Control of Tumorigenesis and Chemoresistance by the DEK Oncogene

Slight modifications of chromatin dynamics can translate into small- and large-scale changes in DNA replication and DNA repair. Similarly, promoter usage and accessibility are tightly dependent on chromatin architecture. Consequently, it is perhaps not surprising that factors controlling chromatin o...

Full description

Saved in:
Bibliographic Details
Published inClinical cancer research Vol. 16; no. 11; pp. 2932 - 2938
Main Authors Riveiro-Falkenbach, Erica, Soengas, María S.
Format Journal Article
LanguageEnglish
Published Philadelphia, PA American Association for Cancer Research 01.06.2010
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Slight modifications of chromatin dynamics can translate into small- and large-scale changes in DNA replication and DNA repair. Similarly, promoter usage and accessibility are tightly dependent on chromatin architecture. Consequently, it is perhaps not surprising that factors controlling chromatin organization are frequently deregulated (directly or indirectly) in cancer cells. DEK is emerging as a novel class of DNA topology modulators that can be both targets and effectors of protumorigenic events. The locus containing DEK at chromosome 6p22.3 is amplified or reorganized in multiple cancer types. In addition, DEK can be subject to a variety of tumor-associated transcriptional and post-translational modifications. In turn, DEK can favor cell transformation, at least in part by inhibiting cell differentiation and premature senescence. More recently, DEK has also been linked to the resistance of malignant cells to apoptotic inducers. Interestingly, a fraction of DEK can also bind RNA and affect alternative splicing, further illustrating the pleiotropic roles that this protein may exert in cancer cells. Here we will summarize the current literature about the regulation and function(s) of DEK as a proto-oncogene. In addition, the translational relevance of DEK as a putative diagnostic marker and candidate for drug development will be discussed. Clin Cancer Res; 16(11); 2932–8. ©2010 AACR.
AbstractList Slight modifications of chromatin dynamics can translate into small- and large-scale changes in DNA replication and DNA repair. Similarly, promoter usage and accessibility are tightly dependent on chromatin architecture. Consequently, it is perhaps not surprising that factors controlling chromatin organization are frequently deregulated (directly or indirectly) in cancer cells. DEK is emerging as a novel class of DNA topology modulators that can be both targets and effectors of protumorigenic events. The locus containing DEK at chromosome 6p22.3 is amplified or reorganized in multiple cancer types. In addition, DEK can be subject to a variety of tumor-associated transcriptional and post-translational modifications. In turn, DEK can favor cell transformation, at least in part by inhibiting cell differentiation and premature senescence. More recently, DEK has also been linked to the resistance of malignant cells to apoptotic inducers. Interestingly, a fraction of DEK can also bind RNA and affect alternative splicing, further illustrating the pleiotropic roles that this protein may exert in cancer cells. Here we will summarize the current literature about the regulation and function(s) of DEK as a proto-oncogene. In addition, the translational relevance of DEK as a putative diagnostic marker and candidate for drug development will be discussed.
Slight modifications of chromatin dynamics can translate into short and large-scale changes in DNA replication and DNA repair. Similarly, promoter usage and accessibility are tightly dependent on chromatin architecture. Consequently, it is perhaps not surprising that factors controlling chromatin organization are frequently deregulated (directly or indirectly) in cancer cells. DEK is emerging as a novel class of DNA topology modulators which can be both targets and effectors of pro-tumorigenic events. The locus containing DEK at chromosome 6p22.3 is amplified or reorganized in multiple cancer types. In addition, DEK can be subject to a variety of tumor-associated transcriptional and post-translational modifications. In turn, DEK can favor cell transformation, at least in part by inhibiting cell differentiation and premature senescence. More recently, DEK has also been linked to the resistance of malignant cells to apoptotic inducers. Interestingly, a fraction of DEK can also bind RNA and affect alternative splicing, further illustrating the pleiotropic roles that this protein may exert in cancer cells. Here we will summarize the current literature regarding the regulation and function(s) of DEK as a proto-oncogene. In addition, the translational relevance of DEK as a putative diagnostic marker and candidate for drug development will also be discussed.
Slight modifications of chromatin dynamics can translate into small- and large-scale changes in DNA replication and DNA repair. Similarly, promoter usage and accessibility are tightly dependent on chromatin architecture. Consequently, it is perhaps not surprising that factors controlling chromatin organization are frequently deregulated (directly or indirectly) in cancer cells. DEK is emerging as a novel class of DNA topology modulators that can be both targets and effectors of protumorigenic events. The locus containing DEK at chromosome 6p22.3 is amplified or reorganized in multiple cancer types. In addition, DEK can be subject to a variety of tumor-associated transcriptional and post-translational modifications. In turn, DEK can favor cell transformation, at least in part by inhibiting cell differentiation and premature senescence. More recently, DEK has also been linked to the resistance of malignant cells to apoptotic inducers. Interestingly, a fraction of DEK can also bind RNA and affect alternative splicing, further illustrating the pleiotropic roles that this protein may exert in cancer cells. Here we will summarize the current literature about the regulation and function(s) of DEK as a proto-oncogene. In addition, the translational relevance of DEK as a putative diagnostic marker and candidate for drug development will be discussed.Slight modifications of chromatin dynamics can translate into small- and large-scale changes in DNA replication and DNA repair. Similarly, promoter usage and accessibility are tightly dependent on chromatin architecture. Consequently, it is perhaps not surprising that factors controlling chromatin organization are frequently deregulated (directly or indirectly) in cancer cells. DEK is emerging as a novel class of DNA topology modulators that can be both targets and effectors of protumorigenic events. The locus containing DEK at chromosome 6p22.3 is amplified or reorganized in multiple cancer types. In addition, DEK can be subject to a variety of tumor-associated transcriptional and post-translational modifications. In turn, DEK can favor cell transformation, at least in part by inhibiting cell differentiation and premature senescence. More recently, DEK has also been linked to the resistance of malignant cells to apoptotic inducers. Interestingly, a fraction of DEK can also bind RNA and affect alternative splicing, further illustrating the pleiotropic roles that this protein may exert in cancer cells. Here we will summarize the current literature about the regulation and function(s) of DEK as a proto-oncogene. In addition, the translational relevance of DEK as a putative diagnostic marker and candidate for drug development will be discussed.
Slight modifications of chromatin dynamics can translate into small- and large-scale changes in DNA replication and DNA repair. Similarly, promoter usage and accessibility are tightly dependent on chromatin architecture. Consequently, it is perhaps not surprising that factors controlling chromatin organization are frequently deregulated (directly or indirectly) in cancer cells. DEK is emerging as a novel class of DNA topology modulators that can be both targets and effectors of protumorigenic events. The locus containing DEK at chromosome 6p22.3 is amplified or reorganized in multiple cancer types. In addition, DEK can be subject to a variety of tumor-associated transcriptional and post-translational modifications. In turn, DEK can favor cell transformation, at least in part by inhibiting cell differentiation and premature senescence. More recently, DEK has also been linked to the resistance of malignant cells to apoptotic inducers. Interestingly, a fraction of DEK can also bind RNA and affect alternative splicing, further illustrating the pleiotropic roles that this protein may exert in cancer cells. Here we will summarize the current literature about the regulation and function(s) of DEK as a proto-oncogene. In addition, the translational relevance of DEK as a putative diagnostic marker and candidate for drug development will be discussed. Clin Cancer Res; 16(11); 2932–8. ©2010 AACR.
Author Soengas, María S.
Riveiro-Falkenbach, Erica
Author_xml – sequence: 1
  givenname: Erica
  surname: Riveiro-Falkenbach
  fullname: Riveiro-Falkenbach, Erica
– sequence: 2
  givenname: María S.
  surname: Soengas
  fullname: Soengas, María S.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22853334$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/20501624$$D View this record in MEDLINE/PubMed
BookMark eNp9kVlLxDAUhYMo7j9B6Yv41PEmabogiFJXHBBEn0Mab5xIJ9GmI8y_N8UZtwefsn33nHDOFll13iEhexRGlIryiEJRppBxNqrr-xSqlHEOK2STClGknOViNe6XzAbZCuEFgGYUsnWywUAAzVm2SU5r7_rOt4k3ycNs6jv7jA6DDYlyT0k9wXg1HHvlNCbNPOknmJxf3CZ3TvsB3SFrRrUBdxfrNnm8vHior9Px3dVNfTZOtYC8T7MGS6WQV6IqQJdNnms0mTAVRSOMUbngYLjKacMRmooxwTgrFIVGZ9pwwbfJyafu66yZ4pPG-G3VytfOTlU3l15Z-fvF2Yl89u-SVZyygkeBw4VA599mGHo5tUFj2yqHfhZkRCjLo1Mk939afXksU4vAwQJQQavWdDEcG745VkYVPnDHn5zufAgdGqltr3o7RK5sKynIoUs59CSHnmTsUkIlhy7jtPgzvTT4f-4DASuh7w
CODEN CCREF4
CitedBy_id crossref_primary_10_4137_CIN_S8633
crossref_primary_10_1016_j_trsl_2012_02_002
crossref_primary_10_3892_etm_2021_10752
crossref_primary_10_3390_ijms241814069
crossref_primary_10_1105_tpc_114_129254
crossref_primary_10_1097_JS9_0000000000002195
crossref_primary_10_1126_science_1250255
crossref_primary_10_18632_oncotarget_2809
crossref_primary_10_1111_j_1755_148X_2010_00820_x
crossref_primary_10_1038_onc_2016_118
crossref_primary_10_1186_1471_2407_13_366
crossref_primary_10_1186_1746_1596_9_67
crossref_primary_10_7124_bc_000074
crossref_primary_10_4236_abb_2014_56064
crossref_primary_10_21320_2500_2139_2017_10_2_235_249
crossref_primary_10_1038_onc_2014_346
crossref_primary_10_3390_ijms23115950
crossref_primary_10_1042_BCJ20190169
crossref_primary_10_1177_1010428317716248
crossref_primary_10_18632_oncotarget_8565
crossref_primary_10_1101_gad_2036411
crossref_primary_10_1002_1873_3468_14070
crossref_primary_10_2147_CMAR_S265356
crossref_primary_10_1007_s00401_011_0820_4
crossref_primary_10_1016_j_neuroscience_2017_11_025
crossref_primary_10_1111_j_1440_1827_2011_02775_x
crossref_primary_10_1038_s41408_024_01145_0
crossref_primary_10_3892_mmr_2017_7943
crossref_primary_10_2147_CMAR_S253777
crossref_primary_10_1593_neo_131658
crossref_primary_10_1182_blood_2011_10_383083
crossref_primary_10_1016_j_bcmd_2014_11_014
crossref_primary_10_1016_j_gene_2017_11_011
crossref_primary_10_18632_oncotarget_21864
crossref_primary_10_1111_pcmr_12563
crossref_primary_10_1016_j_ccell_2014_10_004
crossref_primary_10_1111_j_1600_0560_2012_01941_x
crossref_primary_10_1002_1873_3468_14072
crossref_primary_10_1016_j_ceb_2013_01_001
crossref_primary_10_3109_07357907_2012_697231
crossref_primary_10_1038_ncomms13418
crossref_primary_10_1080_15592324_2021_2024738
crossref_primary_10_1186_s13020_022_00623_6
crossref_primary_10_1002_stem_1443
crossref_primary_10_1038_s41467_017_02353_y
crossref_primary_10_3389_fnagi_2022_1018180
crossref_primary_10_1128_MCB_00382_15
crossref_primary_10_1016_j_tvjl_2015_02_009
crossref_primary_10_1124_jpet_119_263202
crossref_primary_10_1016_j_critrevonc_2022_103897
crossref_primary_10_1038_s41379_022_01117_4
crossref_primary_10_1161_CIRCGENETICS_110_958926
crossref_primary_10_1371_journal_pone_0178025
crossref_primary_10_2217_fon_2016_0059
crossref_primary_10_1016_j_bbrc_2011_01_109
crossref_primary_10_1371_journal_pone_0111260
crossref_primary_10_1042_BSR20100141
crossref_primary_10_1586_eop_10_75
crossref_primary_10_1002_cnr2_1369
crossref_primary_10_1016_j_bcmd_2014_07_009
crossref_primary_10_1089_scd_2011_0451
crossref_primary_10_1186_1476_4598_13_215
crossref_primary_10_1084_jem_20201974
crossref_primary_10_1155_2015_106517
crossref_primary_10_3390_ijms23126451
Cites_doi 10.1038/nrm1172
10.1038/sj.onc.1206041
10.1128/MCB.01030-06
10.4161/cc.8.9.8314
10.1074/jbc.M600233200
10.1074/jbc.M100162200
10.1074/jbc.M600915200
10.1074/jbc.M204045200
10.1111/j.1440-1827.2008.02239.x
10.1158/0008-5472.CAN-09-1063
10.1128/MCB.00430-06
10.1128/JVI.79.22.14309-14317.2005
10.1111/j.1365-2443.2009.01324.x
10.1111/j.1440-1827.2009.02392.x
10.1242/jcs.115.16.3319
10.2353/ajpath.2009.080330
10.1016/j.bbrc.2007.05.019
10.1002/gcc.20531
10.1046/j.1365-2141.2002.03734.x
10.1016/j.cancergencyto.2007.08.014
10.1038/nsmb1248
10.1136/jcp.2005.034389
10.1093/nar/gkg864
10.1093/intimm/dxh261
10.1126/science.1128659
10.1110/ps.073244108
10.1128/MCB.24.13.6011-6020.2004
10.1182/blood.V79.11.2990.2990
10.1158/0008-5472.CAN-08-2304
10.1128/MCB.01921-07
10.1093/nar/gkg247
10.1080/1042819031000119299
10.1016/S0002-9440(10)63679-6
10.1002/jcb.22083
10.1128/MCB.24.13.6000-6010.2004
10.1016/S1535-6108(02)00102-2
10.1101/gad.14.11.1308
10.1158/1541-7786.MCR-07-0055
10.1038/nature05661
10.1083/jcb.150.2.309
10.1038/sj.onc.1208792
10.1016/S0002-9440(10)63118-5
10.1101/gad.1857410
10.1016/j.molcel.2009.11.016
10.1002/gcc.20263
10.4161/cc.5.11.2801
10.1101/gad.396106
10.1128/MCB.20.20.7480-7489.2000
10.1093/nar/gki258
10.1016/S0304-3835(00)00462-6
10.1074/jbc.M500884200
10.1093/emboj/20.17.4987
10.1038/sj.leu.2403835
10.1111/j.1365-2362.2007.01841.x
10.1038/nrm2233
10.1016/j.febslet.2006.04.081
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright 2010 AACR.
Copyright_xml – notice: 2015 INIST-CNRS
– notice: Copyright 2010 AACR.
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1158/1078-0432.CCR-09-2330
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1557-3265
EndPage 2938
ExternalDocumentID PMC2931273
20501624
22853334
10_1158_1078_0432_CCR_09_2330
Genre Review
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: R01 CA107237
– fundername: NCI NIH HHS
  grantid: R01 CA125017
– fundername: NCI NIH HHS
  grantid: CA125017
GroupedDBID ---
18M
29B
2FS
2WC
34G
39C
3O-
4H-
53G
5GY
5RE
5VS
6J9
AAFWJ
AAJMC
AAYXX
ABOCM
ACGFO
ACIWK
ACPRK
ACSVP
ADBBV
ADCOW
AENEX
AFFNX
AFHIN
AFOSN
AFRAH
AFUMD
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BR6
BTFSW
C1A
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
IH2
KQ8
L7B
LSO
OK1
P0W
P2P
QTD
RCR
RHI
RNS
SJN
TR2
UDS
W2D
W8F
WOQ
YKV
.55
.GJ
1CY
ADNWM
AETEA
AI.
H~9
IQODW
J5H
MVM
OHT
VH1
WHG
X7M
XJT
ZCG
ZGI
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c506t-4be8aae395970c8b66cef45f91ef5ffa6530f3a61b3e0b92252327a10bc4cf353
ISSN 1078-0432
1557-3265
IngestDate Thu Aug 21 18:42:57 EDT 2025
Fri Jul 11 15:17:53 EDT 2025
Sat May 31 02:09:21 EDT 2025
Mon Jul 21 09:11:41 EDT 2025
Tue Jul 01 03:06:27 EDT 2025
Thu Apr 24 22:58:04 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Control
Treatment resistance
Tumorigenicity
Onc gene
Carcinogenesis
Language English
License CC BY 4.0
Copyright 2010 AACR.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c506t-4be8aae395970c8b66cef45f91ef5ffa6530f3a61b3e0b92252327a10bc4cf353
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://aacrjournals.org/clincancerres/article-pdf/16/11/2932/1989573/2932.pdf
PMID 20501624
PQID 733126353
PQPubID 23479
PageCount 7
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2931273
proquest_miscellaneous_733126353
pubmed_primary_20501624
pascalfrancis_primary_22853334
crossref_citationtrail_10_1158_1078_0432_CCR_09_2330
crossref_primary_10_1158_1078_0432_CCR_09_2330
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-06-01
PublicationDateYYYYMMDD 2010-06-01
PublicationDate_xml – month: 06
  year: 2010
  text: 2010-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Philadelphia, PA
PublicationPlace_xml – name: Philadelphia, PA
– name: United States
PublicationTitle Clinical cancer research
PublicationTitleAlternate Clin Cancer Res
PublicationYear 2010
Publisher American Association for Cancer Research
Publisher_xml – name: American Association for Cancer Research
References Wise-Draper (2022061022494875700_bib39) 2005; 79
Kroes (2022061022494875700_bib24) 2000; 156
Wu (2022061022494875700_bib31) 2008; 58
Gray-Schopfer (2022061022494875700_bib57) 2007; 445
Nagpal (2022061022494875700_bib33) 2007; 37
Grasemann (2022061022494875700_bib21) 2005; 24
Larramendy (2022061022494875700_bib20) 2002; 87
Mor-Vaknin (2022061022494875700_bib17) 2006; 26
Garcon (2022061022494875700_bib62) 2005; 19
Kappes (2022061022494875700_bib44) 2008; 28
Casas (2022061022494875700_bib19) 2003; 44
Goodarzi (2022061022494875700_bib37) 2009; 36
Kappes (2022061022494875700_bib10) 2004; 24
Savli (2022061022494875700_bib58) 2002; 118
Soekarman (2022061022494875700_bib3) 1992; 79
Abba (2022061022494875700_bib32) 2007; 5
Sawatsubashi (2022061022494875700_bib45) 2009; 24
Hollenbach (2022061022494875700_bib52) 2002; 115
Wise-Draper (2022061022494875700_bib40) 2009; 69
Campillos (2022061022494875700_bib55) 2003; 31
Ageberg (2022061022494875700_bib59) 2006; 91
Sitwala (2022061022494875700_bib36) 2002; 21
Santos (2022061022494875700_bib35) 2007; 60
von Lindern (2022061022494875700_bib2) 1992; 12
Kim (2022061022494875700_bib61) 2009; 106
Soares (2022061022494875700_bib14) 2006; 312
Le Hir (2022061022494875700_bib16) 2001; 20
Gamble (2022061022494875700_bib46) 2007; 14
Alexiadis (2022061022494875700_bib4) 2000; 14
Devany (2022061022494875700_bib12) 2008; 17
Khodadoust (2022061022494875700_bib26) 2009; 69
Waldmann (2022061022494875700_bib9) 2003; 31
Orlic (2022061022494875700_bib22) 2006; 45
Waldmann (2022061022494875700_bib5) 2002; 277
Sanchez-Carbayo (2022061022494875700_bib29) 2003; 163
Ko (2022061022494875700_bib48) 2006; 580
McGarvey (2022061022494875700_bib15) 2000; 150
Wise-Draper (2022061022494875700_bib60) 2006; 26
Campisi (2022061022494875700_bib56) 2007; 8
Kappes (2022061022494875700_bib43) 2004; 24
Kondoh (2022061022494875700_bib25) 1999; 59
Ouararhni (2022061022494875700_bib49) 2006; 20
Ageberg (2022061022494875700_bib51) 2008; 47
Han (2022061022494875700_bib30) 2009; 59
Carro (2022061022494875700_bib27) 2006; 5
Cavellan (2022061022494875700_bib50) 2006; 281
Sitwala (2022061022494875700_bib18) 2003; 23
Castellano (2022061022494875700_bib38) 2009; 8
Kappes (2022061022494875700_bib1) 2001; 276
Cleary (2022061022494875700_bib8) 2005; 280
Hu (2022061022494875700_bib6) 2007; 358
Takata (2022061022494875700_bib7) 2009; 14
Hu (2022061022494875700_bib54) 2005; 17
Böhm (2022061022494875700_bib11) 2005; 33
Evans (2022061022494875700_bib28) 2004; 164
Sammons (2022061022494875700_bib53) 2006; 281
Fornerod (2022061022494875700_bib34) 1995; 10
Wise-Draper (2022061022494875700_bib41) 2009; 174
Sherr (2022061022494875700_bib42) 2002; 2
Lamond (2022061022494875700_bib47) 2003; 4
Paderova (2022061022494875700_bib23) 2007; 179
Kipp (2022061022494875700_bib13) 2000; 20
References_xml – volume: 4
  start-page: 605
  year: 2003
  ident: 2022061022494875700_bib47
  article-title: Nuclear speckles: a model for nuclear organelles
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm1172
– volume: 21
  start-page: 8862
  year: 2002
  ident: 2022061022494875700_bib36
  article-title: YY1 and NF-Y binding sites regulate the transcriptional activity of the dek and dek-can promoter
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1206041
– volume: 26
  start-page: 9484
  year: 2006
  ident: 2022061022494875700_bib17
  article-title: The DEK nuclear autoantigen is a secreted chemotactic factor
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.01030-06
– volume: 8
  start-page: 1367
  year: 2009
  ident: 2022061022494875700_bib38
  article-title: The involvement of the transcription factor Yin Yang 1 in cancer development and progression
  publication-title: Cell Cycle
  doi: 10.4161/cc.8.9.8314
– volume: 281
  start-page: 16264
  year: 2006
  ident: 2022061022494875700_bib50
  article-title: The WSTF-SNF2h chromatin remodeling complex interacts with several nuclear proteins in transcription
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M600233200
– volume: 276
  start-page: 26317
  year: 2001
  ident: 2022061022494875700_bib1
  article-title: Subcellular localization of the human proto-oncogene protein DEK
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M100162200
– volume: 281
  start-page: 26802
  year: 2006
  ident: 2022061022494875700_bib53
  article-title: Negative regulation of the RelA/p65 transactivation function by the product of the DEK proto-oncogene
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M600915200
– volume: 277
  start-page: 24988
  year: 2002
  ident: 2022061022494875700_bib5
  article-title: The ubiquitous chromatin protein DEK alters the structure of DNA by introducing positive supercoils
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M204045200
– volume: 58
  start-page: 378
  year: 2008
  ident: 2022061022494875700_bib31
  article-title: DEK overexpression in uterine cervical cancers
  publication-title: Pathol Int
  doi: 10.1111/j.1440-1827.2008.02239.x
– volume: 69
  start-page: 6405
  year: 2009
  ident: 2022061022494875700_bib26
  article-title: Melanoma proliferation and chemoresistance controlled by the DEK oncogene
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-09-1063
– volume: 87
  start-page: 569
  year: 2002
  ident: 2022061022494875700_bib20
  article-title: Overexpression of translocation-associated fusion genes of FGFRI, MYC, NPMI, and DEK, but absence of the translocations in acute myeloid leukemia. A microarray analysis
  publication-title: Haematologica
– volume: 26
  start-page: 7506
  year: 2006
  ident: 2022061022494875700_bib60
  article-title: I. Apoptosis inhibition by the human DEK oncoprotein involves interference with p53 functions
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.00430-06
– volume: 79
  start-page: 14309
  year: 2005
  ident: 2022061022494875700_bib39
  article-title: The human DEK proto-oncogene is a senescence inhibitor and an upregulated target of high-risk human papillomavirus E7
  publication-title: J Virol
  doi: 10.1128/JVI.79.22.14309-14317.2005
– volume: 14
  start-page: 975
  year: 2009
  ident: 2022061022494875700_bib7
  article-title: Proteome analysis of human nuclear insoluble fractions
  publication-title: Genes Cells
  doi: 10.1111/j.1365-2443.2009.01324.x
– volume: 59
  start-page: 443
  year: 2009
  ident: 2022061022494875700_bib30
  article-title: Clinicopathological significance of DEK overexpression in serous ovarian tumors
  publication-title: Pathol Int
  doi: 10.1111/j.1440-1827.2009.02392.x
– volume: 115
  start-page: 3319
  year: 2002
  ident: 2022061022494875700_bib52
  article-title: Daxx and histone deacetylase II associate with chromatin through an interaction with core histones and the chromatin-associated protein Dek
  publication-title: J Cell Sci
  doi: 10.1242/jcs.115.16.3319
– volume: 174
  start-page: 71
  year: 2009
  ident: 2022061022494875700_bib41
  article-title: DEK proto-oncogene expression interferes with the normal epithelial differentiation program
  publication-title: Am J Pathol
  doi: 10.2353/ajpath.2009.080330
– volume: 358
  start-page: 1008
  year: 2007
  ident: 2022061022494875700_bib6
  article-title: The distribution of the DEK protein in mammalian chromatin
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/j.bbrc.2007.05.019
– volume: 47
  start-page: 276
  year: 2008
  ident: 2022061022494875700_bib51
  article-title: Identification of a novel and myeloid specific role of the leukemia-associated fusion protein DEK-NUP214 leading to increased protein synthesis
  publication-title: Genes Chromosomes Cancer
  doi: 10.1002/gcc.20531
– volume: 118
  start-page: 1065
  year: 2002
  ident: 2022061022494875700_bib58
  article-title: Gene expression analysis of 1,25(OH)2D3-dependent differentiation of HL-60 cells: a cDNA array study
  publication-title: Br J Haematol
  doi: 10.1046/j.1365-2141.2002.03734.x
– volume: 179
  start-page: 102
  year: 2007
  ident: 2022061022494875700_bib23
  article-title: Novel 6p rearrangements and recurrent translocation breakpoints in retinoblastoma cell lines identified by spectral karyotyping and mBAND analyses
  publication-title: Cancer Genet Cytogenet
  doi: 10.1016/j.cancergencyto.2007.08.014
– volume: 14
  start-page: 548
  year: 2007
  ident: 2022061022494875700_bib46
  article-title: SET and PARP1 remove DEK from chromatin to permit access by the transcription machinery
  publication-title: Nat Struct Mol Biol
  doi: 10.1038/nsmb1248
– volume: 60
  start-page: 1
  year: 2007
  ident: 2022061022494875700_bib35
  article-title: Chromosome 6p amplification and cancer progression
  publication-title: J Clin Pathol
  doi: 10.1136/jcp.2005.034389
– volume: 91
  start-page: 268
  year: 2006
  ident: 2022061022494875700_bib59
  article-title: The involvement of cellular proliferation status in the expression of the human proto-oncogene DEK
  publication-title: Haematologica
– volume: 31
  start-page: 7003
  year: 2003
  ident: 2022061022494875700_bib9
  article-title: Structure-specific binding of the proto-oncogene protein DEK to DNA
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkg864
– volume: 17
  start-page: 789
  year: 2005
  ident: 2022061022494875700_bib54
  article-title: Distribution of the chromatin protein DEK distinguishes active and inactive CD21/CR2 gene in pre- and mature B lymphocytes
  publication-title: Int Immunol
  doi: 10.1093/intimm/dxh261
– volume: 23
  start-page: 2155
  year: 2003
  ident: 2022061022494875700_bib18
  article-title: Minireview: DEK and gene regulation, oncogenesis and AIDS
  publication-title: Anticancer Res
– volume: 312
  start-page: 1961
  year: 2006
  ident: 2022061022494875700_bib14
  article-title: Intron removal requires proofreading of U2AF/3′ splice site recognition by DEK
  publication-title: Science
  doi: 10.1126/science.1128659
– volume: 17
  start-page: 205
  year: 2008
  ident: 2022061022494875700_bib12
  article-title: Solution NMR structure of the N-terminal domain of the human DEK protein
  publication-title: Protein Sci
  doi: 10.1110/ps.073244108
– volume: 24
  start-page: 6011
  year: 2004
  ident: 2022061022494875700_bib43
  article-title: Phosphorylation by protein kinase CK2 changes the DNA binding properties of the human chromatin protein DEK
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.24.13.6011-6020.2004
– volume: 59
  start-page: 4990
  year: 1999
  ident: 2022061022494875700_bib25
  article-title: Identification and characterization of genes associated with human hepatocellular carcinogenesis
  publication-title: Cancer Res
– volume: 79
  start-page: 2990
  year: 1992
  ident: 2022061022494875700_bib3
  article-title: The translocation (6;9) (p23;q34) shows consistent rearrangement of two genes and defines a myeloproliferative disorder with specific clinical features
  publication-title: Blood
  doi: 10.1182/blood.V79.11.2990.2990
– volume: 69
  start-page: 1792
  year: 2009
  ident: 2022061022494875700_bib40
  article-title: I. Overexpression of the cellular DEK protein promotes epithelial transformation in vitro and in vivo
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-08-2304
– volume: 28
  start-page: 3245
  year: 2008
  ident: 2022061022494875700_bib44
  article-title: DEK is a poly(ADP-ribose) acceptor in apoptosis and mediates resistance to genotoxic stress
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.01921-07
– volume: 31
  start-page: 1571
  year: 2003
  ident: 2022061022494875700_bib55
  article-title: Transcriptional activation by AP-2α is modulated by the oncogene DEK
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkg247
– volume: 44
  start-page: 1935
  year: 2003
  ident: 2022061022494875700_bib19
  article-title: Aberrant expression of HOXA9, DEK, CBL and CSF1R in acute myeloid leukemia
  publication-title: Leuk Lymphoma
  doi: 10.1080/1042819031000119299
– volume: 12
  start-page: 1687
  year: 1992
  ident: 2022061022494875700_bib2
  article-title: The translocation (6;9), associated with a specific subtype of acute myeloid leukemia, results in the fusion of two genes, dek and can, and the expression of a chimeric, leukemia-specific dek-can mRNA
  publication-title: Mol Cell Biol
– volume: 163
  start-page: 505
  year: 2003
  ident: 2022061022494875700_bib29
  article-title: Gene discovery in bladder cancer progression using cDNA microarrays
  publication-title: Am J Pathol
  doi: 10.1016/S0002-9440(10)63679-6
– volume: 106
  start-page: 1048
  year: 2009
  ident: 2022061022494875700_bib61
  article-title: Proteomic analysis of apoptosis related proteins regulated by proto-oncogene protein DEK
  publication-title: J Cell Biochem
  doi: 10.1002/jcb.22083
– volume: 24
  start-page: 6000
  year: 2004
  ident: 2022061022494875700_bib10
  article-title: Functional domains of the ubiquitous chromatin protein DEK
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.24.13.6000-6010.2004
– volume: 2
  start-page: 103
  year: 2002
  ident: 2022061022494875700_bib42
  article-title: The RB and p53 pathways in cancer
  publication-title: Cancer Cell
  doi: 10.1016/S1535-6108(02)00102-2
– volume: 14
  start-page: 1308
  year: 2000
  ident: 2022061022494875700_bib4
  article-title: The protein encoded by the proto-oncogene DEK changes the topology of chromatin and reduces the efficiency of DNA replication in a chromatin-specific manner
  publication-title: Genes Dev
  doi: 10.1101/gad.14.11.1308
– volume: 5
  start-page: 881
  year: 2007
  ident: 2022061022494875700_bib32
  article-title: Breast cancer molecular signatures as determined by SAGE: correlation with lymph node status
  publication-title: Mol Cancer Res
  doi: 10.1158/1541-7786.MCR-07-0055
– volume: 445
  start-page: 851
  year: 2007
  ident: 2022061022494875700_bib57
  article-title: Melanoma biology and new targeted therapy
  publication-title: Nature
  doi: 10.1038/nature05661
– volume: 150
  start-page: 309
  year: 2000
  ident: 2022061022494875700_bib15
  article-title: The acute myeloid leukemia-associated protein, DEK, forms a splicing-dependent interaction with exon-product complexes
  publication-title: J Cell Biol
  doi: 10.1083/jcb.150.2.309
– volume: 24
  start-page: 6441
  year: 2005
  ident: 2022061022494875700_bib21
  article-title: Gains and overexpression identify DEK and E2F3 as targets of chromosome 6p gains in retinoblastoma
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1208792
– volume: 164
  start-page: 285
  year: 2004
  ident: 2022061022494875700_bib28
  article-title: Defining a 0.5-mb region of genomic gain on chromosome 6p22 in bladder cancer by quantitative-multiplex polymerase chain reaction
  publication-title: Am J Pathol
  doi: 10.1016/S0002-9440(10)63118-5
– volume: 24
  start-page: 159
  year: 2009
  ident: 2022061022494875700_bib45
  article-title: A histone chaperone, DEK, transcriptionally coactivates a nuclear receptor
  publication-title: Genes Dev
  doi: 10.1101/gad.1857410
– volume: 10
  start-page: 1739
  year: 1995
  ident: 2022061022494875700_bib34
  article-title: Relocation of the carboxyterminal part of CAN from the nuclear envelope to the nucleus as a result of leukemia-specific chromosome rearrangements
  publication-title: Oncogene
– volume: 36
  start-page: 900
  year: 2009
  ident: 2022061022494875700_bib37
  article-title: Revealing global regulatory perturbations across human cancers
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2009.11.016
– volume: 45
  start-page: 72
  year: 2006
  ident: 2022061022494875700_bib22
  article-title: Expression analysis of 6p22 genomic gain in retinoblastoma
  publication-title: Genes Chromosomes Cancer
  doi: 10.1002/gcc.20263
– volume: 5
  start-page: 1202
  year: 2006
  ident: 2022061022494875700_bib27
  article-title: DEK Expression is controlled by E2F and deregulated in diverse tumor types
  publication-title: Cell Cycle
  doi: 10.4161/cc.5.11.2801
– volume: 20
  start-page: 3324
  year: 2006
  ident: 2022061022494875700_bib49
  article-title: The histone variant mH2A1.1 interferes with transcription by down-regulating PARP-1 enzymatic activity
  publication-title: Genes Dev
  doi: 10.1101/gad.396106
– volume: 20
  start-page: 7480
  year: 2000
  ident: 2022061022494875700_bib13
  article-title: SAF-Box, a conserved protein domain that specifically recognizes scaffold attachment region DNA
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.20.20.7480-7489.2000
– volume: 33
  start-page: 1101
  year: 2005
  ident: 2022061022494875700_bib11
  article-title: The SAF-box domain of chromatin protein DEK
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gki258
– volume: 156
  start-page: 191
  year: 2000
  ident: 2022061022494875700_bib24
  article-title: The identification of novel therapeutic targets for the treatment of malignant brain tumors
  publication-title: Cancer Lett
  doi: 10.1016/S0304-3835(00)00462-6
– volume: 280
  start-page: 31760
  year: 2005
  ident: 2022061022494875700_bib8
  article-title: p300/CBP-associated factor drives DEK into interchromatin granule clusters
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M500884200
– volume: 20
  start-page: 4987
  year: 2001
  ident: 2022061022494875700_bib16
  article-title: The exon-exon junction complex provides a binding platform for factors involved in mRNA export and nonsense-mediated mRNA decay
  publication-title: EMBO J
  doi: 10.1093/emboj/20.17.4987
– volume: 19
  start-page: 1338
  year: 2005
  ident: 2022061022494875700_bib62
  article-title: DEK-CAN molecular monitoring of myeloid malignancies could aid therapeutic stratification
  publication-title: Leukemia
  doi: 10.1038/sj.leu.2403835
– volume: 37
  start-page: 658
  year: 2007
  ident: 2022061022494875700_bib33
  article-title: Identification of differentially expressed genes in tobacco chewing-mediated oral cancer by differential display-polymerase chain reaction
  publication-title: Eur J Clin Invest
  doi: 10.1111/j.1365-2362.2007.01841.x
– volume: 8
  start-page: 729
  year: 2007
  ident: 2022061022494875700_bib56
  article-title: Cellular senescence: when bad things happen to good cells
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm2233
– volume: 580
  start-page: 3217
  year: 2006
  ident: 2022061022494875700_bib48
  article-title: Regulation of histone acetyltransferase activity of p300 and PCAF by proto-oncogene protein DEK
  publication-title: FEBS Lett
  doi: 10.1016/j.febslet.2006.04.081
SSID ssj0014104
Score 2.2737525
SecondaryResourceType review_article
Snippet Slight modifications of chromatin dynamics can translate into small- and large-scale changes in DNA replication and DNA repair. Similarly, promoter usage and...
Slight modifications of chromatin dynamics can translate into short and large-scale changes in DNA replication and DNA repair. Similarly, promoter usage and...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 2932
SubjectTerms Antineoplastic agents
Biological and medical sciences
Cell Transformation, Neoplastic - genetics
Chromatin - metabolism
Chromosomal Proteins, Non-Histone - genetics
Drug Delivery Systems
Drug Resistance, Neoplasm
Gene Expression Regulation
Humans
Medical sciences
Neoplasms - genetics
Oncogene Proteins - genetics
Pharmacology. Drug treatments
Poly-ADP-Ribose Binding Proteins
Protein Processing, Post-Translational
Proto-Oncogene Mas
Proto-Oncogenes
Title Control of Tumorigenesis and Chemoresistance by the DEK Oncogene
URI https://www.ncbi.nlm.nih.gov/pubmed/20501624
https://www.proquest.com/docview/733126353
https://pubmed.ncbi.nlm.nih.gov/PMC2931273
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgSAgJIb4pH5MfeJtSkthOmjdQ1jLBOqSplfpm2Y4NFSOZ-vEAfz13iZM1o9KAlyhy7bi6-_l0d74PQt6qIo1UloLmVqQi4C4JA5VZFRQ647pQVou6TsH0LDmZ808LsWjbu_vsko0eml9780r-h6swBnzFLNl_4Gz3URiAd-AvPIHD8PwrHuc-zhzv-bc_sMcVSq5lU3YZuIFBtGtUEPH0op4JmDgefz6qSlPh1F3NNG9TJA3OXh35KkCdt_gcxOJyVQUTdfHdllo1LaRqMdp5aSpbfm0SxKaquYI_Vt636h0LeCfeBkC1slCA_ImbVg5Du2esFaDJLlCiXXGYNc7LP-W0GNUuAyzvy1k8zPNzDMKImb-k6dXFPvsiJ_PTUzkbL2a3yZ0YDALsVfFx0QXzYLBqHT_Q_j2fqwXbvNu7SU8LuX-p1kBf13Qy2WdqXI-Y3VFBZg_JA2870A8NEB6RW7Z8TO5OfXTEE_Le44FWjvbwQAEP9BoeqP5JAQ8U8EBbPDwl88l4lp8EvkNGYESYbAKu7UgpyzI4UaEZ6SQx1nHhssg64ZxKBAsdU0mkmQ11BrIbFOhURaE23Dgm2DNyUFalfUGoVjEQKtQcLGZujcscTw1ot3FhigSMhAHhLcWk8eXjsYvJhazNSDGSSGiJhJZAaBlmEgk9IMNu2WVTP-WmBYc9dnSr4hg0S8b4gNCWPxJEId5vqdJW27XE9qNYW4kNyPOGXVeLQwG2TQyL0x4juwlYZb3_S7n8VldbBwxHoOO_vHnbV-Te1Tl6TQ42q619AyrrRh_WaP0N7EWTIQ
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Control+of+tumorigenesis+and+chemoresistance+by+the+DEK+oncogene&rft.jtitle=Clinical+cancer+research&rft.au=Riveiro-Falkenbach%2C+Erica&rft.au=Soengas%2C+Mar%C3%ADa+S&rft.date=2010-06-01&rft.issn=1557-3265&rft.eissn=1557-3265&rft.volume=16&rft.issue=11&rft.spage=2932&rft_id=info:doi/10.1158%2F1078-0432.CCR-09-2330&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1078-0432&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1078-0432&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1078-0432&client=summon