Generation of human islet-specific regulatory T cells by TCR gene transfer
Based on the success in animal models of type 1 diabetes (T1D), clinical trials of adoptive regulatory T cell (Treg) therapy are underway using ex vivo expanded polyclonal Tregs. However, pre-clinical data also demonstrate that islet-specific Tregs are more potent than polyclonal Tregs at reversing...
Saved in:
Published in | Journal of autoimmunity Vol. 79; pp. 63 - 73 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.05.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Based on the success in animal models of type 1 diabetes (T1D), clinical trials of adoptive regulatory T cell (Treg) therapy are underway using ex vivo expanded polyclonal Tregs. However, pre-clinical data also demonstrate that islet-specific Tregs are more potent than polyclonal Tregs at reversing T1D. Translation of this approach into man will require methods to generate large populations of islet-specific Tregs which, to date, has proved to be a major hurdle. Here we demonstrate the feasibility of lentiviral-mediated T cell receptor (TCR) gene transfer to confer antigen specificity on polyclonal human Tregs. Targeting has been achieved using TCRs isolated from human islet-specific and viral-specific CD4+ T cell clones. Engineered T cells demonstrated expression of ectopically-delivered TCRs, resulting in endowment of cognate antigen-specific responses. This enabled antigen-specific suppression at increased potency compared to polyclonal Tregs. However, cells transduced with islet-specific TCRs were less responsive to cognate antigen than viral-specific TCRs, and in some cases, required additional methods to isolate functional antigen-specific Tregs. This study demonstrates the potential of TCR gene transfer to develop islet-specific Treg therapies for effective treatment of T1D, but also highlights that additional optimisation may be required to achieve its full potential.
•Polyclonal Treg transfer has reached the clinic as a therapy for type 1 diabetes.•Mouse models show that antigen specific Tregs may be a more effective therapy.•Lentiviral TCR gene transfer can redirect the specificity of polyclonal Tregs.•This approach can be used to generate large numbers of islet specific Tregs.•Islet specific Tregs were capable of mediating antigen specific suppression. |
---|---|
AbstractList | Based on the success in animal models of type 1 diabetes (T1D), clinical trials of adoptive regulatory T cell (Treg) therapy are underway using ex vivo expanded polyclonal Tregs. However, pre-clinical data also demonstrate that islet-specific Tregs are more potent than polyclonal Tregs at reversing T1D. Translation of this approach into man will require methods to generate large populations of islet-specific Tregs which, to date, has proved to be a major hurdle. Here we demonstrate the feasibility of lentiviral-mediated T cell receptor (TCR) gene transfer to confer antigen specificity on polyclonal human Tregs. Targeting has been achieved using TCRs isolated from human islet-specific and viral-specific CD4+ T cell clones. Engineered T cells demonstrated expression of ectopically-delivered TCRs, resulting in endowment of cognate antigen-specific responses. This enabled antigen-specific suppression at increased potency compared to polyclonal Tregs. However, cells transduced with islet-specific TCRs were less responsive to cognate antigen than viral-specific TCRs, and in some cases, required additional methods to isolate functional antigen-specific Tregs. This study demonstrates the potential of TCR gene transfer to develop islet-specific Treg therapies for effective treatment of T1D, but also highlights that additional optimisation may be required to achieve its full potential.
•Polyclonal Treg transfer has reached the clinic as a therapy for type 1 diabetes.•Mouse models show that antigen specific Tregs may be a more effective therapy.•Lentiviral TCR gene transfer can redirect the specificity of polyclonal Tregs.•This approach can be used to generate large numbers of islet specific Tregs.•Islet specific Tregs were capable of mediating antigen specific suppression. Based on the success in animal models of type 1 diabetes (T1D), clinical trials of adoptive regulatory T cell (Treg) therapy are underway using ex vivo expanded polyclonal Tregs. However, pre-clinical data also demonstrate that islet-specific Tregs are more potent than polyclonal Tregs at reversing T1D. Translation of this approach into man will require methods to generate large populations of islet-specific Tregs which, to date, has proved to be a major hurdle. Here we demonstrate the feasibility of lentiviral-mediated T cell receptor (TCR) gene transfer to confer antigen specificity on polyclonal human Tregs. Targeting has been achieved using TCRs isolated from human islet-specific and viral-specific CD4+ T cell clones. Engineered T cells demonstrated expression of ectopically-delivered TCRs, resulting in endowment of cognate antigen-specific responses. This enabled antigen-specific suppression at increased potency compared to polyclonal Tregs. However, cells transduced with islet-specific TCRs were less responsive to cognate antigen than viral-specific TCRs, and in some cases, required additional methods to isolate functional antigen-specific Tregs. This study demonstrates the potential of TCR gene transfer to develop islet-specific Treg therapies for effective treatment of T1D, but also highlights that additional optimisation may be required to achieve its full potential. Based on the success in animal models of type 1 diabetes (T1D), clinical trials of adoptive regulatory T cell (Treg) therapy are underway using ex vivo expanded polyclonal Tregs. However, pre-clinical data also demonstrate that islet-specific Tregs are more potent than polyclonal Tregs at reversing T1D. Translation of this approach into man will require methods to generate large populations of islet-specific Tregs which, to date, has proved to be a major hurdle. Here we demonstrate the feasibility of lentiviral-mediated T cell receptor (TCR) gene transfer to confer antigen specificity on polyclonal human Tregs. Targeting has been achieved using TCRs isolated from human islet-specific and viral-specific CD4 T cell clones. Engineered T cells demonstrated expression of ectopically-delivered TCRs, resulting in endowment of cognate antigen-specific responses. This enabled antigen-specific suppression at increased potency compared to polyclonal Tregs. However, cells transduced with islet-specific TCRs were less responsive to cognate antigen than viral-specific TCRs, and in some cases, required additional methods to isolate functional antigen-specific Tregs. This study demonstrates the potential of TCR gene transfer to develop islet-specific Treg therapies for effective treatment of T1D, but also highlights that additional optimisation may be required to achieve its full potential. Abstract Based on the success in animal models of type 1 diabetes (T1D), clinical trials of adoptive regulatory T cell (Treg) therapy are underway using ex vivo expanded polyclonal Tregs. However, pre-clinical data also demonstrate that islet-specific Tregs are more potent than polyclonal Tregs at reversing T1D. Translation of this approach into man will require methods to generate large populations of islet-specific Tregs which, to date, has proved to be a major hurdle. Here we demonstrate the feasibility of lentiviral-mediated T cell receptor (TCR) gene transfer to confer antigen specificity on polyclonal human Tregs. Targeting has been achieved using TCRs isolated from human islet-specific and viral-specific CD4+ T cell clones. Engineered T cells demonstrated expression of ectopically-delivered TCRs, resulting in endowment of cognate antigen-specific responses. This enabled antigen-specific suppression at increased potency compared to polyclonal Tregs. However, cells transduced with islet-specific TCRs were less responsive to cognate antigen than viral-specific TCRs, and in some cases, required additional methods to isolate functional antigen-specific Tregs. This study demonstrates the potential of TCR gene transfer to develop islet-specific Treg therapies for effective treatment of T1D, but also highlights that additional optimisation may be required to achieve its full potential. |
Author | Hull, Caroline M. Richardson, Max W. Riley, James L. Tree, Timothy I.M. Maher, John Peakman, Mark Nickolay, Lauren E. Estorninho, Megan |
Author_xml | – sequence: 1 givenname: Caroline M. surname: Hull fullname: Hull, Caroline M. email: caroline.hull@kcl.ac.uk organization: Department of Immunobiology, Faculty of Life Sciences & Medicine, King's College London, London SE1 9RT, UK – sequence: 2 givenname: Lauren E. surname: Nickolay fullname: Nickolay, Lauren E. organization: Department of Immunobiology, Faculty of Life Sciences & Medicine, King's College London, London SE1 9RT, UK – sequence: 3 givenname: Megan surname: Estorninho fullname: Estorninho, Megan organization: Department of Immunobiology, Faculty of Life Sciences & Medicine, King's College London, London SE1 9RT, UK – sequence: 4 givenname: Max W. surname: Richardson fullname: Richardson, Max W. organization: Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA – sequence: 5 givenname: James L. surname: Riley fullname: Riley, James L. organization: Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA – sequence: 6 givenname: Mark surname: Peakman fullname: Peakman, Mark organization: Department of Immunobiology, Faculty of Life Sciences & Medicine, King's College London, London SE1 9RT, UK – sequence: 7 givenname: John surname: Maher fullname: Maher, John organization: NIHR Biomedical Research Centre, Guy's and St Thomas' NHS Foundation Trust and King's College London, London SE1 9RT, UK – sequence: 8 givenname: Timothy I.M. surname: Tree fullname: Tree, Timothy I.M. email: timothy.tree@kcl.ac.uk organization: Department of Immunobiology, Faculty of Life Sciences & Medicine, King's College London, London SE1 9RT, UK |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28117148$$D View this record in MEDLINE/PubMed |
BookMark | eNqFklFv1SAYhomZcWfTP-CF4dKbVr62tNQYE3PipmaJic5rQunHpPbAEajJ-ffSne1mifMKSN7nBR44IyfOOyTkJbASGLRvpnJSSyorBl3JoGQMnpANsJ4XPfDuhGyY6NtCNACn5CzGKQeAc_6MnFYCoINGbMiXS3QYVLLeUW_oz2WnHLVxxlTEPWprrKYBb5ZZJR8O9JpqnOdIhzzdfqM3GaYpKBcNhufkqVFzxBd34zn5cfHxevupuPp6-Xn74arQnLWpUJWCquFNg_3QV3rIa17VdafFYEyNteLGAGotatMPAowaBtGOY6N53cLYm_qcvD727oP_vWBMcmfjeizl0C9RgmihZX3DRY6-uosuww5HuQ92p8JB3t8_B8QxoIOPMaCR2qZbG_lWdpbA5KpaTnJVLVfVkoHMJjNaPUDv2x-F3h0hzIL-WAwyaotO42gD6iRHbx_H3z_A9Wyd1Wr-hQeMk1-Cy-olyFhJJr-vH2B9f-jqjAueC97-u-B_u_8FRg3ACA |
CitedBy_id | crossref_primary_10_1172_jci_insight_162978 crossref_primary_10_3390_ijms231911956 crossref_primary_10_1111_sji_12961 crossref_primary_10_3390_cells12162115 crossref_primary_10_3389_fimmu_2019_00079 crossref_primary_10_3389_fimmu_2025_1511671 crossref_primary_10_3389_fimmu_2022_844300 crossref_primary_10_3389_fimmu_2023_1207108 crossref_primary_10_3390_ijms20194789 crossref_primary_10_3389_fped_2023_1129249 crossref_primary_10_3389_fimmu_2022_1075813 crossref_primary_10_1002_jbm_a_37442 crossref_primary_10_1016_j_cellimm_2020_104193 crossref_primary_10_3389_fimmu_2020_01608 crossref_primary_10_1016_j_dld_2021_05_033 crossref_primary_10_1038_s41578_019_0112_5 crossref_primary_10_3389_fimmu_2019_02486 crossref_primary_10_1016_j_copbio_2022_102822 crossref_primary_10_1016_j_jaut_2020_102401 crossref_primary_10_1016_j_coi_2019_08_005 crossref_primary_10_1016_j_clim_2018_12_014 crossref_primary_10_1016_j_cmet_2019_11_017 crossref_primary_10_3390_cells13141216 crossref_primary_10_1111_imcb_12439 crossref_primary_10_1002_eji_202048794 crossref_primary_10_1097_BOR_0000000000000970 crossref_primary_10_1080_08830185_2021_1929954 crossref_primary_10_1016_j_eng_2021_10_018 crossref_primary_10_1016_j_clim_2023_109716 crossref_primary_10_1016_j_cellimm_2020_104236 crossref_primary_10_3389_fimmu_2022_1055466 crossref_primary_10_1016_j_semarthrit_2019_05_004 crossref_primary_10_1016_j_jhepr_2025_101394 crossref_primary_10_3390_biomedicines10020287 crossref_primary_10_3389_fimmu_2017_01517 crossref_primary_10_1186_s13024_023_00692_7 crossref_primary_10_3390_ijms22010073 crossref_primary_10_1038_s41423_020_00618_z crossref_primary_10_1016_j_jcyt_2025_02_007 crossref_primary_10_1007_s00125_023_06076_2 crossref_primary_10_3389_fimmu_2018_00554 crossref_primary_10_1016_j_cellimm_2018_04_012 crossref_primary_10_1016_j_autrev_2021_102931 crossref_primary_10_3389_fimmu_2017_01235 crossref_primary_10_3389_fimmu_2017_01598 crossref_primary_10_1111_imr_13254 crossref_primary_10_3389_fimmu_2017_01117 crossref_primary_10_1016_j_addr_2022_114481 crossref_primary_10_1007_s00592_025_02478_3 crossref_primary_10_1038_s41573_024_01089_x crossref_primary_10_1016_j_jgg_2022_05_005 crossref_primary_10_1097_MOT_0000000000000483 crossref_primary_10_3390_ijms22189676 crossref_primary_10_1111_ajt_14747 crossref_primary_10_1002_eji_202250002 crossref_primary_10_3389_fimmu_2018_00303 crossref_primary_10_1016_j_it_2023_11_005 crossref_primary_10_3389_fimmu_2020_611638 crossref_primary_10_1038_s41577_019_0232_6 crossref_primary_10_1016_j_jcyt_2022_01_001 crossref_primary_10_1016_j_biopha_2018_09_138 crossref_primary_10_1080_14712598_2020_1748596 crossref_primary_10_1136_annrheumdis_2018_213454 crossref_primary_10_1038_s41576_021_00329_9 crossref_primary_10_1016_j_jaci_2018_10_015 crossref_primary_10_1016_j_intimp_2024_112724 crossref_primary_10_1016_j_autrev_2022_103257 crossref_primary_10_2217_imt_2019_0069 crossref_primary_10_1016_j_omtm_2020_11_008 crossref_primary_10_3389_fimmu_2020_612737 crossref_primary_10_3389_fimmu_2022_997287 crossref_primary_10_1210_endrev_bnab010 crossref_primary_10_1016_j_autrev_2020_102715 crossref_primary_10_3389_fimmu_2021_661875 crossref_primary_10_3389_fimmu_2018_02359 crossref_primary_10_3389_fimmu_2021_657768 crossref_primary_10_1002_lt_25948 crossref_primary_10_1016_j_jaci_2022_08_003 crossref_primary_10_1038_s41573_019_0041_4 crossref_primary_10_1016_j_biomaterials_2018_07_002 crossref_primary_10_3389_fimmu_2017_01460 crossref_primary_10_1111_imr_12812 crossref_primary_10_1007_s12016_018_8699_7 crossref_primary_10_1016_j_trsl_2017_06_002 crossref_primary_10_1007_s00103_020_03230_8 crossref_primary_10_3390_cancers15245877 crossref_primary_10_3389_fimmu_2018_00199 crossref_primary_10_3389_fimmu_2020_585819 crossref_primary_10_3389_fimmu_2017_01313 crossref_primary_10_3389_fimmu_2022_883855 crossref_primary_10_1016_j_trim_2024_102069 crossref_primary_10_3389_fimmu_2021_716606 crossref_primary_10_1097_MOT_0000000000000566 crossref_primary_10_3389_fimmu_2022_926550 crossref_primary_10_1016_j_jaut_2022_102986 crossref_primary_10_1097_MOT_0000000000000561 crossref_primary_10_1111_all_14478 crossref_primary_10_3389_fimmu_2017_01282 crossref_primary_10_1016_j_jaci_2021_11_007 crossref_primary_10_3390_diabetology3010007 crossref_primary_10_3390_ijms21197015 |
Cites_doi | 10.2337/db08-1168 10.1016/j.clim.2005.12.009 10.1016/S2213-8587(13)70111-6 10.2337/db09-0503 10.1038/ni.3271 10.4049/jimmunol.175.5.3053 10.4049/jimmunol.181.7.5128 10.1002/pbc.10471 10.1093/nar/gkn316 10.2337/diabetes.54.1.92 10.1111/j.1365-2249.2007.03475.x 10.1084/jem.20061631 10.1172/JCI33185 10.2337/diabetes.55.01.06.db05-0613 10.1084/jem.20040180 10.1038/ni1455 10.1111/j.1600-6143.2011.03650.x 10.1182/blood-2010-10-311894 10.1016/j.intimp.2013.02.016 10.1016/j.immuni.2009.04.006 10.2337/dc12-0038 10.1128/JVI.78.21.12058-12061.2004 10.1172/JCI78492 10.1016/S1074-7613(00)80195-8 10.1111/j.1464-410X.2003.04762.x 10.4049/jimmunol.179.9.5803 10.1016/j.clim.2014.03.016 10.1111/ajt.12433 10.1371/journal.pone.0011726 10.2337/diabetes.54.5.1407 10.1099/vir.0.2008/003426-0 10.3324/haematol.2012.074088 10.1371/journal.pone.0000146 10.1007/s00125-012-2753-4 10.1182/blood-2011-09-377051 10.1158/0008-5472.CAN-06-3986 10.1016/S0140-6736(01)05415-0 10.4049/jimmunol.181.10.7350 10.1016/j.bbmt.2010.08.017 10.1002/cyto.a.20659 10.1126/scitranslmed.aad4134 10.1182/blood-2006-05-023069 10.1158/1535-7163.MCT-07-2051 |
ContentType | Journal Article |
Copyright | 2017 Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2017 – notice: Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.jaut.2017.01.001 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1095-9157 |
EndPage | 73 |
ExternalDocumentID | 28117148 10_1016_j_jaut_2017_01_001 S0896841117300185 1_s2_0_S0896841117300185 |
Genre | Journal Article |
GroupedDBID | --- --K --M .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29J 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM AAAJQ AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARKO AATTM AAXKI AAXUO AAYWO ABBQC ABFRF ABJNI ABMAC ABMZM ABOCM ABWVN ABXDB ACDAQ ACGFO ACGFS ACIEU ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADFGL ADMUD ADNMO AEBSH AEFWE AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGEKW AGHFR AGQPQ AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CAG CJTIS COF CS3 DM4 DU5 EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HDU HMG HMK HMO HVGLF HZ~ IHE J1W KOM LG5 LUGTX LZ5 M29 M41 MO0 N9A O-L O9- O9~ OAUVE OK0 OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SES SEW SIN SPCBC SSH SSI SSZ T5K WUQ XPP Z5R ZGI ZMT ZU3 ~G- AACTN AFCTW AFKWA AJOXV AMFUW RIG AAIAV ABLVK ABYKQ AJBFU EFLBG LCYCR AAYXX AGRNS CITATION CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c506t-a2a124544e9b92cba2a52337c8bff3e3a5ff1ecc83f9b81fabb86dd4c5361d9f3 |
IEDL.DBID | .~1 |
ISSN | 0896-8411 |
IngestDate | Fri Jul 11 04:57:40 EDT 2025 Thu Apr 03 07:07:19 EDT 2025 Thu Apr 24 23:00:55 EDT 2025 Tue Jul 01 03:24:08 EDT 2025 Fri Feb 23 02:20:54 EST 2024 Tue Feb 25 19:56:11 EST 2025 Tue Aug 26 18:13:48 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Cell therapy Diabetes Regulatory T cells TCR gene therapy |
Language | English |
License | Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c506t-a2a124544e9b92cba2a52337c8bff3e3a5ff1ecc83f9b81fabb86dd4c5361d9f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://kclpure.kcl.ac.uk/ws/files/63569631/Caroline_Hull_JAutoimmunity_.pdf |
PMID | 28117148 |
PQID | 1861609458 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1861609458 pubmed_primary_28117148 crossref_citationtrail_10_1016_j_jaut_2017_01_001 crossref_primary_10_1016_j_jaut_2017_01_001 elsevier_sciencedirect_doi_10_1016_j_jaut_2017_01_001 elsevier_clinicalkeyesjournals_1_s2_0_S0896841117300185 elsevier_clinicalkey_doi_10_1016_j_jaut_2017_01_001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-05-01 |
PublicationDateYYYYMMDD | 2017-05-01 |
PublicationDate_xml | – month: 05 year: 2017 text: 2017-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Journal of autoimmunity |
PublicationTitleAlternate | J Autoimmun |
PublicationYear | 2017 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Brusko, Koya, Zhu, Lee, Putnam, McClymont (bib21) 2010; 5 Golab, Krzystyniak, Marek-Trzonkowska, Misawa, Wang, Wang (bib37) 2013; 16 Battaglia, Stabilini, Draghici, Gregori, Mocchetti, Bonifacio (bib27) 2006; 55 Putnam, Brusko, Lee, Liu, Szot, Ghosh (bib29) 2009; 58 Kuball, Dossett, Wolfl, Ho, Voss, Fowler (bib39) 2007; 109 Tsang, Ratnasothy, Li, Chen, Bucy, Lau (bib43) 2011; 11 Beringer, Kleijwegt, Wiede, van der Slik, Loh, Petersen (bib45) 2015; 16 Solh, Brunstein, Morgan, Weisdorf (bib10) 2011; 17 Haller, Gitelman, Gottlieb, Michels, Rosenthal, Shuster (bib34) 2015; 125 Bluestone, Buckner, Fitch, Gitelman, Gupta, Hellerstein (bib14) 2015; 7 Scotta, Esposito, Fazekasova, Fanelli, Edozie, Ali (bib28) 2013; 98 Salomon, Lenschow, Rhee, Ashourian, Singh, Sharpe (bib35) 2000; 12 Brochet, Lefranc, Giudicelli (bib24) 2008; 36 Giudicelli, Brochet, Lefranc (bib25) 2011; 2011 Zennou, Perez-Caballero, Gottlinger, Bieniasz (bib26) 2004; 78 Zheng, Rudensky (bib2) 2007; 8 D'Alise, Amabile, Iovino, Di Giorgio, Bartiromo, Sessa (bib30) 2008; 7 Lindley, Dayan, Bishop, Roep, Peakman, Tree (bib4) 2005; 54 Tarbell, Petit, Zuo, Toy, Luo, Mqadmi (bib18) 2007; 204 Tsang, Tanriver, Jiang, Xue, Ratnasothy, Chen (bib20) 2008; 118 Kirsch, Tarbell (bib17) 2004; 42 Di Ianni, Falzetti, Carotti, Terenzi, Castellino, Bonifacio (bib11) 2011; 117 Cohen, Li, El-Gamil, Robbins, Rosenberg, Morgan (bib40) 2007; 67 de Witte, Jorritsma, Kaiser, van den Boom, Dokter, Bendle (bib42) 2008; 181 Fang, Christopher-Hennings, Brown, Liu, Chen, Lawson (bib7) 2008; 89 Schneider, Rieck, Sanda, Pihoker, Greenbaum, Buckner (bib31) 2008; 181 Rigby, DiMeglio, Rendell, Felner, Dostou, Gitelman (bib33) 2013; 1 Marek-Trzonkowska, Mysliwiec, Dobyszuk, Grabowska, Techmanska, Juscinska (bib13) 2012; 35 Scholten, Kramer, Kueter, Graf, Schoedl, Meijer (bib41) 2006; 119 Herold, Gitelman, Willi, Gottlieb, Waldron-Lynch, Devine (bib32) 2013; 56 Atkinson, Eisenbarth (bib1) 2001; 358 Brusko, Wasserfall, Clare-Salzler, Schatz, Atkinson (bib3) 2005; 54 Trzonkowski, Szarynska, Mysliwska, Mysliwski (bib9) 2009; 75 Tree, Lawson, Edwards, Skowera, Arif, Roep (bib23) 2010; 59 Marek-Trzonkowska, Mysliwiec, Dobyszuk, Grabowska, Derkowska, Juscinska (bib12) 2014; 153 Thomas, Xue, Cesco-Gaspere, San Jose, Hart, Wong (bib38) 2007; 179 Glisic-Milosavljevic, Wang, Koppen, Kramer, Ehlenbach, Waukau (bib5) 2007; 150 Glisic-Milosavljevic, Waukau, Jailwala, Jana, Khoo, Albertz (bib6) 2007; 2 Putnam, Safinia, Medvec, Laszkowska, Wray, Mintz (bib19) 2013; 13 Ozdal, Aprikian, Begin, Behlouli, Tanguay (bib15) 2004; 93 Cheng, Chen, Yang, Gao, Yu (bib44) 2015; 26 Riley, June, Blazar (bib8) 2009; 30 Plesa, Zheng, Medvec, Wilson, Robles-Oteiza, Liddy (bib22) 2012; 119 Masteller, Warner, Tang, Tarbell, McDevitt, Bluestone (bib16) 2005; 175 Tarbell, Yamazaki, Olson, Toy, Steinman (bib36) 2004; 199 Bluestone (10.1016/j.jaut.2017.01.001_bib14) 2015; 7 Kuball (10.1016/j.jaut.2017.01.001_bib39) 2007; 109 Di Ianni (10.1016/j.jaut.2017.01.001_bib11) 2011; 117 Tsang (10.1016/j.jaut.2017.01.001_bib20) 2008; 118 Tsang (10.1016/j.jaut.2017.01.001_bib43) 2011; 11 Solh (10.1016/j.jaut.2017.01.001_bib10) 2011; 17 Haller (10.1016/j.jaut.2017.01.001_bib34) 2015; 125 Tree (10.1016/j.jaut.2017.01.001_bib23) 2010; 59 D'Alise (10.1016/j.jaut.2017.01.001_bib30) 2008; 7 Tarbell (10.1016/j.jaut.2017.01.001_bib36) 2004; 199 Tarbell (10.1016/j.jaut.2017.01.001_bib18) 2007; 204 Putnam (10.1016/j.jaut.2017.01.001_bib19) 2013; 13 Kirsch (10.1016/j.jaut.2017.01.001_bib17) 2004; 42 Cheng (10.1016/j.jaut.2017.01.001_bib44) 2015; 26 Marek-Trzonkowska (10.1016/j.jaut.2017.01.001_bib12) 2014; 153 Salomon (10.1016/j.jaut.2017.01.001_bib35) 2000; 12 Golab (10.1016/j.jaut.2017.01.001_bib37) 2013; 16 Rigby (10.1016/j.jaut.2017.01.001_bib33) 2013; 1 Zheng (10.1016/j.jaut.2017.01.001_bib2) 2007; 8 Battaglia (10.1016/j.jaut.2017.01.001_bib27) 2006; 55 Thomas (10.1016/j.jaut.2017.01.001_bib38) 2007; 179 Plesa (10.1016/j.jaut.2017.01.001_bib22) 2012; 119 Giudicelli (10.1016/j.jaut.2017.01.001_bib25) 2011; 2011 Schneider (10.1016/j.jaut.2017.01.001_bib31) 2008; 181 Fang (10.1016/j.jaut.2017.01.001_bib7) 2008; 89 Brochet (10.1016/j.jaut.2017.01.001_bib24) 2008; 36 Zennou (10.1016/j.jaut.2017.01.001_bib26) 2004; 78 Marek-Trzonkowska (10.1016/j.jaut.2017.01.001_bib13) 2012; 35 Brusko (10.1016/j.jaut.2017.01.001_bib21) 2010; 5 de Witte (10.1016/j.jaut.2017.01.001_bib42) 2008; 181 Masteller (10.1016/j.jaut.2017.01.001_bib16) 2005; 175 Brusko (10.1016/j.jaut.2017.01.001_bib3) 2005; 54 Glisic-Milosavljevic (10.1016/j.jaut.2017.01.001_bib6) 2007; 2 Trzonkowski (10.1016/j.jaut.2017.01.001_bib9) 2009; 75 Scotta (10.1016/j.jaut.2017.01.001_bib28) 2013; 98 Beringer (10.1016/j.jaut.2017.01.001_bib45) 2015; 16 Lindley (10.1016/j.jaut.2017.01.001_bib4) 2005; 54 Atkinson (10.1016/j.jaut.2017.01.001_bib1) 2001; 358 Scholten (10.1016/j.jaut.2017.01.001_bib41) 2006; 119 Cohen (10.1016/j.jaut.2017.01.001_bib40) 2007; 67 Putnam (10.1016/j.jaut.2017.01.001_bib29) 2009; 58 Herold (10.1016/j.jaut.2017.01.001_bib32) 2013; 56 Ozdal (10.1016/j.jaut.2017.01.001_bib15) 2004; 93 Riley (10.1016/j.jaut.2017.01.001_bib8) 2009; 30 Glisic-Milosavljevic (10.1016/j.jaut.2017.01.001_bib5) 2007; 150 |
References_xml | – volume: 204 start-page: 191 year: 2007 end-page: 201 ident: bib18 article-title: Dendritic cell-expanded, islet-specific CD4+ CD25+ CD62L+ regulatory T cells restore normoglycemia in diabetic NOD mice publication-title: J. Exp. Med. – volume: 153 start-page: 23 year: 2014 end-page: 30 ident: bib12 article-title: Therapy of type 1 diabetes with CD4(+)CD25(high)CD127-regulatory T cells prolongs survival of pancreatic islets - results of one year follow-up publication-title: Clin. Immunol. – volume: 179 start-page: 5803 year: 2007 end-page: 5810 ident: bib38 article-title: Targeting the Wilms tumor antigen 1 by TCR gene transfer: TCR variants improve tetramer binding but not the function of gene modified human T cells publication-title: J. Immunol. – volume: 175 start-page: 3053 year: 2005 end-page: 3059 ident: bib16 article-title: Expansion of functional endogenous antigen-specific CD4+CD25+ regulatory T cells from nonobese diabetic mice publication-title: J. Immunol. – volume: 2 start-page: e146 year: 2007 ident: bib6 article-title: At-risk and recent-onset type 1 diabetic subjects have increased apoptosis in the CD4+CD25+ T-cell fraction publication-title: PLoS One – volume: 109 start-page: 2331 year: 2007 end-page: 2338 ident: bib39 article-title: Facilitating matched pairing and expression of TCR chains introduced into human T cells publication-title: Blood – volume: 5 start-page: e11726 year: 2010 ident: bib21 article-title: Human antigen-specific regulatory T cells generated by T cell receptor gene transfer publication-title: PLoS One – volume: 30 start-page: 656 year: 2009 end-page: 665 ident: bib8 article-title: Human T regulatory cell therapy: take a billion or so and call me in the morning publication-title: Immunity – volume: 8 start-page: 457 year: 2007 end-page: 462 ident: bib2 article-title: Foxp3 in control of the regulatory T cell lineage publication-title: Nat. Immunol. – volume: 12 start-page: 431 year: 2000 end-page: 440 ident: bib35 article-title: B7/CD28 costimulation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune diabetes publication-title: Immunity – volume: 17 start-page: 710 year: 2011 end-page: 716 ident: bib10 article-title: Platelet and red blood cell utilization and transfusion independence in umbilical cord blood and allogeneic peripheral blood hematopoietic cell transplants publication-title: Biol. Blood Marrow Transplant. J. Am. Soc. Blood Marrow Transplant. – volume: 119 start-page: 135 year: 2006 end-page: 145 ident: bib41 article-title: Codon modification of T cell receptors allows enhanced functional expression in transgenic human T cells publication-title: Clin. Immunol. – volume: 67 start-page: 3898 year: 2007 end-page: 3903 ident: bib40 article-title: Enhanced antitumor activity of T cells engineered to express T-cell receptors with a second disulfide bond publication-title: Cancer Res. – volume: 181 start-page: 7350 year: 2008 end-page: 7355 ident: bib31 article-title: The effector T cells of diabetic subjects are resistant to regulation via CD4+ FOXP3+ regulatory T cells publication-title: J. Immunol. – volume: 7 start-page: 315 year: 2015 end-page: 389 ident: bib14 article-title: Type 1 diabetes immunotherapy using polyclonal regulatory T cells publication-title: Sci. Transl. Med. – volume: 42 start-page: 461 year: 2004 end-page: 464 ident: bib17 article-title: New technologies in radiation therapy for pediatric brain tumors: the rationale for proton radiation therapy publication-title: Pediatr. Blood Cancer – volume: 58 start-page: 652 year: 2009 end-page: 662 ident: bib29 article-title: Expansion of human regulatory T-cells from patients with type 1 diabetes publication-title: Diabetes – volume: 119 start-page: 3420 year: 2012 end-page: 3430 ident: bib22 article-title: TCR affinity and specificity requirements for human regulatory T-cell function publication-title: Blood – volume: 16 start-page: 358 year: 2013 end-page: 363 ident: bib37 article-title: Impact of culture medium on CD4(+) CD25(high)CD127(lo/neg) Treg expansion for the purpose of clinical application publication-title: Int. Immunopharmacol. – volume: 35 start-page: 1817 year: 2012 end-page: 1820 ident: bib13 article-title: Administration of CD4+CD25highCD127- regulatory T cells preserves beta-cell function in type 1 diabetes in children publication-title: Diabetes Care – volume: 118 start-page: 3619 year: 2008 end-page: 3628 ident: bib20 article-title: Conferring indirect allospecificity on CD4+CD25+ Tregs by TCR gene transfer favors transplantation tolerance in mice publication-title: J. Clin. Investig. – volume: 11 start-page: 1610 year: 2011 end-page: 1620 ident: bib43 article-title: The potency of allospecific Tregs cells appears to correlate with T cell receptor functional avidity publication-title: Am. J. Transplant. Off. J. Am. Soc. Transplant. Am. Soc. Transpl. Surg. – volume: 16 start-page: 1153 year: 2015 end-page: 1161 ident: bib45 article-title: T cell receptor reversed polarity recognition of a self-antigen major histocompatibility complex publication-title: Nat. Immunol. – volume: 54 start-page: 1407 year: 2005 end-page: 1414 ident: bib3 article-title: Functional defects and the influence of age on the frequency of CD4+ CD25+ T-cells in type 1 diabetes publication-title: Diabetes – volume: 55 start-page: 40 year: 2006 end-page: 49 ident: bib27 article-title: Rapamycin and interleukin-10 treatment induces T regulatory type 1 cells that mediate antigen-specific transplantation tolerance publication-title: Diabetes – volume: 89 start-page: 3086 year: 2008 end-page: 3096 ident: bib7 article-title: Development of genetic markers in the non-structural protein 2 region of a US type 1 porcine reproductive and respiratory syndrome virus: implications for future recombinant marker vaccine development publication-title: J. Gen. Virol. – volume: 199 start-page: 1467 year: 2004 end-page: 1477 ident: bib36 article-title: CD25+ CD4+ T cells, expanded with dendritic cells presenting a single autoantigenic peptide, suppress autoimmune diabetes publication-title: J. Exp. Med. – volume: 26 start-page: S1855 year: 2015 end-page: S1862 ident: bib44 article-title: Classification of imbalanced bioinformatics data by using boundary movement-based ELM publication-title: Biomed. Mater Eng. – volume: 98 start-page: 1291 year: 2013 end-page: 1299 ident: bib28 article-title: Differential effects of rapamycin and retinoic acid on expansion, stability and suppressive qualities of human CD4(+)CD25(+)FOXP3(+) T regulatory cell subpopulations publication-title: Haematologica – volume: 56 start-page: 391 year: 2013 end-page: 400 ident: bib32 article-title: Teplizumab treatment may improve C-peptide responses in participants with type 1 diabetes after the new-onset period: a randomised controlled trial publication-title: Diabetologia – volume: 78 start-page: 12058 year: 2004 end-page: 12061 ident: bib26 article-title: APOBEC3G incorporation into human immunodeficiency virus type 1 particles publication-title: J. Virol. – volume: 125 start-page: 448 year: 2015 end-page: 455 ident: bib34 article-title: Anti-thymocyte globulin/G-CSF treatment preserves beta cell function in patients with established type 1 diabetes publication-title: J. Clin. Investig. – volume: 54 start-page: 92 year: 2005 end-page: 99 ident: bib4 article-title: Defective suppressor function in CD4(+)CD25(+) T-cells from patients with type 1 diabetes publication-title: Diabetes – volume: 13 start-page: 3010 year: 2013 end-page: 3020 ident: bib19 article-title: Clinical grade manufacturing of human alloantigen-reactive regulatory T cells for use in transplantation publication-title: Am. J. Transplant. Off. J. Am. Soc. Transplant. Am. Soc. Transpl. Surg. – volume: 150 start-page: 75 year: 2007 end-page: 82 ident: bib5 article-title: Dynamic changes in CD4+ CD25+(high) T cell apoptosis after the diagnosis of type 1 diabetes publication-title: Clin. Exp. Immunol. – volume: 2011 start-page: 695 year: 2011 end-page: 715 ident: bib25 article-title: IMGT/V-QUEST: IMGT standardized analysis of the immunoglobulin (IG) and T cell receptor (TR) nucleotide sequences publication-title: Cold Spring Harb. Protoc. – volume: 181 start-page: 5128 year: 2008 end-page: 5136 ident: bib42 article-title: Requirements for effective antitumor responses of TCR transduced T cells publication-title: J. Immunol. – volume: 59 start-page: 1451 year: 2010 end-page: 1460 ident: bib23 article-title: Naturally arising human CD4 T-cells that recognize islet autoantigens and secrete interleukin-10 regulate proinflammatory T-cell responses via linked suppression publication-title: Diabetes – volume: 1 start-page: 284 year: 2013 end-page: 294 ident: bib33 article-title: Targeting of memory T cells with alefacept in new-onset type 1 diabetes (T1DAL study): 12 month results of a randomised, double-blind, placebo-controlled phase 2 trial publication-title: Lancet Diabetes Endocrinol. – volume: 117 start-page: 3921 year: 2011 end-page: 3928 ident: bib11 article-title: Tregs prevent GVHD and promote immune reconstitution in HLA-haploidentical transplantation publication-title: Blood – volume: 93 start-page: 970 year: 2004 end-page: 974 ident: bib15 article-title: Comparative evaluation of various prostate specific antigen ratios for the early detection of prostate cancer publication-title: BJU Int. – volume: 7 start-page: 1140 year: 2008 end-page: 1149 ident: bib30 article-title: Reversine, a novel Aurora kinases inhibitor, inhibits colony formation of human acute myeloid leukemia cells publication-title: Mol. Cancer Ther. – volume: 358 start-page: 221 year: 2001 end-page: 229 ident: bib1 article-title: Type 1 diabetes: new perspectives on disease pathogenesis and treatment publication-title: Lancet – volume: 75 start-page: 175 year: 2009 end-page: 188 ident: bib9 article-title: Ex vivo expansion of CD4(+)CD25(+) T regulatory cells for immunosuppressive therapy publication-title: Cytom. Part A J. Int. Soc. Anal. Cytol. – volume: 36 start-page: W503 year: 2008 end-page: W508 ident: bib24 article-title: IMGT/V-QUEST: the highly customized and integrated system for IG and TR standardized V-J and V-D-J sequence analysis publication-title: Nucleic Acids Res. – volume: 58 start-page: 652 year: 2009 ident: 10.1016/j.jaut.2017.01.001_bib29 article-title: Expansion of human regulatory T-cells from patients with type 1 diabetes publication-title: Diabetes doi: 10.2337/db08-1168 – volume: 119 start-page: 135 year: 2006 ident: 10.1016/j.jaut.2017.01.001_bib41 article-title: Codon modification of T cell receptors allows enhanced functional expression in transgenic human T cells publication-title: Clin. Immunol. doi: 10.1016/j.clim.2005.12.009 – volume: 1 start-page: 284 year: 2013 ident: 10.1016/j.jaut.2017.01.001_bib33 article-title: Targeting of memory T cells with alefacept in new-onset type 1 diabetes (T1DAL study): 12 month results of a randomised, double-blind, placebo-controlled phase 2 trial publication-title: Lancet Diabetes Endocrinol. doi: 10.1016/S2213-8587(13)70111-6 – volume: 59 start-page: 1451 year: 2010 ident: 10.1016/j.jaut.2017.01.001_bib23 article-title: Naturally arising human CD4 T-cells that recognize islet autoantigens and secrete interleukin-10 regulate proinflammatory T-cell responses via linked suppression publication-title: Diabetes doi: 10.2337/db09-0503 – volume: 16 start-page: 1153 year: 2015 ident: 10.1016/j.jaut.2017.01.001_bib45 article-title: T cell receptor reversed polarity recognition of a self-antigen major histocompatibility complex publication-title: Nat. Immunol. doi: 10.1038/ni.3271 – volume: 175 start-page: 3053 year: 2005 ident: 10.1016/j.jaut.2017.01.001_bib16 article-title: Expansion of functional endogenous antigen-specific CD4+CD25+ regulatory T cells from nonobese diabetic mice publication-title: J. Immunol. doi: 10.4049/jimmunol.175.5.3053 – volume: 2011 start-page: 695 year: 2011 ident: 10.1016/j.jaut.2017.01.001_bib25 article-title: IMGT/V-QUEST: IMGT standardized analysis of the immunoglobulin (IG) and T cell receptor (TR) nucleotide sequences publication-title: Cold Spring Harb. Protoc. – volume: 181 start-page: 5128 year: 2008 ident: 10.1016/j.jaut.2017.01.001_bib42 article-title: Requirements for effective antitumor responses of TCR transduced T cells publication-title: J. Immunol. doi: 10.4049/jimmunol.181.7.5128 – volume: 42 start-page: 461 year: 2004 ident: 10.1016/j.jaut.2017.01.001_bib17 article-title: New technologies in radiation therapy for pediatric brain tumors: the rationale for proton radiation therapy publication-title: Pediatr. Blood Cancer doi: 10.1002/pbc.10471 – volume: 36 start-page: W503 year: 2008 ident: 10.1016/j.jaut.2017.01.001_bib24 article-title: IMGT/V-QUEST: the highly customized and integrated system for IG and TR standardized V-J and V-D-J sequence analysis publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkn316 – volume: 54 start-page: 92 year: 2005 ident: 10.1016/j.jaut.2017.01.001_bib4 article-title: Defective suppressor function in CD4(+)CD25(+) T-cells from patients with type 1 diabetes publication-title: Diabetes doi: 10.2337/diabetes.54.1.92 – volume: 150 start-page: 75 year: 2007 ident: 10.1016/j.jaut.2017.01.001_bib5 article-title: Dynamic changes in CD4+ CD25+(high) T cell apoptosis after the diagnosis of type 1 diabetes publication-title: Clin. Exp. Immunol. doi: 10.1111/j.1365-2249.2007.03475.x – volume: 204 start-page: 191 year: 2007 ident: 10.1016/j.jaut.2017.01.001_bib18 article-title: Dendritic cell-expanded, islet-specific CD4+ CD25+ CD62L+ regulatory T cells restore normoglycemia in diabetic NOD mice publication-title: J. Exp. Med. doi: 10.1084/jem.20061631 – volume: 118 start-page: 3619 year: 2008 ident: 10.1016/j.jaut.2017.01.001_bib20 article-title: Conferring indirect allospecificity on CD4+CD25+ Tregs by TCR gene transfer favors transplantation tolerance in mice publication-title: J. Clin. Investig. doi: 10.1172/JCI33185 – volume: 55 start-page: 40 year: 2006 ident: 10.1016/j.jaut.2017.01.001_bib27 article-title: Rapamycin and interleukin-10 treatment induces T regulatory type 1 cells that mediate antigen-specific transplantation tolerance publication-title: Diabetes doi: 10.2337/diabetes.55.01.06.db05-0613 – volume: 199 start-page: 1467 year: 2004 ident: 10.1016/j.jaut.2017.01.001_bib36 article-title: CD25+ CD4+ T cells, expanded with dendritic cells presenting a single autoantigenic peptide, suppress autoimmune diabetes publication-title: J. Exp. Med. doi: 10.1084/jem.20040180 – volume: 8 start-page: 457 year: 2007 ident: 10.1016/j.jaut.2017.01.001_bib2 article-title: Foxp3 in control of the regulatory T cell lineage publication-title: Nat. Immunol. doi: 10.1038/ni1455 – volume: 11 start-page: 1610 year: 2011 ident: 10.1016/j.jaut.2017.01.001_bib43 article-title: The potency of allospecific Tregs cells appears to correlate with T cell receptor functional avidity publication-title: Am. J. Transplant. Off. J. Am. Soc. Transplant. Am. Soc. Transpl. Surg. doi: 10.1111/j.1600-6143.2011.03650.x – volume: 26 start-page: S1855 issue: Suppl. 1 year: 2015 ident: 10.1016/j.jaut.2017.01.001_bib44 article-title: Classification of imbalanced bioinformatics data by using boundary movement-based ELM publication-title: Biomed. Mater Eng. – volume: 117 start-page: 3921 year: 2011 ident: 10.1016/j.jaut.2017.01.001_bib11 article-title: Tregs prevent GVHD and promote immune reconstitution in HLA-haploidentical transplantation publication-title: Blood doi: 10.1182/blood-2010-10-311894 – volume: 16 start-page: 358 year: 2013 ident: 10.1016/j.jaut.2017.01.001_bib37 article-title: Impact of culture medium on CD4(+) CD25(high)CD127(lo/neg) Treg expansion for the purpose of clinical application publication-title: Int. Immunopharmacol. doi: 10.1016/j.intimp.2013.02.016 – volume: 30 start-page: 656 year: 2009 ident: 10.1016/j.jaut.2017.01.001_bib8 article-title: Human T regulatory cell therapy: take a billion or so and call me in the morning publication-title: Immunity doi: 10.1016/j.immuni.2009.04.006 – volume: 35 start-page: 1817 year: 2012 ident: 10.1016/j.jaut.2017.01.001_bib13 article-title: Administration of CD4+CD25highCD127- regulatory T cells preserves beta-cell function in type 1 diabetes in children publication-title: Diabetes Care doi: 10.2337/dc12-0038 – volume: 78 start-page: 12058 year: 2004 ident: 10.1016/j.jaut.2017.01.001_bib26 article-title: APOBEC3G incorporation into human immunodeficiency virus type 1 particles publication-title: J. Virol. doi: 10.1128/JVI.78.21.12058-12061.2004 – volume: 125 start-page: 448 year: 2015 ident: 10.1016/j.jaut.2017.01.001_bib34 article-title: Anti-thymocyte globulin/G-CSF treatment preserves beta cell function in patients with established type 1 diabetes publication-title: J. Clin. Investig. doi: 10.1172/JCI78492 – volume: 12 start-page: 431 year: 2000 ident: 10.1016/j.jaut.2017.01.001_bib35 article-title: B7/CD28 costimulation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune diabetes publication-title: Immunity doi: 10.1016/S1074-7613(00)80195-8 – volume: 93 start-page: 970 year: 2004 ident: 10.1016/j.jaut.2017.01.001_bib15 article-title: Comparative evaluation of various prostate specific antigen ratios for the early detection of prostate cancer publication-title: BJU Int. doi: 10.1111/j.1464-410X.2003.04762.x – volume: 179 start-page: 5803 year: 2007 ident: 10.1016/j.jaut.2017.01.001_bib38 article-title: Targeting the Wilms tumor antigen 1 by TCR gene transfer: TCR variants improve tetramer binding but not the function of gene modified human T cells publication-title: J. Immunol. doi: 10.4049/jimmunol.179.9.5803 – volume: 153 start-page: 23 year: 2014 ident: 10.1016/j.jaut.2017.01.001_bib12 article-title: Therapy of type 1 diabetes with CD4(+)CD25(high)CD127-regulatory T cells prolongs survival of pancreatic islets - results of one year follow-up publication-title: Clin. Immunol. doi: 10.1016/j.clim.2014.03.016 – volume: 13 start-page: 3010 year: 2013 ident: 10.1016/j.jaut.2017.01.001_bib19 article-title: Clinical grade manufacturing of human alloantigen-reactive regulatory T cells for use in transplantation publication-title: Am. J. Transplant. Off. J. Am. Soc. Transplant. Am. Soc. Transpl. Surg. doi: 10.1111/ajt.12433 – volume: 5 start-page: e11726 year: 2010 ident: 10.1016/j.jaut.2017.01.001_bib21 article-title: Human antigen-specific regulatory T cells generated by T cell receptor gene transfer publication-title: PLoS One doi: 10.1371/journal.pone.0011726 – volume: 54 start-page: 1407 year: 2005 ident: 10.1016/j.jaut.2017.01.001_bib3 article-title: Functional defects and the influence of age on the frequency of CD4+ CD25+ T-cells in type 1 diabetes publication-title: Diabetes doi: 10.2337/diabetes.54.5.1407 – volume: 89 start-page: 3086 year: 2008 ident: 10.1016/j.jaut.2017.01.001_bib7 article-title: Development of genetic markers in the non-structural protein 2 region of a US type 1 porcine reproductive and respiratory syndrome virus: implications for future recombinant marker vaccine development publication-title: J. Gen. Virol. doi: 10.1099/vir.0.2008/003426-0 – volume: 98 start-page: 1291 year: 2013 ident: 10.1016/j.jaut.2017.01.001_bib28 article-title: Differential effects of rapamycin and retinoic acid on expansion, stability and suppressive qualities of human CD4(+)CD25(+)FOXP3(+) T regulatory cell subpopulations publication-title: Haematologica doi: 10.3324/haematol.2012.074088 – volume: 2 start-page: e146 year: 2007 ident: 10.1016/j.jaut.2017.01.001_bib6 article-title: At-risk and recent-onset type 1 diabetic subjects have increased apoptosis in the CD4+CD25+ T-cell fraction publication-title: PLoS One doi: 10.1371/journal.pone.0000146 – volume: 56 start-page: 391 year: 2013 ident: 10.1016/j.jaut.2017.01.001_bib32 article-title: Teplizumab treatment may improve C-peptide responses in participants with type 1 diabetes after the new-onset period: a randomised controlled trial publication-title: Diabetologia doi: 10.1007/s00125-012-2753-4 – volume: 119 start-page: 3420 year: 2012 ident: 10.1016/j.jaut.2017.01.001_bib22 article-title: TCR affinity and specificity requirements for human regulatory T-cell function publication-title: Blood doi: 10.1182/blood-2011-09-377051 – volume: 67 start-page: 3898 year: 2007 ident: 10.1016/j.jaut.2017.01.001_bib40 article-title: Enhanced antitumor activity of T cells engineered to express T-cell receptors with a second disulfide bond publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-06-3986 – volume: 358 start-page: 221 year: 2001 ident: 10.1016/j.jaut.2017.01.001_bib1 article-title: Type 1 diabetes: new perspectives on disease pathogenesis and treatment publication-title: Lancet doi: 10.1016/S0140-6736(01)05415-0 – volume: 181 start-page: 7350 year: 2008 ident: 10.1016/j.jaut.2017.01.001_bib31 article-title: The effector T cells of diabetic subjects are resistant to regulation via CD4+ FOXP3+ regulatory T cells publication-title: J. Immunol. doi: 10.4049/jimmunol.181.10.7350 – volume: 17 start-page: 710 year: 2011 ident: 10.1016/j.jaut.2017.01.001_bib10 article-title: Platelet and red blood cell utilization and transfusion independence in umbilical cord blood and allogeneic peripheral blood hematopoietic cell transplants publication-title: Biol. Blood Marrow Transplant. J. Am. Soc. Blood Marrow Transplant. doi: 10.1016/j.bbmt.2010.08.017 – volume: 75 start-page: 175 year: 2009 ident: 10.1016/j.jaut.2017.01.001_bib9 article-title: Ex vivo expansion of CD4(+)CD25(+) T regulatory cells for immunosuppressive therapy publication-title: Cytom. Part A J. Int. Soc. Anal. Cytol. doi: 10.1002/cyto.a.20659 – volume: 7 start-page: 315 year: 2015 ident: 10.1016/j.jaut.2017.01.001_bib14 article-title: Type 1 diabetes immunotherapy using polyclonal regulatory T cells publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aad4134 – volume: 109 start-page: 2331 year: 2007 ident: 10.1016/j.jaut.2017.01.001_bib39 article-title: Facilitating matched pairing and expression of TCR chains introduced into human T cells publication-title: Blood doi: 10.1182/blood-2006-05-023069 – volume: 7 start-page: 1140 year: 2008 ident: 10.1016/j.jaut.2017.01.001_bib30 article-title: Reversine, a novel Aurora kinases inhibitor, inhibits colony formation of human acute myeloid leukemia cells publication-title: Mol. Cancer Ther. doi: 10.1158/1535-7163.MCT-07-2051 |
SSID | ssj0011555 |
Score | 2.495288 |
Snippet | Based on the success in animal models of type 1 diabetes (T1D), clinical trials of adoptive regulatory T cell (Treg) therapy are underway using ex vivo... Abstract Based on the success in animal models of type 1 diabetes (T1D), clinical trials of adoptive regulatory T cell (Treg) therapy are underway using... Based on the success in animal models of type 1 diabetes (T1D), clinical trials of adoptive regulatory T cell (Treg) therapy are underway using ex vivo... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 63 |
SubjectTerms | Allergy and Immunology Animals Cell Line Cell therapy Diabetes Diabetes Mellitus, Type 1 - genetics Diabetes Mellitus, Type 1 - immunology Diabetes Mellitus, Type 1 - metabolism Diabetes Mellitus, Type 1 - therapy Disease Models, Animal Epitopes, T-Lymphocyte - immunology Gene Order Gene Transfer Techniques Genetic Therapy Genetic Vectors - genetics Humans Islets of Langerhans - immunology Jurkat Cells Lentivirus - genetics Mice Receptors, Antigen, T-Cell - genetics Regulatory T cells T-Cell Antigen Receptor Specificity - genetics T-Lymphocytes, Regulatory - immunology T-Lymphocytes, Regulatory - metabolism TCR gene therapy Transduction, Genetic |
Title | Generation of human islet-specific regulatory T cells by TCR gene transfer |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0896841117300185 https://www.clinicalkey.es/playcontent/1-s2.0-S0896841117300185 https://dx.doi.org/10.1016/j.jaut.2017.01.001 https://www.ncbi.nlm.nih.gov/pubmed/28117148 https://www.proquest.com/docview/1861609458 |
Volume | 79 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1NS9xA9CGWSi_SWltXWxmht5JukplJJkdZlK1FD62Ct2EmMwMrsiub9eClv73vZSYLUqvQWxLmZZL3_ZL3AfDFl-gLOYxUK27LTLjcZcr4kHklrZFtKVXfeP78oppeibNreb0Bk6EWhtIqk-6POr3X1unKOGFzfDebjX_lqqmUQFmllutodqiCXdTE5d9-r9M80OHpJ5_S4oxWp8KZmON1Q1kiaALrvnVnGgzzhHH6l_PZG6HTt7CdvEd2HB_wHWz4-Q68jvMkH3Zg6zz9KX8PZ7GfNKGdLQLrR_GxWYdUyqi4khKE2DLOoV8sH9gloy_4HbN4OPnJkKs8W_U-rV_uwtXpyeVkmqW5CVkr82qVmdKg1ZZC-MY2ZWvxHMNNXrfKhsA9NzKEAkmneGisKoKxVlXOiVbyqnBN4B9gc76Y-z1gwRjpJA0orq1QAW_gjTFOuNpy2_p6BMWAMN2mpuI02-JWD9ljN5qQrAnJOi8ohW4EX9cwd7GlxrOr-UAHPRSLonrTqPGfhaqfgvJdktBOF7orda7_4qIRyDXkI0Z8ccejgUk0SigRzcz94h53UlVRYRQt1Qg-Ru5Zv3dJdb4Yke7_564H8IbOYgbmJ9hcLe_9Z_SSVvawF4NDeHX8_cf04g-vGBCo |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFH8aQ3xcEIyvwgAjcUOhSWwnzhFVm8pYd4BO2s2yY1vqhNqp6Q678LfzXuxUQmxD2q1p7Dh5fp_Je-8H8MmX6As5jFQrbstMuNxlyviQeSWtkW0pVd94fnZSTU_F0Zk824HJUAtDaZVJ90ed3mvr9M84UXN8sViMf-aqqZRAWaWW62h27sF9geJLMAZffm_zPNDj6aFPaXRGw1PlTEzyOqc0EbSBdd-7MyHDXGOdbvI-eyt0-BSeJPeRfY13-Ax2_HIPHkRAyas9eDhLn8qfw1FsKE10Z6vAeiw-tuhwmzKqrqQMIbaOQPSr9RWbM3qF3zGLPyc_GLKVZ5veqfXrF3B6eDCfTLMEnJC1Mq82mSkNmm0phG9sU7YWjzHe5HWrbAjccyNDKHDvFA-NVUUw1qrKOdFKXhWuCfwl7C5XS_8aWDBGOkkIxbUVKuAFvDHGCVdbbltfj6AYCKbb1FWcwC1-6SF97FwTkTURWecF5dCN4PN2zkXsqXHraD7sgx6qRVG_aVT5t86qr5vluySinS50V-pc_8NGI5DbmX9x4n9X_DgwiUYRpU0zS7-6xJVUVVQYRks1gleRe7bPXVKhL4akb-646gd4NJ3PjvXxt5Pvb-ExnYnpmPuwu1lf-nfoMm3s-14k_gDGZRI2 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generation+of+human+islet-specific+regulatory+T+cells+by+TCR+gene+transfer&rft.jtitle=Journal+of+autoimmunity&rft.au=Hull%2C+Caroline+M&rft.au=Nickolay%2C+Lauren+E&rft.au=Estorninho%2C+Megan&rft.au=Richardson%2C+Max+W&rft.date=2017-05-01&rft.eissn=1095-9157&rft.volume=79&rft.spage=63&rft.epage=73&rft_id=info:doi/10.1016%2Fj.jaut.2017.01.001&rft.externalDBID=NO_FULL_TEXT |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F08968411%2FS0896841117X00048%2Fcov150h.gif |