Accelerated expansion of the Universe in the presence of dark matter pressure

Expansion dynamics of the Universe is an important subject in modern cosmology. The dark energy equation of state determines these dynamics so that the Universe is in an accelerating phase. However, dark matter (DM) can also affect the accelerated expansion of the Universe through its equation of st...

Full description

Saved in:
Bibliographic Details
Published inCanadian journal of physics Vol. 98; no. 2; pp. 210 - 216
Main Author Rezaei, Zeinab
Format Journal Article
LanguageEnglish
Published Ottawa NRC Research Press 01.02.2020
Canadian Science Publishing NRC Research Press
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Expansion dynamics of the Universe is an important subject in modern cosmology. The dark energy equation of state determines these dynamics so that the Universe is in an accelerating phase. However, dark matter (DM) can also affect the accelerated expansion of the Universe through its equation of state. In the present work, we explore the expansion dynamics of the Universe in the presence of DM pressure. In this regard, applying the DM equation of state from the observational data related to the rotational curves of galaxies, we calculate the evolution of DM density. Moreover, the Hubble parameter, history of scale factor, luminosity distance, and deceleration parameter are studied while the DM pressure is taken into account. Our results verify that the DM pressure leads to higher values of the Hubble parameter at each redshift and the expansion of the Universe grows due to the DM pressure.
AbstractList Expansion dynamics of the Universe is an important subject in modern cosmology. The dark energy equation of state determines these dynamics so that the Universe is in an accelerating phase. However, dark matter (DM) can also affect the accelerated expansion of the Universe through its equation of state. In the present work, we explore the expansion dynamics of the Universe in the presence of DM pressure. In this regard, applying the DM equation of state from the observational data related to the rotational curves of galaxies, we calculate the evolution of DM density. Moreover, the Hubble parameter, history of scale factor, luminosity distance, and deceleration parameter are studied while the DM pressure is taken into account. Our results verify that the DM pressure leads to higher values of the Hubble parameter at each redshift and the expansion of the Universe grows due to the DM pressure.
Expansion dynamics of the Universe is an important subject in modern cosmology. The dark energy equation of state determines these dynamics so that the Universe is in an accelerating phase. However, dark matter (DM) can also affect the accelerated expansion of the Universe through its equation of state. In the present work, we explore the expansion dynamics of the Universe in the presence of DM pressure. In this regard, applying the DM equation of state from the observational data related to the rotational curves of galaxies, we calculate the evolution of DM density. Moreover, the Hubble parameter, history of scale factor, luminosity distance, and deceleration parameter are studied while the DM pressure is taken into account. Our results verify that the DM pressure leads to higher values of the Hubble parameter at each redshift and the expansion of the Universe grows due to the DM pressure. Key words: Hubble parameter, expansion of the Universe, dark matter, pressure, luminosity distance. L'expansion dynamique de l'univers est une des importantes questions de la cosmologie moderne. L'equation d'etat de l'energie sombre determine cette dynamique, de telle facon que l'univers est dans une phase d'acceleration. Cependant, la matiere noire (MN) peut aussi affecter l'expansion acceleree de l'univers via son equation d'etat. Nous explorons ici l'expansion dynamique de l'univers en presence de la pression due a la MN. A cet egard, nous appliquons l'equation d'etat de la MN en utilisant les donnees experimentales reliees aux courbes de rotation des galaxies et nous calculons l'evolution de la densite de la MN. De plus, le parametre de Hubble, l'histoire du facteur d'echelle, la distance de luminosite et le parametre de deceleration sont aussi etudies en tenant compte de la pression de la MN. Nos resultats montrent que la pression de la MN mene a de plus grandes valeurs du parametre de Hubble a chaque decalage vers le rouge et que l'expansion de l'univers augmente sous la pression de la MN. [Traduit par la Redaction] Mots-cles : parametre de Hubble, expansion de l'univers, matiere noire, pression, distance de luminosite.
Abstract_FL L’expansion dynamique de l’univers est une des importantes questions de la cosmologie moderne. L’équation d’état de l’énergie sombre détermine cette dynamique, de telle façon que l’univers est dans une phase d’accélération. Cependant, la matière noire (MN) peut aussi affecter l’expansion accélérée de l’univers via son équation d’état. Nous explorons ici l’expansion dynamique de l’univers en présence de la pression due à la MN. À cet égard, nous appliquons l’équation d’état de la MN en utilisant les données expérimentales reliées aux courbes de rotation des galaxies et nous calculons l’évolution de la densité de la MN. De plus, le paramètre de Hubble, l’histoire du facteur d’échelle, la distance de luminosité et le paramètre de décélération sont aussi étudiés en tenant compte de la pression de la MN. Nos résultats montrent que la pression de la MN mène à de plus grandes valeurs du paramètre de Hubble à chaque décalage vers le rouge et que l’expansion de l’univers augmente sous la pression de la MN. [Traduit par la Rédaction]
Audience Academic
Author Rezaei, Zeinab
Author_xml – sequence: 1
  givenname: Zeinab
  surname: Rezaei
  fullname: Rezaei, Zeinab
  organization: Department of Physics and Biruni Observatory, Shiraz University, Shiraz 71454, Iran
BookMark eNqVkk1P3DAQhq0KpC7QY-9ROXEIHTt2Po4rBC0SbSVazpbjjBdvs06wvRX8exxAolSpEPLBnvHzzmhG7x7ZcYNDQj5SOKa0aD7r9ZgzoE0OtBDvyIIyqPMSuNghC4D05gz4e7IXwjqFFaX1gnxbao09ehWxy_B2VC7YwWWDyeI1ZlfO_kEfMLPuIR49BnQap_9O-d_ZRsWI_iEfth4PyK5RfcAPT_c-uTo7_XXyNb_48eX8ZHmRawFlzJuOVYB1XWrRAhqhuaCmqFrUtG0MM01XaiWYUgI64J1oVFFxTnkrQIkW62KfHD7WHf1ws8UQ5XrYepdaSlYIAMprJp6plepRWmeG6JXe2KDlshSsKqqaskTlM9QKXVpKnxZsbEq_4D_N8Hq0N_Jv6HgGSqfDjdWzVY9eCBIT8Tau1DYEef7z8g3s99nptB9C8Gjk6O1G-TtJQU6ukck1cnKNnFyT-OIfXtuoYvJEGsD2_1XBo8p5PVlEeX39SqN7vrTSxA
CitedBy_id crossref_primary_10_1140_epjp_s13360_023_03995_2
crossref_primary_10_1140_epjp_s13360_021_02129_w
crossref_primary_10_1140_epjc_s10052_022_10135_0
Cites_doi 10.1103/PhysRevD.83.024035
10.1088/1475-7516/2015/02/010
10.1016/j.physletb.2018.08.030
10.1093/mnras/stv302
10.1103/PhysRevD.79.128301
10.1103/PhysRevD.71.047302
10.1111/j.1365-2966.2011.18275.x
10.1088/0264-9381/32/21/215009
10.1016/j.physletb.2016.10.051
10.1088/1475-7516/2009/04/006
10.1016/S0370-2693(98)00159-2
10.1142/S0217732314500096
10.1111/j.1365-2966.2010.16448.x
10.1111/j.1365-2966.2006.10845.x
10.1007/JHEP10(2010)113
10.1088/2041-8205/771/2/L34
10.1103/PhysRevD.68.023516
10.1140/epjc/s10052-014-3158-y
10.1103/PhysRevD.94.023510
10.1088/1361-6528/aa5273
10.1086/509757
10.1103/PhysRevD.83.124051
10.1051/0004-6361/201424402
10.1088/1475-7516/2010/08/009
10.1093/oso/9780198526827.001.0001
10.1103/PhysRevD.67.029901
10.1086/383612
10.1088/1475-7516/2012/07/027
10.1103/PhysRevD.77.123532
10.1088/1475-7516/2012/08/006
10.1103/PhysRevD.65.063507
10.1007/s10714-006-0268-3
10.1111/j.1365-2966.2011.18687.x
10.1086/510378
10.1103/PhysRevD.71.023524
10.1016/j.physletb.2009.10.004
10.1016/j.astropartphys.2012.01.001
10.1103/PhysRevD.60.063512
10.1103/PhysRevD.70.064009
10.1016/j.dark.2017.09.005
10.1103/PhysRevD.74.043530
10.1103/PhysRevD.56.2044
10.1103/PhysRevLett.90.091301
10.1103/PhysRevD.87.043531
10.1088/1475-7516/2014/07/009
10.1088/1475-7516/2016/04/002
ContentType Journal Article
Copyright COPYRIGHT 2020 NRC Research Press
2020 Published by NRC Research Press
Copyright_xml – notice: COPYRIGHT 2020 NRC Research Press
– notice: 2020 Published by NRC Research Press
DBID AAYXX
CITATION
ISN
ISR
7U5
8FD
H8D
L7M
DOI 10.1139/cjp-2019-0135
DatabaseName CrossRef
Canada (Gale in Context)
Gale In Context: Science
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList

CrossRef





Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1208-6045
EndPage 216
ExternalDocumentID A652737812
10_1139_cjp_2019_0135
cjp-2019-0135
GeographicLocations Iran
GeographicLocations_xml – name: Iran
GroupedDBID -DZ
-~X
.4S
.DC
00T
0R~
29B
3V.
4.4
5GY
5RP
6J9
6TJ
88I
8AF
8FE
8FG
8FH
8FQ
8G5
AAIKC
AAMNW
ABDBF
ABDPE
ABJNI
ABTAH
ABUWG
ACGFO
ACGFS
ACGOD
ACNCT
AEGXH
AENEX
AFFNX
AFKRA
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
AZQEC
BCR
BENPR
BGLVJ
BHPHI
BKSAR
BLC
BPHCQ
CAG
CCPQU
COF
CS3
D8U
DATHI
DU5
DWQXO
EAD
EAP
EAS
EBC
EBD
EBS
ECC
EDH
EDO
EJD
EMK
EPL
EST
ESX
F5P
GNUQQ
GUQSH
HCIFZ
HZ~
I-F
IAO
ICQ
IEA
IGS
IOF
IPNFZ
ISN
ISR
ITC
LK5
M2O
M2P
M2Q
M3C
M3G
M7R
MV1
MVM
NMEPN
NRXXU
NYCZX
O9-
OHT
ONR
OVD
P2P
P62
PADUT
PCBAR
PQQKQ
PRG
PROAC
PV9
QF4
QM1
QN7
QO4
QRP
RIG
RNS
RRCRK
RRP
RZL
S10
TAE
TEORI
TN5
TUS
TWZ
U5U
VOH
WH7
ZCG
ZY4
~02
AAYXX
ACUHS
AETEA
AEUYN
CITATION
PHGZM
PHGZT
PQGLB
7U5
8FD
H8D
L7M
ID FETCH-LOGICAL-c506t-9d270e886c5b0ef5c451f37bec1b9f2f9d6ca52aa50d04d59a374414b50a5be83
ISSN 0008-4204
IngestDate Sat Aug 16 18:41:35 EDT 2025
Tue Mar 18 23:29:26 EDT 2025
Fri Mar 14 02:44:27 EDT 2025
Tue Jun 10 15:33:46 EDT 2025
Sat Mar 08 18:14:34 EST 2025
Wed Mar 05 04:56:02 EST 2025
Wed Mar 05 05:35:42 EST 2025
Thu Apr 24 23:10:23 EDT 2025
Thu Jul 10 07:39:29 EDT 2025
Sat Dec 07 06:43:47 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c506t-9d270e886c5b0ef5c451f37bec1b9f2f9d6ca52aa50d04d59a374414b50a5be83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2350014825
PQPubID 47725
PageCount 7
ParticipantIDs gale_incontextgauss_ISN_A652737812
gale_infotracacademiconefile_A652737812
crossref_primary_10_1139_cjp_2019_0135
gale_infotracmisc_A652737812
nrcresearch_primary_10_1139_cjp_2019_0135
gale_incontextgauss_ISR_A652737812
gale_infotraccpiq_652737812
proquest_journals_2350014825
gale_infotracgeneralonefile_A652737812
crossref_citationtrail_10_1139_cjp_2019_0135
PublicationCentury 2000
PublicationDate 2020-02-01
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Ottawa
PublicationPlace_xml – name: Ottawa
PublicationSubtitle Journal Canadien de Physique
PublicationTitle Canadian journal of physics
PublicationYear 2020
Publisher NRC Research Press
Canadian Science Publishing NRC Research Press
Publisher_xml – sequence: 0
  name: NRC Research Press
– name: NRC Research Press
– name: Canadian Science Publishing NRC Research Press
References Aguila R. (refg18/ref18) 2014; 74
refg40/ref40
refg20/ref20
refg22/ref22
refg36/ref36
refg38/ref38
refg45/ref45
refg31/ref31
refg9/ref9
refg11/ref11
refg25/ref25
refg6/ref6
refg15/ref15
refg29/ref29
refg43/ref43
refg34/ref34
refg26/ref26
refg14/ref14
refg8/ref8
refg5/ref5
refg2/ref2
refg23/ref23
refg37/ref37
refg7/ref7a
refg17/ref17
refg19/ref19
refg30/ref30
refg21/ref21
refg7/ref7
refg4/ref4
refg10/ref10
refg12/ref12
refg1/ref1
refg28/ref28
refg41/ref41
refg32/ref32
refg35/ref35
refg39/ref39
refg3/ref3
refg42/ref42
refg44/ref44
refg24/ref24
refg16/ref16
refg33/ref33
refg13/ref13
refg27/ref27
References_xml – ident: refg23/ref23
  doi: 10.1103/PhysRevD.83.024035
– ident: refg43/ref43
  doi: 10.1088/1475-7516/2015/02/010
– ident: refg21/ref21
  doi: 10.1016/j.physletb.2018.08.030
– ident: refg38/ref38
  doi: 10.1093/mnras/stv302
– ident: refg30/ref30
  doi: 10.1103/PhysRevD.79.128301
– ident: refg26/ref26
  doi: 10.1103/PhysRevD.71.047302
– ident: refg33/ref33
  doi: 10.1111/j.1365-2966.2011.18275.x
– ident: refg19/ref19
  doi: 10.1088/0264-9381/32/21/215009
– ident: refg20/ref20
  doi: 10.1016/j.physletb.2016.10.051
– ident: refg14/ref14
  doi: 10.1088/1475-7516/2009/04/006
– ident: refg6/ref6
  doi: 10.1016/S0370-2693(98)00159-2
– ident: refg42/ref42
  doi: 10.1142/S0217732314500096
– ident: refg31/ref31
  doi: 10.1111/j.1365-2966.2010.16448.x
– ident: refg27/ref27
  doi: 10.1111/j.1365-2966.2006.10845.x
– ident: refg32/ref32
  doi: 10.1007/JHEP10(2010)113
– ident: refg2/ref2
  doi: 10.1088/2041-8205/771/2/L34
– ident: refg25/ref25
  doi: 10.1103/PhysRevD.68.023516
– volume: 74
  start-page: 3158
  year: 2014
  ident: refg18/ref18
  publication-title: Eur. Phys. J.
  doi: 10.1140/epjc/s10052-014-3158-y
– ident: refg39/ref39
  doi: 10.1103/PhysRevD.94.023510
– ident: refg40/ref40
  doi: 10.1088/1361-6528/aa5273
– ident: refg29/ref29
  doi: 10.1086/509757
– ident: refg35/ref35
  doi: 10.1103/PhysRevD.83.124051
– ident: refg24/ref24
  doi: 10.1051/0004-6361/201424402
– ident: refg22/ref22
  doi: 10.1088/1475-7516/2010/08/009
– ident: refg41/ref41
  doi: 10.1093/oso/9780198526827.001.0001
– ident: refg7/ref7a
  doi: 10.1103/PhysRevD.67.029901
– ident: refg45/ref45
  doi: 10.1086/383612
– ident: refg37/ref37
  doi: 10.1088/1475-7516/2012/07/027
– ident: refg13/ref13
  doi: 10.1103/PhysRevD.77.123532
– ident: refg1/ref1
  doi: 10.1088/1475-7516/2012/08/006
– ident: refg8/ref8
  doi: 10.1103/PhysRevD.65.063507
– ident: refg28/ref28
  doi: 10.1007/s10714-006-0268-3
– ident: refg34/ref34
  doi: 10.1111/j.1365-2966.2011.18687.x
– ident: refg44/ref44
  doi: 10.1086/510378
– ident: refg11/ref11
  doi: 10.1103/PhysRevD.71.023524
– ident: refg15/ref15
  doi: 10.1016/j.physletb.2009.10.004
– ident: refg36/ref36
  doi: 10.1016/j.astropartphys.2012.01.001
– ident: refg7/ref7
  doi: 10.1103/PhysRevD.60.063512
– ident: refg10/ref10
  doi: 10.1103/PhysRevD.70.064009
– ident: refg4/ref4
  doi: 10.1016/j.dark.2017.09.005
– ident: refg12/ref12
  doi: 10.1103/PhysRevD.74.043530
– ident: refg5/ref5
  doi: 10.1103/PhysRevD.56.2044
– ident: refg9/ref9
  doi: 10.1103/PhysRevLett.90.091301
– ident: refg16/ref16
  doi: 10.1103/PhysRevD.87.043531
– ident: refg17/ref17
  doi: 10.1088/1475-7516/2014/07/009
– ident: refg3/ref3
  doi: 10.1088/1475-7516/2016/04/002
SSID ssj0007118
Score 2.224853
Snippet Expansion dynamics of the Universe is an important subject in modern cosmology. The dark energy equation of state determines these dynamics so that the...
SourceID proquest
gale
crossref
nrcresearch
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 210
SubjectTerms Cosmology
Dark energy
Dark matter
Dark matter (Astronomy)
Deceleration
distance de luminosité
Energy equation
Equations of state
Expanding universe
Expansion
expansion de l’univers
expansion of the Universe
Galactic evolution
Galactic rotation
Galaxies
Hubble parameter
Luminosity
Luminosity (Astronomy)
luminosity distance
matière noire
Parameters
paramètre de Hubble
Physics
pression
pressure
Red shift
Universe
Title Accelerated expansion of the Universe in the presence of dark matter pressure
URI http://www.nrcresearchpress.com/doi/abs/10.1139/cjp-2019-0135
https://www.proquest.com/docview/2350014825
Volume 98
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfQJiR4mPgU2wqKEBpCEOY4ceI8doNpQ6JC3SZNvFiO7YzxkZa2e9lfz_kjaax1YvAStfYpH_ez787W3c8IvSJYiZQpHQuc6jirMxJXiWJxXlu6MZYk0rJ9jvLD0-zTGT1bnt5mq0sW1Xt5tbKu5H9QhTbA1VTJ_gOy3U2hAX4DvnAFhOF6K4yHUoLXMGQPylD1g9fx4Z-PJk3KhW4zGae20EjaPQIlZj_e_rLUmrZ97nlFrnEW9Igl3B7IMjVeXwltUwG-alOA1d8-gLUiDlIxRuP9LscvyPpw1pLFGXHHA7fWsmS9UUEC04dXm-TUMJrK71OAzhRMJY6eJKS-Pjoeh42Okjc39HAFM6dIrxNYB4AhWx_ufdg76JxtkSTO2fpXbWlU03I3eGQQdnjne7-ZSU-p9O2aK7bxxckDtOEXBtHQofwQ3dHNI3T3i1P6Y_S5h3XUYR1N6giwjVqso4vG_m-xNv0G68hhHbVYP0GnBx9P9g9jfxRGLCnOF3GpSIE1Y7mkFdY1lRlN6rSACZhUZU3qUuVSUCIExQpnipYiLSDQzSqKBa00S5-itWbS6GcoKqhKRJEoSQqRFVoIRusSq6osqWQQf2-id62muPQ88ea4kp_crhfTkoNiuVEsN4rdRDud-NQRpNwk-NKonRvSkcZkNZ2Ly_mcHx2P-BLnG4XGgdBrL1RP4M2k8JUk8H2GzCyQ3A4k5fTiN-_17gS9547ofdVtBoEgWGAZdL_pjaS_aWHQjjPup_Cck5SarQpG6NZtvn8b3VvO5AFaW8wu9XMIjRfVCz89_gBAvrgW
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accelerated+expansion+of+the+Universe+in+the+presence+of+dark+matter+pressure&rft.jtitle=Canadian+journal+of+physics&rft.au=Rezaei%2C+Zeinab&rft.date=2020-02-01&rft.pub=NRC+Research+Press&rft.issn=0008-4204&rft.volume=98&rft.issue=2&rft.spage=210&rft_id=info:doi/10.1139%2Fcjp-2019-0135&rft.externalDBID=ISR&rft.externalDocID=A652737812
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-4204&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-4204&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-4204&client=summon