High Developmental Rates of Mouse Oocytes Cryopreserved by an Optimized Vitrification Protocol: The Effects of Cryoprotectants, Calcium and Cumulus Cells
Unfertilized oocytes are one of the most desired germ cell stages for cryopreservation because these cryopreserved oocytes can be used for assisted reproductive technologies, including in vitro fertilization (IVF) and intracytoplasmic sperm injection. However, in general, the fertility and developme...
Saved in:
Published in | Journal of Reproduction and Development Vol. 57; no. 6; pp. 675 - 680 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Japan
THE SOCIETY FOR REPRODUCTION AND DEVELOPMENT
01.12.2011
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Unfertilized oocytes are one of the most desired germ cell stages for cryopreservation because these cryopreserved oocytes can be used for assisted reproductive technologies, including in vitro fertilization (IVF) and intracytoplasmic sperm injection. However, in general, the fertility and developmental ability of cryopreserved oocytes are still low. The aim of the present study was to improve vitrification of mouse oocytes. First, the effects of calcium and cryoprotectants, dimethyl sulfoxide and ethylene glycol (EG), in vitrification medium on survival and developmental ability of vitrified oocytes were evaluated. Oocytes were vitrified by a minimal volume cooling procedure using different cryoprotectants. Most of the vitrified oocytes were morphologically normal after warming, but their fertility and development were low independently of calcium and cryoprotectants. Second, the effect of cumulus cells on ability of oocytes to be fertilized and develop in vitro was examined. The fertility and developmental ability of denuded oocytes (DOs) after IVF were reduced compared with cumulus-oocyte complexes (COCs) both in fresh and cryopreserved groups. Vitrified COCs showed significantly (P<0.05) higher fertility and ability to develop to the 2-cell and blastocyst stages than those of vitrified DOs with cumulus cells and vitrified DOs alone. The vitrified COCs developed to term at a high success rate equivalent to the rate obtained with IVF using fresh COCs. Taken together, the current results clearly demonstrate that, in the presence of surrounding cumulus cells, matured mouse oocytes vitrified using calcium-free media and EG retain their developmental competence. These findings will contribute to improve oocyte vitrification in not only experimental animals but also clinical application for human infertility. |
---|---|
AbstractList | Unfertilized oocytes are one of the most desired germ cell stages for cryopreservation because these cryopreserved oocytes can be used for assisted reproductive technologies, including in vitro fertilization (IVF) and intracytoplasmic sperm injection. However, in general, the fertility and developmental ability of cryopreserved oocytes are still low. The aim of the present study was to improve vitrification of mouse oocytes. First, the effects of calcium and cryoprotectants, dimethyl sulfoxide and ethylene glycol (EG), in vitrification medium on survival and developmental ability of vitrified oocytes were evaluated. Oocytes were vitrified by a minimal volume cooling procedure using different cryoprotectants. Most of the vitrified oocytes were morphologically normal after warming, but their fertility and development were low independently of calcium and cryoprotectants. Second, the effect of cumulus cells on ability of oocytes to be fertilized and develop in vitro was examined. The fertility and developmental ability of denuded oocytes (DOs) after IVF were reduced compared with cumulus-oocyte complexes (COCs) both in fresh and cryopreserved groups. Vitrified COCs showed significantly (P<0.05) higher fertility and ability to develop to the 2-cell and blastocyst stages than those of vitrified DOs with cumulus cells and vitrified DOs alone. The vitrified COCs developed to term at a high success rate equivalent to the rate obtained with IVF using fresh COCs. Taken together, the current results clearly demonstrate that, in the presence of surrounding cumulus cells, matured mouse oocytes vitrified using calcium-free media and EG retain their developmental competence. These findings will contribute to improve oocyte vitrification in not only experimental animals but also clinical application for human infertility. Unfertilized oocytes are one of the most desired germ cell stages for cryopreservation because these cryopreserved oocytes can be used for assisted reproductive technologies, including in vitro fertilization (IVF) and intracytoplasmic sperm injection. However, in general, the fertility and developmental ability of cryopreserved oocytes are still low. The aim of the present study was to improve vitrification of mouse oocytes. First, the effects of calcium and cryoprotectants, dimethyl sulfoxide and ethylene glycol (EG), in vitrification medium on survival and developmental ability of vitrified oocytes were evaluated. Oocytes were vitrified by a minimal volume cooling procedure using different cryoprotectants. Most of the vitrified oocytes were morphologically normal after warming, but their fertility and development were low independently of calcium and cryoprotectants. Second, the effect of cumulus cells on ability of oocytes to be fertilized and develop in vitro was examined. The fertility and developmental ability of denuded oocytes (DOs) after IVF were reduced compared with cumulus-oocyte complexes (COCs) both in fresh and cryopreserved groups. Vitrified COCs showed significantly (P |
Author | FUJIWARA, Katsuyoshi KASHIWAZAKI, Naomi ITO, Junya KOHAYA, Natsuki |
Author_xml | – sequence: 1 fullname: KOHAYA, Natsuki organization: Laboratory of Animal Reproduction, School of Veterinary Medicine, Azabu University, Sagamihara 252-5201, Japan – sequence: 1 fullname: KASHIWAZAKI, Naomi organization: Graduate School of Veterinary Science, Azabu University, Sagamihara 252-5201, Japan – sequence: 1 fullname: ITO, Junya organization: Graduate School of Veterinary Science, Azabu University, Sagamihara 252-5201, Japan – sequence: 1 fullname: FUJIWARA, Katsuyoshi organization: Graduate School of Veterinary Science, Azabu University, Sagamihara 252-5201, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21778666$$D View this record in MEDLINE/PubMed |
BookMark | eNptkctu1DAUhi1URKeFFXvkJRKk2LHjSdhVoTBIRYNQYWs5znHHIyee2k6l4U36tvVc2gViY-vY3_nP5T9DJ6MfAaG3lFzQUpSf1qG_oLQgQixeoBllvC44J-QEzUhDRVHXtD5FZzGuCWFlJfgrdFrS-bwWQszQw8LervAXuAfnNwOMSTn8SyWI2Bv8w08R8NLr7e6hDVu_CRAh3EOPuy1WI15ukh3s3xz_sSlYY7VK1o_4Z_DJa-8-45sV4CtjQKe95EHEpxyrMcWPuFVO22nIYj1up2FyU64EzsXX6KVRLsKb432Ofn-9umkXxfXy2_f28rrQFRGpqDtGSmhqXhlmqr7UrO9MZ_J0fN7xSs-5MkqLvuyBdxU0hoOoO24YgbrTVLBz9P6gm9u6myAmOdiocwdqhDy_pKxpGsKqimf03RGdugF6uQl2UGErn9aZAXoAdPAxBjBS27TfSArKOkmJ3Fkms2WSUrmzLOd8-CfnSfb_9OWBXsekbuGZVSFZ7WDPVnMpdscx5_lPr1SQMLJHscaysQ |
CitedBy_id | crossref_primary_10_1016_j_cryobiol_2020_10_004 crossref_primary_10_1017_S0967199418000138 crossref_primary_10_1111_asj_12061 crossref_primary_10_20473_fmi_v52i2_5222 crossref_primary_10_1016_j_cryobiol_2014_01_008 crossref_primary_10_1016_j_rbmo_2019_09_012 crossref_primary_10_1016_j_cryobiol_2020_01_002 crossref_primary_10_1095_biolreprod_113_109769 crossref_primary_10_3390_ijms24010417 crossref_primary_10_1016_j_cryobiol_2023_104834 crossref_primary_10_1007_s10815_012_9848_1 crossref_primary_10_1371_journal_pone_0058063 crossref_primary_10_1111_rda_13221 crossref_primary_10_1007_s11302_020_09690_6 crossref_primary_10_1071_RD13161 crossref_primary_10_1262_jrd_2017_095 crossref_primary_10_1530_REP_14_0594 crossref_primary_10_1186_s12958_016_0161_1 crossref_primary_10_1016_j_cryobiol_2018_03_003 crossref_primary_10_3390_ani12030359 crossref_primary_10_1016_j_cryobiol_2013_06_011 crossref_primary_10_1371_journal_pone_0248050 crossref_primary_10_1016_j_cryobiol_2020_03_004 crossref_primary_10_1089_bio_2015_0025 crossref_primary_10_1371_journal_pone_0176711 crossref_primary_10_3390_ani11102949 crossref_primary_10_1111_asj_12666 |
Cites_doi | 10.1093/molehr/gap016 10.1093/oxfordjournals.humrep.a136849 10.1538/expanim1978.40.4_493 10.1016/j.theriogenology.2006.09.014 10.1002/(SICI)1098-2795(199612)45:4<503::AID-MRD13>3.0.CO;2-X 10.1006/cryo.1995.1007 10.1016/0011-2240(92)90051-3 10.1530/rep.1.00878 10.1016/j.cryobiol.2009.07.007 10.1016/S0093-691X(03)00232-2 10.1095/biolreprod.107.064113 10.1073/pnas.0805699105 10.1262/jrd.19058 10.1095/biolreprod.108.072918 10.1242/dev.020461 10.1111/j.1740-0929.2009.00699.x 10.1006/cryo.1997.2043 10.1038/313573a0 10.1095/biolreprod17.4.527 10.1002/mrd.10102 10.1530/jrf.0.0490089 10.1242/dev.01056 10.1095/biolreprod.108.070383 10.1046/j.1439-0531.2002.00345.x 10.1016/S0015-0282(01)01809-X 10.1002/mrd.1080410214 10.1016/S0015-0282(03)00551-X 10.1210/mend.16.6.0859 10.1016/S0140-6736(86)90989-X |
ContentType | Journal Article |
Copyright | 2011 Society for Reproduction and Development |
Copyright_xml | – notice: 2011 Society for Reproduction and Development |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7QP 8FD FR3 P64 |
DOI | 10.1262/jrd.11-066H |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Engineering Research Database Biotechnology Research Abstracts Technology Research Database Calcium & Calcified Tissue Abstracts Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | MEDLINE Engineering Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1348-4400 |
EndPage | 680 |
ExternalDocumentID | 21778666 10_1262_jrd_11_066H article_jrd_57_6_57_11_066H_article_char_en |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 29L 2WC 53G 5GY ACGFO ACPRK ADBBV ADRAZ AENEX ALMA_UNASSIGNED_HOLDINGS AOIJS B.T BAWUL CS3 DIK DU5 E3Z EBS EJD F5P GROUPED_DOAJ GX1 HYE JSF JSH KQ8 M48 N5S OK1 OVT P2P PGMZT RJT RNS RPM RZJ TKC TR2 XSB AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7QP 8FD FR3 P64 |
ID | FETCH-LOGICAL-c506t-8b302e9845f3f5d2c3dbfbf86647b45c74afac6d2de4b5e9f4e68b4f30e8bc163 |
ISSN | 0916-8818 |
IngestDate | Fri Jul 11 11:56:57 EDT 2025 Sat Sep 18 02:38:40 EDT 2021 Tue Jul 01 02:55:14 EDT 2025 Thu Apr 24 23:00:55 EDT 2025 Wed Sep 03 06:13:44 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://creativecommons.org/licenses/by-nc-nd/4.0/deed.ja |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c506t-8b302e9845f3f5d2c3dbfbf86647b45c74afac6d2de4b5e9f4e68b4f30e8bc163 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
OpenAccessLink | http://dx.doi.org/10.1262/jrd.11-066H |
PMID | 21778666 |
PQID | 1399903554 |
PQPubID | 23462 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_1399903554 pubmed_primary_21778666 crossref_citationtrail_10_1262_jrd_11_066H crossref_primary_10_1262_jrd_11_066H jstage_primary_article_jrd_57_6_57_11_066H_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-12-01 |
PublicationDateYYYYMMDD | 2011-12-01 |
PublicationDate_xml | – month: 12 year: 2011 text: 2011-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Japan |
PublicationPlace_xml | – name: Japan |
PublicationTitle | Journal of Reproduction and Development |
PublicationTitleAlternate | J. Reprod. Dev. |
PublicationYear | 2011 |
Publisher | THE SOCIETY FOR REPRODUCTION AND DEVELOPMENT |
Publisher_xml | – name: THE SOCIETY FOR REPRODUCTION AND DEVELOPMENT |
References | 30. Songsasen N, Buckrell BC, Plante C, Leibo SP. In vitro and in vivo survival of cryopreserved sheep embryos. Cryobiology 1995; 32: 78-91. 16. Van Soom A, Tanghe S, De Pauw I, Maes D, de Kruif A. Function of the cumulus oophorus before and during mammalian fertilization. Reprod Domest Anim 2002; 37: 144-151. 9. Fuku E, Kojima T, Shioya Y, Marcus GJ, Downey BR. In vitro fertilization and development of frozen-thawed bovine oocytes. Cryobiology 1992; 29: 485-492. 12. Endoh K, Mochida K, Ogonuki N, Ohkawa M, Shinmen A, Ito M, Kashiwazaki N, Ogura A. The developmental ability of vitrified oocytes from different mouse strains assessed by parthenogenetic activation and intracytoplasmic sperm injection. J Reprod Dev 2007; 53: 1199-1206. 4. Kuwayama M. Highly efficient vitrification for cryopreservation of human oocytes. Theriogenology 2007; 67: 73-80. 25. Toyoda Y, Yokoyama M, Hosi T. Studies on the fertilization of mouse eggs in vitro. I. In vitro fertilization of eggs by fresh epididymal sperm. Jpn J Anim Reprod 1972; 16: 147-151. 32. Dinnyés A, Dai Y, Jiang S, Yang X. High developmental rates of vitrified bovine oocytes following parthenogenetic activation, in vitro fertilization, and somatic cell nuclear transfer. Biol Reprod 2000; 63: 513-518. 17. Tanghe S, Van Soom A, Nauwynck H, Coryn M, de Kruif A. Minireview: Functions of the cumulus oophorus during oocyte maturation, ovulation, and fertilization. Mol Reprod Dev 2002; 61: 414-424. 31. Martino A, Pollard JW, Leibo SP. Effect of chilling bovine oocytes on their developmental competence. Mol Reprod Dev 1996; 45: 503-512. 3. Rall WF, Fahy GM. Ice-free cryopreservation of mouse embryos at -196 degrees C by vitrification. Nature 1985; 313: 573-575. 1. Mazur P, Leibo SP, Seidel GE Jr Cryopreservation of the germplasm of animals used in biological and medical research: importance, impact, status, and future directions. Biol Reprod 2008; 78: 2-12. 15. Ito J, Yoshida T, Kasai Y, Wakai T, Parys JB, Fissore RA, Kashiwazaki N. Phosphorylation of inositol 1,4,5-triphosphate receptor 1 during in vitro maturation of porcine oocytes. Anim Sci J 2010; 81: 34-41. 19. Salustri A, Garlanda C, Hirsch E, De Acetis M, Maccagno A, Bottazzi B, Doni A, Bastone A, Mantovani G, Beck Peccoz P, Salvatori G, Mahoney DJ, Day AJ, Siracusa G, Romani L, Mantovani A. PTX3 plays a key role in the organization of the cumulus oophorus extracellular matrix and in in vivo fertilization. Development 2004; 131: 1577-1586. 22. Whittingham DG. Culture of mouse ova. J Reprod Fertil Suppl 1971; 7-21. 11. Park SE, Chung HM, Cha KY, Hwang WS, Lee ES, Lim JM. Cryopreservation of ICR mouse oocytes: improved post-thawed preimplantation development after vitrification using Taxol, a cytoskeleton stabilizer. Fertil Steril 2001; 75: 1177-1184. 8. al-Hasani S, Kirsch J, Diedrich K, Blanke S, van der Ven H, Krebs D. Successful embryo transfer of cryopreserved and in-vitro fertilized rabbit oocytes. Hum Reprod 1989; 4: 77-79. 34. Hochi S, Terao T, Kamei M, Kato M, Hirabayashi M, Hirao M. Successful vitrification of pronuclear-stage rabbit zygotes by minimum volume cooling procedure. Theriogenology 2004; 61: 267-275. 21. Tamba S, Yodoi R, Segi-Nishida E, Ichikawa A, Narumiya S, Sugimoto Y. Timely interaction between prostaglandin and chemokine signaling is a prerequisite for successful fertilization. Proc Nat Acad Sci USA 2008; 105: 14539-14544. 14. Larman MG, Sheehan CB, Gardner DK. Calcium-free vitrification reduces cryoprotectant-induced zona pellucida hardening and increases fertilization rates in mouse oocytes. Reproduction 2006; 131: 53-61. 13. Eroglu A, Bailey SE, Toner M, Toth TL. Successful cryopreservation of mouse oocytes by using low concentrations of trehalose and dimethylsulfoxide. Biol Reprod 2009; 80: 70-78. 20. Shimada M, Yanai Y, Okazaki T, Noma N, Kawashima I, Mori T, Richards JS. Hyaluronan fragments generated by sperm-secreted hyaluronidase stimulate cytokine/chemokine production via the TLR2 and TLR4 pathway in cumulus cells of ovulated COCs, which may enhance fertilization. Development 2008; 135: 2001-2011. 5. Parkening TA, Chang MC. Effects of cooling rates and maturity of the animal on the recovery and fertilization of frozen-thawed rodent eggs. Biol Reprod 1977; 17: 527-531. 28. Seita Y, Sugio S, Ito J, Kashiwazaki N. Generation of live rats produced by in vitro fertilization using cryopreserved spermatozoa. Biol Reprod 2009; 80: 503-510. 23. Seita Y, Okuda Y, Kato M, Kawakami Y, Inomata T, Ito J, Kashiwazaki N. Successful cryopreservation of rat pronuclear-stage embryos by rapid cooling. Cryobiology 2009; 59: 226-228. 29. Shaw JM, Kuleshova LL, MacFarlane DR, Trounson AO. Vitrification properties of solutions of ethylene glycol in saline containing PVP, Ficoll, or dextran. Cryobiology 1997; 35: 219-229. 10. Katayama KP, Stehlik J, Kuwayama M, Kato O, Stehlik E. High survival rate of vitrified human oocytes results in clinical pregnancy. Fertil Steril 2003; 80: 223-224. 18. Varani S, Elvin JA, Yan C, DeMayo J, DeMayo FJ, Horton HF, Byrne MC, Matzuk MM. Knockout of pentraxin 3, a downstream target of growth differentiation factor-9, causes female subfertility. Mol Endoc 2002; 16: 1154-1167. 7. Chen C. Pregnancy after human oocyte cryopreservation. Lancet 1986; 1: 884-886. 27. Ho Y, Wigglesworth K, Eppig JJ, Schultz RM. Preimplantation development of mouse embryos in KSOM: augmentation by amino acids and analysis of gene expression. Mol Reprod Dev 1995; 41: 232-238. 24. Ito J, Kuramochi M, Inoue A, Yabe K, Fujiwara K, Sonoki S, Masaoka T, Kashiwazaki N. Cryotop facilitates high developmental ability of re-vitrified mouse embryos. J Reprod Engineering 2010; 13: 21-26. 6. Whittingham DG. Fertilization in vitro and development to term of unfertilized mouse oocytes previously stored at -196 degrees C. J Reprod Fertil 1977; 49: 89-94. 2. Zhou GB, Li N. Cryopreservation of porcine oocytes: recent advances. Mol Hum Reprod 2009; 15: 279-285. 26. Takeshima T, Nakagata N, Ogawa S. Cryopreservation of mouse spermatozoa. Jikken Dobutsu 1991; 40: 493-497(In Japanese). 33. Kuwayama M. Highly efficient vitrification for cryopreservation of human oocytes and embryos: the Cryotop method. Theriogenology 2007; 67: 73-80. 22 23 24 25 26 27 28 29 30 31 10 32 11 33 12 13 14 15 16 17 18 19 1 2 3 4 5 6 7 8 9 20 21 |
References_xml | – reference: 22. Whittingham DG. Culture of mouse ova. J Reprod Fertil Suppl 1971; 7-21. – reference: 3. Rall WF, Fahy GM. Ice-free cryopreservation of mouse embryos at -196 degrees C by vitrification. Nature 1985; 313: 573-575. – reference: 19. Salustri A, Garlanda C, Hirsch E, De Acetis M, Maccagno A, Bottazzi B, Doni A, Bastone A, Mantovani G, Beck Peccoz P, Salvatori G, Mahoney DJ, Day AJ, Siracusa G, Romani L, Mantovani A. PTX3 plays a key role in the organization of the cumulus oophorus extracellular matrix and in in vivo fertilization. Development 2004; 131: 1577-1586. – reference: 31. Martino A, Pollard JW, Leibo SP. Effect of chilling bovine oocytes on their developmental competence. Mol Reprod Dev 1996; 45: 503-512. – reference: 33. Kuwayama M. Highly efficient vitrification for cryopreservation of human oocytes and embryos: the Cryotop method. Theriogenology 2007; 67: 73-80. – reference: 2. Zhou GB, Li N. Cryopreservation of porcine oocytes: recent advances. Mol Hum Reprod 2009; 15: 279-285. – reference: 10. Katayama KP, Stehlik J, Kuwayama M, Kato O, Stehlik E. High survival rate of vitrified human oocytes results in clinical pregnancy. Fertil Steril 2003; 80: 223-224. – reference: 24. Ito J, Kuramochi M, Inoue A, Yabe K, Fujiwara K, Sonoki S, Masaoka T, Kashiwazaki N. Cryotop facilitates high developmental ability of re-vitrified mouse embryos. J Reprod Engineering 2010; 13: 21-26. – reference: 32. Dinnyés A, Dai Y, Jiang S, Yang X. High developmental rates of vitrified bovine oocytes following parthenogenetic activation, in vitro fertilization, and somatic cell nuclear transfer. Biol Reprod 2000; 63: 513-518. – reference: 14. Larman MG, Sheehan CB, Gardner DK. Calcium-free vitrification reduces cryoprotectant-induced zona pellucida hardening and increases fertilization rates in mouse oocytes. Reproduction 2006; 131: 53-61. – reference: 29. Shaw JM, Kuleshova LL, MacFarlane DR, Trounson AO. Vitrification properties of solutions of ethylene glycol in saline containing PVP, Ficoll, or dextran. Cryobiology 1997; 35: 219-229. – reference: 1. Mazur P, Leibo SP, Seidel GE Jr Cryopreservation of the germplasm of animals used in biological and medical research: importance, impact, status, and future directions. Biol Reprod 2008; 78: 2-12. – reference: 12. Endoh K, Mochida K, Ogonuki N, Ohkawa M, Shinmen A, Ito M, Kashiwazaki N, Ogura A. The developmental ability of vitrified oocytes from different mouse strains assessed by parthenogenetic activation and intracytoplasmic sperm injection. J Reprod Dev 2007; 53: 1199-1206. – reference: 25. Toyoda Y, Yokoyama M, Hosi T. Studies on the fertilization of mouse eggs in vitro. I. In vitro fertilization of eggs by fresh epididymal sperm. Jpn J Anim Reprod 1972; 16: 147-151. – reference: 16. Van Soom A, Tanghe S, De Pauw I, Maes D, de Kruif A. Function of the cumulus oophorus before and during mammalian fertilization. Reprod Domest Anim 2002; 37: 144-151. – reference: 6. Whittingham DG. Fertilization in vitro and development to term of unfertilized mouse oocytes previously stored at -196 degrees C. J Reprod Fertil 1977; 49: 89-94. – reference: 34. Hochi S, Terao T, Kamei M, Kato M, Hirabayashi M, Hirao M. Successful vitrification of pronuclear-stage rabbit zygotes by minimum volume cooling procedure. Theriogenology 2004; 61: 267-275. – reference: 4. Kuwayama M. Highly efficient vitrification for cryopreservation of human oocytes. Theriogenology 2007; 67: 73-80. – reference: 27. Ho Y, Wigglesworth K, Eppig JJ, Schultz RM. Preimplantation development of mouse embryos in KSOM: augmentation by amino acids and analysis of gene expression. Mol Reprod Dev 1995; 41: 232-238. – reference: 11. Park SE, Chung HM, Cha KY, Hwang WS, Lee ES, Lim JM. Cryopreservation of ICR mouse oocytes: improved post-thawed preimplantation development after vitrification using Taxol, a cytoskeleton stabilizer. Fertil Steril 2001; 75: 1177-1184. – reference: 23. Seita Y, Okuda Y, Kato M, Kawakami Y, Inomata T, Ito J, Kashiwazaki N. Successful cryopreservation of rat pronuclear-stage embryos by rapid cooling. Cryobiology 2009; 59: 226-228. – reference: 30. Songsasen N, Buckrell BC, Plante C, Leibo SP. In vitro and in vivo survival of cryopreserved sheep embryos. Cryobiology 1995; 32: 78-91. – reference: 8. al-Hasani S, Kirsch J, Diedrich K, Blanke S, van der Ven H, Krebs D. Successful embryo transfer of cryopreserved and in-vitro fertilized rabbit oocytes. Hum Reprod 1989; 4: 77-79. – reference: 9. Fuku E, Kojima T, Shioya Y, Marcus GJ, Downey BR. In vitro fertilization and development of frozen-thawed bovine oocytes. Cryobiology 1992; 29: 485-492. – reference: 5. Parkening TA, Chang MC. Effects of cooling rates and maturity of the animal on the recovery and fertilization of frozen-thawed rodent eggs. Biol Reprod 1977; 17: 527-531. – reference: 18. Varani S, Elvin JA, Yan C, DeMayo J, DeMayo FJ, Horton HF, Byrne MC, Matzuk MM. Knockout of pentraxin 3, a downstream target of growth differentiation factor-9, causes female subfertility. Mol Endoc 2002; 16: 1154-1167. – reference: 21. Tamba S, Yodoi R, Segi-Nishida E, Ichikawa A, Narumiya S, Sugimoto Y. Timely interaction between prostaglandin and chemokine signaling is a prerequisite for successful fertilization. Proc Nat Acad Sci USA 2008; 105: 14539-14544. – reference: 17. Tanghe S, Van Soom A, Nauwynck H, Coryn M, de Kruif A. Minireview: Functions of the cumulus oophorus during oocyte maturation, ovulation, and fertilization. Mol Reprod Dev 2002; 61: 414-424. – reference: 13. Eroglu A, Bailey SE, Toner M, Toth TL. Successful cryopreservation of mouse oocytes by using low concentrations of trehalose and dimethylsulfoxide. Biol Reprod 2009; 80: 70-78. – reference: 7. Chen C. Pregnancy after human oocyte cryopreservation. Lancet 1986; 1: 884-886. – reference: 26. Takeshima T, Nakagata N, Ogawa S. Cryopreservation of mouse spermatozoa. Jikken Dobutsu 1991; 40: 493-497(In Japanese). – reference: 20. Shimada M, Yanai Y, Okazaki T, Noma N, Kawashima I, Mori T, Richards JS. Hyaluronan fragments generated by sperm-secreted hyaluronidase stimulate cytokine/chemokine production via the TLR2 and TLR4 pathway in cumulus cells of ovulated COCs, which may enhance fertilization. Development 2008; 135: 2001-2011. – reference: 28. Seita Y, Sugio S, Ito J, Kashiwazaki N. Generation of live rats produced by in vitro fertilization using cryopreserved spermatozoa. Biol Reprod 2009; 80: 503-510. – reference: 15. Ito J, Yoshida T, Kasai Y, Wakai T, Parys JB, Fissore RA, Kashiwazaki N. Phosphorylation of inositol 1,4,5-triphosphate receptor 1 during in vitro maturation of porcine oocytes. Anim Sci J 2010; 81: 34-41. – ident: 2 doi: 10.1093/molehr/gap016 – ident: 8 doi: 10.1093/oxfordjournals.humrep.a136849 – ident: 26 doi: 10.1538/expanim1978.40.4_493 – ident: 32 doi: 10.1016/j.theriogenology.2006.09.014 – ident: 31 doi: 10.1002/(SICI)1098-2795(199612)45:4<503::AID-MRD13>3.0.CO;2-X – ident: 30 doi: 10.1006/cryo.1995.1007 – ident: 9 doi: 10.1016/0011-2240(92)90051-3 – ident: 14 doi: 10.1530/rep.1.00878 – ident: 23 doi: 10.1016/j.cryobiol.2009.07.007 – ident: 33 doi: 10.1016/S0093-691X(03)00232-2 – ident: 1 doi: 10.1095/biolreprod.107.064113 – ident: 21 doi: 10.1073/pnas.0805699105 – ident: 12 doi: 10.1262/jrd.19058 – ident: 28 doi: 10.1095/biolreprod.108.072918 – ident: 20 doi: 10.1242/dev.020461 – ident: 24 – ident: 15 doi: 10.1111/j.1740-0929.2009.00699.x – ident: 29 doi: 10.1006/cryo.1997.2043 – ident: 22 – ident: 4 doi: 10.1016/j.theriogenology.2006.09.014 – ident: 3 doi: 10.1038/313573a0 – ident: 5 doi: 10.1095/biolreprod17.4.527 – ident: 17 doi: 10.1002/mrd.10102 – ident: 6 doi: 10.1530/jrf.0.0490089 – ident: 19 doi: 10.1242/dev.01056 – ident: 13 doi: 10.1095/biolreprod.108.070383 – ident: 16 doi: 10.1046/j.1439-0531.2002.00345.x – ident: 11 doi: 10.1016/S0015-0282(01)01809-X – ident: 27 doi: 10.1002/mrd.1080410214 – ident: 10 doi: 10.1016/S0015-0282(03)00551-X – ident: 18 doi: 10.1210/mend.16.6.0859 – ident: 7 doi: 10.1016/S0140-6736(86)90989-X – ident: 25 |
SSID | ssj0032564 |
Score | 2.0712142 |
Snippet | Unfertilized oocytes are one of the most desired germ cell stages for cryopreservation because these cryopreserved oocytes can be used for assisted... |
SourceID | proquest pubmed crossref jstage |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 675 |
SubjectTerms | Animals Blastocyst - drug effects Calcium - pharmacology Cryopreservation - methods Cryoprotective Agents - pharmacology Cumulus Cells - drug effects Dimethyl Sulfoxide - pharmacology Ethylene Glycol - pharmacology Female In vitro fertilization Mice Mouse Oocyte Oocytes - cytology Oocytes - drug effects Oocytes - physiology Vitrification Vitrification - drug effects |
Title | High Developmental Rates of Mouse Oocytes Cryopreserved by an Optimized Vitrification Protocol: The Effects of Cryoprotectants, Calcium and Cumulus Cells |
URI | https://www.jstage.jst.go.jp/article/jrd/57/6/57_11-066H/_article/-char/en https://www.ncbi.nlm.nih.gov/pubmed/21778666 https://www.proquest.com/docview/1399903554 |
Volume | 57 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Journal of Reproduction and Development, 2011, Vol.57(6), pp.675-680 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bT9swFLaAXbSXXdituyBP4mksLM3FTXiLSlELgiJoN9hLFDv2VlaaqU0eyj_Zv93xJWm6gTS2F6uNj-y054vPOc7ncxDa9G3XaSVuaKWEhhCg8JaVUEYtBsYnFSINQ0-eRj48It2ht3_mn62sPqqxloqcbrOra8-V_ItW4RroVZ6SvYVmq0HhAnwG_UILGob2r3QsSRp12o9MlC99R8VrgZCeb_UzNpcX2tO5Knci-Y3K5YTHug-rxeXoCr5_GuVTSRnSYDieZnkG-CgJGZ0F5UMPozI7JIqAIRkjYzYqdKGNdnFZjAuYjY_HsxvcXvD4dZLZBQ-6uv9q9e93o_NIL_75rPg-qjqi027vc_QlOujp3uyy6usN-vqYyWRemZq94T6In0SGNzIr5tns26i-0yGpdkusEUmBOu23e53B-RZEyFsnneOT_u5QcW1ULq5a2dL6PmeTWEFgFnmuV3lX7qJ6tl03AzpPtoF7fU0nurSLcQ-ILjz1h-VxiMxkezFNt-WeMyHdhYGtaI8GKDFIxX4rJrKB-EtKx2WfPGwH2F5FdxwIfGRNjt3eQelbuOCgqoRo5Y8yJ05h8o-1qZd8rLsXEGZ85TdHUMqTGjxGDw0WcKRv5Qla4ZN1dE8XRZ2vo_uHhu7xFP2UAMdLAMcK4DgTWAEcG4DjJYBjOsfJBFcAx0sAxyXAdzDAGxt4yyF_g_cHbMANg6XYgBsrcD9Dw73OoN21TC0Ri_k2ya2AurbDw8DzhSv81GFuSgUVASFei3o-a3mJSBhJnZR71Oeh8DgJqCdcmweUQdDyHK1Nsgl_ibAviHBs5nktYnuMswQiKLCKoslc36Zh2EDvy38_ZibRvqz3Mo5lwA2qUvo3em-gzUr4h84vc73YjlZjJXQLLDXQu1L1MRgP-UYwmXBQUgzhH3ijMuRooBcaE9UETlOmliTk1f9M_Ro9WDzJb9BaPi34W_Dic7qhgL2h9sCgPTo-_AUyFPyQ |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High+Developmental+Rates+of+Mouse+Oocytes+Cryopreserved+by+an+Optimized+Vitrification+Protocol%3A+The+Effects+of+Cryoprotectants%2C+Calcium+and+Cumulus+Cells&rft.jtitle=Journal+of+Reproduction+and+Development&rft.au=KOHAYA%2C+Natsuki&rft.au=KASHIWAZAKI%2C+Naomi&rft.au=ITO%2C+Junya&rft.au=FUJIWARA%2C+Katsuyoshi&rft.date=2011-12-01&rft.pub=THE+SOCIETY+FOR+REPRODUCTION+AND+DEVELOPMENT&rft.issn=0916-8818&rft.eissn=1348-4400&rft.volume=57&rft.issue=6&rft.spage=675&rft.epage=680&rft_id=info:doi/10.1262%2Fjrd.11-066H&rft.externalDocID=article_jrd_57_6_57_11_066H_article_char_en |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0916-8818&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0916-8818&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0916-8818&client=summon |