XagR, a LuxR Homolog, Contributes to the Virulence of Xanthomonas axonopodis pv. glycines to Soybean
A novel luxR homolog, termed XagR, in Xanthomonas axonopodis pv. glycines, the cause of soybean pustule, controls expression of pip, yapH, and at least 77 other genes. Although XagR and Pip are required for full virulence of X. axonopodis pv. glycines to soybean, constitutive overproduction of XagR...
Saved in:
Published in | Molecular plant-microbe interactions Vol. 25; no. 8; pp. 1104 - 1117 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
St. Paul, MN
APS Press
01.08.2012
The American Phytopathological Society |
Subjects | |
Online Access | Get full text |
ISSN | 0894-0282 1943-7706 |
DOI | 10.1094/MPMI-01-12-0008-R |
Cover
Loading…
Abstract | A novel luxR homolog, termed XagR, in Xanthomonas axonopodis pv. glycines, the cause of soybean pustule, controls expression of pip, yapH, and at least 77 other genes. Although XagR and Pip are required for full virulence of X. axonopodis pv. glycines to soybean, constitutive overproduction of XagR suppresses infection. The xagR-dependent induction of pip occurs in planta only 2 days or more after inoculation. Although the transcription of xagR appears constitutive, XagR accumulates only in cells that have colonized soybean plants for more than 2 days suggesting that some components produced during the infection process mediate post-transcriptional control, likely by protecting XagR from proteolytic degradation. XagR modulates the adhesiveness of the pathogen during the infection process by suppressing the adhesin YapH. Although yapH mutants incite more infections of soybean leaves than the wild-type strain when topically applied under dry conditions, the mutant causes fewer infections when leaves are subject to simulated rain events after inoculation. Likewise, yapH mutants and cells in which XagR was overexpressed exhibited much more egress from infected leaves than the wild-type strain. Thus, XagR differentially modulates expression of a variety of genes during the infection process in response to feedback from plant molecules elaborated during infection to coordinate processes such as invasion, infection, and cell egress needed to complete the disease cycle. |
---|---|
AbstractList | A novel luxR homolog, termed XagR, in Xanthomonas axonopodis pv. glycines, the cause of soybean pustule, controls expression of pip, yapH, and at least 77 other genes. Although XagR and Pip are required for full virulence of X. axonopodis pv. glycines to soybean, constitutive overproduction of XagR suppresses infection. The xagR-dependent induction of pip occurs in planta only 2 days or more after inoculation. Although the transcription of xagR appears constitutive, XagR accumulates only in cells that have colonized soybean plants for more than 2 days suggesting that some components produced during the infection process mediate post-transcriptional control, likely by protecting XagR from proteolytic degradation. XagR modulates the adhesiveness of the pathogen during the infection process by suppressing the adhesin YapH. Although yapH mutants incite more infections of soybean leaves than the wild-type strain when topically applied under dry conditions, the mutant causes fewer infections when leaves are subject to simulated rain events after inoculation. Likewise, yapH mutants and cells in which XagR was overexpressed exhibited much more egress from infected leaves than the wild-type strain. Thus, XagR differentially modulates expression of a variety of genes during the infection process in response to feedback from plant molecules elaborated during infection to coordinate processes such as invasion, infection, and cell egress needed to complete the disease cycle. A novel luxR homolog, termed XagR, in Xanthomonas axonopodis pv. glycines, the cause of soybean pustule, controls expression of pip, yapH, and at least 77 other genes. Although XagR and Pip are required for full virulence of X. axonopodis pv. glycines to soybean, constitutive overproduction of XagR suppresses infection. The xagR-dependent induction of pip occurs in planta only 2 days or more after inoculation. Although the transcription of xagR appears constitutive, XagR accumulates only in cells that have colonized soybean plants for more than 2 days suggesting that some components produced during the infection process mediate post-transcriptional control, likely by protecting XagR from proteolytic degradation. XagR modulates the adhesiveness of the pathogen during the infection process by suppressing the adhesin YapH. Although yapH mutants incite more infections of soybean leaves than the wild-type strain when topically applied under dry conditions, the mutant causes fewer infections when leaves are subject to simulated rain events after inoculation. Likewise, yapH mutants and cells in which XagR was overexpressed exhibited much more egress from infected leaves than the wild-type strain. Thus, XagR differentially modulates expression of a variety of genes during the infection process in response to feedback from plant molecules elaborated during infection to coordinate processes such as invasion, infection, and cell egress needed to complete the disease cycle.A novel luxR homolog, termed XagR, in Xanthomonas axonopodis pv. glycines, the cause of soybean pustule, controls expression of pip, yapH, and at least 77 other genes. Although XagR and Pip are required for full virulence of X. axonopodis pv. glycines to soybean, constitutive overproduction of XagR suppresses infection. The xagR-dependent induction of pip occurs in planta only 2 days or more after inoculation. Although the transcription of xagR appears constitutive, XagR accumulates only in cells that have colonized soybean plants for more than 2 days suggesting that some components produced during the infection process mediate post-transcriptional control, likely by protecting XagR from proteolytic degradation. XagR modulates the adhesiveness of the pathogen during the infection process by suppressing the adhesin YapH. Although yapH mutants incite more infections of soybean leaves than the wild-type strain when topically applied under dry conditions, the mutant causes fewer infections when leaves are subject to simulated rain events after inoculation. Likewise, yapH mutants and cells in which XagR was overexpressed exhibited much more egress from infected leaves than the wild-type strain. Thus, XagR differentially modulates expression of a variety of genes during the infection process in response to feedback from plant molecules elaborated during infection to coordinate processes such as invasion, infection, and cell egress needed to complete the disease cycle. |
Author | Chatnaparat, Tiyakhon Ionescu, Michael Prathuangwong, Sutruedee Lindow, Steven E. |
Author_xml | – sequence: 1 givenname: Tiyakhon surname: Chatnaparat fullname: Chatnaparat, Tiyakhon – sequence: 2 givenname: Sutruedee surname: Prathuangwong fullname: Prathuangwong, Sutruedee – sequence: 3 givenname: Michael surname: Ionescu fullname: Ionescu, Michael – sequence: 4 givenname: Steven E. surname: Lindow fullname: Lindow, Steven E. |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26131745$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/22746827$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkk1v00AQhi1URNPCD-CC9oLEoS47-2GvjygCGikVKHyot9Xsh9OtnN3gdVDz77FJKBIH4DTS6Hnf0cy8Z8VJTNEXxXOgl0Ab8fr64_WipFACKymlqlw9KmbQCF7WNa1OihlVjSgpU-y0OMv5jlJoKimfFKeM1aJSrJ4V7gbXqwuCZLm7X5GrtEldWl-QeYpDH8xu8JkMiQy3nnwN_a7z0XqSWnKDcbgd4YiZ4H2KaZtcyGT7_ZKsu70N8aD7lPbGY3xaPG6xy_7ZsZ4XX969_Ty_Kpcf3i_mb5allbQaytpaZqhRrXASKBOSc3CNkUop7ht01lg0KL1sODMVAHgv2hoNa7lrwEl-XiwOvi7hnd72YYP9XicM-mcj9WuN_RBs5zWAEAjKcFd54XAc2qJE5rjBVgrLRq9XB69tn77tfB70JmTruw6jT7us2XhxqDmX6p8oUM5UwwSH_0AZZw2XzbTMiyO6MxvvHtb59bsReHkEMFvs2h6jDfk3VwGHWkxGcOBsn3LuffuAANVTjvSUI01BA9NTjvRq1NR_aGwYcAhTLDB0f1H-ANVFy1k |
CODEN | MPMIEL |
CitedBy_id | crossref_primary_10_1002_ps_6186 crossref_primary_10_1016_j_tplants_2012_09_007 crossref_primary_10_1007_s11427_017_9092_3 crossref_primary_10_1073_pnas_2019462118 crossref_primary_10_1080_19420889_2016_1156832 crossref_primary_10_1128_msystems_01039_22 crossref_primary_10_1128_AEM_01417_13 crossref_primary_10_1186_s12934_017_0818_2 crossref_primary_10_1094_PHYTO_07_13_0188_R crossref_primary_10_1128_genomeA_01036_13 crossref_primary_10_3390_microorganisms9102065 crossref_primary_10_1038_s41598_019_38650_3 crossref_primary_10_3390_ijms141020578 crossref_primary_10_1016_j_jbiotec_2014_03_009 crossref_primary_10_1146_annurev_phyto_082712_102239 crossref_primary_10_1094_MPMI_11_22_0241_R crossref_primary_10_7717_peerj_2332 crossref_primary_10_1021_acs_jafc_1c04751 crossref_primary_10_1038_srep26881 crossref_primary_10_1073_pnas_1809611115 crossref_primary_10_1111_j_1364_3703_2012_00843_x crossref_primary_10_1128_spectrum_04056_23 crossref_primary_10_1016_j_csbj_2020_12_020 crossref_primary_10_1094_PHYTO_07_18_0225_R crossref_primary_10_1128_AEM_00622_20 crossref_primary_10_1094_MPMI_01_16_0007_R crossref_primary_10_1111_ppa_14084 crossref_primary_10_1093_gbe_evz085 crossref_primary_10_1111_mpp_13302 crossref_primary_10_1146_annurev_phyto_080615_100147 crossref_primary_10_1371_journal_pone_0087862 crossref_primary_10_3389_fcimb_2014_00188 crossref_primary_10_3390_ijms21239294 crossref_primary_10_1038_s41396_019_0404_1 crossref_primary_10_1111_mmi_13289 crossref_primary_10_1128_mBio_01101_16 crossref_primary_10_1002_ps_7009 crossref_primary_10_3389_fmicb_2020_00091 crossref_primary_10_3389_fpls_2019_01657 crossref_primary_10_1128_AEM_01611_19 crossref_primary_10_1128_mSphere_01322_20 |
Cites_doi | 10.1094/MPMI-5-187 10.1094/MPMI-18-1306 10.1128/JB.187.1.185-192.2005 10.1093/bioinformatics/btp616 10.1128/jb.170.7.3249-3254.1988 10.1111/j.1365-2958.2009.06730.x 10.1128/JB.172.7.3974-3979.1990 10.1074/jbc.C111.274597 10.2134/agronj1966.00021962005800050027x 10.1186/1471-2164-9-75 10.1146/annurev.micro.61.080706.093426 10.1038/nrm907 10.1105/tpc.4.1.79 10.1038/cr.2011.64 10.1128/jb.174.6.1875-1882.1992 10.1073/pnas.88.24.11115 10.1073/pnas.91.26.12619 10.1111/j.1365-2958.2004.04206.x 10.1128/JB.170.7.3164-3169.1988 10.1099/mic.0.026849-0 10.1099/13500872-142-10-2951 10.1128/jb.173.18.5784-5792.1991 10.1104/pp.107.2.603 10.1093/nar/21.4.807 10.1046/j.1365-2958.1998.00875.x 10.1128/AEM.00592-10 10.1094/PHYTO-98-12-1252 10.1073/pnas.120163297 10.1128/JB.187.14.4792-4803.2005 10.1094/Phyto-75-733 10.1128/jb.169.11.5336-5338.1987 10.1002/j.1460-2075.1996.tb01000.x 10.1094/MPMI.2000.13.11.1243 10.2225/vol9-issue5-fulltext-15 10.1146/annurev-phyto-073009-114436 10.1186/gb-2004-5-10-r80 10.1128/jb.174.23.7807-7818.1992 10.1111/j.1364-3703.2007.00415.x 10.1094/MPMI-22-6-0747 10.1128/jb.171.10.5668-5671.1989 10.1146/annurev.micro.50.1.213 10.1128/MMBR.64.4.847-867.2000 10.1186/gb-2009-10-3-r25 10.1016/S0966-842X(03)00007-6 10.1128/aem.53.8.1839-1845.1987 10.1094/MPMI-22-1-0073 10.1038/nrmicro2109 10.1128/AEM.00183-11 10.1128/jb.178.6.1548-1555.1996 10.1007/BF01568392 10.1128/JB.01746-08 10.1126/science.2781284 10.1126/science.224.4653.1064 10.1111/j.1365-3059.2005.01176.x 10.1128/jb.174.6.1734-1741.1992 10.1016/0378-1119(95)00584-1 10.1128/jb.179.2.557-562.1997 10.1094/PHYTO-96-1081 10.1128/JB.01507-08 10.1073/pnas.96.9.4832 10.1128/jb.165.3.849-855.1986 10.1128/JB.174.11.3499-3507.1992 |
ContentType | Journal Article |
Copyright | 2015 INIST-CNRS |
Copyright_xml | – notice: 2015 INIST-CNRS |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 7QL 7T7 8FD C1K FR3 P64 7S9 L.6 DOA |
DOI | 10.1094/MPMI-01-12-0008-R |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Bacteriology Abstracts (Microbiology B) Industrial and Applied Microbiology Abstracts (Microbiology A) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Engineering Research Database Technology Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Bacteriology Abstracts (Microbiology B) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA CrossRef MEDLINE - Academic Engineering Research Database MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture Biology |
EISSN | 1943-7706 |
EndPage | 1117 |
ExternalDocumentID | oai_doaj_org_article_1144a18b3d6e4dab8ffa5a2d3baf54c2 22746827 26131745 10_1094_MPMI_01_12_0008_R |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 123 29M 2WC 53G 7X2 7X7 88E 8AO 8CJ 8FE 8FH 8FI 8FJ 8FW 8R4 8R5 AAHBH AAYJJ AAYXX ABDNZ ABRJW ABUWG ACGFO ACPRK ACYGS ADBBV AENEX AEUYN AFKRA AFRAH ALIPV ALMA_UNASSIGNED_HOLDINGS ATCPS BAWUL BBNVY BENPR BES BHPHI BPHCQ BVXVI C1A CCPQU CITATION CS3 D1J DIK DU5 E3Z EBS EJD F5P FRP FYUFA GROUPED_DOAJ HCIFZ HMCUK HYO LK8 M0K M1P M7P MVM OK1 P2P PHGZM PHGZT PQQKQ PROAC PSQYO Q2X RPS S0X TR2 UKHRP ~KM 3V. 88A IQODW M0L YCJ CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB 7X8 7QL 7T7 8FD C1K FR3 P64 7S9 L.6 |
ID | FETCH-LOGICAL-c506t-7cc2b0b8f4d510245331d9b58883e9adcbcaba5e5932b6111ee4f7ab2f3d91d53 |
IEDL.DBID | DOA |
ISSN | 0894-0282 |
IngestDate | Wed Aug 27 01:28:47 EDT 2025 Fri Jul 11 02:36:54 EDT 2025 Fri Jul 11 02:53:25 EDT 2025 Fri Jul 11 00:41:16 EDT 2025 Mon Jul 21 06:07:22 EDT 2025 Mon Oct 30 05:51:05 EDT 2023 Thu Apr 24 22:53:01 EDT 2025 Tue Jul 01 00:38:46 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | Pseudomonadales Plant pathogen Xanthomonas axonopodis Virulence Glycine max Grain legume Plant Leguminosae Dicotyledones Angiospermae Bacteria Pseudomonadaceae Spermatophyta |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c506t-7cc2b0b8f4d510245331d9b58883e9adcbcaba5e5932b6111ee4f7ab2f3d91d53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
OpenAccessLink | https://doaj.org/article/1144a18b3d6e4dab8ffa5a2d3baf54c2 |
PMID | 22746827 |
PQID | 1023293595 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1144a18b3d6e4dab8ffa5a2d3baf54c2 proquest_miscellaneous_2000173358 proquest_miscellaneous_1032892431 proquest_miscellaneous_1023293595 pubmed_primary_22746827 pascalfrancis_primary_26131745 crossref_primary_10_1094_MPMI_01_12_0008_R crossref_citationtrail_10_1094_MPMI_01_12_0008_R |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-08-01 |
PublicationDateYYYYMMDD | 2012-08-01 |
PublicationDate_xml | – month: 08 year: 2012 text: 2012-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | St. Paul, MN |
PublicationPlace_xml | – name: St. Paul, MN – name: United States |
PublicationTitle | Molecular plant-microbe interactions |
PublicationTitleAlternate | Mol Plant Microbe Interact |
PublicationYear | 2012 |
Publisher | APS Press The American Phytopathological Society |
Publisher_xml | – name: APS Press – name: The American Phytopathological Society |
References | p_45 p_47 p_48 Fett W. F. (p_18) 1987; 53 p_41 p_42 p_43 p_44 p_40 p_38 p_39 p_2 p_1 p_4 p_34 p_3 p_35 p_6 p_36 p_5 p_37 p_8 p_7 p_9 Poellinger K. A. (p_49) 1995; 129 p_30 p_31 p_32 p_33 p_71 p_27 p_28 p_29 p_23 p_67 p_24 p_68 p_25 Morgan F. L. (p_46) 1963; 23 p_69 p_26 p_63 p_20 p_64 p_21 p_65 p_66 p_60 p_61 p_62 p_16 Prathuangwong S. (p_51) 1987; 21 p_17 p_19 p_12 p_56 p_13 p_57 p_14 p_58 p_15 p_59 Zhang L. (p_70) 2007; 65 Galinski E. A. (p_22) 1994; 15 p_52 p_53 p_10 p_54 p_11 p_55 p_50 |
References_xml | – ident: p_2 doi: 10.1094/MPMI-5-187 – ident: p_40 – ident: p_8 doi: 10.1094/MPMI-18-1306 – ident: p_25 doi: 10.1128/JB.187.1.185-192.2005 – ident: p_53 doi: 10.1093/bioinformatics/btp616 – ident: p_5 doi: 10.1128/jb.170.7.3249-3254.1988 – ident: p_48 doi: 10.1111/j.1365-2958.2009.06730.x – ident: p_58 doi: 10.1128/JB.172.7.3974-3979.1990 – ident: p_63 doi: 10.1074/jbc.C111.274597 – ident: p_67 doi: 10.2134/agronj1966.00021962005800050027x – ident: p_3 doi: 10.1186/1471-2164-9-75 – ident: p_64 doi: 10.1146/annurev.micro.61.080706.093426 – ident: p_21 doi: 10.1038/nrm907 – ident: p_28 – ident: p_56 doi: 10.1105/tpc.4.1.79 – volume: 23 start-page: 8 year: 1963 ident: p_46 publication-title: Soybean Dig. – volume: 129 start-page: 97 year: 1995 ident: p_49 publication-title: FEMS (Fed. Eur. Microbiol. Soc.) Microbiol. Lett. – ident: p_66 doi: 10.1038/cr.2011.64 – ident: p_68 doi: 10.1128/jb.174.6.1875-1882.1992 – ident: p_10 doi: 10.1073/pnas.88.24.11115 – ident: p_60 doi: 10.1073/pnas.91.26.12619 – ident: p_57 doi: 10.1111/j.1365-2958.2004.04206.x – ident: p_7 doi: 10.1128/JB.170.7.3164-3169.1988 – ident: p_61 doi: 10.1099/mic.0.026849-0 – ident: p_1 doi: 10.1099/13500872-142-10-2951 – ident: p_44 doi: 10.1128/jb.173.18.5784-5792.1991 – ident: p_45 doi: 10.1104/pp.107.2.603 – volume: 15 start-page: 95 year: 1994 ident: p_22 publication-title: FEMS (Fed. Eur. Microbiol. Soc.) Microbiol. Rev. – ident: p_23 doi: 10.1093/nar/21.4.807 – ident: p_50 doi: 10.1046/j.1365-2958.1998.00875.x – ident: p_6 doi: 10.1128/AEM.00592-10 – ident: p_65 doi: 10.1094/PHYTO-98-12-1252 – ident: p_14 doi: 10.1073/pnas.120163297 – ident: p_54 – ident: p_11 doi: 10.1128/JB.187.14.4792-4803.2005 – ident: p_32 doi: 10.1094/Phyto-75-733 – ident: p_47 doi: 10.1128/jb.169.11.5336-5338.1987 – ident: p_34 doi: 10.1002/j.1460-2075.1996.tb01000.x – ident: p_43 doi: 10.1094/MPMI.2000.13.11.1243 – ident: p_55 doi: 10.2225/vol9-issue5-fulltext-15 – ident: p_4 doi: 10.1146/annurev-phyto-073009-114436 – ident: p_24 doi: 10.1186/gb-2004-5-10-r80 – ident: p_29 doi: 10.1128/jb.174.23.7807-7818.1992 – ident: p_17 doi: 10.1111/j.1364-3703.2007.00415.x – ident: p_12 doi: 10.1094/MPMI-22-6-0747 – ident: p_42 – volume: 21 start-page: 408 year: 1987 ident: p_51 publication-title: Kasetsart J. (Nat. Sci.) – ident: p_26 doi: 10.1128/jb.171.10.5668-5671.1989 – ident: p_30 doi: 10.1146/annurev.micro.50.1.213 – volume: 65 start-page: 121 year: 2007 ident: p_70 publication-title: Microbiol. – ident: p_15 doi: 10.1128/MMBR.64.4.847-867.2000 – ident: p_38 doi: 10.1186/gb-2009-10-3-r25 – ident: p_20 doi: 10.1016/S0966-842X(03)00007-6 – volume: 53 start-page: 1839 year: 1987 ident: p_18 publication-title: Appl. Environ. Microbiol. doi: 10.1128/aem.53.8.1839-1845.1987 – ident: p_13 doi: 10.1094/MPMI-22-1-0073 – ident: p_27 doi: 10.1038/nrmicro2109 – ident: p_62 doi: 10.1128/AEM.00183-11 – ident: p_35 doi: 10.1128/jb.178.6.1548-1555.1996 – ident: p_19 doi: 10.1007/BF01568392 – ident: p_41 doi: 10.1128/JB.01746-08 – ident: p_31 doi: 10.1126/science.2781284 – ident: p_39 doi: 10.1126/science.224.4653.1064 – ident: p_33 doi: 10.1111/j.1365-3059.2005.01176.x – ident: p_69 doi: 10.1128/jb.174.6.1734-1741.1992 – ident: p_36 doi: 10.1016/0378-1119(95)00584-1 – ident: p_59 doi: 10.1128/jb.179.2.557-562.1997 – ident: p_9 doi: 10.1094/PHYTO-96-1081 – ident: p_16 doi: 10.1128/JB.01507-08 – ident: p_71 doi: 10.1073/pnas.96.9.4832 – ident: p_37 doi: 10.1128/jb.165.3.849-855.1986 – ident: p_52 doi: 10.1128/JB.174.11.3499-3507.1992 |
SSID | ssj0019655 |
Score | 2.2748024 |
Snippet | A novel luxR homolog, termed XagR, in Xanthomonas axonopodis pv. glycines, the cause of soybean pustule, controls expression of pip, yapH, and at least 77... |
SourceID | doaj proquest pubmed pascalfrancis crossref |
SourceType | Open Website Aggregation Database Index Database Enrichment Source |
StartPage | 1104 |
SubjectTerms | Adhesins adhesion Bacterial Adhesion - genetics Bacterial plant pathogens Bacterial Proteins - genetics Bacterial Proteins - metabolism Base Sequence Biological and medical sciences Feedback Fundamental and applied biological sciences. Psychology Gene Expression Regulation, Bacterial gene overexpression genes Genome, Bacterial Glycine Glycine max Glycine max - microbiology Host-Pathogen Interactions - genetics Infection Inoculation Leaves Molecular Sequence Data mutants Mutation Pathogens Phytopathology. Animal pests. Plant and forest protection Plant diseases Plant Diseases - microbiology Plant Leaves - microbiology Plant protection Post-transcription Proteolysis Rain rainfall simulation Regulon Repressor Proteins - metabolism Soybeans topical application Trans-Activators - metabolism Transcription Virulence Virulence - genetics Xanthomonas axonopodis Xanthomonas axonopodis - pathogenicity Xanthomonas axonopodis pv. glycines |
Title | XagR, a LuxR Homolog, Contributes to the Virulence of Xanthomonas axonopodis pv. glycines to Soybean |
URI | https://www.ncbi.nlm.nih.gov/pubmed/22746827 https://www.proquest.com/docview/1023293595 https://www.proquest.com/docview/1032892431 https://www.proquest.com/docview/2000173358 https://doaj.org/article/1144a18b3d6e4dab8ffa5a2d3baf54c2 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQ4ICivQFkZiRNqaOJH4hwLotoCi9BC0d4sP1eVSrza7Fbdf8_YyS700HLhao0txzMTf6MZf4PQG3Af1hiq89IICgGKEbkolY-8t5Qq4WidXnhPvlbjM_Zpxmd_tfqKNWE9PXB_cEewFlOl0NRWjlmlhfeKK2KpVp4zk_6-cOdtg6khf9BUqd9pISLxLUQV23xmw44m3yanMYaOJQkx9z-9diMl4v5YIKk6OCPfN7e4GX2mW-jkIXowwEd83G_7Ebrj2n10_3i-HCg03D6627eX3DxGdqbm00Os8Jf11RSPw684fogjIVVqc-U6vAoYECD-eb5cp9dHOHg8U5FQAMxTdVhdhTYsgj3v8OLyHZ5fbGIiPs37HjbaqfYJOjv5-OPDOB-6KuSGF9Uqr40huoBzZBb8kTDAe6VtNIdQmLpGWaON0oo7DshOV6BL55ivlSae2qa0nD5Fe21o3XOEPRPGC1MbJ2rmNWAd5njpG9sAaPHEZ6jYnqw0A-V47HxxIfvUN5NRGbIoZUliFlzIaYbe7qYser6N24TfR3XtBCNVdhoAA5KDAcl_GVCGRteUvVsNYksAV4xn6PVW-xJ8LyZUVOvCupOR9oKkp823yVCIaQngtJtlSKItopSLDD3rzevPLgh4iyD1i__xrS_RPQB8pC9gPEB7q-XavQJQtdIj8J_Tz6PkRb8BNkIeAg |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=XagR%2C+a+LuxR+homolog%2C+contributes+to+the+virulence+of+Xanthomonas+axonopodis+pv.+glycines+to+soybean&rft.jtitle=Molecular+plant-microbe+interactions&rft.au=Chatnaparat%2C+Tiyakhon&rft.au=Prathuangwong%2C+Sutruedee&rft.au=Ionescu%2C+Michael&rft.au=Lindow%2C+Steven+E&rft.date=2012-08-01&rft.issn=0894-0282&rft.volume=25&rft.issue=8&rft.spage=1104&rft_id=info:doi/10.1094%2FMPMI-01-12-0008-R&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0894-0282&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0894-0282&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0894-0282&client=summon |