Artificial intelligence in musculoskeletal ultrasound imaging
Ultrasonography (US) is noninvasive and offers real-time, low-cost, and portable imaging that facilitates the rapid and dynamic assessment of musculoskeletal components. Significant technological improvements have contributed to the increasing adoption of US for musculoskeletal assessments, as artif...
Saved in:
Published in | Ultrasonography (Seoul, Korea) Vol. 40; no. 1; pp. 30 - 44 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Korea (South)
Korean Society of Ultrasound in Medicine
01.01.2021
대한초음파의학회 |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Ultrasonography (US) is noninvasive and offers real-time, low-cost, and portable imaging that facilitates the rapid and dynamic assessment of musculoskeletal components. Significant technological improvements have contributed to the increasing adoption of US for musculoskeletal assessments, as artificial intelligence (AI)-based computer-aided detection and computer-aided diagnosis are being utilized to improve the quality, efficiency, and cost of US imaging. This review provides an overview of classical machine learning techniques and modern deep learning approaches for musculoskeletal US, with a focus on the key categories of detection and diagnosis of musculoskeletal disorders, predictive analysis with classification and regression, and automated image segmentation. Moreover, we outline challenges and a range of opportunities for AI in musculoskeletal US practice. |
---|---|
AbstractList | Ultrasonography (US) is noninvasive and offers real-time, low-cost, and portable imaging that facilitates the rapid and dynamic assessment of musculoskeletal components. Significant technological improvements have contributed to the increasing adoption of US for musculoskeletal assessments, as artificial intelligence (AI)-based computer-aided detection and computer-aided diagnosis are being utilized to improve the quality, efficiency, and cost of US imaging. This review provides an overview of classical machine learning techniques and modern deep learning approaches for musculoskeletal US, with a focus on the key categories of detection and diagnosis of musculoskeletal disorders, predictive analysis with classification and regression, and automated image segmentation. Moreover, we outline challenges and a range of opportunities for AI in musculoskeletal US practice. Ultrasonography (US) is noninvasive and offers real-time, low-cost, and portable imaging that facilitates the rapid and dynamic assessment of musculoskeletal components. Significant technological improvements have contributed to the increasing adoption of US for musculoskeletal assessments, as artificial intelligence (AI)-based computer-aided detection and computer-aided diagnosis are being utilized to improve the quality, efficiency, and cost of US imaging. This review provides an overview of classical machine learning techniques and modern deep learning approaches for musculoskeletal US, with a focus on the key categories of detection and diagnosis of musculoskeletal disorders, predictive analysis with classification and regression, and automated image segmentation. Moreover, we outline challenges and a range of opportunities for AI in musculoskeletal US practice. Correspondence to: Young Han Lee, MD, Department of Radiology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea Tel. +82-2-2228-7400 Fax. +82-2-2227-8337 E-mail: sando@yuhs.ac Ultrasonography (US) is noninvasive and offers real-time, low-cost, and portable imaging that facilitates the rapid and dynamic assessment of musculoskeletal components. Significant technological improvements have contributed to the increasing adoption of US for musculoskeletal assessments, as artificial intelligence (AI)-based computer-aided detection and computer-aided diagnosis are being utilized to improve the quality, efficiency, and cost of US imaging. This review provides an overview of classical machine learning techniques and modern deep learning approaches for musculoskeletal US, with a focus on the key categories of detection and diagnosis of musculoskeletal disorders, predictive analysis with classification and regression, and automated image segmentation. Moreover, we outline challenges and a range of opportunities for AI in musculoskeletal US practice.Ultrasonography (US) is noninvasive and offers real-time, low-cost, and portable imaging that facilitates the rapid and dynamic assessment of musculoskeletal components. Significant technological improvements have contributed to the increasing adoption of US for musculoskeletal assessments, as artificial intelligence (AI)-based computer-aided detection and computer-aided diagnosis are being utilized to improve the quality, efficiency, and cost of US imaging. This review provides an overview of classical machine learning techniques and modern deep learning approaches for musculoskeletal US, with a focus on the key categories of detection and diagnosis of musculoskeletal disorders, predictive analysis with classification and regression, and automated image segmentation. Moreover, we outline challenges and a range of opportunities for AI in musculoskeletal US practice. Ultrasonography (US) is noninvasive and offers real-time, low-cost, and portable imaging that facilitates the rapid and dynamic assessment of musculoskeletal components. Significant technological improvements have contributed to the increasing adoption of US for musculoskeletal assessments, as artificial intelligence (AI)-based computer-aided detection and computer-aided diagnosis are being utilized to improve the quality, efficiency, and cost of US imaging. This review provides an overview of classical machine learning techniques and modern deep learning approaches for musculoskeletal US, with a focus on the key categories of detection and diagnosis of musculoskeletal disorders, predictive analysis with classification and regression, and automated image segmentation. Moreover, we outline challenges and a range of opportunities for AI in musculoskeletal US practice. KCI Citation Count: 0 |
Author | Kim, Sungjun Yang, Jaemoon Shin, YiRang Lee, Young Han |
Author_xml | – sequence: 1 givenname: YiRang surname: Shin fullname: Shin, YiRang – sequence: 2 givenname: Jaemoon surname: Yang fullname: Yang, Jaemoon – sequence: 3 givenname: Young Han orcidid: 0000-0002-5602-391X surname: Lee fullname: Lee, Young Han – sequence: 4 givenname: Sungjun surname: Kim fullname: Kim, Sungjun |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33242932$$D View this record in MEDLINE/PubMed https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002669272$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNptkl1rFDEUhoNUbLv2xh8gC95YYWs-Z5ILhaX4sVAQpF6HTHIyZnc2qcmM4L83nW2LLV6dJOc5b96cnFN0FFMEhF4RfEE4a5r3U-kvKMYSP0MnlEq5Eoqzo4c1UcforJQtxpgQphiRL9AxY5RTxegJ-rDOY_DBBjMsQxxhGEIP0ULdLPdTsdOQyg4GGGt-GsZsSpqiW4a96UPsX6Ln3gwFzu7iAv34_On68uvq6tuXzeX6amUFbsYVbzGXWAiglLZUNNK1QFvmjbCKeiE9A9V1zimvVGetaIhQkpiGcK8cgGcLdH7QjdnrnQ06mTDHPuld1uvv1xutGiYxp5XdHFiXzFbf5Go1_5kL5oOUe23qm-0AujNAHDHOyo5xIKazDhhmhrvq2Ivbez8etG6mbg_OQqwdGB6JPs7E8LN6-q3bVkhcHS3Q2zuBnH5NUEa9D8XWLpsIaSqa8kZw1spGVPTNE3SbphxrWzVtFGmVFEJW6vW_jh6s3P9oBfABsDmVksFrG0YzhnRrMAyaYD3Pja5zo-e5qSXvnpTcq_4H_gt2f8Ng |
CitedBy_id | crossref_primary_10_1016_j_nmd_2025_105274 crossref_primary_10_3390_s21124161 crossref_primary_10_7759_cureus_79391 crossref_primary_10_1002_ase_2266 crossref_primary_10_1016_j_ultrasmedbio_2022_08_003 crossref_primary_10_1038_s41598_023_39508_5 crossref_primary_10_1109_ACCESS_2025_3532090 crossref_primary_10_17341_gazimmfd_1318983 crossref_primary_10_1080_24699322_2023_2276055 crossref_primary_10_1249_MSS_0000000000003456 crossref_primary_10_2196_50325 crossref_primary_10_2214_AJR_23_29530 crossref_primary_10_1007_s00234_022_02916_x crossref_primary_10_3389_fmed_2023_1286085 crossref_primary_10_1016_j_ultrasmedbio_2023_10_011 crossref_primary_10_1249_MSS_0000000000003010 crossref_primary_10_1016_j_jclinane_2021_110597 crossref_primary_10_14366_usg_20078 crossref_primary_10_62347_WHER3512 crossref_primary_10_3390_diagnostics11060963 crossref_primary_10_3390_medicina59050844 crossref_primary_10_37015_AUDT_2021_210023 crossref_primary_10_1016_j_ijom_2025_01_012 crossref_primary_10_13104_imri_2022_1102 crossref_primary_10_1016_j_jcot_2021_101573 crossref_primary_10_1109_ACCESS_2024_3432691 crossref_primary_10_1007_s44197_024_00217_5 crossref_primary_10_3390_life14091208 crossref_primary_10_1016_j_compbiomed_2021_104623 crossref_primary_10_1016_j_dsx_2023_102897 crossref_primary_10_1097_PHM_0000000000002602 crossref_primary_10_1097_BPO_0000000000002065 crossref_primary_10_1097_RUQ_0000000000000680 crossref_primary_10_3390_diagnostics14070755 crossref_primary_10_4103_jmu_jmu_182_21 crossref_primary_10_1111_1756_185X_15094 crossref_primary_10_1016_j_ejr_2022_08_002 crossref_primary_10_3389_fmed_2024_1495644 crossref_primary_10_1186_s41747_024_00422_8 crossref_primary_10_1002_mus_28024 crossref_primary_10_1007_s11547_024_01856_1 |
Cites_doi | 10.1038/nature21056 10.1055/s-0034-1365830 10.1098/rsfs.2011.0027 10.1097/MD.0000000000015200 10.1212/WNL.0b013e3181eccf8f 10.1038/s41598-018-20132-7 10.14366/usg.18013 10.1177/1941738116664326 10.1109/ICCV.2017.322 10.1513/AnnalsATS.201612-967PS 10.3390/jimaging4020029 10.1007/s11548-015-1202-5 10.1007/s11548-017-1575-8 10.1038/s41746-019-0172-3 10.1016/j.ultrasmedbio.2017.01.012 10.1109/ICMA.2013.6618049 10.1016/j.ultrasmedbio.2014.03.027 10.1136/rmdopen-2016-000427 10.1002/ana.24904 10.3390/jimaging5040043 10.1109/TBME.2010.2048709 10.1109/TBME.2018.2877577 10.1007/s10278-019-00227-x 10.1136/ard.2003.012393 10.1177/0161734617711370 10.1016/j.ultrasmedbio.2015.05.015 10.3348/kjr.2017.18.4.570 10.1016/j.nmd.2011.10.020 10.1016/j.media.2018.06.003 10.1117/1.JMI.5.4.044004 10.1007/s12178-007-9002-3 10.4081/or.2010.e19 10.1016/j.ultrasmedbio.2015.04.021 10.1007/s11548-015-1239-5 10.1007/s11517-017-1710-2 10.1016/j.ultrasmedbio.2017.10.005 10.1109/BIBM.2016.7822557 10.1155/2018/5137904 10.4103/0019-5413.168753 10.1136/rmdopen-2018-000891 10.7863/jum.2011.30.6.797 10.1016/j.eng.2018.11.020 10.1148/radiol.2018172986 10.1148/radiol.2017162326 10.1148/radiol.2016160826 10.1016/j.imu.2016.06.003 10.1371/journal.pone.0184059 10.1016/j.ultrasmedbio.2019.10.015 10.1172/jci.insight.120178 10.1007/s00330-010-2024-z 10.1109/ICECA.2017.8203654 10.1016/j.bspc.2014.04.008 10.1259/bjr/93042867 10.1038/nature14539 10.1177/0954411919845747 10.1113/jphysiol.1963.sp007079 10.1109/ACCESS.2019.2908991 10.1155/2013/683685 10.15557/JoU.2017.0027 10.1155/2010/164518 10.21037/atm.2019.08.61 10.1109/TMI.2017.2738612 10.1016/j.cger.2010.03.001 10.1136/rmdopen-2016-000428 |
ContentType | Journal Article |
Copyright | 2021. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright © 2021 Korean Society of Ultrasound in Medicine (KSUM) 2021 |
Copyright_xml | – notice: 2021. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright © 2021 Korean Society of Ultrasound in Medicine (KSUM) 2021 |
DBID | AAYXX CITATION NPM ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA ACYCR |
DOI | 10.14366/usg.20080 |
DatabaseName | CrossRef PubMed ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals Korean Citation Index |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | PubMed Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 2288-5943 |
EndPage | 44 |
ExternalDocumentID | oai_kci_go_kr_ARTI_9638042 oai_doaj_org_article_bae1d1adc8b34e1abcde303a4d470f5f PMC7758096 33242932 10_14366_usg_20080 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Research Foundation of Korea grantid: 2018R1A2B6009076 – fundername: Ministry of Science, ICT and Future Planning |
GroupedDBID | 5-W 5VS 8JR AAYXX ABDBF ACUHS ADBBV AFKRA ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV BENPR CCPQU CITATION EF. GROUPED_DOAJ KQ8 M48 OK1 PGMZT PHGZM PHGZT PIMPY RPM ADRAZ HYE IPNFZ NPM RIG ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS PUEGO 7X8 5PM ACYCR |
ID | FETCH-LOGICAL-c506t-47048055e22272568d7e273fa5c92f58f3e9bbdd9f99bcc5615981a614f9deef3 |
IEDL.DBID | BENPR |
ISSN | 2288-5919 |
IngestDate | Sun Mar 09 07:52:13 EDT 2025 Wed Aug 27 01:28:51 EDT 2025 Thu Aug 21 13:39:14 EDT 2025 Thu Jul 10 18:12:45 EDT 2025 Sat Aug 23 14:23:07 EDT 2025 Thu Jan 02 22:41:21 EST 2025 Tue Jul 01 03:30:06 EDT 2025 Thu Apr 24 22:57:16 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Deep learning Musculoskeletal system Artificial intelligence Machine learning Ultrasonography |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/) which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c506t-47048055e22272568d7e273fa5c92f58f3e9bbdd9f99bcc5615981a614f9deef3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5602-391X |
OpenAccessLink | https://www.proquest.com/docview/2691798558?pq-origsite=%requestingapplication% |
PMID | 33242932 |
PQID | 2691798558 |
PQPubID | 5500204 |
PageCount | 15 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_9638042 doaj_primary_oai_doaj_org_article_bae1d1adc8b34e1abcde303a4d470f5f pubmedcentral_primary_oai_pubmedcentral_nih_gov_7758096 proquest_miscellaneous_2465437865 proquest_journals_2691798558 pubmed_primary_33242932 crossref_citationtrail_10_14366_usg_20080 crossref_primary_10_14366_usg_20080 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Korea (South) |
PublicationPlace_xml | – name: Korea (South) – name: Seoul |
PublicationTitle | Ultrasonography (Seoul, Korea) |
PublicationTitleAlternate | Ultrasonography |
PublicationYear | 2021 |
Publisher | Korean Society of Ultrasound in Medicine 대한초음파의학회 |
Publisher_xml | – name: Korean Society of Ultrasound in Medicine – name: 대한초음파의학회 |
References | ref13 Hareendranathan (ref38) 2017 ref57 ref12 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 Golan (ref37) 2016 ref17 ref16 ref19 ref18 Nurzynska (ref46) 2016 ref51 ref50 Zhao (ref59) 2017 ref45 ref48 Hadjerci (ref56) 2014 ref47 Patel (ref35) 2001 ref42 ref41 ref44 ref43 ref49 ref8 ref7 Cunningham (ref31) 2017 ref9 ref4 ref3 ref6 ref5 ref40 ref34 ref36 ref30 ref33 ref32 ref2 ref1 ref39 Hadjerci (ref15) 2015 ref71 ref70 ref73 ref72 ref24 ref68 ref23 ref67 ref26 Liu (ref62) 2018 ref25 ref69 ref20 ref64 ref63 ref22 ref66 ref21 ref65 ref28 ref27 ref29 ref60 ref61 |
References_xml | – ident: ref18 doi: 10.1038/nature21056 – ident: ref73 doi: 10.1055/s-0034-1365830 – ident: ref2 doi: 10.1098/rsfs.2011.0027 – ident: ref39 doi: 10.1097/MD.0000000000015200 – ident: ref26 doi: 10.1212/WNL.0b013e3181eccf8f – ident: ref49 doi: 10.1038/s41598-018-20132-7 – ident: ref70 doi: 10.14366/usg.18013 – ident: ref1 doi: 10.1177/1941738116664326 – ident: ref63 doi: 10.1109/ICCV.2017.322 – ident: ref21 doi: 10.1513/AnnalsATS.201612-967PS – start-page: 130 year: 2016 ident: ref37 – ident: ref32 doi: 10.3390/jimaging4020029 – ident: ref53 doi: 10.1007/s11548-015-1202-5 – ident: ref55 doi: 10.1007/s11548-017-1575-8 – ident: ref19 doi: 10.1038/s41746-019-0172-3 – ident: ref14 doi: 10.1016/j.ultrasmedbio.2017.01.012 – ident: ref52 doi: 10.1109/ICMA.2013.6618049 – ident: ref23 doi: 10.1016/j.ultrasmedbio.2014.03.027 – ident: ref43 doi: 10.1136/rmdopen-2016-000427 – ident: ref29 doi: 10.1002/ana.24904 – ident: ref68 doi: 10.3390/jimaging5040043 – ident: ref51 doi: 10.1109/TBME.2010.2048709 – ident: ref40 doi: 10.1109/TBME.2018.2877577 – ident: ref42 doi: 10.1007/s10278-019-00227-x – ident: ref45 doi: 10.1136/ard.2003.012393 – ident: ref25 doi: 10.1177/0161734617711370 – ident: ref11 doi: 10.1016/j.ultrasmedbio.2015.05.015 – ident: ref4 doi: 10.3348/kjr.2017.18.4.570 – ident: ref28 doi: 10.1016/j.nmd.2011.10.020 – ident: ref71 doi: 10.1016/j.media.2018.06.003 – start-page: 53 volume-title: Segmentation of nerve on ultrasound images using deep adversarial network year: 2018 ident: ref62 – ident: ref57 doi: 10.1117/1.JMI.5.4.044004 – start-page: 246 year: 2015 ident: ref15 – ident: ref22 doi: 10.1007/s12178-007-9002-3 – ident: ref33 doi: 10.4081/or.2010.e19 – ident: ref30 doi: 10.1016/j.ultrasmedbio.2015.04.021 – ident: ref36 doi: 10.1007/s11548-015-1239-5 – ident: ref67 doi: 10.1007/s11517-017-1710-2 – ident: ref12 doi: 10.1016/j.ultrasmedbio.2017.10.005 – start-page: 63 year: 2017 ident: ref31 – ident: ref41 doi: 10.1109/BIBM.2016.7822557 – ident: ref9 doi: 10.1155/2018/5137904 – ident: ref34 doi: 10.4103/0019-5413.168753 – ident: ref48 doi: 10.1136/rmdopen-2018-000891 – start-page: 132 year: 2014 ident: ref56 – ident: ref65 doi: 10.7863/jum.2011.30.6.797 – ident: ref8 doi: 10.1016/j.eng.2018.11.020 – ident: ref16 doi: 10.1148/radiol.2018172986 – ident: ref17 doi: 10.1148/radiol.2017162326 – ident: ref27 doi: 10.1148/radiol.2016160826 – ident: ref10 doi: 10.1016/j.imu.2016.06.003 – start-page: 982 volume-title: Toward automatic diagnosis of hip dysplasia from 2D ultrasound year: 2017 ident: ref38 – ident: ref13 doi: 10.1371/journal.pone.0184059 – ident: ref69 doi: 10.1016/j.ultrasmedbio.2019.10.015 – ident: ref72 doi: 10.1172/jci.insight.120178 – ident: ref7 doi: 10.1007/s00330-010-2024-z – ident: ref60 doi: 10.1109/ICECA.2017.8203654 – ident: ref66 doi: 10.1016/j.bspc.2014.04.008 – ident: ref3 doi: 10.1259/bjr/93042867 – ident: ref5 doi: 10.1038/nature14539 – ident: ref47 doi: 10.1177/0954411919845747 – ident: ref20 doi: 10.1113/jphysiol.1963.sp007079 – start-page: 1669 volume-title: Preventive health care, 2001 update: screening and management of developmental dysplasia of the hip in newborns year: 2001 ident: ref35 – start-page: 496 year: 2017 ident: ref59 – ident: ref61 doi: 10.1109/ACCESS.2019.2908991 – ident: ref50 doi: 10.1155/2013/683685 – ident: ref6 doi: 10.15557/JoU.2017.0027 – ident: ref24 doi: 10.1155/2010/164518 – ident: ref58 doi: 10.21037/atm.2019.08.61 – start-page: 98970N volume-title: Automatic finger joint synovitis localization in ultrasound images year: 2016 ident: ref46 – ident: ref54 doi: 10.1109/TMI.2017.2738612 – ident: ref64 doi: 10.1016/j.cger.2010.03.001 – ident: ref44 doi: 10.1136/rmdopen-2016-000428 |
SSID | ssj0001139318 |
Score | 2.3568583 |
SecondaryResourceType | review_article |
Snippet | Ultrasonography (US) is noninvasive and offers real-time, low-cost, and portable imaging that facilitates the rapid and dynamic assessment of musculoskeletal... |
SourceID | nrf doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 30 |
SubjectTerms | Algorithms Artificial intelligence Automation Classification deep learning Engineering machine learning Magnetic resonance imaging Musculoskeletal diseases Musculoskeletal system Neural networks Radiology Special Review of Artifical Intelligence (Part 1) Tendons Ultrasonic imaging ultrasonography 방사선과학 |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB5VHFAviNIWQqEKpZceIvKwnfjAgaIiqERPIHGz_ITVLlm0u_n_zDhhtVshceGSKLGjOOOx5xt78g3ATx1xMBPYA3hg0rlMO2EyYXWFaNt4F6mUrv-Jy1v2947fraT6opiwnh64F9yJ0b5whXa2MRXzhTbWeZx2NXOszgMPNPuizVtxpuLqCgKbfnGvLFEVuCzkwE3KKiFOuvl9DKPM16xRJO1HG9POwmt48_-wyRU7dLENWwOATM_6hn-CD77dgc3rYYv8M5xSSU8LkY5W-DbxIn3sKOx0Oh-jrUHQnXYTfMOcEiulo8eYrugL3F78uTm_zIYcCZnluVhkKATW5Jx7-qcV4Uvjao-IJGhuZRl4EyovjXFOBimNtYiWuGwKjUY5SOd9qL7CRjtt_R6kCO0kxZ5VunYMHSetDfpKgfG6tih9l8CvF1kpOxCIUx6LiSJHguSqUK4xr2WewPGy7lNPm_Fqrd8k8mUNorqON1AB1KAA6i0FSOAHdpga21F8ns73UzWeKXQIrhTNLzgvJXDw0p9qGKRzVQpJdG2cNwkcLYtxeNGeiW79tMM6xDdX1Y3gCez23b9sbkVgFPFvAvWaYqx9z3pJO3qIFN41umnoPO6_hwC-wceSAm3iutABbCxmnT9EpLQw3-OgeAagWBM3 priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEB5VrYTggKC8DAWZx4WDobZ3195DhQBRFaRwIlJvq_U-QpTUBieW2n_fmbUTxSji4sjxWF7vzHi-WY-_AXinAw5mAjWAGyatTbQVVSKMzhFtV84GKqXJT3ExZT8u-eUBbPp3DhO42pvaUT-pabv8cP335hM6_Bk5PMuF-NitZqEqElP3I4xIBTnoZID5Ya0FYU6_1JdlaBhcpnJgKh2fPopNgcIfI07d-n3o898iyp2odP4A7g9wMv7c6_8hHLj6GO7tkAwew53J8Pr8EZyRXE8ZEc93uDhxJ77qqCS1WS0wDuFcxN0Sr7eipkvx_Cq0MnoM0_Nvv75eJEP_hMTwU7FOWEEfjHPu6HtXhDalLRyiFa-5kZnnpc-drCprpZeyMgaRFJdlqjFge2md8_kTOKyb2j2DGGGfpLq0XBeWYVKldYV5lGe8KIwpKxvB-83MKTOQi1OPi6WiJINmWeEsh56XpxG83cr-6Sk19kp9IQVsJYgGO_zRtDM1eBVGepfaVFscQs5cqitjHcZkzSzeu-c-gjeoPrUw83A-_c4atWgVJgvfFT178JkVwclGu2pjfyoTkqjcOC8jeL09jK5H71N07ZoOZYiLLi9KwSN42hvDdrg5AVXExhEUIzMZ3c_4SD3_Hei9C0zhMLF8_v9hvYC7GZXXhNWgEzhct517ifhoXb0Kxn8LdoEPNg priority: 102 providerName: Scholars Portal |
Title | Artificial intelligence in musculoskeletal ultrasound imaging |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33242932 https://www.proquest.com/docview/2691798558 https://www.proquest.com/docview/2465437865 https://pubmed.ncbi.nlm.nih.gov/PMC7758096 https://doaj.org/article/bae1d1adc8b34e1abcde303a4d470f5f https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002669272 |
Volume | 40 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | ULTRASONOGRAPHY, 2021, 40(1), , pp.30-44 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwED7BKiF4mGDAyBhV-PHCQ7QmsZP4AaEVVg2kTggxaW-WYzul6paMpvn_uXPcrkUTL6nSXBTHZ_u-O1--A_igHA5mGWoAD0wYEymTlVGmVYpou7TGUSlNL7LzS_b9il_5gFvr0yrXa6JbqE2jKUZ-kmSCuLU4Lz7f_omoahTtrvoSGg9hgEtwgc7XYHx28ePnXZQFAU4f5EsSHBJcxMJzlLI0y066dubSKUc7VsmR96OtqZfVfbjz3_TJLXs0eQr7HkiGp73mn8EDWx_Aky16wQN4NPUb58_hE8n1ZBHhfIuFE0_Cm46SUZt2gRYIoXjYXePzWiq3FM5vXBGjF3A5Ofv15TzylRMizUfZKmI5fSrOuaUvXRHUFCa3iFMqxbVIKl5UqRVlaYyohCi1RgzFRRErNNWVMNZW6UvYq5vavoIQAZ-gjLRU5YahO6VUiR5UxXiea12UJoCP656T2tOKU3WLa0nuBfWyxF521S5HAbzfyN72ZBr3So1JARsJIsB2fzTLmfTzCW28jU2sDDYhZTZWpTYWrbFiBt-94lUA71B9cqHn7n76nTVysZToJnyTtOrgahXA8Vq70k_dVt4NtADebi7jpKOdFFXbpkMZYqFL8yLjARz2g2HT3JQgKqLiAPKdYbLzPrtX6vlvR-ydo_OGLuXR_5v1Gh4nlFjj4kDHsLdadvYNIqNVOYTB6fjreDL002DoIgx4nLLiL9C5Eeg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVOJxQFBehgLmdeBgNX6s7T1UiEKrhDYRQq3U27LeXYcorV3iWIg_xW9kZm2nCaq49ZIo8cRZ787OfLM7-w3AW2lxcBTjCOBLxLX2pI4zL1YyRLSdGW2plEbjeHASfTllpxvwpzsLQ2mVnU20hlqXitbId4KYE7cWY-mHi58eVY2i3dWuhEajFofm9y8M2ard4Wcc33dBcLB__GngtVUFPMX68cKLEjpGzZihU6Do8FOdGPThuWSKBzlL89DwLNOa55xnSiG-YDz1JbqxnGtj8hDvewM2oxBDmR5s7u2Pv367XNVBQNUsKgYBqiDjPm85UVE-3qmriU3f7K95QVssAH1bMc-vwrn_pmuu-L-De3C3Ba7ux0bT7sOGKbbgzgqd4RbcHLUb9Q9gl-Qacgp3usL6iR_c85qSX8tqhh4Pob9bn-H_VVTeyZ2e26JJD-HkWvr0EfSKsjBPwEWAySkDLpSJjjB8kzLDiC2PWJIolWbagfddzwnV0phTNY0zQeEM9bLAXrbVNfsOvFnKXjTkHVdK7dEALCWIcNt-Uc4nop2_iCmMr32psQlhZHyZKW3Q-8tI47PnLHfgNQ6fmKmp_T29T0oxmwsMS4aCrBxaRwe2u9EVramoxKViO_BqeRknOe3cyMKUNcoQ612YpDFz4HGjDMvmhgSJEYU7kKypydrzrF8ppj8skXiCwSKGsE__36yXcGtwPDoSR8Px4TO4HVBSj12D2obeYl6b54jKFtmLdiq48P26Z99fBrxLPA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVKrggKC8DAXM68DBSmJ7be-hQpQ2aiiNKkSl3pb1PkKU1i5xIsRf49cxs7bTBFXcekmUeOOsd2Z2vtmd_QbgrXQ4OE5QAvgSc60DqZM8SJSMEG3nRjsqpeNRcngafz5jZxvwpz0LQ2mV7ZzoJmpdKloj74YJJ24txrKubdIiTvYHHy5_BlRBinZa23IatYocmd-_MHyrdof7KOt3YTg4-PbpMGgqDASK9ZJ5EKd0pJoxQydC0flnOjXoz61kioeWZTYyPM-15pbzXCnEGoxnfYkuzXJtjI3wvrdgM8WoqNeBzb2D0cnXqxUeBFf1AmMYojoy3ucNP2ocJUl3UY1dKmdvzSO6wgHo54qZvQ7z_pu6ueILB_fgbgNi_Y-11t2HDVNsw50VasNt2DpuNu0fwC61q4kq_MkKAyh-8C8WlAhbVlP0fhgG-Itz_L-KSj35kwtXQOkhnN7ImD6CTlEW5gn4CDY5ZcNFMtUxhnJS5hi92ZilqVJZrj14346cUA2lOVXWOBcU2tAoCxxlV2mz58GbZdvLmsjj2lZ7JIBlCyLfdl-Us7FobBnxhenrvtTYhSg2fZkrbRAJyFjjs1tmPXiN4hNTNXG_p_dxKaYzgSHKUNCMhzOlBzutdEUzbVTiSsk9eLW8jAZPuziyMOUC2xADXpRmCfPgca0My-5GBI8RkXuQrqnJ2vOsXykmPxypeIqBI4azT__frZewhVYnvgxHR8_gdkj5PW45agc689nCPEeANs9fNJbgw_ebNr6_W1hPcQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+intelligence+in+musculoskeletal+ultrasound+imaging&rft.jtitle=Ultrasonography+%28Seoul%2C+Korea%29&rft.au=Shin%2C+YiRang&rft.au=Sungjun%2C+Kim&rft.date=2021-01-01&rft.pub=Korean+Society+of+Ultrasound+in+Medicine&rft.issn=2288-5919&rft.eissn=2288-5943&rft.volume=40&rft.issue=1&rft.spage=30&rft_id=info:doi/10.14366%2Fusg.20080&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2288-5919&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2288-5919&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2288-5919&client=summon |