Analysis of the Stabilized Supralinear Network

We study a rate-model neural network composed of excitatory and inhibitory neurons in which neuronal input-output functions are power laws with a power greater than 1, as observed in primary visual cortex. This supralinear input-output function leads to supralinear summation of network responses to...

Full description

Saved in:
Bibliographic Details
Published inNeural computation Vol. 25; no. 8; pp. 1994 - 2037
Main Authors Ahmadian, Yashar, Rubin, Daniel B., Miller, Kenneth D.
Format Journal Article
LanguageEnglish
Published One Rogers Street, Cambridge, MA 02142-1209, USA MIT Press 01.08.2013
MIT Press Journals, The
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We study a rate-model neural network composed of excitatory and inhibitory neurons in which neuronal input-output functions are power laws with a power greater than 1, as observed in primary visual cortex. This supralinear input-output function leads to supralinear summation of network responses to multiple inputs for weak inputs. We show that for stronger inputs, which would drive the excitatory subnetwork to instability, the network will dynamically stabilize provided feedback inhibition is sufficiently strong. For a wide range of network and stimulus parameters, this dynamic stabilization yields a transition from supralinear to sublinear summation of network responses to multiple inputs. We compare this to the dynamic stabilization in the balanced network, which yields only linear behavior. We more exhaustively analyze the two-dimensional case of one excitatory and one inhibitory population. We show that in this case, dynamic stabilization will occur whenever the determinant of the weight matrix is positive and the inhibitory time constant is sufficiently small, and analyze the conditions for supersaturation, or decrease of firing rates with increasing stimulus contrast (which represents increasing input firing rates). In work to be presented elsewhere, we have found that this transition from supralinear to sublinear summation can explain a wide variety of nonlinearities in cerebral cortical processing.
AbstractList We study a rate-model neural network composed of excitatory and inhibitory neurons in which neuronal input-output functions are power laws with a power greater than 1, as observed in primary visual cortex. This supralinear input-output function leads to supralinear summation of network responses to multiple inputs for weak inputs. We show that for stronger inputs, which would drive the excitatory subnetwork to instability, the network will dynamically stabilize provided feedback inhibition is sufficiently strong. For a wide range of network and stimulus parameters, this dynamic stabilization yields a transition from supralinear to sublinear summation of network responses to multiple inputs. We compare this to the dynamic stabilization in the balanced network, which yields only linear behavior. We more exhaustively analyze the two-dimensional case of one excitatory and one inhibitory population. We show that in this case, dynamic stabilization will occur whenever the determinant of the weight matrix is positive and the inhibitory time constant is sufficiently small, and analyze the conditions for supersaturation, or decrease of firing rates with increasing stimulus contrast (which represents increasing input firing rates). In work to be presented elsewhere, we have found that this transition from supralinear to sublinear summation can explain a wide variety of nonlinearities in cerebral cortical processing.
We study a rate-model neural network composed of excitatory and inhibitory neurons in which neuronal input-output functions are power laws with a power greater than 1, as observed in primary visual cortex. This supralinear input-output function leads to supralinear summation of network responses to multiple inputs for weak inputs. We show that for stronger inputs, which would drive the excitatory subnetwork to instability, the network will dynamically stabilize provided feedback inhibition is sufficiently strong. For a wide range of network and stimulus parameters, this dynamic stabilization yields a transition from supralinear to sublinear summation of network responses to multiple inputs. We compare this to the dynamic stabilization in the balanced network, which yields only linear behavior. We more exhaustively analyze the two-dimensional case of one excitatory and one inhibitory population. We show that in this case, dynamic stabilization will occur whenever the determinant of the weight matrix is positive and the inhibitory time constant is sufficiently small, and analyze the conditions for supersaturation, or decrease of firing rates with increasing stimulus contrast (which represents increasing input firing rates). In work to be presented elsewhere, we have found that this transition from supralinear to sublinear summation can explain a wide variety of nonlinearities in cerebral cortical processing. [PUBLICATION ABSTRACT]
We study a rate-model neural network composed of excitatory and inhibitory neurons in which neuronal input-output functions are power laws with a power greater than 1, as observed in primary visual cortex. This supralinear input-output function leads to supralinear summation of network responses to multiple inputs for weak inputs. We show that for stronger inputs, which would drive the excitatory subnetwork to instability, the network will dynamically stabilize provided feedback inhibition is sufficiently strong. For a wide range of network and stimulus parameters, this dynamic stabilization yields a transition from supralinear to sublinear summation of network responses to multiple inputs. We compare this to the dynamic stabilization in the “balanced network”, which yields only linear behavior. We more exhaustively analyze the 2-dimensional case of 1 excitatory and 1 inhibitory population. We show that in this case dynamic stabilization will occur whenever the determinant of the weight matrix is positive and the inhibitory time constant is sufficiently small, and analyze the conditions for “supersaturation”, or decrease of firing rates with increasing stimulus contrast (which represents increasing input firing rates). In work to be presented elsewhere, we have found that this transition from supralinear to sublinear summation can explain a wide variety of nonlinearities in cerebral cortical processing.
We study a rate-model neural network composed of excitatory and inhibitory neurons in which neuronal input-output functions are power laws with a power greater than 1, as observed in primary visual cortex. This supralinear input-output function leads to supralinear summation of network responses to multiple inputs for weak inputs. We show that for stronger inputs, which would drive the excitatory subnetwork to instability, the network will dynamically stabilize provided feedback inhibition is sufficiently strong. For a wide range of network and stimulus parameters, this dynamic stabilization yields a transition from supralinear to sublinear summation of network responses to multiple inputs. We compare this to the dynamic stabilization in the balanced network, which yields only linear behavior. We more exhaustively analyze the two-dimensional case of one excitatory and one inhibitory population. We show that in this case, dynamic stabilization will occur whenever the determinant of the weight matrix is positive and the inhibitory time constant is sufficiently small, and analyze the conditions for supersaturation, or decrease of firing rates with increasing stimulus contrast (which represents increasing input firing rates). In work to be presented elsewhere, we have found that this transition from supralinear to sublinear summation can explain a wide variety of nonlinearities in cerebral cortical processing.We study a rate-model neural network composed of excitatory and inhibitory neurons in which neuronal input-output functions are power laws with a power greater than 1, as observed in primary visual cortex. This supralinear input-output function leads to supralinear summation of network responses to multiple inputs for weak inputs. We show that for stronger inputs, which would drive the excitatory subnetwork to instability, the network will dynamically stabilize provided feedback inhibition is sufficiently strong. For a wide range of network and stimulus parameters, this dynamic stabilization yields a transition from supralinear to sublinear summation of network responses to multiple inputs. We compare this to the dynamic stabilization in the balanced network, which yields only linear behavior. We more exhaustively analyze the two-dimensional case of one excitatory and one inhibitory population. We show that in this case, dynamic stabilization will occur whenever the determinant of the weight matrix is positive and the inhibitory time constant is sufficiently small, and analyze the conditions for supersaturation, or decrease of firing rates with increasing stimulus contrast (which represents increasing input firing rates). In work to be presented elsewhere, we have found that this transition from supralinear to sublinear summation can explain a wide variety of nonlinearities in cerebral cortical processing.
Author Miller, Kenneth D.
Ahmadian, Yashar
Rubin, Daniel B.
AuthorAffiliation 4 Kavli Institute for Brain Science, College of Physicians and Surgeons, Columbia University, NY, NY 10032
3 Doctoral Program in Neurobiology and Behavior, College of Physicians and Surgeons, Columbia University, NY, NY 10032
2 Dept. of Neuroscience, College of Physicians and Surgeons, Columbia University, NY, NY 10032
1 Center for Theoretical Neuroscience, College of Physicians and Surgeons, Columbia University, NY, NY 10032
AuthorAffiliation_xml – name: 3 Doctoral Program in Neurobiology and Behavior, College of Physicians and Surgeons, Columbia University, NY, NY 10032
– name: 2 Dept. of Neuroscience, College of Physicians and Surgeons, Columbia University, NY, NY 10032
– name: 4 Kavli Institute for Brain Science, College of Physicians and Surgeons, Columbia University, NY, NY 10032
– name: 1 Center for Theoretical Neuroscience, College of Physicians and Surgeons, Columbia University, NY, NY 10032
Author_xml – sequence: 1
  givenname: Yashar
  surname: Ahmadian
  fullname: Ahmadian, Yashar
– sequence: 2
  givenname: Daniel B.
  surname: Rubin
  fullname: Rubin, Daniel B.
– sequence: 3
  givenname: Kenneth D.
  surname: Miller
  fullname: Miller, Kenneth D.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23663149$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1PGzEQxa0KVAL01jNaiQsHlo6_vRekKOKjUgQHitSb5Xi9xXSzTu3dVvDX4yhpFBBVT3OY3zy992Yf7XShcwh9xnCGsSBfbi4mt9poACbJBzTCnEKplPq-g0agqqqUQsg9tJ_SIwAIDPwj2iNUCIpZNUJn4860T8mnIjRF_-CKu97MfOufXV3cDYtoWt85E4sb1_8J8ech2m1Mm9yn9TxA95cX3ybX5fT26utkPC0tB9GXigFzpqYzzITjXBljoJJcVbKpCLO0FlaAnTnghJvGUlU1QmZzuJaGCCnoATpf6S6G2dzV1nV9tqIX0c9NfNLBeP160_kH_SP81gxIzqiywMlaIIZfg0u9nvtkXduazoUh6RyeUb6s4f8olYCJAEIyevwGfQxDzA2uKMIopThTR9vmN67_tp6B0xVgY0gpumaDYNDLp-rtp2acvMGt703vwzK6b_91tE4199su30NfAFYcr7E
CODEN NEUCEB
CitedBy_id crossref_primary_10_1016_j_neuron_2018_01_045
crossref_primary_10_1016_j_neuron_2018_08_032
crossref_primary_10_1113_JP281510
crossref_primary_10_1038_s41467_021_23838_x
crossref_primary_10_1016_j_neuron_2023_09_018
crossref_primary_10_1016_j_neuron_2018_04_017
crossref_primary_10_12688_f1000research_7698_1
crossref_primary_10_1162_neco_a_01658
crossref_primary_10_1016_j_neuron_2023_09_010
crossref_primary_10_1038_s41467_024_46484_5
crossref_primary_10_1016_j_conb_2016_01_008
crossref_primary_10_1073_pnas_2216092119
crossref_primary_10_1016_j_neuron_2021_10_017
crossref_primary_10_1073_pnas_2318837121
crossref_primary_10_7554_eLife_18805
crossref_primary_10_1038_s41467_024_51390_x
crossref_primary_10_1038_s41467_020_20590_6
crossref_primary_10_1162_NECO_a_00675
crossref_primary_10_1371_journal_pcbi_1012190
crossref_primary_10_1016_j_neuron_2014_04_045
crossref_primary_10_1103_PhysRevE_91_042808
crossref_primary_10_1016_j_neuron_2018_12_002
crossref_primary_10_1016_j_conb_2022_102589
crossref_primary_10_1016_j_neuron_2020_11_013
crossref_primary_10_1038_s41467_019_10327_5
crossref_primary_10_1073_pnas_1700080115
crossref_primary_10_1152_jn_00278_2024
crossref_primary_10_1016_j_neuron_2021_07_031
crossref_primary_10_1038_nn_4128
crossref_primary_10_1523_JNEUROSCI_2386_17_2017
crossref_primary_10_1038_s41593_020_0671_1
crossref_primary_10_1146_annurev_neuro_102320_085825
crossref_primary_10_1371_journal_pcbi_1005583
crossref_primary_10_1038_s41598_022_25708_y
crossref_primary_10_1103_PhysRevResearch_5_033023
crossref_primary_10_1016_j_cub_2022_10_063
crossref_primary_10_1103_PhysRevX_14_011021
crossref_primary_10_1109_TAC_2020_3004801
crossref_primary_10_1016_j_neuron_2024_12_019
crossref_primary_10_1038_s41583_020_00390_z
crossref_primary_10_1152_jn_00637_2013
crossref_primary_10_1152_jn_00900_2017
crossref_primary_10_7554_eLife_52757
crossref_primary_10_1016_j_neuron_2022_10_001
crossref_primary_10_1073_pnas_2207032119
crossref_primary_10_7554_eLife_71263
crossref_primary_10_1146_annurev_neuro_072116_031005
crossref_primary_10_1371_journal_pcbi_1008958
crossref_primary_10_1371_journal_pcbi_1011097
crossref_primary_10_1371_journal_pcbi_1008916
crossref_primary_10_7554_eLife_55130
crossref_primary_10_1371_journal_pcbi_1006816
crossref_primary_10_1016_j_neuron_2023_11_005
crossref_primary_10_1523_JNEUROSCI_0963_17_2017
crossref_primary_10_1371_journal_pcbi_1008836
crossref_primary_10_1016_j_celrep_2019_03_102
crossref_primary_10_1016_j_neuroscience_2017_07_054
crossref_primary_10_1371_journal_pcbi_1005498
crossref_primary_10_1371_journal_pcbi_1008165
crossref_primary_10_1016_j_isci_2022_104984
crossref_primary_10_1162_jocn_a_00574
crossref_primary_10_1371_journal_pcbi_1005576
crossref_primary_10_1016_j_neuron_2014_12_026
crossref_primary_10_1073_pnas_2311040121
crossref_primary_10_1073_pnas_2305326121
crossref_primary_10_1016_j_neunet_2017_03_003
crossref_primary_10_1016_j_conb_2019_06_007
crossref_primary_10_1007_s10827_024_00877_z
crossref_primary_10_1103_PhysRevResearch_6_043179
crossref_primary_10_1113_JP282755
crossref_primary_10_7554_eLife_54875
crossref_primary_10_1126_sciadv_abl5865
crossref_primary_10_1162_netn_a_00219
crossref_primary_10_1103_PhysRevResearch_4_013162
crossref_primary_10_1371_journal_pbio_3001666
crossref_primary_10_1371_journal_pcbi_1010590
crossref_primary_10_1523_ENEURO_0356_17_2018
crossref_primary_10_1016_j_conb_2014_01_017
crossref_primary_10_1016_j_conb_2020_08_001
crossref_primary_10_1038_s41583_024_00795_0
crossref_primary_10_1103_PhysRevX_12_011044
crossref_primary_10_1371_journal_pcbi_1006893
crossref_primary_10_1016_j_neuron_2022_01_023
crossref_primary_10_1038_s41598_018_27099_5
crossref_primary_10_1371_journal_pcbi_1008192
Cites_doi 10.1016/j.conb.2011.06.003
10.1007/BF00582601
10.1016/j.conb.2011.02.003
10.1152/jn.00692.2001
10.1016/j.neuron.2007.02.029
10.1017/S0952523805221120
10.1152/jn.00425.2001
10.1523/JNEUROSCI.22-12-05118.2002
10.1007/PL00005751
10.1162/089976698300017214
10.1016/j.neuron.2009.12.005
10.1126/science.1179850
10.1016/j.neuron.2011.09.027
10.1152/jn.1987.57.3.773
10.1038/35372
10.1152/jn.00425.2006
10.1152/jn.1985.54.3.651
10.1152/jn.00165.2011
10.1146/annurev.neuro.23.1.441
10.1152/jn.00255.2002
10.1152/jn.2000.84.2.909
10.1167/7.6.13
10.1371/journal.pcbi.1001078
10.1016/j.neuron.2004.12.024
10.1126/science.274.5293.1724
10.1038/nn1391
10.1007/978-0-387-87708-2
10.1113/jphysiol.2001.012776
10.1038/11197
10.1017/CBO9780511815706
10.1016/j.neuron.2009.03.028
10.1016/0042-6989(85)90183-X
10.1038/nature09086
10.1038/nn1660
10.1093/cercor/bhm057
10.1523/JNEUROSCI.06-05-01284.1986
10.1523/JNEUROSCI.17-11-04382.1997
10.1038/nn.2815
10.1038/nn1310
10.1152/jn.00512.2009
10.1126/science.290.5498.1968
10.1523/JNEUROSCI.21-06-02104.2001
10.1152/jn.2001.86.4.1803
10.1038/nrc3398
ContentType Journal Article
Copyright Copyright MIT Press Journals Aug 2013
Copyright_xml – notice: Copyright MIT Press Journals Aug 2013
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SC
8FD
JQ2
L7M
L~C
L~D
7X8
5PM
DOI 10.1162/NECO_a_00472
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList
MEDLINE
Computer and Information Systems Abstracts

CrossRef
Computer and Information Systems Abstracts
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1530-888X
EndPage 2037
ExternalDocumentID PMC4026108
3001586231
23663149
10_1162_NECO_a_00472
neco_a_00472.pdf
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NEI NIH HHS
  grantid: R01 EY11001
– fundername: NEI NIH HHS
  grantid: R01 EY011001
– fundername: NIGMS NIH HHS
  grantid: T32 GM007367
– fundername: NIGMS NIH HHS
  grantid: T32-GM007367
GroupedDBID ---
-~X
.4S
.DC
0R~
123
36B
4.4
6IK
AAJGR
AALMD
AAPBV
ABDBF
ABDNZ
ABIVO
ABPTK
ACGFO
ADIYS
AEGXH
AENEX
AFHIN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ARCSS
AVWKF
AZFZN
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EAP
EAS
EBC
EBD
EBS
ECS
EDO
EJD
EMB
EMK
EMOBN
EPL
EPS
EST
ESX
F5P
FEDTE
FNEHJ
HZ~
I-F
IPLJI
JAVBF
MCG
MINIK
MKJ
O9-
OCL
P2P
PK0
PQQKQ
RMI
SV3
TUS
WG8
WH7
XJE
ZWS
41~
53G
AAFWJ
AAYOK
AAYXX
ABAZT
ABEFU
ABJNI
ABVLG
ACUHS
ACYGS
ADMLS
AEILP
AMVHM
CAG
CITATION
COF
HVGLF
H~9
CGR
CUY
CVF
ECM
EIF
NPM
7SC
8FD
JQ2
L7M
L~C
L~D
7X8
5PM
ID FETCH-LOGICAL-c506t-8404ead3b146e558aaa0975897f924c3d6c60cbe0525afc389f670611d7a26763
ISSN 0899-7667
1530-888X
IngestDate Thu Aug 21 14:32:28 EDT 2025
Fri Jul 11 02:13:01 EDT 2025
Thu Jul 10 18:34:21 EDT 2025
Mon Jun 30 06:39:41 EDT 2025
Mon Jul 21 05:44:59 EDT 2025
Tue Jul 01 01:19:52 EDT 2025
Thu Apr 24 22:52:38 EDT 2025
Fri Oct 27 04:04:33 EDT 2023
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c506t-8404ead3b146e558aaa0975897f924c3d6c60cbe0525afc389f670611d7a26763
Notes August, 2013
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
These authors contributed equally to this work.
PMID 23663149
PQID 1370243331
PQPubID 37252
PageCount 44
ParticipantIDs proquest_miscellaneous_1494353663
crossref_citationtrail_10_1162_NECO_a_00472
crossref_primary_10_1162_NECO_a_00472
proquest_journals_1370243331
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4026108
proquest_miscellaneous_1370126022
mit_journals_10_1162_NECO_a_00472
pubmed_primary_23663149
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-08-01
PublicationDateYYYYMMDD 2013-08-01
PublicationDate_xml – month: 08
  year: 2013
  text: 2013-08-01
  day: 01
PublicationDecade 2010
PublicationPlace One Rogers Street, Cambridge, MA 02142-1209, USA
PublicationPlace_xml – name: One Rogers Street, Cambridge, MA 02142-1209, USA
– name: United States
– name: Cambridge
PublicationTitle Neural computation
PublicationTitleAlternate Neural Comput
PublicationYear 2013
Publisher MIT Press
MIT Press Journals, The
Publisher_xml – name: MIT Press
– name: MIT Press Journals, The
References B20
B42
B21
B43
B22
B44
B23
B45
B24
B46
B47
B48
B27
B49
B28
B29
Rubin D. B. (B38) 2010
B30
B31
B10
B32
B11
B33
B12
B34
B13
B35
B14
B36
B15
B37
B16
B17
B18
Miller K. D. (B26) 2011
B19
B1
B2
B3
B4
B5
B6
B8
B9
Dayan P. (B7) 2001
B40
B41
4024474 - Vision Res. 1985;25(6):755-66
9348122 - Exp Brain Res. 1997 Sep;116(2):216-28
9468134 - Nature. 1998 Feb 5;391(6667):580-4
17685796 - J Vis. 2007;7(6):13
11110664 - Science. 2000 Dec 8;290(5498):1968-72
12424292 - J Neurophysiol. 2002 Nov;88(5):2530-46
19477158 - Neuron. 2009 May 28;62(4):578-92
11826034 - J Neurophysiol. 2002 Feb;87(2):653-9
15629708 - Neuron. 2005 Jan 6;45(1):133-45
4045542 - J Neurophysiol. 1985 Sep;54(3):651-67
20596024 - Nature. 2010 Jul 1;466(7302):123-7
16855109 - J Neurophysiol. 2006 Oct;96(4):1755-64
17494058 - Cereb Cortex. 2008 Feb;18(2):331-6
21353526 - Curr Opin Neurobiol. 2011 Apr;21(2):269-74
3559701 - J Neurophysiol. 1987 Mar;57(3):773-86
11600641 - J Neurophysiol. 2001 Oct;86(4):1803-15
3711980 - J Neurosci. 1986 May;6(5):1284-301
15665876 - Nat Neurosci. 2005 Feb;8(2):194-201
16520737 - Nat Neurosci. 2006 Apr;9(4):552-61
21390280 - PLoS Comput Biol. 2011 Feb;7(2):e1001078
22017986 - Neuron. 2011 Oct 20;72(2):231-43
10938316 - J Neurophysiol. 2000 Aug;84(2):909-26
10845071 - Annu Rev Neurosci. 2000;23:441-71
22108672 - Nat Rev Neurosci. 2012 Jan;13(1):51-62
21723114 - Curr Opin Neurobiol. 2011 Oct;21(5):701-8
6473083 - Pflugers Arch. 1984 Jul;401(3):304-14
15338009 - Nat Neurosci. 2004 Oct;7(10):1113-22
20152117 - Neuron. 2010 Jan 14;65(1):107-21
21552274 - Nat Neurosci. 2011 Jun;14(6):775-82
20110507 - Science. 2010 Jan 29;327(5965):587-90
11927690 - J Physiol. 2002 Apr 1;540(Pt 1):321-33
15842744 - Vis Neurosci. 2005 Jan-Feb;22(1):87-99
10412063 - Nat Neurosci. 1999 Aug;2(8):733-9
17408583 - Neuron. 2007 Apr 5;54(1):137-52
8939866 - Science. 1996 Dec 6;274(5293):1724-6
21753021 - J Neurophysiol. 2011 Oct;106(4):1888-900
9151754 - J Neurosci. 1997 Jun 1;17(11):4382-8
11245694 - J Neurosci. 2001 Mar 15;21(6):2104-12
19657084 - J Neurophysiol. 2009 Oct;102(4):2069-83
12077207 - J Neurosci. 2002 Jun 15;22(12):5118-28
12466456 - J Neurophysiol. 2002 Dec;88(6):3398-408
9698348 - Neural Comput. 1998 Aug 15;10(6):1321-71
References_xml – ident: B4
  doi: 10.1016/j.conb.2011.06.003
– ident: B21
  doi: 10.1007/BF00582601
– ident: B12
  doi: 10.1016/j.conb.2011.02.003
– ident: B6
  doi: 10.1152/jn.00692.2001
– ident: B11
  doi: 10.1016/j.neuron.2007.02.029
– ident: B19
  doi: 10.1017/S0952523805221120
– ident: B27
  doi: 10.1152/jn.00425.2001
– ident: B15
  doi: 10.1523/JNEUROSCI.22-12-05118.2002
– ident: B41
  doi: 10.1007/PL00005751
– volume-title: Theoretical neuroscience
  year: 2001
  ident: B7
– ident: B49
  doi: 10.1162/089976698300017214
– ident: B14
  doi: 10.1016/j.neuron.2009.12.005
– ident: B37
  doi: 10.1126/science.1179850
– ident: B17
  doi: 10.1016/j.neuron.2011.09.027
– ident: B43
  doi: 10.1152/jn.1987.57.3.773
– volume-title: Balanced amplification and normalization in a simple circuit model of visual cortex explain multiple aspects of attentional modulation
  year: 2011
  ident: B26
– ident: B33
  doi: 10.1038/35372
– ident: B20
  doi: 10.1152/jn.00425.2006
– ident: B29
  doi: 10.1152/jn.1985.54.3.651
– ident: B46
  doi: 10.1152/jn.00165.2011
– ident: B10
  doi: 10.1146/annurev.neuro.23.1.441
– ident: B16
  doi: 10.1152/jn.00255.2002
– ident: B1
  doi: 10.1152/jn.2000.84.2.909
– ident: B31
  doi: 10.1167/7.6.13
– ident: B32
  doi: 10.1371/journal.pcbi.1001078
– ident: B34
  doi: 10.1016/j.neuron.2004.12.024
– ident: B48
  doi: 10.1126/science.274.5293.1724
– ident: B23
  doi: 10.1038/nn1391
– ident: B8
  doi: 10.1007/978-0-387-87708-2
– ident: B24
  doi: 10.1113/jphysiol.2001.012776
– ident: B40
  doi: 10.1038/11197
– ident: B13
  doi: 10.1017/CBO9780511815706
– ident: B30
  doi: 10.1016/j.neuron.2009.03.028
– ident: B47
  doi: 10.1016/0042-6989(85)90183-X
– ident: B22
  doi: 10.1038/nature09086
– ident: B35
  doi: 10.1038/nn1660
– ident: B44
  doi: 10.1093/cercor/bhm057
– ident: B9
  doi: 10.1523/JNEUROSCI.06-05-01284.1986
– ident: B45
  doi: 10.1523/JNEUROSCI.17-11-04382.1997
– ident: B28
  doi: 10.1038/nn.2815
– ident: B36
  doi: 10.1038/nn1310
– ident: B42
  doi: 10.1152/jn.00512.2009
– ident: B2
  doi: 10.1126/science.290.5498.1968
– volume-title: Normalization in a nonlinear circuit model of V1
  year: 2010
  ident: B38
– ident: B3
  doi: 10.1523/JNEUROSCI.21-06-02104.2001
– ident: B18
  doi: 10.1152/jn.2001.86.4.1803
– ident: B5
  doi: 10.1038/nrc3398
– reference: 9151754 - J Neurosci. 1997 Jun 1;17(11):4382-8
– reference: 16855109 - J Neurophysiol. 2006 Oct;96(4):1755-64
– reference: 11245694 - J Neurosci. 2001 Mar 15;21(6):2104-12
– reference: 11110664 - Science. 2000 Dec 8;290(5498):1968-72
– reference: 15629708 - Neuron. 2005 Jan 6;45(1):133-45
– reference: 19477158 - Neuron. 2009 May 28;62(4):578-92
– reference: 9698348 - Neural Comput. 1998 Aug 15;10(6):1321-71
– reference: 21353526 - Curr Opin Neurobiol. 2011 Apr;21(2):269-74
– reference: 4024474 - Vision Res. 1985;25(6):755-66
– reference: 17685796 - J Vis. 2007;7(6):13
– reference: 17494058 - Cereb Cortex. 2008 Feb;18(2):331-6
– reference: 21723114 - Curr Opin Neurobiol. 2011 Oct;21(5):701-8
– reference: 10845071 - Annu Rev Neurosci. 2000;23:441-71
– reference: 12466456 - J Neurophysiol. 2002 Dec;88(6):3398-408
– reference: 15665876 - Nat Neurosci. 2005 Feb;8(2):194-201
– reference: 3711980 - J Neurosci. 1986 May;6(5):1284-301
– reference: 12077207 - J Neurosci. 2002 Jun 15;22(12):5118-28
– reference: 4045542 - J Neurophysiol. 1985 Sep;54(3):651-67
– reference: 9348122 - Exp Brain Res. 1997 Sep;116(2):216-28
– reference: 15842744 - Vis Neurosci. 2005 Jan-Feb;22(1):87-99
– reference: 9468134 - Nature. 1998 Feb 5;391(6667):580-4
– reference: 20152117 - Neuron. 2010 Jan 14;65(1):107-21
– reference: 12424292 - J Neurophysiol. 2002 Nov;88(5):2530-46
– reference: 10412063 - Nat Neurosci. 1999 Aug;2(8):733-9
– reference: 20596024 - Nature. 2010 Jul 1;466(7302):123-7
– reference: 21753021 - J Neurophysiol. 2011 Oct;106(4):1888-900
– reference: 6473083 - Pflugers Arch. 1984 Jul;401(3):304-14
– reference: 10938316 - J Neurophysiol. 2000 Aug;84(2):909-26
– reference: 21552274 - Nat Neurosci. 2011 Jun;14(6):775-82
– reference: 11927690 - J Physiol. 2002 Apr 1;540(Pt 1):321-33
– reference: 21390280 - PLoS Comput Biol. 2011 Feb;7(2):e1001078
– reference: 22108672 - Nat Rev Neurosci. 2012 Jan;13(1):51-62
– reference: 22017986 - Neuron. 2011 Oct 20;72(2):231-43
– reference: 16520737 - Nat Neurosci. 2006 Apr;9(4):552-61
– reference: 8939866 - Science. 1996 Dec 6;274(5293):1724-6
– reference: 3559701 - J Neurophysiol. 1987 Mar;57(3):773-86
– reference: 11826034 - J Neurophysiol. 2002 Feb;87(2):653-9
– reference: 11600641 - J Neurophysiol. 2001 Oct;86(4):1803-15
– reference: 20110507 - Science. 2010 Jan 29;327(5965):587-90
– reference: 15338009 - Nat Neurosci. 2004 Oct;7(10):1113-22
– reference: 19657084 - J Neurophysiol. 2009 Oct;102(4):2069-83
– reference: 17408583 - Neuron. 2007 Apr 5;54(1):137-52
SSID ssj0006105
Score 2.4405873
Snippet We study a rate-model neural network composed of excitatory and inhibitory neurons in which neuronal input-output functions are power laws with a power greater...
SourceID pubmedcentral
proquest
pubmed
crossref
mit
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1994
SubjectTerms Brain
Comparative analysis
Dynamics
Feedback, Physiological
Humans
Models, Neurological
Nerve Net - physiology
Neural Inhibition - physiology
Neural networks
Neural Networks (Computer)
Neurons
Neurons - physiology
Nonlinear Dynamics
Visual Cortex - cytology
Visual Cortex - physiology
Title Analysis of the Stabilized Supralinear Network
URI https://direct.mit.edu/neco/article/doi/10.1162/NECO_a_00472
https://www.ncbi.nlm.nih.gov/pubmed/23663149
https://www.proquest.com/docview/1370243331
https://www.proquest.com/docview/1370126022
https://www.proquest.com/docview/1494353663
https://pubmed.ncbi.nlm.nih.gov/PMC4026108
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEF5a59JL3w-naVGgPRW5sh4r6eikNqGkDhQbfBOr1QoHGjk08iW_Pt9oV9K6OKHtxRhpkOWd2dlvdme-YeyTksChgYjdsiyUG5ahxJxTpYvVpsAEVHFeUKD4Y87PluH3VbTqCRWa6pI6H8nbvXUl_6NVXINeqUr2HzTbPRQX8B36xSc0jM-_0rHNKEIAEsiRcl1vCURur2kLoyKenrlO9bZxKHFyNMwg1NNh5zB-sr5q6Aoa3yxu1qLL3v25zTXhgC5L7_s19_WEpsrHpBGbzQRq7JDYmwlwlzr1oz0MN6lKyvZKaerGXPfQGKnWa3ouQumV7VZ1PbMxn8TykcRGvN95cyKDnU9PLzKRNTSW_SLVHszPL7LZ8vw8W0xXi927ek0mDIggjSrrD3xEDv6AHUxOvp3MuuWZm7zW9n-01RDc_2r_9A5OeXx1We8LQf7MpLWgyeI5e2oG0ZloA3nBHqnqJXvW9utwjPt-xUatvTib0oG9OL29OJa9OMZeXrPlbLo4PXNNvwxXRh6vXcTqIRxDkGP1U1GUCCG8FPFgGpeIsmVQcMk9mStqXShKCaha8hjjMS5i4XMsNG_YoNpU6h1zOJcSkUGcq2Qc5ngMYEyapLwMIq8A5hyyL-3oZNKQyVNPk19ZE1RyP7PHcsg-d9LXmkTlHrljDHRmZtjNPTJHrRoswSAmZs2AXuy4uw1HSadfolKbrZYZI3r3_QdkwhThQwAUPmRvtWa7F_bpMgSGLN7ReSdARO27d6rLdUPYHtJGh5ccPvzq79mTfkoesUH9e6s-APHW-Udjw3fMiqnY
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+the+Stabilized+Supralinear+Network&rft.jtitle=Neural+computation&rft.au=Ahmadian%2C+Yashar&rft.au=Rubin%2C+Daniel+B&rft.au=Miller%2C+Kenneth+D&rft.date=2013-08-01&rft.pub=MIT+Press+Journals%2C+The&rft.issn=0899-7667&rft.eissn=1530-888X&rft.volume=25&rft.issue=8&rft.spage=1994&rft_id=info:doi/10.1162%2FNECO_a_00472&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3001586231
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0899-7667&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0899-7667&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0899-7667&client=summon