A patient-specific approach for quantitative and automatic analysis of computed tomography images in lung disease: Application to COVID-19 patients
•A new approach has been proposed to overcome limitations of quantitative metrics calculated from lung CT images.•New metrics, derived from physics assumptions and with physiological significance, are introduced.•New metrics show lower dependencies from CT-number and reduced inter and intra patient...
Saved in:
Published in | Physica medica Vol. 82; pp. 28 - 39 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Italy
Elsevier Ltd
01.02.2021
Associazione Italiana di Fisica Medica. Published by Elsevier Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •A new approach has been proposed to overcome limitations of quantitative metrics calculated from lung CT images.•New metrics, derived from physics assumptions and with physiological significance, are introduced.•New metrics show lower dependencies from CT-number and reduced inter and intra patient variability.•Quantitative metrics of lung COVID-19 diseases can be described by subdividing the organ into 24 sub-regions.
Quantitative metrics in lung computed tomography (CT) images have been widely used, often without a clear connection with physiology. This work proposes a patient-independent model for the estimation of well-aerated volume of lungs in CT images (WAVE).
A Gaussian fit, with mean (Mu.f) and width (Sigma.f) values, was applied to the lower CT histogram data points of the lung to provide the estimation of the well-aerated lung volume (WAVE.f). Independence from CT reconstruction parameters and respiratory cycle was analysed using healthy lung CT images and 4DCT acquisitions. The Gaussian metrics and first order radiomic features calculated for a third cohort of COVID-19 patients were compared with those relative to healthy lungs. Each lung was further segmented in 24 subregions and a new biomarker derived from Gaussian fit parameter Mu.f was proposed to represent the local density changes.
WAVE.f resulted independent from the respiratory motion in 80% of the cases. Differences of 1%, 2% and up to 14% resulted comparing a moderate iterative strength and FBP algorithm, 1 and 3 mm of slice thickness and different reconstruction kernel. Healthy subjects were significantly different from COVID-19 patients for all the metrics calculated. Graphical representation of the local biomarker provides spatial and quantitative information in a single 2D picture.
Unlike other metrics based on fixed histogram thresholds, this model is able to consider the inter- and intra-subject variability. In addition, it defines a local biomarker to quantify the severity of the disease, independently of the observer. |
---|---|
AbstractList | •A new approach has been proposed to overcome limitations of quantitative metrics calculated from lung CT images.•New metrics, derived from physics assumptions and with physiological significance, are introduced.•New metrics show lower dependencies from CT-number and reduced inter and intra patient variability.•Quantitative metrics of lung COVID-19 diseases can be described by subdividing the organ into 24 sub-regions.
Quantitative metrics in lung computed tomography (CT) images have been widely used, often without a clear connection with physiology. This work proposes a patient-independent model for the estimation of well-aerated volume of lungs in CT images (WAVE).
A Gaussian fit, with mean (Mu.f) and width (Sigma.f) values, was applied to the lower CT histogram data points of the lung to provide the estimation of the well-aerated lung volume (WAVE.f). Independence from CT reconstruction parameters and respiratory cycle was analysed using healthy lung CT images and 4DCT acquisitions. The Gaussian metrics and first order radiomic features calculated for a third cohort of COVID-19 patients were compared with those relative to healthy lungs. Each lung was further segmented in 24 subregions and a new biomarker derived from Gaussian fit parameter Mu.f was proposed to represent the local density changes.
WAVE.f resulted independent from the respiratory motion in 80% of the cases. Differences of 1%, 2% and up to 14% resulted comparing a moderate iterative strength and FBP algorithm, 1 and 3 mm of slice thickness and different reconstruction kernel. Healthy subjects were significantly different from COVID-19 patients for all the metrics calculated. Graphical representation of the local biomarker provides spatial and quantitative information in a single 2D picture.
Unlike other metrics based on fixed histogram thresholds, this model is able to consider the inter- and intra-subject variability. In addition, it defines a local biomarker to quantify the severity of the disease, independently of the observer. Quantitative metrics in lung computed tomography (CT) images have been widely used, often without a clear connection with physiology. This work proposes a patient-independent model for the estimation of well-aerated volume of lungs in CT images (WAVE).PURPOSEQuantitative metrics in lung computed tomography (CT) images have been widely used, often without a clear connection with physiology. This work proposes a patient-independent model for the estimation of well-aerated volume of lungs in CT images (WAVE).A Gaussian fit, with mean (Mu.f) and width (Sigma.f) values, was applied to the lower CT histogram data points of the lung to provide the estimation of the well-aerated lung volume (WAVE.f). Independence from CT reconstruction parameters and respiratory cycle was analysed using healthy lung CT images and 4DCT acquisitions. The Gaussian metrics and first order radiomic features calculated for a third cohort of COVID-19 patients were compared with those relative to healthy lungs. Each lung was further segmented in 24 subregions and a new biomarker derived from Gaussian fit parameter Mu.f was proposed to represent the local density changes.METHODSA Gaussian fit, with mean (Mu.f) and width (Sigma.f) values, was applied to the lower CT histogram data points of the lung to provide the estimation of the well-aerated lung volume (WAVE.f). Independence from CT reconstruction parameters and respiratory cycle was analysed using healthy lung CT images and 4DCT acquisitions. The Gaussian metrics and first order radiomic features calculated for a third cohort of COVID-19 patients were compared with those relative to healthy lungs. Each lung was further segmented in 24 subregions and a new biomarker derived from Gaussian fit parameter Mu.f was proposed to represent the local density changes.WAVE.f resulted independent from the respiratory motion in 80% of the cases. Differences of 1%, 2% and up to 14% resulted comparing a moderate iterative strength and FBP algorithm, 1 and 3 mm of slice thickness and different reconstruction kernel. Healthy subjects were significantly different from COVID-19 patients for all the metrics calculated. Graphical representation of the local biomarker provides spatial and quantitative information in a single 2D picture.RESULTSWAVE.f resulted independent from the respiratory motion in 80% of the cases. Differences of 1%, 2% and up to 14% resulted comparing a moderate iterative strength and FBP algorithm, 1 and 3 mm of slice thickness and different reconstruction kernel. Healthy subjects were significantly different from COVID-19 patients for all the metrics calculated. Graphical representation of the local biomarker provides spatial and quantitative information in a single 2D picture.Unlike other metrics based on fixed histogram thresholds, this model is able to consider the inter- and intra-subject variability. In addition, it defines a local biomarker to quantify the severity of the disease, independently of the observer.CONCLUSIONSUnlike other metrics based on fixed histogram thresholds, this model is able to consider the inter- and intra-subject variability. In addition, it defines a local biomarker to quantify the severity of the disease, independently of the observer. Quantitative metrics in lung computed tomography (CT) images have been widely used, often without a clear connection with physiology. This work proposes a patient-independent model for the estimation of well-aerated volume of lungs in CT images (WAVE). A Gaussian fit, with mean (Mu.f) and width (Sigma.f) values, was applied to the lower CT histogram data points of the lung to provide the estimation of the well-aerated lung volume (WAVE.f). Independence from CT reconstruction parameters and respiratory cycle was analysed using healthy lung CT images and 4DCT acquisitions. The Gaussian metrics and first order radiomic features calculated for a third cohort of COVID-19 patients were compared with those relative to healthy lungs. Each lung was further segmented in 24 subregions and a new biomarker derived from Gaussian fit parameter Mu.f was proposed to represent the local density changes. WAVE.f resulted independent from the respiratory motion in 80% of the cases. Differences of 1%, 2% and up to 14% resulted comparing a moderate iterative strength and FBP algorithm, 1 and 3 mm of slice thickness and different reconstruction kernel. Healthy subjects were significantly different from COVID-19 patients for all the metrics calculated. Graphical representation of the local biomarker provides spatial and quantitative information in a single 2D picture. Unlike other metrics based on fixed histogram thresholds, this model is able to consider the inter- and intra-subject variability. In addition, it defines a local biomarker to quantify the severity of the disease, independently of the observer. |
Author | Rizzetto, F. Lizio, D. Carrazza, S. Fumagalli, R. De Mattia, C. Colombo, P.E. Langer, T. Torresin, A. Berta, L. Vanzulli, A. |
Author_xml | – sequence: 1 givenname: L. surname: Berta fullname: Berta, L. organization: Department of Medical Physics, ASST Grande Ospedale Metropolitano Niguarda, Piazza Ospedale Maggiore 3, Milan 20162, Italy – sequence: 2 givenname: C. surname: De Mattia fullname: De Mattia, C. organization: Department of Medical Physics, ASST Grande Ospedale Metropolitano Niguarda, Piazza Ospedale Maggiore 3, Milan 20162, Italy – sequence: 3 givenname: F. surname: Rizzetto fullname: Rizzetto, F. organization: Department of Radiology, ASST Grande Ospedale Metropolitano Niguarda, Piazza Ospedale Maggiore 3, Milan 20162, Italy – sequence: 4 givenname: S. orcidid: 0000-0002-0079-6753 surname: Carrazza fullname: Carrazza, S. organization: Department of Physics, Università degli Studi di Milano and INFN Sezione di Milano, via Giovanni Celoria 16, Milan 20133, Italy – sequence: 5 givenname: P.E. orcidid: 0000-0003-0076-2809 surname: Colombo fullname: Colombo, P.E. organization: Department of Medical Physics, ASST Grande Ospedale Metropolitano Niguarda, Piazza Ospedale Maggiore 3, Milan 20162, Italy – sequence: 6 givenname: R. surname: Fumagalli fullname: Fumagalli, R. organization: Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy – sequence: 7 givenname: T. surname: Langer fullname: Langer, T. organization: Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy – sequence: 8 givenname: D. surname: Lizio fullname: Lizio, D. organization: Department of Medical Physics, ASST Grande Ospedale Metropolitano Niguarda, Piazza Ospedale Maggiore 3, Milan 20162, Italy – sequence: 9 givenname: A. orcidid: 0000-0002-2452-3370 surname: Vanzulli fullname: Vanzulli, A. organization: Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, via Festa del Perdono 7, Milan 20122, Italy – sequence: 10 givenname: A. orcidid: 0000-0002-0034-313X surname: Torresin fullname: Torresin, A. email: alberto.torresin@unimi.it organization: Department of Medical Physics, ASST Grande Ospedale Metropolitano Niguarda, Piazza Ospedale Maggiore 3, Milan 20162, Italy |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33567361$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUdtqFDEYHqRiD_oCXkguvZk1h5nJTBFh2WotFHqj4l3IJv_sZs0kaTKzsM_hC5vttkV7USGQhP878X-nxZHzDoriLcEzgknzYTODzRBmFFMyw_ng6kVxQjitStKRn0f5TSguCe_4cXGa0gZjRmldvyqOGasbzhpyUvyeoyBHA24sUwBleqOQDCF6qdao9xHdTtKNZsyYLSDpNJLT6If8zTgn7S6ZhHyPlB_CNIJGeehXUYb1DplBriAh45Cd3Appk0AmOEfzEKxRWcK7DEeLmx9XFznyQ5D0unjZS5vgzf19Vnz_8vnb4mt5fXN5tZhfl6rGzVg2FZOsVqCg40vaE9a0ne5YSznuasIbpuWypr1uWmgl75saGNOVpJpXuullzc6KTwfdMC0H0Cp7R2lFiDl43Akvjfh34sxarPxW8LZieelZ4P29QPS3E6RRDCYpsFY68FMStGrbmlcd2Xu9-9vr0eShiQygB4CKPqUI_SOEYLGvW2zEvm6xr1vgfHCVSe0Tkrqryu_zGvs89eOBCnnDWwNRJJW3r0CbCGoU2pvn6edP6Moal1u1v2D3P_IfDaDcug |
CitedBy_id | crossref_primary_10_1186_s41747_022_00317_6 crossref_primary_10_1007_s12149_024_01969_7 crossref_primary_10_4187_respcare_11625 crossref_primary_10_1016_j_ejmp_2021_06_001 crossref_primary_10_1186_s41747_023_00334_z |
Cites_doi | 10.1148/radiol.2463062200 10.1007/s10278-019-00254-8 10.1002/cphy.c100081 10.1097/RLI.0000000000000180 10.1016/j.chest.2020.04.003 10.1148/radiol.2462070712 10.21203/rs.3.rs-30481/v1 10.1002/mp.12059 10.1118/1.4893497 10.1016/j.acra.2015.01.008 10.1007/s00134-008-1175-8 10.1118/1.597757 10.1016/j.ijrobp.2018.05.053 10.1056/NEJMoa052052 10.1148/rg.2020190099 10.1053/j.ro.2018.12.007 10.1371/journal.pone.0190876 10.1002/mp.12087 10.1164/ajrccm.164.9.2103121 10.2214/AJR.12.10102 10.1007/s00134-014-3264-1 10.1016/j.ejrad.2019.108748 10.1016/S0140-6736(20)30566-3 10.1118/1.3222872 10.1097/RCT.0b013e31818da65c 10.1136/thx.9.4.313 10.1148/radiol.2020201433 10.1016/j.ijrobp.2004.11.037 10.1097/00000542-198812000-00005 10.1088/0031-9155/54/24/007 10.1007/s00330-020-06817-6 10.1148/ryct.2020200047 10.1186/cc12738 10.1016/j.ejmp.2020.10.018 10.1016/j.ejmp.2019.08.006 10.1016/j.mri.2012.05.001 10.1016/j.ejrad.2015.11.011 10.1148/ryct.2020200152 10.15326/jcopdf.1.1.2014.0125 10.1007/s10278-013-9622-7 10.1118/1.1448824 10.1186/s12931-017-0527-8 10.1148/radiol.2020200230 10.21037/jtd.2017.08.17 10.1016/j.ejrad.2018.01.018 |
ContentType | Journal Article |
Copyright | 2021 Associazione Italiana di Fisica Medica Copyright © 2021 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved. 2021 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved. 2021 Associazione Italiana di Fisica Medica |
Copyright_xml | – notice: 2021 Associazione Italiana di Fisica Medica – notice: Copyright © 2021 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved. – notice: 2021 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved. 2021 Associazione Italiana di Fisica Medica |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.ejmp.2021.01.004 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1724-191X |
EndPage | 39 |
ExternalDocumentID | PMC7843021 33567361 10_1016_j_ejmp_2021_01_004 S1120179721000053 |
Genre | Journal Article |
GroupedDBID | --- --K --M -QF .1- .FO .~1 0R~ 123 1B1 1P~ 1~. 1~5 3J0 4.4 457 4G. 53G 5VS 7-5 71M 8P~ AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABBQC ABFNM ABFRF ABJNI ABMAC ABMZM ABNEU ABXDB ACDAQ ACFVG ACGFS ACIEU ACRLP ACXCU ADBBV ADEZE ADVLN AEBSH AEFWE AEIPS AEKER AEVXI AFJKZ AFRHN AFTJW AFXIZ AGCQF AGHFR AGUBO AGYEJ AIEXJ AIIUN AIKHN AITUG AIVDX AJRQY AJUYK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR BKOJK BLXMC BNPGV CS3 DC1 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN GBLVA HVGLF HZ~ IHE J1W KOM M41 MO0 N9A O-L O9- OAUVE OGIMB OI~ OU0 OZT P-8 P-9 PC. Q38 RLW ROL RPZ SDF SDG SEL SES SJN SPC SPCBC SSH SSQ SSZ T5K UNMZH Z5R ~G- ~XS AACTN AAIAV ABLVK ABYKQ ACNNM AFCTW AFKWA AJBFU AJOXV AMFUW CLCPZ EFLBG LCYCR AAYXX AGRNS CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c506t-643a35cece97b2f13689d938270951763dab52fd68e8a7f65e33d4a2d74d6fa53 |
IEDL.DBID | .~1 |
ISSN | 1120-1797 1724-191X |
IngestDate | Thu Aug 21 14:11:21 EDT 2025 Fri Jul 11 05:26:39 EDT 2025 Mon Jul 21 06:06:59 EDT 2025 Tue Jul 01 04:30:24 EDT 2025 Thu Apr 24 23:07:39 EDT 2025 Fri Feb 23 02:46:31 EST 2024 Tue Aug 26 18:50:57 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | COVID-19 Radiomic Image analysis Quantitative imaging QCT Computed tomography |
Language | English |
License | Copyright © 2021 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c506t-643a35cece97b2f13689d938270951763dab52fd68e8a7f65e33d4a2d74d6fa53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-0079-6753 0000-0003-0076-2809 0000-0002-0034-313X 0000-0002-2452-3370 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC7843021 |
PMID | 33567361 |
PQID | 2488574915 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7843021 proquest_miscellaneous_2488574915 pubmed_primary_33567361 crossref_primary_10_1016_j_ejmp_2021_01_004 crossref_citationtrail_10_1016_j_ejmp_2021_01_004 elsevier_sciencedirect_doi_10_1016_j_ejmp_2021_01_004 elsevier_clinicalkey_doi_10_1016_j_ejmp_2021_01_004 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-02-01 |
PublicationDateYYYYMMDD | 2021-02-01 |
PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Italy |
PublicationPlace_xml | – name: Italy |
PublicationTitle | Physica medica |
PublicationTitleAlternate | Phys Med |
PublicationYear | 2021 |
Publisher | Elsevier Ltd Associazione Italiana di Fisica Medica. Published by Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd – name: Associazione Italiana di Fisica Medica. Published by Elsevier Ltd |
References | Hugo, Weiss, Sleeman, Balik, Keall, Lu (b0160) 2017; 44 Ekström, Sundh, Schiöler, Lindberg, Rosengren, Bergström (b0180) 2018; 13 Chen-Mayer, Fuld, Hoppel, Judy, Sieren, Guo (b0210) 2017; 44 Newell, Tschirren, Peterson, Beinlich, Sieren (b0145) 2019; 54 Matsuoka, Yamashiro, Matsushita, Kotoku, Fujikawa, Yagihashi (b0115) 2015; 22 Schroeder, McKenzie, Zach, Wilson, Curran-Everett, Stinson (b0195) 2013; 201 Lynch D. Progress in Imaging COPD, 2004 - 2014. Chronic Obstr Pulm Dis J COPD Found 2014. https://doi.org/10.15326/jcopdf.1.1.2014.0125. Gattinoni, Caironi, Cressoni, Chiumello, Ranieri, Quintel (b0100) 2006 Obert, Kampschulte, Limburg, Barańczuk, Krombach (b0190) 2018; 100 Cressoni, Gallazzi, Chiurazzi, Marino, Brioni, Menga (b0135) 2013; 17 Solomon J, Samei E. Quantum noise properties of CT images with anatomical textured backgrounds across reconstruction algorithms: FBP and SAFIRE. Med Phys 2014;41. https://doi.org/10.1118/1.4893497. Rasband W.S. ImageJ U.S. National Institutes of Health 2018 Bethesda, Maryland, USA. Http://ImagejNihGov/Ij/. Ash, Harmouche, Vallejo, Villalba, Ostridge, Gunville (b0080) 2017; 18 Nishiyama, Kawata, Yokota, Sugiura, Matsumura, Higashide (b0095) 2020; 122 Kemerink, Kruize, Lamers, van Engelshoven (b0175) 1996; 23 Li, Fang, Li, Pan, Qin, Zhong (b0040) 2020; 30 Rietzel, Chen, Choi, Willet (b0230) 2005 Townsley (b0235) 2012; 2 Nehmeh, Erdi, Ling, Rosenzweig, Squire, Braban (b0220) 2002 A. Fedorov R. Beichel J. Kalpathy-Cramer J. Finet J.-C.C. Fillion-Robin S. Pujol et al. 3D Slicer as an image computing platform for the Quantitative Imaging Network Magn Reson Imaging 2012;30:1323–41. 10.1016/j.mri.2012.05.001. Nakagawa, Nagatani, Takahashi, Ogawa, Van, Ryujin (b0070) 2016; 85 Salehi, Abedi, Balakrishnan, Gholamrezanezhad (b0025) 2019; 2020 Traverso, Wee, Dekker, Gillies (b0140) 2018; 102 Gattinoni, Pesenti, Bombino, Baglioni, Rivolta, Rossi (b0090) 1988; 69 Rubin, Ryerson, Haramati, Sverzellati, Kanne, Raoof (b0015) 2020; 158 Reske, Busse, Amato, Jaekel, Kahn, Schwarzkopf (b0205) 2008; 34 Zhou, Yu, Du, Fan, Liu, Liu (b0005) 2020; 395 Ghetti, Ortenzia, Maddalo, Altabella, Sverzellati (b0020) 2020; 80 Clark, Vendt, Smith, Freymann, Kirby, Koppel (b0155) 2013 Needham, Rogan, McDonald (b0185) 1954; 9 S. Simpson F.U. Kay S. Abbara S. Bhalla J.H. Chung M. Chung et al. Radiological Society of North America Expert Consensus Statement on Reporting Chest CT Findings Related to COVID-19. Endorsed by the Society of Thoracic Radiology, the American College of Radiology, and RSNA. Radiol Cardiothorac Imaging 2020;2:e200152. 10.1148/ryct.2020200152. Best, Meng, Lynch, Bozic, Miller, Grunwald (b0240) 2008 M. Mascalchi G. Camiciottoli S. Diciotti Lung densitometry: Why, how and when J Thorac Dis 9 2017 3319 45 https://doi.org/10.21037/jtd.2017.08.17. Mackin D, Fave X, Zhang L, Fried D, Yang J, Brian Taylor, et al. Measuring computed tomography scanner variability of radiomics features. Invest Radiol 2015;50:757–65. https://doi.org/10.1097/RLI.0000000000000180. Hansell, Bankier, MacMahon, McLoud, Müller, Remy (b0030) 2008; 246 Sumikawa, Johkoh, Yamamoto, Yanagawa, Inoue, Honda (b0050) 2009; 33 Gattinoni, Caironi, Pelosi, Goodman (b0085) 2001; 164 Chiumello, Langer, Vecchi, Luoni, Colombo, Brioni (b0130) 2014; 40 Wang, Li, Li (b0060) 2009; 36 Chung, Bernheim, Mei, Zhang, Huang, Zeng (b0010) 2020; 295 Lanza E, Muglia R, Bolengo I, Santonocito OG. Quantitative Chest CT analysis in COVID-19 to predict the need for oxygenation support and intubation. PrePrint 2020:1–18. https://doi.org/10.21203/rs.3.rs-30481/v1. Yang, Li, Liu, Zhen, Zhang, Xiong (b0045) 2020; 2 D. Colombi F.C. Bodini M. Petrini G. Maffi N. Morelli G. Milanese et al. Well-aerated Lung on Admitting Chest CT to Predict Adverse Outcome in COVID-19 Pneumonia Radiology 2020:201433. 10.1148/radiol.2020201433. Chen, Karwoski, Gierada, Bartholmai, Koo (b0105) 2020; 40 Ohkubo, Kanemitsu, Uemura, Takakuwa, Takemura, Maeno (b0120) 2016; 11 Tian, Miao, Liu, Huang, Wang, Wang (b0150) 2019; 65 Liu, Pierce, Alessio, Kinahan (b0225) 2009 Park, Park, Lee, Seo, Kim (b0065) 2019; 32 Rubin (10.1016/j.ejmp.2021.01.004_b0015) 2020; 158 Traverso (10.1016/j.ejmp.2021.01.004_b0140) 2018; 102 Hugo (10.1016/j.ejmp.2021.01.004_b0160) 2017; 44 Reske (10.1016/j.ejmp.2021.01.004_b0205) 2008; 34 Salehi (10.1016/j.ejmp.2021.01.004_b0025) 2019; 2020 Nakagawa (10.1016/j.ejmp.2021.01.004_b0070) 2016; 85 Liu (10.1016/j.ejmp.2021.01.004_b0225) 2009 Chung (10.1016/j.ejmp.2021.01.004_b0010) 2020; 295 Sumikawa (10.1016/j.ejmp.2021.01.004_b0050) 2009; 33 Chen-Mayer (10.1016/j.ejmp.2021.01.004_b0210) 2017; 44 Hansell (10.1016/j.ejmp.2021.01.004_b0030) 2008; 246 Yang (10.1016/j.ejmp.2021.01.004_b0045) 2020; 2 Li (10.1016/j.ejmp.2021.01.004_b0040) 2020; 30 Chiumello (10.1016/j.ejmp.2021.01.004_b0130) 2014; 40 10.1016/j.ejmp.2021.01.004_b0170 Rietzel (10.1016/j.ejmp.2021.01.004_b0230) 2005 Best (10.1016/j.ejmp.2021.01.004_b0240) 2008 Tian (10.1016/j.ejmp.2021.01.004_b0150) 2019; 65 10.1016/j.ejmp.2021.01.004_b0075 Matsuoka (10.1016/j.ejmp.2021.01.004_b0115) 2015; 22 Cressoni (10.1016/j.ejmp.2021.01.004_b0135) 2013; 17 10.1016/j.ejmp.2021.01.004_b0055 10.1016/j.ejmp.2021.01.004_b0110 10.1016/j.ejmp.2021.01.004_b0035 Ekström (10.1016/j.ejmp.2021.01.004_b0180) 2018; 13 10.1016/j.ejmp.2021.01.004_b0215 Ohkubo (10.1016/j.ejmp.2021.01.004_b0120) 2016; 11 Ghetti (10.1016/j.ejmp.2021.01.004_b0020) 2020; 80 Park (10.1016/j.ejmp.2021.01.004_b0065) 2019; 32 Schroeder (10.1016/j.ejmp.2021.01.004_b0195) 2013; 201 Wang (10.1016/j.ejmp.2021.01.004_b0060) 2009; 36 Ash (10.1016/j.ejmp.2021.01.004_b0080) 2017; 18 Kemerink (10.1016/j.ejmp.2021.01.004_b0175) 1996; 23 Nishiyama (10.1016/j.ejmp.2021.01.004_b0095) 2020; 122 Nehmeh (10.1016/j.ejmp.2021.01.004_b0220) 2002 Townsley (10.1016/j.ejmp.2021.01.004_b0235) 2012; 2 10.1016/j.ejmp.2021.01.004_b0165 Needham (10.1016/j.ejmp.2021.01.004_b0185) 1954; 9 Chen (10.1016/j.ejmp.2021.01.004_b0105) 2020; 40 10.1016/j.ejmp.2021.01.004_b0200 Gattinoni (10.1016/j.ejmp.2021.01.004_b0090) 1988; 69 10.1016/j.ejmp.2021.01.004_b0125 Zhou (10.1016/j.ejmp.2021.01.004_b0005) 2020; 395 Gattinoni (10.1016/j.ejmp.2021.01.004_b0100) 2006 Gattinoni (10.1016/j.ejmp.2021.01.004_b0085) 2001; 164 Obert (10.1016/j.ejmp.2021.01.004_b0190) 2018; 100 Newell (10.1016/j.ejmp.2021.01.004_b0145) 2019; 54 Clark (10.1016/j.ejmp.2021.01.004_b0155) 2013 |
References_xml | – volume: 33 start-page: 731 year: 2009 end-page: 738 ident: b0050 article-title: Computed tomography values calculation and volume histogram analysis for various computed tomographic patterns of diffuse lung diseases publication-title: J Comput Assist Tomogr – volume: 295 start-page: 202 year: 2020 end-page: 207 ident: b0010 article-title: CT imaging features of 2019 novel coronavirus (2019-NCoV) publication-title: Radiology – year: 2005 ident: b0230 article-title: Four-dimensional image-based treatment planning: Target volume segmentation and dose calculation in the presence of respiratory motion publication-title: Int J Radiat Oncol Biol Phys – volume: 158 start-page: 106 year: 2020 end-page: 116 ident: b0015 article-title: The Role of Chest Imaging in Patient Management During the COVID-19 Pandemic publication-title: Chest – volume: 44 start-page: 974 year: 2017 end-page: 985 ident: b0210 article-title: Standardizing CT lung density measure across scanner manufacturers publication-title: Med Phys – reference: Solomon J, Samei E. Quantum noise properties of CT images with anatomical textured backgrounds across reconstruction algorithms: FBP and SAFIRE. Med Phys 2014;41. https://doi.org/10.1118/1.4893497. – reference: Lanza E, Muglia R, Bolengo I, Santonocito OG. Quantitative Chest CT analysis in COVID-19 to predict the need for oxygenation support and intubation. PrePrint 2020:1–18. https://doi.org/10.21203/rs.3.rs-30481/v1. – volume: 40 start-page: 691 year: 2014 end-page: 699 ident: b0130 article-title: Low-dose chest computed tomography for quantitative and visual anatomical analysis in patients with acute respiratory distress syndrome publication-title: Intensive Care Med – volume: 13 start-page: 1 year: 2018 end-page: 12 ident: b0180 article-title: Absolute lung size and the sex difference in breathlessness in the general population publication-title: PLoS ONE – year: 2008 ident: b0240 article-title: Idiopathic pulmonary fibrosis: Physiologic tests, quantitative CT indexes, and CT visual scores as predictors of mortality publication-title: Radiology – volume: 122 year: 2020 ident: b0095 article-title: A predictive factor for patients with acute respiratory distress syndrome: CT lung volumetry of the well-aerated region as an automated method publication-title: Eur J Radiol – reference: S. Simpson F.U. Kay S. Abbara S. Bhalla J.H. Chung M. Chung et al. Radiological Society of North America Expert Consensus Statement on Reporting Chest CT Findings Related to COVID-19. Endorsed by the Society of Thoracic Radiology, the American College of Radiology, and RSNA. Radiol Cardiothorac Imaging 2020;2:e200152. 10.1148/ryct.2020200152. – year: 2006 ident: b0100 article-title: Lung recruitment in patients with the acute respiratory distress syndrome publication-title: N Engl J Med – volume: 34 start-page: 2044 year: 2008 end-page: 2053 ident: b0205 article-title: Image reconstruction affects computer tomographic assessment of lung hyperinflation publication-title: Intensive Care Med – volume: 22 start-page: 626 year: 2015 end-page: 631 ident: b0115 article-title: Quantitative CT evaluation in patients with combined pulmonary fibrosis and emphysema: Correlation with pulmonary function publication-title: Acad Radiol – volume: 36 start-page: 4592 year: 2009 end-page: 4599 ident: b0060 article-title: Automated segmentation of lungs with severe interstitial lung disease in CT publication-title: Med Phys – volume: 2020 start-page: 2019 year: 2019 ident: b0025 article-title: Coronavirus disease 2019 (COVID-19) imaging reporting and data system (COVID-RADS) and common lexicon: a proposal based on the imaging data of 37 studies publication-title: Eur Radiol – year: 2013 ident: b0155 article-title: The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository publication-title: J Digit Imaging – year: 2002 ident: b0220 article-title: Effect of respiratory gating on reducing lung motion artifacts in PET imaging of lung cancer publication-title: Med Phys – volume: 18 start-page: 1 year: 2017 end-page: 11 ident: b0080 article-title: Densitometric and local histogram based analysis of computed tomography images in patients with idiopathic pulmonary fibrosis publication-title: Respir Res – volume: 32 start-page: 1019 year: 2019 end-page: 1026 ident: b0065 article-title: Lung Segmentation on HRCT and Volumetric CT for Diffuse Interstitial Lung Disease Using Deep Convolutional Neural Networks publication-title: J Digit Imaging – volume: 69 start-page: 824 year: 1988 end-page: 832 ident: b0090 article-title: Relationships Between Lung Computed Tomographic Density, Gas Exchange, and PEEP in Acute Respiratory Failure publication-title: Anesthesiology – volume: 2 start-page: 675 year: 2012 end-page: 709 ident: b0235 article-title: Structure and composition of pulmonary arteries, capillaries, and veins publication-title: Compr Physiol – volume: 40 start-page: 28 year: 2020 end-page: 43 ident: b0105 article-title: Quantitative CT analysis of diffuse lung disease publication-title: Radiographics – volume: 17 start-page: R93 year: 2013 ident: b0135 article-title: Limits of normality of quantitative thoracic CT analysis publication-title: Crit Care – volume: 44 start-page: 762 year: 2017 end-page: 771 ident: b0160 article-title: A longitudinal four-dimensional computed tomography and cone beam computed tomography dataset for image-guided radiation therapy research in lung cancer publication-title: Med Phys – volume: 164 start-page: 1701 year: 2001 end-page: 1711 ident: b0085 article-title: What Has Computed Tomography Taught Us about the Acute Respiratory Distress Syndrome? publication-title: Am J Respir Crit Care Med – volume: 100 start-page: 99 year: 2018 end-page: 107 ident: b0190 article-title: Quantitative computed tomography applied to interstitial lung diseases publication-title: Eur J Radiol – reference: A. Fedorov R. Beichel J. Kalpathy-Cramer J. Finet J.-C.C. Fillion-Robin S. Pujol et al. 3D Slicer as an image computing platform for the Quantitative Imaging Network Magn Reson Imaging 2012;30:1323–41. 10.1016/j.mri.2012.05.001. – volume: 246 start-page: 697 year: 2008 end-page: 722 ident: b0030 article-title: Fleischner Society: Glossary of terms for thoracic imaging publication-title: Radiology – reference: Mackin D, Fave X, Zhang L, Fried D, Yang J, Brian Taylor, et al. Measuring computed tomography scanner variability of radiomics features. Invest Radiol 2015;50:757–65. https://doi.org/10.1097/RLI.0000000000000180. – volume: 23 start-page: 1697 year: 1996 end-page: 1708 ident: b0175 article-title: Density resolution in quantitative computed tomography of foam and lung publication-title: Med Phys – year: 2009 ident: b0225 article-title: The impact of respiratory motion on tumor quantification and delineation in static PET/CT imaging publication-title: Phys Med Biol – volume: 80 start-page: 119 year: 2020 end-page: 124 ident: b0020 article-title: Dosimetric and radiation cancer risk evaluation of high resolution thorax CT during COVID-19 outbreak publication-title: Phys Medica – volume: 11 start-page: 1 year: 2016 end-page: 13 ident: b0120 article-title: Normal lung quantification in usual interstitial pneumonia pattern: The impact of threshold-based volumetric CT analysis for the staging of idiopathic pulmonary fibrosis publication-title: PLoS ONE – volume: 65 start-page: 53 year: 2019 end-page: 58 ident: b0150 article-title: Availability of a simplified lung ventilation imaging algorithm based on four-dimensional computed tomography publication-title: Phys Medica – volume: 201 start-page: W460 year: 2013 end-page: W470 ident: b0195 article-title: Relationships Between Airflow Obstruction and Quantitative CT Measurements of Emphysema, Air Trapping, and Airways in Subjects With and Without Chronic Obstructive Pulmonary Disease publication-title: Am J Roentgenol – volume: 102 start-page: 1143 year: 2018 end-page: 1158 ident: b0140 article-title: Repeatability and reproducibility of radiomic features: a systematic review publication-title: Int J Radiat Oncol Biol Phys – volume: 85 start-page: 125 year: 2016 end-page: 130 ident: b0070 article-title: Quantitative CT analysis of honeycombing area in idiopathic pulmonary fibrosis: Correlations with pulmonary function tests publication-title: Eur J Radiol – volume: 2 year: 2020 ident: b0045 article-title: Chest CT Severity Score: An Imaging Tool for Assessing Severe COVID-19 publication-title: Radiol Cardiothorac Imaging – reference: Lynch D. Progress in Imaging COPD, 2004 - 2014. Chronic Obstr Pulm Dis J COPD Found 2014. https://doi.org/10.15326/jcopdf.1.1.2014.0125. – reference: M. Mascalchi G. Camiciottoli S. Diciotti Lung densitometry: Why, how and when J Thorac Dis 9 2017 3319 45 https://doi.org/10.21037/jtd.2017.08.17. – volume: 54 start-page: 73 year: 2019 end-page: 79 ident: b0145 article-title: Quantitative CT of interstitial lung disease publication-title: Semin Roentgenol – volume: 395 start-page: 1054 year: 2020 end-page: 1062 ident: b0005 article-title: Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study publication-title: Lancet – volume: 30 start-page: 4407 year: 2020 end-page: 4416 ident: b0040 article-title: CT image visual quantitative evaluation and clinical classification of coronavirus disease (COVID-19) publication-title: Eur Radiol – reference: D. Colombi F.C. Bodini M. Petrini G. Maffi N. Morelli G. Milanese et al. Well-aerated Lung on Admitting Chest CT to Predict Adverse Outcome in COVID-19 Pneumonia Radiology 2020:201433. 10.1148/radiol.2020201433. – reference: Rasband W.S. ImageJ U.S. National Institutes of Health 2018 Bethesda, Maryland, USA. Http://ImagejNihGov/Ij/. – volume: 9 start-page: 313 year: 1954 end-page: 325 ident: b0185 article-title: Normal Standards for Lung Volumes, Intrapulmonary Gas-mixing, and Maximum Breathing Capacity publication-title: Thorax – year: 2008 ident: 10.1016/j.ejmp.2021.01.004_b0240 article-title: Idiopathic pulmonary fibrosis: Physiologic tests, quantitative CT indexes, and CT visual scores as predictors of mortality publication-title: Radiology doi: 10.1148/radiol.2463062200 – volume: 32 start-page: 1019 year: 2019 ident: 10.1016/j.ejmp.2021.01.004_b0065 article-title: Lung Segmentation on HRCT and Volumetric CT for Diffuse Interstitial Lung Disease Using Deep Convolutional Neural Networks publication-title: J Digit Imaging doi: 10.1007/s10278-019-00254-8 – volume: 2 start-page: 675 year: 2012 ident: 10.1016/j.ejmp.2021.01.004_b0235 article-title: Structure and composition of pulmonary arteries, capillaries, and veins publication-title: Compr Physiol doi: 10.1002/cphy.c100081 – ident: 10.1016/j.ejmp.2021.01.004_b0200 doi: 10.1097/RLI.0000000000000180 – volume: 158 start-page: 106 year: 2020 ident: 10.1016/j.ejmp.2021.01.004_b0015 article-title: The Role of Chest Imaging in Patient Management During the COVID-19 Pandemic publication-title: Chest doi: 10.1016/j.chest.2020.04.003 – volume: 246 start-page: 697 year: 2008 ident: 10.1016/j.ejmp.2021.01.004_b0030 article-title: Fleischner Society: Glossary of terms for thoracic imaging publication-title: Radiology doi: 10.1148/radiol.2462070712 – ident: 10.1016/j.ejmp.2021.01.004_b0125 doi: 10.21203/rs.3.rs-30481/v1 – volume: 44 start-page: 762 year: 2017 ident: 10.1016/j.ejmp.2021.01.004_b0160 article-title: A longitudinal four-dimensional computed tomography and cone beam computed tomography dataset for image-guided radiation therapy research in lung cancer publication-title: Med Phys doi: 10.1002/mp.12059 – ident: 10.1016/j.ejmp.2021.01.004_b0215 doi: 10.1118/1.4893497 – volume: 22 start-page: 626 year: 2015 ident: 10.1016/j.ejmp.2021.01.004_b0115 article-title: Quantitative CT evaluation in patients with combined pulmonary fibrosis and emphysema: Correlation with pulmonary function publication-title: Acad Radiol doi: 10.1016/j.acra.2015.01.008 – volume: 34 start-page: 2044 year: 2008 ident: 10.1016/j.ejmp.2021.01.004_b0205 article-title: Image reconstruction affects computer tomographic assessment of lung hyperinflation publication-title: Intensive Care Med doi: 10.1007/s00134-008-1175-8 – volume: 23 start-page: 1697 year: 1996 ident: 10.1016/j.ejmp.2021.01.004_b0175 article-title: Density resolution in quantitative computed tomography of foam and lung publication-title: Med Phys doi: 10.1118/1.597757 – volume: 102 start-page: 1143 year: 2018 ident: 10.1016/j.ejmp.2021.01.004_b0140 article-title: Repeatability and reproducibility of radiomic features: a systematic review publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2018.05.053 – year: 2006 ident: 10.1016/j.ejmp.2021.01.004_b0100 article-title: Lung recruitment in patients with the acute respiratory distress syndrome publication-title: N Engl J Med doi: 10.1056/NEJMoa052052 – volume: 40 start-page: 28 year: 2020 ident: 10.1016/j.ejmp.2021.01.004_b0105 article-title: Quantitative CT analysis of diffuse lung disease publication-title: Radiographics doi: 10.1148/rg.2020190099 – volume: 54 start-page: 73 year: 2019 ident: 10.1016/j.ejmp.2021.01.004_b0145 article-title: Quantitative CT of interstitial lung disease publication-title: Semin Roentgenol doi: 10.1053/j.ro.2018.12.007 – volume: 11 start-page: 1 year: 2016 ident: 10.1016/j.ejmp.2021.01.004_b0120 article-title: Normal lung quantification in usual interstitial pneumonia pattern: The impact of threshold-based volumetric CT analysis for the staging of idiopathic pulmonary fibrosis publication-title: PLoS ONE – volume: 2020 start-page: 2019 year: 2019 ident: 10.1016/j.ejmp.2021.01.004_b0025 article-title: Coronavirus disease 2019 (COVID-19) imaging reporting and data system (COVID-RADS) and common lexicon: a proposal based on the imaging data of 37 studies publication-title: Eur Radiol – volume: 13 start-page: 1 year: 2018 ident: 10.1016/j.ejmp.2021.01.004_b0180 article-title: Absolute lung size and the sex difference in breathlessness in the general population publication-title: PLoS ONE doi: 10.1371/journal.pone.0190876 – volume: 44 start-page: 974 year: 2017 ident: 10.1016/j.ejmp.2021.01.004_b0210 article-title: Standardizing CT lung density measure across scanner manufacturers publication-title: Med Phys doi: 10.1002/mp.12087 – volume: 164 start-page: 1701 year: 2001 ident: 10.1016/j.ejmp.2021.01.004_b0085 article-title: What Has Computed Tomography Taught Us about the Acute Respiratory Distress Syndrome? publication-title: Am J Respir Crit Care Med doi: 10.1164/ajrccm.164.9.2103121 – volume: 201 start-page: W460 year: 2013 ident: 10.1016/j.ejmp.2021.01.004_b0195 article-title: Relationships Between Airflow Obstruction and Quantitative CT Measurements of Emphysema, Air Trapping, and Airways in Subjects With and Without Chronic Obstructive Pulmonary Disease publication-title: Am J Roentgenol doi: 10.2214/AJR.12.10102 – volume: 40 start-page: 691 year: 2014 ident: 10.1016/j.ejmp.2021.01.004_b0130 article-title: Low-dose chest computed tomography for quantitative and visual anatomical analysis in patients with acute respiratory distress syndrome publication-title: Intensive Care Med doi: 10.1007/s00134-014-3264-1 – volume: 122 year: 2020 ident: 10.1016/j.ejmp.2021.01.004_b0095 article-title: A predictive factor for patients with acute respiratory distress syndrome: CT lung volumetry of the well-aerated region as an automated method publication-title: Eur J Radiol doi: 10.1016/j.ejrad.2019.108748 – volume: 395 start-page: 1054 year: 2020 ident: 10.1016/j.ejmp.2021.01.004_b0005 article-title: Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study publication-title: Lancet doi: 10.1016/S0140-6736(20)30566-3 – volume: 36 start-page: 4592 year: 2009 ident: 10.1016/j.ejmp.2021.01.004_b0060 article-title: Automated segmentation of lungs with severe interstitial lung disease in CT publication-title: Med Phys doi: 10.1118/1.3222872 – volume: 33 start-page: 731 year: 2009 ident: 10.1016/j.ejmp.2021.01.004_b0050 article-title: Computed tomography values calculation and volume histogram analysis for various computed tomographic patterns of diffuse lung diseases publication-title: J Comput Assist Tomogr doi: 10.1097/RCT.0b013e31818da65c – volume: 9 start-page: 313 year: 1954 ident: 10.1016/j.ejmp.2021.01.004_b0185 article-title: Normal Standards for Lung Volumes, Intrapulmonary Gas-mixing, and Maximum Breathing Capacity publication-title: Thorax doi: 10.1136/thx.9.4.313 – ident: 10.1016/j.ejmp.2021.01.004_b0110 doi: 10.1148/radiol.2020201433 – year: 2005 ident: 10.1016/j.ejmp.2021.01.004_b0230 article-title: Four-dimensional image-based treatment planning: Target volume segmentation and dose calculation in the presence of respiratory motion publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2004.11.037 – volume: 69 start-page: 824 year: 1988 ident: 10.1016/j.ejmp.2021.01.004_b0090 article-title: Relationships Between Lung Computed Tomographic Density, Gas Exchange, and PEEP in Acute Respiratory Failure publication-title: Anesthesiology doi: 10.1097/00000542-198812000-00005 – year: 2009 ident: 10.1016/j.ejmp.2021.01.004_b0225 article-title: The impact of respiratory motion on tumor quantification and delineation in static PET/CT imaging publication-title: Phys Med Biol doi: 10.1088/0031-9155/54/24/007 – volume: 30 start-page: 4407 year: 2020 ident: 10.1016/j.ejmp.2021.01.004_b0040 article-title: CT image visual quantitative evaluation and clinical classification of coronavirus disease (COVID-19) publication-title: Eur Radiol doi: 10.1007/s00330-020-06817-6 – ident: 10.1016/j.ejmp.2021.01.004_b0170 – volume: 2 year: 2020 ident: 10.1016/j.ejmp.2021.01.004_b0045 article-title: Chest CT Severity Score: An Imaging Tool for Assessing Severe COVID-19 publication-title: Radiol Cardiothorac Imaging doi: 10.1148/ryct.2020200047 – volume: 17 start-page: R93 year: 2013 ident: 10.1016/j.ejmp.2021.01.004_b0135 article-title: Limits of normality of quantitative thoracic CT analysis publication-title: Crit Care doi: 10.1186/cc12738 – volume: 80 start-page: 119 year: 2020 ident: 10.1016/j.ejmp.2021.01.004_b0020 article-title: Dosimetric and radiation cancer risk evaluation of high resolution thorax CT during COVID-19 outbreak publication-title: Phys Medica doi: 10.1016/j.ejmp.2020.10.018 – volume: 65 start-page: 53 year: 2019 ident: 10.1016/j.ejmp.2021.01.004_b0150 article-title: Availability of a simplified lung ventilation imaging algorithm based on four-dimensional computed tomography publication-title: Phys Medica doi: 10.1016/j.ejmp.2019.08.006 – ident: 10.1016/j.ejmp.2021.01.004_b0165 doi: 10.1016/j.mri.2012.05.001 – volume: 85 start-page: 125 year: 2016 ident: 10.1016/j.ejmp.2021.01.004_b0070 article-title: Quantitative CT analysis of honeycombing area in idiopathic pulmonary fibrosis: Correlations with pulmonary function tests publication-title: Eur J Radiol doi: 10.1016/j.ejrad.2015.11.011 – ident: 10.1016/j.ejmp.2021.01.004_b0035 doi: 10.1148/ryct.2020200152 – ident: 10.1016/j.ejmp.2021.01.004_b0075 doi: 10.15326/jcopdf.1.1.2014.0125 – year: 2013 ident: 10.1016/j.ejmp.2021.01.004_b0155 article-title: The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository publication-title: J Digit Imaging doi: 10.1007/s10278-013-9622-7 – year: 2002 ident: 10.1016/j.ejmp.2021.01.004_b0220 article-title: Effect of respiratory gating on reducing lung motion artifacts in PET imaging of lung cancer publication-title: Med Phys doi: 10.1118/1.1448824 – volume: 18 start-page: 1 year: 2017 ident: 10.1016/j.ejmp.2021.01.004_b0080 article-title: Densitometric and local histogram based analysis of computed tomography images in patients with idiopathic pulmonary fibrosis publication-title: Respir Res doi: 10.1186/s12931-017-0527-8 – volume: 295 start-page: 202 year: 2020 ident: 10.1016/j.ejmp.2021.01.004_b0010 article-title: CT imaging features of 2019 novel coronavirus (2019-NCoV) publication-title: Radiology doi: 10.1148/radiol.2020200230 – ident: 10.1016/j.ejmp.2021.01.004_b0055 doi: 10.21037/jtd.2017.08.17 – volume: 100 start-page: 99 year: 2018 ident: 10.1016/j.ejmp.2021.01.004_b0190 article-title: Quantitative computed tomography applied to interstitial lung diseases publication-title: Eur J Radiol doi: 10.1016/j.ejrad.2018.01.018 |
SSID | ssj0032255 |
Score | 2.2347372 |
Snippet | •A new approach has been proposed to overcome limitations of quantitative metrics calculated from lung CT images.•New metrics, derived from physics assumptions... Quantitative metrics in lung computed tomography (CT) images have been widely used, often without a clear connection with physiology. This work proposes a... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 28 |
SubjectTerms | Adolescent Adult Aged Aged, 80 and over Algorithms Computed tomography COVID-19 COVID-19 - diagnostic imaging Female Humans Image analysis Image Processing, Computer-Assisted Lung - diagnostic imaging Lung Diseases - diagnostic imaging Male Middle Aged Original Paper QCT Quantitative imaging Radiomic Tomography, X-Ray Computed Young Adult |
Title | A patient-specific approach for quantitative and automatic analysis of computed tomography images in lung disease: Application to COVID-19 patients |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1120179721000053 https://dx.doi.org/10.1016/j.ejmp.2021.01.004 https://www.ncbi.nlm.nih.gov/pubmed/33567361 https://www.proquest.com/docview/2488574915 https://pubmed.ncbi.nlm.nih.gov/PMC7843021 |
Volume | 82 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWqIiEuiG8WaGUkbihsYnvshNtqS7UFUS4U9WY5sSNStdnC7l75E_3DnUmcwAIqElIO-bAVyx4_j-U3bxh7BaYEk9Y60dLniXI5JA5Kh7sU76FMPa3ixLY41osT9f4UTnfYfIiFIVplxP4e0zu0jm-msTenl00zxXkoyJxwC5N2IaUUwa4MWfmbHyPNg-wVugQruE2i0jFwpud4hbML0qwUWSfdGZO1_WVx-tP5_J1D-cuidHiP3Y3eJJ_1Db7PdkL7gN3-GM_LH7KrGY_CqQmFVBItiA8q4hzdVf5t49ouzAxBj7vWc7dZLzsVV3zq5Ur4suZVn_vBc_wYNa55c4FQtOJNy88RMHg86XnLZz-PxLE4n3_6cnSQZMXQkNUjdnL47vN8kcQ0DEkFqV4n6LM4CVWoQmFKUWdS54UvZC4MuWeIT96VIGqv85A7U2sIUnrlhDfK69qBfMx222UbnjLunC7TOqvLygRVOe8AyoC3hYAKsUdMWDb0v62iRjmlyji3AxntzNKYWRozm-KVqgl7Pda57BU6biwth2G1Q-wpoqXFBeTGWjDW2rLOf9Z7OViOxWlLZzGuDcvNygoETjCqyGDCnvSWNLZeSiC2XTZhZsvGxgIkCb79pW2-dtLgJlcSf__sP9v7nN2hp56V_oLtrr9vwh46Xetyv5tV--zW7OjD4vgad6Iuxw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NToK9IL5XPo3EG4qa2Dk74a3qNrVsKy8b2pvlxI7ItKWDtn8J_zDnxCkU0JCQ8pDEPuUUn38-y3e_A3iHqkAVVzKSwmZRajKMDBaGdinWYhFbv4r7aIu5nJ6nHy_wYgcmfS6MD6sM2N9heovW4c0o_M3RTV2PaB5yb060hYnblNI7sOvZqXAAu-PZ8XTeA7I3WWxrrNBOyQuE3JkuzMtdXnvaSp607J2hXttf1qc__c_fwyh_WZeOHsD94FCycafzQ9hxzSO4exqOzB_D9zEL3KmRz6r0kUGsJxJn5LGyr2vTtJlmhHvMNJaZ9WrRErnSU8dYwhYVK7vyD5ZRY6C5ZvU1odGS1Q27Isxg4bDnAxv_PBWn7mzy6fPsIEryXpHlEzg_OjybTKNQiSEqMZariNwWI7B0pctVwatEyCy3uci48h4aQZQ1BfLKysxlRlUSnRA2Ndyq1MrKoHgKg2bRuH1gxsgirpKqKJVLS2MNYuHoNudYEvzwIST9_9dloCn31TKudB-Pdqn9mGk_ZjqmK06H8H4jc9ORdNzaW_TDqvv0UwJMTWvIrVK4kdoy0H_Kve0tR9PM9ccxpnGL9VJzwk5UaZ7gEJ51lrTRXgj0AXfJENSWjW06eFbw7Zam_tKyg6ssFfT55_-p7xu4Nz07PdEns_nxC9jzLV2Q-ksYrL6t3SvywVbF6zDHfgC1NjF4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+patient-specific+approach+for+quantitative+and+automatic+analysis+of+computed+tomography+images+in+lung+disease%3A+Application+to+COVID-19+patients&rft.jtitle=Physica+medica&rft.au=Berta%2C+L.&rft.au=De+Mattia%2C+C.&rft.au=Rizzetto%2C+F.&rft.au=Carrazza%2C+S.&rft.date=2021-02-01&rft.pub=Elsevier+Ltd&rft.issn=1120-1797&rft.eissn=1724-191X&rft.volume=82&rft.spage=28&rft.epage=39&rft_id=info:doi/10.1016%2Fj.ejmp.2021.01.004&rft.externalDocID=S1120179721000053 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1120-1797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1120-1797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1120-1797&client=summon |