A patient-specific approach for quantitative and automatic analysis of computed tomography images in lung disease: Application to COVID-19 patients

•A new approach has been proposed to overcome limitations of quantitative metrics calculated from lung CT images.•New metrics, derived from physics assumptions and with physiological significance, are introduced.•New metrics show lower dependencies from CT-number and reduced inter and intra patient...

Full description

Saved in:
Bibliographic Details
Published inPhysica medica Vol. 82; pp. 28 - 39
Main Authors Berta, L., De Mattia, C., Rizzetto, F., Carrazza, S., Colombo, P.E., Fumagalli, R., Langer, T., Lizio, D., Vanzulli, A., Torresin, A.
Format Journal Article
LanguageEnglish
Published Italy Elsevier Ltd 01.02.2021
Associazione Italiana di Fisica Medica. Published by Elsevier Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •A new approach has been proposed to overcome limitations of quantitative metrics calculated from lung CT images.•New metrics, derived from physics assumptions and with physiological significance, are introduced.•New metrics show lower dependencies from CT-number and reduced inter and intra patient variability.•Quantitative metrics of lung COVID-19 diseases can be described by subdividing the organ into 24 sub-regions. Quantitative metrics in lung computed tomography (CT) images have been widely used, often without a clear connection with physiology. This work proposes a patient-independent model for the estimation of well-aerated volume of lungs in CT images (WAVE). A Gaussian fit, with mean (Mu.f) and width (Sigma.f) values, was applied to the lower CT histogram data points of the lung to provide the estimation of the well-aerated lung volume (WAVE.f). Independence from CT reconstruction parameters and respiratory cycle was analysed using healthy lung CT images and 4DCT acquisitions. The Gaussian metrics and first order radiomic features calculated for a third cohort of COVID-19 patients were compared with those relative to healthy lungs. Each lung was further segmented in 24 subregions and a new biomarker derived from Gaussian fit parameter Mu.f was proposed to represent the local density changes. WAVE.f resulted independent from the respiratory motion in 80% of the cases. Differences of 1%, 2% and up to 14% resulted comparing a moderate iterative strength and FBP algorithm, 1 and 3 mm of slice thickness and different reconstruction kernel. Healthy subjects were significantly different from COVID-19 patients for all the metrics calculated. Graphical representation of the local biomarker provides spatial and quantitative information in a single 2D picture. Unlike other metrics based on fixed histogram thresholds, this model is able to consider the inter- and intra-subject variability. In addition, it defines a local biomarker to quantify the severity of the disease, independently of the observer.
AbstractList •A new approach has been proposed to overcome limitations of quantitative metrics calculated from lung CT images.•New metrics, derived from physics assumptions and with physiological significance, are introduced.•New metrics show lower dependencies from CT-number and reduced inter and intra patient variability.•Quantitative metrics of lung COVID-19 diseases can be described by subdividing the organ into 24 sub-regions. Quantitative metrics in lung computed tomography (CT) images have been widely used, often without a clear connection with physiology. This work proposes a patient-independent model for the estimation of well-aerated volume of lungs in CT images (WAVE). A Gaussian fit, with mean (Mu.f) and width (Sigma.f) values, was applied to the lower CT histogram data points of the lung to provide the estimation of the well-aerated lung volume (WAVE.f). Independence from CT reconstruction parameters and respiratory cycle was analysed using healthy lung CT images and 4DCT acquisitions. The Gaussian metrics and first order radiomic features calculated for a third cohort of COVID-19 patients were compared with those relative to healthy lungs. Each lung was further segmented in 24 subregions and a new biomarker derived from Gaussian fit parameter Mu.f was proposed to represent the local density changes. WAVE.f resulted independent from the respiratory motion in 80% of the cases. Differences of 1%, 2% and up to 14% resulted comparing a moderate iterative strength and FBP algorithm, 1 and 3 mm of slice thickness and different reconstruction kernel. Healthy subjects were significantly different from COVID-19 patients for all the metrics calculated. Graphical representation of the local biomarker provides spatial and quantitative information in a single 2D picture. Unlike other metrics based on fixed histogram thresholds, this model is able to consider the inter- and intra-subject variability. In addition, it defines a local biomarker to quantify the severity of the disease, independently of the observer.
Quantitative metrics in lung computed tomography (CT) images have been widely used, often without a clear connection with physiology. This work proposes a patient-independent model for the estimation of well-aerated volume of lungs in CT images (WAVE).PURPOSEQuantitative metrics in lung computed tomography (CT) images have been widely used, often without a clear connection with physiology. This work proposes a patient-independent model for the estimation of well-aerated volume of lungs in CT images (WAVE).A Gaussian fit, with mean (Mu.f) and width (Sigma.f) values, was applied to the lower CT histogram data points of the lung to provide the estimation of the well-aerated lung volume (WAVE.f). Independence from CT reconstruction parameters and respiratory cycle was analysed using healthy lung CT images and 4DCT acquisitions. The Gaussian metrics and first order radiomic features calculated for a third cohort of COVID-19 patients were compared with those relative to healthy lungs. Each lung was further segmented in 24 subregions and a new biomarker derived from Gaussian fit parameter Mu.f was proposed to represent the local density changes.METHODSA Gaussian fit, with mean (Mu.f) and width (Sigma.f) values, was applied to the lower CT histogram data points of the lung to provide the estimation of the well-aerated lung volume (WAVE.f). Independence from CT reconstruction parameters and respiratory cycle was analysed using healthy lung CT images and 4DCT acquisitions. The Gaussian metrics and first order radiomic features calculated for a third cohort of COVID-19 patients were compared with those relative to healthy lungs. Each lung was further segmented in 24 subregions and a new biomarker derived from Gaussian fit parameter Mu.f was proposed to represent the local density changes.WAVE.f resulted independent from the respiratory motion in 80% of the cases. Differences of 1%, 2% and up to 14% resulted comparing a moderate iterative strength and FBP algorithm, 1 and 3 mm of slice thickness and different reconstruction kernel. Healthy subjects were significantly different from COVID-19 patients for all the metrics calculated. Graphical representation of the local biomarker provides spatial and quantitative information in a single 2D picture.RESULTSWAVE.f resulted independent from the respiratory motion in 80% of the cases. Differences of 1%, 2% and up to 14% resulted comparing a moderate iterative strength and FBP algorithm, 1 and 3 mm of slice thickness and different reconstruction kernel. Healthy subjects were significantly different from COVID-19 patients for all the metrics calculated. Graphical representation of the local biomarker provides spatial and quantitative information in a single 2D picture.Unlike other metrics based on fixed histogram thresholds, this model is able to consider the inter- and intra-subject variability. In addition, it defines a local biomarker to quantify the severity of the disease, independently of the observer.CONCLUSIONSUnlike other metrics based on fixed histogram thresholds, this model is able to consider the inter- and intra-subject variability. In addition, it defines a local biomarker to quantify the severity of the disease, independently of the observer.
Quantitative metrics in lung computed tomography (CT) images have been widely used, often without a clear connection with physiology. This work proposes a patient-independent model for the estimation of well-aerated volume of lungs in CT images (WAVE). A Gaussian fit, with mean (Mu.f) and width (Sigma.f) values, was applied to the lower CT histogram data points of the lung to provide the estimation of the well-aerated lung volume (WAVE.f). Independence from CT reconstruction parameters and respiratory cycle was analysed using healthy lung CT images and 4DCT acquisitions. The Gaussian metrics and first order radiomic features calculated for a third cohort of COVID-19 patients were compared with those relative to healthy lungs. Each lung was further segmented in 24 subregions and a new biomarker derived from Gaussian fit parameter Mu.f was proposed to represent the local density changes. WAVE.f resulted independent from the respiratory motion in 80% of the cases. Differences of 1%, 2% and up to 14% resulted comparing a moderate iterative strength and FBP algorithm, 1 and 3 mm of slice thickness and different reconstruction kernel. Healthy subjects were significantly different from COVID-19 patients for all the metrics calculated. Graphical representation of the local biomarker provides spatial and quantitative information in a single 2D picture. Unlike other metrics based on fixed histogram thresholds, this model is able to consider the inter- and intra-subject variability. In addition, it defines a local biomarker to quantify the severity of the disease, independently of the observer.
Author Rizzetto, F.
Lizio, D.
Carrazza, S.
Fumagalli, R.
De Mattia, C.
Colombo, P.E.
Langer, T.
Torresin, A.
Berta, L.
Vanzulli, A.
Author_xml – sequence: 1
  givenname: L.
  surname: Berta
  fullname: Berta, L.
  organization: Department of Medical Physics, ASST Grande Ospedale Metropolitano Niguarda, Piazza Ospedale Maggiore 3, Milan 20162, Italy
– sequence: 2
  givenname: C.
  surname: De Mattia
  fullname: De Mattia, C.
  organization: Department of Medical Physics, ASST Grande Ospedale Metropolitano Niguarda, Piazza Ospedale Maggiore 3, Milan 20162, Italy
– sequence: 3
  givenname: F.
  surname: Rizzetto
  fullname: Rizzetto, F.
  organization: Department of Radiology, ASST Grande Ospedale Metropolitano Niguarda, Piazza Ospedale Maggiore 3, Milan 20162, Italy
– sequence: 4
  givenname: S.
  orcidid: 0000-0002-0079-6753
  surname: Carrazza
  fullname: Carrazza, S.
  organization: Department of Physics, Università degli Studi di Milano and INFN Sezione di Milano, via Giovanni Celoria 16, Milan 20133, Italy
– sequence: 5
  givenname: P.E.
  orcidid: 0000-0003-0076-2809
  surname: Colombo
  fullname: Colombo, P.E.
  organization: Department of Medical Physics, ASST Grande Ospedale Metropolitano Niguarda, Piazza Ospedale Maggiore 3, Milan 20162, Italy
– sequence: 6
  givenname: R.
  surname: Fumagalli
  fullname: Fumagalli, R.
  organization: Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
– sequence: 7
  givenname: T.
  surname: Langer
  fullname: Langer, T.
  organization: Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
– sequence: 8
  givenname: D.
  surname: Lizio
  fullname: Lizio, D.
  organization: Department of Medical Physics, ASST Grande Ospedale Metropolitano Niguarda, Piazza Ospedale Maggiore 3, Milan 20162, Italy
– sequence: 9
  givenname: A.
  orcidid: 0000-0002-2452-3370
  surname: Vanzulli
  fullname: Vanzulli, A.
  organization: Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, via Festa del Perdono 7, Milan 20122, Italy
– sequence: 10
  givenname: A.
  orcidid: 0000-0002-0034-313X
  surname: Torresin
  fullname: Torresin, A.
  email: alberto.torresin@unimi.it
  organization: Department of Medical Physics, ASST Grande Ospedale Metropolitano Niguarda, Piazza Ospedale Maggiore 3, Milan 20162, Italy
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33567361$$D View this record in MEDLINE/PubMed
BookMark eNqFUdtqFDEYHqRiD_oCXkguvZk1h5nJTBFh2WotFHqj4l3IJv_sZs0kaTKzsM_hC5vttkV7USGQhP878X-nxZHzDoriLcEzgknzYTODzRBmFFMyw_ng6kVxQjitStKRn0f5TSguCe_4cXGa0gZjRmldvyqOGasbzhpyUvyeoyBHA24sUwBleqOQDCF6qdao9xHdTtKNZsyYLSDpNJLT6If8zTgn7S6ZhHyPlB_CNIJGeehXUYb1DplBriAh45Cd3Appk0AmOEfzEKxRWcK7DEeLmx9XFznyQ5D0unjZS5vgzf19Vnz_8vnb4mt5fXN5tZhfl6rGzVg2FZOsVqCg40vaE9a0ne5YSznuasIbpuWypr1uWmgl75saGNOVpJpXuullzc6KTwfdMC0H0Cp7R2lFiDl43Akvjfh34sxarPxW8LZieelZ4P29QPS3E6RRDCYpsFY68FMStGrbmlcd2Xu9-9vr0eShiQygB4CKPqUI_SOEYLGvW2zEvm6xr1vgfHCVSe0Tkrqryu_zGvs89eOBCnnDWwNRJJW3r0CbCGoU2pvn6edP6Moal1u1v2D3P_IfDaDcug
CitedBy_id crossref_primary_10_1186_s41747_022_00317_6
crossref_primary_10_1007_s12149_024_01969_7
crossref_primary_10_4187_respcare_11625
crossref_primary_10_1016_j_ejmp_2021_06_001
crossref_primary_10_1186_s41747_023_00334_z
Cites_doi 10.1148/radiol.2463062200
10.1007/s10278-019-00254-8
10.1002/cphy.c100081
10.1097/RLI.0000000000000180
10.1016/j.chest.2020.04.003
10.1148/radiol.2462070712
10.21203/rs.3.rs-30481/v1
10.1002/mp.12059
10.1118/1.4893497
10.1016/j.acra.2015.01.008
10.1007/s00134-008-1175-8
10.1118/1.597757
10.1016/j.ijrobp.2018.05.053
10.1056/NEJMoa052052
10.1148/rg.2020190099
10.1053/j.ro.2018.12.007
10.1371/journal.pone.0190876
10.1002/mp.12087
10.1164/ajrccm.164.9.2103121
10.2214/AJR.12.10102
10.1007/s00134-014-3264-1
10.1016/j.ejrad.2019.108748
10.1016/S0140-6736(20)30566-3
10.1118/1.3222872
10.1097/RCT.0b013e31818da65c
10.1136/thx.9.4.313
10.1148/radiol.2020201433
10.1016/j.ijrobp.2004.11.037
10.1097/00000542-198812000-00005
10.1088/0031-9155/54/24/007
10.1007/s00330-020-06817-6
10.1148/ryct.2020200047
10.1186/cc12738
10.1016/j.ejmp.2020.10.018
10.1016/j.ejmp.2019.08.006
10.1016/j.mri.2012.05.001
10.1016/j.ejrad.2015.11.011
10.1148/ryct.2020200152
10.15326/jcopdf.1.1.2014.0125
10.1007/s10278-013-9622-7
10.1118/1.1448824
10.1186/s12931-017-0527-8
10.1148/radiol.2020200230
10.21037/jtd.2017.08.17
10.1016/j.ejrad.2018.01.018
ContentType Journal Article
Copyright 2021 Associazione Italiana di Fisica Medica
Copyright © 2021 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
2021 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved. 2021 Associazione Italiana di Fisica Medica
Copyright_xml – notice: 2021 Associazione Italiana di Fisica Medica
– notice: Copyright © 2021 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
– notice: 2021 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved. 2021 Associazione Italiana di Fisica Medica
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.ejmp.2021.01.004
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1724-191X
EndPage 39
ExternalDocumentID PMC7843021
33567361
10_1016_j_ejmp_2021_01_004
S1120179721000053
Genre Journal Article
GroupedDBID ---
--K
--M
-QF
.1-
.FO
.~1
0R~
123
1B1
1P~
1~.
1~5
3J0
4.4
457
4G.
53G
5VS
7-5
71M
8P~
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABFRF
ABJNI
ABMAC
ABMZM
ABNEU
ABXDB
ACDAQ
ACFVG
ACGFS
ACIEU
ACRLP
ACXCU
ADBBV
ADEZE
ADVLN
AEBSH
AEFWE
AEIPS
AEKER
AEVXI
AFJKZ
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGUBO
AGYEJ
AIEXJ
AIIUN
AIKHN
AITUG
AIVDX
AJRQY
AJUYK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
BKOJK
BLXMC
BNPGV
CS3
DC1
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OI~
OU0
OZT
P-8
P-9
PC.
Q38
RLW
ROL
RPZ
SDF
SDG
SEL
SES
SJN
SPC
SPCBC
SSH
SSQ
SSZ
T5K
UNMZH
Z5R
~G-
~XS
AACTN
AAIAV
ABLVK
ABYKQ
ACNNM
AFCTW
AFKWA
AJBFU
AJOXV
AMFUW
CLCPZ
EFLBG
LCYCR
AAYXX
AGRNS
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c506t-643a35cece97b2f13689d938270951763dab52fd68e8a7f65e33d4a2d74d6fa53
IEDL.DBID .~1
ISSN 1120-1797
1724-191X
IngestDate Thu Aug 21 14:11:21 EDT 2025
Fri Jul 11 05:26:39 EDT 2025
Mon Jul 21 06:06:59 EDT 2025
Tue Jul 01 04:30:24 EDT 2025
Thu Apr 24 23:07:39 EDT 2025
Fri Feb 23 02:46:31 EST 2024
Tue Aug 26 18:50:57 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords COVID-19
Radiomic
Image analysis
Quantitative imaging
QCT
Computed tomography
Language English
License Copyright © 2021 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c506t-643a35cece97b2f13689d938270951763dab52fd68e8a7f65e33d4a2d74d6fa53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0079-6753
0000-0003-0076-2809
0000-0002-0034-313X
0000-0002-2452-3370
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC7843021
PMID 33567361
PQID 2488574915
PQPubID 23479
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7843021
proquest_miscellaneous_2488574915
pubmed_primary_33567361
crossref_primary_10_1016_j_ejmp_2021_01_004
crossref_citationtrail_10_1016_j_ejmp_2021_01_004
elsevier_sciencedirect_doi_10_1016_j_ejmp_2021_01_004
elsevier_clinicalkey_doi_10_1016_j_ejmp_2021_01_004
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-02-01
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Italy
PublicationPlace_xml – name: Italy
PublicationTitle Physica medica
PublicationTitleAlternate Phys Med
PublicationYear 2021
Publisher Elsevier Ltd
Associazione Italiana di Fisica Medica. Published by Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
– name: Associazione Italiana di Fisica Medica. Published by Elsevier Ltd
References Hugo, Weiss, Sleeman, Balik, Keall, Lu (b0160) 2017; 44
Ekström, Sundh, Schiöler, Lindberg, Rosengren, Bergström (b0180) 2018; 13
Chen-Mayer, Fuld, Hoppel, Judy, Sieren, Guo (b0210) 2017; 44
Newell, Tschirren, Peterson, Beinlich, Sieren (b0145) 2019; 54
Matsuoka, Yamashiro, Matsushita, Kotoku, Fujikawa, Yagihashi (b0115) 2015; 22
Schroeder, McKenzie, Zach, Wilson, Curran-Everett, Stinson (b0195) 2013; 201
Lynch D. Progress in Imaging COPD, 2004 - 2014. Chronic Obstr Pulm Dis J COPD Found 2014. https://doi.org/10.15326/jcopdf.1.1.2014.0125.
Gattinoni, Caironi, Cressoni, Chiumello, Ranieri, Quintel (b0100) 2006
Obert, Kampschulte, Limburg, Barańczuk, Krombach (b0190) 2018; 100
Cressoni, Gallazzi, Chiurazzi, Marino, Brioni, Menga (b0135) 2013; 17
Solomon J, Samei E. Quantum noise properties of CT images with anatomical textured backgrounds across reconstruction algorithms: FBP and SAFIRE. Med Phys 2014;41. https://doi.org/10.1118/1.4893497.
Rasband W.S. ImageJ U.S. National Institutes of Health 2018 Bethesda, Maryland, USA. Http://ImagejNihGov/Ij/.
Ash, Harmouche, Vallejo, Villalba, Ostridge, Gunville (b0080) 2017; 18
Nishiyama, Kawata, Yokota, Sugiura, Matsumura, Higashide (b0095) 2020; 122
Kemerink, Kruize, Lamers, van Engelshoven (b0175) 1996; 23
Li, Fang, Li, Pan, Qin, Zhong (b0040) 2020; 30
Rietzel, Chen, Choi, Willet (b0230) 2005
Townsley (b0235) 2012; 2
Nehmeh, Erdi, Ling, Rosenzweig, Squire, Braban (b0220) 2002
A. Fedorov R. Beichel J. Kalpathy-Cramer J. Finet J.-C.C. Fillion-Robin S. Pujol et al. 3D Slicer as an image computing platform for the Quantitative Imaging Network Magn Reson Imaging 2012;30:1323–41. 10.1016/j.mri.2012.05.001.
Nakagawa, Nagatani, Takahashi, Ogawa, Van, Ryujin (b0070) 2016; 85
Salehi, Abedi, Balakrishnan, Gholamrezanezhad (b0025) 2019; 2020
Traverso, Wee, Dekker, Gillies (b0140) 2018; 102
Gattinoni, Pesenti, Bombino, Baglioni, Rivolta, Rossi (b0090) 1988; 69
Rubin, Ryerson, Haramati, Sverzellati, Kanne, Raoof (b0015) 2020; 158
Reske, Busse, Amato, Jaekel, Kahn, Schwarzkopf (b0205) 2008; 34
Zhou, Yu, Du, Fan, Liu, Liu (b0005) 2020; 395
Ghetti, Ortenzia, Maddalo, Altabella, Sverzellati (b0020) 2020; 80
Clark, Vendt, Smith, Freymann, Kirby, Koppel (b0155) 2013
Needham, Rogan, McDonald (b0185) 1954; 9
S. Simpson F.U. Kay S. Abbara S. Bhalla J.H. Chung M. Chung et al. Radiological Society of North America Expert Consensus Statement on Reporting Chest CT Findings Related to COVID-19. Endorsed by the Society of Thoracic Radiology, the American College of Radiology, and RSNA. Radiol Cardiothorac Imaging 2020;2:e200152. 10.1148/ryct.2020200152.
Best, Meng, Lynch, Bozic, Miller, Grunwald (b0240) 2008
M. Mascalchi G. Camiciottoli S. Diciotti Lung densitometry: Why, how and when J Thorac Dis 9 2017 3319 45 https://doi.org/10.21037/jtd.2017.08.17.
Mackin D, Fave X, Zhang L, Fried D, Yang J, Brian Taylor, et al. Measuring computed tomography scanner variability of radiomics features. Invest Radiol 2015;50:757–65. https://doi.org/10.1097/RLI.0000000000000180.
Hansell, Bankier, MacMahon, McLoud, Müller, Remy (b0030) 2008; 246
Sumikawa, Johkoh, Yamamoto, Yanagawa, Inoue, Honda (b0050) 2009; 33
Gattinoni, Caironi, Pelosi, Goodman (b0085) 2001; 164
Chiumello, Langer, Vecchi, Luoni, Colombo, Brioni (b0130) 2014; 40
Wang, Li, Li (b0060) 2009; 36
Chung, Bernheim, Mei, Zhang, Huang, Zeng (b0010) 2020; 295
Lanza E, Muglia R, Bolengo I, Santonocito OG. Quantitative Chest CT analysis in COVID-19 to predict the need for oxygenation support and intubation. PrePrint 2020:1–18. https://doi.org/10.21203/rs.3.rs-30481/v1.
Yang, Li, Liu, Zhen, Zhang, Xiong (b0045) 2020; 2
D. Colombi F.C. Bodini M. Petrini G. Maffi N. Morelli G. Milanese et al. Well-aerated Lung on Admitting Chest CT to Predict Adverse Outcome in COVID-19 Pneumonia Radiology 2020:201433. 10.1148/radiol.2020201433.
Chen, Karwoski, Gierada, Bartholmai, Koo (b0105) 2020; 40
Ohkubo, Kanemitsu, Uemura, Takakuwa, Takemura, Maeno (b0120) 2016; 11
Tian, Miao, Liu, Huang, Wang, Wang (b0150) 2019; 65
Liu, Pierce, Alessio, Kinahan (b0225) 2009
Park, Park, Lee, Seo, Kim (b0065) 2019; 32
Rubin (10.1016/j.ejmp.2021.01.004_b0015) 2020; 158
Traverso (10.1016/j.ejmp.2021.01.004_b0140) 2018; 102
Hugo (10.1016/j.ejmp.2021.01.004_b0160) 2017; 44
Reske (10.1016/j.ejmp.2021.01.004_b0205) 2008; 34
Salehi (10.1016/j.ejmp.2021.01.004_b0025) 2019; 2020
Nakagawa (10.1016/j.ejmp.2021.01.004_b0070) 2016; 85
Liu (10.1016/j.ejmp.2021.01.004_b0225) 2009
Chung (10.1016/j.ejmp.2021.01.004_b0010) 2020; 295
Sumikawa (10.1016/j.ejmp.2021.01.004_b0050) 2009; 33
Chen-Mayer (10.1016/j.ejmp.2021.01.004_b0210) 2017; 44
Hansell (10.1016/j.ejmp.2021.01.004_b0030) 2008; 246
Yang (10.1016/j.ejmp.2021.01.004_b0045) 2020; 2
Li (10.1016/j.ejmp.2021.01.004_b0040) 2020; 30
Chiumello (10.1016/j.ejmp.2021.01.004_b0130) 2014; 40
10.1016/j.ejmp.2021.01.004_b0170
Rietzel (10.1016/j.ejmp.2021.01.004_b0230) 2005
Best (10.1016/j.ejmp.2021.01.004_b0240) 2008
Tian (10.1016/j.ejmp.2021.01.004_b0150) 2019; 65
10.1016/j.ejmp.2021.01.004_b0075
Matsuoka (10.1016/j.ejmp.2021.01.004_b0115) 2015; 22
Cressoni (10.1016/j.ejmp.2021.01.004_b0135) 2013; 17
10.1016/j.ejmp.2021.01.004_b0055
10.1016/j.ejmp.2021.01.004_b0110
10.1016/j.ejmp.2021.01.004_b0035
Ekström (10.1016/j.ejmp.2021.01.004_b0180) 2018; 13
10.1016/j.ejmp.2021.01.004_b0215
Ohkubo (10.1016/j.ejmp.2021.01.004_b0120) 2016; 11
Ghetti (10.1016/j.ejmp.2021.01.004_b0020) 2020; 80
Park (10.1016/j.ejmp.2021.01.004_b0065) 2019; 32
Schroeder (10.1016/j.ejmp.2021.01.004_b0195) 2013; 201
Wang (10.1016/j.ejmp.2021.01.004_b0060) 2009; 36
Ash (10.1016/j.ejmp.2021.01.004_b0080) 2017; 18
Kemerink (10.1016/j.ejmp.2021.01.004_b0175) 1996; 23
Nishiyama (10.1016/j.ejmp.2021.01.004_b0095) 2020; 122
Nehmeh (10.1016/j.ejmp.2021.01.004_b0220) 2002
Townsley (10.1016/j.ejmp.2021.01.004_b0235) 2012; 2
10.1016/j.ejmp.2021.01.004_b0165
Needham (10.1016/j.ejmp.2021.01.004_b0185) 1954; 9
Chen (10.1016/j.ejmp.2021.01.004_b0105) 2020; 40
10.1016/j.ejmp.2021.01.004_b0200
Gattinoni (10.1016/j.ejmp.2021.01.004_b0090) 1988; 69
10.1016/j.ejmp.2021.01.004_b0125
Zhou (10.1016/j.ejmp.2021.01.004_b0005) 2020; 395
Gattinoni (10.1016/j.ejmp.2021.01.004_b0100) 2006
Gattinoni (10.1016/j.ejmp.2021.01.004_b0085) 2001; 164
Obert (10.1016/j.ejmp.2021.01.004_b0190) 2018; 100
Newell (10.1016/j.ejmp.2021.01.004_b0145) 2019; 54
Clark (10.1016/j.ejmp.2021.01.004_b0155) 2013
References_xml – volume: 33
  start-page: 731
  year: 2009
  end-page: 738
  ident: b0050
  article-title: Computed tomography values calculation and volume histogram analysis for various computed tomographic patterns of diffuse lung diseases
  publication-title: J Comput Assist Tomogr
– volume: 295
  start-page: 202
  year: 2020
  end-page: 207
  ident: b0010
  article-title: CT imaging features of 2019 novel coronavirus (2019-NCoV)
  publication-title: Radiology
– year: 2005
  ident: b0230
  article-title: Four-dimensional image-based treatment planning: Target volume segmentation and dose calculation in the presence of respiratory motion
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 158
  start-page: 106
  year: 2020
  end-page: 116
  ident: b0015
  article-title: The Role of Chest Imaging in Patient Management During the COVID-19 Pandemic
  publication-title: Chest
– volume: 44
  start-page: 974
  year: 2017
  end-page: 985
  ident: b0210
  article-title: Standardizing CT lung density measure across scanner manufacturers
  publication-title: Med Phys
– reference: Solomon J, Samei E. Quantum noise properties of CT images with anatomical textured backgrounds across reconstruction algorithms: FBP and SAFIRE. Med Phys 2014;41. https://doi.org/10.1118/1.4893497.
– reference: Lanza E, Muglia R, Bolengo I, Santonocito OG. Quantitative Chest CT analysis in COVID-19 to predict the need for oxygenation support and intubation. PrePrint 2020:1–18. https://doi.org/10.21203/rs.3.rs-30481/v1.
– volume: 40
  start-page: 691
  year: 2014
  end-page: 699
  ident: b0130
  article-title: Low-dose chest computed tomography for quantitative and visual anatomical analysis in patients with acute respiratory distress syndrome
  publication-title: Intensive Care Med
– volume: 13
  start-page: 1
  year: 2018
  end-page: 12
  ident: b0180
  article-title: Absolute lung size and the sex difference in breathlessness in the general population
  publication-title: PLoS ONE
– year: 2008
  ident: b0240
  article-title: Idiopathic pulmonary fibrosis: Physiologic tests, quantitative CT indexes, and CT visual scores as predictors of mortality
  publication-title: Radiology
– volume: 122
  year: 2020
  ident: b0095
  article-title: A predictive factor for patients with acute respiratory distress syndrome: CT lung volumetry of the well-aerated region as an automated method
  publication-title: Eur J Radiol
– reference: S. Simpson F.U. Kay S. Abbara S. Bhalla J.H. Chung M. Chung et al. Radiological Society of North America Expert Consensus Statement on Reporting Chest CT Findings Related to COVID-19. Endorsed by the Society of Thoracic Radiology, the American College of Radiology, and RSNA. Radiol Cardiothorac Imaging 2020;2:e200152. 10.1148/ryct.2020200152.
– year: 2006
  ident: b0100
  article-title: Lung recruitment in patients with the acute respiratory distress syndrome
  publication-title: N Engl J Med
– volume: 34
  start-page: 2044
  year: 2008
  end-page: 2053
  ident: b0205
  article-title: Image reconstruction affects computer tomographic assessment of lung hyperinflation
  publication-title: Intensive Care Med
– volume: 22
  start-page: 626
  year: 2015
  end-page: 631
  ident: b0115
  article-title: Quantitative CT evaluation in patients with combined pulmonary fibrosis and emphysema: Correlation with pulmonary function
  publication-title: Acad Radiol
– volume: 36
  start-page: 4592
  year: 2009
  end-page: 4599
  ident: b0060
  article-title: Automated segmentation of lungs with severe interstitial lung disease in CT
  publication-title: Med Phys
– volume: 2020
  start-page: 2019
  year: 2019
  ident: b0025
  article-title: Coronavirus disease 2019 (COVID-19) imaging reporting and data system (COVID-RADS) and common lexicon: a proposal based on the imaging data of 37 studies
  publication-title: Eur Radiol
– year: 2013
  ident: b0155
  article-title: The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository
  publication-title: J Digit Imaging
– year: 2002
  ident: b0220
  article-title: Effect of respiratory gating on reducing lung motion artifacts in PET imaging of lung cancer
  publication-title: Med Phys
– volume: 18
  start-page: 1
  year: 2017
  end-page: 11
  ident: b0080
  article-title: Densitometric and local histogram based analysis of computed tomography images in patients with idiopathic pulmonary fibrosis
  publication-title: Respir Res
– volume: 32
  start-page: 1019
  year: 2019
  end-page: 1026
  ident: b0065
  article-title: Lung Segmentation on HRCT and Volumetric CT for Diffuse Interstitial Lung Disease Using Deep Convolutional Neural Networks
  publication-title: J Digit Imaging
– volume: 69
  start-page: 824
  year: 1988
  end-page: 832
  ident: b0090
  article-title: Relationships Between Lung Computed Tomographic Density, Gas Exchange, and PEEP in Acute Respiratory Failure
  publication-title: Anesthesiology
– volume: 2
  start-page: 675
  year: 2012
  end-page: 709
  ident: b0235
  article-title: Structure and composition of pulmonary arteries, capillaries, and veins
  publication-title: Compr Physiol
– volume: 40
  start-page: 28
  year: 2020
  end-page: 43
  ident: b0105
  article-title: Quantitative CT analysis of diffuse lung disease
  publication-title: Radiographics
– volume: 17
  start-page: R93
  year: 2013
  ident: b0135
  article-title: Limits of normality of quantitative thoracic CT analysis
  publication-title: Crit Care
– volume: 44
  start-page: 762
  year: 2017
  end-page: 771
  ident: b0160
  article-title: A longitudinal four-dimensional computed tomography and cone beam computed tomography dataset for image-guided radiation therapy research in lung cancer
  publication-title: Med Phys
– volume: 164
  start-page: 1701
  year: 2001
  end-page: 1711
  ident: b0085
  article-title: What Has Computed Tomography Taught Us about the Acute Respiratory Distress Syndrome?
  publication-title: Am J Respir Crit Care Med
– volume: 100
  start-page: 99
  year: 2018
  end-page: 107
  ident: b0190
  article-title: Quantitative computed tomography applied to interstitial lung diseases
  publication-title: Eur J Radiol
– reference: A. Fedorov R. Beichel J. Kalpathy-Cramer J. Finet J.-C.C. Fillion-Robin S. Pujol et al. 3D Slicer as an image computing platform for the Quantitative Imaging Network Magn Reson Imaging 2012;30:1323–41. 10.1016/j.mri.2012.05.001.
– volume: 246
  start-page: 697
  year: 2008
  end-page: 722
  ident: b0030
  article-title: Fleischner Society: Glossary of terms for thoracic imaging
  publication-title: Radiology
– reference: Mackin D, Fave X, Zhang L, Fried D, Yang J, Brian Taylor, et al. Measuring computed tomography scanner variability of radiomics features. Invest Radiol 2015;50:757–65. https://doi.org/10.1097/RLI.0000000000000180.
– volume: 23
  start-page: 1697
  year: 1996
  end-page: 1708
  ident: b0175
  article-title: Density resolution in quantitative computed tomography of foam and lung
  publication-title: Med Phys
– year: 2009
  ident: b0225
  article-title: The impact of respiratory motion on tumor quantification and delineation in static PET/CT imaging
  publication-title: Phys Med Biol
– volume: 80
  start-page: 119
  year: 2020
  end-page: 124
  ident: b0020
  article-title: Dosimetric and radiation cancer risk evaluation of high resolution thorax CT during COVID-19 outbreak
  publication-title: Phys Medica
– volume: 11
  start-page: 1
  year: 2016
  end-page: 13
  ident: b0120
  article-title: Normal lung quantification in usual interstitial pneumonia pattern: The impact of threshold-based volumetric CT analysis for the staging of idiopathic pulmonary fibrosis
  publication-title: PLoS ONE
– volume: 65
  start-page: 53
  year: 2019
  end-page: 58
  ident: b0150
  article-title: Availability of a simplified lung ventilation imaging algorithm based on four-dimensional computed tomography
  publication-title: Phys Medica
– volume: 201
  start-page: W460
  year: 2013
  end-page: W470
  ident: b0195
  article-title: Relationships Between Airflow Obstruction and Quantitative CT Measurements of Emphysema, Air Trapping, and Airways in Subjects With and Without Chronic Obstructive Pulmonary Disease
  publication-title: Am J Roentgenol
– volume: 102
  start-page: 1143
  year: 2018
  end-page: 1158
  ident: b0140
  article-title: Repeatability and reproducibility of radiomic features: a systematic review
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 85
  start-page: 125
  year: 2016
  end-page: 130
  ident: b0070
  article-title: Quantitative CT analysis of honeycombing area in idiopathic pulmonary fibrosis: Correlations with pulmonary function tests
  publication-title: Eur J Radiol
– volume: 2
  year: 2020
  ident: b0045
  article-title: Chest CT Severity Score: An Imaging Tool for Assessing Severe COVID-19
  publication-title: Radiol Cardiothorac Imaging
– reference: Lynch D. Progress in Imaging COPD, 2004 - 2014. Chronic Obstr Pulm Dis J COPD Found 2014. https://doi.org/10.15326/jcopdf.1.1.2014.0125.
– reference: M. Mascalchi G. Camiciottoli S. Diciotti Lung densitometry: Why, how and when J Thorac Dis 9 2017 3319 45 https://doi.org/10.21037/jtd.2017.08.17.
– volume: 54
  start-page: 73
  year: 2019
  end-page: 79
  ident: b0145
  article-title: Quantitative CT of interstitial lung disease
  publication-title: Semin Roentgenol
– volume: 395
  start-page: 1054
  year: 2020
  end-page: 1062
  ident: b0005
  article-title: Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study
  publication-title: Lancet
– volume: 30
  start-page: 4407
  year: 2020
  end-page: 4416
  ident: b0040
  article-title: CT image visual quantitative evaluation and clinical classification of coronavirus disease (COVID-19)
  publication-title: Eur Radiol
– reference: D. Colombi F.C. Bodini M. Petrini G. Maffi N. Morelli G. Milanese et al. Well-aerated Lung on Admitting Chest CT to Predict Adverse Outcome in COVID-19 Pneumonia Radiology 2020:201433. 10.1148/radiol.2020201433.
– reference: Rasband W.S. ImageJ U.S. National Institutes of Health 2018 Bethesda, Maryland, USA. Http://ImagejNihGov/Ij/.
– volume: 9
  start-page: 313
  year: 1954
  end-page: 325
  ident: b0185
  article-title: Normal Standards for Lung Volumes, Intrapulmonary Gas-mixing, and Maximum Breathing Capacity
  publication-title: Thorax
– year: 2008
  ident: 10.1016/j.ejmp.2021.01.004_b0240
  article-title: Idiopathic pulmonary fibrosis: Physiologic tests, quantitative CT indexes, and CT visual scores as predictors of mortality
  publication-title: Radiology
  doi: 10.1148/radiol.2463062200
– volume: 32
  start-page: 1019
  year: 2019
  ident: 10.1016/j.ejmp.2021.01.004_b0065
  article-title: Lung Segmentation on HRCT and Volumetric CT for Diffuse Interstitial Lung Disease Using Deep Convolutional Neural Networks
  publication-title: J Digit Imaging
  doi: 10.1007/s10278-019-00254-8
– volume: 2
  start-page: 675
  year: 2012
  ident: 10.1016/j.ejmp.2021.01.004_b0235
  article-title: Structure and composition of pulmonary arteries, capillaries, and veins
  publication-title: Compr Physiol
  doi: 10.1002/cphy.c100081
– ident: 10.1016/j.ejmp.2021.01.004_b0200
  doi: 10.1097/RLI.0000000000000180
– volume: 158
  start-page: 106
  year: 2020
  ident: 10.1016/j.ejmp.2021.01.004_b0015
  article-title: The Role of Chest Imaging in Patient Management During the COVID-19 Pandemic
  publication-title: Chest
  doi: 10.1016/j.chest.2020.04.003
– volume: 246
  start-page: 697
  year: 2008
  ident: 10.1016/j.ejmp.2021.01.004_b0030
  article-title: Fleischner Society: Glossary of terms for thoracic imaging
  publication-title: Radiology
  doi: 10.1148/radiol.2462070712
– ident: 10.1016/j.ejmp.2021.01.004_b0125
  doi: 10.21203/rs.3.rs-30481/v1
– volume: 44
  start-page: 762
  year: 2017
  ident: 10.1016/j.ejmp.2021.01.004_b0160
  article-title: A longitudinal four-dimensional computed tomography and cone beam computed tomography dataset for image-guided radiation therapy research in lung cancer
  publication-title: Med Phys
  doi: 10.1002/mp.12059
– ident: 10.1016/j.ejmp.2021.01.004_b0215
  doi: 10.1118/1.4893497
– volume: 22
  start-page: 626
  year: 2015
  ident: 10.1016/j.ejmp.2021.01.004_b0115
  article-title: Quantitative CT evaluation in patients with combined pulmonary fibrosis and emphysema: Correlation with pulmonary function
  publication-title: Acad Radiol
  doi: 10.1016/j.acra.2015.01.008
– volume: 34
  start-page: 2044
  year: 2008
  ident: 10.1016/j.ejmp.2021.01.004_b0205
  article-title: Image reconstruction affects computer tomographic assessment of lung hyperinflation
  publication-title: Intensive Care Med
  doi: 10.1007/s00134-008-1175-8
– volume: 23
  start-page: 1697
  year: 1996
  ident: 10.1016/j.ejmp.2021.01.004_b0175
  article-title: Density resolution in quantitative computed tomography of foam and lung
  publication-title: Med Phys
  doi: 10.1118/1.597757
– volume: 102
  start-page: 1143
  year: 2018
  ident: 10.1016/j.ejmp.2021.01.004_b0140
  article-title: Repeatability and reproducibility of radiomic features: a systematic review
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/j.ijrobp.2018.05.053
– year: 2006
  ident: 10.1016/j.ejmp.2021.01.004_b0100
  article-title: Lung recruitment in patients with the acute respiratory distress syndrome
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa052052
– volume: 40
  start-page: 28
  year: 2020
  ident: 10.1016/j.ejmp.2021.01.004_b0105
  article-title: Quantitative CT analysis of diffuse lung disease
  publication-title: Radiographics
  doi: 10.1148/rg.2020190099
– volume: 54
  start-page: 73
  year: 2019
  ident: 10.1016/j.ejmp.2021.01.004_b0145
  article-title: Quantitative CT of interstitial lung disease
  publication-title: Semin Roentgenol
  doi: 10.1053/j.ro.2018.12.007
– volume: 11
  start-page: 1
  year: 2016
  ident: 10.1016/j.ejmp.2021.01.004_b0120
  article-title: Normal lung quantification in usual interstitial pneumonia pattern: The impact of threshold-based volumetric CT analysis for the staging of idiopathic pulmonary fibrosis
  publication-title: PLoS ONE
– volume: 2020
  start-page: 2019
  year: 2019
  ident: 10.1016/j.ejmp.2021.01.004_b0025
  article-title: Coronavirus disease 2019 (COVID-19) imaging reporting and data system (COVID-RADS) and common lexicon: a proposal based on the imaging data of 37 studies
  publication-title: Eur Radiol
– volume: 13
  start-page: 1
  year: 2018
  ident: 10.1016/j.ejmp.2021.01.004_b0180
  article-title: Absolute lung size and the sex difference in breathlessness in the general population
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0190876
– volume: 44
  start-page: 974
  year: 2017
  ident: 10.1016/j.ejmp.2021.01.004_b0210
  article-title: Standardizing CT lung density measure across scanner manufacturers
  publication-title: Med Phys
  doi: 10.1002/mp.12087
– volume: 164
  start-page: 1701
  year: 2001
  ident: 10.1016/j.ejmp.2021.01.004_b0085
  article-title: What Has Computed Tomography Taught Us about the Acute Respiratory Distress Syndrome?
  publication-title: Am J Respir Crit Care Med
  doi: 10.1164/ajrccm.164.9.2103121
– volume: 201
  start-page: W460
  year: 2013
  ident: 10.1016/j.ejmp.2021.01.004_b0195
  article-title: Relationships Between Airflow Obstruction and Quantitative CT Measurements of Emphysema, Air Trapping, and Airways in Subjects With and Without Chronic Obstructive Pulmonary Disease
  publication-title: Am J Roentgenol
  doi: 10.2214/AJR.12.10102
– volume: 40
  start-page: 691
  year: 2014
  ident: 10.1016/j.ejmp.2021.01.004_b0130
  article-title: Low-dose chest computed tomography for quantitative and visual anatomical analysis in patients with acute respiratory distress syndrome
  publication-title: Intensive Care Med
  doi: 10.1007/s00134-014-3264-1
– volume: 122
  year: 2020
  ident: 10.1016/j.ejmp.2021.01.004_b0095
  article-title: A predictive factor for patients with acute respiratory distress syndrome: CT lung volumetry of the well-aerated region as an automated method
  publication-title: Eur J Radiol
  doi: 10.1016/j.ejrad.2019.108748
– volume: 395
  start-page: 1054
  year: 2020
  ident: 10.1016/j.ejmp.2021.01.004_b0005
  article-title: Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study
  publication-title: Lancet
  doi: 10.1016/S0140-6736(20)30566-3
– volume: 36
  start-page: 4592
  year: 2009
  ident: 10.1016/j.ejmp.2021.01.004_b0060
  article-title: Automated segmentation of lungs with severe interstitial lung disease in CT
  publication-title: Med Phys
  doi: 10.1118/1.3222872
– volume: 33
  start-page: 731
  year: 2009
  ident: 10.1016/j.ejmp.2021.01.004_b0050
  article-title: Computed tomography values calculation and volume histogram analysis for various computed tomographic patterns of diffuse lung diseases
  publication-title: J Comput Assist Tomogr
  doi: 10.1097/RCT.0b013e31818da65c
– volume: 9
  start-page: 313
  year: 1954
  ident: 10.1016/j.ejmp.2021.01.004_b0185
  article-title: Normal Standards for Lung Volumes, Intrapulmonary Gas-mixing, and Maximum Breathing Capacity
  publication-title: Thorax
  doi: 10.1136/thx.9.4.313
– ident: 10.1016/j.ejmp.2021.01.004_b0110
  doi: 10.1148/radiol.2020201433
– year: 2005
  ident: 10.1016/j.ejmp.2021.01.004_b0230
  article-title: Four-dimensional image-based treatment planning: Target volume segmentation and dose calculation in the presence of respiratory motion
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/j.ijrobp.2004.11.037
– volume: 69
  start-page: 824
  year: 1988
  ident: 10.1016/j.ejmp.2021.01.004_b0090
  article-title: Relationships Between Lung Computed Tomographic Density, Gas Exchange, and PEEP in Acute Respiratory Failure
  publication-title: Anesthesiology
  doi: 10.1097/00000542-198812000-00005
– year: 2009
  ident: 10.1016/j.ejmp.2021.01.004_b0225
  article-title: The impact of respiratory motion on tumor quantification and delineation in static PET/CT imaging
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/54/24/007
– volume: 30
  start-page: 4407
  year: 2020
  ident: 10.1016/j.ejmp.2021.01.004_b0040
  article-title: CT image visual quantitative evaluation and clinical classification of coronavirus disease (COVID-19)
  publication-title: Eur Radiol
  doi: 10.1007/s00330-020-06817-6
– ident: 10.1016/j.ejmp.2021.01.004_b0170
– volume: 2
  year: 2020
  ident: 10.1016/j.ejmp.2021.01.004_b0045
  article-title: Chest CT Severity Score: An Imaging Tool for Assessing Severe COVID-19
  publication-title: Radiol Cardiothorac Imaging
  doi: 10.1148/ryct.2020200047
– volume: 17
  start-page: R93
  year: 2013
  ident: 10.1016/j.ejmp.2021.01.004_b0135
  article-title: Limits of normality of quantitative thoracic CT analysis
  publication-title: Crit Care
  doi: 10.1186/cc12738
– volume: 80
  start-page: 119
  year: 2020
  ident: 10.1016/j.ejmp.2021.01.004_b0020
  article-title: Dosimetric and radiation cancer risk evaluation of high resolution thorax CT during COVID-19 outbreak
  publication-title: Phys Medica
  doi: 10.1016/j.ejmp.2020.10.018
– volume: 65
  start-page: 53
  year: 2019
  ident: 10.1016/j.ejmp.2021.01.004_b0150
  article-title: Availability of a simplified lung ventilation imaging algorithm based on four-dimensional computed tomography
  publication-title: Phys Medica
  doi: 10.1016/j.ejmp.2019.08.006
– ident: 10.1016/j.ejmp.2021.01.004_b0165
  doi: 10.1016/j.mri.2012.05.001
– volume: 85
  start-page: 125
  year: 2016
  ident: 10.1016/j.ejmp.2021.01.004_b0070
  article-title: Quantitative CT analysis of honeycombing area in idiopathic pulmonary fibrosis: Correlations with pulmonary function tests
  publication-title: Eur J Radiol
  doi: 10.1016/j.ejrad.2015.11.011
– ident: 10.1016/j.ejmp.2021.01.004_b0035
  doi: 10.1148/ryct.2020200152
– ident: 10.1016/j.ejmp.2021.01.004_b0075
  doi: 10.15326/jcopdf.1.1.2014.0125
– year: 2013
  ident: 10.1016/j.ejmp.2021.01.004_b0155
  article-title: The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository
  publication-title: J Digit Imaging
  doi: 10.1007/s10278-013-9622-7
– year: 2002
  ident: 10.1016/j.ejmp.2021.01.004_b0220
  article-title: Effect of respiratory gating on reducing lung motion artifacts in PET imaging of lung cancer
  publication-title: Med Phys
  doi: 10.1118/1.1448824
– volume: 18
  start-page: 1
  year: 2017
  ident: 10.1016/j.ejmp.2021.01.004_b0080
  article-title: Densitometric and local histogram based analysis of computed tomography images in patients with idiopathic pulmonary fibrosis
  publication-title: Respir Res
  doi: 10.1186/s12931-017-0527-8
– volume: 295
  start-page: 202
  year: 2020
  ident: 10.1016/j.ejmp.2021.01.004_b0010
  article-title: CT imaging features of 2019 novel coronavirus (2019-NCoV)
  publication-title: Radiology
  doi: 10.1148/radiol.2020200230
– ident: 10.1016/j.ejmp.2021.01.004_b0055
  doi: 10.21037/jtd.2017.08.17
– volume: 100
  start-page: 99
  year: 2018
  ident: 10.1016/j.ejmp.2021.01.004_b0190
  article-title: Quantitative computed tomography applied to interstitial lung diseases
  publication-title: Eur J Radiol
  doi: 10.1016/j.ejrad.2018.01.018
SSID ssj0032255
Score 2.2347372
Snippet •A new approach has been proposed to overcome limitations of quantitative metrics calculated from lung CT images.•New metrics, derived from physics assumptions...
Quantitative metrics in lung computed tomography (CT) images have been widely used, often without a clear connection with physiology. This work proposes a...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 28
SubjectTerms Adolescent
Adult
Aged
Aged, 80 and over
Algorithms
Computed tomography
COVID-19
COVID-19 - diagnostic imaging
Female
Humans
Image analysis
Image Processing, Computer-Assisted
Lung - diagnostic imaging
Lung Diseases - diagnostic imaging
Male
Middle Aged
Original Paper
QCT
Quantitative imaging
Radiomic
Tomography, X-Ray Computed
Young Adult
Title A patient-specific approach for quantitative and automatic analysis of computed tomography images in lung disease: Application to COVID-19 patients
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1120179721000053
https://dx.doi.org/10.1016/j.ejmp.2021.01.004
https://www.ncbi.nlm.nih.gov/pubmed/33567361
https://www.proquest.com/docview/2488574915
https://pubmed.ncbi.nlm.nih.gov/PMC7843021
Volume 82
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWqIiEuiG8WaGUkbihsYnvshNtqS7UFUS4U9WY5sSNStdnC7l75E_3DnUmcwAIqElIO-bAVyx4_j-U3bxh7BaYEk9Y60dLniXI5JA5Kh7sU76FMPa3ixLY41osT9f4UTnfYfIiFIVplxP4e0zu0jm-msTenl00zxXkoyJxwC5N2IaUUwa4MWfmbHyPNg-wVugQruE2i0jFwpud4hbML0qwUWSfdGZO1_WVx-tP5_J1D-cuidHiP3Y3eJJ_1Db7PdkL7gN3-GM_LH7KrGY_CqQmFVBItiA8q4hzdVf5t49ouzAxBj7vWc7dZLzsVV3zq5Ur4suZVn_vBc_wYNa55c4FQtOJNy88RMHg86XnLZz-PxLE4n3_6cnSQZMXQkNUjdnL47vN8kcQ0DEkFqV4n6LM4CVWoQmFKUWdS54UvZC4MuWeIT96VIGqv85A7U2sIUnrlhDfK69qBfMx222UbnjLunC7TOqvLygRVOe8AyoC3hYAKsUdMWDb0v62iRjmlyji3AxntzNKYWRozm-KVqgl7Pda57BU6biwth2G1Q-wpoqXFBeTGWjDW2rLOf9Z7OViOxWlLZzGuDcvNygoETjCqyGDCnvSWNLZeSiC2XTZhZsvGxgIkCb79pW2-dtLgJlcSf__sP9v7nN2hp56V_oLtrr9vwh46Xetyv5tV--zW7OjD4vgad6Iuxw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NToK9IL5XPo3EG4qa2Dk74a3qNrVsKy8b2pvlxI7ItKWDtn8J_zDnxCkU0JCQ8pDEPuUUn38-y3e_A3iHqkAVVzKSwmZRajKMDBaGdinWYhFbv4r7aIu5nJ6nHy_wYgcmfS6MD6sM2N9heovW4c0o_M3RTV2PaB5yb060hYnblNI7sOvZqXAAu-PZ8XTeA7I3WWxrrNBOyQuE3JkuzMtdXnvaSp607J2hXttf1qc__c_fwyh_WZeOHsD94FCycafzQ9hxzSO4exqOzB_D9zEL3KmRz6r0kUGsJxJn5LGyr2vTtJlmhHvMNJaZ9WrRErnSU8dYwhYVK7vyD5ZRY6C5ZvU1odGS1Q27Isxg4bDnAxv_PBWn7mzy6fPsIEryXpHlEzg_OjybTKNQiSEqMZariNwWI7B0pctVwatEyCy3uci48h4aQZQ1BfLKysxlRlUSnRA2Ndyq1MrKoHgKg2bRuH1gxsgirpKqKJVLS2MNYuHoNudYEvzwIST9_9dloCn31TKudB-Pdqn9mGk_ZjqmK06H8H4jc9ORdNzaW_TDqvv0UwJMTWvIrVK4kdoy0H_Kve0tR9PM9ccxpnGL9VJzwk5UaZ7gEJ51lrTRXgj0AXfJENSWjW06eFbw7Zam_tKyg6ssFfT55_-p7xu4Nz07PdEns_nxC9jzLV2Q-ksYrL6t3SvywVbF6zDHfgC1NjF4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+patient-specific+approach+for+quantitative+and+automatic+analysis+of+computed+tomography+images+in+lung+disease%3A+Application+to+COVID-19+patients&rft.jtitle=Physica+medica&rft.au=Berta%2C+L.&rft.au=De+Mattia%2C+C.&rft.au=Rizzetto%2C+F.&rft.au=Carrazza%2C+S.&rft.date=2021-02-01&rft.pub=Elsevier+Ltd&rft.issn=1120-1797&rft.eissn=1724-191X&rft.volume=82&rft.spage=28&rft.epage=39&rft_id=info:doi/10.1016%2Fj.ejmp.2021.01.004&rft.externalDocID=S1120179721000053
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1120-1797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1120-1797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1120-1797&client=summon