High Developmental Rates of Mouse Oocytes Cryopreserved by an Optimized Vitrification Protocol: The Effects of Cryoprotectants, Calcium and Cumulus Cells

Unfertilized oocytes are one of the most desired germ cell stages for cryopreservation because these cryopreserved oocytes can be used for assisted reproductive technologies, including in vitro fertilization (IVF) and intracytoplasmic sperm injection. However, in general, the fertility and developme...

Full description

Saved in:
Bibliographic Details
Published inJournal of Reproduction and Development Vol. 57; no. 6; pp. 675 - 680
Main Authors KOHAYA, Natsuki, KASHIWAZAKI, Naomi, ITO, Junya, FUJIWARA, Katsuyoshi
Format Journal Article
LanguageEnglish
Published Japan THE SOCIETY FOR REPRODUCTION AND DEVELOPMENT 01.12.2011
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Unfertilized oocytes are one of the most desired germ cell stages for cryopreservation because these cryopreserved oocytes can be used for assisted reproductive technologies, including in vitro fertilization (IVF) and intracytoplasmic sperm injection. However, in general, the fertility and developmental ability of cryopreserved oocytes are still low. The aim of the present study was to improve vitrification of mouse oocytes. First, the effects of calcium and cryoprotectants, dimethyl sulfoxide and ethylene glycol (EG), in vitrification medium on survival and developmental ability of vitrified oocytes were evaluated. Oocytes were vitrified by a minimal volume cooling procedure using different cryoprotectants. Most of the vitrified oocytes were morphologically normal after warming, but their fertility and development were low independently of calcium and cryoprotectants. Second, the effect of cumulus cells on ability of oocytes to be fertilized and develop in vitro was examined. The fertility and developmental ability of denuded oocytes (DOs) after IVF were reduced compared with cumulus-oocyte complexes (COCs) both in fresh and cryopreserved groups. Vitrified COCs showed significantly (P<0.05) higher fertility and ability to develop to the 2-cell and blastocyst stages than those of vitrified DOs with cumulus cells and vitrified DOs alone. The vitrified COCs developed to term at a high success rate equivalent to the rate obtained with IVF using fresh COCs. Taken together, the current results clearly demonstrate that, in the presence of surrounding cumulus cells, matured mouse oocytes vitrified using calcium-free media and EG retain their developmental competence. These findings will contribute to improve oocyte vitrification in not only experimental animals but also clinical application for human infertility.
AbstractList Unfertilized oocytes are one of the most desired germ cell stages for cryopreservation because these cryopreserved oocytes can be used for assisted reproductive technologies, including in vitro fertilization (IVF) and intracytoplasmic sperm injection. However, in general, the fertility and developmental ability of cryopreserved oocytes are still low. The aim of the present study was to improve vitrification of mouse oocytes. First, the effects of calcium and cryoprotectants, dimethyl sulfoxide and ethylene glycol (EG), in vitrification medium on survival and developmental ability of vitrified oocytes were evaluated. Oocytes were vitrified by a minimal volume cooling procedure using different cryoprotectants. Most of the vitrified oocytes were morphologically normal after warming, but their fertility and development were low independently of calcium and cryoprotectants. Second, the effect of cumulus cells on ability of oocytes to be fertilized and develop in vitro was examined. The fertility and developmental ability of denuded oocytes (DOs) after IVF were reduced compared with cumulus-oocyte complexes (COCs) both in fresh and cryopreserved groups. Vitrified COCs showed significantly (P<0.05) higher fertility and ability to develop to the 2-cell and blastocyst stages than those of vitrified DOs with cumulus cells and vitrified DOs alone. The vitrified COCs developed to term at a high success rate equivalent to the rate obtained with IVF using fresh COCs. Taken together, the current results clearly demonstrate that, in the presence of surrounding cumulus cells, matured mouse oocytes vitrified using calcium-free media and EG retain their developmental competence. These findings will contribute to improve oocyte vitrification in not only experimental animals but also clinical application for human infertility.
Unfertilized oocytes are one of the most desired germ cell stages for cryopreservation because these cryopreserved oocytes can be used for assisted reproductive technologies, including in vitro fertilization (IVF) and intracytoplasmic sperm injection. However, in general, the fertility and developmental ability of cryopreserved oocytes are still low. The aim of the present study was to improve vitrification of mouse oocytes. First, the effects of calcium and cryoprotectants, dimethyl sulfoxide and ethylene glycol (EG), in vitrification medium on survival and developmental ability of vitrified oocytes were evaluated. Oocytes were vitrified by a minimal volume cooling procedure using different cryoprotectants. Most of the vitrified oocytes were morphologically normal after warming, but their fertility and development were low independently of calcium and cryoprotectants. Second, the effect of cumulus cells on ability of oocytes to be fertilized and develop in vitro was examined. The fertility and developmental ability of denuded oocytes (DOs) after IVF were reduced compared with cumulus-oocyte complexes (COCs) both in fresh and cryopreserved groups. Vitrified COCs showed significantly (P
Author FUJIWARA, Katsuyoshi
KASHIWAZAKI, Naomi
ITO, Junya
KOHAYA, Natsuki
Author_xml – sequence: 1
  fullname: KOHAYA, Natsuki
  organization: Laboratory of Animal Reproduction, School of Veterinary Medicine, Azabu University, Sagamihara 252-5201, Japan
– sequence: 1
  fullname: KASHIWAZAKI, Naomi
  organization: Graduate School of Veterinary Science, Azabu University, Sagamihara 252-5201, Japan
– sequence: 1
  fullname: ITO, Junya
  organization: Graduate School of Veterinary Science, Azabu University, Sagamihara 252-5201, Japan
– sequence: 1
  fullname: FUJIWARA, Katsuyoshi
  organization: Graduate School of Veterinary Science, Azabu University, Sagamihara 252-5201, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21778666$$D View this record in MEDLINE/PubMed
BookMark eNptkctu1DAUhi1URKeFFXvkJRKk2LHjSdhVoTBIRYNQYWs5znHHIyee2k6l4U36tvVc2gViY-vY3_nP5T9DJ6MfAaG3lFzQUpSf1qG_oLQgQixeoBllvC44J-QEzUhDRVHXtD5FZzGuCWFlJfgrdFrS-bwWQszQw8LervAXuAfnNwOMSTn8SyWI2Bv8w08R8NLr7e6hDVu_CRAh3EOPuy1WI15ukh3s3xz_sSlYY7VK1o_4Z_DJa-8-45sV4CtjQKe95EHEpxyrMcWPuFVO22nIYj1up2FyU64EzsXX6KVRLsKb432Ofn-9umkXxfXy2_f28rrQFRGpqDtGSmhqXhlmqr7UrO9MZ_J0fN7xSs-5MkqLvuyBdxU0hoOoO24YgbrTVLBz9P6gm9u6myAmOdiocwdqhDy_pKxpGsKqimf03RGdugF6uQl2UGErn9aZAXoAdPAxBjBS27TfSArKOkmJ3Fkms2WSUrmzLOd8-CfnSfb_9OWBXsekbuGZVSFZ7WDPVnMpdscx5_lPr1SQMLJHscaysQ
CitedBy_id crossref_primary_10_1016_j_cryobiol_2020_10_004
crossref_primary_10_1017_S0967199418000138
crossref_primary_10_1111_asj_12061
crossref_primary_10_20473_fmi_v52i2_5222
crossref_primary_10_1016_j_cryobiol_2014_01_008
crossref_primary_10_1016_j_rbmo_2019_09_012
crossref_primary_10_1016_j_cryobiol_2020_01_002
crossref_primary_10_1095_biolreprod_113_109769
crossref_primary_10_3390_ijms24010417
crossref_primary_10_1016_j_cryobiol_2023_104834
crossref_primary_10_1007_s10815_012_9848_1
crossref_primary_10_1371_journal_pone_0058063
crossref_primary_10_1111_rda_13221
crossref_primary_10_1007_s11302_020_09690_6
crossref_primary_10_1071_RD13161
crossref_primary_10_1262_jrd_2017_095
crossref_primary_10_1530_REP_14_0594
crossref_primary_10_1186_s12958_016_0161_1
crossref_primary_10_1016_j_cryobiol_2018_03_003
crossref_primary_10_3390_ani12030359
crossref_primary_10_1016_j_cryobiol_2013_06_011
crossref_primary_10_1371_journal_pone_0248050
crossref_primary_10_1016_j_cryobiol_2020_03_004
crossref_primary_10_1089_bio_2015_0025
crossref_primary_10_1371_journal_pone_0176711
crossref_primary_10_3390_ani11102949
crossref_primary_10_1111_asj_12666
Cites_doi 10.1093/molehr/gap016
10.1093/oxfordjournals.humrep.a136849
10.1538/expanim1978.40.4_493
10.1016/j.theriogenology.2006.09.014
10.1002/(SICI)1098-2795(199612)45:4<503::AID-MRD13>3.0.CO;2-X
10.1006/cryo.1995.1007
10.1016/0011-2240(92)90051-3
10.1530/rep.1.00878
10.1016/j.cryobiol.2009.07.007
10.1016/S0093-691X(03)00232-2
10.1095/biolreprod.107.064113
10.1073/pnas.0805699105
10.1262/jrd.19058
10.1095/biolreprod.108.072918
10.1242/dev.020461
10.1111/j.1740-0929.2009.00699.x
10.1006/cryo.1997.2043
10.1038/313573a0
10.1095/biolreprod17.4.527
10.1002/mrd.10102
10.1530/jrf.0.0490089
10.1242/dev.01056
10.1095/biolreprod.108.070383
10.1046/j.1439-0531.2002.00345.x
10.1016/S0015-0282(01)01809-X
10.1002/mrd.1080410214
10.1016/S0015-0282(03)00551-X
10.1210/mend.16.6.0859
10.1016/S0140-6736(86)90989-X
ContentType Journal Article
Copyright 2011 Society for Reproduction and Development
Copyright_xml – notice: 2011 Society for Reproduction and Development
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7QP
8FD
FR3
P64
DOI 10.1262/jrd.11-066H
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Calcium & Calcified Tissue Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitleList MEDLINE
Engineering Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1348-4400
EndPage 680
ExternalDocumentID 21778666
10_1262_jrd_11_066H
article_jrd_57_6_57_11_066H_article_char_en
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
29L
2WC
53G
5GY
ACGFO
ACPRK
ADBBV
ADRAZ
AENEX
ALMA_UNASSIGNED_HOLDINGS
AOIJS
B.T
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
GROUPED_DOAJ
GX1
HYE
JSF
JSH
KQ8
M48
N5S
OK1
OVT
P2P
PGMZT
RJT
RNS
RPM
RZJ
TKC
TR2
XSB
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7QP
8FD
FR3
P64
ID FETCH-LOGICAL-c506t-8b302e9845f3f5d2c3dbfbf86647b45c74afac6d2de4b5e9f4e68b4f30e8bc163
ISSN 0916-8818
IngestDate Fri Jul 11 11:56:57 EDT 2025
Sat Sep 18 02:38:40 EDT 2021
Tue Jul 01 02:55:14 EDT 2025
Thu Apr 24 23:00:55 EDT 2025
Wed Sep 03 06:13:44 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0/deed.ja
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c506t-8b302e9845f3f5d2c3dbfbf86647b45c74afac6d2de4b5e9f4e68b4f30e8bc163
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink http://dx.doi.org/10.1262/jrd.11-066H
PMID 21778666
PQID 1399903554
PQPubID 23462
PageCount 6
ParticipantIDs proquest_miscellaneous_1399903554
pubmed_primary_21778666
crossref_citationtrail_10_1262_jrd_11_066H
crossref_primary_10_1262_jrd_11_066H
jstage_primary_article_jrd_57_6_57_11_066H_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-12-01
PublicationDateYYYYMMDD 2011-12-01
PublicationDate_xml – month: 12
  year: 2011
  text: 2011-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Japan
PublicationPlace_xml – name: Japan
PublicationTitle Journal of Reproduction and Development
PublicationTitleAlternate J. Reprod. Dev.
PublicationYear 2011
Publisher THE SOCIETY FOR REPRODUCTION AND DEVELOPMENT
Publisher_xml – name: THE SOCIETY FOR REPRODUCTION AND DEVELOPMENT
References 30. Songsasen N, Buckrell BC, Plante C, Leibo SP. In vitro and in vivo survival of cryopreserved sheep embryos. Cryobiology 1995; 32: 78-91.
16. Van Soom A, Tanghe S, De Pauw I, Maes D, de Kruif A. Function of the cumulus oophorus before and during mammalian fertilization. Reprod Domest Anim 2002; 37: 144-151.
9. Fuku E, Kojima T, Shioya Y, Marcus GJ, Downey BR. In vitro fertilization and development of frozen-thawed bovine oocytes. Cryobiology 1992; 29: 485-492.
12. Endoh K, Mochida K, Ogonuki N, Ohkawa M, Shinmen A, Ito M, Kashiwazaki N, Ogura A. The developmental ability of vitrified oocytes from different mouse strains assessed by parthenogenetic activation and intracytoplasmic sperm injection. J Reprod Dev 2007; 53: 1199-1206.
4. Kuwayama M. Highly efficient vitrification for cryopreservation of human oocytes. Theriogenology 2007; 67: 73-80.
25. Toyoda Y, Yokoyama M, Hosi T. Studies on the fertilization of mouse eggs in vitro. I. In vitro fertilization of eggs by fresh epididymal sperm. Jpn J Anim Reprod 1972; 16: 147-151.
32. Dinnyés A, Dai Y, Jiang S, Yang X. High developmental rates of vitrified bovine oocytes following parthenogenetic activation, in vitro fertilization, and somatic cell nuclear transfer. Biol Reprod 2000; 63: 513-518.
17. Tanghe S, Van Soom A, Nauwynck H, Coryn M, de Kruif A. Minireview: Functions of the cumulus oophorus during oocyte maturation, ovulation, and fertilization. Mol Reprod Dev 2002; 61: 414-424.
31. Martino A, Pollard JW, Leibo SP. Effect of chilling bovine oocytes on their developmental competence. Mol Reprod Dev 1996; 45: 503-512.
3. Rall WF, Fahy GM. Ice-free cryopreservation of mouse embryos at -196 degrees C by vitrification. Nature 1985; 313: 573-575.
1. Mazur P, Leibo SP, Seidel GE Jr Cryopreservation of the germplasm of animals used in biological and medical research: importance, impact, status, and future directions. Biol Reprod 2008; 78: 2-12.
15. Ito J, Yoshida T, Kasai Y, Wakai T, Parys JB, Fissore RA, Kashiwazaki N. Phosphorylation of inositol 1,4,5-triphosphate receptor 1 during in vitro maturation of porcine oocytes. Anim Sci J 2010; 81: 34-41.
19. Salustri A, Garlanda C, Hirsch E, De Acetis M, Maccagno A, Bottazzi B, Doni A, Bastone A, Mantovani G, Beck Peccoz P, Salvatori G, Mahoney DJ, Day AJ, Siracusa G, Romani L, Mantovani A. PTX3 plays a key role in the organization of the cumulus oophorus extracellular matrix and in in vivo fertilization. Development 2004; 131: 1577-1586.
22. Whittingham DG. Culture of mouse ova. J Reprod Fertil Suppl 1971; 7-21.
11. Park SE, Chung HM, Cha KY, Hwang WS, Lee ES, Lim JM. Cryopreservation of ICR mouse oocytes: improved post-thawed preimplantation development after vitrification using Taxol, a cytoskeleton stabilizer. Fertil Steril 2001; 75: 1177-1184.
8. al-Hasani S, Kirsch J, Diedrich K, Blanke S, van der Ven H, Krebs D. Successful embryo transfer of cryopreserved and in-vitro fertilized rabbit oocytes. Hum Reprod 1989; 4: 77-79.
34. Hochi S, Terao T, Kamei M, Kato M, Hirabayashi M, Hirao M. Successful vitrification of pronuclear-stage rabbit zygotes by minimum volume cooling procedure. Theriogenology 2004; 61: 267-275.
21. Tamba S, Yodoi R, Segi-Nishida E, Ichikawa A, Narumiya S, Sugimoto Y. Timely interaction between prostaglandin and chemokine signaling is a prerequisite for successful fertilization. Proc Nat Acad Sci USA 2008; 105: 14539-14544.
14. Larman MG, Sheehan CB, Gardner DK. Calcium-free vitrification reduces cryoprotectant-induced zona pellucida hardening and increases fertilization rates in mouse oocytes. Reproduction 2006; 131: 53-61.
13. Eroglu A, Bailey SE, Toner M, Toth TL. Successful cryopreservation of mouse oocytes by using low concentrations of trehalose and dimethylsulfoxide. Biol Reprod 2009; 80: 70-78.
20. Shimada M, Yanai Y, Okazaki T, Noma N, Kawashima I, Mori T, Richards JS. Hyaluronan fragments generated by sperm-secreted hyaluronidase stimulate cytokine/chemokine production via the TLR2 and TLR4 pathway in cumulus cells of ovulated COCs, which may enhance fertilization. Development 2008; 135: 2001-2011.
5. Parkening TA, Chang MC. Effects of cooling rates and maturity of the animal on the recovery and fertilization of frozen-thawed rodent eggs. Biol Reprod 1977; 17: 527-531.
28. Seita Y, Sugio S, Ito J, Kashiwazaki N. Generation of live rats produced by in vitro fertilization using cryopreserved spermatozoa. Biol Reprod 2009; 80: 503-510.
23. Seita Y, Okuda Y, Kato M, Kawakami Y, Inomata T, Ito J, Kashiwazaki N. Successful cryopreservation of rat pronuclear-stage embryos by rapid cooling. Cryobiology 2009; 59: 226-228.
29. Shaw JM, Kuleshova LL, MacFarlane DR, Trounson AO. Vitrification properties of solutions of ethylene glycol in saline containing PVP, Ficoll, or dextran. Cryobiology 1997; 35: 219-229.
10. Katayama KP, Stehlik J, Kuwayama M, Kato O, Stehlik E. High survival rate of vitrified human oocytes results in clinical pregnancy. Fertil Steril 2003; 80: 223-224.
18. Varani S, Elvin JA, Yan C, DeMayo J, DeMayo FJ, Horton HF, Byrne MC, Matzuk MM. Knockout of pentraxin 3, a downstream target of growth differentiation factor-9, causes female subfertility. Mol Endoc 2002; 16: 1154-1167.
7. Chen C. Pregnancy after human oocyte cryopreservation. Lancet 1986; 1: 884-886.
27. Ho Y, Wigglesworth K, Eppig JJ, Schultz RM. Preimplantation development of mouse embryos in KSOM: augmentation by amino acids and analysis of gene expression. Mol Reprod Dev 1995; 41: 232-238.
24. Ito J, Kuramochi M, Inoue A, Yabe K, Fujiwara K, Sonoki S, Masaoka T, Kashiwazaki N. Cryotop facilitates high developmental ability of re-vitrified mouse embryos. J Reprod Engineering 2010; 13: 21-26.
6. Whittingham DG. Fertilization in vitro and development to term of unfertilized mouse oocytes previously stored at -196 degrees C. J Reprod Fertil 1977; 49: 89-94.
2. Zhou GB, Li N. Cryopreservation of porcine oocytes: recent advances. Mol Hum Reprod 2009; 15: 279-285.
26. Takeshima T, Nakagata N, Ogawa S. Cryopreservation of mouse spermatozoa. Jikken Dobutsu 1991; 40: 493-497(In Japanese).
33. Kuwayama M. Highly efficient vitrification for cryopreservation of human oocytes and embryos: the Cryotop method. Theriogenology 2007; 67: 73-80.
22
23
24
25
26
27
28
29
30
31
10
32
11
33
12
13
14
15
16
17
18
19
1
2
3
4
5
6
7
8
9
20
21
References_xml – reference: 22. Whittingham DG. Culture of mouse ova. J Reprod Fertil Suppl 1971; 7-21.
– reference: 3. Rall WF, Fahy GM. Ice-free cryopreservation of mouse embryos at -196 degrees C by vitrification. Nature 1985; 313: 573-575.
– reference: 19. Salustri A, Garlanda C, Hirsch E, De Acetis M, Maccagno A, Bottazzi B, Doni A, Bastone A, Mantovani G, Beck Peccoz P, Salvatori G, Mahoney DJ, Day AJ, Siracusa G, Romani L, Mantovani A. PTX3 plays a key role in the organization of the cumulus oophorus extracellular matrix and in in vivo fertilization. Development 2004; 131: 1577-1586.
– reference: 31. Martino A, Pollard JW, Leibo SP. Effect of chilling bovine oocytes on their developmental competence. Mol Reprod Dev 1996; 45: 503-512.
– reference: 33. Kuwayama M. Highly efficient vitrification for cryopreservation of human oocytes and embryos: the Cryotop method. Theriogenology 2007; 67: 73-80.
– reference: 2. Zhou GB, Li N. Cryopreservation of porcine oocytes: recent advances. Mol Hum Reprod 2009; 15: 279-285.
– reference: 10. Katayama KP, Stehlik J, Kuwayama M, Kato O, Stehlik E. High survival rate of vitrified human oocytes results in clinical pregnancy. Fertil Steril 2003; 80: 223-224.
– reference: 24. Ito J, Kuramochi M, Inoue A, Yabe K, Fujiwara K, Sonoki S, Masaoka T, Kashiwazaki N. Cryotop facilitates high developmental ability of re-vitrified mouse embryos. J Reprod Engineering 2010; 13: 21-26.
– reference: 32. Dinnyés A, Dai Y, Jiang S, Yang X. High developmental rates of vitrified bovine oocytes following parthenogenetic activation, in vitro fertilization, and somatic cell nuclear transfer. Biol Reprod 2000; 63: 513-518.
– reference: 14. Larman MG, Sheehan CB, Gardner DK. Calcium-free vitrification reduces cryoprotectant-induced zona pellucida hardening and increases fertilization rates in mouse oocytes. Reproduction 2006; 131: 53-61.
– reference: 29. Shaw JM, Kuleshova LL, MacFarlane DR, Trounson AO. Vitrification properties of solutions of ethylene glycol in saline containing PVP, Ficoll, or dextran. Cryobiology 1997; 35: 219-229.
– reference: 1. Mazur P, Leibo SP, Seidel GE Jr Cryopreservation of the germplasm of animals used in biological and medical research: importance, impact, status, and future directions. Biol Reprod 2008; 78: 2-12.
– reference: 12. Endoh K, Mochida K, Ogonuki N, Ohkawa M, Shinmen A, Ito M, Kashiwazaki N, Ogura A. The developmental ability of vitrified oocytes from different mouse strains assessed by parthenogenetic activation and intracytoplasmic sperm injection. J Reprod Dev 2007; 53: 1199-1206.
– reference: 25. Toyoda Y, Yokoyama M, Hosi T. Studies on the fertilization of mouse eggs in vitro. I. In vitro fertilization of eggs by fresh epididymal sperm. Jpn J Anim Reprod 1972; 16: 147-151.
– reference: 16. Van Soom A, Tanghe S, De Pauw I, Maes D, de Kruif A. Function of the cumulus oophorus before and during mammalian fertilization. Reprod Domest Anim 2002; 37: 144-151.
– reference: 6. Whittingham DG. Fertilization in vitro and development to term of unfertilized mouse oocytes previously stored at -196 degrees C. J Reprod Fertil 1977; 49: 89-94.
– reference: 34. Hochi S, Terao T, Kamei M, Kato M, Hirabayashi M, Hirao M. Successful vitrification of pronuclear-stage rabbit zygotes by minimum volume cooling procedure. Theriogenology 2004; 61: 267-275.
– reference: 4. Kuwayama M. Highly efficient vitrification for cryopreservation of human oocytes. Theriogenology 2007; 67: 73-80.
– reference: 27. Ho Y, Wigglesworth K, Eppig JJ, Schultz RM. Preimplantation development of mouse embryos in KSOM: augmentation by amino acids and analysis of gene expression. Mol Reprod Dev 1995; 41: 232-238.
– reference: 11. Park SE, Chung HM, Cha KY, Hwang WS, Lee ES, Lim JM. Cryopreservation of ICR mouse oocytes: improved post-thawed preimplantation development after vitrification using Taxol, a cytoskeleton stabilizer. Fertil Steril 2001; 75: 1177-1184.
– reference: 23. Seita Y, Okuda Y, Kato M, Kawakami Y, Inomata T, Ito J, Kashiwazaki N. Successful cryopreservation of rat pronuclear-stage embryos by rapid cooling. Cryobiology 2009; 59: 226-228.
– reference: 30. Songsasen N, Buckrell BC, Plante C, Leibo SP. In vitro and in vivo survival of cryopreserved sheep embryos. Cryobiology 1995; 32: 78-91.
– reference: 8. al-Hasani S, Kirsch J, Diedrich K, Blanke S, van der Ven H, Krebs D. Successful embryo transfer of cryopreserved and in-vitro fertilized rabbit oocytes. Hum Reprod 1989; 4: 77-79.
– reference: 9. Fuku E, Kojima T, Shioya Y, Marcus GJ, Downey BR. In vitro fertilization and development of frozen-thawed bovine oocytes. Cryobiology 1992; 29: 485-492.
– reference: 5. Parkening TA, Chang MC. Effects of cooling rates and maturity of the animal on the recovery and fertilization of frozen-thawed rodent eggs. Biol Reprod 1977; 17: 527-531.
– reference: 18. Varani S, Elvin JA, Yan C, DeMayo J, DeMayo FJ, Horton HF, Byrne MC, Matzuk MM. Knockout of pentraxin 3, a downstream target of growth differentiation factor-9, causes female subfertility. Mol Endoc 2002; 16: 1154-1167.
– reference: 21. Tamba S, Yodoi R, Segi-Nishida E, Ichikawa A, Narumiya S, Sugimoto Y. Timely interaction between prostaglandin and chemokine signaling is a prerequisite for successful fertilization. Proc Nat Acad Sci USA 2008; 105: 14539-14544.
– reference: 17. Tanghe S, Van Soom A, Nauwynck H, Coryn M, de Kruif A. Minireview: Functions of the cumulus oophorus during oocyte maturation, ovulation, and fertilization. Mol Reprod Dev 2002; 61: 414-424.
– reference: 13. Eroglu A, Bailey SE, Toner M, Toth TL. Successful cryopreservation of mouse oocytes by using low concentrations of trehalose and dimethylsulfoxide. Biol Reprod 2009; 80: 70-78.
– reference: 7. Chen C. Pregnancy after human oocyte cryopreservation. Lancet 1986; 1: 884-886.
– reference: 26. Takeshima T, Nakagata N, Ogawa S. Cryopreservation of mouse spermatozoa. Jikken Dobutsu 1991; 40: 493-497(In Japanese).
– reference: 20. Shimada M, Yanai Y, Okazaki T, Noma N, Kawashima I, Mori T, Richards JS. Hyaluronan fragments generated by sperm-secreted hyaluronidase stimulate cytokine/chemokine production via the TLR2 and TLR4 pathway in cumulus cells of ovulated COCs, which may enhance fertilization. Development 2008; 135: 2001-2011.
– reference: 28. Seita Y, Sugio S, Ito J, Kashiwazaki N. Generation of live rats produced by in vitro fertilization using cryopreserved spermatozoa. Biol Reprod 2009; 80: 503-510.
– reference: 15. Ito J, Yoshida T, Kasai Y, Wakai T, Parys JB, Fissore RA, Kashiwazaki N. Phosphorylation of inositol 1,4,5-triphosphate receptor 1 during in vitro maturation of porcine oocytes. Anim Sci J 2010; 81: 34-41.
– ident: 2
  doi: 10.1093/molehr/gap016
– ident: 8
  doi: 10.1093/oxfordjournals.humrep.a136849
– ident: 26
  doi: 10.1538/expanim1978.40.4_493
– ident: 32
  doi: 10.1016/j.theriogenology.2006.09.014
– ident: 31
  doi: 10.1002/(SICI)1098-2795(199612)45:4<503::AID-MRD13>3.0.CO;2-X
– ident: 30
  doi: 10.1006/cryo.1995.1007
– ident: 9
  doi: 10.1016/0011-2240(92)90051-3
– ident: 14
  doi: 10.1530/rep.1.00878
– ident: 23
  doi: 10.1016/j.cryobiol.2009.07.007
– ident: 33
  doi: 10.1016/S0093-691X(03)00232-2
– ident: 1
  doi: 10.1095/biolreprod.107.064113
– ident: 21
  doi: 10.1073/pnas.0805699105
– ident: 12
  doi: 10.1262/jrd.19058
– ident: 28
  doi: 10.1095/biolreprod.108.072918
– ident: 20
  doi: 10.1242/dev.020461
– ident: 24
– ident: 15
  doi: 10.1111/j.1740-0929.2009.00699.x
– ident: 29
  doi: 10.1006/cryo.1997.2043
– ident: 22
– ident: 4
  doi: 10.1016/j.theriogenology.2006.09.014
– ident: 3
  doi: 10.1038/313573a0
– ident: 5
  doi: 10.1095/biolreprod17.4.527
– ident: 17
  doi: 10.1002/mrd.10102
– ident: 6
  doi: 10.1530/jrf.0.0490089
– ident: 19
  doi: 10.1242/dev.01056
– ident: 13
  doi: 10.1095/biolreprod.108.070383
– ident: 16
  doi: 10.1046/j.1439-0531.2002.00345.x
– ident: 11
  doi: 10.1016/S0015-0282(01)01809-X
– ident: 27
  doi: 10.1002/mrd.1080410214
– ident: 10
  doi: 10.1016/S0015-0282(03)00551-X
– ident: 18
  doi: 10.1210/mend.16.6.0859
– ident: 7
  doi: 10.1016/S0140-6736(86)90989-X
– ident: 25
SSID ssj0032564
Score 2.0712142
Snippet Unfertilized oocytes are one of the most desired germ cell stages for cryopreservation because these cryopreserved oocytes can be used for assisted...
SourceID proquest
pubmed
crossref
jstage
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 675
SubjectTerms Animals
Blastocyst - drug effects
Calcium - pharmacology
Cryopreservation - methods
Cryoprotective Agents - pharmacology
Cumulus Cells - drug effects
Dimethyl Sulfoxide - pharmacology
Ethylene Glycol - pharmacology
Female
In vitro fertilization
Mice
Mouse
Oocyte
Oocytes - cytology
Oocytes - drug effects
Oocytes - physiology
Vitrification
Vitrification - drug effects
Title High Developmental Rates of Mouse Oocytes Cryopreserved by an Optimized Vitrification Protocol: The Effects of Cryoprotectants, Calcium and Cumulus Cells
URI https://www.jstage.jst.go.jp/article/jrd/57/6/57_11-066H/_article/-char/en
https://www.ncbi.nlm.nih.gov/pubmed/21778666
https://www.proquest.com/docview/1399903554
Volume 57
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Reproduction and Development, 2011, Vol.57(6), pp.675-680
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bT9swFLaAXbSXXdituyBP4mksLM3FTXiLSlELgiJoN9hLFDv2VlaaqU0eyj_Zv93xJWm6gTS2F6uNj-y054vPOc7ncxDa9G3XaSVuaKWEhhCg8JaVUEYtBsYnFSINQ0-eRj48It2ht3_mn62sPqqxloqcbrOra8-V_ItW4RroVZ6SvYVmq0HhAnwG_UILGob2r3QsSRp12o9MlC99R8VrgZCeb_UzNpcX2tO5Knci-Y3K5YTHug-rxeXoCr5_GuVTSRnSYDieZnkG-CgJGZ0F5UMPozI7JIqAIRkjYzYqdKGNdnFZjAuYjY_HsxvcXvD4dZLZBQ-6uv9q9e93o_NIL_75rPg-qjqi027vc_QlOujp3uyy6usN-vqYyWRemZq94T6In0SGNzIr5tns26i-0yGpdkusEUmBOu23e53B-RZEyFsnneOT_u5QcW1ULq5a2dL6PmeTWEFgFnmuV3lX7qJ6tl03AzpPtoF7fU0nurSLcQ-ILjz1h-VxiMxkezFNt-WeMyHdhYGtaI8GKDFIxX4rJrKB-EtKx2WfPGwH2F5FdxwIfGRNjt3eQelbuOCgqoRo5Y8yJ05h8o-1qZd8rLsXEGZ85TdHUMqTGjxGDw0WcKRv5Qla4ZN1dE8XRZ2vo_uHhu7xFP2UAMdLAMcK4DgTWAEcG4DjJYBjOsfJBFcAx0sAxyXAdzDAGxt4yyF_g_cHbMANg6XYgBsrcD9Dw73OoN21TC0Ri_k2ya2AurbDw8DzhSv81GFuSgUVASFei3o-a3mJSBhJnZR71Oeh8DgJqCdcmweUQdDyHK1Nsgl_ibAviHBs5nktYnuMswQiKLCKoslc36Zh2EDvy38_ZibRvqz3Mo5lwA2qUvo3em-gzUr4h84vc73YjlZjJXQLLDXQu1L1MRgP-UYwmXBQUgzhH3ijMuRooBcaE9UETlOmliTk1f9M_Ro9WDzJb9BaPi34W_Dic7qhgL2h9sCgPTo-_AUyFPyQ
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High+Developmental+Rates+of+Mouse+Oocytes+Cryopreserved+by+an+Optimized+Vitrification+Protocol%3A+The+Effects+of+Cryoprotectants%2C+Calcium+and+Cumulus+Cells&rft.jtitle=Journal+of+Reproduction+and+Development&rft.au=KOHAYA%2C+Natsuki&rft.au=KASHIWAZAKI%2C+Naomi&rft.au=ITO%2C+Junya&rft.au=FUJIWARA%2C+Katsuyoshi&rft.date=2011-12-01&rft.pub=THE+SOCIETY+FOR+REPRODUCTION+AND+DEVELOPMENT&rft.issn=0916-8818&rft.eissn=1348-4400&rft.volume=57&rft.issue=6&rft.spage=675&rft.epage=680&rft_id=info:doi/10.1262%2Fjrd.11-066H&rft.externalDocID=article_jrd_57_6_57_11_066H_article_char_en
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0916-8818&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0916-8818&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0916-8818&client=summon