Wheat Gluten Regulates Cholesterol Metabolism by Modulating Gut Microbiota in Hamsters with Hyperlipidemia

The objective of this research was to evaluate the effect of wheat gluten on gut microbiota from hamsters and also analyse whether alterations in microbiota could result in wheat gluten’s lipid-lowering properties. Four weeks male hamsters were divided into 3 groups (n=10). Two hypercholesterolemic...

Full description

Saved in:
Bibliographic Details
Published inJournal of Oleo Science Vol. 68; no. 9; pp. 909 - 922
Main Authors Liang, Ting-ting, Tong, Li-tao, Geng, Dong-hui, Wang, Li-li, Zhou, Xian-rong, Pu, Hua-yin, Jia, Wei, Wu, Qing-ping, Huang, Jun-rong
Format Journal Article
LanguageEnglish
Japanese
Published Japan Japan Oil Chemists' Society 2019
Japan Science and Technology Agency
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The objective of this research was to evaluate the effect of wheat gluten on gut microbiota from hamsters and also analyse whether alterations in microbiota could result in wheat gluten’s lipid-lowering properties. Four weeks male hamsters were divided into 3 groups (n=10). Two hypercholesterolemic groups were fed for 35 days with hypercholesterolemic diet, containing 20% (w/w) wheat gluten or casein. Wheat gluten significantly reduced serum total cholesterol (TC), low density lipoprotein cholesterol (LDL-C) concentrations, and also decreased the liver total cholesterol (TC), free cholesterol (FC), cholesterol ester (CE), triglycerides (TG) concentrations. Wheat gluten group had a higher fecal lipids, total cholesterol (TC) and bile acids (BA) than that of casein group (p < 0.05). Moreover, wheat gluten significantly increased total short-chain fatty acids (SCFA) concentrations in feces. Sequencing of 16S rRNA gene revealed that intake of wheat gluten decreased the relative abundances of Firmicutes and Erysipelotrichaceae, but to increased the relative abundances of Bateroidetes, Bacteroidales_S24-7_group and Ruminococcaceae. The lipid lowering properties of wheat gluten was associated with the lower ratio of Firmicutes/Bateroidetes, the lower of the bacterial taxa Erysipelotrichaceae and the higher of the bacterial taxa Bacteroidales_S24-7_group and Ruminococcaceae. These results suggest that wheat gluten modulate cholesterol metabolism by altering intestinal microflora.
AbstractList The objective of this research was to evaluate the effect of wheat gluten on gut microbiota from hamsters and also analyse whether alterations in microbiota could result in wheat gluten’s lipid-lowering properties. Four weeks male hamsters were divided into 3 groups (n=10). Two hypercholesterolemic groups were fed for 35 days with hypercholesterolemic diet, containing 20% (w/w) wheat gluten or casein. Wheat gluten significantly reduced serum total cholesterol (TC), low density lipoprotein cholesterol (LDL-C) concentrations, and also decreased the liver total cholesterol (TC), free cholesterol (FC), cholesterol ester (CE), triglycerides (TG) concentrations. Wheat gluten group had a higher fecal lipids, total cholesterol (TC) and bile acids (BA) than that of casein group (p < 0.05). Moreover, wheat gluten significantly increased total short-chain fatty acids (SCFA) concentrations in feces. Sequencing of 16S rRNA gene revealed that intake of wheat gluten decreased the relative abundances of Firmicutes and Erysipelotrichaceae, but to increased the relative abundances of Bateroidetes, Bacteroidales_S24-7_group and Ruminococcaceae. The lipid lowering properties of wheat gluten was associated with the lower ratio of Firmicutes/Bateroidetes, the lower of the bacterial taxa Erysipelotrichaceae and the higher of the bacterial taxa Bacteroidales_S24-7_group and Ruminococcaceae. These results suggest that wheat gluten modulate cholesterol metabolism by altering intestinal microflora.
Author Zhou, Xian-rong
Jia, Wei
Huang, Jun-rong
Liang, Ting-ting
Geng, Dong-hui
Pu, Hua-yin
Wu, Qing-ping
Wang, Li-li
Tong, Li-tao
Author_xml – sequence: 1
  fullname: Liang, Ting-ting
  organization: School of Food and Biological Engineering, Shanxi University of Science and Technology
– sequence: 2
  fullname: Tong, Li-tao
  organization: Institute of Agro-Products Processing Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing Ministry of Agriculture
– sequence: 3
  fullname: Geng, Dong-hui
  organization: Institute of Agro-Products Processing Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing Ministry of Agriculture
– sequence: 4
  fullname: Wang, Li-li
  organization: Institute of Agro-Products Processing Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing Ministry of Agriculture
– sequence: 5
  fullname: Zhou, Xian-rong
  organization: Institute of Agro-Products Processing Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing Ministry of Agriculture
– sequence: 6
  fullname: Pu, Hua-yin
  organization: School of Food and Biological Engineering, Shanxi University of Science and Technology
– sequence: 7
  fullname: Jia, Wei
  organization: School of Food and Biological Engineering, Shanxi University of Science and Technology
– sequence: 8
  fullname: Wu, Qing-ping
  organization: Guangdong Institute of Microbiology, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, State Key Laboratory of Applied Microbiology
– sequence: 9
  fullname: Huang, Jun-rong
  organization: School of Food and Biological Engineering, Shanxi University of Science and Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31484903$$D View this record in MEDLINE/PubMed
BookMark eNo9kNFr2zAQxkXpaJuub3segr3WrWRZsvS4hS4pNAxKRx-NZJ9jGdvKJJmS_3520uTl7tD97tPdt0CXgxsAoW-UPHDByWPrwgOEQGXK8wt0Q1mWJ4zx9PJQ80Qqnl-jRQgtIdM7z6_QNaOZzBRhN6h9b0BHvOrGCAN-he3Y6QgBLxvXQYjgXYc3ELVxnQ09Nnu8cdXM2GGLV2PEG1t6Z6yLGtsBr3U_DwX8YWOD1_sd-M7ubAW91V_Rl1p3Ae4-8y36-_vpbblOXv6snpc_X5KSExETLZVUNatVWZNMGWGoYUJVqclkznKhSiHBKEKJqSghvJZaZpSaGkBopSFlt-jHUXfn3b9xOqJo3eiH6csiTVVGiKDZTN0fqWn9EDzUxc7bXvt9QUkxGztNheJk7IR__xQdTQ_VGT45OQG_jkAbot7CGdA-2rKDg5qQhZrDSfXcLBvtCxjYfzbbkDg
CitedBy_id crossref_primary_10_3389_fnut_2021_705763
crossref_primary_10_3389_fcimb_2022_854879
crossref_primary_10_1016_j_fct_2022_113585
crossref_primary_10_1111_ijfs_15793
crossref_primary_10_1039_D1FO03058B
crossref_primary_10_1002_mnfr_202200574
crossref_primary_10_1002_fsn3_3490
crossref_primary_10_1002_ptr_7517
crossref_primary_10_1080_10408398_2022_2110035
crossref_primary_10_3390_molecules27123746
Cites_doi 10.1016/j.foodchem.2013.05.072
10.1002/jsfa.7236
10.1194/jlr.R500013-JLR200
10.1093/jn/130.7.1670
10.1007/978-0-387-09550-9_8
10.1073/pnas.0812600106
10.1038/nature11552
10.1016/j.immuni.2013.12.007
10.1161/CIRCRESAHA.117.309715
10.1073/pnas.0407076101
10.1038/nature13421
10.1016/j.coph.2009.06.016
10.1038/nature11225
10.1038/ismej.2009.112
10.4161/gmic.21578
10.1016/j.chom.2008.02.015
10.1007/s00253-013-5271-5
10.1016/j.meatsci.2011.04.009
10.1079/BJN19850006
10.3390/nu7042930
10.1038/ismej.2012.27
10.1113/jphysiol.2009.174136
10.1038/nature12820
10.1016/j.bbaexp.2003.09.011
10.1038/nature05414
10.1002/hep.1840200612
10.1007/s00198-011-1594-1
10.1016/j.phrs.2009.11.001
10.1016/j.jaci.2011.06.044
10.1038/ismej.2010.61
10.1038/nrmicro1152
10.1038/nrgastro.2012.156
10.1136/gut.34.4.437
10.1016/j.cell.2016.02.025
10.3945/jn.114.193706
10.1093/jn/123.11.1939
10.1126/science.1208344
10.1016/0024-3205(80)90397-5
10.3390/nu4111552
10.1177/1756283X13482996
10.1371/journal.pone.0027310
10.1079/BJN2003878
ContentType Journal Article
Copyright 2019 by Japan Oil Chemists' Society
Copyright Japan Science and Technology Agency 2019
Copyright_xml – notice: 2019 by Japan Oil Chemists' Society
– notice: Copyright Japan Science and Technology Agency 2019
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
8FD
F28
FR3
DOI 10.5650/jos.ess18257
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitleList Technology Research Database

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1347-3352
EndPage 922
ExternalDocumentID 10_5650_jos_ess18257
31484903
article_jos_68_9_68_ess18257_article_char_en
Genre Journal Article
GroupedDBID ---
2WC
5GY
ACIWK
ADBBV
AENEX
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BKOMP
DIK
DU5
EBS
EJD
F5P
FAC
GROUPED_DOAJ
GX1
HH5
JMI
JSF
JSH
KQ8
MOJWN
OK1
RJT
RZJ
TKC
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
8FD
F28
FR3
ID FETCH-LOGICAL-c506t-a8989f3f9cf049b6b1b369d2b4873769c68eb9010bd1005f8a8411bfee6a9ae23
ISSN 1345-8957
IngestDate Fri Sep 13 00:29:13 EDT 2024
Fri Aug 23 01:02:03 EDT 2024
Sat Sep 18 03:57:05 EDT 2021
Wed Apr 05 07:13:38 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 9
Keywords wheat gluten
hypocholesterolemia
cholesterol metabolism
gut microbiota
Language English
Japanese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c506t-a8989f3f9cf049b6b1b369d2b4873769c68eb9010bd1005f8a8411bfee6a9ae23
OpenAccessLink https://www.jstage.jst.go.jp/article/jos/68/9/68_ess18257/_article/-char/en
PMID 31484903
PQID 2294006142
PQPubID 1976371
PageCount 14
ParticipantIDs proquest_journals_2294006142
crossref_primary_10_5650_jos_ess18257
pubmed_primary_31484903
jstage_primary_article_jos_68_9_68_ess18257_article_char_en
PublicationCentury 2000
PublicationDate 2019-00-00
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – year: 2019
  text: 2019-00-00
PublicationDecade 2010
PublicationPlace Japan
PublicationPlace_xml – name: Japan
– name: Tokyo
PublicationTitle Journal of Oleo Science
PublicationTitleAlternate J Oleo Sci
PublicationYear 2019
Publisher Japan Oil Chemists' Society
Japan Science and Technology Agency
Publisher_xml – name: Japan Oil Chemists' Society
– name: Japan Science and Technology Agency
References 36) Schloss, P.D.; Gevers, D.; Westcott, S.L. Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies. PLoS One 6, e27310 (2011).
31) Zhang, H.; Dibaise, J.K.; Zuccolo, A.; Kudrna, D.; Braidotti, M.; Yu, Y. Human gut microbiota in obesity and after gastric bypass. Proc. Natl. Acad. Sci. USA 106, 2365-2370 (2009).
24) Claus, S.P.; Ellero, S.L.; Berger, B.; Krause, L.; Bruttin, A.; Molina, J. Colonization-induced host-gut microbial metabolic interaction. MBio. 2, e00271 (2011).
11) Bassat, M.; Mokady, S. The effect of amino-acid-supplemented wheat gluten on cholesterol metabolism in the rat. Br. J. Nutr. 53, 25-30 (1985).
23) Allen, C.A.; Torres, A.G. Host-microbe communication within the GI tract. Adv. Exp. Med. Biol. 635, 93-101 (2008).
32) Fernandez, R.D.; Hoeflinger, J.L.; Bringe, N.A.; Cox, S.B.; Dowd, S.E.; Miller, M.J. Consumption of different soymilk formulations differentially affects the gut microbiomes of overweight and obese men. Gut Microbes 3, 490-500 (2012).
39) Nicholson, J.K.; Holmes, E.; Wilson, I.D. Gut microorganisms, mammalian metabolism and personalized health care. Nat. Rev. Microbiol. 3, 431-438 (2005).
54) Malladi, S.; Macalinao, D.; Jin, X.; He, L.; Basnet, H.; Zou, Y. Metastatic latency and immune evasion through autocrine inhibition of wnt. Cell 165, 45-60 (2016).
7) Yang, L.; Han, G.; Liu, Q.H.; Wu, Q.; He, H.J.; Cheng, C.Z. Rice protein exerts a hypocholesterolemic effect through regulating cholesterol metabolism-related gene expression and enzyme activity in adult rats fed a cholesterol-enriched diet. Int. J. Food Sci. Nutr. 64, 836-842 (2013).
27) Fredrik, B.; Ding, H.; Wang, T.; Hooper, L.V.; Koh, G.Y.; Nagy, A. The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl. Acad. Sci. USA 101, 15718-15723 (2004).
13) Boila, R.J.; Salomons, M.D.; Milligan, L.P.; Aherne, F.X. The effect of dietary propionic acid on cholesterol synthesis in swine. Nutr. Rep. Int. 23, 1113-1121 (1981).
55) Zhang, C. Interactions between gut microbiota, host genetics and diet relevant to development of metabolic syndromes in mice. ISME J. 4, 232-241 (2010).
49) Ege, M.J. Intestinal microbial diversity in infancy and allergy risk at school age. J. Allergy Clin. Immunol. 128, 653-654 (2011).
21) An, C.; Kuda, T.; Yazaki, T.; Takahashi, H.; Kimura, B. Caecal fermentation, putrefaction and microbiotas in rats fed milk casein, soy protein or fish meal. Appl. Microbiol. Biotechnol. 98, 2779-2787 (2013).
22) Zhu, Y.; Lin, X.; Zhao, F.; Shi, X.; Li, H.; Li, Y. Meat, dairy and plant proteins alter bacterial composition of rat gut bacteria. Sci. Rep. 5, 16546 (2015).
19) Brown, K.; Decoffe, D.; Molcan, E. Diet-induced dysbiosis of the intestinal microbiota and the effects on immunity and disease. Nutrients 4, 1552-1553 (2012).
48) Biagi, E.; Nylund, L.; Candela, M.; Ostan, R.; Vos, W.D. Correction: through ageing, and beyond: gut microbiota and inflammatory status in seniors and centenarians. PLoS One 5, e10667 (2010).
25) Tremaroli, V.; Bäckhed, F. Functional interactions between the gut microbiota and host metabolism. Nature 489, 242-249 (2012).
40) Marlett, J.A.; Hosig, K.B.; Vollendorf, N.W.; Shinnick, F.L.; Haack, V.S.; Story, J.A. Mechanism of serum cholesterol reduction by oat bran. Hepatology 20, 1450-1457 (1994).
2) Song, M.; Fung, T.T.; Hu, F.B.; Willett, W.C.; Giovannucci, E.L. Association of Animal and Plant Protein Intake With All-Cause and Cause-Specific Mortality. JAMA Intern. Med. 176, 1453-1463 (2016).
1) Go, A.S.; Mozaffarian, D.; Roger, V.L.; Benjamin, E.J.; Berry, J.D.; Borden, W.B.; Woo, D. American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics - 2013 update: a report from the American Heart Association. Circulation 129, e28-92 (2013).
33) Gibson, G.R.; Macfarlane, G.T.; Cummings, J.H. Sulphate reducing bacteria and hydrogen metabolism in the human large intestine. Gut 34, 437-439 (1993).
29) Turnbaugh, P.J.; Bkhed, F.; Fulton, L.; Gordon, J.I. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe. 3, 213-223 (2008).
10) Kritchevsky, D.; Tepper, S.A.; Williams, D.E.; Story, J.A. Experimental atherosclerosis in rabbits fed cholesterol-free diets. 11. Corn protein, wheat gluten and lactalbumin. Nutr. Rep. Int. 26, 931-936 (1982).
43) Laparra, J.M.; Sanz, Y. Interactions of gut microbiota with functional food components and nutraceuticals. Pharmacol. Res. 61, 219-225 (2010).
3) Corpet, D.E. Red meat and colon cancer: Should we become vegetarians, or can we make meat safer. Meat Sci. 89, 310-316 (2011).
42) Dong, J.; Xiang, Q.; Shen, R.; Liu, Y.; Zhu, Y.; Ma, Y. Oat products modulate the gut microbiota and produce anti-obesity effects in obese rats. J. Funct. Foods 25, 408-420 (2016).
53) Fujita, Y.; Iki, M.; Tamaki, J.; Kouda, K.; Yura, A.; Kadowaki, E. Association between vitamin K intake from fermented soybeans, natto, and bone mineral density in elderly Japanese men: the Fujiwara-kyo Osteoporosis Risk in Men (FORMEN) study. Osteoporos Int. 23, 705-714 (2011).
44) Conterno, L.; Fava, F.; Viola, R.; Tuohy, K.M. Obesity and the gut microbiota: does up-regulating colonic fermentation protect against obesity and metabolic disease? Genes Nutr. 6, 241-260 (2011).
5) Harland, J.; Krul, E.; Mukherjea, R. Soy: nutrition, consumption and heart health. Nova Science Publishers, Inc. pp. 1-40 (2012).
35) Sivaprakasam, S. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity 40, 128-139 (2014).
16) Tang, W.H.; Kitai, T.; Hazen, S.L. Gut microbiota in cardiovascular health and disease. Circ. Res. 120, 1183-1196 (2017).
9) Tomotake, H.; Shimaoka, I.; Kayashita, J.; Yokoyama, F.; Nakajoh, M.; Kato, N.A. Buckwheat protein product suppresses gallstone formation and plasma cholesterol more strongly than soy protein isolate in hamsters. J. Nutr. 130, 1670-1674 (2000).
50) Degeorge, K.C.; Frye, J.W.; Stein, K.M.; Mccarter, D.F. Celiac disease and gluten sensitivity. Prim. Care 44, 693-707 (2017).
51) Zhang, C.; Zhang, M.; Pang, X.; Zhao, Y.; Wang, L.; Zhao, L. Structural resilience of the gut microbiota in adult mice under high-fat dietary perturbations. ISME J. 6, 1848-1857 (2012).
46) Devkota, S.; Wang, Y.; Musch, M.W.; Leone, V.; Fehlnerpeach, H.; Nadimpalli, A. Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10-/- mice. Nature 487, 104-108 (2012).
41) Ridlon, J.M.; Kang, D.J.; Hylemon, P.B. Bile salt biotransformations by human intestinal bacteria. J. Lipid Res. 47, 241-259 (2006).
52) Neis E.P.; Dejong C.H.; Rensen, S.S. The role of microbial amino acid metabolism in host metabolism. Nutrients 7, 2930-2946 (2015).
56) Guinane, C.M.; Cotter, P.D. Role of the gut microbiota in health and chronic gastrointestinal disease: understanding a hidden metabolic organ. Ther. Adv. Gastroenterol. 6, 295-308 (2013).
18) David, L.A.; Maurice, C.F.; Carmody, R.N.; Gootenberg, D.B.; Button, J.E.; Wolfe, B.E. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559-563 (2014).
38) Sato, K.; Ohuchi, A.; Sook, S.H.; Toyomizu, M.; Akiba, Y. Changes in mRNA expression of 3-hydroxy-3-methylglutaryl coenzyme A reductase and cholesterol 7 alpha-hydroxylase in chickens. Biochim. Biophys. Acta 1630, 96-102 (2003).
45) Flint, H.J.; Scott, K.P.; Louis, P.; Duncan, S.H. The role of the gut microbiota in nutrition and health. Nat. Rev. Gastroenterol. Hepatol. 9, 577-589 (2012).
57) Marco, M.; Vries, D.M.C.; Wels, M.W.W.; Molenaar, D.; Mangell, P.; Ahrne, S. Convergence in probiotic Lactobacillus gut-adaptive responses in humans and mice. ISME J. 4, 1481-1484 (2010).
20) Graf, D.; Cagno, R.D.; Frida F.; Flint, H.J.; Nyman, M.; Saarela, M. Contribution of diet to the composition of the human gut microbiota. Biochem. J. 26, 477-480 (2015).
12) Bell, S.; Goldman, V.M.; Bistrian, B.R.; Arnold, A.H.; Ostroff, G.; Forse, R.A. Effect of beta-glucan from oats and yeast on serum lipids. Crit. Rev. Food Sci. Nutr. 39, 189-202 (1999).
8) Ni, W.; Tsuda, Y.; Takashima, S.; Sato, H.; Sato, M.; Imaizumi, K. Anti-atherogenic effect of soya and rice-protein isolate, compared with casein, in apolipoprotein E-deficient mice. Br. J. Nutr. 90, 13-20 (2003).
14) Prasad, K.N. Butyric acid: a small fatty acid with diverse biological functions. Life Sci. 27, 1351-1358 (1980).
4) Tong, L.T.; Guo, L.; Zhou, X.; Qiu, J.; Liu, L.; Zhong, K. Effects of dietary oat proteins on cholesterol metabolism of hypercholesterolemic hamsters. J. Sci. Food Agric. 96, 1396-1401 (2016).
26) Cani, P.D.; Delzenne, N.M. Interplay between obesity and associated metabolic disorders: new insights into the gut microbiota. Curr. Opin. Pharmacol. 9, 737-743 (2009).
28) Turnbaugh, P.J.; Ley, R.E.; Mahowald, M.A.; Magrini, V.; Mardis, E.R.; Gordon, J.I. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027-1031 (2006).
34) Reeves, P.G.; Nielsen, F.H.; Fahey, G.C.Jr. AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J. Nutr. 123, 1939-1951 (1993).
58) Wu, G.D.; Chen, J.; Hoffmann, C.; Bittinger, K.; Chen, Y.Y.; Keilbaugh, S.A.; Lewis, J.D. Linking long-term dietary patterns with gut microbial enterotypes. Science 334, 105-108 (2011).
17) Subramanian, S.; Huq, S.; Yatsunenko, T.; Haque, R.; Mahfuz, M.; Alam, M.A. Persistent gut microbiota immaturity in malnourished Bangladeshi children. Nature 510, 417-421 (2014).
6) Van, N.M.; Feskens, E.J.M.; Rietman, A.; Siebelink, E.; Mensink, M. Partly replacing meat protein with soy protein alters insulin resistance and blood lipids in postmenopausal women with abdominal obesity. J. Nutr. 144, 1423-1429 (2014).
30) Turnbaugh P.J.; Gordon J.I. The core gut microbiome, energy balance and obesity. J. Physiol. 587,
44
45
46
47
48
49
50
51
52
53
10
54
11
55
12
56
13
57
14
58
15
16
17
18
19
1
2
3
4
5
6
7
8
9
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
References_xml – ident: 2
– ident: 37
  doi: 10.1016/j.foodchem.2013.05.072
– ident: 4
  doi: 10.1002/jsfa.7236
– ident: 41
  doi: 10.1194/jlr.R500013-JLR200
– ident: 9
  doi: 10.1093/jn/130.7.1670
– ident: 12
– ident: 23
  doi: 10.1007/978-0-387-09550-9_8
– ident: 31
  doi: 10.1073/pnas.0812600106
– ident: 25
  doi: 10.1038/nature11552
– ident: 35
  doi: 10.1016/j.immuni.2013.12.007
– ident: 16
  doi: 10.1161/CIRCRESAHA.117.309715
– ident: 27
  doi: 10.1073/pnas.0407076101
– ident: 17
  doi: 10.1038/nature13421
– ident: 26
  doi: 10.1016/j.coph.2009.06.016
– ident: 46
  doi: 10.1038/nature11225
– ident: 22
– ident: 55
  doi: 10.1038/ismej.2009.112
– ident: 5
– ident: 1
– ident: 32
  doi: 10.4161/gmic.21578
– ident: 13
– ident: 50
– ident: 29
  doi: 10.1016/j.chom.2008.02.015
– ident: 21
  doi: 10.1007/s00253-013-5271-5
– ident: 3
  doi: 10.1016/j.meatsci.2011.04.009
– ident: 11
  doi: 10.1079/BJN19850006
– ident: 52
  doi: 10.3390/nu7042930
– ident: 48
– ident: 51
  doi: 10.1038/ismej.2012.27
– ident: 30
  doi: 10.1113/jphysiol.2009.174136
– ident: 18
  doi: 10.1038/nature12820
– ident: 44
– ident: 38
  doi: 10.1016/j.bbaexp.2003.09.011
– ident: 28
  doi: 10.1038/nature05414
– ident: 40
  doi: 10.1002/hep.1840200612
– ident: 53
  doi: 10.1007/s00198-011-1594-1
– ident: 43
  doi: 10.1016/j.phrs.2009.11.001
– ident: 49
  doi: 10.1016/j.jaci.2011.06.044
– ident: 57
  doi: 10.1038/ismej.2010.61
– ident: 39
  doi: 10.1038/nrmicro1152
– ident: 45
  doi: 10.1038/nrgastro.2012.156
– ident: 10
– ident: 33
  doi: 10.1136/gut.34.4.437
– ident: 54
  doi: 10.1016/j.cell.2016.02.025
– ident: 24
– ident: 7
– ident: 47
– ident: 20
– ident: 6
  doi: 10.3945/jn.114.193706
– ident: 42
– ident: 34
  doi: 10.1093/jn/123.11.1939
– ident: 15
– ident: 58
  doi: 10.1126/science.1208344
– ident: 14
  doi: 10.1016/0024-3205(80)90397-5
– ident: 19
  doi: 10.3390/nu4111552
– ident: 56
  doi: 10.1177/1756283X13482996
– ident: 36
  doi: 10.1371/journal.pone.0027310
– ident: 8
  doi: 10.1079/BJN2003878
SSID ssj0033557
Score 2.241849
Snippet The objective of this research was to evaluate the effect of wheat gluten on gut microbiota from hamsters and also analyse whether alterations in microbiota...
SourceID proquest
crossref
pubmed
jstage
SourceType Aggregation Database
Index Database
Publisher
StartPage 909
SubjectTerms Abundance
Animals
Anticholesteremic Agents - pharmacology
Bile
Casein
Cholesterol
cholesterol metabolism
Cholesterol, LDL - blood
Cholesterol, LDL - metabolism
Fatty acids
Fatty Acids, Volatile - metabolism
Feces - microbiology
Gastrointestinal Microbiome - drug effects
Gastrointestinal Microbiome - genetics
Gene sequencing
Gluten
Glutens - pharmacology
gut microbiota
Hamsters
Hyperlipidemias - microbiology
hypocholesterolemia
Lipids
Male
Mesocricetus
Metabolism
Microbiota
RNA, Ribosomal, 16S - analysis
Triglycerides
Triticum - chemistry
Wheat
wheat gluten
Title Wheat Gluten Regulates Cholesterol Metabolism by Modulating Gut Microbiota in Hamsters with Hyperlipidemia
URI https://www.jstage.jst.go.jp/article/jos/68/9/68_ess18257/_article/-char/en
https://www.ncbi.nlm.nih.gov/pubmed/31484903
https://www.proquest.com/docview/2294006142/abstract/
Volume 68
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Oleo Science, 2019, Vol.68(9), pp.909-922
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKwgEOiDeFBfkAp8olie1gixNaHhWiKw5daW9RnDhLqtKgbXqAf8C_ZsZO3HS1Ky1crMqPOM18npfGM4S8UjIvCi44q4yWTKRJxZSNC6ZKXoJCLKz3d8yP09mJ-HIqT0ejP4OopW1rpsXvS--V_A9VoQ_oirdk_4Gy4aHQAb-BvtAChaG9Fo0dJ518hi0sOuJdVXm7mRxhzVtMgNBg1GoLZF5hKQxQNOdN6cp1odNp22LMvEvD1Obo9pjlP3BRd99tBgbq-ar2BWTzK3RY2KeZdEI0hPbUnQt6AduwtheNzpPtB77WrM2bEPljfe8HGGXft_XOxR9mr-qhc6Jjfp6TciGZ0j779NT2fcDRuNxjv6kawEwPeKmO9EAsa399-SLHB30UQySXzWYKkgGMpX7DYWLtCwIvhCGCAYTrM1id9atvkJvJWzAaHY8PlhS8tEsaG_6Vv0OBq98M997Tbm4tQcE_s1fbLk6HWdwjdzvC0fceSffJyK4fkDuDlJQPydJhinpM0YApOsAU3WGKml90hykKmKI7TNF6TXtMUcQU3cfUI3Ly6ePiaMa6ehyskFHashxLjVa80kUFdqVJTWx4qsvEgNELckoXqbIGw31MGQNzr1SuRBybytoUc8An_DE5WDdr-5RQHhfGgqoqy6gQsDBPIllInifKRjIp9Zi87r9j9tOnXckuo9aYvPMfOczqDqOblapMY9PPDoN4oxEYyJgc9pTJumO9yZJEC1TsRTImTzy1wsN5LJTQEX92zdd7Tm7jqfAuu0Ny0J5v7QtQYlvz0sEL2uNv87_jv6UB
link.rule.ids 315,786,790,4043,27956,27957,27958
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wheat+Gluten+Regulates+Cholesterol+Metabolism+by+Modulating+Gut+Microbiota+in+Hamsters+with+Hyperlipidemia&rft.jtitle=Journal+of+oleo+science&rft.au=Liang%2C+Ting-ting&rft.au=Tong%2C+Li-tao&rft.au=Geng%2C+Dong-hui&rft.au=Wang%2C+Li-li&rft.date=2019&rft.issn=1345-8957&rft.eissn=1347-3352&rft.volume=68&rft.issue=9&rft.spage=909&rft.epage=922&rft_id=info:doi/10.5650%2Fjos.ess18257&rft.externalDBID=n%2Fa&rft.externalDocID=10_5650_jos_ess18257
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1345-8957&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1345-8957&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1345-8957&client=summon