Artificial intelligence in musculoskeletal ultrasound imaging

Ultrasonography (US) is noninvasive and offers real-time, low-cost, and portable imaging that facilitates the rapid and dynamic assessment of musculoskeletal components. Significant technological improvements have contributed to the increasing adoption of US for musculoskeletal assessments, as artif...

Full description

Saved in:
Bibliographic Details
Published inUltrasonography (Seoul, Korea) Vol. 40; no. 1; pp. 30 - 44
Main Authors Shin, YiRang, Yang, Jaemoon, Lee, Young Han, Kim, Sungjun
Format Journal Article
LanguageEnglish
Published Korea (South) Korean Society of Ultrasound in Medicine 01.01.2021
대한초음파의학회
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Ultrasonography (US) is noninvasive and offers real-time, low-cost, and portable imaging that facilitates the rapid and dynamic assessment of musculoskeletal components. Significant technological improvements have contributed to the increasing adoption of US for musculoskeletal assessments, as artificial intelligence (AI)-based computer-aided detection and computer-aided diagnosis are being utilized to improve the quality, efficiency, and cost of US imaging. This review provides an overview of classical machine learning techniques and modern deep learning approaches for musculoskeletal US, with a focus on the key categories of detection and diagnosis of musculoskeletal disorders, predictive analysis with classification and regression, and automated image segmentation. Moreover, we outline challenges and a range of opportunities for AI in musculoskeletal US practice.
AbstractList Ultrasonography (US) is noninvasive and offers real-time, low-cost, and portable imaging that facilitates the rapid and dynamic assessment of musculoskeletal components. Significant technological improvements have contributed to the increasing adoption of US for musculoskeletal assessments, as artificial intelligence (AI)-based computer-aided detection and computer-aided diagnosis are being utilized to improve the quality, efficiency, and cost of US imaging. This review provides an overview of classical machine learning techniques and modern deep learning approaches for musculoskeletal US, with a focus on the key categories of detection and diagnosis of musculoskeletal disorders, predictive analysis with classification and regression, and automated image segmentation. Moreover, we outline challenges and a range of opportunities for AI in musculoskeletal US practice.
Ultrasonography (US) is noninvasive and offers real-time, low-cost, and portable imaging that facilitates the rapid and dynamic assessment of musculoskeletal components. Significant technological improvements have contributed to the increasing adoption of US for musculoskeletal assessments, as artificial intelligence (AI)-based computer-aided detection and computer-aided diagnosis are being utilized to improve the quality, efficiency, and cost of US imaging. This review provides an overview of classical machine learning techniques and modern deep learning approaches for musculoskeletal US, with a focus on the key categories of detection and diagnosis of musculoskeletal disorders, predictive analysis with classification and regression, and automated image segmentation. Moreover, we outline challenges and a range of opportunities for AI in musculoskeletal US practice. Correspondence to: Young Han Lee, MD, Department of Radiology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea Tel. +82-2-2228-7400 Fax. +82-2-2227-8337 E-mail: sando@yuhs.ac
Ultrasonography (US) is noninvasive and offers real-time, low-cost, and portable imaging that facilitates the rapid and dynamic assessment of musculoskeletal components. Significant technological improvements have contributed to the increasing adoption of US for musculoskeletal assessments, as artificial intelligence (AI)-based computer-aided detection and computer-aided diagnosis are being utilized to improve the quality, efficiency, and cost of US imaging. This review provides an overview of classical machine learning techniques and modern deep learning approaches for musculoskeletal US, with a focus on the key categories of detection and diagnosis of musculoskeletal disorders, predictive analysis with classification and regression, and automated image segmentation. Moreover, we outline challenges and a range of opportunities for AI in musculoskeletal US practice.Ultrasonography (US) is noninvasive and offers real-time, low-cost, and portable imaging that facilitates the rapid and dynamic assessment of musculoskeletal components. Significant technological improvements have contributed to the increasing adoption of US for musculoskeletal assessments, as artificial intelligence (AI)-based computer-aided detection and computer-aided diagnosis are being utilized to improve the quality, efficiency, and cost of US imaging. This review provides an overview of classical machine learning techniques and modern deep learning approaches for musculoskeletal US, with a focus on the key categories of detection and diagnosis of musculoskeletal disorders, predictive analysis with classification and regression, and automated image segmentation. Moreover, we outline challenges and a range of opportunities for AI in musculoskeletal US practice.
Ultrasonography (US) is noninvasive and offers real-time, low-cost, and portable imaging that facilitates the rapid and dynamic assessment of musculoskeletal components. Significant technological improvements have contributed to the increasing adoption of US for musculoskeletal assessments, as artificial intelligence (AI)-based computer-aided detection and computer-aided diagnosis are being utilized to improve the quality, efficiency, and cost of US imaging. This review provides an overview of classical machine learning techniques and modern deep learning approaches for musculoskeletal US, with a focus on the key categories of detection and diagnosis of musculoskeletal disorders, predictive analysis with classification and regression, and automated image segmentation. Moreover, we outline challenges and a range of opportunities for AI in musculoskeletal US practice. KCI Citation Count: 0
Author Kim, Sungjun
Yang, Jaemoon
Shin, YiRang
Lee, Young Han
Author_xml – sequence: 1
  givenname: YiRang
  surname: Shin
  fullname: Shin, YiRang
– sequence: 2
  givenname: Jaemoon
  surname: Yang
  fullname: Yang, Jaemoon
– sequence: 3
  givenname: Young Han
  orcidid: 0000-0002-5602-391X
  surname: Lee
  fullname: Lee, Young Han
– sequence: 4
  givenname: Sungjun
  surname: Kim
  fullname: Kim, Sungjun
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33242932$$D View this record in MEDLINE/PubMed
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002669272$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNptkl1rFDEUhoNUbLv2xh8gC95YYWs-Z5ILhaX4sVAQpF6HTHIyZnc2qcmM4L83nW2LLV6dJOc5b96cnFN0FFMEhF4RfEE4a5r3U-kvKMYSP0MnlEq5Eoqzo4c1UcforJQtxpgQphiRL9AxY5RTxegJ-rDOY_DBBjMsQxxhGEIP0ULdLPdTsdOQyg4GGGt-GsZsSpqiW4a96UPsX6Ln3gwFzu7iAv34_On68uvq6tuXzeX6amUFbsYVbzGXWAiglLZUNNK1QFvmjbCKeiE9A9V1zimvVGetaIhQkpiGcK8cgGcLdH7QjdnrnQ06mTDHPuld1uvv1xutGiYxp5XdHFiXzFbf5Go1_5kL5oOUe23qm-0AujNAHDHOyo5xIKazDhhmhrvq2Ivbez8etG6mbg_OQqwdGB6JPs7E8LN6-q3bVkhcHS3Q2zuBnH5NUEa9D8XWLpsIaSqa8kZw1spGVPTNE3SbphxrWzVtFGmVFEJW6vW_jh6s3P9oBfABsDmVksFrG0YzhnRrMAyaYD3Pja5zo-e5qSXvnpTcq_4H_gt2f8Ng
CitedBy_id crossref_primary_10_1016_j_nmd_2025_105274
crossref_primary_10_3390_s21124161
crossref_primary_10_7759_cureus_79391
crossref_primary_10_1002_ase_2266
crossref_primary_10_1016_j_ultrasmedbio_2022_08_003
crossref_primary_10_1038_s41598_023_39508_5
crossref_primary_10_1109_ACCESS_2025_3532090
crossref_primary_10_17341_gazimmfd_1318983
crossref_primary_10_1080_24699322_2023_2276055
crossref_primary_10_1249_MSS_0000000000003456
crossref_primary_10_2196_50325
crossref_primary_10_2214_AJR_23_29530
crossref_primary_10_1007_s00234_022_02916_x
crossref_primary_10_3389_fmed_2023_1286085
crossref_primary_10_1016_j_ultrasmedbio_2023_10_011
crossref_primary_10_1249_MSS_0000000000003010
crossref_primary_10_1016_j_jclinane_2021_110597
crossref_primary_10_14366_usg_20078
crossref_primary_10_62347_WHER3512
crossref_primary_10_3390_diagnostics11060963
crossref_primary_10_3390_medicina59050844
crossref_primary_10_37015_AUDT_2021_210023
crossref_primary_10_1016_j_ijom_2025_01_012
crossref_primary_10_13104_imri_2022_1102
crossref_primary_10_1016_j_jcot_2021_101573
crossref_primary_10_1109_ACCESS_2024_3432691
crossref_primary_10_1007_s44197_024_00217_5
crossref_primary_10_3390_life14091208
crossref_primary_10_1016_j_compbiomed_2021_104623
crossref_primary_10_1016_j_dsx_2023_102897
crossref_primary_10_1097_PHM_0000000000002602
crossref_primary_10_1097_BPO_0000000000002065
crossref_primary_10_1097_RUQ_0000000000000680
crossref_primary_10_3390_diagnostics14070755
crossref_primary_10_4103_jmu_jmu_182_21
crossref_primary_10_1111_1756_185X_15094
crossref_primary_10_1016_j_ejr_2022_08_002
crossref_primary_10_3389_fmed_2024_1495644
crossref_primary_10_1186_s41747_024_00422_8
crossref_primary_10_1002_mus_28024
crossref_primary_10_1007_s11547_024_01856_1
Cites_doi 10.1038/nature21056
10.1055/s-0034-1365830
10.1098/rsfs.2011.0027
10.1097/MD.0000000000015200
10.1212/WNL.0b013e3181eccf8f
10.1038/s41598-018-20132-7
10.14366/usg.18013
10.1177/1941738116664326
10.1109/ICCV.2017.322
10.1513/AnnalsATS.201612-967PS
10.3390/jimaging4020029
10.1007/s11548-015-1202-5
10.1007/s11548-017-1575-8
10.1038/s41746-019-0172-3
10.1016/j.ultrasmedbio.2017.01.012
10.1109/ICMA.2013.6618049
10.1016/j.ultrasmedbio.2014.03.027
10.1136/rmdopen-2016-000427
10.1002/ana.24904
10.3390/jimaging5040043
10.1109/TBME.2010.2048709
10.1109/TBME.2018.2877577
10.1007/s10278-019-00227-x
10.1136/ard.2003.012393
10.1177/0161734617711370
10.1016/j.ultrasmedbio.2015.05.015
10.3348/kjr.2017.18.4.570
10.1016/j.nmd.2011.10.020
10.1016/j.media.2018.06.003
10.1117/1.JMI.5.4.044004
10.1007/s12178-007-9002-3
10.4081/or.2010.e19
10.1016/j.ultrasmedbio.2015.04.021
10.1007/s11548-015-1239-5
10.1007/s11517-017-1710-2
10.1016/j.ultrasmedbio.2017.10.005
10.1109/BIBM.2016.7822557
10.1155/2018/5137904
10.4103/0019-5413.168753
10.1136/rmdopen-2018-000891
10.7863/jum.2011.30.6.797
10.1016/j.eng.2018.11.020
10.1148/radiol.2018172986
10.1148/radiol.2017162326
10.1148/radiol.2016160826
10.1016/j.imu.2016.06.003
10.1371/journal.pone.0184059
10.1016/j.ultrasmedbio.2019.10.015
10.1172/jci.insight.120178
10.1007/s00330-010-2024-z
10.1109/ICECA.2017.8203654
10.1016/j.bspc.2014.04.008
10.1259/bjr/93042867
10.1038/nature14539
10.1177/0954411919845747
10.1113/jphysiol.1963.sp007079
10.1109/ACCESS.2019.2908991
10.1155/2013/683685
10.15557/JoU.2017.0027
10.1155/2010/164518
10.21037/atm.2019.08.61
10.1109/TMI.2017.2738612
10.1016/j.cger.2010.03.001
10.1136/rmdopen-2016-000428
ContentType Journal Article
Copyright 2021. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2021 Korean Society of Ultrasound in Medicine (KSUM) 2021
Copyright_xml – notice: 2021. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2021 Korean Society of Ultrasound in Medicine (KSUM) 2021
DBID AAYXX
CITATION
NPM
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
ACYCR
DOI 10.14366/usg.20080
DatabaseName CrossRef
PubMed
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
Korean Citation Index
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList
PubMed
Publicly Available Content Database
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 2288-5943
EndPage 44
ExternalDocumentID oai_kci_go_kr_ARTI_9638042
oai_doaj_org_article_bae1d1adc8b34e1abcde303a4d470f5f
PMC7758096
33242932
10_14366_usg_20080
Genre Journal Article
GrantInformation_xml – fundername: National Research Foundation of Korea
  grantid: 2018R1A2B6009076
– fundername: Ministry of Science, ICT and Future Planning
GroupedDBID 5-W
5VS
8JR
AAYXX
ABDBF
ACUHS
ADBBV
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
BENPR
CCPQU
CITATION
EF.
GROUPED_DOAJ
KQ8
M48
OK1
PGMZT
PHGZM
PHGZT
PIMPY
RPM
ADRAZ
HYE
IPNFZ
NPM
RIG
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
7X8
5PM
ACYCR
ID FETCH-LOGICAL-c506t-47048055e22272568d7e273fa5c92f58f3e9bbdd9f99bcc5615981a614f9deef3
IEDL.DBID BENPR
ISSN 2288-5919
IngestDate Sun Mar 09 07:52:13 EDT 2025
Wed Aug 27 01:28:51 EDT 2025
Thu Aug 21 13:39:14 EDT 2025
Thu Jul 10 18:12:45 EDT 2025
Sat Aug 23 14:23:07 EDT 2025
Thu Jan 02 22:41:21 EST 2025
Tue Jul 01 03:30:06 EDT 2025
Thu Apr 24 22:57:16 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Deep learning
Musculoskeletal system
Artificial intelligence
Machine learning
Ultrasonography
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/) which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c506t-47048055e22272568d7e273fa5c92f58f3e9bbdd9f99bcc5615981a614f9deef3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5602-391X
OpenAccessLink https://www.proquest.com/docview/2691798558?pq-origsite=%requestingapplication%
PMID 33242932
PQID 2691798558
PQPubID 5500204
PageCount 15
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_9638042
doaj_primary_oai_doaj_org_article_bae1d1adc8b34e1abcde303a4d470f5f
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7758096
proquest_miscellaneous_2465437865
proquest_journals_2691798558
pubmed_primary_33242932
crossref_citationtrail_10_14366_usg_20080
crossref_primary_10_14366_usg_20080
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Korea (South)
PublicationPlace_xml – name: Korea (South)
– name: Seoul
PublicationTitle Ultrasonography (Seoul, Korea)
PublicationTitleAlternate Ultrasonography
PublicationYear 2021
Publisher Korean Society of Ultrasound in Medicine
대한초음파의학회
Publisher_xml – name: Korean Society of Ultrasound in Medicine
– name: 대한초음파의학회
References ref13
Hareendranathan (ref38) 2017
ref57
ref12
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
Golan (ref37) 2016
ref17
ref16
ref19
ref18
Nurzynska (ref46) 2016
ref51
ref50
Zhao (ref59) 2017
ref45
ref48
Hadjerci (ref56) 2014
ref47
Patel (ref35) 2001
ref42
ref41
ref44
ref43
ref49
ref8
ref7
Cunningham (ref31) 2017
ref9
ref4
ref3
ref6
ref5
ref40
ref34
ref36
ref30
ref33
ref32
ref2
ref1
ref39
Hadjerci (ref15) 2015
ref71
ref70
ref73
ref72
ref24
ref68
ref23
ref67
ref26
Liu (ref62) 2018
ref25
ref69
ref20
ref64
ref63
ref22
ref66
ref21
ref65
ref28
ref27
ref29
ref60
ref61
References_xml – ident: ref18
  doi: 10.1038/nature21056
– ident: ref73
  doi: 10.1055/s-0034-1365830
– ident: ref2
  doi: 10.1098/rsfs.2011.0027
– ident: ref39
  doi: 10.1097/MD.0000000000015200
– ident: ref26
  doi: 10.1212/WNL.0b013e3181eccf8f
– ident: ref49
  doi: 10.1038/s41598-018-20132-7
– ident: ref70
  doi: 10.14366/usg.18013
– ident: ref1
  doi: 10.1177/1941738116664326
– ident: ref63
  doi: 10.1109/ICCV.2017.322
– ident: ref21
  doi: 10.1513/AnnalsATS.201612-967PS
– start-page: 130
  year: 2016
  ident: ref37
– ident: ref32
  doi: 10.3390/jimaging4020029
– ident: ref53
  doi: 10.1007/s11548-015-1202-5
– ident: ref55
  doi: 10.1007/s11548-017-1575-8
– ident: ref19
  doi: 10.1038/s41746-019-0172-3
– ident: ref14
  doi: 10.1016/j.ultrasmedbio.2017.01.012
– ident: ref52
  doi: 10.1109/ICMA.2013.6618049
– ident: ref23
  doi: 10.1016/j.ultrasmedbio.2014.03.027
– ident: ref43
  doi: 10.1136/rmdopen-2016-000427
– ident: ref29
  doi: 10.1002/ana.24904
– ident: ref68
  doi: 10.3390/jimaging5040043
– ident: ref51
  doi: 10.1109/TBME.2010.2048709
– ident: ref40
  doi: 10.1109/TBME.2018.2877577
– ident: ref42
  doi: 10.1007/s10278-019-00227-x
– ident: ref45
  doi: 10.1136/ard.2003.012393
– ident: ref25
  doi: 10.1177/0161734617711370
– ident: ref11
  doi: 10.1016/j.ultrasmedbio.2015.05.015
– ident: ref4
  doi: 10.3348/kjr.2017.18.4.570
– ident: ref28
  doi: 10.1016/j.nmd.2011.10.020
– ident: ref71
  doi: 10.1016/j.media.2018.06.003
– start-page: 53
  volume-title: Segmentation of nerve on ultrasound images using deep adversarial network
  year: 2018
  ident: ref62
– ident: ref57
  doi: 10.1117/1.JMI.5.4.044004
– start-page: 246
  year: 2015
  ident: ref15
– ident: ref22
  doi: 10.1007/s12178-007-9002-3
– ident: ref33
  doi: 10.4081/or.2010.e19
– ident: ref30
  doi: 10.1016/j.ultrasmedbio.2015.04.021
– ident: ref36
  doi: 10.1007/s11548-015-1239-5
– ident: ref67
  doi: 10.1007/s11517-017-1710-2
– ident: ref12
  doi: 10.1016/j.ultrasmedbio.2017.10.005
– start-page: 63
  year: 2017
  ident: ref31
– ident: ref41
  doi: 10.1109/BIBM.2016.7822557
– ident: ref9
  doi: 10.1155/2018/5137904
– ident: ref34
  doi: 10.4103/0019-5413.168753
– ident: ref48
  doi: 10.1136/rmdopen-2018-000891
– start-page: 132
  year: 2014
  ident: ref56
– ident: ref65
  doi: 10.7863/jum.2011.30.6.797
– ident: ref8
  doi: 10.1016/j.eng.2018.11.020
– ident: ref16
  doi: 10.1148/radiol.2018172986
– ident: ref17
  doi: 10.1148/radiol.2017162326
– ident: ref27
  doi: 10.1148/radiol.2016160826
– ident: ref10
  doi: 10.1016/j.imu.2016.06.003
– start-page: 982
  volume-title: Toward automatic diagnosis of hip dysplasia from 2D ultrasound
  year: 2017
  ident: ref38
– ident: ref13
  doi: 10.1371/journal.pone.0184059
– ident: ref69
  doi: 10.1016/j.ultrasmedbio.2019.10.015
– ident: ref72
  doi: 10.1172/jci.insight.120178
– ident: ref7
  doi: 10.1007/s00330-010-2024-z
– ident: ref60
  doi: 10.1109/ICECA.2017.8203654
– ident: ref66
  doi: 10.1016/j.bspc.2014.04.008
– ident: ref3
  doi: 10.1259/bjr/93042867
– ident: ref5
  doi: 10.1038/nature14539
– ident: ref47
  doi: 10.1177/0954411919845747
– ident: ref20
  doi: 10.1113/jphysiol.1963.sp007079
– start-page: 1669
  volume-title: Preventive health care, 2001 update: screening and management of developmental dysplasia of the hip in newborns
  year: 2001
  ident: ref35
– start-page: 496
  year: 2017
  ident: ref59
– ident: ref61
  doi: 10.1109/ACCESS.2019.2908991
– ident: ref50
  doi: 10.1155/2013/683685
– ident: ref6
  doi: 10.15557/JoU.2017.0027
– ident: ref24
  doi: 10.1155/2010/164518
– ident: ref58
  doi: 10.21037/atm.2019.08.61
– start-page: 98970N
  volume-title: Automatic finger joint synovitis localization in ultrasound images
  year: 2016
  ident: ref46
– ident: ref54
  doi: 10.1109/TMI.2017.2738612
– ident: ref64
  doi: 10.1016/j.cger.2010.03.001
– ident: ref44
  doi: 10.1136/rmdopen-2016-000428
SSID ssj0001139318
Score 2.3568583
SecondaryResourceType review_article
Snippet Ultrasonography (US) is noninvasive and offers real-time, low-cost, and portable imaging that facilitates the rapid and dynamic assessment of musculoskeletal...
SourceID nrf
doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 30
SubjectTerms Algorithms
Artificial intelligence
Automation
Classification
deep learning
Engineering
machine learning
Magnetic resonance imaging
Musculoskeletal diseases
Musculoskeletal system
Neural networks
Radiology
Special Review of Artifical Intelligence (Part 1)
Tendons
Ultrasonic imaging
ultrasonography
방사선과학
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB5VHFAviNIWQqEKpZceIvKwnfjAgaIiqERPIHGz_ITVLlm0u_n_zDhhtVshceGSKLGjOOOx5xt78g3ATx1xMBPYA3hg0rlMO2EyYXWFaNt4F6mUrv-Jy1v2947fraT6opiwnh64F9yJ0b5whXa2MRXzhTbWeZx2NXOszgMPNPuizVtxpuLqCgKbfnGvLFEVuCzkwE3KKiFOuvl9DKPM16xRJO1HG9POwmt48_-wyRU7dLENWwOATM_6hn-CD77dgc3rYYv8M5xSSU8LkY5W-DbxIn3sKOx0Oh-jrUHQnXYTfMOcEiulo8eYrugL3F78uTm_zIYcCZnluVhkKATW5Jx7-qcV4Uvjao-IJGhuZRl4EyovjXFOBimNtYiWuGwKjUY5SOd9qL7CRjtt_R6kCO0kxZ5VunYMHSetDfpKgfG6tih9l8CvF1kpOxCIUx6LiSJHguSqUK4xr2WewPGy7lNPm_Fqrd8k8mUNorqON1AB1KAA6i0FSOAHdpga21F8ns73UzWeKXQIrhTNLzgvJXDw0p9qGKRzVQpJdG2cNwkcLYtxeNGeiW79tMM6xDdX1Y3gCez23b9sbkVgFPFvAvWaYqx9z3pJO3qIFN41umnoPO6_hwC-wceSAm3iutABbCxmnT9EpLQw3-OgeAagWBM3
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEB5VrYTggKC8DAWZx4WDobZ3195DhQBRFaRwIlJvq_U-QpTUBieW2n_fmbUTxSji4sjxWF7vzHi-WY-_AXinAw5mAjWAGyatTbQVVSKMzhFtV84GKqXJT3ExZT8u-eUBbPp3DhO42pvaUT-pabv8cP335hM6_Bk5PMuF-NitZqEqElP3I4xIBTnoZID5Ya0FYU6_1JdlaBhcpnJgKh2fPopNgcIfI07d-n3o898iyp2odP4A7g9wMv7c6_8hHLj6GO7tkAwew53J8Pr8EZyRXE8ZEc93uDhxJ77qqCS1WS0wDuFcxN0Sr7eipkvx_Cq0MnoM0_Nvv75eJEP_hMTwU7FOWEEfjHPu6HtXhDalLRyiFa-5kZnnpc-drCprpZeyMgaRFJdlqjFge2md8_kTOKyb2j2DGGGfpLq0XBeWYVKldYV5lGe8KIwpKxvB-83MKTOQi1OPi6WiJINmWeEsh56XpxG83cr-6Sk19kp9IQVsJYgGO_zRtDM1eBVGepfaVFscQs5cqitjHcZkzSzeu-c-gjeoPrUw83A-_c4atWgVJgvfFT178JkVwclGu2pjfyoTkqjcOC8jeL09jK5H71N07ZoOZYiLLi9KwSN42hvDdrg5AVXExhEUIzMZ3c_4SD3_Hei9C0zhMLF8_v9hvYC7GZXXhNWgEzhct517ifhoXb0Kxn8LdoEPNg
  priority: 102
  providerName: Scholars Portal
Title Artificial intelligence in musculoskeletal ultrasound imaging
URI https://www.ncbi.nlm.nih.gov/pubmed/33242932
https://www.proquest.com/docview/2691798558
https://www.proquest.com/docview/2465437865
https://pubmed.ncbi.nlm.nih.gov/PMC7758096
https://doaj.org/article/bae1d1adc8b34e1abcde303a4d470f5f
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002669272
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX ULTRASONOGRAPHY, 2021, 40(1), , pp.30-44
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwED7BKiF4mGDAyBhV-PHCQ7QmsZP4AaEVVg2kTggxaW-WYzul6paMpvn_uXPcrkUTL6nSXBTHZ_u-O1--A_igHA5mGWoAD0wYEymTlVGmVYpou7TGUSlNL7LzS_b9il_5gFvr0yrXa6JbqE2jKUZ-kmSCuLU4Lz7f_omoahTtrvoSGg9hgEtwgc7XYHx28ePnXZQFAU4f5EsSHBJcxMJzlLI0y066dubSKUc7VsmR96OtqZfVfbjz3_TJLXs0eQr7HkiGp73mn8EDWx_Aky16wQN4NPUb58_hE8n1ZBHhfIuFE0_Cm46SUZt2gRYIoXjYXePzWiq3FM5vXBGjF3A5Ofv15TzylRMizUfZKmI5fSrOuaUvXRHUFCa3iFMqxbVIKl5UqRVlaYyohCi1RgzFRRErNNWVMNZW6UvYq5vavoIQAZ-gjLRU5YahO6VUiR5UxXiea12UJoCP656T2tOKU3WLa0nuBfWyxF521S5HAbzfyN72ZBr3So1JARsJIsB2fzTLmfTzCW28jU2sDDYhZTZWpTYWrbFiBt-94lUA71B9cqHn7n76nTVysZToJnyTtOrgahXA8Vq70k_dVt4NtADebi7jpKOdFFXbpkMZYqFL8yLjARz2g2HT3JQgKqLiAPKdYbLzPrtX6vlvR-ydo_OGLuXR_5v1Gh4nlFjj4kDHsLdadvYNIqNVOYTB6fjreDL002DoIgx4nLLiL9C5Eeg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVOJxQFBehgLmdeBgNX6s7T1UiEKrhDYRQq3U27LeXYcorV3iWIg_xW9kZm2nCaq49ZIo8cRZ787OfLM7-w3AW2lxcBTjCOBLxLX2pI4zL1YyRLSdGW2plEbjeHASfTllpxvwpzsLQ2mVnU20hlqXitbId4KYE7cWY-mHi58eVY2i3dWuhEajFofm9y8M2ard4Wcc33dBcLB__GngtVUFPMX68cKLEjpGzZihU6Do8FOdGPThuWSKBzlL89DwLNOa55xnSiG-YDz1JbqxnGtj8hDvewM2oxBDmR5s7u2Pv367XNVBQNUsKgYBqiDjPm85UVE-3qmriU3f7K95QVssAH1bMc-vwrn_pmuu-L-De3C3Ba7ux0bT7sOGKbbgzgqd4RbcHLUb9Q9gl-Qacgp3usL6iR_c85qSX8tqhh4Pob9bn-H_VVTeyZ2e26JJD-HkWvr0EfSKsjBPwEWAySkDLpSJjjB8kzLDiC2PWJIolWbagfddzwnV0phTNY0zQeEM9bLAXrbVNfsOvFnKXjTkHVdK7dEALCWIcNt-Uc4nop2_iCmMr32psQlhZHyZKW3Q-8tI47PnLHfgNQ6fmKmp_T29T0oxmwsMS4aCrBxaRwe2u9EVramoxKViO_BqeRknOe3cyMKUNcoQ612YpDFz4HGjDMvmhgSJEYU7kKypydrzrF8ppj8skXiCwSKGsE__36yXcGtwPDoSR8Px4TO4HVBSj12D2obeYl6b54jKFtmLdiq48P26Z99fBrxLPA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVKrggKC8DAXM68DBSmJ7be-hQpQ2aiiNKkSl3pb1PkKU1i5xIsRf49cxs7bTBFXcekmUeOOsd2Z2vtmd_QbgrXQ4OE5QAvgSc60DqZM8SJSMEG3nRjsqpeNRcngafz5jZxvwpz0LQ2mV7ZzoJmpdKloj74YJJ24txrKubdIiTvYHHy5_BlRBinZa23IatYocmd-_MHyrdof7KOt3YTg4-PbpMGgqDASK9ZJ5EKd0pJoxQydC0flnOjXoz61kioeWZTYyPM-15pbzXCnEGoxnfYkuzXJtjI3wvrdgM8WoqNeBzb2D0cnXqxUeBFf1AmMYojoy3ucNP2ocJUl3UY1dKmdvzSO6wgHo54qZvQ7z_pu6ueILB_fgbgNi_Y-11t2HDVNsw50VasNt2DpuNu0fwC61q4kq_MkKAyh-8C8WlAhbVlP0fhgG-Itz_L-KSj35kwtXQOkhnN7ImD6CTlEW5gn4CDY5ZcNFMtUxhnJS5hi92ZilqVJZrj14346cUA2lOVXWOBcU2tAoCxxlV2mz58GbZdvLmsjj2lZ7JIBlCyLfdl-Us7FobBnxhenrvtTYhSg2fZkrbRAJyFjjs1tmPXiN4hNTNXG_p_dxKaYzgSHKUNCMhzOlBzutdEUzbVTiSsk9eLW8jAZPuziyMOUC2xADXpRmCfPgca0My-5GBI8RkXuQrqnJ2vOsXykmPxypeIqBI4azT__frZewhVYnvgxHR8_gdkj5PW45agc689nCPEeANs9fNJbgw_ebNr6_W1hPcQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+intelligence+in+musculoskeletal+ultrasound+imaging&rft.jtitle=Ultrasonography+%28Seoul%2C+Korea%29&rft.au=Shin%2C+YiRang&rft.au=Sungjun%2C+Kim&rft.date=2021-01-01&rft.pub=Korean+Society+of+Ultrasound+in+Medicine&rft.issn=2288-5919&rft.eissn=2288-5943&rft.volume=40&rft.issue=1&rft.spage=30&rft_id=info:doi/10.14366%2Fusg.20080&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2288-5919&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2288-5919&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2288-5919&client=summon