XagR, a LuxR Homolog, Contributes to the Virulence of Xanthomonas axonopodis pv. glycines to Soybean

A novel luxR homolog, termed XagR, in Xanthomonas axonopodis pv. glycines, the cause of soybean pustule, controls expression of pip, yapH, and at least 77 other genes. Although XagR and Pip are required for full virulence of X. axonopodis pv. glycines to soybean, constitutive overproduction of XagR...

Full description

Saved in:
Bibliographic Details
Published inMolecular plant-microbe interactions Vol. 25; no. 8; pp. 1104 - 1117
Main Authors Chatnaparat, Tiyakhon, Prathuangwong, Sutruedee, Ionescu, Michael, Lindow, Steven E.
Format Journal Article
LanguageEnglish
Published St. Paul, MN APS Press 01.08.2012
The American Phytopathological Society
Subjects
Online AccessGet full text
ISSN0894-0282
1943-7706
DOI10.1094/MPMI-01-12-0008-R

Cover

Loading…
Abstract A novel luxR homolog, termed XagR, in Xanthomonas axonopodis pv. glycines, the cause of soybean pustule, controls expression of pip, yapH, and at least 77 other genes. Although XagR and Pip are required for full virulence of X. axonopodis pv. glycines to soybean, constitutive overproduction of XagR suppresses infection. The xagR-dependent induction of pip occurs in planta only 2 days or more after inoculation. Although the transcription of xagR appears constitutive, XagR accumulates only in cells that have colonized soybean plants for more than 2 days suggesting that some components produced during the infection process mediate post-transcriptional control, likely by protecting XagR from proteolytic degradation. XagR modulates the adhesiveness of the pathogen during the infection process by suppressing the adhesin YapH. Although yapH mutants incite more infections of soybean leaves than the wild-type strain when topically applied under dry conditions, the mutant causes fewer infections when leaves are subject to simulated rain events after inoculation. Likewise, yapH mutants and cells in which XagR was overexpressed exhibited much more egress from infected leaves than the wild-type strain. Thus, XagR differentially modulates expression of a variety of genes during the infection process in response to feedback from plant molecules elaborated during infection to coordinate processes such as invasion, infection, and cell egress needed to complete the disease cycle.
AbstractList A novel luxR homolog, termed XagR, in Xanthomonas axonopodis pv. glycines, the cause of soybean pustule, controls expression of pip, yapH, and at least 77 other genes. Although XagR and Pip are required for full virulence of X. axonopodis pv. glycines to soybean, constitutive overproduction of XagR suppresses infection. The xagR-dependent induction of pip occurs in planta only 2 days or more after inoculation. Although the transcription of xagR appears constitutive, XagR accumulates only in cells that have colonized soybean plants for more than 2 days suggesting that some components produced during the infection process mediate post-transcriptional control, likely by protecting XagR from proteolytic degradation. XagR modulates the adhesiveness of the pathogen during the infection process by suppressing the adhesin YapH. Although yapH mutants incite more infections of soybean leaves than the wild-type strain when topically applied under dry conditions, the mutant causes fewer infections when leaves are subject to simulated rain events after inoculation. Likewise, yapH mutants and cells in which XagR was overexpressed exhibited much more egress from infected leaves than the wild-type strain. Thus, XagR differentially modulates expression of a variety of genes during the infection process in response to feedback from plant molecules elaborated during infection to coordinate processes such as invasion, infection, and cell egress needed to complete the disease cycle.
A novel luxR homolog, termed XagR, in Xanthomonas axonopodis pv. glycines, the cause of soybean pustule, controls expression of pip, yapH, and at least 77 other genes. Although XagR and Pip are required for full virulence of X. axonopodis pv. glycines to soybean, constitutive overproduction of XagR suppresses infection. The xagR-dependent induction of pip occurs in planta only 2 days or more after inoculation. Although the transcription of xagR appears constitutive, XagR accumulates only in cells that have colonized soybean plants for more than 2 days suggesting that some components produced during the infection process mediate post-transcriptional control, likely by protecting XagR from proteolytic degradation. XagR modulates the adhesiveness of the pathogen during the infection process by suppressing the adhesin YapH. Although yapH mutants incite more infections of soybean leaves than the wild-type strain when topically applied under dry conditions, the mutant causes fewer infections when leaves are subject to simulated rain events after inoculation. Likewise, yapH mutants and cells in which XagR was overexpressed exhibited much more egress from infected leaves than the wild-type strain. Thus, XagR differentially modulates expression of a variety of genes during the infection process in response to feedback from plant molecules elaborated during infection to coordinate processes such as invasion, infection, and cell egress needed to complete the disease cycle.A novel luxR homolog, termed XagR, in Xanthomonas axonopodis pv. glycines, the cause of soybean pustule, controls expression of pip, yapH, and at least 77 other genes. Although XagR and Pip are required for full virulence of X. axonopodis pv. glycines to soybean, constitutive overproduction of XagR suppresses infection. The xagR-dependent induction of pip occurs in planta only 2 days or more after inoculation. Although the transcription of xagR appears constitutive, XagR accumulates only in cells that have colonized soybean plants for more than 2 days suggesting that some components produced during the infection process mediate post-transcriptional control, likely by protecting XagR from proteolytic degradation. XagR modulates the adhesiveness of the pathogen during the infection process by suppressing the adhesin YapH. Although yapH mutants incite more infections of soybean leaves than the wild-type strain when topically applied under dry conditions, the mutant causes fewer infections when leaves are subject to simulated rain events after inoculation. Likewise, yapH mutants and cells in which XagR was overexpressed exhibited much more egress from infected leaves than the wild-type strain. Thus, XagR differentially modulates expression of a variety of genes during the infection process in response to feedback from plant molecules elaborated during infection to coordinate processes such as invasion, infection, and cell egress needed to complete the disease cycle.
Author Chatnaparat, Tiyakhon
Ionescu, Michael
Prathuangwong, Sutruedee
Lindow, Steven E.
Author_xml – sequence: 1
  givenname: Tiyakhon
  surname: Chatnaparat
  fullname: Chatnaparat, Tiyakhon
– sequence: 2
  givenname: Sutruedee
  surname: Prathuangwong
  fullname: Prathuangwong, Sutruedee
– sequence: 3
  givenname: Michael
  surname: Ionescu
  fullname: Ionescu, Michael
– sequence: 4
  givenname: Steven E.
  surname: Lindow
  fullname: Lindow, Steven E.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26131745$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/22746827$$D View this record in MEDLINE/PubMed
BookMark eNqNkk1v00AQhi1URNPCD-CC9oLEoS47-2GvjygCGikVKHyot9Xsh9OtnN3gdVDz77FJKBIH4DTS6Hnf0cy8Z8VJTNEXxXOgl0Ab8fr64_WipFACKymlqlw9KmbQCF7WNa1OihlVjSgpU-y0OMv5jlJoKimfFKeM1aJSrJ4V7gbXqwuCZLm7X5GrtEldWl-QeYpDH8xu8JkMiQy3nnwN_a7z0XqSWnKDcbgd4YiZ4H2KaZtcyGT7_ZKsu70N8aD7lPbGY3xaPG6xy_7ZsZ4XX969_Ty_Kpcf3i_mb5allbQaytpaZqhRrXASKBOSc3CNkUop7ht01lg0KL1sODMVAHgv2hoNa7lrwEl-XiwOvi7hnd72YYP9XicM-mcj9WuN_RBs5zWAEAjKcFd54XAc2qJE5rjBVgrLRq9XB69tn77tfB70JmTruw6jT7us2XhxqDmX6p8oUM5UwwSH_0AZZw2XzbTMiyO6MxvvHtb59bsReHkEMFvs2h6jDfk3VwGHWkxGcOBsn3LuffuAANVTjvSUI01BA9NTjvRq1NR_aGwYcAhTLDB0f1H-ANVFy1k
CODEN MPMIEL
CitedBy_id crossref_primary_10_1002_ps_6186
crossref_primary_10_1016_j_tplants_2012_09_007
crossref_primary_10_1007_s11427_017_9092_3
crossref_primary_10_1073_pnas_2019462118
crossref_primary_10_1080_19420889_2016_1156832
crossref_primary_10_1128_msystems_01039_22
crossref_primary_10_1128_AEM_01417_13
crossref_primary_10_1186_s12934_017_0818_2
crossref_primary_10_1094_PHYTO_07_13_0188_R
crossref_primary_10_1128_genomeA_01036_13
crossref_primary_10_3390_microorganisms9102065
crossref_primary_10_1038_s41598_019_38650_3
crossref_primary_10_3390_ijms141020578
crossref_primary_10_1016_j_jbiotec_2014_03_009
crossref_primary_10_1146_annurev_phyto_082712_102239
crossref_primary_10_1094_MPMI_11_22_0241_R
crossref_primary_10_7717_peerj_2332
crossref_primary_10_1021_acs_jafc_1c04751
crossref_primary_10_1038_srep26881
crossref_primary_10_1073_pnas_1809611115
crossref_primary_10_1111_j_1364_3703_2012_00843_x
crossref_primary_10_1128_spectrum_04056_23
crossref_primary_10_1016_j_csbj_2020_12_020
crossref_primary_10_1094_PHYTO_07_18_0225_R
crossref_primary_10_1128_AEM_00622_20
crossref_primary_10_1094_MPMI_01_16_0007_R
crossref_primary_10_1111_ppa_14084
crossref_primary_10_1093_gbe_evz085
crossref_primary_10_1111_mpp_13302
crossref_primary_10_1146_annurev_phyto_080615_100147
crossref_primary_10_1371_journal_pone_0087862
crossref_primary_10_3389_fcimb_2014_00188
crossref_primary_10_3390_ijms21239294
crossref_primary_10_1038_s41396_019_0404_1
crossref_primary_10_1111_mmi_13289
crossref_primary_10_1128_mBio_01101_16
crossref_primary_10_1002_ps_7009
crossref_primary_10_3389_fmicb_2020_00091
crossref_primary_10_3389_fpls_2019_01657
crossref_primary_10_1128_AEM_01611_19
crossref_primary_10_1128_mSphere_01322_20
Cites_doi 10.1094/MPMI-5-187
10.1094/MPMI-18-1306
10.1128/JB.187.1.185-192.2005
10.1093/bioinformatics/btp616
10.1128/jb.170.7.3249-3254.1988
10.1111/j.1365-2958.2009.06730.x
10.1128/JB.172.7.3974-3979.1990
10.1074/jbc.C111.274597
10.2134/agronj1966.00021962005800050027x
10.1186/1471-2164-9-75
10.1146/annurev.micro.61.080706.093426
10.1038/nrm907
10.1105/tpc.4.1.79
10.1038/cr.2011.64
10.1128/jb.174.6.1875-1882.1992
10.1073/pnas.88.24.11115
10.1073/pnas.91.26.12619
10.1111/j.1365-2958.2004.04206.x
10.1128/JB.170.7.3164-3169.1988
10.1099/mic.0.026849-0
10.1099/13500872-142-10-2951
10.1128/jb.173.18.5784-5792.1991
10.1104/pp.107.2.603
10.1093/nar/21.4.807
10.1046/j.1365-2958.1998.00875.x
10.1128/AEM.00592-10
10.1094/PHYTO-98-12-1252
10.1073/pnas.120163297
10.1128/JB.187.14.4792-4803.2005
10.1094/Phyto-75-733
10.1128/jb.169.11.5336-5338.1987
10.1002/j.1460-2075.1996.tb01000.x
10.1094/MPMI.2000.13.11.1243
10.2225/vol9-issue5-fulltext-15
10.1146/annurev-phyto-073009-114436
10.1186/gb-2004-5-10-r80
10.1128/jb.174.23.7807-7818.1992
10.1111/j.1364-3703.2007.00415.x
10.1094/MPMI-22-6-0747
10.1128/jb.171.10.5668-5671.1989
10.1146/annurev.micro.50.1.213
10.1128/MMBR.64.4.847-867.2000
10.1186/gb-2009-10-3-r25
10.1016/S0966-842X(03)00007-6
10.1128/aem.53.8.1839-1845.1987
10.1094/MPMI-22-1-0073
10.1038/nrmicro2109
10.1128/AEM.00183-11
10.1128/jb.178.6.1548-1555.1996
10.1007/BF01568392
10.1128/JB.01746-08
10.1126/science.2781284
10.1126/science.224.4653.1064
10.1111/j.1365-3059.2005.01176.x
10.1128/jb.174.6.1734-1741.1992
10.1016/0378-1119(95)00584-1
10.1128/jb.179.2.557-562.1997
10.1094/PHYTO-96-1081
10.1128/JB.01507-08
10.1073/pnas.96.9.4832
10.1128/jb.165.3.849-855.1986
10.1128/JB.174.11.3499-3507.1992
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright_xml – notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QL
7T7
8FD
C1K
FR3
P64
7S9
L.6
DOA
DOI 10.1094/MPMI-01-12-0008-R
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Bacteriology Abstracts (Microbiology B)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Engineering Research Database
Technology Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Bacteriology Abstracts (Microbiology B)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
CrossRef
MEDLINE - Academic
Engineering Research Database
MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
Biology
EISSN 1943-7706
EndPage 1117
ExternalDocumentID oai_doaj_org_article_1144a18b3d6e4dab8ffa5a2d3baf54c2
22746827
26131745
10_1094_MPMI_01_12_0008_R
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
123
29M
2WC
53G
7X2
7X7
88E
8AO
8CJ
8FE
8FH
8FI
8FJ
8FW
8R4
8R5
AAHBH
AAYJJ
AAYXX
ABDNZ
ABRJW
ABUWG
ACGFO
ACPRK
ACYGS
ADBBV
AENEX
AEUYN
AFKRA
AFRAH
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BAWUL
BBNVY
BENPR
BES
BHPHI
BPHCQ
BVXVI
C1A
CCPQU
CITATION
CS3
D1J
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HYO
LK8
M0K
M1P
M7P
MVM
OK1
P2P
PHGZM
PHGZT
PQQKQ
PROAC
PSQYO
Q2X
RPS
S0X
TR2
UKHRP
~KM
3V.
88A
IQODW
M0L
YCJ
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
7X8
7QL
7T7
8FD
C1K
FR3
P64
7S9
L.6
ID FETCH-LOGICAL-c506t-7cc2b0b8f4d510245331d9b58883e9adcbcaba5e5932b6111ee4f7ab2f3d91d53
IEDL.DBID DOA
ISSN 0894-0282
IngestDate Wed Aug 27 01:28:47 EDT 2025
Fri Jul 11 02:36:54 EDT 2025
Fri Jul 11 02:53:25 EDT 2025
Fri Jul 11 00:41:16 EDT 2025
Mon Jul 21 06:07:22 EDT 2025
Mon Oct 30 05:51:05 EDT 2023
Thu Apr 24 22:53:01 EDT 2025
Tue Jul 01 00:38:46 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Pseudomonadales
Plant pathogen
Xanthomonas axonopodis
Virulence
Glycine max
Grain legume
Plant
Leguminosae
Dicotyledones
Angiospermae
Bacteria
Pseudomonadaceae
Spermatophyta
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c506t-7cc2b0b8f4d510245331d9b58883e9adcbcaba5e5932b6111ee4f7ab2f3d91d53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink https://doaj.org/article/1144a18b3d6e4dab8ffa5a2d3baf54c2
PMID 22746827
PQID 1023293595
PQPubID 23479
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_1144a18b3d6e4dab8ffa5a2d3baf54c2
proquest_miscellaneous_2000173358
proquest_miscellaneous_1032892431
proquest_miscellaneous_1023293595
pubmed_primary_22746827
pascalfrancis_primary_26131745
crossref_primary_10_1094_MPMI_01_12_0008_R
crossref_citationtrail_10_1094_MPMI_01_12_0008_R
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-08-01
PublicationDateYYYYMMDD 2012-08-01
PublicationDate_xml – month: 08
  year: 2012
  text: 2012-08-01
  day: 01
PublicationDecade 2010
PublicationPlace St. Paul, MN
PublicationPlace_xml – name: St. Paul, MN
– name: United States
PublicationTitle Molecular plant-microbe interactions
PublicationTitleAlternate Mol Plant Microbe Interact
PublicationYear 2012
Publisher APS Press
The American Phytopathological Society
Publisher_xml – name: APS Press
– name: The American Phytopathological Society
References p_45
p_47
p_48
Fett W. F. (p_18) 1987; 53
p_41
p_42
p_43
p_44
p_40
p_38
p_39
p_2
p_1
p_4
p_34
p_3
p_35
p_6
p_36
p_5
p_37
p_8
p_7
p_9
Poellinger K. A. (p_49) 1995; 129
p_30
p_31
p_32
p_33
p_71
p_27
p_28
p_29
p_23
p_67
p_24
p_68
p_25
Morgan F. L. (p_46) 1963; 23
p_69
p_26
p_63
p_20
p_64
p_21
p_65
p_66
p_60
p_61
p_62
p_16
Prathuangwong S. (p_51) 1987; 21
p_17
p_19
p_12
p_56
p_13
p_57
p_14
p_58
p_15
p_59
Zhang L. (p_70) 2007; 65
Galinski E. A. (p_22) 1994; 15
p_52
p_53
p_10
p_54
p_11
p_55
p_50
References_xml – ident: p_2
  doi: 10.1094/MPMI-5-187
– ident: p_40
– ident: p_8
  doi: 10.1094/MPMI-18-1306
– ident: p_25
  doi: 10.1128/JB.187.1.185-192.2005
– ident: p_53
  doi: 10.1093/bioinformatics/btp616
– ident: p_5
  doi: 10.1128/jb.170.7.3249-3254.1988
– ident: p_48
  doi: 10.1111/j.1365-2958.2009.06730.x
– ident: p_58
  doi: 10.1128/JB.172.7.3974-3979.1990
– ident: p_63
  doi: 10.1074/jbc.C111.274597
– ident: p_67
  doi: 10.2134/agronj1966.00021962005800050027x
– ident: p_3
  doi: 10.1186/1471-2164-9-75
– ident: p_64
  doi: 10.1146/annurev.micro.61.080706.093426
– ident: p_21
  doi: 10.1038/nrm907
– ident: p_28
– ident: p_56
  doi: 10.1105/tpc.4.1.79
– volume: 23
  start-page: 8
  year: 1963
  ident: p_46
  publication-title: Soybean Dig.
– volume: 129
  start-page: 97
  year: 1995
  ident: p_49
  publication-title: FEMS (Fed. Eur. Microbiol. Soc.) Microbiol. Lett.
– ident: p_66
  doi: 10.1038/cr.2011.64
– ident: p_68
  doi: 10.1128/jb.174.6.1875-1882.1992
– ident: p_10
  doi: 10.1073/pnas.88.24.11115
– ident: p_60
  doi: 10.1073/pnas.91.26.12619
– ident: p_57
  doi: 10.1111/j.1365-2958.2004.04206.x
– ident: p_7
  doi: 10.1128/JB.170.7.3164-3169.1988
– ident: p_61
  doi: 10.1099/mic.0.026849-0
– ident: p_1
  doi: 10.1099/13500872-142-10-2951
– ident: p_44
  doi: 10.1128/jb.173.18.5784-5792.1991
– ident: p_45
  doi: 10.1104/pp.107.2.603
– volume: 15
  start-page: 95
  year: 1994
  ident: p_22
  publication-title: FEMS (Fed. Eur. Microbiol. Soc.) Microbiol. Rev.
– ident: p_23
  doi: 10.1093/nar/21.4.807
– ident: p_50
  doi: 10.1046/j.1365-2958.1998.00875.x
– ident: p_6
  doi: 10.1128/AEM.00592-10
– ident: p_65
  doi: 10.1094/PHYTO-98-12-1252
– ident: p_14
  doi: 10.1073/pnas.120163297
– ident: p_54
– ident: p_11
  doi: 10.1128/JB.187.14.4792-4803.2005
– ident: p_32
  doi: 10.1094/Phyto-75-733
– ident: p_47
  doi: 10.1128/jb.169.11.5336-5338.1987
– ident: p_34
  doi: 10.1002/j.1460-2075.1996.tb01000.x
– ident: p_43
  doi: 10.1094/MPMI.2000.13.11.1243
– ident: p_55
  doi: 10.2225/vol9-issue5-fulltext-15
– ident: p_4
  doi: 10.1146/annurev-phyto-073009-114436
– ident: p_24
  doi: 10.1186/gb-2004-5-10-r80
– ident: p_29
  doi: 10.1128/jb.174.23.7807-7818.1992
– ident: p_17
  doi: 10.1111/j.1364-3703.2007.00415.x
– ident: p_12
  doi: 10.1094/MPMI-22-6-0747
– ident: p_42
– volume: 21
  start-page: 408
  year: 1987
  ident: p_51
  publication-title: Kasetsart J. (Nat. Sci.)
– ident: p_26
  doi: 10.1128/jb.171.10.5668-5671.1989
– ident: p_30
  doi: 10.1146/annurev.micro.50.1.213
– volume: 65
  start-page: 121
  year: 2007
  ident: p_70
  publication-title: Microbiol.
– ident: p_15
  doi: 10.1128/MMBR.64.4.847-867.2000
– ident: p_38
  doi: 10.1186/gb-2009-10-3-r25
– ident: p_20
  doi: 10.1016/S0966-842X(03)00007-6
– volume: 53
  start-page: 1839
  year: 1987
  ident: p_18
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/aem.53.8.1839-1845.1987
– ident: p_13
  doi: 10.1094/MPMI-22-1-0073
– ident: p_27
  doi: 10.1038/nrmicro2109
– ident: p_62
  doi: 10.1128/AEM.00183-11
– ident: p_35
  doi: 10.1128/jb.178.6.1548-1555.1996
– ident: p_19
  doi: 10.1007/BF01568392
– ident: p_41
  doi: 10.1128/JB.01746-08
– ident: p_31
  doi: 10.1126/science.2781284
– ident: p_39
  doi: 10.1126/science.224.4653.1064
– ident: p_33
  doi: 10.1111/j.1365-3059.2005.01176.x
– ident: p_69
  doi: 10.1128/jb.174.6.1734-1741.1992
– ident: p_36
  doi: 10.1016/0378-1119(95)00584-1
– ident: p_59
  doi: 10.1128/jb.179.2.557-562.1997
– ident: p_9
  doi: 10.1094/PHYTO-96-1081
– ident: p_16
  doi: 10.1128/JB.01507-08
– ident: p_71
  doi: 10.1073/pnas.96.9.4832
– ident: p_37
  doi: 10.1128/jb.165.3.849-855.1986
– ident: p_52
  doi: 10.1128/JB.174.11.3499-3507.1992
SSID ssj0019655
Score 2.2748024
Snippet A novel luxR homolog, termed XagR, in Xanthomonas axonopodis pv. glycines, the cause of soybean pustule, controls expression of pip, yapH, and at least 77...
SourceID doaj
proquest
pubmed
pascalfrancis
crossref
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
StartPage 1104
SubjectTerms Adhesins
adhesion
Bacterial Adhesion - genetics
Bacterial plant pathogens
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Base Sequence
Biological and medical sciences
Feedback
Fundamental and applied biological sciences. Psychology
Gene Expression Regulation, Bacterial
gene overexpression
genes
Genome, Bacterial
Glycine
Glycine max
Glycine max - microbiology
Host-Pathogen Interactions - genetics
Infection
Inoculation
Leaves
Molecular Sequence Data
mutants
Mutation
Pathogens
Phytopathology. Animal pests. Plant and forest protection
Plant diseases
Plant Diseases - microbiology
Plant Leaves - microbiology
Plant protection
Post-transcription
Proteolysis
Rain
rainfall simulation
Regulon
Repressor Proteins - metabolism
Soybeans
topical application
Trans-Activators - metabolism
Transcription
Virulence
Virulence - genetics
Xanthomonas axonopodis
Xanthomonas axonopodis - pathogenicity
Xanthomonas axonopodis pv. glycines
Title XagR, a LuxR Homolog, Contributes to the Virulence of Xanthomonas axonopodis pv. glycines to Soybean
URI https://www.ncbi.nlm.nih.gov/pubmed/22746827
https://www.proquest.com/docview/1023293595
https://www.proquest.com/docview/1032892431
https://www.proquest.com/docview/2000173358
https://doaj.org/article/1144a18b3d6e4dab8ffa5a2d3baf54c2
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQ4ICivQFkZiRNqaOJH4hwLotoCi9BC0d4sP1eVSrza7Fbdf8_YyS700HLhao0txzMTf6MZf4PQG3Af1hiq89IICgGKEbkolY-8t5Qq4WidXnhPvlbjM_Zpxmd_tfqKNWE9PXB_cEewFlOl0NRWjlmlhfeKK2KpVp4zk_6-cOdtg6khf9BUqd9pISLxLUQV23xmw44m3yanMYaOJQkx9z-9diMl4v5YIKk6OCPfN7e4GX2mW-jkIXowwEd83G_7Ebrj2n10_3i-HCg03D6627eX3DxGdqbm00Os8Jf11RSPw684fogjIVVqc-U6vAoYECD-eb5cp9dHOHg8U5FQAMxTdVhdhTYsgj3v8OLyHZ5fbGIiPs37HjbaqfYJOjv5-OPDOB-6KuSGF9Uqr40huoBzZBb8kTDAe6VtNIdQmLpGWaON0oo7DshOV6BL55ivlSae2qa0nD5Fe21o3XOEPRPGC1MbJ2rmNWAd5njpG9sAaPHEZ6jYnqw0A-V47HxxIfvUN5NRGbIoZUliFlzIaYbe7qYser6N24TfR3XtBCNVdhoAA5KDAcl_GVCGRteUvVsNYksAV4xn6PVW-xJ8LyZUVOvCupOR9oKkp823yVCIaQngtJtlSKItopSLDD3rzevPLgh4iyD1i__xrS_RPQB8pC9gPEB7q-XavQJQtdIj8J_Tz6PkRb8BNkIeAg
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=XagR%2C+a+LuxR+homolog%2C+contributes+to+the+virulence+of+Xanthomonas+axonopodis+pv.+glycines+to+soybean&rft.jtitle=Molecular+plant-microbe+interactions&rft.au=Chatnaparat%2C+Tiyakhon&rft.au=Prathuangwong%2C+Sutruedee&rft.au=Ionescu%2C+Michael&rft.au=Lindow%2C+Steven+E&rft.date=2012-08-01&rft.issn=0894-0282&rft.volume=25&rft.issue=8&rft.spage=1104&rft_id=info:doi/10.1094%2FMPMI-01-12-0008-R&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0894-0282&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0894-0282&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0894-0282&client=summon