A New dispersion entropy and fuzzy logic system methodology for automated classification of dementia stages using electroencephalograms
•EEG-based methodology for distinguishing among the Alzheimer’s disease, Mild Cognitive Impairment, and healthy subjects.•Adroit integration of discrete wavelet transform, dispersion entropy index, and a fuzzy logic-based classification algorithm.•Effectiveness is evaluated employing a database of m...
Saved in:
Published in | Clinical neurology and neurosurgery Vol. 201; p. 106446 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.02.2021
Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •EEG-based methodology for distinguishing among the Alzheimer’s disease, Mild Cognitive Impairment, and healthy subjects.•Adroit integration of discrete wavelet transform, dispersion entropy index, and a fuzzy logic-based classification algorithm.•Effectiveness is evaluated employing a database of measured EEG data from 45 MCI, 45 AD, and 45 healthy subjects.•It differentiates MCI and AD patients from healthy subjects with an accuracy of 86.6–88.9 %, sensitivity of 91 %, and specificity of 87 %.
A new EEG-based methodology is presented for differential diagnosis of the Alzheimer’s disease (AD), Mild Cognitive Impairment (MCI), and healthy subjects employing the discrete wavelet transform (DWT), dispersion entropy index (DEI), a recently-proposed nonlinear measurement, and a fuzzy logic-based classification algorithm. The effectiveness and usefulness of the proposed methodology are evaluated by employing a database of measured EEG data acquired from 135 subjects, 45 MCI, 45 AD and 45 healthy subjects. The proposed methodology differentiates MCI and AD patients from HC subjects with an accuracy of 82.6−86.9%, sensitivity of 91 %, and specificity of 87 %. |
---|---|
AbstractList | Highlights•EEG-based methodology for distinguishing among the Alzheimer’s disease, Mild Cognitive Impairment, and healthy subjects. •Adroit integration of discrete wavelet transform, dispersion entropy index, and a fuzzy logic-based classification algorithm. •Effectiveness is evaluated employing a database of measured EEG data from 45 MCI, 45 AD, and 45 healthy subjects. •It differentiates MCI and AD patients from healthy subjects with an accuracy of 86.6–88.9 %, sensitivity of 91 %, and specificity of 87 %. A new EEG-based methodology is presented for differential diagnosis of the Alzheimer's disease (AD), Mild Cognitive Impairment (MCI), and healthy subjects employing the discrete wavelet transform (DWT), dispersion entropy index (DEI), a recently-proposed nonlinear measurement, and a fuzzy logic-based classification algorithm. The effectiveness and usefulness of the proposed methodology are evaluated by employing a database of measured EEG data acquired from 135 subjects, 45 MCI, 45 AD and 45 healthy subjects. The proposed methodology differentiates MCI and AD patients from HC subjects with an accuracy of 82.6-86.9%, sensitivity of 91 %, and specificity of 87 %. A new EEG-based methodology is presented for differential diagnosis of the Alzheimer’s disease (AD), Mild Cognitive Impairment (MCI), and healthy subjects employing the discrete wavelet transform (DWT), dispersion entropy index (DEI), a recently-proposed nonlinear measurement, and a fuzzy logic-based classification algorithm. The effectiveness and usefulness of the proposed methodology are evaluated by employing a database of measured EEG data acquired from 135 subjects, 45 MCI, 45 AD and 45 healthy subjects. The proposed methodology differentiates MCI and AD patients from HC subjects with an accuracy of 82.6−86.9%, sensitivity of 91 %, and specificity of 87 %. •EEG-based methodology for distinguishing among the Alzheimer’s disease, Mild Cognitive Impairment, and healthy subjects.•Adroit integration of discrete wavelet transform, dispersion entropy index, and a fuzzy logic-based classification algorithm.•Effectiveness is evaluated employing a database of measured EEG data from 45 MCI, 45 AD, and 45 healthy subjects.•It differentiates MCI and AD patients from healthy subjects with an accuracy of 86.6–88.9 %, sensitivity of 91 %, and specificity of 87 %. A new EEG-based methodology is presented for differential diagnosis of the Alzheimer’s disease (AD), Mild Cognitive Impairment (MCI), and healthy subjects employing the discrete wavelet transform (DWT), dispersion entropy index (DEI), a recently-proposed nonlinear measurement, and a fuzzy logic-based classification algorithm. The effectiveness and usefulness of the proposed methodology are evaluated by employing a database of measured EEG data acquired from 135 subjects, 45 MCI, 45 AD and 45 healthy subjects. The proposed methodology differentiates MCI and AD patients from HC subjects with an accuracy of 82.6−86.9%, sensitivity of 91 %, and specificity of 87 %. A new EEG-based methodology is presented for differential diagnosis of the Alzheimer's disease (AD), Mild Cognitive Impairment (MCI), and healthy subjects employing the discrete wavelet transform (DWT), dispersion entropy index (DEI), a recently-proposed nonlinear measurement, and a fuzzy logic-based classification algorithm. The effectiveness and usefulness of the proposed methodology are evaluated by employing a database of measured EEG data acquired from 135 subjects, 45 MCI, 45 AD and 45 healthy subjects. The proposed methodology differentiates MCI and AD patients from HC subjects with an accuracy of 82.6-86.9%, sensitivity of 91 %, and specificity of 87 %.A new EEG-based methodology is presented for differential diagnosis of the Alzheimer's disease (AD), Mild Cognitive Impairment (MCI), and healthy subjects employing the discrete wavelet transform (DWT), dispersion entropy index (DEI), a recently-proposed nonlinear measurement, and a fuzzy logic-based classification algorithm. The effectiveness and usefulness of the proposed methodology are evaluated by employing a database of measured EEG data acquired from 135 subjects, 45 MCI, 45 AD and 45 healthy subjects. The proposed methodology differentiates MCI and AD patients from HC subjects with an accuracy of 82.6-86.9%, sensitivity of 91 %, and specificity of 87 %. |
ArticleNumber | 106446 |
Author | Mammone, Nadia Morabito, Francesco C. Adeli, Hojjat Amezquita-Sanchez, Juan P. |
Author_xml | – sequence: 1 givenname: Juan P. surname: Amezquita-Sanchez fullname: Amezquita-Sanchez, Juan P. organization: Autonomous University of Queretaro (UAQ), Faculty of Engineering, Departments Biomedical and Electromechanical, Campus San Juan del Río, Río Moctezuma 249, Col. San Cayetano, C. P. 76807, San Juan del Río, Qro., Mexico – sequence: 2 givenname: Nadia surname: Mammone fullname: Mammone, Nadia organization: Department DICEAM of the Mediterranean University of Reggio Calabria, 89060, Reggio Calabria, Italy – sequence: 3 givenname: Francesco C. surname: Morabito fullname: Morabito, Francesco C. organization: Department DICEAM of the Mediterranean University of Reggio Calabria, 89060, Reggio Calabria, Italy – sequence: 4 givenname: Hojjat surname: Adeli fullname: Adeli, Hojjat email: adeli.1@osu.edu organization: Departments of Biomedical Informatics and Neuroscience, The Ohio State University, 470 Hitchcock Hall, 2070 Neil Avenue, Columbus, OH, 43220, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33383465$$D View this record in MEDLINE/PubMed |
BookMark | eNqNks9u1DAQxi1URLeFV6gsceGyix07tiMhRFXxT6rgAJwtrz3ZeknixXaK0hfgtXHYLoc9UE62Rr_5ZvR9c4ZOhjAAQheUrCih4uV2ZTs_wBjDqiLVXBSci0doQZWslqIR6gQtCCNsqbiQp-gspS0hhDGhnqBTxphiXNQL9OsSf4Kf2Pm0g5h8GDAMOYbdhM3gcDve3U24CxtvcZpShh73kG-CC6U24TZEbMYcepPBYduZlHzrrcmzTmixg76oeYNTNhtIeEx-2GDowJYRMFjY3ZgiFE2fnqLHrekSPLt_z9G3d2-_Xn1YXn9-__Hq8nppayLykpO6bqwBxmVt15XkNW3VmjWGKsokM8q2bS2lk45b20jqJBM14XStOEgBlJ2jF3vdXQw_RkhZ9z5Z6DozQBiTrrjkvGnqhhf0-RG6DWMcynaFUlw1lChSqIt7alz34PQu-t7ESR8sLsCrPWBjSClCq63PfyzK0fhOU6LnRPVWHxLVc6J6n2hpF0fthwkPNr7ZN0Kx89ZD1Mn62XTnYwlAu-Aflnh9JDFjJeDuO0yQ_tpBdao00V_me5vPrSofqRr5b4H_2eA3pbbq5w |
CitedBy_id | crossref_primary_10_1142_S0129065722500411 crossref_primary_10_1016_j_measurement_2023_113274 crossref_primary_10_1142_S0129065722500538 crossref_primary_10_1016_j_sciaf_2023_e01954 crossref_primary_10_3233_WEB_240141 crossref_primary_10_1142_S0129065721500507 crossref_primary_10_1038_s41598_023_42796_6 crossref_primary_10_3390_s21186071 crossref_primary_10_1109_JSEN_2022_3155345 crossref_primary_10_1109_TNSRE_2023_3267114 crossref_primary_10_3390_rs13234932 crossref_primary_10_1142_S0218348X22501547 crossref_primary_10_1007_s11571_024_10120_1 crossref_primary_10_1007_s13349_021_00535_3 crossref_primary_10_1109_TNNLS_2022_3190448 crossref_primary_10_1142_S0129065722500423 crossref_primary_10_1142_S0129065723500417 crossref_primary_10_1016_j_bspc_2021_103293 crossref_primary_10_1016_j_cmpbup_2022_100058 crossref_primary_10_1016_j_isatra_2022_06_040 crossref_primary_10_1007_s11571_024_10198_7 crossref_primary_10_1142_S0129065723500156 crossref_primary_10_1142_S0129065723500211 crossref_primary_10_1007_s42235_024_00636_x crossref_primary_10_1142_S0129065722500563 crossref_primary_10_1142_S0129065723500193 crossref_primary_10_1016_j_compbiomed_2022_105511 crossref_primary_10_1016_j_neuroscience_2024_08_017 crossref_primary_10_1142_S0129065724500291 crossref_primary_10_1142_S0129065724500072 crossref_primary_10_3233_JIFS_233695 crossref_primary_10_1155_2022_3590973 crossref_primary_10_3390_diagnostics13111936 crossref_primary_10_37394_23208_2025_22_16 |
Cites_doi | 10.1109/LSP.2016.2542881 10.1111/mice.12437 10.1016/S0019-9958(65)90241-X 10.3233/ICA-2010-0345 10.3233/ICA-190605 10.1088/1741-2560/9/3/036007 10.3233/ADR-180082 10.1142/S0129065717500204 10.1159/000441447 10.3390/e21090913 10.1016/S0140-6736(06)69113-7 10.1016/j.compbiomed.2017.09.017 10.1016/j.bbe.2017.08.006 10.1142/S0129065717500642 10.1142/S012906572050032X 10.1142/S0129065718500119 10.1016/j.jneumeth.2003.10.009 10.1016/j.jsv.2018.08.025 10.1142/S0129065717500551 10.1142/S0129065718500107 10.1097/WAD.0b013e3181ed1160 10.1177/155005940503600303 10.1007/s10439-013-0795-5 10.1016/j.patrec.2020.03.009 10.3390/e20010021 10.1515/revneuro-2016-0029 10.1177/155005941104200304 10.1002/cpa.3160410705 10.1007/s10803-019-04062-5 10.1016/j.tele.2017.01.007 10.1080/01621459.1952.10483441 10.3233/ICA-180583 10.1016/j.eswa.2011.05.018 10.1007/s11517-017-1685-z 10.1016/j.neucom.2018.09.071 10.1111/mice.12436 10.1111/j.1600-0447.2008.01326.x 10.1142/S012906571550032X 10.1142/S0129065719500199 10.1142/S0129065718500491 10.1515/revneuro-2013-0042 10.1016/j.neucom.2014.12.032 10.1016/S0140-6736(06)68542-5 10.1142/S0129065720500045 10.1142/S0129065718500144 10.1142/S0129065718500570 10.1016/j.jneumeth.2019.04.013 10.1177/1073858417702621 10.2105/AJPH.2014.301935 10.1111/mice.12336 10.1142/S0129065719500217 10.1016/j.bbr.2016.02.035 10.1016/S0165-0270(02)00340-0 10.1371/journal.pone.0193607 10.1142/S0129065719500138 10.3390/e20030210 10.1001/archneur.58.12.1985 10.1111/mice.12480 10.1142/S0129065718500247 10.1111/mice.12335 10.3389/fnins.2016.00604 10.3233/JAD-2005-7301 10.1016/j.neunet.2019.12.006 10.1142/S0129065718500557 10.1142/S0129065718500387 10.1142/S0129065718500429 10.1016/j.ijpsycho.2017.07.006 10.1109/TNNLS.2018.2791644 10.1142/S012906571850017X 10.1007/s11571-018-9509-x 10.1016/j.clinph.2013.08.033 10.1016/j.asoc.2013.11.009 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. Elsevier B.V. Copyright © 2020 Elsevier B.V. All rights reserved. 2020. Elsevier B.V. |
Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Elsevier B.V. – notice: Copyright © 2020 Elsevier B.V. All rights reserved. – notice: 2020. Elsevier B.V. |
DBID | AAYXX CITATION NPM 3V. 7TK 7X7 7XB 88E 88G 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH GNUQQ GUQSH K9. M0S M1P M2M M2O MBDVC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS PSYQQ Q9U 7X8 |
DOI | 10.1016/j.clineuro.2020.106446 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database Psychology Database Research Library Research Library (Corporate) ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest One Psychology Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Central China ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Research Library ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Neurosciences Abstracts ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed ProQuest One Psychology MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1872-6968 |
EndPage | 106446 |
ExternalDocumentID | 33383465 10_1016_j_clineuro_2020_106446 S0303846720307897 1_s2_0_S0303846720307897 |
Genre | Journal Article |
GroupedDBID | --- --K --M .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29B 3O- 4.4 457 4CK 4G. 53G 5GY 5RE 5VS 6J9 7-5 71M 7X7 88E 8FI 8FJ 8G5 8P~ 9JM AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABJNI ABLJU ABMAC ABMZM ABUWG ABXDB ACDAQ ACGFO ACGFS ACIEU ACIUM ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE AEBSH AEFWE AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFKRA AFPUW AFRAH AFRHN AFTJW AFXIZ AGCQF AGHFR AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRLJ AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN AZQEC BENPR BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBS EFJIC EFKBS EJD EMOBN EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GNUQQ GUQSH HDW HMCUK HMK HMO HMQ HVGLF HZ~ IHE J1W KOM LX8 M1P M29 M2M M2O M2V M41 MO0 MOBAO N9A O-L O9- OAUVE OQ- OZT P-8 P-9 P2P PC. PG~ PHGZM PHGZT PJZUB PPXIY PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SEL SES SEW SNS SPCBC SSH SSN SSZ SV3 T5K UKHRP UNMZH WUQ Z5R ZGI ~G- 3V. AACTN AFCTW AFKWA AJOXV ALIPV AMFUW RIG AADPK AAIAV ABLVK ABYKQ AJBFU EFLBG LCYCR AAYXX AGRNS CITATION NPM 7TK 7XB 8FK K9. MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 |
ID | FETCH-LOGICAL-c506t-40559cae3475cb27451f8b39a181373a8cff577d7d4cc971d7365041b84e76e13 |
IEDL.DBID | .~1 |
ISSN | 0303-8467 1872-6968 |
IngestDate | Tue Aug 05 11:36:05 EDT 2025 Sat Jul 26 03:03:43 EDT 2025 Wed Feb 19 02:28:50 EST 2025 Tue Jul 01 04:08:59 EDT 2025 Thu Apr 24 23:09:24 EDT 2025 Fri Feb 23 02:46:06 EST 2024 Tue Feb 25 19:59:24 EST 2025 Tue Aug 26 16:32:12 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Fuzzy logic Discrete wavelet transform Alzheimer’s disease Electroencephalograms Mild cognitive impairment |
Language | English |
License | Copyright © 2020 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c506t-40559cae3475cb27451f8b39a181373a8cff577d7d4cc971d7365041b84e76e13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 33383465 |
PQID | 2484891080 |
PQPubID | 1226360 |
PageCount | 1 |
ParticipantIDs | proquest_miscellaneous_2474499594 proquest_journals_2484891080 pubmed_primary_33383465 crossref_citationtrail_10_1016_j_clineuro_2020_106446 crossref_primary_10_1016_j_clineuro_2020_106446 elsevier_sciencedirect_doi_10_1016_j_clineuro_2020_106446 elsevier_clinicalkeyesjournals_1_s2_0_S0303846720307897 elsevier_clinicalkey_doi_10_1016_j_clineuro_2020_106446 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-02-01 |
PublicationDateYYYYMMDD | 2021-02-01 |
PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands – name: Assen |
PublicationTitle | Clinical neurology and neurosurgery |
PublicationTitleAlternate | Clin Neurol Neurosurg |
PublicationYear | 2021 |
Publisher | Elsevier B.V Elsevier Limited |
Publisher_xml | – name: Elsevier B.V – name: Elsevier Limited |
References | Gauthier, Reisberg, Zaudig, Petersen, Ritchie, Broich, Cummings (bib0025) 2006; 367 Delorme, Makeig (bib0275) 2004; 134 Bashar, Bhuiyan (bib0335) 2016; 19 Mammone, Ieracitano, Adeli, Bramanti, Morabito (bib0385) 2018; 29 Passino, Yurkovich, Reinfrank (bib0380) 1998 Mammone, Bonanno, Salvo, Marino, Bramanti, Bramanti, Morabito (bib0225) 2017; 27 Timothy, Krishna, Nair (bib0205) 2017; 120 Sharma, Patel, Acharya (bib0295) 2020; 133 Trambaiolli, Lorena, Fraga, Kanda, Anghinah, Nitrini (bib0170) 2011; 42 Serrano, López-Sanz, Bruña, Garcés, Rodríguez-Rojo, Marcos, Prada Crespo, Maestú (bib0030) 2020; 30 Tom, Hubbard, Crane, Haneuse, Bowen, McCormick, McCurry, Larson (bib0410) 2015; 105 Ibrahim, Djemal, Alsuwailem (bib0110) 2018; 38 Adeli, Ghosh-Dastidar, Dadmehr (bib0145) 2005; 36 Nobukawa, Yamanishi, Nishimura, Wada, Kikuchi, Takahashi (bib0075) 2019; 13 Rostaghi, Azami (bib0260) 2016; 23 Ieracitano, Mammone, Hussain, Morabito (bib0390) 2020; 123 Abbasi, Bennet, Gunn, Unsworth (bib0345) 2019; 29 Morabito, Campolo, Ieracitano, Ebadi, Bonanno, Bramanti, Bramanti (bib0220) 2016 Cai, Gao, Yang, Dang, Grebogi (bib0130) 2019; 29 Simons, Espino, Abásolo (bib0215) 2018; 20 Ghorbanian, Devilbiss, Verma, Bernstein, Hess, Simon, Ashrafiuon (bib0290) 2013; 41 Vuksanović, Staff, Ahearn, Murray, Wischik (bib0010) 2019; 29 Chang, De Luca, Goda (bib0255) 2019; 34 Ibáñez-Molina, Iglesias-Parro, Escudero (bib0060) 2019; 29 Acharya, Oh, Hagiwara, Tan, Adeli (bib0090) 2018; 100 Sanz, Galar, Jurio, Brugos, Pagola, Bustince (bib0355) 2014; 20 Azami, Fernández, Escudero (bib0325) 2019; 21 Shanir, Khan, Khan, Farooq, Adeli (bib0085) 2017 Abiyev, Abizade (bib0360) 2016; 2016 Petersen, Doody, Kurz, Mohs, Morris, Rabins, Winblad (bib0020) 2001; 58 Zieleniewska, Duszyk, Różański, Pietrzak, Bogotko, Durka (bib0125) 2019; 29 Palacios, González-Rodríguez, Vela, Puente (bib0400) 2019; 26 Amezquita-Sanchez, Adeli, Adeli (bib0195) 2016; 305 Beura, Majhi, Dash (bib0300) 2015; 154 Nilashi, Ibrahim, Ahmadi, Shahmoradi (bib0365) 2017; 34 Schetinin, Jakaite, Nyah, Novakovic, Krzanowski (bib0135) 2018; 28 Martínez-Rodrigo, García-Martínez, Alcaraz, González, Fernández-Caballero (bib0175) 2019; 29 Miraglia, Vecchio, Marra, Quaranta, Alù, Peroni, Granata, Judica, Rossini (bib0040) 2020; 30 Adeli, Ghosh-Dastidar, Dadmehr (bib0140) 2005; 7 Houmani, Dreyfus, Vialatte (bib0190) 2015; 25 Ahmadlou, Adeli, Bajo, Adeli (bib0185) 2014; 125 Fang, Li, Cabrerizo, Barreto, Andrian, Rishe, Loewenstein, Duara, Adjouadi (bib0070) 2018; 28 Azami, Escudero (bib0320) 2018; 20 Amezquita-Sanchez, Mammone, Morabito, Marino, Adeli (bib0235) 2019; 322 Triggiani, Bevilacqua, Brunetti, Lizio, Tattoli, Cassano, Babiloni (bib0210) 2017; 10 Sun, Cui, Zhou, Nie, Wang, Yuan (bib0095) 2019; 29 Mumtaz, Ali, Yasin, Malik (bib0120) 2018; 56 Mirzaei, Adeli, Adeli (bib0160) 2016; 27 Siddique, Adeli (bib0375) 2013 Ahmadlou, Adeli, Adeli (bib0285) 2011; 25 D’Urso, Masi, Zuccaro, De Gregorio (bib0395) 2018; 33 (bib0405) 2013 Javidan, Kim (bib0270) 2019; 34 Vuttipittayamongkol, Elyan (bib0105) 2020; 30 Lauttia, Helminen, Leppänen, Yrttiaho, Eriksson, Hietanen, Kylliäinen (bib0115) 2019; 49 delEtoile, Adeli (bib0165) 2017; 23 Wang, Zhang, Yang, Liu, Ramirez, Gorriz (bib0250) 2019; 26 Houmani, Vialatte, Gallego-Jutglà, Dreyfus, Nguyen-Michel, Mariani, Kinugawa (bib0230) 2018; 13 Adeli, Zhou, Dadmehr (bib0280) 2003; 123 Ganji, Abadeh (bib0350) 2011; 38 Kruskal, Wallis (bib0330) 1952; 47 Blennow, de, Zetterberg (bib0005) 2006; 368 Corsi, Chavez, Schwartz, Hugueville, Khambhati, Bassett, de Vico Fallani (bib0065) 2019; 29 Zadeh (bib0340) 1965; 8 Bhat, Acharya, Dadmehr, Adeli (bib0155) 2015; 74 Rostaghi, Ashory, Azami (bib0315) 2019; 438 Yuan, Zhou, Xu, Leng, Wei (bib0245) 2018; 28 Kar, Majumder (bib0370) 2019; 3 Collazos-Huertas, Cárdenas-Peña, Castellanos-Dominguez (bib0015) 2019; 29 Daubechies (bib0310) 1992; 61 Zhang, Yao, Xu (bib0055) 2019; 29 Gálvez, Recuero, Canuet, Del-Pozo (bib0080) 2018; 28 Ma, Sacks, Kattel, Bloch (bib0265) 2018; 33 Ansari, Cherian, Caicedo, Naulaers, De Vos, Van Huffel (bib0100) 2019; 29 Hulbert, Adeli (bib0150) 2013; 24 Ahmadlou, Adeli (bib0200) 2010; 17 Ieracitano, Mammone, Bramanti, Hussain, Morabito (bib0240) 2019; 323 Daubechies (bib0305) 1988; 41 Bruña, Poza, Gómez, García, Fernández, Hornero (bib0180) 2012; 9 Mitchell, Shiri‐Feshki (bib0035) 2009; 119 Feng, Van Halm-Lutterodt, Tang, Mecum, Mesregah, Ma, Li, Zhang, Wu, Yao, Guo (bib0045) 2020; 30 Zhang, Xiao, Gao, Chu (bib0050) 2019; 34 Azami (10.1016/j.clineuro.2020.106446_bib0320) 2018; 20 Adeli (10.1016/j.clineuro.2020.106446_bib0280) 2003; 123 Bashar (10.1016/j.clineuro.2020.106446_bib0335) 2016; 19 Serrano (10.1016/j.clineuro.2020.106446_bib0030) 2020; 30 Daubechies (10.1016/j.clineuro.2020.106446_bib0310) 1992; 61 Mumtaz (10.1016/j.clineuro.2020.106446_bib0120) 2018; 56 Delorme (10.1016/j.clineuro.2020.106446_bib0275) 2004; 134 Abiyev (10.1016/j.clineuro.2020.106446_bib0360) 2016; 2016 Nobukawa (10.1016/j.clineuro.2020.106446_bib0075) 2019; 13 Martínez-Rodrigo (10.1016/j.clineuro.2020.106446_bib0175) 2019; 29 Sanz (10.1016/j.clineuro.2020.106446_bib0355) 2014; 20 Tom (10.1016/j.clineuro.2020.106446_bib0410) 2015; 105 Mirzaei (10.1016/j.clineuro.2020.106446_bib0160) 2016; 27 Morabito (10.1016/j.clineuro.2020.106446_bib0220) 2016 Feng (10.1016/j.clineuro.2020.106446_bib0045) 2020; 30 Collazos-Huertas (10.1016/j.clineuro.2020.106446_bib0015) 2019; 29 Ansari (10.1016/j.clineuro.2020.106446_bib0100) 2019; 29 Mammone (10.1016/j.clineuro.2020.106446_bib0225) 2017; 27 (10.1016/j.clineuro.2020.106446_bib0405) 2013 Beura (10.1016/j.clineuro.2020.106446_bib0300) 2015; 154 Rostaghi (10.1016/j.clineuro.2020.106446_bib0315) 2019; 438 Chang (10.1016/j.clineuro.2020.106446_bib0255) 2019; 34 Ahmadlou (10.1016/j.clineuro.2020.106446_bib0285) 2011; 25 Cai (10.1016/j.clineuro.2020.106446_bib0130) 2019; 29 Siddique (10.1016/j.clineuro.2020.106446_bib0375) 2013 Acharya (10.1016/j.clineuro.2020.106446_bib0090) 2018; 100 Vuttipittayamongkol (10.1016/j.clineuro.2020.106446_bib0105) 2020; 30 Nilashi (10.1016/j.clineuro.2020.106446_bib0365) 2017; 34 Adeli (10.1016/j.clineuro.2020.106446_bib0145) 2005; 36 Ieracitano (10.1016/j.clineuro.2020.106446_bib0240) 2019; 323 Sharma (10.1016/j.clineuro.2020.106446_bib0295) 2020; 133 Houmani (10.1016/j.clineuro.2020.106446_bib0230) 2018; 13 Passino (10.1016/j.clineuro.2020.106446_bib0380) 1998 Ahmadlou (10.1016/j.clineuro.2020.106446_bib0200) 2010; 17 Kar (10.1016/j.clineuro.2020.106446_bib0370) 2019; 3 Fang (10.1016/j.clineuro.2020.106446_bib0070) 2018; 28 Ganji (10.1016/j.clineuro.2020.106446_bib0350) 2011; 38 Ieracitano (10.1016/j.clineuro.2020.106446_bib0390) 2020; 123 Ibrahim (10.1016/j.clineuro.2020.106446_bib0110) 2018; 38 Zadeh (10.1016/j.clineuro.2020.106446_bib0340) 1965; 8 Azami (10.1016/j.clineuro.2020.106446_bib0325) 2019; 21 Palacios (10.1016/j.clineuro.2020.106446_bib0400) 2019; 26 Blennow (10.1016/j.clineuro.2020.106446_bib0005) 2006; 368 Zieleniewska (10.1016/j.clineuro.2020.106446_bib0125) 2019; 29 Ma (10.1016/j.clineuro.2020.106446_bib0265) 2018; 33 Sun (10.1016/j.clineuro.2020.106446_bib0095) 2019; 29 Javidan (10.1016/j.clineuro.2020.106446_bib0270) 2019; 34 Gálvez (10.1016/j.clineuro.2020.106446_bib0080) 2018; 28 Trambaiolli (10.1016/j.clineuro.2020.106446_bib0170) 2011; 42 Adeli (10.1016/j.clineuro.2020.106446_bib0140) 2005; 7 Mitchell (10.1016/j.clineuro.2020.106446_bib0035) 2009; 119 Vuksanović (10.1016/j.clineuro.2020.106446_bib0010) 2019; 29 Zhang (10.1016/j.clineuro.2020.106446_bib0055) 2019; 29 Shanir (10.1016/j.clineuro.2020.106446_bib0085) 2017 Rostaghi (10.1016/j.clineuro.2020.106446_bib0260) 2016; 23 Ahmadlou (10.1016/j.clineuro.2020.106446_bib0185) 2014; 125 Triggiani (10.1016/j.clineuro.2020.106446_bib0210) 2017; 10 Amezquita-Sanchez (10.1016/j.clineuro.2020.106446_bib0235) 2019; 322 Ibáñez-Molina (10.1016/j.clineuro.2020.106446_bib0060) 2019; 29 Mammone (10.1016/j.clineuro.2020.106446_bib0385) 2018; 29 Zhang (10.1016/j.clineuro.2020.106446_bib0050) 2019; 34 Daubechies (10.1016/j.clineuro.2020.106446_bib0305) 1988; 41 Bruña (10.1016/j.clineuro.2020.106446_bib0180) 2012; 9 Gauthier (10.1016/j.clineuro.2020.106446_bib0025) 2006; 367 Houmani (10.1016/j.clineuro.2020.106446_bib0190) 2015; 25 Simons (10.1016/j.clineuro.2020.106446_bib0215) 2018; 20 Amezquita-Sanchez (10.1016/j.clineuro.2020.106446_bib0195) 2016; 305 Lauttia (10.1016/j.clineuro.2020.106446_bib0115) 2019; 49 Timothy (10.1016/j.clineuro.2020.106446_bib0205) 2017; 120 Abbasi (10.1016/j.clineuro.2020.106446_bib0345) 2019; 29 Wang (10.1016/j.clineuro.2020.106446_bib0250) 2019; 26 D’Urso (10.1016/j.clineuro.2020.106446_bib0395) 2018; 33 delEtoile (10.1016/j.clineuro.2020.106446_bib0165) 2017; 23 Ghorbanian (10.1016/j.clineuro.2020.106446_bib0290) 2013; 41 Kruskal (10.1016/j.clineuro.2020.106446_bib0330) 1952; 47 Bhat (10.1016/j.clineuro.2020.106446_bib0155) 2015; 74 Schetinin (10.1016/j.clineuro.2020.106446_bib0135) 2018; 28 Petersen (10.1016/j.clineuro.2020.106446_bib0020) 2001; 58 Hulbert (10.1016/j.clineuro.2020.106446_bib0150) 2013; 24 Yuan (10.1016/j.clineuro.2020.106446_bib0245) 2018; 28 Miraglia (10.1016/j.clineuro.2020.106446_bib0040) 2020; 30 Corsi (10.1016/j.clineuro.2020.106446_bib0065) 2019; 29 |
References_xml | – volume: 119 start-page: 252 year: 2009 end-page: 265 ident: bib0035 article-title: Rate of progression of mild cognitive impairment to dementia–meta‐analysis of 41 robust inception cohort studies publication-title: Acta Psychiatr. Scand. – volume: 49 start-page: 3592 year: 2019 end-page: 3601 ident: bib0115 article-title: Atypical pattern of frontal EEG asymmetry for direct gaze in young children with autism Spectrum disorder publication-title: J. Autism Dev. Disord. – volume: 27 start-page: 857 year: 2016 end-page: 870 ident: bib0160 article-title: Imaging and machine learning techniques for diagnosis of Alzheimer’s disease publication-title: Rev. Neurosci. – volume: 26 start-page: 411 year: 2019 end-page: 426 ident: bib0250 article-title: Unilateral sensorineural hearing loss identification based on double-density dual-tree complex wavelet transform and multinomial logistic regression publication-title: Integr. Comput. Aided Eng. – volume: 29 start-page: 4 year: 2019 ident: bib0100 article-title: Neonatal seizure detection using deep convolutional neural networks publication-title: Int. J. Neural Syst. – volume: 23 start-page: 616 year: 2017 end-page: 626 ident: bib0165 article-title: Graph theory and brain connectivity in Alzheimer’s disease publication-title: Neuroscientist – volume: 27 start-page: 1750020 year: 2017 ident: bib0225 article-title: Permutation disalignment index as an indirect, EEG-based, measure of brain connectivity in MCI and AD patients publication-title: Int. J. Neural Syst. – volume: 20 start-page: 103 year: 2014 end-page: 111 ident: bib0355 article-title: Medical diagnosis of cardiovascular diseases using an interval-valued fuzzy rule-based classification system publication-title: Appl. Soft Comput. – volume: 38 start-page: 16 year: 2018 end-page: 26 ident: bib0110 article-title: Electroencephalography (EEG) signal processing for epilepsy and autism spectrum disorder diagnosis publication-title: Biocybern. Biomed. Eng. – volume: 438 start-page: 291 year: 2019 end-page: 308 ident: bib0315 article-title: Application of dispersion entropy to status characterization of rotary machines publication-title: J. Sound Vib. – volume: 47 start-page: 583 year: 1952 end-page: 621 ident: bib0330 article-title: Use of ranks in one-criterion variance analysis publication-title: J. Am. Stat. Assoc. – volume: 30 start-page: 8 year: 2020 ident: bib0105 article-title: Improved overlap-based undersampling for imbalanced dataset classification with application to epilepsy and Parkinson’s disease publication-title: Int. J. Neural Syst. – volume: 38 start-page: 14650 year: 2011 end-page: 14659 ident: bib0350 article-title: A fuzzy classification system based on Ant Colony Optimization for diabetes disease diagnosis publication-title: Expert Syst. Appl. – volume: 29 start-page: 17 year: 2019 ident: bib0060 article-title: Differential effects of simulated cortical network lesions on synchrony and EEG complexity publication-title: Int. J. Neural Syst. – volume: 36 start-page: 131 year: 2005 end-page: 140 ident: bib0145 article-title: Alzheimer’s disease: models of computation and analysis of EEGs publication-title: Clin. EEG Neurosci. – volume: 25 start-page: 85 year: 2011 end-page: 92 ident: bib0285 article-title: Fractality and a wavelet-chaos-methodology for EEG-based diagnosis of Alzheimer disease publication-title: Alzheimer Dis. Assoc. Disord. – volume: 29 start-page: 1 year: 2019 ident: bib0055 article-title: “The dynamic brain networks of motor imagery: time-varying causality analysis of scalp EEG,” publication-title: Int. J. Neural Syst. – volume: 74 start-page: 202 year: 2015 end-page: 210 ident: bib0155 article-title: Clinical neurophysiological and automated EEG-based diagnosis of the Alzheimer’s disease publication-title: Eur. Neurol. – volume: 322 start-page: 88 year: 2019 end-page: 95 ident: bib0235 article-title: A novel methodology for automated differential diagnosis of mild cognitive impairment and the Alzheimer’s disease using EEG signals publication-title: J. Neurosci. Methods – volume: 28 start-page: 16 year: 2018 ident: bib0245 article-title: Epileptic EEG identification via LBP operators on wavelet coefficients publication-title: Int. J. Neural Syst. – volume: 21 start-page: 913 year: 2019 ident: bib0325 article-title: Multivariate multiscale dispersion entropy of biomedical times series publication-title: Entropy – volume: 368 start-page: 387 year: 2006 end-page: 403 ident: bib0005 article-title: Alzheimer’s disease publication-title: Lancet – volume: 30 start-page: 6 year: 2020 ident: bib0045 article-title: Automated MRI-Based deep learning model for detection of Alzheimer’s disease process publication-title: Int. J. Neural Syst. – volume: 41 start-page: 1243 year: 2013 end-page: 1257 ident: bib0290 article-title: Identification of resting and active state EEG features of Alzheimer’s disease using discrete wavelet transform publication-title: Ann. Biomed. Eng. – volume: 29 start-page: 12 year: 2019 ident: bib0015 article-title: Instance-based representation using multiple kernel learning for predicting conversion to Alzheimer disease publication-title: Int. J. Neural Syst. – volume: 125 start-page: 694 year: 2014 end-page: 702 ident: bib0185 article-title: Complexity of functional connectivity networks in mild cognitive impairment subjects during a working memory task publication-title: Clin. Neurophysiol. – volume: 105 start-page: 408 year: 2015 end-page: 413 ident: bib0410 article-title: Characterization of dementia and Alzheimer’s disease in an older population: updated incidence and life expectancy with and without dementia publication-title: Am J Public Health – volume: 20 start-page: 21 year: 2018 ident: bib0215 article-title: Fuzzy entropy analysis of the electroencephalogram in patients with Alzheimer’s disease: is the method superior to sample entropy? publication-title: Entropy – volume: 29 start-page: 10 year: 2019 ident: bib0130 article-title: Multiplex limited penetrable horizontal visibility graph from EEG signals for driver fatigue detection publication-title: Int. J. Neural Syst. – volume: 58 start-page: 1985 year: 2001 end-page: 1992 ident: bib0020 article-title: Current concepts in mild cognitive impairment publication-title: Arch. Neurol. – volume: 25 start-page: 1550032 year: 2015 ident: bib0190 article-title: Epoch-based entropy for early screening of Alzheimer’s disease publication-title: Int. J. Neural Syst. – volume: 29 start-page: 26 year: 2019 ident: bib0010 article-title: Cortical thickness and surface area networks in healthy aging, Alzheimer’s disease and behavioral variant fronto-temporal dementia publication-title: Int. J. Neural Syst. – volume: 34 start-page: 133 year: 2017 end-page: 144 ident: bib0365 article-title: A knowledge-based system for breast cancer classification using fuzzy logic method publication-title: Telemat. Inform. – volume: 367 start-page: 1262 year: 2006 end-page: 1270 ident: bib0025 article-title: Mild cognitive impairment publication-title: Lancet – volume: 133 start-page: 188 year: 2020 end-page: 194 ident: bib0295 article-title: Automated detection of abnormal EEG signals using localized wavelet filter banks publication-title: Pattern Recognit. Lett. – volume: 34 start-page: 991 year: 2019 end-page: 1009 ident: bib0050 article-title: “Probability and interval hybrid reliability analysis based on adaptive local approximation of projection outlines using support vector machine,” publication-title: Comput.-Aided Civ. Infrastruct. Eng. – volume: 29 start-page: 17 year: 2019 ident: bib0345 article-title: Latent phase detection of hypoxic-ischemic spike transients in the EEG of preterm fetal sheep using reverse biorthogonal wavelets & fuzzy classifier publication-title: Int. J. Neural Syst. – volume: 30 start-page: 1 year: 2020 ident: bib0030 article-title: Spatiotemporal oscillatory patterns during working memory maintenance in mild cognitive impairment and subjective cognitive decline publication-title: Int. J. Neural Syst. – volume: 9 year: 2012 ident: bib0180 article-title: Analysis of spontaneous MEG activity in mild cognitive impairment and Alzheimer’s disease using spectral entropies and statistical complexity measures publication-title: J. Neural Eng. – volume: 29 start-page: 5122 year: 2018 end-page: 5135 ident: bib0385 article-title: Permutation jaccard distance-based hierarchical clustering to estimate EEG network density modifications in MCI subjects publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 20 start-page: 210 year: 2018 ident: bib0320 article-title: Amplitude-and fluctuation-based dispersion entropy publication-title: Entropy – volume: 29 start-page: 12 year: 2019 ident: bib0065 article-title: Integrating EEG and MEG signals to improve motor imagery classification in brain–computer interface publication-title: Int. J. Neural Syst. – year: 2017 ident: bib0085 article-title: Automatic seizure detection based on morphological features using one-dimensional local binary pattern on long-term EEG publication-title: Clin. EEG Neurosci. – volume: 28 start-page: 1750055 year: 2018 ident: bib0080 article-title: Short-term effects of binaural beats on EEG power, functional connectivity, cognition, gait and anxiety in Parkinson’s disease publication-title: Int. J. Neural Syst. – volume: 100 start-page: 270 year: 2018 end-page: 278 ident: bib0090 article-title: Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals publication-title: Comput. Biol. Med. – volume: 7 start-page: 187 year: 2005 end-page: 199 ident: bib0140 article-title: Alzheimer’s disease and models of computation: imaging, classification, and neural models publication-title: J. Alzheimer Dis. – volume: 10 start-page: 604 year: 2017 ident: bib0210 article-title: Classification of healthy subjects and Alzheimer’s disease patients with dementia from cortical sources of resting state EEG rhythms: a study using artificial neural networks publication-title: Front. Neurosci. – volume: 28 start-page: 23 year: 2018 ident: bib0135 article-title: Feature extraction with GMDH-type neural networks for EEG-based person identification publication-title: Int. J. Neural Syst. – volume: 19 start-page: 1457 year: 2016 end-page: 1464 ident: bib0335 article-title: Classification of motor imagery movements using multivariate empirical mode decomposition and short time Fourier transform based hybrid method publication-title: Eng. Sci. Technol. Int. J. – volume: 34 start-page: 569 year: 2019 end-page: 585 ident: bib0255 article-title: Automated classification of near‐fault acceleration pulses using wavelet packets publication-title: Comput. Aided Civ. Infrastruct. Eng. – volume: 34 start-page: 602 year: 2019 end-page: 615 ident: bib0270 article-title: Variance‐based global sensitivity analysis for fuzzy random structural systems publication-title: Comput.‐Aided Civ. Infrastruct. Eng. – volume: 29 start-page: 17 year: 2019 ident: bib0125 article-title: Parametric description of EEG profiles for assessment of sleep architecture in disorders of consciousness publication-title: Int. J. Neural Syst. – volume: 17 start-page: 197 year: 2010 end-page: 210 ident: bib0200 article-title: Enhanced probabilistic neural network with local decision circles: a robust classifier publication-title: Integr. Comput.-Aided Eng. – volume: 3 start-page: 1 year: 2019 end-page: 18 ident: bib0370 article-title: A novel approach of diffusion tensor visualization based neuro fuzzy classification system for early detection of Alzheimer’s disease publication-title: J. Alzheimer’s disease reports – volume: 41 start-page: 909 year: 1988 end-page: 996 ident: bib0305 article-title: Orthonormal bases of compactly supported wavelets publication-title: Commun. Pure Appl. Math. – volume: 56 start-page: 233 year: 2018 end-page: 246 ident: bib0120 article-title: A machine learning framework involving EEG-based functional connectivity to diagnose major depressive disorder (MDD) publication-title: Med. Biol. Eng. Comput. – volume: 33 start-page: 165 year: 2018 end-page: 179 ident: bib0395 article-title: Multicriteria fuzzy analysis for a GIS‐based management of earthquake scenarios publication-title: Comput.‐Aided Civ. Infrastruct. Eng. – volume: 123 start-page: 176 year: 2020 end-page: 190 ident: bib0390 article-title: A novel multi-modal machine learning based approach for automatic classification of EEG recordings in dementia publication-title: Neural Netw. – start-page: 1 year: 2016 end-page: 6 ident: bib0220 article-title: Deep convolutional neural networks for classification of mild cognitive impaired and Alzheimer’s disease patients from scalp EEG recordings publication-title: IEEE, 2nd International Forum in Research and Technologies for Society and Industry Leveraging a Better Tomorrow (RTSI) – volume: 154 start-page: 1 year: 2015 end-page: 14 ident: bib0300 article-title: Mammogram classification using two dimensional discrete wavelet transform and gray-level co-occurrence matrix for detection of breast cancer publication-title: Neurocomputing – volume: 2016 start-page: 1 year: 2016 end-page: 12 ident: bib0360 article-title: Diagnosing Parkinson’s diseases using fuzzy neural system publication-title: Computational and Mathematical Methods in Medicine – volume: 26 start-page: 65 year: 2019 end-page: 84 ident: bib0400 article-title: Satisfying flexible due dates in fuzzy job shop by means of hybrid evolutionary algorithms publication-title: Integr. Comput.-Aided Eng. – volume: 134 start-page: 9 year: 2004 end-page: 21 ident: bib0275 article-title: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis publication-title: J. Neurosci. Methods – volume: 120 start-page: 86 year: 2017 end-page: 95 ident: bib0205 article-title: Classification of mild cognitive impairment EEG using combined recurrence and cross recurrence quantification analysis publication-title: Int. J. Psychophysiol. – volume: 29 start-page: 17 year: 2019 ident: bib0095 article-title: Epileptic seizure detection with EEG Textural features and imbalanced classification based on easyensemble learning publication-title: Int. J. Neural Syst. – volume: 61 start-page: 1 year: 1992 end-page: 340 ident: bib0310 article-title: Ten lectures on wavelets publication-title: Piladelphia, PA: Soc. Ind. Appl. Math. – volume: 13 year: 2018 ident: bib0230 article-title: Diagnosis of Alzheimer’s disease with Electroencephalography in a differential framework publication-title: PLoS One – volume: 305 start-page: 174 year: 2016 end-page: 180 ident: bib0195 article-title: A new methodology for automated diagnosis of mild cognitive impairment (MCI) using magnetoencephalography (MEG) publication-title: Behav. Brain Res. – year: 2013 ident: bib0405 publication-title: Diagnostic and Statistical Manual of Mental Disorders – volume: 29 start-page: 17 year: 2019 ident: bib0175 article-title: Multiscale entropy analysis for recognition of visually elicited negative stress from EEG recordings publication-title: Int. J. Neural Syst. – volume: 323 start-page: 96 year: 2019 end-page: 107 ident: bib0240 article-title: A convolutional neural network approach for classification of dementia stages based on 2D-spectral representation of EEG recordings publication-title: Neurocomputing – volume: 23 start-page: 610 year: 2016 end-page: 614 ident: bib0260 article-title: Dispersion entropy: a measure for time-series analysis publication-title: IEEE Signal Process. Lett. – volume: 30 start-page: 2 year: 2020 ident: bib0040 article-title: Small world index in default mode network predicts progression from mild cognitive impairment to dementia publication-title: Int. J. Neural Syst. – volume: 24 start-page: 563 year: 2013 end-page: 576 ident: bib0150 article-title: EEG/MEG-and imaging-based diagnosis of Alzheimer’s disease publication-title: Rev. Neurosci. – volume: 33 start-page: 152 year: 2018 end-page: 164 ident: bib0265 article-title: 3D object classification using geometric features and pairwise relationships publication-title: Comput.‐Aided Civ. Infrastruct. Eng. – volume: 13 start-page: 1 year: 2019 end-page: 11 ident: bib0075 article-title: Atypical temporal-scale-specific fractal changes in Alzheimer’s disease EEG and their relevance to cognitive decline publication-title: Cogn. Neurodyn. – year: 2013 ident: bib0375 article-title: Computational Intelligence: Synergies of Fuzzy Logic, Neural Networks and Evolutionary Computing – year: 1998 ident: bib0380 article-title: Fuzzy Control – volume: 42 start-page: 160 year: 2011 end-page: 165 ident: bib0170 article-title: Improving Alzheimer’s disease diagnosis with machine learning techniques publication-title: Clin. EEG Neurosci. – volume: 28 year: 2018 ident: bib0070 article-title: Gaussian discriminant analysis-based dual high-dimensional decision spaces for the diagnosis of mild cognitive impairment in Alzheimer’s disease publication-title: Int. J. Neural Syst. – volume: 123 start-page: 69 year: 2003 end-page: 87 ident: bib0280 article-title: Analysis of EEG records in an epileptic patient using wavelet transform publication-title: J. Neurosci. Methods – volume: 8 start-page: 338 year: 1965 end-page: 353 ident: bib0340 article-title: Fuzzy sets publication-title: Inf. Control. – volume: 23 start-page: 610 issue: 5 year: 2016 ident: 10.1016/j.clineuro.2020.106446_bib0260 article-title: Dispersion entropy: a measure for time-series analysis publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2016.2542881 – volume: 34 start-page: 569 issue: 7 year: 2019 ident: 10.1016/j.clineuro.2020.106446_bib0255 article-title: Automated classification of near‐fault acceleration pulses using wavelet packets publication-title: Comput. Aided Civ. Infrastruct. Eng. doi: 10.1111/mice.12437 – year: 2013 ident: 10.1016/j.clineuro.2020.106446_bib0405 – volume: 29 start-page: 1 year: 2019 ident: 10.1016/j.clineuro.2020.106446_bib0055 article-title: “The dynamic brain networks of motor imagery: time-varying causality analysis of scalp EEG,” publication-title: Int. J. Neural Syst. – volume: 8 start-page: 338 year: 1965 ident: 10.1016/j.clineuro.2020.106446_bib0340 article-title: Fuzzy sets publication-title: Inf. Control. doi: 10.1016/S0019-9958(65)90241-X – volume: 17 start-page: 197 issue: 3 year: 2010 ident: 10.1016/j.clineuro.2020.106446_bib0200 article-title: Enhanced probabilistic neural network with local decision circles: a robust classifier publication-title: Integr. Comput.-Aided Eng. doi: 10.3233/ICA-2010-0345 – volume: 26 start-page: 411 issue: 4 year: 2019 ident: 10.1016/j.clineuro.2020.106446_bib0250 article-title: Unilateral sensorineural hearing loss identification based on double-density dual-tree complex wavelet transform and multinomial logistic regression publication-title: Integr. Comput. Aided Eng. doi: 10.3233/ICA-190605 – volume: 9 issue: 3 year: 2012 ident: 10.1016/j.clineuro.2020.106446_bib0180 article-title: Analysis of spontaneous MEG activity in mild cognitive impairment and Alzheimer’s disease using spectral entropies and statistical complexity measures publication-title: J. Neural Eng. doi: 10.1088/1741-2560/9/3/036007 – volume: 3 start-page: 1 issue: 1 year: 2019 ident: 10.1016/j.clineuro.2020.106446_bib0370 article-title: A novel approach of diffusion tensor visualization based neuro fuzzy classification system for early detection of Alzheimer’s disease publication-title: J. Alzheimer’s disease reports doi: 10.3233/ADR-180082 – volume: 27 start-page: 1750020 issue: 05 year: 2017 ident: 10.1016/j.clineuro.2020.106446_bib0225 article-title: Permutation disalignment index as an indirect, EEG-based, measure of brain connectivity in MCI and AD patients publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065717500204 – volume: 74 start-page: 202 issue: 3–4 year: 2015 ident: 10.1016/j.clineuro.2020.106446_bib0155 article-title: Clinical neurophysiological and automated EEG-based diagnosis of the Alzheimer’s disease publication-title: Eur. Neurol. doi: 10.1159/000441447 – volume: 21 start-page: 913 issue: 9 year: 2019 ident: 10.1016/j.clineuro.2020.106446_bib0325 article-title: Multivariate multiscale dispersion entropy of biomedical times series publication-title: Entropy doi: 10.3390/e21090913 – volume: 368 start-page: 387 year: 2006 ident: 10.1016/j.clineuro.2020.106446_bib0005 article-title: Alzheimer’s disease publication-title: Lancet doi: 10.1016/S0140-6736(06)69113-7 – volume: 100 start-page: 270 year: 2018 ident: 10.1016/j.clineuro.2020.106446_bib0090 article-title: Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2017.09.017 – volume: 38 start-page: 16 issue: 1 year: 2018 ident: 10.1016/j.clineuro.2020.106446_bib0110 article-title: Electroencephalography (EEG) signal processing for epilepsy and autism spectrum disorder diagnosis publication-title: Biocybern. Biomed. Eng. doi: 10.1016/j.bbe.2017.08.006 – volume: 28 start-page: 23 issue: 06 year: 2018 ident: 10.1016/j.clineuro.2020.106446_bib0135 article-title: Feature extraction with GMDH-type neural networks for EEG-based person identification publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065717500642 – volume: 61 start-page: 1 year: 1992 ident: 10.1016/j.clineuro.2020.106446_bib0310 article-title: Ten lectures on wavelets publication-title: Piladelphia, PA: Soc. Ind. Appl. Math. – volume: 30 start-page: 6 year: 2020 ident: 10.1016/j.clineuro.2020.106446_bib0045 article-title: Automated MRI-Based deep learning model for detection of Alzheimer’s disease process publication-title: Int. J. Neural Syst. doi: 10.1142/S012906572050032X – volume: 2016 start-page: 1 year: 2016 ident: 10.1016/j.clineuro.2020.106446_bib0360 article-title: Diagnosing Parkinson’s diseases using fuzzy neural system – volume: 29 start-page: 4 year: 2019 ident: 10.1016/j.clineuro.2020.106446_bib0100 article-title: Neonatal seizure detection using deep convolutional neural networks publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065718500119 – volume: 134 start-page: 9 issue: 1 year: 2004 ident: 10.1016/j.clineuro.2020.106446_bib0275 article-title: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2003.10.009 – year: 1998 ident: 10.1016/j.clineuro.2020.106446_bib0380 – volume: 438 start-page: 291 year: 2019 ident: 10.1016/j.clineuro.2020.106446_bib0315 article-title: Application of dispersion entropy to status characterization of rotary machines publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2018.08.025 – volume: 28 start-page: 1750055 issue: 05 year: 2018 ident: 10.1016/j.clineuro.2020.106446_bib0080 article-title: Short-term effects of binaural beats on EEG power, functional connectivity, cognition, gait and anxiety in Parkinson’s disease publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065717500551 – volume: 28 start-page: 16 issue: 8 year: 2018 ident: 10.1016/j.clineuro.2020.106446_bib0245 article-title: Epileptic EEG identification via LBP operators on wavelet coefficients publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065718500107 – volume: 19 start-page: 1457 issue: 3 year: 2016 ident: 10.1016/j.clineuro.2020.106446_bib0335 article-title: Classification of motor imagery movements using multivariate empirical mode decomposition and short time Fourier transform based hybrid method publication-title: Eng. Sci. Technol. Int. J. – volume: 25 start-page: 85 issue: 1 year: 2011 ident: 10.1016/j.clineuro.2020.106446_bib0285 article-title: Fractality and a wavelet-chaos-methodology for EEG-based diagnosis of Alzheimer disease publication-title: Alzheimer Dis. Assoc. Disord. doi: 10.1097/WAD.0b013e3181ed1160 – volume: 36 start-page: 131 issue: 3 year: 2005 ident: 10.1016/j.clineuro.2020.106446_bib0145 article-title: Alzheimer’s disease: models of computation and analysis of EEGs publication-title: Clin. EEG Neurosci. doi: 10.1177/155005940503600303 – volume: 41 start-page: 1243 issue: 6 year: 2013 ident: 10.1016/j.clineuro.2020.106446_bib0290 article-title: Identification of resting and active state EEG features of Alzheimer’s disease using discrete wavelet transform publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-013-0795-5 – volume: 133 start-page: 188 year: 2020 ident: 10.1016/j.clineuro.2020.106446_bib0295 article-title: Automated detection of abnormal EEG signals using localized wavelet filter banks publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2020.03.009 – volume: 20 start-page: 21 issue: 1 year: 2018 ident: 10.1016/j.clineuro.2020.106446_bib0215 article-title: Fuzzy entropy analysis of the electroencephalogram in patients with Alzheimer’s disease: is the method superior to sample entropy? publication-title: Entropy doi: 10.3390/e20010021 – volume: 27 start-page: 857 issue: 8 year: 2016 ident: 10.1016/j.clineuro.2020.106446_bib0160 article-title: Imaging and machine learning techniques for diagnosis of Alzheimer’s disease publication-title: Rev. Neurosci. doi: 10.1515/revneuro-2016-0029 – volume: 42 start-page: 160 issue: 3 year: 2011 ident: 10.1016/j.clineuro.2020.106446_bib0170 article-title: Improving Alzheimer’s disease diagnosis with machine learning techniques publication-title: Clin. EEG Neurosci. doi: 10.1177/155005941104200304 – volume: 41 start-page: 909 issue: 7 year: 1988 ident: 10.1016/j.clineuro.2020.106446_bib0305 article-title: Orthonormal bases of compactly supported wavelets publication-title: Commun. Pure Appl. Math. doi: 10.1002/cpa.3160410705 – volume: 49 start-page: 3592 issue: 9 year: 2019 ident: 10.1016/j.clineuro.2020.106446_bib0115 article-title: Atypical pattern of frontal EEG asymmetry for direct gaze in young children with autism Spectrum disorder publication-title: J. Autism Dev. Disord. doi: 10.1007/s10803-019-04062-5 – volume: 34 start-page: 133 issue: 4 year: 2017 ident: 10.1016/j.clineuro.2020.106446_bib0365 article-title: A knowledge-based system for breast cancer classification using fuzzy logic method publication-title: Telemat. Inform. doi: 10.1016/j.tele.2017.01.007 – volume: 47 start-page: 583 issue: 260 year: 1952 ident: 10.1016/j.clineuro.2020.106446_bib0330 article-title: Use of ranks in one-criterion variance analysis publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1952.10483441 – volume: 26 start-page: 65 issue: 1 year: 2019 ident: 10.1016/j.clineuro.2020.106446_bib0400 article-title: Satisfying flexible due dates in fuzzy job shop by means of hybrid evolutionary algorithms publication-title: Integr. Comput.-Aided Eng. doi: 10.3233/ICA-180583 – volume: 38 start-page: 14650 issue: 12 year: 2011 ident: 10.1016/j.clineuro.2020.106446_bib0350 article-title: A fuzzy classification system based on Ant Colony Optimization for diabetes disease diagnosis publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.05.018 – volume: 56 start-page: 233 issue: 2 year: 2018 ident: 10.1016/j.clineuro.2020.106446_bib0120 article-title: A machine learning framework involving EEG-based functional connectivity to diagnose major depressive disorder (MDD) publication-title: Med. Biol. Eng. Comput. doi: 10.1007/s11517-017-1685-z – volume: 323 start-page: 96 year: 2019 ident: 10.1016/j.clineuro.2020.106446_bib0240 article-title: A convolutional neural network approach for classification of dementia stages based on 2D-spectral representation of EEG recordings publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.09.071 – volume: 34 start-page: 602 issue: 7 year: 2019 ident: 10.1016/j.clineuro.2020.106446_bib0270 article-title: Variance‐based global sensitivity analysis for fuzzy random structural systems publication-title: Comput.‐Aided Civ. Infrastruct. Eng. doi: 10.1111/mice.12436 – year: 2013 ident: 10.1016/j.clineuro.2020.106446_bib0375 – volume: 119 start-page: 252 issue: 4 year: 2009 ident: 10.1016/j.clineuro.2020.106446_bib0035 article-title: Rate of progression of mild cognitive impairment to dementia–meta‐analysis of 41 robust inception cohort studies publication-title: Acta Psychiatr. Scand. doi: 10.1111/j.1600-0447.2008.01326.x – volume: 25 start-page: 1550032 issue: 08 year: 2015 ident: 10.1016/j.clineuro.2020.106446_bib0190 article-title: Epoch-based entropy for early screening of Alzheimer’s disease publication-title: Int. J. Neural Syst. doi: 10.1142/S012906571550032X – volume: 30 start-page: 1 year: 2020 ident: 10.1016/j.clineuro.2020.106446_bib0030 article-title: Spatiotemporal oscillatory patterns during working memory maintenance in mild cognitive impairment and subjective cognitive decline publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065719500199 – volume: 29 start-page: 17 issue: 03 year: 2019 ident: 10.1016/j.clineuro.2020.106446_bib0125 article-title: Parametric description of EEG profiles for assessment of sleep architecture in disorders of consciousness publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065718500491 – volume: 24 start-page: 563 issue: 6 year: 2013 ident: 10.1016/j.clineuro.2020.106446_bib0150 article-title: EEG/MEG-and imaging-based diagnosis of Alzheimer’s disease publication-title: Rev. Neurosci. doi: 10.1515/revneuro-2013-0042 – volume: 154 start-page: 1 year: 2015 ident: 10.1016/j.clineuro.2020.106446_bib0300 article-title: Mammogram classification using two dimensional discrete wavelet transform and gray-level co-occurrence matrix for detection of breast cancer publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.12.032 – volume: 367 start-page: 1262 issue: 9518 year: 2006 ident: 10.1016/j.clineuro.2020.106446_bib0025 article-title: Mild cognitive impairment publication-title: Lancet doi: 10.1016/S0140-6736(06)68542-5 – volume: 30 start-page: 2 year: 2020 ident: 10.1016/j.clineuro.2020.106446_bib0040 article-title: Small world index in default mode network predicts progression from mild cognitive impairment to dementia publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065720500045 – volume: 29 start-page: 12 issue: 01 year: 2019 ident: 10.1016/j.clineuro.2020.106446_bib0065 article-title: Integrating EEG and MEG signals to improve motor imagery classification in brain–computer interface publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065718500144 – volume: 29 start-page: 10 issue: 5 year: 2019 ident: 10.1016/j.clineuro.2020.106446_bib0130 article-title: Multiplex limited penetrable horizontal visibility graph from EEG signals for driver fatigue detection publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065718500570 – volume: 322 start-page: 88 year: 2019 ident: 10.1016/j.clineuro.2020.106446_bib0235 article-title: A novel methodology for automated differential diagnosis of mild cognitive impairment and the Alzheimer’s disease using EEG signals publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2019.04.013 – volume: 23 start-page: 616 issue: 6 year: 2017 ident: 10.1016/j.clineuro.2020.106446_bib0165 article-title: Graph theory and brain connectivity in Alzheimer’s disease publication-title: Neuroscientist doi: 10.1177/1073858417702621 – volume: 105 start-page: 408 issue: 2 year: 2015 ident: 10.1016/j.clineuro.2020.106446_bib0410 article-title: Characterization of dementia and Alzheimer’s disease in an older population: updated incidence and life expectancy with and without dementia publication-title: Am J Public Health doi: 10.2105/AJPH.2014.301935 – start-page: 1 year: 2016 ident: 10.1016/j.clineuro.2020.106446_bib0220 article-title: Deep convolutional neural networks for classification of mild cognitive impaired and Alzheimer’s disease patients from scalp EEG recordings – volume: 33 start-page: 152 issue: 2 year: 2018 ident: 10.1016/j.clineuro.2020.106446_bib0265 article-title: 3D object classification using geometric features and pairwise relationships publication-title: Comput.‐Aided Civ. Infrastruct. Eng. doi: 10.1111/mice.12336 – volume: 29 start-page: 17 issue: 10 year: 2019 ident: 10.1016/j.clineuro.2020.106446_bib0095 article-title: Epileptic seizure detection with EEG Textural features and imbalanced classification based on easyensemble learning publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065719500217 – volume: 305 start-page: 174 year: 2016 ident: 10.1016/j.clineuro.2020.106446_bib0195 article-title: A new methodology for automated diagnosis of mild cognitive impairment (MCI) using magnetoencephalography (MEG) publication-title: Behav. Brain Res. doi: 10.1016/j.bbr.2016.02.035 – volume: 123 start-page: 69 issue: 1 year: 2003 ident: 10.1016/j.clineuro.2020.106446_bib0280 article-title: Analysis of EEG records in an epileptic patient using wavelet transform publication-title: J. Neurosci. Methods doi: 10.1016/S0165-0270(02)00340-0 – volume: 13 issue: 3 year: 2018 ident: 10.1016/j.clineuro.2020.106446_bib0230 article-title: Diagnosis of Alzheimer’s disease with Electroencephalography in a differential framework publication-title: PLoS One doi: 10.1371/journal.pone.0193607 – volume: 29 start-page: 17 issue: 10 year: 2019 ident: 10.1016/j.clineuro.2020.106446_bib0345 article-title: Latent phase detection of hypoxic-ischemic spike transients in the EEG of preterm fetal sheep using reverse biorthogonal wavelets & fuzzy classifier publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065719500138 – volume: 20 start-page: 210 issue: 3 year: 2018 ident: 10.1016/j.clineuro.2020.106446_bib0320 article-title: Amplitude-and fluctuation-based dispersion entropy publication-title: Entropy doi: 10.3390/e20030210 – volume: 58 start-page: 1985 issue: 12 year: 2001 ident: 10.1016/j.clineuro.2020.106446_bib0020 article-title: Current concepts in mild cognitive impairment publication-title: Arch. Neurol. doi: 10.1001/archneur.58.12.1985 – volume: 34 start-page: 991 issue: 11 year: 2019 ident: 10.1016/j.clineuro.2020.106446_bib0050 article-title: “Probability and interval hybrid reliability analysis based on adaptive local approximation of projection outlines using support vector machine,” publication-title: Comput.-Aided Civ. Infrastruct. Eng. doi: 10.1111/mice.12480 – volume: 30 start-page: 8 year: 2020 ident: 10.1016/j.clineuro.2020.106446_bib0105 article-title: Improved overlap-based undersampling for imbalanced dataset classification with application to epilepsy and Parkinson’s disease publication-title: Int. J. Neural Syst. – volume: 29 start-page: 17 issue: 04 year: 2019 ident: 10.1016/j.clineuro.2020.106446_bib0060 article-title: Differential effects of simulated cortical network lesions on synchrony and EEG complexity publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065718500247 – volume: 33 start-page: 165 issue: 2 year: 2018 ident: 10.1016/j.clineuro.2020.106446_bib0395 article-title: Multicriteria fuzzy analysis for a GIS‐based management of earthquake scenarios publication-title: Comput.‐Aided Civ. Infrastruct. Eng. doi: 10.1111/mice.12335 – volume: 10 start-page: 604 year: 2017 ident: 10.1016/j.clineuro.2020.106446_bib0210 article-title: Classification of healthy subjects and Alzheimer’s disease patients with dementia from cortical sources of resting state EEG rhythms: a study using artificial neural networks publication-title: Front. Neurosci. doi: 10.3389/fnins.2016.00604 – volume: 7 start-page: 187 issue: 3 year: 2005 ident: 10.1016/j.clineuro.2020.106446_bib0140 article-title: Alzheimer’s disease and models of computation: imaging, classification, and neural models publication-title: J. Alzheimer Dis. doi: 10.3233/JAD-2005-7301 – volume: 123 start-page: 176 year: 2020 ident: 10.1016/j.clineuro.2020.106446_bib0390 article-title: A novel multi-modal machine learning based approach for automatic classification of EEG recordings in dementia publication-title: Neural Netw. doi: 10.1016/j.neunet.2019.12.006 – volume: 29 start-page: 26 issue: 06 year: 2019 ident: 10.1016/j.clineuro.2020.106446_bib0010 article-title: Cortical thickness and surface area networks in healthy aging, Alzheimer’s disease and behavioral variant fronto-temporal dementia publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065718500557 – volume: 29 start-page: 17 issue: 02 year: 2019 ident: 10.1016/j.clineuro.2020.106446_bib0175 article-title: Multiscale entropy analysis for recognition of visually elicited negative stress from EEG recordings publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065718500387 – volume: 29 start-page: 12 issue: 02 year: 2019 ident: 10.1016/j.clineuro.2020.106446_bib0015 article-title: Instance-based representation using multiple kernel learning for predicting conversion to Alzheimer disease publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065718500429 – volume: 120 start-page: 86 year: 2017 ident: 10.1016/j.clineuro.2020.106446_bib0205 article-title: Classification of mild cognitive impairment EEG using combined recurrence and cross recurrence quantification analysis publication-title: Int. J. Psychophysiol. doi: 10.1016/j.ijpsycho.2017.07.006 – volume: 29 start-page: 5122 issue: 10 year: 2018 ident: 10.1016/j.clineuro.2020.106446_bib0385 article-title: Permutation jaccard distance-based hierarchical clustering to estimate EEG network density modifications in MCI subjects publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2018.2791644 – volume: 28 issue: 8 year: 2018 ident: 10.1016/j.clineuro.2020.106446_bib0070 article-title: Gaussian discriminant analysis-based dual high-dimensional decision spaces for the diagnosis of mild cognitive impairment in Alzheimer’s disease publication-title: Int. J. Neural Syst. doi: 10.1142/S012906571850017X – volume: 13 start-page: 1 issue: 1 year: 2019 ident: 10.1016/j.clineuro.2020.106446_bib0075 article-title: Atypical temporal-scale-specific fractal changes in Alzheimer’s disease EEG and their relevance to cognitive decline publication-title: Cogn. Neurodyn. doi: 10.1007/s11571-018-9509-x – volume: 125 start-page: 694 issue: 4 year: 2014 ident: 10.1016/j.clineuro.2020.106446_bib0185 article-title: Complexity of functional connectivity networks in mild cognitive impairment subjects during a working memory task publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2013.08.033 – volume: 20 start-page: 103 year: 2014 ident: 10.1016/j.clineuro.2020.106446_bib0355 article-title: Medical diagnosis of cardiovascular diseases using an interval-valued fuzzy rule-based classification system publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2013.11.009 – year: 2017 ident: 10.1016/j.clineuro.2020.106446_bib0085 article-title: Automatic seizure detection based on morphological features using one-dimensional local binary pattern on long-term EEG publication-title: Clin. EEG Neurosci. |
SSID | ssj0003368 |
Score | 2.437324 |
Snippet | •EEG-based methodology for distinguishing among the Alzheimer’s disease, Mild Cognitive Impairment, and healthy subjects.•Adroit integration of discrete... Highlights•EEG-based methodology for distinguishing among the Alzheimer’s disease, Mild Cognitive Impairment, and healthy subjects. •Adroit integration of... A new EEG-based methodology is presented for differential diagnosis of the Alzheimer's disease (AD), Mild Cognitive Impairment (MCI), and healthy subjects... A new EEG-based methodology is presented for differential diagnosis of the Alzheimer’s disease (AD), Mild Cognitive Impairment (MCI), and healthy subjects... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 106446 |
SubjectTerms | Accuracy Age Alzheimer's disease Automation Brain research Classification Cognitive ability Dementia Dementia disorders Differential diagnosis Discrete wavelet transform EEG Electroencephalograms Electroencephalography Entropy Fourier transforms Fuzzy logic Methods Mild cognitive impairment Neural networks Neurodegenerative diseases Neurology Neurosurgery Pattern recognition Sensors Signal processing Support vector machines Wavelet transforms |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9UwDI9gSIgL4puOgYzEtaxtkiY9oQkxTUjjApPeLUqTdGxi7YO-d9j-gf3b2GlauAwQ17ZupNixf3b8wdgb3fmC-xDyGhmei9aGHFFrlddeWAQoaHArKk4-_lQfnYiPK7lKAbcxpVXOOjEqaj84ipHvV0IL3VBG3Lv195ymRtHtahqhcZvdodZlJNVqtThcBeexFA7lmOdkZ3-rED5_S5WH1P8CfcSKHiIwqG8yTjeBz2iEDh-w-wk9wsHE7ofsVugfsbvH6X78Mbs-ANRa4M-o_zfFwYCCt8P6EmzvodteXV1CVHYwdXCGaYB0DK0Dwlew282AGDZ4cASrKY8osg6GDnyMJJ5ZQEB5GkaglPlTSHN0SEGsv9rYAftifMJODj98eX-Up1ELuZNFvUEvEj0LZwMXSroWPVVZdrrljUUAwBW32nWdVMorL5xrVOkVR2gnylaLoOpQ8qdspx_68JyBtrpSVa1E54LwAb_WUqIdbJ0tfeGKjMl5j41LfchpHMY3MyecnZuZN4Z4YybeZGx_oVtPnTj-SqFmFpq5zhQ1o0Fj8X-UYUwHfDSlGStTmM8kWyRaFSlL3aiMNQtlwjATNvmnVfdmOTPLQr_kPmOvl9eoA-hix_Zh2NI3SghqHCcy9mySz2WLOMUgRC13__zzF-xeRdk6MR99j-1sfmzDS4Rbm_ZVPFM_AThDKs4 priority: 102 providerName: ProQuest |
Title | A New dispersion entropy and fuzzy logic system methodology for automated classification of dementia stages using electroencephalograms |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0303846720307897 https://www.clinicalkey.es/playcontent/1-s2.0-S0303846720307897 https://dx.doi.org/10.1016/j.clineuro.2020.106446 https://www.ncbi.nlm.nih.gov/pubmed/33383465 https://www.proquest.com/docview/2484891080 https://www.proquest.com/docview/2474499594 |
Volume | 201 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqVkJcUMsztFRG4ppuEjuxc9xWrRZQVwiotDfLsZ2yFSQrsntoD1z5251xnABCFQguiZTYsuUZz3wznhkT8krWNmHWubgAgse80i4G1JrFheUaAAoo3AyTk8_nxeyCv1nkiy1yMuTCYFhlkP29TPfSOnyZhNWcrJbLyQdgT4baM0M-lSVmlHMukMuPvv0I82DMp8Nh4xhb_5QlfHWE2YdYAwPsxAw_Ajgo7lJQdwFQr4jOdsmDgCDptJ_kHtlyzUNy7zyckT8i36cUJBe1S6wBjr4wig7cdnVNdWNpvbm5uaZe4NG-ijPtL5H27nUKEJbqzboFHOssNQitMZbIk4-2NbXem7jUFEDlpesohs1f0nCXDi7e6pP2VbC_dI_Jxdnpx5NZHK5biE2eFGuwJMG6MNoxLnJTgbWap7WsWKkBBDDBtDR1nQthheXGlCK1ggG842kluROFS9kTst20jXtGqNQyE1kheG0ctw5ayzwHXVgZndrEJBHJhzVWJtQixysxPqsh6OxKDbRRSBvV0yYik7Hfqq_G8cceYiChGnJNQToqUBj_1tN1YZN3KlVdphL1GyNGpBx7_sLLfzXqwcBnahwo45LLEqNBI_Jy_A1yAA93dOPaDbYRnGPxOB6Rpz1_jkvE0A_Bi_z5f0xsn9zPMJzHB6wfkO311417AXhsXR36DQdPsRCHZGf6-u1sDu_j0_m797c0nzlM |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkYAL4k2ggJHgGJrYTuwcEKqAaku7vdBKezOO7ZRWbbKQXaHtH-Df8BuZcR5wKSCkXpM4kTLjb74Zz4OQF6pyCXfexzkIPBal8TGwVhbnThggKGBwGRYnT_fzyaH4MMtma-THUAuDaZUDJgagdo3FGPkmE0qoAjPi3sy_xDg1Ck9XhxEanVrs-tU3cNna1zvvQL4vGdt-f_B2EvdTBWKbJfkCHCYg0dZ4LmRmS3DKsrRSJS8M2DouuVG2qjIpnXTC2kKmTnJgMSItlfAy9ymH914hV8HwJujsydno4CWch9I72Dc8Rrv-W0XyySusdMR-G-CTMrwIRCS_yBheRHaD0du-RW72bJVudep1m6z5-g65Nu3P4--S71sUUJK6Y-w3jnE3isHiZr6ipna0Wp6fr2gAV9p1jKbdwOoQyqdAl6lZLhrgzN5RizQe85aCqtCmoi5ELo8NBQJ75FuKKfpHtJ_bg4A0_2xCx-2z9h45vBQh3CfrdVP7h4Qqo5hkuRSV9cJ5eFplGdjd0prUJTaJSDb8Y237vuc4fuNUDwluJ3qQjUbZ6E42Edkc1827zh9_XSEHEeqhrhWQWINx-r-Vvu0BpdWpbplO9EfULVQthuCsChmRYlzZc6aOC_3TVzcGPdPjh37ts4g8H28D5uBBkql9s8RnpBDYqE5E5EGnn-Mv4hjzEHn26M8vf0auTw6me3pvZ3_3MbnBMFMo5MJvkPXF16V_AlRvUT4N-4uST5e9oX8CvsFmEQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrVRxQby7pYCR4Bh2YztxckCo0K5aSlcVUKk349hOaQXJluwKbf8A_4lfx0xecCkgpF4TO5E8r2_G8wB4muRuLJz3QYwED2RmfIColQexkwYBChpcTsXJB9N490i-OY6OV-BHVwtDaZWdTqwVtSstxchHXCYySSkjbpS3aRGH25OXs_OAJkjRTWs3TqNhkX2__IbuW_Vibxtp_Yzzyc6H17tBO2EgsNE4nqPzhIDaGi-kimyGDloU5kkmUoN2TyhhEpvnkVJOOWltqkKnBCIaGWaJ9Cr2ocDvXoNVRV7RAFZf7UwP3_V2QIi6EA-lSARk5X-rTz57TnWP1H0DPVRODxGWxJeZxsugb20CJzfhRotd2VbDbLdgxRe3Ye2gvZ2_A9-3GOpM5k6p-zhF4RiFjsvZkpnCsXxxcbFktaplTf9o1oyvrgP7DMEzM4t5iQjaO2YJ1FMWU804rMyZq-OYp4YhnD3xFaOE_RPWTvEh9TT7ZOr-21-qu3B0JWS4B4OiLPw6sMQkXPFYydx66TyuTqIIrXBmTejGdjyEqDtjbdsu6DSM47Pu0t3OdEcbTbTRDW2GMOr3zZo-IH_doToS6q7KFfWyRlP1fzt91aqXSoe64nqs3xNvEWtxUtVJqoaQ9jtbBNUgo3_662bHZ7r_0S-pG8KT_jVqILpWMoUvF7RGSUlt6-QQ7jf82R-RoAiIjKONP3_8MayhMOu3e9P9B3CdU9pQnRi_CYP514V_iLhvnj1qBYzBx6uW6Z-PGWus |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+New+dispersion+entropy+and+fuzzy+logic+system+methodology+for+automated+classification+of+dementia+stages+using+electroencephalograms&rft.jtitle=Clinical+neurology+and+neurosurgery&rft.au=Amezquita-Sanchez%2C+Juan+P.&rft.au=Mammone%2C+Nadia&rft.au=Morabito%2C+Francesco+C.&rft.au=Adeli%2C+Hojjat&rft.date=2021-02-01&rft.issn=0303-8467&rft.volume=201&rft.spage=106446&rft_id=info:doi/10.1016%2Fj.clineuro.2020.106446&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_clineuro_2020_106446 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F03038467%2Fcov200h.gif |