Integrated modelling of H-mode pedestal and confinement in JET-ILW
A pedestal prediction model Europed is built on the existing EPED1 model by coupling it with core transport simulation using a Bohm-gyroBohm transport model to self-consistently predict JET-ILW power scan for hybrid plasmas that display weaker power degradation than the IPB98(y, 2) scaling of the en...
Saved in:
Published in | Plasma physics and controlled fusion Vol. 60; no. 1; pp. 14042 - 14050 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
IOP Publishing
01.01.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 0741-3335 1361-6587 1361-6587 |
DOI | 10.1088/1361-6587/aa8d45 |
Cover
Abstract | A pedestal prediction model Europed is built on the existing EPED1 model by coupling it with core transport simulation using a Bohm-gyroBohm transport model to self-consistently predict JET-ILW power scan for hybrid plasmas that display weaker power degradation than the IPB98(y, 2) scaling of the energy confinement time. The weak power degradation is reproduced in the coupled core-pedestal simulation. The coupled core-pedestal model is further tested for a 3.0 MA plasma with the highest stored energy achieved in JET-ILW so far, giving a prediction of the stored plasma energy within the error margins of the measured experimental value. A pedestal density prediction model based on the neutral penetration is tested on a JET-ILW database giving a prediction with an average error of 17% from the experimental data when a parameter taking into account the fuelling rate is added into the model. However the model fails to reproduce the power dependence of the pedestal density implying missing transport physics in the model. The future JET-ILW deuterium campaign with increased heating power is predicted to reach plasma energy of 11 MJ, which would correspond to 11-13 MW of fusion power in equivalent deuterium-tritium plasma but with isotope effects on pedestal stability and core transport ignored. |
---|---|
AbstractList | A pedestal prediction model Europed is built on the existing EPED1 model by coupling it with core transport simulation using a Bohm-gyroBohm transport model to self-consistently predict JET-ILW power scan for hybrid plasmas that display weaker power degradation than the IPB98 (y, 2) scaling of the energy confinement time. The weak power degradation is reproduced in the coupled core-pedestal simulation. The coupled core-pedestal model is further tested for a 3.0 MA plasma with the highest stored energy achieved in JET-ILW so far, giving a prediction of the stored plasma energy within the error margins of the measured experimental value. A pedestal density prediction model based on the neutral penetration is tested on a JET-ILW database giving a prediction with an average error of 17% from the experimental data when a parameter taking into account the fuelling rate is added into the model. However the model fails to reproduce the power dependence of the pedestal density implying missing transport physics in the model. The future JET-ILW deuterium campaign with increased heating power is predicted to reach plasma energy of 11 MJ, which would correspond to 11-13 MW of fusion power in equivalent deuterium-tritium plasma but with isotope effects on pedestal stability and core transport ignored. |
Author | Romanelli, M Challis, C D Stokes, C Maggi, C F Saarelma, S Garzotti, L Frassinetti, L |
Author_xml | – sequence: 1 givenname: S surname: Saarelma fullname: Saarelma, S email: samuli.saarelma@ukaea.uk organization: CCFE, Culham Science Centre, Abingdon OX14 3DB, United Kingdom – sequence: 2 givenname: C D surname: Challis fullname: Challis, C D organization: CCFE, Culham Science Centre, Abingdon OX14 3DB, United Kingdom – sequence: 3 givenname: L orcidid: 0000-0002-3796-9814 surname: Garzotti fullname: Garzotti, L organization: CCFE, Culham Science Centre, Abingdon OX14 3DB, United Kingdom – sequence: 4 givenname: L surname: Frassinetti fullname: Frassinetti, L organization: Department of Fusion Plasma Physics, School of Electrical Engineering, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden – sequence: 5 givenname: C F surname: Maggi fullname: Maggi, C F organization: CCFE, Culham Science Centre, Abingdon OX14 3DB, United Kingdom – sequence: 6 givenname: M surname: Romanelli fullname: Romanelli, M organization: CCFE, Culham Science Centre, Abingdon OX14 3DB, United Kingdom – sequence: 7 givenname: C surname: Stokes fullname: Stokes, C organization: University of Bath Department of Physics, Bath, BA2 7AY, United Kingdom |
BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-223190$$DView record from Swedish Publication Index https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-398203$$DView record from Swedish Publication Index https://research.chalmers.se/publication/528751$$DView record from Swedish Publication Index |
BookMark | eNqFkU1v1DAQhi1UJLYtd445ciCtPxLHPpZS2kUr9cCqPY4ce7zrkrUjOyvEvyerrXpAUE7WWM_zjkbvKTmJKSIhHxi9YFSpSyYkq2WruktjlGvaN2Tx8nVCFrRrWC2EaN-R01KeKGVMcbkgn5dxwk02E7pqlxwOQ4ibKvnqrj6M1YgOy2SGykRX2RR9iLjDOFUhVt9u1vVy9XhO3nozFHz__J6R9deb9fVdvbq_XV5frWrbUjnVujdWmh6V9r5vpfLSUydUr7q29S3XaBAb67iXHTLsufJdrxn10mnKtRdn5PsxtvzEcd_DmMPO5F-QTICMBU22W7BbM-wwFygIziumjNEwL5LQtLoB4y0Dz7yQ1kjKKZtTP_0z9Ut4uIKUN7Dfg9CKUzHj9f_xH9MWOBdM05mnR97mVEpG_2IwCofe4FASHEqCY2-zIv9QbJjMFFKcsgnDa-LzKSGN8JT2Oc5tvIZ__As-jtaDnB2grKENh9F58Ru3lbr8 |
CODEN | PLPHBZ |
CitedBy_id | crossref_primary_10_1088_1361_6587_ab9073 crossref_primary_10_1088_1741_4326_ac65fb crossref_primary_10_1063_5_0007329 crossref_primary_10_1088_1741_4326_ad29bd crossref_primary_10_1088_1361_6587_aa9901 crossref_primary_10_1088_1741_4326_ac3293 crossref_primary_10_1007_s10462_023_10591_4 crossref_primary_10_1016_j_nme_2022_101350 crossref_primary_10_1088_1741_4326_acedc0 crossref_primary_10_1016_j_nme_2021_101037 crossref_primary_10_1088_1361_6587_acbb23 crossref_primary_10_1088_1741_4326_ace2d8 crossref_primary_10_1063_5_0190818 crossref_primary_10_1016_j_fusengdes_2021_112443 crossref_primary_10_1088_1741_4326_ac544b crossref_primary_10_1080_15361055_2022_2149210 crossref_primary_10_1088_1741_4326_ab2276 crossref_primary_10_1038_s42254_019_0144_1 crossref_primary_10_1088_1741_4326_abb79e crossref_primary_10_1088_1741_4326_acde8d crossref_primary_10_1088_1741_4326_ac21b9 crossref_primary_10_1088_1741_4326_ac47b4 crossref_primary_10_1088_1361_6587_acd478 crossref_primary_10_1088_1741_4326_ad5e94 crossref_primary_10_1088_1361_6587_acb011 crossref_primary_10_1016_j_fusengdes_2021_112382 crossref_primary_10_1098_rsta_2017_0435 crossref_primary_10_1016_j_nme_2023_101365 crossref_primary_10_1088_1741_4326_ac3363 crossref_primary_10_1088_1741_4326_acbfcf crossref_primary_10_1088_1741_4326_ad4d02 crossref_primary_10_1088_1741_4326_ad2abc crossref_primary_10_1088_1741_4326_abc838 crossref_primary_10_1088_1741_4326_acf057 crossref_primary_10_1088_1361_6587_ac6694 crossref_primary_10_1088_1741_4326_ac9701 crossref_primary_10_1088_1361_6587_acb3f7 crossref_primary_10_1088_1361_6587_acb6b1 crossref_primary_10_1088_1741_4326_ac359c crossref_primary_10_1088_1741_4326_ac2639 crossref_primary_10_1088_1361_6587_ac529b crossref_primary_10_1088_1741_4326_ad6335 crossref_primary_10_1007_s41614_025_00182_x crossref_primary_10_1088_1741_4326_ad7b1b crossref_primary_10_1088_1741_4326_ad39fb |
Cites_doi | 10.1088/0741-3335/53/12/124017 10.1016/0021-9991(81)90111-X 10.1088/0029-5515/39/12/301 10.1063/1.873240 10.1088/0741-3335/59/1/014023 10.1088/0741-3335/59/1/014014 10.1063/1.1462032 10.1585/pfr.9.3403023 10.1063/1.4945615 10.1088/0029-5515/55/1/013019 10.1063/1.4921413 10.1088/0741-3335/39/2/004 10.1088/0029-5515/47/9/033 10.1063/1.3673467 10.1088/0029-5515/51/10/103016 10.1088/0741-3335/58/4/045011 10.1063/1.4947204 10.1088/0029-5515/47/8/030 10.1088/0741-3335/46/5A/020 10.1088/0029-5515/29/7/003 10.1063/1.3122146 10.1088/0029-5515/55/5/053031 10.1088/0029-5515/55/11/113031 |
ContentType | Journal Article |
Copyright | CCFE |
Copyright_xml | – notice: CCFE |
CorporateAuthor | JET Contributors |
CorporateAuthor_xml | – name: JET Contributors |
DBID | AAYXX CITATION ADTPV AOWAS D8V DF2 F1S |
DOI | 10.1088/1361-6587/aa8d45 |
DatabaseName | CrossRef SwePub SwePub Articles SWEPUB Kungliga Tekniska Högskolan SWEPUB Uppsala universitet SWEPUB Chalmers tekniska högskola |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
DocumentTitleAlternate | Integrated modelling of H-mode pedestal and confinement in JET-ILW |
EISSN | 1361-6587 |
ExternalDocumentID | oai_research_chalmers_se_df818aa9_6f06_4594_afc1_f1f36ca60201 oai_DiVA_org_uu_398203 oai_DiVA_org_kth_223190 10_1088_1361_6587_aa8d45 ppcfaa8d45 |
GrantInformation_xml | – fundername: H2020 Euratom grantid: 633053 funderid: https://doi.org/10.13039/100010687 – fundername: Engineering and Physical Sciences Research Council grantid: EP/P012450/1 funderid: https://doi.org/10.13039/501100000266 |
GroupedDBID | -~X .DC 123 1JI 4.4 5B3 5VS 5ZH 7.M 7.Q AAGCD AAJIO AAJKP AALHV AATNI ABHWH ABJNI ABQJV ABVAM ACAFW ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CJUJL CRLBU CS3 DU5 EBS EDWGO EJD EMSAF EPQRW EQZZN HAK IHE IJHAN IOP IZVLO KOT LAP M45 N5L N9A NT- NT. P2P PJBAE R4D RIN RNS RO9 ROL RPA SY9 W28 XPP AAYXX CITATION 02O 1WK 29O 5ZI 8WZ 9BW A6W AAGCF ACARI ACWPO ADTPV AEINN AERVB AETNG AGQPQ AHSEE AOWAS ARNYC BBWZM D8V FEDTE HVGLF JCGBZ Q02 RKQ S3P T37 ZMT DF2 F1S |
ID | FETCH-LOGICAL-c506t-9bac6abe89ffb568f6f0d38b8755f529eaee4cd2f67e1eb28f7b910f6d9029f3 |
IEDL.DBID | IOP |
ISSN | 0741-3335 1361-6587 |
IngestDate | Thu Aug 21 07:16:41 EDT 2025 Thu Aug 21 06:55:01 EDT 2025 Thu Aug 21 06:39:28 EDT 2025 Tue Jul 01 02:47:44 EDT 2025 Thu Apr 24 23:05:03 EDT 2025 Thu Jan 07 13:49:57 EST 2021 Wed Aug 21 03:34:03 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c506t-9bac6abe89ffb568f6f0d38b8755f529eaee4cd2f67e1eb28f7b910f6d9029f3 |
Notes | PPCF-101587.R1 |
ORCID | 0000-0002-3796-9814 |
OpenAccessLink | http://infoscience.epfl.ch/record/270514 |
PageCount | 9 |
ParticipantIDs | iop_journals_10_1088_1361_6587_aa8d45 swepub_primary_oai_DiVA_org_uu_398203 swepub_primary_oai_research_chalmers_se_df818aa9_6f06_4594_afc1_f1f36ca60201 crossref_primary_10_1088_1361_6587_aa8d45 crossref_citationtrail_10_1088_1361_6587_aa8d45 swepub_primary_oai_DiVA_org_kth_223190 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-01-01 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – month: 01 year: 2018 text: 2018-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Plasma physics and controlled fusion |
PublicationTitleAbbrev | PPCF |
PublicationTitleAlternate | Plasma Phys. Control. Fusion |
PublicationYear | 2018 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | 22 24 26 Urano H (6) 2016 Kim D (14) 2016; 58 Bosch H-S (28) 1992; 32 Maggi C F (31) 2017 Snyder P B (5) 2011; 51 Leyland M J (4) 2015; 55 Jaervinen A E (12) 2016; 58 Freeman R L (9) 1974 Frassinetti L (10) 2017; 59 Angioni C (16) 2007; 47 Beurskens M N A (17) 2014; 54 11 ITER Physics Basis Editors (27) 1999; 39 Maggi C F (25) 2015; 55 Kirk A (8) 2004; 46 Erba M (15) 1997; 39 Tala T (19) 2016 Mikkelsen D R (29) 1989; 29 Challis C D (23) 2015; 55 Frassinetti L (18) 2017; 57 2 3 7 Snyder P B (1) 2007; 47 Garcia J (30) 2017; 59 Groth M (13) 2011; 53 20 21 |
References_xml | – volume: 53 issn: 0741-3335 year: 2011 ident: 13 publication-title: Plasma Phys. Control. Fusion doi: 10.1088/0741-3335/53/12/124017 – ident: 26 doi: 10.1016/0021-9991(81)90111-X – volume: 39 start-page: 2137 issn: 0029-5515 year: 1999 ident: 27 publication-title: Nucl. Fusion doi: 10.1088/0029-5515/39/12/301 – ident: 20 doi: 10.1063/1.873240 – volume: 59 start-page: 014023 year: 2017 ident: 30 publication-title: Plasma Phys. Control. Fusion doi: 10.1088/0741-3335/59/1/014023 – volume: 59 issn: 0741-3335 year: 2017 ident: 10 publication-title: Plasma Phys. Control. Fusion doi: 10.1088/0741-3335/59/1/014014 – volume: 57 issn: 0029-5515 year: 2017 ident: 18 publication-title: Nucl. Fusion – ident: 7 doi: 10.1063/1.1462032 – ident: 22 doi: 10.1585/pfr.9.3403023 – ident: 21 doi: 10.1063/1.4945615 – volume: 55 issn: 0029-5515 year: 2015 ident: 4 publication-title: Nucl. Fusion doi: 10.1088/0029-5515/55/1/013019 – volume: 58 issn: 0741-3335 year: 2016 ident: 14 publication-title: Plasma Phys. Control. Fusion – ident: 2 doi: 10.1063/1.4921413 – volume: 39 start-page: 261 issn: 0741-3335 year: 1997 ident: 15 publication-title: Plasma Phys. Control. Fusion doi: 10.1088/0741-3335/39/2/004 – volume: 47 start-page: 1326 issn: 0029-5515 year: 2007 ident: 16 publication-title: Nucl. Fusion doi: 10.1088/0029-5515/47/9/033 – ident: 11 doi: 10.1063/1.3673467 – volume: 51 issn: 0029-5515 year: 2011 ident: 5 publication-title: Nucl. Fusion doi: 10.1088/0029-5515/51/10/103016 – volume: 58 issn: 0741-3335 year: 2016 ident: 12 publication-title: Plasma Phys. Control. Fusion doi: 10.1088/0741-3335/58/4/045011 – ident: 24 doi: 10.1063/1.4947204 – volume: 47 start-page: 961 issn: 0029-5515 year: 2007 ident: 1 publication-title: Nucl. Fusion doi: 10.1088/0029-5515/47/8/030 – year: 2016 ident: 19 publication-title: Preprint: 2016 IAEA Fusion Energy Conf. (FEC 2016) – volume: 32 start-page: 661 issn: 0029-5515 year: 1992 ident: 28 publication-title: Nucl. Fusion – year: 1974 ident: 9 – volume: 46 start-page: A187 issn: 0741-3335 year: 2004 ident: 8 publication-title: Plasma Phys. Control. Fusion doi: 10.1088/0741-3335/46/5A/020 – year: 2016 ident: 6 publication-title: Proc. 43rd EPS Conf. on Plasma Physics – volume: 54 issn: 0029-5515 year: 2014 ident: 17 publication-title: Nucl. Fusion – volume: 29 start-page: 1113 issn: 0029-5515 year: 1989 ident: 29 publication-title: Nucl. Fusion doi: 10.1088/0029-5515/29/7/003 – ident: 3 doi: 10.1063/1.3122146 – volume: 55 issn: 0029-5515 year: 2015 ident: 23 publication-title: Nucl. Fusion doi: 10.1088/0029-5515/55/5/053031 – volume: 55 issn: 0029-5515 year: 2015 ident: 25 publication-title: Nucl. Fusion doi: 10.1088/0029-5515/55/11/113031 – year: 2017 ident: 31 publication-title: Proc. 44rd EPS Conf. on Plasma Physics |
SSID | ssj0011826 |
Score | 2.461927 |
Snippet | A pedestal prediction model Europed is built on the existing EPED1 model by coupling it with core transport simulation using a Bohm-gyroBohm transport model to... |
SourceID | swepub crossref iop |
SourceType | Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 14042 |
SubjectTerms | Density prediction model Deuterium Deuterium-tritium plasmas Experimental values Forecasting Integrated modelling integration neutral penetration pedestal Plasma simulation Plasma stability prediction Transport modeling Transport simulation |
Title | Integrated modelling of H-mode pedestal and confinement in JET-ILW |
URI | https://iopscience.iop.org/article/10.1088/1361-6587/aa8d45 https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-223190 https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-398203 https://research.chalmers.se/publication/528751 |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZtx2AvW3dj2aV4sA32oCS2LFlmT23XkpTu8pBtfRgcdDukdDhmcV7263dkO4GWEsbebPgkWUeSz6fbdxh7U9pgZZYXPAiLnEai5TbTgXtKoDCVIcvjfedPn9XkW352IS922IfNXZhF3f_6h_TYCQV3JuwPxOlRKlTKyXEWI2O0z-UuuxMDV8buPf3ydbOFEIlzp8GZciGE7Pcob8vhmk_apXJv6Ia2vub0Afu5_sruiMnVcNXYoftzQ8DxP6uxz-73HDQ57KAP2U6oHrG77VlQt3zMjqZrCQmftIFy4o31ZIHJhMfXpA6eXAllYCqf0HQaiajGNcbkskrOTmZ8ev7jCZudnsyOJ7wPtcCdHKuGl9Y4ZWzQJaKVSqPCsRfa0mxGoszKYELInc9QFSGlybjGwhLRQOXLcVaieMr2qkUVnrHECB9M1BXMjcyDcDoL2hWaqBW1kQ5hwEZrW4PrZchjNIxf0G6Haw3RMBANA51hBuz9JkXdSXBswb4le0M_DpdbcK-v4eraISgCQ6s3lEHtccDedZ1gU2qU4v54-f0QqD3hqpkDcSsiVFToNuBqBaIkoiUG7PwWXC_qNAc3byPmLGEZwCMRKWNKoHZQkMsyB4MuBUxRKGcUkfz0-T_W9QW7R2jdrRu9ZHvN71V4RUyqsQftiPkLnIIW3Q |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfYEIgXvhHlM0iAxIPbJo5d53GwVe0oYw8F9nb469RpKI1o-sJfzzlJK22aKiTeEunOjs-x72f7_DvG3hY2WJnlIx6ERU4j0XKb6cA9KShMZcjyeN_5y4mafMuPz-RZl-e0uQuzrLqpv0-PLVFwa8IuIE4PUqFSTo5zNDBG-1wOKo977KakqTjGdE2_nm6PESJ4bnk4Uy6EkN055XWlXPJLe1T3Fe7Qxt-M77Gfmy9tw0wu-uva9t2fKySO_9GU--xuh0WTg1b8AbsRyofsVhMT6laP2MfphkrCJ03CnHhzPVliMuHxNamCJ5dCBZjSJ7SsRgKsca8xOS-T46M5n85-PGbz8dH804R3KRe4k0NV88Iap4wNukC0UmlUOPRCW1rVSJRZEUwIufMZqlFIaVGucWQJcKDyxTArUDxh--WyDE9ZYoQPJvIL5kbmQTidBe1GmiCWpgaH0GODjb3BdXTkMSvGL2iOxbWGaByIxoHWOD32YatRtVQcO2Tfkc2hG4-rHXJvLslVlUNQJAwN71AG1CE99r79Eba1Rkruw_PvB0B9Chf1AghjEbCiSncJrtcgCgJcosdm18h15E4LcIsmc84KVgE8EqAypgDqBwW5LHIw6FLAFIVyRhHYT5_9Y1tfs9unh2OYTU8-P2d3SFG3W0kv2H79ex1eEriq7atmAP0Fx6UcQQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrated+modelling+of+H-mode+pedestal+and+confinement+in+JET-ILW&rft.jtitle=Plasma+physics+and+controlled+fusion&rft.au=Saarelma%2C+S&rft.au=Challis%2C+C+D&rft.au=Garzotti%2C+L&rft.au=Frassinetti%2C+L&rft.date=2018-01-01&rft.issn=0741-3335&rft.eissn=1361-6587&rft.volume=60&rft.issue=1&rft.spage=14042&rft_id=info:doi/10.1088%2F1361-6587%2Faa8d45&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1361_6587_aa8d45 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0741-3335&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0741-3335&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0741-3335&client=summon |