Accelerated expansion of the Universe in the presence of dark matter pressure
Expansion dynamics of the Universe is an important subject in modern cosmology. The dark energy equation of state determines these dynamics so that the Universe is in an accelerating phase. However, dark matter (DM) can also affect the accelerated expansion of the Universe through its equation of st...
Saved in:
Published in | Canadian journal of physics Vol. 98; no. 2; pp. 210 - 216 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Ottawa
NRC Research Press
01.02.2020
Canadian Science Publishing NRC Research Press |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Expansion dynamics of the Universe is an important subject in modern cosmology. The dark energy equation of state determines these dynamics so that the Universe is in an accelerating phase. However, dark matter (DM) can also affect the accelerated expansion of the Universe through its equation of state. In the present work, we explore the expansion dynamics of the Universe in the presence of DM pressure. In this regard, applying the DM equation of state from the observational data related to the rotational curves of galaxies, we calculate the evolution of DM density. Moreover, the Hubble parameter, history of scale factor, luminosity distance, and deceleration parameter are studied while the DM pressure is taken into account. Our results verify that the DM pressure leads to higher values of the Hubble parameter at each redshift and the expansion of the Universe grows due to the DM pressure. |
---|---|
AbstractList | Expansion dynamics of the Universe is an important subject in modern cosmology. The dark energy equation of state determines these dynamics so that the Universe is in an accelerating phase. However, dark matter (DM) can also affect the accelerated expansion of the Universe through its equation of state. In the present work, we explore the expansion dynamics of the Universe in the presence of DM pressure. In this regard, applying the DM equation of state from the observational data related to the rotational curves of galaxies, we calculate the evolution of DM density. Moreover, the Hubble parameter, history of scale factor, luminosity distance, and deceleration parameter are studied while the DM pressure is taken into account. Our results verify that the DM pressure leads to higher values of the Hubble parameter at each redshift and the expansion of the Universe grows due to the DM pressure. Expansion dynamics of the Universe is an important subject in modern cosmology. The dark energy equation of state determines these dynamics so that the Universe is in an accelerating phase. However, dark matter (DM) can also affect the accelerated expansion of the Universe through its equation of state. In the present work, we explore the expansion dynamics of the Universe in the presence of DM pressure. In this regard, applying the DM equation of state from the observational data related to the rotational curves of galaxies, we calculate the evolution of DM density. Moreover, the Hubble parameter, history of scale factor, luminosity distance, and deceleration parameter are studied while the DM pressure is taken into account. Our results verify that the DM pressure leads to higher values of the Hubble parameter at each redshift and the expansion of the Universe grows due to the DM pressure. Key words: Hubble parameter, expansion of the Universe, dark matter, pressure, luminosity distance. L'expansion dynamique de l'univers est une des importantes questions de la cosmologie moderne. L'equation d'etat de l'energie sombre determine cette dynamique, de telle facon que l'univers est dans une phase d'acceleration. Cependant, la matiere noire (MN) peut aussi affecter l'expansion acceleree de l'univers via son equation d'etat. Nous explorons ici l'expansion dynamique de l'univers en presence de la pression due a la MN. A cet egard, nous appliquons l'equation d'etat de la MN en utilisant les donnees experimentales reliees aux courbes de rotation des galaxies et nous calculons l'evolution de la densite de la MN. De plus, le parametre de Hubble, l'histoire du facteur d'echelle, la distance de luminosite et le parametre de deceleration sont aussi etudies en tenant compte de la pression de la MN. Nos resultats montrent que la pression de la MN mene a de plus grandes valeurs du parametre de Hubble a chaque decalage vers le rouge et que l'expansion de l'univers augmente sous la pression de la MN. [Traduit par la Redaction] Mots-cles : parametre de Hubble, expansion de l'univers, matiere noire, pression, distance de luminosite. |
Abstract_FL | L’expansion dynamique de l’univers est une des importantes questions de la cosmologie moderne. L’équation d’état de l’énergie sombre détermine cette dynamique, de telle façon que l’univers est dans une phase d’accélération. Cependant, la matière noire (MN) peut aussi affecter l’expansion accélérée de l’univers via son équation d’état. Nous explorons ici l’expansion dynamique de l’univers en présence de la pression due à la MN. À cet égard, nous appliquons l’équation d’état de la MN en utilisant les données expérimentales reliées aux courbes de rotation des galaxies et nous calculons l’évolution de la densité de la MN. De plus, le paramètre de Hubble, l’histoire du facteur d’échelle, la distance de luminosité et le paramètre de décélération sont aussi étudiés en tenant compte de la pression de la MN. Nos résultats montrent que la pression de la MN mène à de plus grandes valeurs du paramètre de Hubble à chaque décalage vers le rouge et que l’expansion de l’univers augmente sous la pression de la MN. [Traduit par la Rédaction] |
Audience | Academic |
Author | Rezaei, Zeinab |
Author_xml | – sequence: 1 givenname: Zeinab surname: Rezaei fullname: Rezaei, Zeinab organization: Department of Physics and Biruni Observatory, Shiraz University, Shiraz 71454, Iran |
BookMark | eNqVkk1P3DAQhq0KpC7QY-9ROXEIHTt2Po4rBC0SbSVazpbjjBdvs06wvRX8exxAolSpEPLBnvHzzmhG7x7ZcYNDQj5SOKa0aD7r9ZgzoE0OtBDvyIIyqPMSuNghC4D05gz4e7IXwjqFFaX1gnxbao09ehWxy_B2VC7YwWWDyeI1ZlfO_kEfMLPuIR49BnQap_9O-d_ZRsWI_iEfth4PyK5RfcAPT_c-uTo7_XXyNb_48eX8ZHmRawFlzJuOVYB1XWrRAhqhuaCmqFrUtG0MM01XaiWYUgI64J1oVFFxTnkrQIkW62KfHD7WHf1ws8UQ5XrYepdaSlYIAMprJp6plepRWmeG6JXe2KDlshSsKqqaskTlM9QKXVpKnxZsbEq_4D_N8Hq0N_Jv6HgGSqfDjdWzVY9eCBIT8Tau1DYEef7z8g3s99nptB9C8Gjk6O1G-TtJQU6ukck1cnKNnFyT-OIfXtuoYvJEGsD2_1XBo8p5PVlEeX39SqN7vrTSxA |
CitedBy_id | crossref_primary_10_1140_epjp_s13360_023_03995_2 crossref_primary_10_1140_epjp_s13360_021_02129_w crossref_primary_10_1140_epjc_s10052_022_10135_0 |
Cites_doi | 10.1103/PhysRevD.83.024035 10.1088/1475-7516/2015/02/010 10.1016/j.physletb.2018.08.030 10.1093/mnras/stv302 10.1103/PhysRevD.79.128301 10.1103/PhysRevD.71.047302 10.1111/j.1365-2966.2011.18275.x 10.1088/0264-9381/32/21/215009 10.1016/j.physletb.2016.10.051 10.1088/1475-7516/2009/04/006 10.1016/S0370-2693(98)00159-2 10.1142/S0217732314500096 10.1111/j.1365-2966.2010.16448.x 10.1111/j.1365-2966.2006.10845.x 10.1007/JHEP10(2010)113 10.1088/2041-8205/771/2/L34 10.1103/PhysRevD.68.023516 10.1140/epjc/s10052-014-3158-y 10.1103/PhysRevD.94.023510 10.1088/1361-6528/aa5273 10.1086/509757 10.1103/PhysRevD.83.124051 10.1051/0004-6361/201424402 10.1088/1475-7516/2010/08/009 10.1093/oso/9780198526827.001.0001 10.1103/PhysRevD.67.029901 10.1086/383612 10.1088/1475-7516/2012/07/027 10.1103/PhysRevD.77.123532 10.1088/1475-7516/2012/08/006 10.1103/PhysRevD.65.063507 10.1007/s10714-006-0268-3 10.1111/j.1365-2966.2011.18687.x 10.1086/510378 10.1103/PhysRevD.71.023524 10.1016/j.physletb.2009.10.004 10.1016/j.astropartphys.2012.01.001 10.1103/PhysRevD.60.063512 10.1103/PhysRevD.70.064009 10.1016/j.dark.2017.09.005 10.1103/PhysRevD.74.043530 10.1103/PhysRevD.56.2044 10.1103/PhysRevLett.90.091301 10.1103/PhysRevD.87.043531 10.1088/1475-7516/2014/07/009 10.1088/1475-7516/2016/04/002 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2020 NRC Research Press 2020 Published by NRC Research Press |
Copyright_xml | – notice: COPYRIGHT 2020 NRC Research Press – notice: 2020 Published by NRC Research Press |
DBID | AAYXX CITATION ISN ISR 7U5 8FD H8D L7M |
DOI | 10.1139/cjp-2019-0135 |
DatabaseName | CrossRef Canada (Gale in Context) Gale In Context: Science Solid State and Superconductivity Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | CrossRef Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1208-6045 |
EndPage | 216 |
ExternalDocumentID | A652737812 10_1139_cjp_2019_0135 cjp-2019-0135 |
GeographicLocations | Iran |
GeographicLocations_xml | – name: Iran |
GroupedDBID | -DZ -~X .4S .DC 00T 0R~ 29B 3V. 4.4 5GY 5RP 6J9 6TJ 88I 8AF 8FE 8FG 8FH 8FQ 8G5 AAIKC AAMNW ABDBF ABDPE ABJNI ABTAH ABUWG ACGFO ACGFS ACGOD ACNCT AEGXH AENEX AFFNX AFKRA AIAGR ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS AZQEC BCR BENPR BGLVJ BHPHI BKSAR BLC BPHCQ CAG CCPQU COF CS3 D8U DATHI DU5 DWQXO EAD EAP EAS EBC EBD EBS ECC EDH EDO EJD EMK EPL EST ESX F5P GNUQQ GUQSH HCIFZ HZ~ I-F IAO ICQ IEA IGS IOF IPNFZ ISN ISR ITC LK5 M2O M2P M2Q M3C M3G M7R MV1 MVM NMEPN NRXXU NYCZX O9- OHT ONR OVD P2P P62 PADUT PCBAR PQQKQ PRG PROAC PV9 QF4 QM1 QN7 QO4 QRP RIG RNS RRCRK RRP RZL S10 TAE TEORI TN5 TUS TWZ U5U VOH WH7 ZCG ZY4 ~02 AAYXX ACUHS AETEA AEUYN CITATION PHGZM PHGZT PQGLB 7U5 8FD H8D L7M |
ID | FETCH-LOGICAL-c506t-9d270e886c5b0ef5c451f37bec1b9f2f9d6ca52aa50d04d59a374414b50a5be83 |
ISSN | 0008-4204 |
IngestDate | Sat Aug 16 18:41:35 EDT 2025 Tue Mar 18 23:29:26 EDT 2025 Fri Mar 14 02:44:27 EDT 2025 Tue Jun 10 15:33:46 EDT 2025 Sat Mar 08 18:14:34 EST 2025 Wed Mar 05 04:56:02 EST 2025 Wed Mar 05 05:35:42 EST 2025 Thu Apr 24 23:10:23 EDT 2025 Thu Jul 10 07:39:29 EDT 2025 Sat Dec 07 06:43:47 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c506t-9d270e886c5b0ef5c451f37bec1b9f2f9d6ca52aa50d04d59a374414b50a5be83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2350014825 |
PQPubID | 47725 |
PageCount | 7 |
ParticipantIDs | gale_incontextgauss_ISN_A652737812 gale_infotracacademiconefile_A652737812 crossref_primary_10_1139_cjp_2019_0135 gale_infotracmisc_A652737812 nrcresearch_primary_10_1139_cjp_2019_0135 gale_incontextgauss_ISR_A652737812 gale_infotraccpiq_652737812 proquest_journals_2350014825 gale_infotracgeneralonefile_A652737812 crossref_citationtrail_10_1139_cjp_2019_0135 |
PublicationCentury | 2000 |
PublicationDate | 2020-02-01 |
PublicationDateYYYYMMDD | 2020-02-01 |
PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Ottawa |
PublicationPlace_xml | – name: Ottawa |
PublicationSubtitle | Journal Canadien de Physique |
PublicationTitle | Canadian journal of physics |
PublicationYear | 2020 |
Publisher | NRC Research Press Canadian Science Publishing NRC Research Press |
Publisher_xml | – sequence: 0 name: NRC Research Press – name: NRC Research Press – name: Canadian Science Publishing NRC Research Press |
References | Aguila R. (refg18/ref18) 2014; 74 refg40/ref40 refg20/ref20 refg22/ref22 refg36/ref36 refg38/ref38 refg45/ref45 refg31/ref31 refg9/ref9 refg11/ref11 refg25/ref25 refg6/ref6 refg15/ref15 refg29/ref29 refg43/ref43 refg34/ref34 refg26/ref26 refg14/ref14 refg8/ref8 refg5/ref5 refg2/ref2 refg23/ref23 refg37/ref37 refg7/ref7a refg17/ref17 refg19/ref19 refg30/ref30 refg21/ref21 refg7/ref7 refg4/ref4 refg10/ref10 refg12/ref12 refg1/ref1 refg28/ref28 refg41/ref41 refg32/ref32 refg35/ref35 refg39/ref39 refg3/ref3 refg42/ref42 refg44/ref44 refg24/ref24 refg16/ref16 refg33/ref33 refg13/ref13 refg27/ref27 |
References_xml | – ident: refg23/ref23 doi: 10.1103/PhysRevD.83.024035 – ident: refg43/ref43 doi: 10.1088/1475-7516/2015/02/010 – ident: refg21/ref21 doi: 10.1016/j.physletb.2018.08.030 – ident: refg38/ref38 doi: 10.1093/mnras/stv302 – ident: refg30/ref30 doi: 10.1103/PhysRevD.79.128301 – ident: refg26/ref26 doi: 10.1103/PhysRevD.71.047302 – ident: refg33/ref33 doi: 10.1111/j.1365-2966.2011.18275.x – ident: refg19/ref19 doi: 10.1088/0264-9381/32/21/215009 – ident: refg20/ref20 doi: 10.1016/j.physletb.2016.10.051 – ident: refg14/ref14 doi: 10.1088/1475-7516/2009/04/006 – ident: refg6/ref6 doi: 10.1016/S0370-2693(98)00159-2 – ident: refg42/ref42 doi: 10.1142/S0217732314500096 – ident: refg31/ref31 doi: 10.1111/j.1365-2966.2010.16448.x – ident: refg27/ref27 doi: 10.1111/j.1365-2966.2006.10845.x – ident: refg32/ref32 doi: 10.1007/JHEP10(2010)113 – ident: refg2/ref2 doi: 10.1088/2041-8205/771/2/L34 – ident: refg25/ref25 doi: 10.1103/PhysRevD.68.023516 – volume: 74 start-page: 3158 year: 2014 ident: refg18/ref18 publication-title: Eur. Phys. J. doi: 10.1140/epjc/s10052-014-3158-y – ident: refg39/ref39 doi: 10.1103/PhysRevD.94.023510 – ident: refg40/ref40 doi: 10.1088/1361-6528/aa5273 – ident: refg29/ref29 doi: 10.1086/509757 – ident: refg35/ref35 doi: 10.1103/PhysRevD.83.124051 – ident: refg24/ref24 doi: 10.1051/0004-6361/201424402 – ident: refg22/ref22 doi: 10.1088/1475-7516/2010/08/009 – ident: refg41/ref41 doi: 10.1093/oso/9780198526827.001.0001 – ident: refg7/ref7a doi: 10.1103/PhysRevD.67.029901 – ident: refg45/ref45 doi: 10.1086/383612 – ident: refg37/ref37 doi: 10.1088/1475-7516/2012/07/027 – ident: refg13/ref13 doi: 10.1103/PhysRevD.77.123532 – ident: refg1/ref1 doi: 10.1088/1475-7516/2012/08/006 – ident: refg8/ref8 doi: 10.1103/PhysRevD.65.063507 – ident: refg28/ref28 doi: 10.1007/s10714-006-0268-3 – ident: refg34/ref34 doi: 10.1111/j.1365-2966.2011.18687.x – ident: refg44/ref44 doi: 10.1086/510378 – ident: refg11/ref11 doi: 10.1103/PhysRevD.71.023524 – ident: refg15/ref15 doi: 10.1016/j.physletb.2009.10.004 – ident: refg36/ref36 doi: 10.1016/j.astropartphys.2012.01.001 – ident: refg7/ref7 doi: 10.1103/PhysRevD.60.063512 – ident: refg10/ref10 doi: 10.1103/PhysRevD.70.064009 – ident: refg4/ref4 doi: 10.1016/j.dark.2017.09.005 – ident: refg12/ref12 doi: 10.1103/PhysRevD.74.043530 – ident: refg5/ref5 doi: 10.1103/PhysRevD.56.2044 – ident: refg9/ref9 doi: 10.1103/PhysRevLett.90.091301 – ident: refg16/ref16 doi: 10.1103/PhysRevD.87.043531 – ident: refg17/ref17 doi: 10.1088/1475-7516/2014/07/009 – ident: refg3/ref3 doi: 10.1088/1475-7516/2016/04/002 |
SSID | ssj0007118 |
Score | 2.224853 |
Snippet | Expansion dynamics of the Universe is an important subject in modern cosmology. The dark energy equation of state determines these dynamics so that the... |
SourceID | proquest gale crossref nrcresearch |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 210 |
SubjectTerms | Cosmology Dark energy Dark matter Dark matter (Astronomy) Deceleration distance de luminosité Energy equation Equations of state Expanding universe Expansion expansion de l’univers expansion of the Universe Galactic evolution Galactic rotation Galaxies Hubble parameter Luminosity Luminosity (Astronomy) luminosity distance matière noire Parameters paramètre de Hubble Physics pression pressure Red shift Universe |
Title | Accelerated expansion of the Universe in the presence of dark matter pressure |
URI | http://www.nrcresearchpress.com/doi/abs/10.1139/cjp-2019-0135 https://www.proquest.com/docview/2350014825 |
Volume | 98 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfQJiR4mPgU2wqKEBpCEOY4ceI8doNpQ6JC3SZNvFiO7YzxkZa2e9lfz_kjaax1YvAStfYpH_ez787W3c8IvSJYiZQpHQuc6jirMxJXiWJxXlu6MZYk0rJ9jvLD0-zTGT1bnt5mq0sW1Xt5tbKu5H9QhTbA1VTJ_gOy3U2hAX4DvnAFhOF6K4yHUoLXMGQPylD1g9fx4Z-PJk3KhW4zGae20EjaPQIlZj_e_rLUmrZ97nlFrnEW9Igl3B7IMjVeXwltUwG-alOA1d8-gLUiDlIxRuP9LscvyPpw1pLFGXHHA7fWsmS9UUEC04dXm-TUMJrK71OAzhRMJY6eJKS-Pjoeh42Okjc39HAFM6dIrxNYB4AhWx_ufdg76JxtkSTO2fpXbWlU03I3eGQQdnjne7-ZSU-p9O2aK7bxxckDtOEXBtHQofwQ3dHNI3T3i1P6Y_S5h3XUYR1N6giwjVqso4vG_m-xNv0G68hhHbVYP0GnBx9P9g9jfxRGLCnOF3GpSIE1Y7mkFdY1lRlN6rSACZhUZU3qUuVSUCIExQpnipYiLSDQzSqKBa00S5-itWbS6GcoKqhKRJEoSQqRFVoIRusSq6osqWQQf2-id62muPQ88ea4kp_crhfTkoNiuVEsN4rdRDud-NQRpNwk-NKonRvSkcZkNZ2Ly_mcHx2P-BLnG4XGgdBrL1RP4M2k8JUk8H2GzCyQ3A4k5fTiN-_17gS9547ofdVtBoEgWGAZdL_pjaS_aWHQjjPup_Cck5SarQpG6NZtvn8b3VvO5AFaW8wu9XMIjRfVCz89_gBAvrgW |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accelerated+expansion+of+the+Universe+in+the+presence+of+dark+matter+pressure&rft.jtitle=Canadian+journal+of+physics&rft.au=Rezaei%2C+Zeinab&rft.date=2020-02-01&rft.pub=NRC+Research+Press&rft.issn=0008-4204&rft.volume=98&rft.issue=2&rft.spage=210&rft_id=info:doi/10.1139%2Fcjp-2019-0135&rft.externalDBID=ISR&rft.externalDocID=A652737812 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-4204&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-4204&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-4204&client=summon |