent conductive oxide layer in Cu(In, Ga)(S, Se)2 solar cells with and without CdS buffer layer
  publication-title: Sol. Energy
– volume: 311
  start-page: 114
  year: 1997
  end-page: 118
  ident: b0830
  article-title: Effect of the substrate temperature on the properties of spray deposited Sb–Se thin films from non-aqueous medium
  publication-title: Thin Solid Films
– year: 2015
  ident: b0310
  article-title: The Physics of Semiconductors: AN Introduction Including Nanophysics and Applications
– volume: 1
  start-page: 30
  year: 2017
  end-page: 55
  ident: b1130
  article-title: Atomic layer deposition for perovskite solar cells: research status, opportunities and challenges
  publication-title: Sustainable Energy Fuels
– volume: 9
  start-page: 409
  year: 2015
  ident: b1170
  article-title: Thin-film Sb
  publication-title: Nat. Photonics
– volume: 47
  start-page: 7085
  year: 2012
  end-page: 7089
  ident: b1085
  article-title: CuSbSe
  publication-title: J. Mater. Sci.
– volume: 16
  start-page: 8843
  year: 2014
  end-page: 8851
  ident: b0805
  article-title: Unveiling the effects of post-deposition treatment with different alkaline elements on the electronic properties of CIGS thin film solar cells
  publication-title: PCCP
– volume: 32
  start-page: 510
  year: 1961
  end-page: 519
  ident: b0925
  article-title: Detailed balance limit of efficiency of p-n junction solar cells
  publication-title: J. Appl. Phys.
– volume: 82
  start-page: 238
  year: 2014
  end-page: 243
  ident: b0010
  article-title: Structural and optical insights to enhance solar cell performance of CdS nanostructures
  publication-title: Energy Convers. Manage.
– volume: 125
  start-page: 2295
  year: 2014
  end-page: 2301
  ident: b0515
  article-title: Thickness effect on the structural and optical constants of stibnite thin films prepared by sulfidation annealing of antimony films
  publication-title: Optik-Int. J. Light Electron Opt.
– volume: 6
  start-page: 1600457
  year: 2016
  ident: b0615
  article-title: Inverted perovskite solar cells: progresses and perspectives
  publication-title: Adv. Energy Mater.
– reference: Hutter, O.S., Phillips, L.J., Yates, P.J., Major, J.D., Durose, K., 2018c. CSS Antimony selenide film morphology and high efficiency PV devices. In: 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC). IEEE, pp. 0027–0031.
– volume: 33
  start-page: 209
  year: 2009
  end-page: 217
  ident: b0125
  article-title: Growth and microindentation analysis of pure and doped Sb
  publication-title: Turkish J. Phys.
– volume: 2
  start-page: 240
  year: 1957
  ident: b0085
  article-title: Bismuth sulfide (Bi
  publication-title: J. Phys. Chem. Solids
– volume: 35
  start-page: 205
  year: 1991
  end-page: 418
  ident: b0735
  article-title: Semiconductors for solar cell applications
  publication-title: Prog. Mater Sci.
– reference: Savory, C.N., Scanlon, D.O., 2019. The complex defect chemistry of antimony selenide. J. Mater. Chem. A.
– volume: 390
  start-page: 142
  year: 2011
  end-page: 148
  ident: b0030
  article-title: Synthesis of novel Ln
  publication-title: Colloids Surf., A
– volume: 237
  start-page: 1082
  year: 2018
  end-page: 1090
  ident: b0845
  article-title: Synthesis of S-Doped porous g-C3N4 by using ionic liquids and subsequently coupled with Au-TiO2 for exceptional cocatalyst-free visible-light catalytic activities
  publication-title: Appl. Catal. B
– volume: 188
  start-page: 177
  year: 2018
  end-page: 181
  ident: b0395
  article-title: 6.6% efficient antimony selenide solar cells using grain structure control and an organic contact layer
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 4
  start-page: 15
  year: 2015
  ident: b0480
  article-title: Sb
  publication-title: Mater. Renewable Sustainable Energy
– volume: 9
  start-page: 4392
  year: 1974
  ident: b0390
  article-title: Photoemission studies of crystalline and amorphous Sb
  publication-title: Physical Review B
– volume: 93
  start-page: 341
  year: 2003
  end-page: 346
  ident: b0815
  article-title: Nondispersive hole transport in amorphous films of methoxy-spirofluorene-arylamine organic compound
  publication-title: J. Appl. Phys.
– volume: 22
  start-page: 1557
  year: 2018
  end-page: 1562
  ident: b0225
  article-title: Electrodeposition of Fe-doped Sb
  publication-title: J. Solid State Electrochem.
– volume: 127
  start-page: 188
  year: 2014
  end-page: 192
  ident: b0380
  article-title: Surface modification enabled carrier mobility adjustment in CZTS nanoparticle thin films
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 189
  start-page: 214
  year: 2019
  end-page: 223
  ident: b0060
  article-title: Effect of Cu content in CuSbS
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 24
  start-page: 3587
  year: 2014
  end-page: 3592
  ident: b0205
  article-title: Highly improved Sb
  publication-title: Adv. Funct. Mater.
– volume: 127
  start-page: 8907
  year: 2016
  end-page: 8915
  ident: b0410
  article-title: Characterization and analysis of wheat-like CdS nanostructures under temperature effect for solar cells applications
  publication-title: Optik
– volume: 68
  start-page: 47
  year: 2019
  end-page: 51
  ident: b0940
  article-title: On thermal stability of antimony thin films for solar cells applications. Recent Contributions to
  publication-title: Physics (Rec. Contr. Phys.)
– volume: 89
  start-page: 8327
  year: 2001
  end-page: 8330
  ident: b0705
  article-title: Cu(In, Ga)S
  publication-title: J. Appl. Phys.
– volume: 6
  start-page: 87288
  year: 2016
  end-page: 87293
  ident: b0575
  article-title: The effect of sodium on antimony selenide thin film solar cells
  publication-title: RSC Adv.
– reference: Kondrotas, R., Chen, C., Tang, J., 2018. Progress and Prospects of Sb2S3-Based Thin Film and Tandem Solar Cells. Joule.
– volume: 34
  start-page: 390
  year: 1963
  end-page: 395
  ident: b0990
  article-title: Thermoelectric Properties of Diphasal Systems Combining As
  publication-title: J. Appl. Phys.
– volume: 13
  start-page: 2369
  year: 2011
  end-page: 2374
  ident: b0665
  article-title: One-dimensional Sb
  publication-title: CrystEngComm
– volume: 43
  start-page: 229
  year: 1981
  end-page: 244
  ident: b0920
  article-title: On the compositional dependence of the optical gap in amorphous semiconducting alloys
  publication-title: J. Non-Cryst. Solids
– volume: 62
  start-page: 169
  year: 2000
  end-page: 174
  ident: b0820
  article-title: Effect of Se source on properties of spray deposited Sb
  publication-title: Mater. Chem. Phys.
– volume: 360
  start-page: 68
  year: 2019
  end-page: 72
  ident: b0960
  article-title: Magnetron sputtering deposition and selenization of Sb
  publication-title: Surf. Coat. Technol.
– volume: 6
  start-page: 22109
  year: 2016
  ident: b0045
  article-title: Influence of alkali metals (Na, Li, Rb) on the performance of electrostatic spray-assisted vapor deposited Cu
  publication-title: Sci. Rep.
– volume: 44
  start-page: 111
  year: 1993
  end-page: 116
  ident: b0250
  article-title: Electrical resistivity of crystalline Sb
  publication-title: Vacuum
– volume: 86
  start-page: 225
  year: 1933
  end-page: 245
  ident: b0345
  article-title: Die struktur der minerale der antimonitgruppe. Zeitschrift für Kristallographie-Crystalline
  publication-title: Materials
– volume: 5
  start-page: 2180
  year: 2017
  end-page: 2187
  ident: b0460
  article-title: Self-oriented Sb
  publication-title: J. Mater. Chem. A
– volume: 187
  start-page: 170
  year: 2018
  end-page: 175
  ident: b0365
  article-title: Improving the efficiency of Sb
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 7
  start-page: 301
  year: 1972
  end-page: 308
  ident: b0740
  article-title: The preparation of amorphous thin films
  publication-title: J. Non-Cryst. Solids
– volume: 29
  start-page: 485
  year: 1972
  ident: b1060
  article-title: Electron Energy States in Sb
  publication-title: Phys. Rev. Lett.
– volume: 27
  start-page: 85
  year: 2004
  end-page: 111
  ident: b0785
  article-title: Deposition of metal chalcogenide thin films by successive ionic layer adsorption and reaction (SILAR) method
  publication-title: Bull. Mater. Sci.
– volume: 61
  start-page: 94
  year: 2014
  end-page: 143
  ident: b1095
  article-title: Recent progress in antireflection and self-cleaning technology–From surface engineering to functional surfaces
  publication-title: Prog. Mater Sci.
– volume: 173
  start-page: 225
  year: 2018
  end-page: 228
  ident: b0855
  article-title: Growth and characterization of Sb
  publication-title: Sol. Energy
– volume: 26
  start-page: 4653
  year: 2014
  end-page: 4658
  ident: b1100
  article-title: Unique properties of halide perovskites as possible origins of the superior solar cell performance
  publication-title: Adv. Mater.
– volume: 25
  start-page: 996
  year: 2017
  end-page: 1004
  ident: b0130
  article-title: Aluminum-doped Zn
  publication-title: Prog. Photovoltaics Res. Appl.
– volume: 27
  start-page: 8048
  year: 2015
  end-page: 8057
  ident: b1075
  article-title: Generalized water-processed metal chalcogenide complexes: synthesis and applications
  publication-title: Chem. Mater.
– volume: 105
  start-page: 083905
  year: 2014
  ident: b0530
  article-title: Selenization of Sb
  publication-title: Appl. Phys. Lett.
– volume: 160
  start-page: 257
  year: 2017
  end-page: 262
  ident: b0600
  article-title: Facile preparation and enhanced photoelectrical performance of Sb
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 26
  start-page: 3
  year: 2018
  end-page: 12
  ident: b0305
  article-title: Solar cell efficiency tables (version 51)
  publication-title: Prog. Photovoltaics Res. Appl.
– volume: 12
  start-page: 259
  year: 2004
  end-page: 266
  ident: b0970
  article-title: Analysis of bulk and interface phenomena in CdTe/CdS thin-film solar cells
  publication-title: Interface Sci.
– volume: 4
  start-page: 8
  year: 2017
  end-page: 15
  ident: b1125
  article-title: Brief review of emerging photovoltaic absorbers
  publication-title: Curr. Opin. Green Sustainable Chem.
– year: 2012
  ident: b0670
  article-title: Semiconductors: Data Handbook
– volume: 126
  start-page: 1353
  year: 2014
  end-page: 1357
  ident: b0215
  article-title: Sb
  publication-title: Angew. Chem.
– volume: 67
  start-page: 83
  year: 2001
  end-page: 88
  ident: b0715
  article-title: Theoretical analysis of the effect of conduction band offset of window/CIS layers on performance of CIS solar cells using device simulation
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 1
  start-page: 16015
  year: 2016
  ident: b0100
  article-title: CdTe solar cells with open-circuit voltage breaking the 1 V barrier
  publication-title: Nat. Energy
– volume: 18
  start-page: 79
  year: 2018
  end-page: 89
  ident: b0355
  article-title: Performance assessment of Cu
  publication-title: Curr. Appl Phys.
– volume: 28
  start-page: 770
  year: 1995
  ident: b1135
  article-title: Transport properties of Sb
  publication-title: J. Phys. D Appl. Phys.
– year: 2019
  ident: b0375
  article-title: Complicated and Unconventional Defect Properties of the Quasi-One-Dimensional Photovoltaic Semiconductor Sb
  publication-title: ACS Appl. Mater. Interfaces
– volume: 32
  start-page: 752
  year: 2003
  end-page: 755
  ident: b0070
  article-title: Electrical properties of CdTe near the melting point
  publication-title: J. Electron. Mater.
– volume: 6
  start-page: 68663
  year: 2016
  end-page: 68674
  ident: b0500
  article-title: Effect of the thickness of the ZnO buffer layer on the properties of electrodeposited p-Cu
  publication-title: RSC Adv.
– volume: 3
  start-page: 631
  year: 2019
  end-page: 640
  ident: b0300
  article-title: How did solar cells get so cheap?
  publication-title: Joule
– year: 2019
  ident: b0975
  article-title: Low-Bandgap Se-Deficient Antimony Selenide as a Multifunctional Polysulfide Barrier toward High-Performance Lithium-Sulfur Batteries
  publication-title: Adv. Mater.
– volume: 172
  start-page: 11
  year: 2017
  end-page: 17
  ident: b0490
  article-title: Crystal growth direction-controlled antimony selenide thin film absorbers produced using an electrochemical approach and intermediate thermal treatment
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 515
  start-page: 3810
  year: 2007
  end-page: 3815
  ident: b0905
  article-title: Compositional dependence of the optical properties of amorphous antimony selenide thin films using transmission measurements
  publication-title: Thin Solid Films
– volume: 261
  start-page: 510
  year: 2012
  end-page: 514
  ident: b0505
  article-title: Preparation and characterization of Sb
  publication-title: Appl. Surf. Sci.
– volume: 136
  start-page: 10
  year: 2016
  end-page: 14
  ident: b0770
  article-title: 15.3% efficient graded bandgap solar cells fabricated using electroplated CdS and CdTe thin films
  publication-title: Sol. Energy
– volume: 15
  start-page: 48
  year: 2010
  end-page: 55
  ident: b0385
  article-title: Digital quantum batteries: Energy and information storage in nanovacuum tube arrays
  publication-title: Complexity
– volume: 124
  start-page: 143
  year: 2014
  end-page: 149
  ident: b0560
  article-title: A recombination analysis of Cu(In, Ga)S
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 3
  start-page: 43
  year: 2013
  end-page: 48
  ident: b1110
  article-title: Inverse design of high absorption thin-film photovoltaic materials
  publication-title: Adv. Energy Mater.
– volume: 10
  start-page: 583
  year: 2016
  end-page: 586
  ident: b0430
  article-title: Effects of heavy alkali elements in Cu(In, Ga)S
  publication-title: Phys. Status Solidi (RRL)–Rapid Res. Lett.
– volume: 54
  start-page: 511
  year: 1972
  end-page: 518
  ident: b0910
  article-title: Electronic structure of single crystal and amorphous Sb
  publication-title: Phys. Status Solidi (B)
– year: 2018
  ident: b0095
  article-title: Past, present and future of the thin film CdTe/CdS solar cells
  publication-title: Sol. Energy
– volume: 9
  start-page: 355
  year: 2015
  ident: b0945
  article-title: Photovoltaics: Non-cubic solar cell materials
  publication-title: Nat. Photonics
– volume: 53
  start-page: 20
  issue: 1
  year: 2017
  ident: 10.1016/j.solener.2020.03.009_b0290
  article-title: Beyond methylammonium lead iodide: prospects for the emergent field of ns 2 containing solar absorbers
  publication-title: Chem. Commun.
  doi: 10.1039/C6CC06475B
– ident: 10.1016/j.solener.2020.03.009_b0420
  doi: 10.1002/solr.201800144
– volume: 34
  start-page: 390
  issue: 2
  year: 1963
  ident: 10.1016/j.solener.2020.03.009_b0990
  article-title: Thermoelectric Properties of Diphasal Systems Combining As2Te3 and Tl2Se with Sb2Te3, Bi2Te3, or Sb2Se3
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1702619
– volume: 13
  start-page: 2369
  issue: 7
  year: 2011
  ident: 10.1016/j.solener.2020.03.009_b0665
  article-title: One-dimensional Sb2Se3 nanostructures: solvothermal synthesis, growth mechanism, optical and electrochemical properties
  publication-title: CrystEngComm
  doi: 10.1039/c0ce00381f
– volume: 105
  start-page: 083905
  issue: 8
  year: 2014
  ident: 10.1016/j.solener.2020.03.009_b0530
  article-title: Selenization of Sb2Se3 absorber layer: An efficient step to improve device performance of CdS/Sb2Se3 solar cells
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4894170
– year: 2019
  ident: 10.1016/j.solener.2020.03.009_b0375
  article-title: Complicated and Unconventional Defect Properties of the Quasi-One-Dimensional Photovoltaic Semiconductor Sb2Se3
  publication-title: ACS Appl. Mater. Interfaces
– volume: 31
  start-page: 7434
  issue: 18
  year: 2019
  ident: 10.1016/j.solener.2020.03.009_b0675
  article-title: Atomic Layer Deposition of an Sb2Se3 Photoabsorber Layer Using Selenium Dimethyldithiocarbamate as a New Se Precursor
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.9b02085
– volume: 14
  start-page: 1211
  issue: 8
  year: 2012
  ident: 10.1016/j.solener.2020.03.009_b0465
  article-title: First principles prediction of the elastic, electronic, and optical properties of Sb2S3 and Sb2Se3 compounds
  publication-title: Solid State Sci.
  doi: 10.1016/j.solidstatesciences.2012.06.003
– volume: 32
  start-page: 752
  issue: 7
  year: 2003
  ident: 10.1016/j.solener.2020.03.009_b0070
  article-title: Electrical properties of CdTe near the melting point
  publication-title: J. Electron. Mater.
  doi: 10.1007/s11664-003-0065-7
– ident: 10.1016/j.solener.2020.03.009_b0195
  doi: 10.1039/C8TC01683F
– volume: 68
  start-page: 47
  issue: 1
  year: 2019
  ident: 10.1016/j.solener.2020.03.009_b0940
  article-title: On thermal stability of antimony thin films for solar cells applications. Recent Contributions to
  publication-title: Physics (Rec. Contr. Phys.)
  doi: 10.26577/RCPh-2019-1-1093
– volume: 73
  start-page: 6
  issue: 1
  year: 2002
  ident: 10.1016/j.solener.2020.03.009_b0825
  article-title: Preparation and characterization of spray deposited photoactive Sb2S3 and Sb2Se3 thin films using aqueous and non-aqueous media
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/S0254-0584(01)00350-9
– volume: 5
  start-page: 578
  issue: 1
  year: 2016
  ident: 10.1016/j.solener.2020.03.009_b0050
  article-title: An investigation into the effects of band gap and doping concentration on Cu(In, Ga)Se2 solar cell efficiency
  publication-title: SpringerPlus
  doi: 10.1186/s40064-016-2256-8
– volume: 12
  start-page: 259
  issue: 2–3
  year: 2004
  ident: 10.1016/j.solener.2020.03.009_b0970
  article-title: Analysis of bulk and interface phenomena in CdTe/CdS thin-film solar cells
  publication-title: Interface Sci.
  doi: 10.1023/B:INTS.0000028655.11608.c7
– volume: 27
  start-page: 85
  issue: 2
  year: 2004
  ident: 10.1016/j.solener.2020.03.009_b0785
  article-title: Deposition of metal chalcogenide thin films by successive ionic layer adsorption and reaction (SILAR) method
  publication-title: Bull. Mater. Sci.
  doi: 10.1007/BF02708491
– volume: 5
  start-page: 2180
  issue: 5
  year: 2017
  ident: 10.1016/j.solener.2020.03.009_b0460
  article-title: Self-oriented Sb2Se3 nanoneedle photocathodes for water splitting obtained by a simple spin-coating method
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA09602F
– volume: 82
  start-page: 238
  year: 2014
  ident: 10.1016/j.solener.2020.03.009_b0010
  article-title: Structural and optical insights to enhance solar cell performance of CdS nanostructures
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2014.03.020
– volume: 236
  start-page: 503
  year: 2019
  ident: 10.1016/j.solener.2020.03.009_b0200
  article-title: Fabrication of a semi-transparent thin-film Sb2Se3 solar cell
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2018.10.173
– volume: 237
  start-page: 1082
  year: 2018
  ident: 10.1016/j.solener.2020.03.009_b0845
  article-title: Synthesis of S-Doped porous g-C3N4 by using ionic liquids and subsequently coupled with Au-TiO2 for exceptional cocatalyst-free visible-light catalytic activities
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2018.06.009
– volume: 64
  start-page: 103929
  year: 2019
  ident: 10.1016/j.solener.2020.03.009_b0965
  article-title: Highly efficient and stable planar heterojunction solar cell based on sputtered and post-selenized Sb2Se3 thin film
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.103929
– volume: 4
  start-page: 1700329
  issue: 1
  year: 2018
  ident: 10.1016/j.solener.2020.03.009_b0650
  article-title: Sb2Se3 thin-film photovoltaics using aqueous solution sprayed SnO2 as the buffer layer
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.201700329
– volume: 178
  start-page: 150
  year: 2019
  ident: 10.1016/j.solener.2020.03.009_b0315
  article-title: Improved efficiency of Cu (In, Ga) Se2 thinfilm solar cells using a buffer layer alternative to CdS
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2018.12.023
– volume: 10
  start-page: 583
  issue: 8
  year: 2016
  ident: 10.1016/j.solener.2020.03.009_b0430
  article-title: Effects of heavy alkali elements in Cu(In, Ga)Se2 solar cells with efficiencies up to 22.6%
  publication-title: Phys. Status Solidi (RRL)–Rapid Res. Lett.
  doi: 10.1002/pssr.201600199
– volume: 99
  start-page: 232
  year: 2018
  ident: 10.1016/j.solener.2020.03.009_b0330
  article-title: Annealing induced microstructure engineering of antimony tri-selenide thin films
  publication-title: Mater. Res. Bull.
  doi: 10.1016/j.materresbull.2017.11.014
– volume: 51
  start-page: 1615
  issue: 12
  year: 2017
  ident: 10.1016/j.solener.2020.03.009_b0440
  article-title: A comparative study on the electronic and optical properties of Sb2Se3 thin film
  publication-title: Semiconductors
  doi: 10.1134/S1063782617120107
– volume: 6
  start-page: 22109
  year: 2016
  ident: 10.1016/j.solener.2020.03.009_b0045
  article-title: Influence of alkali metals (Na, Li, Rb) on the performance of electrostatic spray-assisted vapor deposited Cu2ZnSn(S, Se)4 solar cells
  publication-title: Sci. Rep.
  doi: 10.1038/srep22109
– volume: 4
  start-page: 044017
  issue: 4
  year: 2015
  ident: 10.1016/j.solener.2020.03.009_b0065
  article-title: Effects of disorder on carrier transport in Cu2SnS3
  publication-title: Phys. Rev. Appl
  doi: 10.1103/PhysRevApplied.4.044017
– volume: 167
  start-page: 10
  year: 2018
  ident: 10.1016/j.solener.2020.03.009_b0565
  article-title: Improved efficiency by insertion of Zn1−xMgxO through sol-gel method in ZnO/Sb2Se3 solar cell
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2018.03.081
– ident: 10.1016/j.solener.2020.03.009_b0755
  doi: 10.1063/1.3653616
– ident: 10.1016/j.solener.2020.03.009_b0470
  doi: 10.1016/j.joule.2018.04.003
– volume: 8
  start-page: 10688
  year: 2013
  ident: 10.1016/j.solener.2020.03.009_b0015
  article-title: Morphology, analysis and properties studies of CdS nanostructures under thiourea concentration effect for photovoltaic applications
  publication-title: Int. J. Electrochem. Sci
  doi: 10.1016/S1452-3981(23)13140-3
– volume: 75
  start-page: 2181
  year: 2015
  ident: 10.1016/j.solener.2020.03.009_b0655
  article-title: High efficient and stable solid solar cell: based on FeS2 nanocrystals and P3HT: PCBM
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2015.07.368
– volume: 6
  start-page: 5255
  issue: 9
  year: 2015
  ident: 10.1016/j.solener.2020.03.009_b0235
  article-title: Vibrational properties and bonding nature of Sb2Se3 and their implications for chalcogenide materials
  publication-title: Chem. Sci.
  doi: 10.1039/C5SC00825E
– volume: 31
  start-page: 063001
  issue: 6
  year: 2016
  ident: 10.1016/j.solener.2020.03.009_b1140
  article-title: Antimony selenide thin-film solar cells
  publication-title: Semicond. Sci. Technol.
  doi: 10.1088/0268-1242/31/6/063001
– volume: 44
  start-page: 111
  issue: 2
  year: 1993
  ident: 10.1016/j.solener.2020.03.009_b0250
  article-title: Electrical resistivity of crystalline Sb2Se3
  publication-title: Vacuum
  doi: 10.1016/0042-207X(93)90358-H
– year: 2019
  ident: 10.1016/j.solener.2020.03.009_b0265
  article-title: All-inorganic perovskite solar cells: energetics, key challenges and strategies towards commercialization
  publication-title: ACS Energy Lett.
– volume: 24
  start-page: 3587
  issue: 23
  year: 2014
  ident: 10.1016/j.solener.2020.03.009_b0205
  article-title: Highly improved Sb2S3 sensitized-inorganic–organic heterojunction solar cells and quantification of traps by deep-level transient spectroscopy
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201304238
– volume: 1
  start-page: 395
  issue: 2
  year: 1983
  ident: 10.1016/j.solener.2020.03.009_b0455
  article-title: Optical properties and grain boundary effects in CuInSe2
  publication-title: J. Vacuum Sci. Technol. A: Vacuum, Surf., Films
  doi: 10.1116/1.571928
– volume: 115
  start-page: 064502
  issue: 6
  year: 2014
  ident: 10.1016/j.solener.2020.03.009_b0795
  article-title: Post-deposition processing options for high-efficiency sputtered CdS/CdTe solar cells
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4864415
– year: 2018
  ident: 10.1016/j.solener.2020.03.009_b0095
  article-title: Past, present and future of the thin film CdTe/CdS solar cells
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2018.01.018
– volume: 202
  start-page: 110157
  year: 2019
  ident: 10.1016/j.solener.2020.03.009_b0765
  article-title: Application of Al-Doped (Zn, Mg)O on pure-sulfide Cu(In, Ga)S2 solar cells for enhancement of open-circuit voltage
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2019.110157
– volume: 137
  start-page: 256
  year: 2016
  ident: 10.1016/j.solener.2020.03.009_b1120
  article-title: Rapid thermal process to fabricate Sb2Se3 thin film for solar cell application
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2016.08.020
– volume: 515
  start-page: 5745
  issue: 15
  year: 2007
  ident: 10.1016/j.solener.2020.03.009_b0240
  article-title: Sulfosalts—a new class of compound semiconductors for photovoltaic applications
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2006.12.071
– volume: 18
  start-page: 567
  issue: 5
  year: 2018
  ident: 10.1016/j.solener.2020.03.009_b0520
  article-title: Investigation of excitonic states effects on optoelectronic properties of Sb2Se3 crystal for broadband photo-detector by highly accurate first-principles approach
  publication-title: Curr. Appl Phys.
  doi: 10.1016/j.cap.2018.02.008
– volume: 107
  start-page: 143902
  issue: 14
  year: 2015
  ident: 10.1016/j.solener.2020.03.009_b1015
  article-title: Ambient CdCl2 treatment on CdS buffer layer for improved performance of Sb2Se3 thin film photovoltaics
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4932544
– volume: 95
  start-page: 2907
  issue: 10
  year: 2011
  ident: 10.1016/j.solener.2020.03.009_b0950
  article-title: Structure, composition and optical properties of Cu2ZnSnS4 thin films deposited by Pulsed Laser Deposition method
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2011.06.026
– volume: 26
  start-page: 4653
  issue: 27
  year: 2014
  ident: 10.1016/j.solener.2020.03.009_b1100
  article-title: Unique properties of halide perovskites as possible origins of the superior solar cell performance
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201306281
– volume: 2
  start-page: 240
  year: 1957
  ident: 10.1016/j.solener.2020.03.009_b0085
  article-title: Bismuth sulfide (Bi2Se3) optical properties, dielectric constants
  publication-title: J. Phys. Chem. Solids
  doi: 10.1016/0022-3697(57)90090-2
– volume: 7
  start-page: 3281
  issue: 1
  year: 2017
  ident: 10.1016/j.solener.2020.03.009_b0955
  article-title: Sb2Se3 assembling Sb2O3@ attapulgite as an emerging composites for catalytic hydrogenation of p-nitrophenol
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-03281-z
– volume: 172
  start-page: 74
  year: 2017
  ident: 10.1016/j.solener.2020.03.009_b1050
  article-title: Magnetron sputtered ZnO buffer layer for Sb2Se3 thin film solar cells
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2017.07.014
– volume: 32
  start-page: 295
  issue: 4
  year: 2005
  ident: 10.1016/j.solener.2020.03.009_b0115
  article-title: First-principles study of the electronic properties of A2B3 minerals, with A= Bi, Sb and B= S, Se
  publication-title: Phys. Chem. Minerals
  doi: 10.1007/s00269-005-0470-y
– volume: 171
  start-page: 261
  issue: 1–4
  year: 1985
  ident: 10.1016/j.solener.2020.03.009_b1005
  article-title: The crystal structure of antimony selenide, Sb2Se3. Zeitschrift für Kristallographie-Crystalline
  publication-title: Materials
– volume: 5
  start-page: 3069
  issue: 7
  year: 2017
  ident: 10.1016/j.solener.2020.03.009_b0450
  article-title: Strategic review of interface carrier recombination in earth abundant Cu–Zn–Sn–S–Se solar cells: current challenges and future prospects
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA10543B
– volume: 25
  start-page: 996
  issue: 12
  year: 2017
  ident: 10.1016/j.solener.2020.03.009_b0130
  article-title: Aluminum-doped Zn1−xMgxO as transparent conductive oxide of Cu(In, Ga)(S, Se)2-based solar cell for minimizing surface carrier recombination
  publication-title: Prog. Photovoltaics Res. Appl.
  doi: 10.1002/pip.2911
– volume: 151
  start-page: 14
  year: 2016
  ident: 10.1016/j.solener.2020.03.009_b0055
  article-title: Fabrication and characterization of cost-efficient CuSbS2 thin film solar cells using hybrid inks
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2016.02.013
– volume: 26
  start-page: 127
  issue: 2
  year: 2018
  ident: 10.1016/j.solener.2020.03.009_b0145
  article-title: Heterointerface recombination of Cu(In, Ga)(S, Se)2-based solar cells with different buffer layers
  publication-title: Prog. Photovoltaics Res. Appl.
  doi: 10.1002/pip.2952
– volume: 22
  start-page: 1557
  issue: 5
  year: 2018
  ident: 10.1016/j.solener.2020.03.009_b0225
  article-title: Electrodeposition of Fe-doped Sb2Se3 thin films for photoelectrochemical applications and study of the doping effects on their properties
  publication-title: J. Solid State Electrochem.
  doi: 10.1007/s10008-017-3768-z
– volume: 4
  start-page: 070701
  issue: 7
  year: 2016
  ident: 10.1016/j.solener.2020.03.009_b0335
  article-title: Research update: stable single-phase Zn-rich Cu2ZnSnSe4 through In doping
  publication-title: APL Mater.
  doi: 10.1063/1.4953435
– volume: 29
  start-page: 254
  issue: 4
  year: 2002
  ident: 10.1016/j.solener.2020.03.009_b0495
  article-title: Low-temperature crystal structures of stibnite implying orbital overlap of Sb 5s2 inert pair electrons
  publication-title: Phys. Chem. Miner.
  doi: 10.1007/s00269-001-0227-1
– volume: 2
  start-page: 240
  issue: 2
  year: 2014
  ident: 10.1016/j.solener.2020.03.009_b0635
  article-title: Facile microwave-assisted synthesis of uniform Sb2Se3 nanowires for high performance photodetectors
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C3TC31883D
– year: 2018
  ident: 10.1016/j.solener.2020.03.009_b0870
  article-title: Low substrate temperature CdTe solar cells: A review
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2018.02.038
– volume: 8
  start-page: 865
  issue: 3
  year: 2018
  ident: 10.1016/j.solener.2020.03.009_b0935
  article-title: On the identification of Sb2Se3 using Raman scattering
  publication-title: MRS Commun.
  doi: 10.1557/mrc.2018.94
– volume: 172
  start-page: 11
  year: 2017
  ident: 10.1016/j.solener.2020.03.009_b0490
  article-title: Crystal growth direction-controlled antimony selenide thin film absorbers produced using an electrochemical approach and intermediate thermal treatment
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2017.07.004
– volume: 187
  start-page: 219
  year: 2018
  ident: 10.1016/j.solener.2020.03.009_b0930
  article-title: Growth of Sb2Se3 thin films by selenization of RF sputtered binary precursors
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2018.08.003
– volume: 6
  start-page: 317
  issue: 3
  year: 1982
  ident: 10.1016/j.solener.2020.03.009_b0075
  article-title: A photoelectrochemical cell based on chemically deposited Sb2Se3 thin film electrode and dependence of deposition on various parameters
  publication-title: Solar Energy Materials
  doi: 10.1016/0165-1633(82)90037-5
– year: 2015
  ident: 10.1016/j.solener.2020.03.009_b0310
– volume: 229
  start-page: 249
  issue: 3–4
  year: 1997
  ident: 10.1016/j.solener.2020.03.009_b0280
  article-title: The relationship between optical gap and chemical composition in SbxSe1−x system
  publication-title: Physica B
  doi: 10.1016/S0921-4526(96)00850-2
– volume: 263
  start-page: 280
  issue: 5–6
  year: 1950
  ident: 10.1016/j.solener.2020.03.009_b0245
  article-title: Über Chalkogenohalogenide des dreiwertigen Antimons und Wismuts. II. Über Selenohalogenide des dreiwertigen Antimons und Wismuts und über Antimon (III)-selenid Mit 2 Abbildungen. Zeitschrift für anorganische und allgemeine
  publication-title: Chemie
– volume: 1
  start-page: 16035
  issue: 4
  year: 2016
  ident: 10.1016/j.solener.2020.03.009_b0110
  article-title: The role of surface passivation for efficient and photostable PbS quantum dot solar cells
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.35
– volume: 4
  start-page: 8
  year: 2017
  ident: 10.1016/j.solener.2020.03.009_b1125
  article-title: Brief review of emerging photovoltaic absorbers
  publication-title: Curr. Opin. Green Sustainable Chem.
  doi: 10.1016/j.cogsc.2017.01.002
– volume: 4
  start-page: 15
  issue: 3
  year: 2015
  ident: 10.1016/j.solener.2020.03.009_b0480
  article-title: Sb2Se3 sensitized heterojunction solar cells
  publication-title: Mater. Renewable Sustainable Energy
  doi: 10.1007/s40243-015-0058-5
– volume: 46
  start-page: 212
  year: 2018
  ident: 10.1016/j.solener.2020.03.009_b0360
  article-title: Achieving high-performance PbS quantum dot solar cells by improving hole extraction through Ag doping
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.01.047
– volume: 5
  start-page: 1501203
  issue: 23
  year: 2015
  ident: 10.1016/j.solener.2020.03.009_b1080
  article-title: CuSbSe2 as a potential photovoltaic absorber material: studies from theory to experiment
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201501203
– volume: 26
  start-page: 3
  issue: 1
  year: 2018
  ident: 10.1016/j.solener.2020.03.009_b0305
  article-title: Solar cell efficiency tables (version 51)
  publication-title: Prog. Photovoltaics Res. Appl.
  doi: 10.1002/pip.2978
– volume: 4
  start-page: 109
  year: 2007
  ident: 10.1016/j.solener.2020.03.009_b0415
  article-title: Photoconductivity of amorphous Sb2Se3 and Sb2Se3: Sn thin films
  publication-title: Chalcogenide Lett
– volume: 6
  start-page: 68663
  issue: 73
  year: 2016
  ident: 10.1016/j.solener.2020.03.009_b0500
  article-title: Effect of the thickness of the ZnO buffer layer on the properties of electrodeposited p-Cu2O/n-ZnO/n-AZO heterojunctions
  publication-title: RSC Adv.
  doi: 10.1039/C6RA04834J
– ident: 10.1016/j.solener.2020.03.009_b0400
  doi: 10.1109/PVSC.2018.8547653
– volume: 6
  start-page: 1600457
  issue: 17
  year: 2016
  ident: 10.1016/j.solener.2020.03.009_b0615
  article-title: Inverted perovskite solar cells: progresses and perspectives
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201600457
– volume: 3
  start-page: 631
  year: 2019
  ident: 10.1016/j.solener.2020.03.009_b0300
  article-title: How did solar cells get so cheap?
  publication-title: Joule
  doi: 10.1016/j.joule.2019.02.010
– year: 2019
  ident: 10.1016/j.solener.2020.03.009_b0780
  article-title: Efficient Solar to Hydrogen Conversion from Neutral Electrolytes using Morphology-Controlled Sb2Se3 Light Absorber
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b02323
– volume: 1
  start-page: 16015
  issue: 3
  year: 2016
  ident: 10.1016/j.solener.2020.03.009_b0100
  article-title: CdTe solar cells with open-circuit voltage breaking the 1 V barrier
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.15
– volume: 450
  start-page: 228
  year: 2018
  ident: 10.1016/j.solener.2020.03.009_b1150
  article-title: Efficient Sb2Se3 sensitized solar cells prepared through a facile SILAR process and improved performance by interface modification
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2018.04.152
– volume: 193
  start-page: 114
  issue: 1–2
  year: 1998
  ident: 10.1016/j.solener.2020.03.009_b0285
  article-title: Aqueous solution epitaxy of CdS layers on CuInSe2
  publication-title: J. Cryst. Growth
  doi: 10.1016/S0022-0248(98)00503-X
– volume: 174
  start-page: 263
  year: 2018
  ident: 10.1016/j.solener.2020.03.009_b0605
  article-title: Thermally induced structural evolution and performance of Sb2Se3 films and nanorods prepared by an easy sputtering method
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2017.09.008
– volume: 189
  start-page: 214
  year: 2019
  ident: 10.1016/j.solener.2020.03.009_b0060
  article-title: Effect of Cu content in CuSbS2 thin films using hybrid inks: Their photovoltaic properties and defect characteristics
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2018.10.006
– volume: 7
  start-page: 1601935
  issue: 11
  year: 2017
  ident: 10.1016/j.solener.2020.03.009_b1035
  article-title: Trade-offs in thin film solar cells with layered chalcostibite photovoltaic absorbers
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201601935
– volume: 4
  start-page: 1065
  issue: 4
  year: 2011
  ident: 10.1016/j.solener.2020.03.009_b0730
  article-title: Modified TiO2 nanotube arrays (TNTAs): progressive strategies towards visible light responsive photoanode, a review
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c0ee00488j
– volume: 8
  start-page: 223
  year: 2001
  ident: 10.1016/j.solener.2020.03.009_b0890
  article-title: Growth of multilayer Bi2Se3-Sb2Se3 thin films by SILAR technique
  publication-title: Indian Journal of Engineering and Materials Sciences
– volume: 161
  start-page: 190
  year: 2017
  ident: 10.1016/j.solener.2020.03.009_b0585
  article-title: Sb2Se3 thin film solar cells in substrate configuration and the back contact selenization
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2016.11.033
– volume: 13
  start-page: 137805
  issue: 3
  year: 2018
  ident: 10.1016/j.solener.2020.03.009_b0880
  article-title: First-principles calculations of nitrogen-doped antimony triselenide: A prospective material for solar cells and infrared optoelectronic devices
  publication-title: Front. Phys.
  doi: 10.1007/s11467-018-0790-2
– year: 2012
  ident: 10.1016/j.solener.2020.03.009_b0670
– ident: 10.1016/j.solener.2020.03.009_b0895
  doi: 10.1039/C9TA02022E
– volume: 31
  start-page: 1806164
  issue: 4
  year: 2019
  ident: 10.1016/j.solener.2020.03.009_b1070
  article-title: Thermochromism from Ultrathin Colloidal Sb2Se3 Nanowires Undergoing Reversible Growth and Dissolution in an Amine-Thiol Mixture
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201806164
– volume: 248
  start-page: 700
  issue: 3
  year: 2011
  ident: 10.1016/j.solener.2020.03.009_b0995
  article-title: Electronic structure of antimony selenide (Sb2Se3) from GW calculations
  publication-title: Phys. Status Solidi (B)
  doi: 10.1002/pssb.201046225
– volume: 21
  start-page: 4663
  issue: 24
  year: 2011
  ident: 10.1016/j.solener.2020.03.009_b0790
  article-title: Structural and electronic properties of semiconductor-sensitized solar-cell interfaces
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201101103
– volume: 15
  start-page: 48
  issue: 5
  year: 2010
  ident: 10.1016/j.solener.2020.03.009_b0385
  article-title: Digital quantum batteries: Energy and information storage in nanovacuum tube arrays
  publication-title: Complexity
  doi: 10.1002/cplx.20306
– volume: 25
  start-page: 861
  issue: 10
  year: 2017
  ident: 10.1016/j.solener.2020.03.009_b0630
  article-title: Enhanced Sb2Se3 solar cell performance through theory-guided defect control
  publication-title: Prog. Photovoltaics Res. Appl.
  doi: 10.1002/pip.2900
– volume: 47
  start-page: 7085
  issue: 20
  year: 2012
  ident: 10.1016/j.solener.2020.03.009_b1085
  article-title: CuSbSe2-assisted sintering of CuInSe2 at low temperature
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-012-6385-3
– volume: 10
  start-page: 4417
  issue: 11
  year: 2010
  ident: 10.1016/j.solener.2020.03.009_b0695
  article-title: High electrical conductivity antimony selenide nanocrystals and assemblies
  publication-title: Nano Lett.
  doi: 10.1021/nl1020848
– volume: 10
  start-page: 18
  issue: 1
  year: 2017
  ident: 10.1016/j.solener.2020.03.009_b0170
  article-title: Characterization of basic physical properties of Sb2Se3 and its relevance for photovoltaics
  publication-title: Front. Optoelectron.
  doi: 10.1007/s12200-017-0702-z
– volume: 6
  start-page: 2836
  issue: 4
  year: 2014
  ident: 10.1016/j.solener.2020.03.009_b0760
  article-title: Electrodeposition of antimony selenide thin films and application in semiconductor sensitized solar cells
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am405416a
– volume: 186
  start-page: 58
  year: 2018
  ident: 10.1016/j.solener.2020.03.009_b0915
  article-title: Mechanisms and modification of nonlinear shunt leakage in Sb2Se3 thin film solar cells
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2018.06.022
– ident: 10.1016/j.solener.2020.03.009_b0800
  doi: 10.1109/PVSC.2017.8366746
– volume: 12
  start-page: 295
  issue: 3
  year: 1973
  ident: 10.1016/j.solener.2020.03.009_b1055
  article-title: The amorphous Sb-Se system
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/0022-3093(73)90002-1
– volume: 104
  start-page: 173904
  issue: 17
  year: 2014
  ident: 10.1016/j.solener.2020.03.009_b0660
  article-title: Thermal evaporation and characterization of superstrate CdS/Sb2Se3 solar cells
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4874878
– volume: 352
  start-page: aad4424
  issue: 6283
  year: 2016
  ident: 10.1016/j.solener.2020.03.009_b0810
  article-title: Photovoltaic materials: Present efficiencies and future challenges
  publication-title: Science
  doi: 10.1126/science.aad4424
– volume: 4
  start-page: 1895
  issue: 5
  year: 2016
  ident: 10.1016/j.solener.2020.03.009_b0645
  article-title: Alkali doping strategies for flexible and light-weight Cu2ZnSnSe4 solar cells
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA09640E
– volume: 360
  start-page: 68
  year: 2019
  ident: 10.1016/j.solener.2020.03.009_b0960
  article-title: Magnetron sputtering deposition and selenization of Sb2Se3 thin film for substrate Sb2Se3/CdS solar cells
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2018.12.102
– volume: 451
  start-page: 434
  year: 2004
  ident: 10.1016/j.solener.2020.03.009_b1000
  article-title: Characterization of deep defects in CdS/CdTe thin film solar cells using deep level transient spectroscopy
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2003.10.137
– volume: 187
  start-page: 170
  year: 2018
  ident: 10.1016/j.solener.2020.03.009_b0365
  article-title: Improving the efficiency of Sb2Se3 thin-film solar cells by post annealing treatment in vacuum condition
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2018.08.006
– volume: 136
  start-page: 10
  year: 2016
  ident: 10.1016/j.solener.2020.03.009_b0770
  article-title: 15.3% efficient graded bandgap solar cells fabricated using electroplated CdS and CdTe thin films
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2016.06.067
– volume: 55
  start-page: 1258
  issue: 3
  year: 2010
  ident: 10.1016/j.solener.2020.03.009_b1105
  article-title: Pulsed laser deposited heterogeneous mixture of Li2Se–Sb2Se3 nanocomposite as a new storage lithium material
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2009.10.046
– volume: 3
  start-page: 10488
  issue: 40
  year: 2015
  ident: 10.1016/j.solener.2020.03.009_b1065
  article-title: Self-assisted nucleation and growth of [010]-oriented Sb2Se3 whiskers: the crystal structure and thermoelectric properties
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C5TC01364J
– volume: 2012
  start-page: 70
  year: 2012
  ident: 10.1016/j.solener.2020.03.009_b0035
  article-title: Structural studies and optical and electrical properties of novel Gd3+-doped Sb2Se3 nanorods
  publication-title: J. Nanomater.
  doi: 10.1155/2012/983150
– volume: 54
  start-page: 042302
  issue: 4
  year: 2015
  ident: 10.1016/j.solener.2020.03.009_b0685
  article-title: Evaluation of sputtering damage in Cu2ZnSn(S, Se)4 solar cells with CdS and (Cd, Zn)S buffer layers by photoluminescence measurement
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.7567/JJAP.54.042302
– volume: 3
  start-page: 2335
  issue: 10
  year: 2018
  ident: 10.1016/j.solener.2020.03.009_b0175
  article-title: Efficiency Improvement of Sb2Se3 Solar Cells via Grain Boundary Inversion
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b01456
– volume: 67
  start-page: 83
  issue: 1–4
  year: 2001
  ident: 10.1016/j.solener.2020.03.009_b0715
  article-title: Theoretical analysis of the effect of conduction band offset of window/CIS layers on performance of CIS solar cells using device simulation
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/S0927-0248(00)00266-X
– volume: 406
  start-page: 3831
  issue: 20
  year: 2011
  ident: 10.1016/j.solener.2020.03.009_b0025
  article-title: Structural studies and physical properties of novel Sm3+-doped Sb2Se3 nanorods
  publication-title: Physica B
  doi: 10.1016/j.physb.2011.07.005
– year: 2019
  ident: 10.1016/j.solener.2020.03.009_b0155
  article-title: 22%-efficient Cd-free Cu(In, Ga)(S, Se)2 solar cell by all-dry process using Zn0. 8Mg0.2O and Zn0. 9Mg0.1O: B as buffer and transparent conductive oxide layers
  publication-title: Progress Photovolt.: Res. Appl.
– volume: 189
  start-page: 5
  year: 2019
  ident: 10.1016/j.solener.2020.03.009_b1030
  article-title: Interfacial engineering for high efficiency solution processed Sb2Se3 solar cells
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2018.09.020
– volume: 671
  start-page: 73
  year: 2012
  ident: 10.1016/j.solener.2020.03.009_b0510
  article-title: Electrodeposition of antimony selenide thin films from aqueous acid solutions
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2012.02.018
– volume: 351
  start-page: 151
  issue: 6269
  year: 2016
  ident: 10.1016/j.solener.2020.03.009_b0690
  article-title: A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells
  publication-title: Science
  doi: 10.1126/science.aad5845
– volume: 62
  start-page: 169
  issue: 2
  year: 2000
  ident: 10.1016/j.solener.2020.03.009_b0820
  article-title: Effect of Se source on properties of spray deposited Sb2Se3 thin films
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/S0254-0584(99)00173-X
– volume: 32
  start-page: 510
  issue: 3
  year: 1961
  ident: 10.1016/j.solener.2020.03.009_b0925
  article-title: Detailed balance limit of efficiency of p-n junction solar cells
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1736034
– volume: 54
  start-page: 511
  issue: 2
  year: 1972
  ident: 10.1016/j.solener.2020.03.009_b0910
  article-title: Electronic structure of single crystal and amorphous Sb2Se3
  publication-title: Phys. Status Solidi (B)
  doi: 10.1002/pssb.2220540215
– volume: 156
  start-page: H327
  issue: 5
  year: 2009
  ident: 10.1016/j.solener.2020.03.009_b0700
  article-title: Antimony selenide absorber thin films in all-chemically deposited solar cells
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.3089358
– volume: 54
  start-page: 032301
  issue: 3
  year: 2015
  ident: 10.1016/j.solener.2020.03.009_b0745
  article-title: Influence of conduction band minimum difference between transparent conductive oxide and absorber on photovoltaic performance of thin-film solar cell
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.7567/JJAP.54.032301
– volume: 82
  start-page: 294
  year: 2016
  ident: 10.1016/j.solener.2020.03.009_b0840
  article-title: Inorganic photovoltaics–planar and nanostructured devices
  publication-title: Prog. Mater Sci.
  doi: 10.1016/j.pmatsci.2016.03.005
– volume: 354
  start-page: 206
  issue: 6309
  year: 2016
  ident: 10.1016/j.solener.2020.03.009_b0885
  article-title: Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance
  publication-title: Science
  doi: 10.1126/science.aah5557
– volume: 13
  start-page: 137805
  issue: 3
  year: 2018
  ident: 10.1016/j.solener.2020.03.009_b0105
  article-title: First-principles calculations of nitrogen-doped antimony triselenide: A prospective material for solar cells and infrared optoelectronic devices
  publication-title: Front. Phys.
  doi: 10.1007/s11467-018-0790-2
– volume: 168
  start-page: 207
  year: 2017
  ident: 10.1016/j.solener.2020.03.009_b0160
  article-title: Introduction of Na into Cu2SnS3 thin film for improvement of its photovoltaic performances
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2017.04.040
– volume: 174
  start-page: 412
  year: 2018
  ident: 10.1016/j.solener.2020.03.009_b0005
  article-title: ZnSnP2 solar cell with (Cd, Zn)S buffer layer: Analysis of recombination rates
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2017.09.035
– volume: 9
  start-page: 254
  issue: 4
  year: 2016
  ident: 10.1016/j.solener.2020.03.009_b0090
  article-title: How the chlorine treatment and the stoichiometry influences the grain boundary passivation in polycrystalline CdTe thin films
  publication-title: Energies
  doi: 10.3390/en9040254
– volume: 16
  start-page: 8843
  issue: 19
  year: 2014
  ident: 10.1016/j.solener.2020.03.009_b0805
  article-title: Unveiling the effects of post-deposition treatment with different alkaline elements on the electronic properties of CIGS thin film solar cells
  publication-title: PCCP
  doi: 10.1039/c4cp00614c
– volume: 7
  start-page: 301
  issue: 4
  year: 1972
  ident: 10.1016/j.solener.2020.03.009_b0740
  article-title: The preparation of amorphous thin films
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/0022-3093(72)90266-9
– volume: 9
  start-page: 2179
  issue: 1
  year: 2018
  ident: 10.1016/j.solener.2020.03.009_b1045
  article-title: Vapor transport deposition of antimony selenide thin film solar cells with 7.6% efficiency
  publication-title: Nature Commun.
  doi: 10.1038/s41467-018-04634-6
– volume: 184
  start-page: 553
  year: 2019
  ident: 10.1016/j.solener.2020.03.009_b0150
  article-title: Characteristics of Zn1−xMgxO: B and its application as transparent conductive oxide layer in Cu(In, Ga)(S, Se)2 solar cells with and without CdS buffer layer
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2019.04.029
– volume: 737
  start-page: 67
  year: 2018
  ident: 10.1016/j.solener.2020.03.009_b0545
  article-title: Self-powered, high-speed Sb2Se3/Si heterojunction photodetector with close spaced sublimation processed Sb2Se3 layer
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2017.12.039
– volume: 75
  start-page: 121
  issue: 1–2
  year: 2003
  ident: 10.1016/j.solener.2020.03.009_b0710
  article-title: Control of conduction band offset in wide-gap Cu(In, Ga)Se2 solar cells
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/S0927-0248(02)00120-4
– volume: 7
  start-page: 1700866
  issue: 20
  year: 2017
  ident: 10.1016/j.solener.2020.03.009_b0190
  article-title: Accelerated optimization of TiO2/Sb2Se3 thin film solar cells by high-throughput combinatorial approach
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201700866
– volume: 29
  start-page: 485
  issue: 8
  year: 1972
  ident: 10.1016/j.solener.2020.03.009_b1060
  article-title: Electron Energy States in Sb2Se3
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.29.485
– ident: 10.1016/j.solener.2020.03.009_b0540
  doi: 10.1155/2013/739078
– volume: 135
  start-page: 1096
  issue: 2–3
  year: 2012
  ident: 10.1016/j.solener.2020.03.009_b0120
  article-title: Micro-and nanostructures of Sb2O3 grown by evaporation–deposition: Self assembly phenomena, fractal and dendritic growth
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2012.06.024
– volume: 124
  start-page: 143
  year: 2014
  ident: 10.1016/j.solener.2020.03.009_b0560
  article-title: A recombination analysis of Cu(In, Ga)Se2 solar cells with low and high Ga compositions
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2014.01.047
– volume: 43
  start-page: 1073
  year: 2015
  ident: 10.1016/j.solener.2020.03.009_b0040
  article-title: Theoretical limits of photovoltaics efficiency and possible improvements by intuitive approaches learned from photosynthesis and quantum coherence
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2014.11.101
– volume: 160
  start-page: 257
  year: 2017
  ident: 10.1016/j.solener.2020.03.009_b0600
  article-title: Facile preparation and enhanced photoelectrical performance of Sb2Se3 nano-rods by magnetron sputtering deposition
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2016.10.042
– ident: 10.1016/j.solener.2020.03.009_b0445
– volume: 87
  start-page: 246
  year: 2017
  ident: 10.1016/j.solener.2020.03.009_b0320
  article-title: Towards high efficiency thin film solar cells
  publication-title: Prog. Mater Sci.
  doi: 10.1016/j.pmatsci.2017.02.003
– volume: 1
  start-page: 30
  issue: 1
  year: 2017
  ident: 10.1016/j.solener.2020.03.009_b1130
  article-title: Atomic layer deposition for perovskite solar cells: research status, opportunities and challenges
  publication-title: Sustainable Energy Fuels
  doi: 10.1039/C6SE00076B
– volume: 311
  start-page: 114
  issue: 1–2
  year: 1997
  ident: 10.1016/j.solener.2020.03.009_b0830
  article-title: Effect of the substrate temperature on the properties of spray deposited Sb–Se thin films from non-aqueous medium
  publication-title: Thin Solid Films
  doi: 10.1016/S0040-6090(97)00415-X
– volume: 130
  start-page: 139
  year: 2016
  ident: 10.1016/j.solener.2020.03.009_b0875
  article-title: Tabulated values of the Shockley-Queisser limit for single junction solar cells
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2016.02.015
– volume: 35
  start-page: 1629
  issue: 12
  year: 1974
  ident: 10.1016/j.solener.2020.03.009_b0295
  article-title: The thermal activation energy of crystalline Sb2Se3
  publication-title: J. Phys. Chem. Solids
  doi: 10.1016/S0022-3697(74)80175-7
– volume: 96
  start-page: 86
  year: 2018
  ident: 10.1016/j.solener.2020.03.009_b0680
  article-title: Revisiting the electrical and optical transmission properties of co-doped ZnO thin films as n-type TCOs
  publication-title: Prog. Mater Sci.
  doi: 10.1016/j.pmatsci.2018.03.004
– volume: 93
  start-page: 341
  issue: 1
  year: 2003
  ident: 10.1016/j.solener.2020.03.009_b0815
  article-title: Nondispersive hole transport in amorphous films of methoxy-spirofluorene-arylamine organic compound
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1525866
– volume: 87
  start-page: 541
  issue: 1–4
  year: 2005
  ident: 10.1016/j.solener.2020.03.009_b0425
  article-title: Fabrication of wide-gap Cu(In1−xGax)Se2 thin film solar cells: a study on the correlation of cell performance with highly resistive i-ZnO layer thickness
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2004.08.017
– volume: 272
  start-page: 1
  issue: 1
  year: 2000
  ident: 10.1016/j.solener.2020.03.009_b0350
  article-title: Electronic polarizability, optical basicity and XPS spectra of Sb2O3–B2O3 glasses
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/S0022-3093(00)00156-3
– volume: 10
  start-page: 1960
  issue: 5
  year: 2010
  ident: 10.1016/j.solener.2020.03.009_b0640
  article-title: Dependence of carrier mobility on nanocrystal size and ligand length in PbSe nanocrystal solids
  publication-title: Nano Lett.
  doi: 10.1021/nl101284k
– volume: 632
  start-page: 178
  year: 2015
  ident: 10.1016/j.solener.2020.03.009_b0570
  article-title: The effect of ZnS segregation on Zn-rich CZTS thin film solar cells
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2015.01.205
– volume: 89
  start-page: 8327
  issue: 12
  year: 2001
  ident: 10.1016/j.solener.2020.03.009_b0705
  article-title: Cu(In, Ga)Se2 solar cells with controlled conduction band offset of window/Cu(In, Ga)Se2 layers
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1366655
– volume: 6
  start-page: 10687
  issue: 13
  year: 2014
  ident: 10.1016/j.solener.2020.03.009_b0625
  article-title: Thermal evaporation and characterization of Sb2Se3 thin film for substrate Sb2Se3/CdS solar cells
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am502427s
– volume: 35
  start-page: 205
  issue: 3-4
  year: 1991
  ident: 10.1016/j.solener.2020.03.009_b0735
  article-title: Semiconductors for solar cell applications
  publication-title: Prog. Mater Sci.
  doi: 10.1016/0079-6425(91)90001-A
– start-page: 1800208
  year: 2018
  ident: 10.1016/j.solener.2020.03.009_b1020
  article-title: Promising Sb2(S, Se)3 solar cells with high open voltage by application of a TiO2/CdS double buffer layer
  publication-title: Solar RRL
  doi: 10.1002/solr.201800208
– volume: 127
  start-page: 188
  year: 2014
  ident: 10.1016/j.solener.2020.03.009_b0380
  article-title: Surface modification enabled carrier mobility adjustment in CZTS nanoparticle thin films
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2014.04.027
– volume: 515
  start-page: 3810
  issue: 7–8
  year: 2007
  ident: 10.1016/j.solener.2020.03.009_b0905
  article-title: Compositional dependence of the optical properties of amorphous antimony selenide thin films using transmission measurements
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2006.10.012
– volume: 133
  start-page: 8
  year: 2015
  ident: 10.1016/j.solener.2020.03.009_b0720
  article-title: Theoretical analysis on effect of band offsets in perovskite solar cells
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2014.10.036
– volume: 6
  start-page: 153
  issue: 3
  year: 2012
  ident: 10.1016/j.solener.2020.03.009_b0550
  article-title: Polymer solar cells
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2012.11
– volume: 6
  start-page: 87288
  issue: 90
  year: 2016
  ident: 10.1016/j.solener.2020.03.009_b0575
  article-title: The effect of sodium on antimony selenide thin film solar cells
  publication-title: RSC Adv.
  doi: 10.1039/C6RA20690E
– volume: 404
  start-page: 1119
  issue: 8–11
  year: 2009
  ident: 10.1016/j.solener.2020.03.009_b0255
  article-title: Effect of heat treatment on the structural and optical properties of amorphous Sb2Se3 and Sb2Se2S thin films
  publication-title: Physica B
  doi: 10.1016/j.physb.2008.11.086
– volume: 56
  start-page: 8597
  issue: 24
  year: 2011
  ident: 10.1016/j.solener.2020.03.009_b0555
  article-title: Preparation and characterization of Bi-doped antimony selenide thin films by electrodeposition
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2011.07.042
– volume: 200
  start-page: 352
  issue: 2
  year: 2003
  ident: 10.1016/j.solener.2020.03.009_b0020
  article-title: The growth of CdTe thin film by close space sublimation system
  publication-title: Physica Status Solidi (A)
  doi: 10.1002/pssa.200306691
– volume: 16
  start-page: 461
  issue: 6
  year: 2008
  ident: 10.1016/j.solener.2020.03.009_b0900
  article-title: Surface passivation of high-efficiency silicon solar cells by atomic-layer-deposited Al2O3
  publication-title: Prog. Photovoltaics Res. Appl.
  doi: 10.1002/pip.823
– volume: 2
  start-page: 2125
  issue: 9
  year: 2017
  ident: 10.1016/j.solener.2020.03.009_b0185
  article-title: 6.5% Certified efficiency Sb2Se3 solar cells using PbS colloidal quantum dot film as hole-transporting layer
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.7b00648
– volume: 9
  start-page: 4392
  issue: 10
  year: 1974
  ident: 10.1016/j.solener.2020.03.009_b0390
  article-title: Photoemission studies of crystalline and amorphous Sb2Se3
  publication-title: Physical Review B
  doi: 10.1103/PhysRevB.9.4392
– volume: 519
  start-page: 7568
  issue: 21
  year: 2011
  ident: 10.1016/j.solener.2020.03.009_b0725
  article-title: Sputtered ZnO-based buffer layer for band offset control in Cu(In, Ga)Se2 solar cells
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2010.12.117
– volume: 25
  start-page: 431
  issue: 6
  year: 2017
  ident: 10.1016/j.solener.2020.03.009_b0135
  article-title: Thin-film Cu(In, Ga)(Se, S)2-based solar cell with (Cd, Zn)S buffer layer and Zn1−xMgxO window layer
  publication-title: Prog. Photovoltaics Res. Appl.
  doi: 10.1002/pip.2879
– ident: 10.1016/j.solener.2020.03.009_b0405
  doi: 10.1109/PVSC.2018.8547653
– volume: 28
  start-page: 325
  issue: 3
  year: 1978
  ident: 10.1016/j.solener.2020.03.009_b0475
  article-title: Optical, photoelectric and electric properties of single-crystalline Sb2Se3
  publication-title: Czechoslovak J. Phys. B
  doi: 10.1007/BF01597220
– volume: 2
  start-page: 17046
  issue: 4
  year: 2017
  ident: 10.1016/j.solener.2020.03.009_b1010
  article-title: Stable 6%-efficient Sb2Se3 solar cells with a ZnO buffer layer
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2017.46
– volume: 18
  start-page: 79
  issue: 1
  year: 2018
  ident: 10.1016/j.solener.2020.03.009_b0355
  article-title: Performance assessment of Cu2SnS3 (CTS) based thin film solar cells by AMPS-1D
  publication-title: Curr. Appl Phys.
  doi: 10.1016/j.cap.2017.10.009
– volume: 193
  start-page: 452
  year: 2019
  ident: 10.1016/j.solener.2020.03.009_b0485
  article-title: Effects of post-deposition annealing and copper inclusion in superstrate Sb2Se3 based solar cells by thermal evaporation
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2019.09.069
– year: 2019
  ident: 10.1016/j.solener.2020.03.009_b0975
  article-title: Low-Bandgap Se-Deficient Antimony Selenide as a Multifunctional Polysulfide Barrier toward High-Performance Lithium-Sulfur Batteries
  publication-title: Adv. Mater.
– volume: 33
  start-page: 209
  issue: 4
  year: 2009
  ident: 10.1016/j.solener.2020.03.009_b0125
  article-title: Growth and microindentation analysis of pure and doped Sb2Se3 crystals
  publication-title: Turkish J. Phys.
– ident: 10.1016/j.solener.2020.03.009_b0435
  doi: 10.1088/1757-899X/271/1/012063
– ident: 10.1016/j.solener.2020.03.009_b0525
  doi: 10.1002/solr.201900026
– volume: 162
  start-page: 127
  year: 2017
  ident: 10.1016/j.solener.2020.03.009_b0860
  article-title: Improved stability of CdTe solar cells by absorber surface etching
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2016.12.044
– volume: 61
  start-page: 219
  issue: 3
  year: 1999
  ident: 10.1016/j.solener.2020.03.009_b0985
  article-title: Preparation and characterization of electrodeposited Sb2Se3 thin films
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/S0254-0584(99)00160-1
– volume: 11
  start-page: 2019
  issue: 12
  year: 2009
  ident: 10.1016/j.solener.2020.03.009_b0750
  article-title: Effect of temperature on the optical parameter of amorphous Sb-Se thin films
  publication-title: J. Optoelectron. Adv. Mater.
– volume: 12
  start-page: 191
  year: 2018
  ident: 10.1016/j.solener.2020.03.009_b1155
  article-title: Improving the performance of Sb2Se3 sensitized solar cells with a versatile CdSe layer modification
  publication-title: Appl. Mater. Today
  doi: 10.1016/j.apmt.2018.05.003
– volume: 27
  start-page: 1606242
  issue: 13
  year: 2017
  ident: 10.1016/j.solener.2020.03.009_b0775
  article-title: A new rGO-overcoated Sb2Se3 nanorods anode for Na+ battery: in Situ X-ray diffraction study on a live sodiation/desodiation process
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201606242
– volume: 28
  start-page: 770
  issue: 4
  year: 1995
  ident: 10.1016/j.solener.2020.03.009_b1135
  article-title: Transport properties of SbxSe1-x thin films
  publication-title: J. Phys. D Appl. Phys.
  doi: 10.1088/0022-3727/28/4/022
– volume: 8
  start-page: 082301
  issue: 8
  year: 2015
  ident: 10.1016/j.solener.2020.03.009_b1040
  article-title: CuSbSe2 photovoltaic devices with 3% efficiency
  publication-title: Appl. Phys Express
  doi: 10.7567/APEX.8.082301
– volume: 182
  start-page: 96
  year: 2019
  ident: 10.1016/j.solener.2020.03.009_b1145
  article-title: Alternative back contacts for Sb2Se3 solar cells
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2019.02.050
– volume: 261
  start-page: 510
  year: 2012
  ident: 10.1016/j.solener.2020.03.009_b0505
  article-title: Preparation and characterization of Sb2Se3 thin films by electrodeposition and annealing treatment
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2012.08.046
– volume: 27
  start-page: 713
  issue: 3
  year: 2018
  ident: 10.1016/j.solener.2020.03.009_b1025
  article-title: Development of antimony sulfide–selenide Sb2(S, Se)3-based solar cells
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2017.09.031
– volume: 212
  start-page: 2766
  issue: 12
  year: 2015
  ident: 10.1016/j.solener.2020.03.009_b0340
  article-title: Annealing effect on Cu2ZnSn(S, Se)4 solar cell with Zn1–xMgxO buffer layer
  publication-title: Phys. Status Solidi (A)
  doi: 10.1002/pssa.201532217
– volume: 107
  start-page: 043905
  issue: 4
  year: 2015
  ident: 10.1016/j.solener.2020.03.009_b0180
  article-title: Optical properties of amorphous and polycrystalline Sb2Se3 thin films prepared by thermal evaporation
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4927741
– volume: 33
  start-page: R17
  issue: 4
  year: 2000
  ident: 10.1016/j.solener.2020.03.009_b0260
  article-title: Magnetron sputtering of transparent conductive zinc oxide: relation between the sputtering parameters and the electronic properties
  publication-title: J. Phys. D Appl. Phys.
  doi: 10.1088/0022-3727/33/4/201
– volume: 4
  start-page: 2507
  issue: 10
  year: 2017
  ident: 10.1016/j.solener.2020.03.009_b0220
  article-title: Thermal treatment effects on electrodeposited Sb2Se3 photovoltaic thin films
  publication-title: ChemElectroChem
  doi: 10.1002/celc.201700511
– volume: 61
  start-page: 94
  year: 2014
  ident: 10.1016/j.solener.2020.03.009_b1095
  article-title: Recent progress in antireflection and self-cleaning technology–From surface engineering to functional surfaces
  publication-title: Prog. Mater Sci.
  doi: 10.1016/j.pmatsci.2013.12.003
– volume: 9
  start-page: 355
  issue: 6
  year: 2015
  ident: 10.1016/j.solener.2020.03.009_b0945
  article-title: Photovoltaics: Non-cubic solar cell materials
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2015.85
– volume: 127
  start-page: 8907
  issue: 20
  year: 2016
  ident: 10.1016/j.solener.2020.03.009_b0410
  article-title: Characterization and analysis of wheat-like CdS nanostructures under temperature effect for solar cells applications
  publication-title: Optik
  doi: 10.1016/j.ijleo.2016.06.109
– volume: 43
  start-page: 215403
  issue: 21
  year: 2010
  ident: 10.1016/j.solener.2020.03.009_b0270
  article-title: A study of ternary Cu2SnS3 and Cu3SnS4 thin films prepared by sulfurizing stacked metal precursors
  publication-title: J. Phys. D Appl. Phys.
  doi: 10.1088/0022-3727/43/21/215403
– volume: 8
  start-page: 141
  issue: 1
  year: 2013
  ident: 10.1016/j.solener.2020.03.009_b0325
  article-title: Lu3+/Yb3+ and Lu3+/Er3+ co-doped antimony selenide nanomaterials: synthesis, characterization, and electrical, thermoelectrical, and optical properties
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/1556-276X-8-141
– volume: 21
  start-page: 3170
  issue: 31
  year: 2009
  ident: 10.1016/j.solener.2020.03.009_b1090
  article-title: Pulsed vapor-liquid-solid growth of antimony selenide and antimony sulfide nanowires
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200803436
– volume: 10
  start-page: 11361
  issue: 13
  year: 2018
  ident: 10.1016/j.solener.2020.03.009_b0140
  article-title: 20% Efficient Zn0. 9Mg0.1O: Al/Zn0.8Mg0.2O/Cu(In, Ga)(S, Se)2 Solar Cell Prepared by All-Dry Process through a Combination of Heat-Light-Soaking and Light-Soaking Processes
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b01247
– volume: 159
  start-page: 834
  year: 2018
  ident: 10.1016/j.solener.2020.03.009_b0850
  article-title: Characterisation of SnSe thin films fabricated by chemical molecular beam deposition for use in thin film solar cells
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2017.11.053
– volume: 366
  start-page: 202
  issue: 1–2
  year: 2000
  ident: 10.1016/j.solener.2020.03.009_b0275
  article-title: Preparation and characterization of Sb2Se3 thin films prepared by electrodeposition for photovoltaic applications
  publication-title: Thin Solid Films
  doi: 10.1016/S0040-6090(00)00716-1
– volume: 4
  start-page: 1301680
  issue: 7
  year: 2014
  ident: 10.1016/j.solener.2020.03.009_b0210
  article-title: Efficient Inorganic-Organic Heterojunction Solar Cells Employing Sb2(Sx/Se1-x)3 Graded-Composition Sensitizers
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201301680
– volume: 636
  start-page: 431
  year: 2017
  ident: 10.1016/j.solener.2020.03.009_b0165
  article-title: Influence of Na in Cu2SnS3 film on its physical properties and photovoltaic performances
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2017.06.044
– volume: 52
  issue: 2
  year: 2019
  ident: 10.1016/j.solener.2020.03.009_b0080
  article-title: Facile synthesis of novel antimony selenide nanocrystals with hierarchical architecture by physical vapor deposition technique
  publication-title: J. Appl. Crystallogr.
  doi: 10.1107/S1600576719001006
– volume: 493
  start-page: 77
  issue: 1–2
  year: 2005
  ident: 10.1016/j.solener.2020.03.009_b0865
  article-title: Polycrystalline thin films of antimony selenide via chemical bath deposition and post deposition treatments
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2005.07.238
– volume: 188
  start-page: 177
  year: 2018
  ident: 10.1016/j.solener.2020.03.009_b0395
  article-title: 6.6% efficient antimony selenide solar cells using grain structure control and an organic contact layer
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2018.09.004
– volume: 9
  start-page: 052302
  issue: 5
  year: 2016
  ident: 10.1016/j.solener.2020.03.009_b0595
  article-title: Efficiency enhancement of Sb2Se3 thin-film solar cells by the co-evaporation of Se and Sb2Se3
  publication-title: Appl. Phys Express
  doi: 10.7567/APEX.9.052302
– volume: 9
  start-page: 409
  issue: 6
  year: 2015
  ident: 10.1016/j.solener.2020.03.009_b1170
  article-title: Thin-film Sb2Se3 photovoltaics with oriented one-dimensional ribbons and benign grain boundaries
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2015.78
– volume: 10
  start-page: 1306
  issue: 6
  year: 2017
  ident: 10.1016/j.solener.2020.03.009_b0835
  article-title: Copper indium gallium selenide based solar cells–a review
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C7EE00826K
– volume: 86
  start-page: 225
  issue: 1–6
  year: 1933
  ident: 10.1016/j.solener.2020.03.009_b0345
  article-title: Die struktur der minerale der antimonitgruppe. Zeitschrift für Kristallographie-Crystalline
  publication-title: Materials
– volume: 10
  issue: 1
  year: 2019
  ident: 10.1016/j.solener.2020.03.009_b0590
  article-title: 9.2%-efficient core-shell structured antimony selenide nanorod array solar cells
  publication-title: Nature Commun.
– volume: 173
  start-page: 225
  year: 2018
  ident: 10.1016/j.solener.2020.03.009_b0855
  article-title: Growth and characterization of Sb2Se3 thin films for solar cells
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2018.07.082
– volume: 3
  start-page: 43
  issue: 1
  year: 2013
  ident: 10.1016/j.solener.2020.03.009_b1110
  article-title: Inverse design of high absorption thin-film photovoltaic materials
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201200538
– volume: 390
  start-page: 142
  issue: 1–3
  year: 2011
  ident: 10.1016/j.solener.2020.03.009_b0030
  article-title: Synthesis of novel LnxSb2−xSe3 (Ln: Lu3+, Ho3+, Nd3+) nanomaterials via co-reduction method and investigation of their physical properties
  publication-title: Colloids Surf., A
  doi: 10.1016/j.colsurfa.2011.09.018
– volume: 125
  start-page: 2295
  issue: 10
  year: 2014
  ident: 10.1016/j.solener.2020.03.009_b0515
  article-title: Thickness effect on the structural and optical constants of stibnite thin films prepared by sulfidation annealing of antimony films
  publication-title: Optik-Int. J. Light Electron Opt.
  doi: 10.1016/j.ijleo.2013.10.114
– volume: 23
  start-page: 1828
  issue: 12
  year: 2015
  ident: 10.1016/j.solener.2020.03.009_b0620
  article-title: Improving the performance of Sb2Se3 thin film solar cells over 4% by controlled addition of oxygen during film deposition
  publication-title: Prog. Photovoltaics Res. Appl.
  doi: 10.1002/pip.2627
– volume: 43
  start-page: 229
  issue: 2
  year: 1981
  ident: 10.1016/j.solener.2020.03.009_b0920
  article-title: On the compositional dependence of the optical gap in amorphous semiconducting alloys
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/0022-3093(81)90119-8
– volume: 111
  start-page: 013901
  issue: 1
  year: 2017
  ident: 10.1016/j.solener.2020.03.009_b1165
  article-title: Buried homojunction in CdS/Sb2Se3 thin film photovoltaics generated by interfacial diffusion
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4991539
– volume: 27
  start-page: 8906
  issue: 9
  year: 2016
  ident: 10.1016/j.solener.2020.03.009_b1115
  article-title: Sb2Se3 solar cells prepared with selenized dc-sputtered metallic precursors
  publication-title: J. Mater. Sci.: Mater. Electron.
– volume: 49
  start-page: 346
  year: 2018
  ident: 10.1016/j.solener.2020.03.009_b0535
  article-title: Stable and efficient CdS/Sb2Se3 solar cells prepared by scalable close space sublimation
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.04.044
– volume: 21
  start-page: 1588
  issue: 8
  year: 2013
  ident: 10.1016/j.solener.2020.03.009_b0610
  article-title: The effect of Zn1−xSnxOy buffer layer thickness in 18.0% efficient Cd-free Cu(In, Ga)Se2 solar cells
  publication-title: Prog. Photovoltaics Res. Appl.
  doi: 10.1002/pip.2239
– volume: 95
  start-page: 42
  year: 2018
  ident: 10.1016/j.solener.2020.03.009_b0230
  article-title: Transparent heat regulating (THR) materials and coatings for energy saving window applications: Impact of materials design, micro-structural, and interface quality on the THR performance
  publication-title: Prog. Mater Sci.
  doi: 10.1016/j.pmatsci.2018.02.007
– volume: 27
  start-page: 8048
  issue: 23
  year: 2015
  ident: 10.1016/j.solener.2020.03.009_b1075
  article-title: Generalized water-processed metal chalcogenide complexes: synthesis and applications
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b03614
– volume: 4
  start-page: 1301846
  issue: 8
  year: 2014
  ident: 10.1016/j.solener.2020.03.009_b1160
  article-title: Solution-processed antimony selenide heterojunction solar cells
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201301846
– volume: 10
  start-page: 99
  issue: 2
  year: 1957
  ident: 10.1016/j.solener.2020.03.009_b0980
  article-title: The crystal structure of antimony selenide, Sb2Se3
  publication-title: Acta Crystallogr. A
  doi: 10.1107/S0365110X57000298
– volume: 126
  start-page: 1353
  issue: 5
  year: 2014
  ident: 10.1016/j.solener.2020.03.009_b0215
  article-title: Sb2Se3-sensitized inorganic–organic heterojunction solar cells fabricated using a single-source precursor
  publication-title: Angew. Chem.
  doi: 10.1002/ange.201308331
– volume: 109
  start-page: 232104
  issue: 23
  year: 2016
  ident: 10.1016/j.solener.2020.03.009_b0580
  article-title: Characterization of Mg and Fe doped Sb2Se3 thin films for photovoltaic application
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4971388
SSID ssj0017187
ssib006542964
ssib023146691
ssib036357013
ssib057237915
ssib011602162
ssib017387515
ssib000199863
Score 2.6749494
SecondaryResourceType review_article
Snippet Energy generated from environmentally friendly, cost-effective solar cells is a key aspect for developing a clean renewable-energy economy. Non-toxic and...
SourceID osti
proquest
crossref
nii
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 227
SubjectTerms Absorbers (materials)
Absorption
Absorptivity
Antimony
Antimony compounds
Carrier management
Clean energy
Energy conversion efficiency
Energy gap
Limiting factors
Material properties
MATERIALS SCIENCE
Open-circuit voltage deficit
Photovoltaic cells
Photovoltaics
Sb2Se3
Selenide
Selenides
Solar cells
SOLAR ENERGY
Thin films
Thin-film solar cells
Titanium dioxide
Zinc oxide
Title A review of Sb2Se3 photovoltaic absorber materials and thin-film solar cells
URI https://dx.doi.org/10.1016/j.solener.2020.03.009
https://cir.nii.ac.jp/crid/1872272492633937152
https://www.proquest.com/docview/2437434388
https://www.osti.gov/servlets/purl/1606129
Volume 201
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYoXNoDoqWoWx7yodewjh07znGFQEtbcQGkvVl-RQQtyWo3vfa3dyYPHkIIqZcoiTSWNTP-PJPMfCbkh-QsCqkgO3FdSw7EcNqmaeJEiKrMC2l9x_Z5pea32c-FXGyRs7EXBssqB-zvMb1D6-HNdNDmdFVV2OMrNCv4goOfwr7UdbBnOXr56d_HMo8UsLfnzRT4m58vnrp4pveQxC6R3BnSRM56rtPirf3pQ11VANsNLLxXsN3tRRd7ZHcIIumsn-dnshXrL-TTM2rBffJ7RvuuFNqU9Nrx6yjo6q5pG4Cj1laeWrdp1i6uKYSsvRdSWwfa3lV1UlbLB7rBpJfih_3NV3J7cX5zNk-GkxMSL5lqE6d8GWxWiOC0c6zkoSh9wX3wNqo8RlcyGUKqdJprpm3OeeqjDBDduGgzGcUB2a6bOn4jFCIgFXkQFjNHkQkrVID7yEIshZB2QrJRX8YPtOJ4usXSjPVj92ZQs0E1GyYMqHlCTh_FVj2vxnsCejSGeeEgBrD_PdFjMB7MDq_gDpznHU-i6MgAJZ-QQzQrDovEuR4rjGDcVGH4B9JHo7XNsL43BmkcURtaf___eR2Sj_jUl08eke12_SceQ4jTupPOh0_Izuzy1_zqHyNz-CY
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbacgAOiKe6fYAPcEw3sWPHOXCogGpLl17aSnszfkVNtSSrTSrEhT_FH2QmjwJCqBJSL1GUaKzom_E8lJnPhLwWLA5cSKhObDeSAzmcMkkSWe6DLLJcGNexfZ7K2UX6cSEWG-THOAuDbZWD7-99euethyfTAc3pqixxxperOGcLBnYKcSkZOitPwrevULc1b4_fg5LfMHb04fzdLBqOFoiciGUbWekKb9Kce6usjQvm88LlzHlngsxCsEUsvE-kSjIVK5MxlrggPIR_G0wqAod1N8m9FNwFHptw8P2mryQBZ98TdXLsK2CLX2ND0yuompfIJg11KYt7ctX8XwFxsypLiBM17PS_4kQX_I4ek0dD1koPe2CekI1QPSUPf-MyfEbmh7Qfg6F1Qc8sOwucri7rtgb_15rSUWObem3DmkKO3Js9NZWn7WVZRUW5_EIbrLIp_klonpOLO8HzBdmq6ipsEwoplwzMc4OlKk-54dLDfYh9KDgXZkLSES_tBh5zPE5jqceGtSs9wKwRZh1zDTBPyMGN2Kon8rhNQI3K0H9YpIZgc5voPigPvg6vYA6MZR0xI-_YBwWbkF1UKy6LTL0OW5pg3URivgnSe6O29eBQGo28kYiGUjv__12vyP3Z-ae5nh-fnuySB_im793cI1vt-jrsQ37V2pedPVPy-a430E_ZdDaX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+review+of+Sb2Se3+photovoltaic+absorber+materials+and+thin-film+solar+cells&rft.jtitle=Solar+energy&rft.au=Mavlonov%2C+Abdurashid&rft.au=Razykov%2C+Takhir&rft.au=Raziq%2C+Fazal&rft.au=Gan%2C+Jiantuo&rft.date=2020-05-01&rft.issn=0038-092X&rft.volume=201&rft.spage=227&rft.epage=246&rft_id=info:doi/10.1016%2Fj.solener.2020.03.009&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_solener_2020_03_009
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-092X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-092X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-092X&client=summon