Control of Tumorigenesis and Chemoresistance by the DEK Oncogene
Slight modifications of chromatin dynamics can translate into small- and large-scale changes in DNA replication and DNA repair. Similarly, promoter usage and accessibility are tightly dependent on chromatin architecture. Consequently, it is perhaps not surprising that factors controlling chromatin o...
Saved in:
Published in | Clinical cancer research Vol. 16; no. 11; pp. 2932 - 2938 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Philadelphia, PA
American Association for Cancer Research
01.06.2010
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Slight modifications of chromatin dynamics can translate into small- and large-scale changes in DNA replication and DNA repair. Similarly, promoter usage and accessibility are tightly dependent on chromatin architecture. Consequently, it is perhaps not surprising that factors controlling chromatin organization are frequently deregulated (directly or indirectly) in cancer cells. DEK is emerging as a novel class of DNA topology modulators that can be both targets and effectors of protumorigenic events. The locus containing DEK at chromosome 6p22.3 is amplified or reorganized in multiple cancer types. In addition, DEK can be subject to a variety of tumor-associated transcriptional and post-translational modifications. In turn, DEK can favor cell transformation, at least in part by inhibiting cell differentiation and premature senescence. More recently, DEK has also been linked to the resistance of malignant cells to apoptotic inducers. Interestingly, a fraction of DEK can also bind RNA and affect alternative splicing, further illustrating the pleiotropic roles that this protein may exert in cancer cells. Here we will summarize the current literature about the regulation and function(s) of DEK as a proto-oncogene. In addition, the translational relevance of DEK as a putative diagnostic marker and candidate for drug development will be discussed. Clin Cancer Res; 16(11); 2932–8. ©2010 AACR. |
---|---|
AbstractList | Slight modifications of chromatin dynamics can translate into small- and large-scale changes in DNA replication and DNA repair. Similarly, promoter usage and accessibility are tightly dependent on chromatin architecture. Consequently, it is perhaps not surprising that factors controlling chromatin organization are frequently deregulated (directly or indirectly) in cancer cells. DEK is emerging as a novel class of DNA topology modulators that can be both targets and effectors of protumorigenic events. The locus containing DEK at chromosome 6p22.3 is amplified or reorganized in multiple cancer types. In addition, DEK can be subject to a variety of tumor-associated transcriptional and post-translational modifications. In turn, DEK can favor cell transformation, at least in part by inhibiting cell differentiation and premature senescence. More recently, DEK has also been linked to the resistance of malignant cells to apoptotic inducers. Interestingly, a fraction of DEK can also bind RNA and affect alternative splicing, further illustrating the pleiotropic roles that this protein may exert in cancer cells. Here we will summarize the current literature about the regulation and function(s) of DEK as a proto-oncogene. In addition, the translational relevance of DEK as a putative diagnostic marker and candidate for drug development will be discussed. Slight modifications of chromatin dynamics can translate into short and large-scale changes in DNA replication and DNA repair. Similarly, promoter usage and accessibility are tightly dependent on chromatin architecture. Consequently, it is perhaps not surprising that factors controlling chromatin organization are frequently deregulated (directly or indirectly) in cancer cells. DEK is emerging as a novel class of DNA topology modulators which can be both targets and effectors of pro-tumorigenic events. The locus containing DEK at chromosome 6p22.3 is amplified or reorganized in multiple cancer types. In addition, DEK can be subject to a variety of tumor-associated transcriptional and post-translational modifications. In turn, DEK can favor cell transformation, at least in part by inhibiting cell differentiation and premature senescence. More recently, DEK has also been linked to the resistance of malignant cells to apoptotic inducers. Interestingly, a fraction of DEK can also bind RNA and affect alternative splicing, further illustrating the pleiotropic roles that this protein may exert in cancer cells. Here we will summarize the current literature regarding the regulation and function(s) of DEK as a proto-oncogene. In addition, the translational relevance of DEK as a putative diagnostic marker and candidate for drug development will also be discussed. Slight modifications of chromatin dynamics can translate into small- and large-scale changes in DNA replication and DNA repair. Similarly, promoter usage and accessibility are tightly dependent on chromatin architecture. Consequently, it is perhaps not surprising that factors controlling chromatin organization are frequently deregulated (directly or indirectly) in cancer cells. DEK is emerging as a novel class of DNA topology modulators that can be both targets and effectors of protumorigenic events. The locus containing DEK at chromosome 6p22.3 is amplified or reorganized in multiple cancer types. In addition, DEK can be subject to a variety of tumor-associated transcriptional and post-translational modifications. In turn, DEK can favor cell transformation, at least in part by inhibiting cell differentiation and premature senescence. More recently, DEK has also been linked to the resistance of malignant cells to apoptotic inducers. Interestingly, a fraction of DEK can also bind RNA and affect alternative splicing, further illustrating the pleiotropic roles that this protein may exert in cancer cells. Here we will summarize the current literature about the regulation and function(s) of DEK as a proto-oncogene. In addition, the translational relevance of DEK as a putative diagnostic marker and candidate for drug development will be discussed.Slight modifications of chromatin dynamics can translate into small- and large-scale changes in DNA replication and DNA repair. Similarly, promoter usage and accessibility are tightly dependent on chromatin architecture. Consequently, it is perhaps not surprising that factors controlling chromatin organization are frequently deregulated (directly or indirectly) in cancer cells. DEK is emerging as a novel class of DNA topology modulators that can be both targets and effectors of protumorigenic events. The locus containing DEK at chromosome 6p22.3 is amplified or reorganized in multiple cancer types. In addition, DEK can be subject to a variety of tumor-associated transcriptional and post-translational modifications. In turn, DEK can favor cell transformation, at least in part by inhibiting cell differentiation and premature senescence. More recently, DEK has also been linked to the resistance of malignant cells to apoptotic inducers. Interestingly, a fraction of DEK can also bind RNA and affect alternative splicing, further illustrating the pleiotropic roles that this protein may exert in cancer cells. Here we will summarize the current literature about the regulation and function(s) of DEK as a proto-oncogene. In addition, the translational relevance of DEK as a putative diagnostic marker and candidate for drug development will be discussed. Slight modifications of chromatin dynamics can translate into small- and large-scale changes in DNA replication and DNA repair. Similarly, promoter usage and accessibility are tightly dependent on chromatin architecture. Consequently, it is perhaps not surprising that factors controlling chromatin organization are frequently deregulated (directly or indirectly) in cancer cells. DEK is emerging as a novel class of DNA topology modulators that can be both targets and effectors of protumorigenic events. The locus containing DEK at chromosome 6p22.3 is amplified or reorganized in multiple cancer types. In addition, DEK can be subject to a variety of tumor-associated transcriptional and post-translational modifications. In turn, DEK can favor cell transformation, at least in part by inhibiting cell differentiation and premature senescence. More recently, DEK has also been linked to the resistance of malignant cells to apoptotic inducers. Interestingly, a fraction of DEK can also bind RNA and affect alternative splicing, further illustrating the pleiotropic roles that this protein may exert in cancer cells. Here we will summarize the current literature about the regulation and function(s) of DEK as a proto-oncogene. In addition, the translational relevance of DEK as a putative diagnostic marker and candidate for drug development will be discussed. Clin Cancer Res; 16(11); 2932–8. ©2010 AACR. |
Author | Soengas, María S. Riveiro-Falkenbach, Erica |
Author_xml | – sequence: 1 givenname: Erica surname: Riveiro-Falkenbach fullname: Riveiro-Falkenbach, Erica – sequence: 2 givenname: María S. surname: Soengas fullname: Soengas, María S. |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22853334$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/20501624$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kVlLxDAUhYMo7j9B6Yv41PEmabogiFJXHBBEn0Mab5xIJ9GmI8y_N8UZtwefsn33nHDOFll13iEhexRGlIryiEJRppBxNqrr-xSqlHEOK2STClGknOViNe6XzAbZCuEFgGYUsnWywUAAzVm2SU5r7_rOt4k3ycNs6jv7jA6DDYlyT0k9wXg1HHvlNCbNPOknmJxf3CZ3TvsB3SFrRrUBdxfrNnm8vHior9Px3dVNfTZOtYC8T7MGS6WQV6IqQJdNnms0mTAVRSOMUbngYLjKacMRmooxwTgrFIVGZ9pwwbfJyafu66yZ4pPG-G3VytfOTlU3l15Z-fvF2Yl89u-SVZyygkeBw4VA599mGHo5tUFj2yqHfhZkRCjLo1Mk939afXksU4vAwQJQQavWdDEcG745VkYVPnDHn5zufAgdGqltr3o7RK5sKynIoUs59CSHnmTsUkIlhy7jtPgzvTT4f-4DASuh7w |
CODEN | CCREF4 |
CitedBy_id | crossref_primary_10_4137_CIN_S8633 crossref_primary_10_1016_j_trsl_2012_02_002 crossref_primary_10_3892_etm_2021_10752 crossref_primary_10_3390_ijms241814069 crossref_primary_10_1105_tpc_114_129254 crossref_primary_10_1097_JS9_0000000000002195 crossref_primary_10_1126_science_1250255 crossref_primary_10_18632_oncotarget_2809 crossref_primary_10_1111_j_1755_148X_2010_00820_x crossref_primary_10_1038_onc_2016_118 crossref_primary_10_1186_1471_2407_13_366 crossref_primary_10_1186_1746_1596_9_67 crossref_primary_10_7124_bc_000074 crossref_primary_10_4236_abb_2014_56064 crossref_primary_10_21320_2500_2139_2017_10_2_235_249 crossref_primary_10_1038_onc_2014_346 crossref_primary_10_3390_ijms23115950 crossref_primary_10_1042_BCJ20190169 crossref_primary_10_1177_1010428317716248 crossref_primary_10_18632_oncotarget_8565 crossref_primary_10_1101_gad_2036411 crossref_primary_10_1002_1873_3468_14070 crossref_primary_10_2147_CMAR_S265356 crossref_primary_10_1007_s00401_011_0820_4 crossref_primary_10_1016_j_neuroscience_2017_11_025 crossref_primary_10_1111_j_1440_1827_2011_02775_x crossref_primary_10_1038_s41408_024_01145_0 crossref_primary_10_3892_mmr_2017_7943 crossref_primary_10_2147_CMAR_S253777 crossref_primary_10_1593_neo_131658 crossref_primary_10_1182_blood_2011_10_383083 crossref_primary_10_1016_j_bcmd_2014_11_014 crossref_primary_10_1016_j_gene_2017_11_011 crossref_primary_10_18632_oncotarget_21864 crossref_primary_10_1111_pcmr_12563 crossref_primary_10_1016_j_ccell_2014_10_004 crossref_primary_10_1111_j_1600_0560_2012_01941_x crossref_primary_10_1002_1873_3468_14072 crossref_primary_10_1016_j_ceb_2013_01_001 crossref_primary_10_3109_07357907_2012_697231 crossref_primary_10_1038_ncomms13418 crossref_primary_10_1080_15592324_2021_2024738 crossref_primary_10_1186_s13020_022_00623_6 crossref_primary_10_1002_stem_1443 crossref_primary_10_1038_s41467_017_02353_y crossref_primary_10_3389_fnagi_2022_1018180 crossref_primary_10_1128_MCB_00382_15 crossref_primary_10_1016_j_tvjl_2015_02_009 crossref_primary_10_1124_jpet_119_263202 crossref_primary_10_1016_j_critrevonc_2022_103897 crossref_primary_10_1038_s41379_022_01117_4 crossref_primary_10_1161_CIRCGENETICS_110_958926 crossref_primary_10_1371_journal_pone_0178025 crossref_primary_10_2217_fon_2016_0059 crossref_primary_10_1016_j_bbrc_2011_01_109 crossref_primary_10_1371_journal_pone_0111260 crossref_primary_10_1042_BSR20100141 crossref_primary_10_1586_eop_10_75 crossref_primary_10_1002_cnr2_1369 crossref_primary_10_1016_j_bcmd_2014_07_009 crossref_primary_10_1089_scd_2011_0451 crossref_primary_10_1186_1476_4598_13_215 crossref_primary_10_1084_jem_20201974 crossref_primary_10_1155_2015_106517 crossref_primary_10_3390_ijms23126451 |
Cites_doi | 10.1038/nrm1172 10.1038/sj.onc.1206041 10.1128/MCB.01030-06 10.4161/cc.8.9.8314 10.1074/jbc.M600233200 10.1074/jbc.M100162200 10.1074/jbc.M600915200 10.1074/jbc.M204045200 10.1111/j.1440-1827.2008.02239.x 10.1158/0008-5472.CAN-09-1063 10.1128/MCB.00430-06 10.1128/JVI.79.22.14309-14317.2005 10.1111/j.1365-2443.2009.01324.x 10.1111/j.1440-1827.2009.02392.x 10.1242/jcs.115.16.3319 10.2353/ajpath.2009.080330 10.1016/j.bbrc.2007.05.019 10.1002/gcc.20531 10.1046/j.1365-2141.2002.03734.x 10.1016/j.cancergencyto.2007.08.014 10.1038/nsmb1248 10.1136/jcp.2005.034389 10.1093/nar/gkg864 10.1093/intimm/dxh261 10.1126/science.1128659 10.1110/ps.073244108 10.1128/MCB.24.13.6011-6020.2004 10.1182/blood.V79.11.2990.2990 10.1158/0008-5472.CAN-08-2304 10.1128/MCB.01921-07 10.1093/nar/gkg247 10.1080/1042819031000119299 10.1016/S0002-9440(10)63679-6 10.1002/jcb.22083 10.1128/MCB.24.13.6000-6010.2004 10.1016/S1535-6108(02)00102-2 10.1101/gad.14.11.1308 10.1158/1541-7786.MCR-07-0055 10.1038/nature05661 10.1083/jcb.150.2.309 10.1038/sj.onc.1208792 10.1016/S0002-9440(10)63118-5 10.1101/gad.1857410 10.1016/j.molcel.2009.11.016 10.1002/gcc.20263 10.4161/cc.5.11.2801 10.1101/gad.396106 10.1128/MCB.20.20.7480-7489.2000 10.1093/nar/gki258 10.1016/S0304-3835(00)00462-6 10.1074/jbc.M500884200 10.1093/emboj/20.17.4987 10.1038/sj.leu.2403835 10.1111/j.1365-2362.2007.01841.x 10.1038/nrm2233 10.1016/j.febslet.2006.04.081 |
ContentType | Journal Article |
Copyright | 2015 INIST-CNRS Copyright 2010 AACR. |
Copyright_xml | – notice: 2015 INIST-CNRS – notice: Copyright 2010 AACR. |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1158/1078-0432.CCR-09-2330 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1557-3265 |
EndPage | 2938 |
ExternalDocumentID | PMC2931273 20501624 22853334 10_1158_1078_0432_CCR_09_2330 |
Genre | Review Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: R01 CA107237 – fundername: NCI NIH HHS grantid: R01 CA125017 – fundername: NCI NIH HHS grantid: CA125017 |
GroupedDBID | --- 18M 29B 2FS 2WC 34G 39C 3O- 4H- 53G 5GY 5RE 5VS 6J9 AAFWJ AAJMC AAYXX ABOCM ACGFO ACIWK ACPRK ACSVP ADBBV ADCOW AENEX AFFNX AFHIN AFOSN AFRAH AFUMD ALMA_UNASSIGNED_HOLDINGS BAWUL BR6 BTFSW C1A CITATION CS3 DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 IH2 KQ8 L7B LSO OK1 P0W P2P QTD RCR RHI RNS SJN TR2 UDS W2D W8F WOQ YKV .55 .GJ 1CY ADNWM AETEA AI. H~9 IQODW J5H MVM OHT VH1 WHG X7M XJT ZCG ZGI CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c506t-4be8aae395970c8b66cef45f91ef5ffa6530f3a61b3e0b92252327a10bc4cf353 |
ISSN | 1078-0432 1557-3265 |
IngestDate | Thu Aug 21 18:42:57 EDT 2025 Fri Jul 11 15:17:53 EDT 2025 Sat May 31 02:09:21 EDT 2025 Mon Jul 21 09:11:41 EDT 2025 Tue Jul 01 03:06:27 EDT 2025 Thu Apr 24 22:58:04 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | Control Treatment resistance Tumorigenicity Onc gene Carcinogenesis |
Language | English |
License | CC BY 4.0 Copyright 2010 AACR. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c506t-4be8aae395970c8b66cef45f91ef5ffa6530f3a61b3e0b92252327a10bc4cf353 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://aacrjournals.org/clincancerres/article-pdf/16/11/2932/1989573/2932.pdf |
PMID | 20501624 |
PQID | 733126353 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2931273 proquest_miscellaneous_733126353 pubmed_primary_20501624 pascalfrancis_primary_22853334 crossref_citationtrail_10_1158_1078_0432_CCR_09_2330 crossref_primary_10_1158_1078_0432_CCR_09_2330 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-06-01 |
PublicationDateYYYYMMDD | 2010-06-01 |
PublicationDate_xml | – month: 06 year: 2010 text: 2010-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Philadelphia, PA |
PublicationPlace_xml | – name: Philadelphia, PA – name: United States |
PublicationTitle | Clinical cancer research |
PublicationTitleAlternate | Clin Cancer Res |
PublicationYear | 2010 |
Publisher | American Association for Cancer Research |
Publisher_xml | – name: American Association for Cancer Research |
References | Wise-Draper (2022061022494875700_bib39) 2005; 79 Kroes (2022061022494875700_bib24) 2000; 156 Wu (2022061022494875700_bib31) 2008; 58 Gray-Schopfer (2022061022494875700_bib57) 2007; 445 Nagpal (2022061022494875700_bib33) 2007; 37 Grasemann (2022061022494875700_bib21) 2005; 24 Larramendy (2022061022494875700_bib20) 2002; 87 Mor-Vaknin (2022061022494875700_bib17) 2006; 26 Garcon (2022061022494875700_bib62) 2005; 19 Kappes (2022061022494875700_bib44) 2008; 28 Casas (2022061022494875700_bib19) 2003; 44 Goodarzi (2022061022494875700_bib37) 2009; 36 Kappes (2022061022494875700_bib10) 2004; 24 Savli (2022061022494875700_bib58) 2002; 118 Soekarman (2022061022494875700_bib3) 1992; 79 Abba (2022061022494875700_bib32) 2007; 5 Sawatsubashi (2022061022494875700_bib45) 2009; 24 Hollenbach (2022061022494875700_bib52) 2002; 115 Wise-Draper (2022061022494875700_bib40) 2009; 69 Campillos (2022061022494875700_bib55) 2003; 31 Ageberg (2022061022494875700_bib59) 2006; 91 Sitwala (2022061022494875700_bib36) 2002; 21 Santos (2022061022494875700_bib35) 2007; 60 von Lindern (2022061022494875700_bib2) 1992; 12 Kim (2022061022494875700_bib61) 2009; 106 Soares (2022061022494875700_bib14) 2006; 312 Le Hir (2022061022494875700_bib16) 2001; 20 Gamble (2022061022494875700_bib46) 2007; 14 Alexiadis (2022061022494875700_bib4) 2000; 14 Devany (2022061022494875700_bib12) 2008; 17 Khodadoust (2022061022494875700_bib26) 2009; 69 Waldmann (2022061022494875700_bib9) 2003; 31 Orlic (2022061022494875700_bib22) 2006; 45 Waldmann (2022061022494875700_bib5) 2002; 277 Sanchez-Carbayo (2022061022494875700_bib29) 2003; 163 Ko (2022061022494875700_bib48) 2006; 580 McGarvey (2022061022494875700_bib15) 2000; 150 Wise-Draper (2022061022494875700_bib60) 2006; 26 Campisi (2022061022494875700_bib56) 2007; 8 Kappes (2022061022494875700_bib43) 2004; 24 Kondoh (2022061022494875700_bib25) 1999; 59 Ouararhni (2022061022494875700_bib49) 2006; 20 Ageberg (2022061022494875700_bib51) 2008; 47 Han (2022061022494875700_bib30) 2009; 59 Carro (2022061022494875700_bib27) 2006; 5 Cavellan (2022061022494875700_bib50) 2006; 281 Sitwala (2022061022494875700_bib18) 2003; 23 Castellano (2022061022494875700_bib38) 2009; 8 Kappes (2022061022494875700_bib1) 2001; 276 Cleary (2022061022494875700_bib8) 2005; 280 Hu (2022061022494875700_bib6) 2007; 358 Takata (2022061022494875700_bib7) 2009; 14 Hu (2022061022494875700_bib54) 2005; 17 Böhm (2022061022494875700_bib11) 2005; 33 Evans (2022061022494875700_bib28) 2004; 164 Sammons (2022061022494875700_bib53) 2006; 281 Fornerod (2022061022494875700_bib34) 1995; 10 Wise-Draper (2022061022494875700_bib41) 2009; 174 Sherr (2022061022494875700_bib42) 2002; 2 Lamond (2022061022494875700_bib47) 2003; 4 Paderova (2022061022494875700_bib23) 2007; 179 Kipp (2022061022494875700_bib13) 2000; 20 |
References_xml | – volume: 4 start-page: 605 year: 2003 ident: 2022061022494875700_bib47 article-title: Nuclear speckles: a model for nuclear organelles publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm1172 – volume: 21 start-page: 8862 year: 2002 ident: 2022061022494875700_bib36 article-title: YY1 and NF-Y binding sites regulate the transcriptional activity of the dek and dek-can promoter publication-title: Oncogene doi: 10.1038/sj.onc.1206041 – volume: 26 start-page: 9484 year: 2006 ident: 2022061022494875700_bib17 article-title: The DEK nuclear autoantigen is a secreted chemotactic factor publication-title: Mol Cell Biol doi: 10.1128/MCB.01030-06 – volume: 8 start-page: 1367 year: 2009 ident: 2022061022494875700_bib38 article-title: The involvement of the transcription factor Yin Yang 1 in cancer development and progression publication-title: Cell Cycle doi: 10.4161/cc.8.9.8314 – volume: 281 start-page: 16264 year: 2006 ident: 2022061022494875700_bib50 article-title: The WSTF-SNF2h chromatin remodeling complex interacts with several nuclear proteins in transcription publication-title: J Biol Chem doi: 10.1074/jbc.M600233200 – volume: 276 start-page: 26317 year: 2001 ident: 2022061022494875700_bib1 article-title: Subcellular localization of the human proto-oncogene protein DEK publication-title: J Biol Chem doi: 10.1074/jbc.M100162200 – volume: 281 start-page: 26802 year: 2006 ident: 2022061022494875700_bib53 article-title: Negative regulation of the RelA/p65 transactivation function by the product of the DEK proto-oncogene publication-title: J Biol Chem doi: 10.1074/jbc.M600915200 – volume: 277 start-page: 24988 year: 2002 ident: 2022061022494875700_bib5 article-title: The ubiquitous chromatin protein DEK alters the structure of DNA by introducing positive supercoils publication-title: J Biol Chem doi: 10.1074/jbc.M204045200 – volume: 58 start-page: 378 year: 2008 ident: 2022061022494875700_bib31 article-title: DEK overexpression in uterine cervical cancers publication-title: Pathol Int doi: 10.1111/j.1440-1827.2008.02239.x – volume: 69 start-page: 6405 year: 2009 ident: 2022061022494875700_bib26 article-title: Melanoma proliferation and chemoresistance controlled by the DEK oncogene publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-09-1063 – volume: 87 start-page: 569 year: 2002 ident: 2022061022494875700_bib20 article-title: Overexpression of translocation-associated fusion genes of FGFRI, MYC, NPMI, and DEK, but absence of the translocations in acute myeloid leukemia. A microarray analysis publication-title: Haematologica – volume: 26 start-page: 7506 year: 2006 ident: 2022061022494875700_bib60 article-title: I. Apoptosis inhibition by the human DEK oncoprotein involves interference with p53 functions publication-title: Mol Cell Biol doi: 10.1128/MCB.00430-06 – volume: 79 start-page: 14309 year: 2005 ident: 2022061022494875700_bib39 article-title: The human DEK proto-oncogene is a senescence inhibitor and an upregulated target of high-risk human papillomavirus E7 publication-title: J Virol doi: 10.1128/JVI.79.22.14309-14317.2005 – volume: 14 start-page: 975 year: 2009 ident: 2022061022494875700_bib7 article-title: Proteome analysis of human nuclear insoluble fractions publication-title: Genes Cells doi: 10.1111/j.1365-2443.2009.01324.x – volume: 59 start-page: 443 year: 2009 ident: 2022061022494875700_bib30 article-title: Clinicopathological significance of DEK overexpression in serous ovarian tumors publication-title: Pathol Int doi: 10.1111/j.1440-1827.2009.02392.x – volume: 115 start-page: 3319 year: 2002 ident: 2022061022494875700_bib52 article-title: Daxx and histone deacetylase II associate with chromatin through an interaction with core histones and the chromatin-associated protein Dek publication-title: J Cell Sci doi: 10.1242/jcs.115.16.3319 – volume: 174 start-page: 71 year: 2009 ident: 2022061022494875700_bib41 article-title: DEK proto-oncogene expression interferes with the normal epithelial differentiation program publication-title: Am J Pathol doi: 10.2353/ajpath.2009.080330 – volume: 358 start-page: 1008 year: 2007 ident: 2022061022494875700_bib6 article-title: The distribution of the DEK protein in mammalian chromatin publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2007.05.019 – volume: 47 start-page: 276 year: 2008 ident: 2022061022494875700_bib51 article-title: Identification of a novel and myeloid specific role of the leukemia-associated fusion protein DEK-NUP214 leading to increased protein synthesis publication-title: Genes Chromosomes Cancer doi: 10.1002/gcc.20531 – volume: 118 start-page: 1065 year: 2002 ident: 2022061022494875700_bib58 article-title: Gene expression analysis of 1,25(OH)2D3-dependent differentiation of HL-60 cells: a cDNA array study publication-title: Br J Haematol doi: 10.1046/j.1365-2141.2002.03734.x – volume: 179 start-page: 102 year: 2007 ident: 2022061022494875700_bib23 article-title: Novel 6p rearrangements and recurrent translocation breakpoints in retinoblastoma cell lines identified by spectral karyotyping and mBAND analyses publication-title: Cancer Genet Cytogenet doi: 10.1016/j.cancergencyto.2007.08.014 – volume: 14 start-page: 548 year: 2007 ident: 2022061022494875700_bib46 article-title: SET and PARP1 remove DEK from chromatin to permit access by the transcription machinery publication-title: Nat Struct Mol Biol doi: 10.1038/nsmb1248 – volume: 60 start-page: 1 year: 2007 ident: 2022061022494875700_bib35 article-title: Chromosome 6p amplification and cancer progression publication-title: J Clin Pathol doi: 10.1136/jcp.2005.034389 – volume: 91 start-page: 268 year: 2006 ident: 2022061022494875700_bib59 article-title: The involvement of cellular proliferation status in the expression of the human proto-oncogene DEK publication-title: Haematologica – volume: 31 start-page: 7003 year: 2003 ident: 2022061022494875700_bib9 article-title: Structure-specific binding of the proto-oncogene protein DEK to DNA publication-title: Nucleic Acids Res doi: 10.1093/nar/gkg864 – volume: 17 start-page: 789 year: 2005 ident: 2022061022494875700_bib54 article-title: Distribution of the chromatin protein DEK distinguishes active and inactive CD21/CR2 gene in pre- and mature B lymphocytes publication-title: Int Immunol doi: 10.1093/intimm/dxh261 – volume: 23 start-page: 2155 year: 2003 ident: 2022061022494875700_bib18 article-title: Minireview: DEK and gene regulation, oncogenesis and AIDS publication-title: Anticancer Res – volume: 312 start-page: 1961 year: 2006 ident: 2022061022494875700_bib14 article-title: Intron removal requires proofreading of U2AF/3′ splice site recognition by DEK publication-title: Science doi: 10.1126/science.1128659 – volume: 17 start-page: 205 year: 2008 ident: 2022061022494875700_bib12 article-title: Solution NMR structure of the N-terminal domain of the human DEK protein publication-title: Protein Sci doi: 10.1110/ps.073244108 – volume: 24 start-page: 6011 year: 2004 ident: 2022061022494875700_bib43 article-title: Phosphorylation by protein kinase CK2 changes the DNA binding properties of the human chromatin protein DEK publication-title: Mol Cell Biol doi: 10.1128/MCB.24.13.6011-6020.2004 – volume: 59 start-page: 4990 year: 1999 ident: 2022061022494875700_bib25 article-title: Identification and characterization of genes associated with human hepatocellular carcinogenesis publication-title: Cancer Res – volume: 79 start-page: 2990 year: 1992 ident: 2022061022494875700_bib3 article-title: The translocation (6;9) (p23;q34) shows consistent rearrangement of two genes and defines a myeloproliferative disorder with specific clinical features publication-title: Blood doi: 10.1182/blood.V79.11.2990.2990 – volume: 69 start-page: 1792 year: 2009 ident: 2022061022494875700_bib40 article-title: I. Overexpression of the cellular DEK protein promotes epithelial transformation in vitro and in vivo publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-08-2304 – volume: 28 start-page: 3245 year: 2008 ident: 2022061022494875700_bib44 article-title: DEK is a poly(ADP-ribose) acceptor in apoptosis and mediates resistance to genotoxic stress publication-title: Mol Cell Biol doi: 10.1128/MCB.01921-07 – volume: 31 start-page: 1571 year: 2003 ident: 2022061022494875700_bib55 article-title: Transcriptional activation by AP-2α is modulated by the oncogene DEK publication-title: Nucleic Acids Res doi: 10.1093/nar/gkg247 – volume: 44 start-page: 1935 year: 2003 ident: 2022061022494875700_bib19 article-title: Aberrant expression of HOXA9, DEK, CBL and CSF1R in acute myeloid leukemia publication-title: Leuk Lymphoma doi: 10.1080/1042819031000119299 – volume: 12 start-page: 1687 year: 1992 ident: 2022061022494875700_bib2 article-title: The translocation (6;9), associated with a specific subtype of acute myeloid leukemia, results in the fusion of two genes, dek and can, and the expression of a chimeric, leukemia-specific dek-can mRNA publication-title: Mol Cell Biol – volume: 163 start-page: 505 year: 2003 ident: 2022061022494875700_bib29 article-title: Gene discovery in bladder cancer progression using cDNA microarrays publication-title: Am J Pathol doi: 10.1016/S0002-9440(10)63679-6 – volume: 106 start-page: 1048 year: 2009 ident: 2022061022494875700_bib61 article-title: Proteomic analysis of apoptosis related proteins regulated by proto-oncogene protein DEK publication-title: J Cell Biochem doi: 10.1002/jcb.22083 – volume: 24 start-page: 6000 year: 2004 ident: 2022061022494875700_bib10 article-title: Functional domains of the ubiquitous chromatin protein DEK publication-title: Mol Cell Biol doi: 10.1128/MCB.24.13.6000-6010.2004 – volume: 2 start-page: 103 year: 2002 ident: 2022061022494875700_bib42 article-title: The RB and p53 pathways in cancer publication-title: Cancer Cell doi: 10.1016/S1535-6108(02)00102-2 – volume: 14 start-page: 1308 year: 2000 ident: 2022061022494875700_bib4 article-title: The protein encoded by the proto-oncogene DEK changes the topology of chromatin and reduces the efficiency of DNA replication in a chromatin-specific manner publication-title: Genes Dev doi: 10.1101/gad.14.11.1308 – volume: 5 start-page: 881 year: 2007 ident: 2022061022494875700_bib32 article-title: Breast cancer molecular signatures as determined by SAGE: correlation with lymph node status publication-title: Mol Cancer Res doi: 10.1158/1541-7786.MCR-07-0055 – volume: 445 start-page: 851 year: 2007 ident: 2022061022494875700_bib57 article-title: Melanoma biology and new targeted therapy publication-title: Nature doi: 10.1038/nature05661 – volume: 150 start-page: 309 year: 2000 ident: 2022061022494875700_bib15 article-title: The acute myeloid leukemia-associated protein, DEK, forms a splicing-dependent interaction with exon-product complexes publication-title: J Cell Biol doi: 10.1083/jcb.150.2.309 – volume: 24 start-page: 6441 year: 2005 ident: 2022061022494875700_bib21 article-title: Gains and overexpression identify DEK and E2F3 as targets of chromosome 6p gains in retinoblastoma publication-title: Oncogene doi: 10.1038/sj.onc.1208792 – volume: 164 start-page: 285 year: 2004 ident: 2022061022494875700_bib28 article-title: Defining a 0.5-mb region of genomic gain on chromosome 6p22 in bladder cancer by quantitative-multiplex polymerase chain reaction publication-title: Am J Pathol doi: 10.1016/S0002-9440(10)63118-5 – volume: 24 start-page: 159 year: 2009 ident: 2022061022494875700_bib45 article-title: A histone chaperone, DEK, transcriptionally coactivates a nuclear receptor publication-title: Genes Dev doi: 10.1101/gad.1857410 – volume: 10 start-page: 1739 year: 1995 ident: 2022061022494875700_bib34 article-title: Relocation of the carboxyterminal part of CAN from the nuclear envelope to the nucleus as a result of leukemia-specific chromosome rearrangements publication-title: Oncogene – volume: 36 start-page: 900 year: 2009 ident: 2022061022494875700_bib37 article-title: Revealing global regulatory perturbations across human cancers publication-title: Mol Cell doi: 10.1016/j.molcel.2009.11.016 – volume: 45 start-page: 72 year: 2006 ident: 2022061022494875700_bib22 article-title: Expression analysis of 6p22 genomic gain in retinoblastoma publication-title: Genes Chromosomes Cancer doi: 10.1002/gcc.20263 – volume: 5 start-page: 1202 year: 2006 ident: 2022061022494875700_bib27 article-title: DEK Expression is controlled by E2F and deregulated in diverse tumor types publication-title: Cell Cycle doi: 10.4161/cc.5.11.2801 – volume: 20 start-page: 3324 year: 2006 ident: 2022061022494875700_bib49 article-title: The histone variant mH2A1.1 interferes with transcription by down-regulating PARP-1 enzymatic activity publication-title: Genes Dev doi: 10.1101/gad.396106 – volume: 20 start-page: 7480 year: 2000 ident: 2022061022494875700_bib13 article-title: SAF-Box, a conserved protein domain that specifically recognizes scaffold attachment region DNA publication-title: Mol Cell Biol doi: 10.1128/MCB.20.20.7480-7489.2000 – volume: 33 start-page: 1101 year: 2005 ident: 2022061022494875700_bib11 article-title: The SAF-box domain of chromatin protein DEK publication-title: Nucleic Acids Res doi: 10.1093/nar/gki258 – volume: 156 start-page: 191 year: 2000 ident: 2022061022494875700_bib24 article-title: The identification of novel therapeutic targets for the treatment of malignant brain tumors publication-title: Cancer Lett doi: 10.1016/S0304-3835(00)00462-6 – volume: 280 start-page: 31760 year: 2005 ident: 2022061022494875700_bib8 article-title: p300/CBP-associated factor drives DEK into interchromatin granule clusters publication-title: J Biol Chem doi: 10.1074/jbc.M500884200 – volume: 20 start-page: 4987 year: 2001 ident: 2022061022494875700_bib16 article-title: The exon-exon junction complex provides a binding platform for factors involved in mRNA export and nonsense-mediated mRNA decay publication-title: EMBO J doi: 10.1093/emboj/20.17.4987 – volume: 19 start-page: 1338 year: 2005 ident: 2022061022494875700_bib62 article-title: DEK-CAN molecular monitoring of myeloid malignancies could aid therapeutic stratification publication-title: Leukemia doi: 10.1038/sj.leu.2403835 – volume: 37 start-page: 658 year: 2007 ident: 2022061022494875700_bib33 article-title: Identification of differentially expressed genes in tobacco chewing-mediated oral cancer by differential display-polymerase chain reaction publication-title: Eur J Clin Invest doi: 10.1111/j.1365-2362.2007.01841.x – volume: 8 start-page: 729 year: 2007 ident: 2022061022494875700_bib56 article-title: Cellular senescence: when bad things happen to good cells publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm2233 – volume: 580 start-page: 3217 year: 2006 ident: 2022061022494875700_bib48 article-title: Regulation of histone acetyltransferase activity of p300 and PCAF by proto-oncogene protein DEK publication-title: FEBS Lett doi: 10.1016/j.febslet.2006.04.081 |
SSID | ssj0014104 |
Score | 2.2737525 |
SecondaryResourceType | review_article |
Snippet | Slight modifications of chromatin dynamics can translate into small- and large-scale changes in DNA replication and DNA repair. Similarly, promoter usage and... Slight modifications of chromatin dynamics can translate into short and large-scale changes in DNA replication and DNA repair. Similarly, promoter usage and... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 2932 |
SubjectTerms | Antineoplastic agents Biological and medical sciences Cell Transformation, Neoplastic - genetics Chromatin - metabolism Chromosomal Proteins, Non-Histone - genetics Drug Delivery Systems Drug Resistance, Neoplasm Gene Expression Regulation Humans Medical sciences Neoplasms - genetics Oncogene Proteins - genetics Pharmacology. Drug treatments Poly-ADP-Ribose Binding Proteins Protein Processing, Post-Translational Proto-Oncogene Mas Proto-Oncogenes |
Title | Control of Tumorigenesis and Chemoresistance by the DEK Oncogene |
URI | https://www.ncbi.nlm.nih.gov/pubmed/20501624 https://www.proquest.com/docview/733126353 https://pubmed.ncbi.nlm.nih.gov/PMC2931273 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgSAgJIb4pH5MfeJtSkthOmjdQ1jLBOqSplfpm2Y4NFSOZ-vEAfz13iZM1o9KAlyhy7bi6-_l0d74PQt6qIo1UloLmVqQi4C4JA5VZFRQ647pQVou6TsH0LDmZ808LsWjbu_vsko0eml9780r-h6swBnzFLNl_4Gz3URiAd-AvPIHD8PwrHuc-zhzv-bc_sMcVSq5lU3YZuIFBtGtUEPH0op4JmDgefz6qSlPh1F3NNG9TJA3OXh35KkCdt_gcxOJyVQUTdfHdllo1LaRqMdp5aSpbfm0SxKaquYI_Vt636h0LeCfeBkC1slCA_ImbVg5Du2esFaDJLlCiXXGYNc7LP-W0GNUuAyzvy1k8zPNzDMKImb-k6dXFPvsiJ_PTUzkbL2a3yZ0YDALsVfFx0QXzYLBqHT_Q_j2fqwXbvNu7SU8LuX-p1kBf13Qy2WdqXI-Y3VFBZg_JA2870A8NEB6RW7Z8TO5OfXTEE_Le44FWjvbwQAEP9BoeqP5JAQ8U8EBbPDwl88l4lp8EvkNGYESYbAKu7UgpyzI4UaEZ6SQx1nHhssg64ZxKBAsdU0mkmQ11BrIbFOhURaE23Dgm2DNyUFalfUGoVjEQKtQcLGZujcscTw1ot3FhigSMhAHhLcWk8eXjsYvJhazNSDGSSGiJhJZAaBlmEgk9IMNu2WVTP-WmBYc9dnSr4hg0S8b4gNCWPxJEId5vqdJW27XE9qNYW4kNyPOGXVeLQwG2TQyL0x4juwlYZb3_S7n8VldbBwxHoOO_vHnbV-Te1Tl6TQ42q619AyrrRh_WaP0N7EWTIQ |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Control+of+tumorigenesis+and+chemoresistance+by+the+DEK+oncogene&rft.jtitle=Clinical+cancer+research&rft.au=Riveiro-Falkenbach%2C+Erica&rft.au=Soengas%2C+Mar%C3%ADa+S&rft.date=2010-06-01&rft.issn=1557-3265&rft.eissn=1557-3265&rft.volume=16&rft.issue=11&rft.spage=2932&rft_id=info:doi/10.1158%2F1078-0432.CCR-09-2330&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1078-0432&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1078-0432&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1078-0432&client=summon |