COVID-19 identification in chest X-ray images on flat and hierarchical classification scenarios

•COVID-19 identification in chest X-ray using multi-class and hierarchical learners.•Using a database that reflects a real world scenario with its natural imbalance.•Exploring the textural content from the chest X-ray images with pneumonia.•Evaluating handcrafted and learned features to investigate...

Full description

Saved in:
Bibliographic Details
Published inComputer methods and programs in biomedicine Vol. 194; p. 105532
Main Authors Pereira, Rodolfo M., Bertolini, Diego, Teixeira, Lucas O., Silla, Carlos N., Costa, Yandre M.G.
Format Journal Article
LanguageEnglish
Published Ireland Elsevier B.V 01.10.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •COVID-19 identification in chest X-ray using multi-class and hierarchical learners.•Using a database that reflects a real world scenario with its natural imbalance.•Exploring the textural content from the chest X-ray images with pneumonia.•Evaluating handcrafted and learned features to investigate its complementarities. [Display omitted] Background and Objective:The COVID-19 can cause severe pneumonia and is estimated to have a high impact on the healthcare system. Early diagnosis is crucial for correct treatment in order to possibly reduce the stress in the healthcare system. The standard image diagnosis tests for pneumonia are chest X-ray (CXR) and computed tomography (CT) scan. Although CT scan is the gold standard, CXR are still useful because it is cheaper, faster and more widespread. This study aims to identify pneumonia caused by COVID-19 from other types and also healthy lungs using only CXR images. Methods:In order to achieve the objectives, we have proposed a classification schema considering the following perspectives: i) a multi-class classification; ii) hierarchical classification, since pneumonia can be structured as a hierarchy. Given the natural data imbalance in this domain, we also proposed the use of resampling algorithms in the schema in order to re-balance the classes distribution. We observed that, texture is one of the main visual attributes of CXR images, our classification schema extract features using some well-known texture descriptors and also using a pre-trained CNN model. We also explored early and late fusion techniques in the schema in order to leverage the strength of multiple texture descriptors and base classifiers at once. To evaluate the approach, we composed a database, named RYDLS-20, containing CXR images of pneumonia caused by different pathogens as well as CXR images of healthy lungs. The classes distribution follows a real-world scenario in which some pathogens are more common than others. Results:The proposed approach tested in RYDLS-20 achieved a macro-avg F1-Score of 0.65 using a multi-class approach and a F1-Score of 0.89 for the COVID-19 identification in the hierarchical classification scenario. Conclusions:As far as we know, the top identification rate obtained in this paper is the best nominal rate obtained for COVID-19 identification in an unbalanced environment with more than three classes. We must also highlight the novel proposed hierarchical classification approach for this task, which considers the types of pneumonia caused by the different pathogens and lead us to the best COVID-19 recognition rate obtained here.
AbstractList • COVID-19 identification in chest X-ray using multi-class and hierarchical learners. • Using a database that reflects a real world scenario with its natural imbalance. • Exploring the textural content from the chest X-ray images with pneumonia. • Evaluating handcrafted and learned features to investigate its complementarities. Background and Objective: The COVID-19 can cause severe pneumonia and is estimated to have a high impact on the healthcare system. Early diagnosis is crucial for correct treatment in order to possibly reduce the stress in the healthcare system. The standard image diagnosis tests for pneumonia are chest X-ray (CXR) and computed tomography (CT) scan. Although CT scan is the gold standard, CXR are still useful because it is cheaper, faster and more widespread. This study aims to identify pneumonia caused by COVID-19 from other types and also healthy lungs using only CXR images. Methods: In order to achieve the objectives, we have proposed a classification schema considering the following perspectives: i) a multi-class classification; ii) hierarchical classification, since pneumonia can be structured as a hierarchy. Given the natural data imbalance in this domain, we also proposed the use of resampling algorithms in the schema in order to re-balance the classes distribution. We observed that, texture is one of the main visual attributes of CXR images, our classification schema extract features using some well-known texture descriptors and also using a pre-trained CNN model. We also explored early and late fusion techniques in the schema in order to leverage the strength of multiple texture descriptors and base classifiers at once. To evaluate the approach, we composed a database, named RYDLS-20, containing CXR images of pneumonia caused by different pathogens as well as CXR images of healthy lungs. The classes distribution follows a real-world scenario in which some pathogens are more common than others. Results: The proposed approach tested in RYDLS-20 achieved a macro-avg F1-Score of 0.65 using a multi-class approach and a F1-Score of 0.89 for the COVID-19 identification in the hierarchical classification scenario. Conclusions: As far as we know, the top identification rate obtained in this paper is the best nominal rate obtained for COVID-19 identification in an unbalanced environment with more than three classes. We must also highlight the novel proposed hierarchical classification approach for this task, which considers the types of pneumonia caused by the different pathogens and lead us to the best COVID-19 recognition rate obtained here.
•COVID-19 identification in chest X-ray using multi-class and hierarchical learners.•Using a database that reflects a real world scenario with its natural imbalance.•Exploring the textural content from the chest X-ray images with pneumonia.•Evaluating handcrafted and learned features to investigate its complementarities. [Display omitted] Background and Objective:The COVID-19 can cause severe pneumonia and is estimated to have a high impact on the healthcare system. Early diagnosis is crucial for correct treatment in order to possibly reduce the stress in the healthcare system. The standard image diagnosis tests for pneumonia are chest X-ray (CXR) and computed tomography (CT) scan. Although CT scan is the gold standard, CXR are still useful because it is cheaper, faster and more widespread. This study aims to identify pneumonia caused by COVID-19 from other types and also healthy lungs using only CXR images. Methods:In order to achieve the objectives, we have proposed a classification schema considering the following perspectives: i) a multi-class classification; ii) hierarchical classification, since pneumonia can be structured as a hierarchy. Given the natural data imbalance in this domain, we also proposed the use of resampling algorithms in the schema in order to re-balance the classes distribution. We observed that, texture is one of the main visual attributes of CXR images, our classification schema extract features using some well-known texture descriptors and also using a pre-trained CNN model. We also explored early and late fusion techniques in the schema in order to leverage the strength of multiple texture descriptors and base classifiers at once. To evaluate the approach, we composed a database, named RYDLS-20, containing CXR images of pneumonia caused by different pathogens as well as CXR images of healthy lungs. The classes distribution follows a real-world scenario in which some pathogens are more common than others. Results:The proposed approach tested in RYDLS-20 achieved a macro-avg F1-Score of 0.65 using a multi-class approach and a F1-Score of 0.89 for the COVID-19 identification in the hierarchical classification scenario. Conclusions:As far as we know, the top identification rate obtained in this paper is the best nominal rate obtained for COVID-19 identification in an unbalanced environment with more than three classes. We must also highlight the novel proposed hierarchical classification approach for this task, which considers the types of pneumonia caused by the different pathogens and lead us to the best COVID-19 recognition rate obtained here.
The COVID-19 can cause severe pneumonia and is estimated to have a high impact on the healthcare system. Early diagnosis is crucial for correct treatment in order to possibly reduce the stress in the healthcare system. The standard image diagnosis tests for pneumonia are chest X-ray (CXR) and computed tomography (CT) scan. Although CT scan is the gold standard, CXR are still useful because it is cheaper, faster and more widespread. This study aims to identify pneumonia caused by COVID-19 from other types and also healthy lungs using only CXR images.BACKGROUND AND OBJECTIVEThe COVID-19 can cause severe pneumonia and is estimated to have a high impact on the healthcare system. Early diagnosis is crucial for correct treatment in order to possibly reduce the stress in the healthcare system. The standard image diagnosis tests for pneumonia are chest X-ray (CXR) and computed tomography (CT) scan. Although CT scan is the gold standard, CXR are still useful because it is cheaper, faster and more widespread. This study aims to identify pneumonia caused by COVID-19 from other types and also healthy lungs using only CXR images.In order to achieve the objectives, we have proposed a classification schema considering the following perspectives: i) a multi-class classification; ii) hierarchical classification, since pneumonia can be structured as a hierarchy. Given the natural data imbalance in this domain, we also proposed the use of resampling algorithms in the schema in order to re-balance the classes distribution. We observed that, texture is one of the main visual attributes of CXR images, our classification schema extract features using some well-known texture descriptors and also using a pre-trained CNN model. We also explored early and late fusion techniques in the schema in order to leverage the strength of multiple texture descriptors and base classifiers at once. To evaluate the approach, we composed a database, named RYDLS-20, containing CXR images of pneumonia caused by different pathogens as well as CXR images of healthy lungs. The classes distribution follows a real-world scenario in which some pathogens are more common than others.METHODSIn order to achieve the objectives, we have proposed a classification schema considering the following perspectives: i) a multi-class classification; ii) hierarchical classification, since pneumonia can be structured as a hierarchy. Given the natural data imbalance in this domain, we also proposed the use of resampling algorithms in the schema in order to re-balance the classes distribution. We observed that, texture is one of the main visual attributes of CXR images, our classification schema extract features using some well-known texture descriptors and also using a pre-trained CNN model. We also explored early and late fusion techniques in the schema in order to leverage the strength of multiple texture descriptors and base classifiers at once. To evaluate the approach, we composed a database, named RYDLS-20, containing CXR images of pneumonia caused by different pathogens as well as CXR images of healthy lungs. The classes distribution follows a real-world scenario in which some pathogens are more common than others.The proposed approach tested in RYDLS-20 achieved a macro-avg F1-Score of 0.65 using a multi-class approach and a F1-Score of 0.89 for the COVID-19 identification in the hierarchical classification scenario.RESULTSThe proposed approach tested in RYDLS-20 achieved a macro-avg F1-Score of 0.65 using a multi-class approach and a F1-Score of 0.89 for the COVID-19 identification in the hierarchical classification scenario.As far as we know, the top identification rate obtained in this paper is the best nominal rate obtained for COVID-19 identification in an unbalanced environment with more than three classes. We must also highlight the novel proposed hierarchical classification approach for this task, which considers the types of pneumonia caused by the different pathogens and lead us to the best COVID-19 recognition rate obtained here.CONCLUSIONSAs far as we know, the top identification rate obtained in this paper is the best nominal rate obtained for COVID-19 identification in an unbalanced environment with more than three classes. We must also highlight the novel proposed hierarchical classification approach for this task, which considers the types of pneumonia caused by the different pathogens and lead us to the best COVID-19 recognition rate obtained here.
The COVID-19 can cause severe pneumonia and is estimated to have a high impact on the healthcare system. Early diagnosis is crucial for correct treatment in order to possibly reduce the stress in the healthcare system. The standard image diagnosis tests for pneumonia are chest X-ray (CXR) and computed tomography (CT) scan. Although CT scan is the gold standard, CXR are still useful because it is cheaper, faster and more widespread. This study aims to identify pneumonia caused by COVID-19 from other types and also healthy lungs using only CXR images. In order to achieve the objectives, we have proposed a classification schema considering the following perspectives: i) a multi-class classification; ii) hierarchical classification, since pneumonia can be structured as a hierarchy. Given the natural data imbalance in this domain, we also proposed the use of resampling algorithms in the schema in order to re-balance the classes distribution. We observed that, texture is one of the main visual attributes of CXR images, our classification schema extract features using some well-known texture descriptors and also using a pre-trained CNN model. We also explored early and late fusion techniques in the schema in order to leverage the strength of multiple texture descriptors and base classifiers at once. To evaluate the approach, we composed a database, named RYDLS-20, containing CXR images of pneumonia caused by different pathogens as well as CXR images of healthy lungs. The classes distribution follows a real-world scenario in which some pathogens are more common than others. The proposed approach tested in RYDLS-20 achieved a macro-avg F1-Score of 0.65 using a multi-class approach and a F1-Score of 0.89 for the COVID-19 identification in the hierarchical classification scenario. As far as we know, the top identification rate obtained in this paper is the best nominal rate obtained for COVID-19 identification in an unbalanced environment with more than three classes. We must also highlight the novel proposed hierarchical classification approach for this task, which considers the types of pneumonia caused by the different pathogens and lead us to the best COVID-19 recognition rate obtained here.
ArticleNumber 105532
Author Bertolini, Diego
Costa, Yandre M.G.
Pereira, Rodolfo M.
Silla, Carlos N.
Teixeira, Lucas O.
Author_xml – sequence: 1
  givenname: Rodolfo M.
  surname: Pereira
  fullname: Pereira, Rodolfo M.
  email: rodolfomp123@gmail.com
  organization: Instituto Federal de Educação, Ciência e Tecnologia do Paraná (IFPR), Pinhais, PR, Brazil
– sequence: 2
  givenname: Diego
  surname: Bertolini
  fullname: Bertolini, Diego
  organization: Universidade Estadual de Maringá (UEM), Maringá, PR, Brazil
– sequence: 3
  givenname: Lucas O.
  surname: Teixeira
  fullname: Teixeira, Lucas O.
  organization: Universidade Estadual de Maringá (UEM), Maringá, PR, Brazil
– sequence: 4
  givenname: Carlos N.
  surname: Silla
  fullname: Silla, Carlos N.
  organization: Pontifícia Universidade Catalica do Paraná (PUCPR), Curitiba, PR, Brazil
– sequence: 5
  givenname: Yandre M.G.
  surname: Costa
  fullname: Costa, Yandre M.G.
  organization: Universidade Estadual de Maringá (UEM), Maringá, PR, Brazil
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32446037$$D View this record in MEDLINE/PubMed
BookMark eNqFkV9vFCEUxYmpsdvqF_DB8OjLrMAwsGOMSbPa2qRJXxrjG4ELdFlZZoXZJvvtZdzWP32oTyRwfudw7zlBR2lIDqHXlMwpoeLdeg6brZkzwqaLrmvZMzSjC8ka2YnuCM2qqG-YIPIYnZSyJoSwrhMv0HHLOBeklTOkltdfLz81tMfBujQGH0CPYUg4JAwrV0b8rcl6j8NG37qC64OPesQ6WbwKLusMq0pEDFGX8ocu4JLOYSgv0XOvY3Gv7s9TdHP--Wb5pbm6vrhcnl010BExNi2A1d5wzyRIDdZaA711FLjRxlNBmbfeGMkWnLueU-FbzoiVRvheON2eoo8H2-3ObJyt6WPWUW1z_Xfeq0EH9e9LCit1O9wpyYikklWDt_cGefixq3OrTahDxKiTG3ZFMU5ES-RC9lX65u-s3yEPS62CxUEAeSglO68gjL_2UqNDVJSoqT-1VlN_aupPHfqrKHuEPrg_CX04QK4u-K62ogoEl8DZkB2Myg7hafz9IxxiSFOr393-f_BPbP7Jkg
CitedBy_id crossref_primary_10_1080_0952813X_2021_2021300
crossref_primary_10_3390_electronics11152296
crossref_primary_10_1007_s00500_024_10362_5
crossref_primary_10_3233_IDT_200178
crossref_primary_10_1016_j_bspc_2022_104392
crossref_primary_10_1007_s12559_020_09779_5
crossref_primary_10_1016_j_procs_2024_04_007
crossref_primary_10_1007_s12553_021_00520_2
crossref_primary_10_1007_s12530_023_09484_2
crossref_primary_10_32604_iasc_2021_018350
crossref_primary_10_1080_21681163_2022_2140074
crossref_primary_10_1002_ima_22654
crossref_primary_10_3390_app12083895
crossref_primary_10_1016_j_compbiomed_2021_104210
crossref_primary_10_3390_app13074119
crossref_primary_10_1016_j_compbiomed_2021_104453
crossref_primary_10_1007_s42979_024_02695_7
crossref_primary_10_1155_2022_1306664
crossref_primary_10_1109_JIOT_2020_3034074
crossref_primary_10_1155_2022_7124199
crossref_primary_10_29328_journal_jprr_1001044
crossref_primary_10_1016_j_chaos_2020_110210
crossref_primary_10_1016_j_compbiomed_2021_104348
crossref_primary_10_1109_RBME_2021_3115703
crossref_primary_10_2196_25181
crossref_primary_10_7759_cureus_38373
crossref_primary_10_7717_peerj_cs_358
crossref_primary_10_36306_konjes_821782
crossref_primary_10_1007_s11227_024_06295_3
crossref_primary_10_7717_peerj_cs_364
crossref_primary_10_1007_s00530_021_00884_5
crossref_primary_10_3390_s20236764
crossref_primary_10_1038_s41598_023_46147_3
crossref_primary_10_1016_j_chaos_2020_110338
crossref_primary_10_1016_j_chaos_2020_110337
crossref_primary_10_2174_0115680266282179240124072121
crossref_primary_10_1007_s12553_023_00757_z
crossref_primary_10_1109_JBHI_2021_3072076
crossref_primary_10_1155_2021_3281135
crossref_primary_10_1007_s42979_021_00782_7
crossref_primary_10_3389_fams_2023_1303714
crossref_primary_10_1016_j_eswa_2022_116740
crossref_primary_10_1007_s00500_023_08915_1
crossref_primary_10_3390_electronics11010103
crossref_primary_10_1155_2021_9437538
crossref_primary_10_7717_peerj_cs_495
crossref_primary_10_1007_s10489_020_02102_7
crossref_primary_10_1007_s11277_024_11309_7
crossref_primary_10_1016_j_asoc_2021_107490
crossref_primary_10_2196_21604
crossref_primary_10_1016_j_cmpb_2024_108198
crossref_primary_10_1007_s42979_022_01326_3
crossref_primary_10_32604_cmc_2022_024193
crossref_primary_10_1007_s00607_021_00992_0
crossref_primary_10_1016_j_displa_2023_102403
crossref_primary_10_1002_ima_22747
crossref_primary_10_3390_jimaging10080176
crossref_primary_10_7717_peerj_10309
crossref_primary_10_1109_ACCESS_2021_3095222
crossref_primary_10_1016_j_imu_2022_100929
crossref_primary_10_1007_s12530_022_09419_3
crossref_primary_10_1109_TCBB_2023_3294333
crossref_primary_10_4103_jmp_jmp_104_22
crossref_primary_10_1007_s42979_022_01184_z
crossref_primary_10_4018_JITR_299391
crossref_primary_10_3390_diagnostics11030530
crossref_primary_10_1093_comjnl_bxac136
crossref_primary_10_1002_ima_22613
crossref_primary_10_1007_s10586_022_03703_2
crossref_primary_10_1007_s00521_023_08997_w
crossref_primary_10_1007_s42979_021_00690_w
crossref_primary_10_1155_2022_7451551
crossref_primary_10_1007_s00034_022_02226_w
crossref_primary_10_1007_s12539_021_00431_w
crossref_primary_10_1371_journal_pone_0247109
crossref_primary_10_1016_j_procs_2021_03_070
crossref_primary_10_1088_1742_6596_1601_5_052021
crossref_primary_10_1007_s00138_020_01101_5
crossref_primary_10_1007_s11063_022_11114_y
crossref_primary_10_1007_s10489_021_02199_4
crossref_primary_10_1016_j_compbiomed_2022_105976
crossref_primary_10_7717_peerj_cs_564
crossref_primary_10_1007_s00521_020_05641_9
crossref_primary_10_1109_JBHI_2021_3069798
crossref_primary_10_1016_j_inffus_2021_04_008
crossref_primary_10_1016_j_jiph_2021_11_013
crossref_primary_10_3389_fdata_2023_1120989
crossref_primary_10_1109_ACCESS_2021_3058537
crossref_primary_10_3390_diagnostics11081317
crossref_primary_10_4018_IJRQEH_308801
crossref_primary_10_1016_j_bbe_2021_12_001
crossref_primary_10_1016_j_neucom_2022_02_040
crossref_primary_10_1038_s41746_021_00546_w
crossref_primary_10_1007_s42600_021_00151_6
crossref_primary_10_3390_diagnostics11122343
crossref_primary_10_1155_2020_8889023
crossref_primary_10_1002_ima_22715
crossref_primary_10_1016_j_neucom_2024_127317
crossref_primary_10_1155_2021_2295920
crossref_primary_10_1007_s00354_023_00213_6
crossref_primary_10_1016_j_asoc_2023_110014
crossref_primary_10_3390_cancers15010314
crossref_primary_10_3390_app11167174
crossref_primary_10_1002_cpe_7314
crossref_primary_10_1007_s11831_021_09667_7
crossref_primary_10_1007_s42979_021_00980_3
crossref_primary_10_17946_JRST_2024_47_6_523
crossref_primary_10_1007_s00521_022_07953_4
crossref_primary_10_1186_s41747_020_00203_z
crossref_primary_10_2478_acss_2023_0005
crossref_primary_10_1016_j_bspc_2021_102583
crossref_primary_10_1016_j_cmpb_2021_106288
crossref_primary_10_2174_18750362_v15_e2207290
crossref_primary_10_1155_2021_5528144
crossref_primary_10_1007_s10278_024_01169_9
crossref_primary_10_1142_S0218348X21502558
crossref_primary_10_2139_ssrn_4088408
crossref_primary_10_1155_2022_1658615
crossref_primary_10_3389_fmed_2021_629134
crossref_primary_10_53070_bbd_990750
crossref_primary_10_1007_s42979_022_01464_8
crossref_primary_10_1007_s00521_023_08612_y
crossref_primary_10_1016_j_asoc_2021_107669
crossref_primary_10_3390_diagnostics13081397
crossref_primary_10_1155_2022_5297709
crossref_primary_10_1007_s11042_022_12156_z
crossref_primary_10_1007_s12559_020_09775_9
crossref_primary_10_1016_j_cmpb_2021_106336
crossref_primary_10_3390_tomography9060173
crossref_primary_10_3934_math_2024998
crossref_primary_10_1007_s00354_024_00255_4
crossref_primary_10_1155_2021_5513679
crossref_primary_10_1016_j_cmpb_2022_107141
crossref_primary_10_1080_0952813X_2023_2165724
crossref_primary_10_1016_j_engappai_2025_110583
crossref_primary_10_1016_j_compbiomed_2022_106195
crossref_primary_10_1093_comjnl_bxae071
crossref_primary_10_1007_s00521_021_06164_7
crossref_primary_10_1109_ACCESS_2022_3208138
crossref_primary_10_1007_s13246_022_01110_w
crossref_primary_10_3390_diagnostics11071155
crossref_primary_10_1016_j_eswa_2021_115658
crossref_primary_10_1016_j_compeleceng_2023_108711
crossref_primary_10_3390_s22197303
crossref_primary_10_1016_j_bspc_2020_102257
crossref_primary_10_1016_j_compbiomed_2021_104869
crossref_primary_10_1016_j_radi_2021_02_004
crossref_primary_10_21015_vtcs_v12i2_1999
crossref_primary_10_3390_ijerph19042013
crossref_primary_10_28979_jarnas_952700
crossref_primary_10_1016_j_compmedimag_2021_102008
crossref_primary_10_1371_journal_pone_0274098
crossref_primary_10_1016_j_ins_2021_07_033
crossref_primary_10_1007_s11831_023_09882_4
crossref_primary_10_1016_j_asoc_2023_109988
crossref_primary_10_1186_s12880_024_01394_2
crossref_primary_10_1140_epjs_s11734_022_00647_x
crossref_primary_10_1007_s13369_021_05958_0
crossref_primary_10_1016_j_patcog_2021_108110
crossref_primary_10_37121_jectr_vol2_122
crossref_primary_10_1155_2022_6354579
crossref_primary_10_1007_s13755_021_00166_4
crossref_primary_10_1051_e3sconf_202337103003
crossref_primary_10_1007_s12559_021_09848_3
crossref_primary_10_1007_s42979_021_00823_1
crossref_primary_10_1108_DTA_08_2021_0210
crossref_primary_10_1016_j_knosys_2022_110040
crossref_primary_10_1016_j_chemolab_2022_104680
crossref_primary_10_1080_15321819_2021_1951291
crossref_primary_10_1016_j_compbiomed_2021_104729
crossref_primary_10_3390_s24082641
crossref_primary_10_1155_2022_9036457
crossref_primary_10_1016_j_cmpb_2021_106004
crossref_primary_10_15302_J_QB_021_0274
crossref_primary_10_3390_app122010535
crossref_primary_10_3390_jimaging7050081
crossref_primary_10_1016_j_ijmedinf_2022_104778
crossref_primary_10_1259_bjro_20220058
crossref_primary_10_1016_j_compbiomed_2021_104605
crossref_primary_10_1016_j_matpr_2021_01_820
crossref_primary_10_1007_s42600_021_00135_6
crossref_primary_10_1088_1742_6596_1878_1_012060
crossref_primary_10_1021_acs_nanolett_1c04125
crossref_primary_10_1007_s12553_021_00609_8
crossref_primary_10_1371_journal_pone_0282608
crossref_primary_10_1016_j_asoc_2022_109588
crossref_primary_10_3389_fcvm_2021_638011
crossref_primary_10_1108_WJE_08_2020_0358
crossref_primary_10_1016_j_eswa_2023_121300
crossref_primary_10_3233_HIS_210008
crossref_primary_10_3390_diagnostics12102549
crossref_primary_10_1155_2022_2564022
crossref_primary_10_3390_s21217116
crossref_primary_10_1007_s10489_020_02076_6
crossref_primary_10_3390_s21020455
crossref_primary_10_1186_s13040_024_00366_0
crossref_primary_10_3389_fpubh_2020_599550
crossref_primary_10_1016_j_patcog_2021_108255
crossref_primary_10_1016_j_imu_2020_100405
crossref_primary_10_1111_1754_9485_13273
crossref_primary_10_1109_ACCESS_2020_3044858
crossref_primary_10_1016_j_bspc_2022_103778
crossref_primary_10_1007_s44174_024_00212_1
crossref_primary_10_1177_20552076241232882
crossref_primary_10_1155_2021_9942873
crossref_primary_10_1155_2022_3836498
crossref_primary_10_1177_20552076231215915
crossref_primary_10_2339_politeknik_861536
crossref_primary_10_3389_frsip_2024_1384744
crossref_primary_10_3390_ijerph18158052
crossref_primary_10_1109_ACCESS_2021_3116067
crossref_primary_10_1186_s12911_024_02591_3
crossref_primary_10_1016_j_compbiomed_2021_104306
crossref_primary_10_1016_j_compbiomed_2021_104425
crossref_primary_10_1016_j_eswa_2021_115452
crossref_primary_10_1109_ACCESS_2020_3028012
crossref_primary_10_1016_j_inffus_2023_102139
crossref_primary_10_1016_j_jksuci_2023_101596
crossref_primary_10_1049_csy2_12005
crossref_primary_10_3390_sym12091530
crossref_primary_10_1007_s11042_022_12508_9
crossref_primary_10_1007_s42979_023_02467_9
crossref_primary_10_1016_j_imu_2021_100709
crossref_primary_10_1038_s41392_021_00731_z
crossref_primary_10_1007_s10115_022_01772_8
crossref_primary_10_1016_j_chaos_2020_110122
crossref_primary_10_3390_s22197474
crossref_primary_10_1007_s11042_023_14960_7
crossref_primary_10_1016_j_ijar_2025_109411
crossref_primary_10_1002_ima_22558
crossref_primary_10_1016_j_ins_2020_09_041
crossref_primary_10_1007_s11042_024_19549_2
crossref_primary_10_1080_27690911_2023_2220872
crossref_primary_10_4103_jmss_jmss_111_21
crossref_primary_10_1016_j_eswa_2022_116942
crossref_primary_10_1155_2021_8890226
crossref_primary_10_1016_j_asoc_2020_107052
crossref_primary_10_1007_s12553_022_00677_4
crossref_primary_10_1007_s12652_020_02612_9
crossref_primary_10_32604_cmc_2021_013191
crossref_primary_10_1016_j_asoc_2020_106744
crossref_primary_10_1038_s41598_021_04529_5
crossref_primary_10_1016_j_ipemt_2022_100008
crossref_primary_10_1038_s41598_022_18463_7
crossref_primary_10_1016_j_inffus_2022_09_023
crossref_primary_10_1007_s11831_022_09768_x
crossref_primary_10_5937_medrec2003127B
crossref_primary_10_3390_technologies11050134
crossref_primary_10_3390_diagnostics14050500
crossref_primary_10_1016_j_bspc_2022_104538
crossref_primary_10_1155_2021_6677314
crossref_primary_10_1002_jmv_28293
crossref_primary_10_1007_s11227_023_05452_4
crossref_primary_10_1109_ACCESS_2021_3080180
crossref_primary_10_1016_j_compbiomed_2022_105350
crossref_primary_10_1016_j_irbm_2021_07_002
crossref_primary_10_1016_j_bea_2022_100041
crossref_primary_10_1109_JTEHM_2022_3186836
crossref_primary_10_46810_tdfd_948098
crossref_primary_10_1016_j_media_2021_102046
crossref_primary_10_4103_crst_crst_162_21
Cites_doi 10.1016/j.chest.2020.04.003
10.1016/j.inffus.2021.04.008
10.1016/j.cviu.2016.04.002
10.1016/j.eswa.2018.01.038
10.1259/bjr.20160642
10.1016/S0140-6736(20)30627-9
10.1007/s10618-010-0175-9
10.1007/s00138-014-0592-7
10.1155/2019/1065652
10.1056/NEJMra1312885
10.2807/1560-7917.ES.2020.25.11.2000258
10.1109/34.667881
10.15172/pneu.2014.5/482
10.1016/0031-3203(95)00067-4
10.1016/j.patcog.2017.05.025
10.1016/j.knosys.2015.07.019
10.1016/j.sigpro.2012.04.023
10.1016/j.compbiomed.2020.103792
10.1016/j.eswa.2012.10.016
10.1056/NEJMoa2002032
10.1109/TIP.2012.2235848
10.1016/j.asoc.2016.12.024
10.1109/TSMCB.2012.2187280
10.1007/s10044-021-00984-y
10.1049/iet-bmt.2019.0103
10.1007/s11263-009-0315-0
10.1016/j.patcog.2013.11.029
10.1016/j.artmed.2010.02.006
10.1016/j.knosys.2013.01.018
10.1186/1471-2105-8-210
10.1038/s41598-020-76550-z
10.1016/j.cmpb.2020.105581
10.1109/TCSVT.2017.2671899
10.1001/jama.2020.4031
10.1145/1007730.1007735
10.1016/j.ajem.2012.08.041
10.1186/s41479-016-0012-z
10.1613/jair.953
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright © 2020 Elsevier B.V. All rights reserved.
2020 Elsevier B.V. All rights reserved. 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Copyright © 2020 Elsevier B.V. All rights reserved.
– notice: 2020 Elsevier B.V. All rights reserved. 2020 Elsevier B.V.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.cmpb.2020.105532
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1872-7565
EndPage 105532
ExternalDocumentID PMC7207172
32446037
10_1016_j_cmpb_2020_105532
S0169260720309664
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.1-
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
LG9
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SBC
SDF
SDG
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
T5K
UHS
WUQ
XPP
Z5R
ZGI
ZY4
~G-
AACTN
AAIAV
ABLVK
ABTAH
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
EFLBG
LCYCR
RIG
AAYXX
AFCTW
AGRNS
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c506t-3ccdafb4f27c7acdddbc9de1c4babf1612fdfbb72844e9416f3420d7b6f96ea3
IEDL.DBID .~1
ISSN 0169-2607
1872-7565
IngestDate Thu Aug 21 18:07:39 EDT 2025
Fri Jul 11 02:23:03 EDT 2025
Thu Apr 03 07:00:15 EDT 2025
Thu Apr 24 22:51:21 EDT 2025
Tue Jul 01 02:41:02 EDT 2025
Fri Feb 23 02:46:43 EST 2024
Tue Aug 26 16:33:41 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords COVID-19
Pneumonia
Chest X-ray
Texture
Medical image analysis
Language English
License This article is made available under the Elsevier license.
Copyright © 2020 Elsevier B.V. All rights reserved.
Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c506t-3ccdafb4f27c7acdddbc9de1c4babf1612fdfbb72844e9416f3420d7b6f96ea3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC7207172
PMID 32446037
PQID 2406307879
PQPubID 23479
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7207172
proquest_miscellaneous_2406307879
pubmed_primary_32446037
crossref_citationtrail_10_1016_j_cmpb_2020_105532
crossref_primary_10_1016_j_cmpb_2020_105532
elsevier_sciencedirect_doi_10_1016_j_cmpb_2020_105532
elsevier_clinicalkey_doi_10_1016_j_cmpb_2020_105532
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-10-01
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Ireland
PublicationPlace_xml – name: Ireland
PublicationTitle Computer methods and programs in biomedicine
PublicationTitleAlternate Comput Methods Programs Biomed
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Wang, Peng, Lu, Lu, Bagheri, Summers (bib0009) 2017
Parveen, Sathik (bib0034) 2011; 19
Kannala, Rahtu (bib0052) 2012
Hastie, Tibshirani (bib0023) 1998; 11
Association (bib0017) 2019
S. Kumar, H.A. Rowley, X. Wang, J.J.M. Rodrigues, Hierarchical Classification in Credit Card Data Extraction, 2015. US Patent 9,213,907.
Silla, Freitas (bib0010) 2011; 22
Ozturk, Talo, Yildirim, Baloglu, Yildirim, Acharya (bib0043) 2020
Grasselli, Pesenti, Cecconi (bib0005) 2020
L. Wang, A. Wong, COVID-Net: a tailored deep convolutional neural network design for detection of COVID-19 cases from chest radiography images
Szegedy, Vanhoucke, Ioffe, Shlens, Wojna (bib0058) 2016
J.P. Cohen, P. Morrison, L. Dao, COVID-19 image data collection
Nanni, Lumini, Brahnam (bib0030) 2010; 49
He, Zhang, Ren, Sun (bib0038) 2016
G. Maguolo, L. Nanni, A critic evaluation of methods for covid-19 automatic detection from x-ray images
He, Bai, Garcia, Li (bib0025) 2008
Buchanan, Tsiakas, Bell (bib0068) 2019
Crosier, Griffin (bib0055) 2010; 88
Arias, Martinez-Gomez, Gamez, de Herrera, Müller (bib0019) 2016; 151
Novel (bib0013) 2020; 41
O. Gozes, M. Frid-Adar, H. Greenspan, P.D. Browning, H. Zhang, W. Ji, A. Bernheim, E. Siegel, Rapid ai development cycle for the coronavirus (COVID-19) pandemic: initial results for automated detection & patient monitoring using deep learning CT image analysis
Charte, Rivera, del Jesus, Herrera (bib0069) 2015; 89
Mackenzie (bib0015) 2016; 8
Rifkin, Klautau (bib0024) 2004; 5
Musher, Thorner (bib0003) 2014; 371
Song, Li, Meng, Wu, Cai (bib0051) 2018; 28
Costa, Oliveira, Silla Jr (bib0045) 2017; 52
Jantzen, Norup, Dounias, Bjerregaard (bib0033) 2005
Ojala, Pietikäinen, Harwood (bib0046) 1996; 29
Rubin, Ryerson, Haramati, Sverzellati, Kanne, Raoof, Schluger, Volpi, Yim, Martin (bib0007) 2020
Chebira, Barbotin, Jackson, Merryman, Srinivasa, Murphy, Kovačević (bib0032) 2007; 8
Remuzzi, Remuzzi (bib0014) 2020
Newell, Griffin (bib0056) 2014; 47
Fernández, LóPez, Galar, Del Jesus, Herrera (bib0022) 2013; 42
Krizhevsky, Sutskever, Hinton (bib0061) 2012
Cerri, Barros, de Carvalho (bib0064) 2015
Organization (bib0001) 2020
Bertolini, Oliveira, Justino, Sabourin (bib0047) 2013; 40
Tolksdorf, Buda, Schuler, Wieler, Haas (bib0004) 2020; 25
Ojansivu, Heikkilä (bib0054) 2008
OGrady, Torzillo, Frawley, Chang (bib0016) 2014; 5
Bai, Jiang, Li, Ma (bib0020) 2019; 2019
Abdulrazzaq, Yaseen, Noah, Fadhil, Ashour (bib0021) 2019
Guan, Ni, Hu, Liang, Ou, He, Liu, Shan, Lei, Hui (bib0002) 2020
Wang, Yao (bib0011) 2012; 42
Goutte, Gaussier (bib0067) 2005
(2020).
Nanni, Ghidoni, Brahnam (bib0044) 2017; 71
Tomek (bib0028) 1976; 6
Zhou, Chen, Wang, Xu, Yao, Huang, Jin, Pan, Tan, Wang, Xia, Zou, Xu, Wei, Guan, Feng, Zhang, Qu (bib0036) 2020
Costa, Oliveira, Koerich, Gouyon, Martins (bib0048) 2012; 92
A. Narin, C. Kaya, Z. Pamuk, Automatic detection of coronavirus disease (COVID-19) using x-ray images and deep convolutional neural networks
EL IDRSSI, Ruichek (bib0053) 2020
Wehrmann, Cerri, Barros (bib0065) 2018
Chawla, Bowyer, Hall, Kegelmeyer (bib0026) 2002; 16
Han, Wang, Mao (bib0027) 2005
Kittler, Hatef, Duin, Matas (bib0062) 1998; 20
K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition
(2014).
Paula Filho, Oliveira, Nisgoski, Britto (bib0049) 2014; 25
Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan, Vanhoucke, Rabinovich (bib0059) 2015
Batista, Prati, Monard (bib0029) 2004; 6
Pereira, Gabriel, Cerri (bib0066) 2019
Snoek, Worring, Smeulders (bib0012) 2005
Brahnam, Nanni, Sexton (bib0031) 2007
Li, Qin, Xu, Yin, Wang, Kong, Bai, Lu, Fang, Song (bib0037) 2020
Scalco, Rizzo (bib0035) 2017; 90
Self, Courtney, McNaughton, Wunderink, Kline (bib0006) 2013; 31
Ramirez Rivera, Rojas Castillo, Oksam Chae (bib0050) 2013; 22
Gattal, Djeddi, Siddiqi, Chibani (bib0057) 2018; 99
A.I. Khan, J.L. Shah, M. Bhat, CoroNet: a deep neural network for detection and diagnosis of COVID-19 from chest x-ray images
Nanni (10.1016/j.cmpb.2020.105532_bib0030) 2010; 49
10.1016/j.cmpb.2020.105532_bib0039
Musher (10.1016/j.cmpb.2020.105532_bib0003) 2014; 371
Crosier (10.1016/j.cmpb.2020.105532_bib0055) 2010; 88
Szegedy (10.1016/j.cmpb.2020.105532_bib0058) 2016
Tomek (10.1016/j.cmpb.2020.105532_bib0028) 1976; 6
Rifkin (10.1016/j.cmpb.2020.105532_bib0024) 2004; 5
Goutte (10.1016/j.cmpb.2020.105532_bib0067) 2005
Chawla (10.1016/j.cmpb.2020.105532_bib0026) 2002; 16
Association (10.1016/j.cmpb.2020.105532_bib0017) 2019
Ramirez Rivera (10.1016/j.cmpb.2020.105532_bib0050) 2013; 22
10.1016/j.cmpb.2020.105532_bib0041
10.1016/j.cmpb.2020.105532_bib0040
Parveen (10.1016/j.cmpb.2020.105532_bib0034) 2011; 19
10.1016/j.cmpb.2020.105532_bib0042
He (10.1016/j.cmpb.2020.105532_bib0025) 2008
Han (10.1016/j.cmpb.2020.105532_bib0027) 2005
Grasselli (10.1016/j.cmpb.2020.105532_bib0005) 2020
Rubin (10.1016/j.cmpb.2020.105532_bib0007) 2020
Arias (10.1016/j.cmpb.2020.105532_bib0019) 2016; 151
10.1016/j.cmpb.2020.105532_bib0008
Charte (10.1016/j.cmpb.2020.105532_bib0069) 2015; 89
Nanni (10.1016/j.cmpb.2020.105532_bib0044) 2017; 71
Newell (10.1016/j.cmpb.2020.105532_bib0056) 2014; 47
Song (10.1016/j.cmpb.2020.105532_bib0051) 2018; 28
Bai (10.1016/j.cmpb.2020.105532_bib0020) 2019; 2019
Mackenzie (10.1016/j.cmpb.2020.105532_bib0015) 2016; 8
Abdulrazzaq (10.1016/j.cmpb.2020.105532_bib0021) 2019
Jantzen (10.1016/j.cmpb.2020.105532_bib0033) 2005
Costa (10.1016/j.cmpb.2020.105532_bib0045) 2017; 52
10.1016/j.cmpb.2020.105532_bib0018
Wang (10.1016/j.cmpb.2020.105532_bib0011) 2012; 42
Fernández (10.1016/j.cmpb.2020.105532_bib0022) 2013; 42
Paula Filho (10.1016/j.cmpb.2020.105532_bib0049) 2014; 25
Bertolini (10.1016/j.cmpb.2020.105532_bib0047) 2013; 40
Chebira (10.1016/j.cmpb.2020.105532_bib0032) 2007; 8
He (10.1016/j.cmpb.2020.105532_bib0038) 2016
Buchanan (10.1016/j.cmpb.2020.105532_bib0068) 2019
Wehrmann (10.1016/j.cmpb.2020.105532_bib0065) 2018
Pereira (10.1016/j.cmpb.2020.105532_bib0066) 2019
Self (10.1016/j.cmpb.2020.105532_bib0006) 2013; 31
Silla (10.1016/j.cmpb.2020.105532_bib0010) 2011; 22
EL IDRSSI (10.1016/j.cmpb.2020.105532_bib0053) 2020
Li (10.1016/j.cmpb.2020.105532_bib0037) 2020
Remuzzi (10.1016/j.cmpb.2020.105532_bib0014) 2020
Ozturk (10.1016/j.cmpb.2020.105532_bib0043) 2020
Ojala (10.1016/j.cmpb.2020.105532_bib0046) 1996; 29
10.1016/j.cmpb.2020.105532_bib0060
Ojansivu (10.1016/j.cmpb.2020.105532_bib0054) 2008
10.1016/j.cmpb.2020.105532_bib0063
Kittler (10.1016/j.cmpb.2020.105532_bib0062) 1998; 20
Costa (10.1016/j.cmpb.2020.105532_bib0048) 2012; 92
Kannala (10.1016/j.cmpb.2020.105532_bib0052) 2012
OGrady (10.1016/j.cmpb.2020.105532_bib0016) 2014; 5
Guan (10.1016/j.cmpb.2020.105532_bib0002) 2020
Novel (10.1016/j.cmpb.2020.105532_bib0013) 2020; 41
Scalco (10.1016/j.cmpb.2020.105532_bib0035) 2017; 90
Gattal (10.1016/j.cmpb.2020.105532_bib0057) 2018; 99
Cerri (10.1016/j.cmpb.2020.105532_bib0064) 2015
Szegedy (10.1016/j.cmpb.2020.105532_bib0059) 2015
Brahnam (10.1016/j.cmpb.2020.105532_bib0031) 2007
Krizhevsky (10.1016/j.cmpb.2020.105532_bib0061) 2012
Batista (10.1016/j.cmpb.2020.105532_bib0029) 2004; 6
Organization (10.1016/j.cmpb.2020.105532_bib0001) 2020
Wang (10.1016/j.cmpb.2020.105532_bib0009) 2017
Zhou (10.1016/j.cmpb.2020.105532_bib0036) 2020
Hastie (10.1016/j.cmpb.2020.105532_bib0023) 1998; 11
Snoek (10.1016/j.cmpb.2020.105532_bib0012) 2005
Tolksdorf (10.1016/j.cmpb.2020.105532_bib0004) 2020; 25
References_xml – start-page: 2818
  year: 2016
  end-page: 2826
  ident: bib0058
  article-title: Rethinking the inception architecture for computer vision
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 2019
  year: 2019
  ident: bib0020
  article-title: NHL Pathological image classification based on hierarchical local information and googlenet-based representations
  publication-title: Biomed Res Int
– reference: (2014).
– start-page: 1
  year: 2015
  end-page: 8
  ident: bib0064
  article-title: Hierarchical classification of gene ontology-based protein functions with neural networks
  publication-title: Proceedings of the International Joint Conference on Neural Networks (IJCNN)
– volume: 25
  start-page: 1019
  year: 2014
  end-page: 1031
  ident: bib0049
  article-title: Forest species recognition using macroscopic images
  publication-title: Mach. Vis. Appl.
– reference: K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition,
– start-page: 638
  year: 2019
  end-page: 651
  ident: bib0021
  article-title: XMIAR: X-ray medical image annotation and retrieval
  publication-title: Science and Information Conference
– volume: 6
  start-page: 448
  year: 1976
  end-page: 452
  ident: bib0028
  article-title: An experiment with the edited nearest-neighbor rule
  publication-title: IEEE Trans. Syst. Man Cybern.
– volume: 22
  start-page: 1740
  year: 2013
  end-page: 1752
  ident: bib0050
  article-title: Local directional number pattern for face analysis: face and expression recognition
  publication-title: IEEE Trans. Image Process.
– start-page: 1097
  year: 2012
  end-page: 1105
  ident: bib0061
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Advances in Neural Information Processing Systems
– volume: 25
  year: 2020
  ident: bib0004
  article-title: Influenza-associated pneumonia as reference to assess seriousness of coronavirus disease (COVID-19)
  publication-title: Eurosurveillance
– volume: 40
  start-page: 2069
  year: 2013
  end-page: 2080
  ident: bib0047
  article-title: Texture-based descriptors for writer identification and verification
  publication-title: Expert Syst. Appl.
– volume: 16
  start-page: 321
  year: 2002
  end-page: 357
  ident: bib0026
  article-title: Smote: synthetic minority over-sampling technique
  publication-title: J. Artif. Intell. Res.
– volume: 8
  start-page: 210
  year: 2007
  ident: bib0032
  article-title: A multiresolution approach to automated classification of protein subcellular location images
  publication-title: BMC Bioinform.
– volume: 31
  start-page: 401
  year: 2013
  end-page: 405
  ident: bib0006
  article-title: High discordance of chest x-ray and computed tomography for detection of pulmonary opacities in ed patients: implications for diagnosing pneumonia
  publication-title: Am. J. Emerg. Med.
– volume: 88
  start-page: 447
  year: 2010
  end-page: 460
  ident: bib0055
  article-title: Using basic image features for texture classification
  publication-title: Int. J. Comput. Vis.
– volume: 28
  start-page: 1565
  year: 2018
  end-page: 1579
  ident: bib0051
  article-title: Letrist: locally encoded transform feature histogram for rotation-invariant texture classification
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– year: 2020
  ident: bib0036
  article-title: Improved deep learning model for differentiating novel coronavirus pneumonia and influenza pneumonia
  publication-title: medRxiv
– reference: O. Gozes, M. Frid-Adar, H. Greenspan, P.D. Browning, H. Zhang, W. Ji, A. Bernheim, E. Siegel, Rapid ai development cycle for the coronavirus (COVID-19) pandemic: initial results for automated detection & patient monitoring using deep learning CT image analysis,
– year: 2020
  ident: bib0001
  article-title: Coronavirus Disease 2019 (COVID-19)
  publication-title: Situation Report 72
– volume: 5
  start-page: 38
  year: 2014
  ident: bib0016
  article-title: The radiological diagnosis of pneumonia in children
  publication-title: Pneumonia
– volume: 19
  start-page: 423
  year: 2011
  end-page: 428
  ident: bib0034
  article-title: Detection of pneumonia in chest x-ray images
  publication-title: J. Xray Sci. Technol.
– reference: (2020).
– start-page: 103792
  year: 2020
  ident: bib0043
  article-title: Automated detection of covid-19 cases using deep neural networks with x-ray images
  publication-title: Comput. Biol. Med.
– start-page: 878
  year: 2005
  end-page: 887
  ident: bib0027
  article-title: Borderline-smote: a new oversampling method in imbalanced datasets learning
  publication-title: International Conference on Intelligent Computing
– volume: 90
  start-page: 20160642
  year: 2017
  ident: bib0035
  article-title: Texture analysis of medical images for radiotherapy applications
  publication-title: Br. J. Radiol.
– volume: 52
  start-page: 28
  year: 2017
  end-page: 38
  ident: bib0045
  article-title: An evaluation of convolutional neural networks for music classification using spectrograms
  publication-title: Appl. Soft Comput.
– reference: (2020).
– volume: 42
  start-page: 97
  year: 2013
  end-page: 110
  ident: bib0022
  article-title: Analysing the classification of imbalanced data-sets with multiple classes: binarization techniques and ad-hoc approaches
  publication-title: Knowl. Based Syst.
– reference: L. Wang, A. Wong, COVID-Net: a tailored deep convolutional neural network design for detection of COVID-19 cases from chest radiography images,
– volume: 29
  start-page: 51
  year: 1996
  end-page: 59
  ident: bib0046
  article-title: A comparative study of texture measures with classification based on featured distributions
  publication-title: Pattern Recognit.
– volume: 41
  start-page: 145
  year: 2020
  ident: bib0013
  article-title: The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) in China
  publication-title: Zhonghua Liu Xing Bing Xue Za Zhi
– start-page: 1
  year: 2005
  end-page: 9
  ident: bib0033
  article-title: Pap-smear benchmark data for pattern classification
  publication-title: Nature inspired Smart Information Systems (NiSIS 2005)
– start-page: 200905
  year: 2020
  ident: bib0037
  article-title: Artificial intelligence distinguishes COVID-19 from community acquired pneumonia on chest ct
  publication-title: Radiology
– volume: 42
  start-page: 1119
  year: 2012
  end-page: 1130
  ident: bib0011
  article-title: Multiclass imbalance problems: analysis and potential solutions
  publication-title: IEEE Trans. Syst. Man Cybern.Part B
– start-page: 2097
  year: 2017
  end-page: 2106
  ident: bib0009
  article-title: ChestX-ray8: hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– year: 2020
  ident: bib0014
  article-title: COVID-19 and Italy: what next?
  publication-title: Lancet
– volume: 11
  start-page: 507
  year: 1998
  end-page: 513
  ident: bib0023
  article-title: Classification by pairwise coupling
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 47
  start-page: 2255
  year: 2014
  end-page: 2265
  ident: bib0056
  article-title: Writer identification using oriented basic image features and the delta encoding
  publication-title: Pattern Recognit.
– start-page: 737
  year: 2019
  end-page: 749
  ident: bib0066
  article-title: Hierarchical classification of transposable elements with a weighted genetic algorithm
  publication-title: Proceedings of the EPIA Conference on Artificial Intelligence
– start-page: 1363
  year: 2012
  end-page: 1366
  ident: bib0052
  article-title: BSIF: Binarized statistical image features
  publication-title: Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012)
– volume: 92
  start-page: 2723
  year: 2012
  end-page: 2737
  ident: bib0048
  article-title: Music genre classification using LBP textural features
  publication-title: Signal Process.
– year: 2020
  ident: bib0053
  article-title: Palmprint recognition using state-of-the-art local texture descriptors: a comparative study
  publication-title: IET Biom.
– start-page: 225
  year: 2007
  end-page: 253
  ident: bib0031
  article-title: Introduction to neonatal facial pain detection using common and advanced face classification techniques
  publication-title: Advanced Computational Intelligence Paradigms in Healthcare–1
– volume: 99
  start-page: 155
  year: 2018
  end-page: 167
  ident: bib0057
  article-title: Gender classification from offline multi-script handwriting images using oriented basic image features (oBIFs)
  publication-title: Expert Syst. Appl.
– volume: 151
  start-page: 61
  year: 2016
  end-page: 71
  ident: bib0019
  article-title: Medical image modality classification using discrete bayesian networks
  publication-title: Comput. Vis. Image Underst.
– reference: S. Kumar, H.A. Rowley, X. Wang, J.J.M. Rodrigues, Hierarchical Classification in Credit Card Data Extraction, 2015. US Patent 9,213,907.
– year: 2020
  ident: bib0002
  article-title: Clinical characteristics of coronavirus disease 2019 in china
  publication-title: N. Engl. J. Med.
– reference: J.P. Cohen, P. Morrison, L. Dao, COVID-19 image data collection,
– volume: 371
  start-page: 1619
  year: 2014
  end-page: 1628
  ident: bib0003
  article-title: Community-acquired pneumonia
  publication-title: N. Engl. J. Med.
– volume: 6
  start-page: 20
  year: 2004
  end-page: 29
  ident: bib0029
  article-title: A study of the behavior of several methods for balancing machine learning training data
  publication-title: ACM SIGKDD Explor. Newsl.
– volume: 20
  start-page: 226
  year: 1998
  end-page: 239
  ident: bib0062
  article-title: On combining classifiers
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 770
  year: 2016
  end-page: 778
  ident: bib0038
  article-title: Deep residual learning for image recognition
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 89
  start-page: 385
  year: 2015
  end-page: 397
  ident: bib0069
  article-title: MLSMOTE: Approaching imbalanced multilabel learning through synthetic instance generation
  publication-title: Knowl. Based Syst.
– start-page: 1
  year: 2015
  end-page: 9
  ident: bib0059
  article-title: Going deeper with convolutions
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 8
  start-page: 14
  year: 2016
  ident: bib0015
  article-title: The definition and classification of pneumonia
  publication-title: Pneumonia
– volume: 71
  start-page: 158
  year: 2017
  end-page: 172
  ident: bib0044
  article-title: Handcrafted vs. non-handcrafted features for computer vision classification
  publication-title: Pattern Recognit.
– start-page: 236
  year: 2008
  end-page: 243
  ident: bib0054
  article-title: Blur insensitive texture classification using local phase quantization
  publication-title: International Conference on Image and Signal Processing
– reference: G. Maguolo, L. Nanni, A critic evaluation of methods for covid-19 automatic detection from x-ray images,
– start-page: 345
  year: 2005
  end-page: 359
  ident: bib0067
  article-title: A probabilistic interpretation of precision, recall and f-score, with implication for evaluation
  publication-title: European Conference on Information Retrieval
– start-page: 331
  year: 2019
  end-page: 332
  ident: bib0068
  article-title: Towards an automated assessment for embodied cognition in children: the sailor step task
  publication-title: Proceedings of the 12th ACM International Conference on PErvasive Technologies Related to Assistive Environments
– reference: A. Narin, C. Kaya, Z. Pamuk, Automatic detection of coronavirus disease (COVID-19) using x-ray images and deep convolutional neural networks,
– reference: A.I. Khan, J.L. Shah, M. Bhat, CoroNet: a deep neural network for detection and diagnosis of COVID-19 from chest x-ray images,
– year: 2019
  ident: bib0017
  article-title: ICD-10-CM 2020 The complete official codebook
– volume: 5
  start-page: 101
  year: 2004
  end-page: 141
  ident: bib0024
  article-title: In defense of one-vs-all classification
  publication-title: J. Mach. Learn. Res.
– volume: 49
  start-page: 117
  year: 2010
  end-page: 125
  ident: bib0030
  article-title: Local binary patterns variants as texture descriptors for medical image analysis
  publication-title: Artif. Intell. Med.
– volume: 22
  start-page: 31
  year: 2011
  end-page: 72
  ident: bib0010
  article-title: A survey of hierarchical classification across different application domains
  publication-title: Data Min. Knowl. Discov.
– year: 2020
  ident: bib0007
  article-title: The role of chest imaging in patient management during the covid-19 pandemic: a multinational consensus statement from the fleischner society
  publication-title: Chest
– start-page: 5225
  year: 2018
  end-page: 5234
  ident: bib0065
  article-title: Hierarchical multi-label classification networks
  publication-title: Proceedings of the International Conference on Machine Learning
– year: 2020
  ident: bib0005
  article-title: Critical care utilization for the COVID-19 outbreak in lombardy, italy: early experience and forecast during an emergency response
  publication-title: JAMA
– start-page: 399
  year: 2005
  end-page: 402
  ident: bib0012
  article-title: Early versus late fusion in semantic video analysis
  publication-title: Proceedings of the ACM International Conference on Multimedia
– start-page: 1322
  year: 2008
  end-page: 1328
  ident: bib0025
  article-title: ADASYN: Adaptive synthetic sampling approach for imbalanced learning
  publication-title: IEEE International Joint Conference Neural Networks
– volume: 5
  start-page: 101
  issue: Jan
  year: 2004
  ident: 10.1016/j.cmpb.2020.105532_bib0024
  article-title: In defense of one-vs-all classification
  publication-title: J. Mach. Learn. Res.
– volume: 6
  start-page: 448
  issue: 6
  year: 1976
  ident: 10.1016/j.cmpb.2020.105532_bib0028
  article-title: An experiment with the edited nearest-neighbor rule
  publication-title: IEEE Trans. Syst. Man Cybern.
– year: 2020
  ident: 10.1016/j.cmpb.2020.105532_bib0007
  article-title: The role of chest imaging in patient management during the covid-19 pandemic: a multinational consensus statement from the fleischner society
  publication-title: Chest
  doi: 10.1016/j.chest.2020.04.003
– start-page: 1363
  year: 2012
  ident: 10.1016/j.cmpb.2020.105532_bib0052
  article-title: BSIF: Binarized statistical image features
– ident: 10.1016/j.cmpb.2020.105532_bib0063
  doi: 10.1016/j.inffus.2021.04.008
– start-page: 345
  year: 2005
  ident: 10.1016/j.cmpb.2020.105532_bib0067
  article-title: A probabilistic interpretation of precision, recall and f-score, with implication for evaluation
– volume: 151
  start-page: 61
  year: 2016
  ident: 10.1016/j.cmpb.2020.105532_bib0019
  article-title: Medical image modality classification using discrete bayesian networks
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1016/j.cviu.2016.04.002
– volume: 99
  start-page: 155
  year: 2018
  ident: 10.1016/j.cmpb.2020.105532_bib0057
  article-title: Gender classification from offline multi-script handwriting images using oriented basic image features (oBIFs)
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.01.038
– start-page: 638
  year: 2019
  ident: 10.1016/j.cmpb.2020.105532_bib0021
  article-title: XMIAR: X-ray medical image annotation and retrieval
– volume: 90
  start-page: 20160642
  issue: 1070
  year: 2017
  ident: 10.1016/j.cmpb.2020.105532_bib0035
  article-title: Texture analysis of medical images for radiotherapy applications
  publication-title: Br. J. Radiol.
  doi: 10.1259/bjr.20160642
– ident: 10.1016/j.cmpb.2020.105532_bib0040
– year: 2020
  ident: 10.1016/j.cmpb.2020.105532_bib0014
  article-title: COVID-19 and Italy: what next?
  publication-title: Lancet
  doi: 10.1016/S0140-6736(20)30627-9
– volume: 22
  start-page: 31
  issue: 1–2
  year: 2011
  ident: 10.1016/j.cmpb.2020.105532_bib0010
  article-title: A survey of hierarchical classification across different application domains
  publication-title: Data Min. Knowl. Discov.
  doi: 10.1007/s10618-010-0175-9
– start-page: 770
  year: 2016
  ident: 10.1016/j.cmpb.2020.105532_bib0038
  article-title: Deep residual learning for image recognition
– start-page: 737
  year: 2019
  ident: 10.1016/j.cmpb.2020.105532_bib0066
  article-title: Hierarchical classification of transposable elements with a weighted genetic algorithm
– volume: 25
  start-page: 1019
  issue: 4
  year: 2014
  ident: 10.1016/j.cmpb.2020.105532_bib0049
  article-title: Forest species recognition using macroscopic images
  publication-title: Mach. Vis. Appl.
  doi: 10.1007/s00138-014-0592-7
– volume: 41
  start-page: 145
  issue: 2
  year: 2020
  ident: 10.1016/j.cmpb.2020.105532_bib0013
  article-title: The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) in China
  publication-title: Zhonghua Liu Xing Bing Xue Za Zhi
– start-page: 878
  year: 2005
  ident: 10.1016/j.cmpb.2020.105532_bib0027
  article-title: Borderline-smote: a new oversampling method in imbalanced datasets learning
– volume: 2019
  year: 2019
  ident: 10.1016/j.cmpb.2020.105532_bib0020
  article-title: NHL Pathological image classification based on hierarchical local information and googlenet-based representations
  publication-title: Biomed Res Int
  doi: 10.1155/2019/1065652
– start-page: 1
  year: 2015
  ident: 10.1016/j.cmpb.2020.105532_bib0064
  article-title: Hierarchical classification of gene ontology-based protein functions with neural networks
– volume: 371
  start-page: 1619
  issue: 17
  year: 2014
  ident: 10.1016/j.cmpb.2020.105532_bib0003
  article-title: Community-acquired pneumonia
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMra1312885
– start-page: 225
  year: 2007
  ident: 10.1016/j.cmpb.2020.105532_bib0031
  article-title: Introduction to neonatal facial pain detection using common and advanced face classification techniques
– ident: 10.1016/j.cmpb.2020.105532_bib0060
– start-page: 5225
  year: 2018
  ident: 10.1016/j.cmpb.2020.105532_bib0065
  article-title: Hierarchical multi-label classification networks
– volume: 25
  issue: 11
  year: 2020
  ident: 10.1016/j.cmpb.2020.105532_bib0004
  article-title: Influenza-associated pneumonia as reference to assess seriousness of coronavirus disease (COVID-19)
  publication-title: Eurosurveillance
  doi: 10.2807/1560-7917.ES.2020.25.11.2000258
– volume: 20
  start-page: 226
  issue: 3
  year: 1998
  ident: 10.1016/j.cmpb.2020.105532_bib0062
  article-title: On combining classifiers
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.667881
– volume: 5
  start-page: 38
  issue: 1
  year: 2014
  ident: 10.1016/j.cmpb.2020.105532_bib0016
  article-title: The radiological diagnosis of pneumonia in children
  publication-title: Pneumonia
  doi: 10.15172/pneu.2014.5/482
– volume: 29
  start-page: 51
  issue: 1
  year: 1996
  ident: 10.1016/j.cmpb.2020.105532_bib0046
  article-title: A comparative study of texture measures with classification based on featured distributions
  publication-title: Pattern Recognit.
  doi: 10.1016/0031-3203(95)00067-4
– start-page: 200905
  year: 2020
  ident: 10.1016/j.cmpb.2020.105532_bib0037
  article-title: Artificial intelligence distinguishes COVID-19 from community acquired pneumonia on chest ct
  publication-title: Radiology
– volume: 71
  start-page: 158
  year: 2017
  ident: 10.1016/j.cmpb.2020.105532_bib0044
  article-title: Handcrafted vs. non-handcrafted features for computer vision classification
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2017.05.025
– volume: 89
  start-page: 385
  year: 2015
  ident: 10.1016/j.cmpb.2020.105532_bib0069
  article-title: MLSMOTE: Approaching imbalanced multilabel learning through synthetic instance generation
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2015.07.019
– volume: 92
  start-page: 2723
  issue: 11
  year: 2012
  ident: 10.1016/j.cmpb.2020.105532_bib0048
  article-title: Music genre classification using LBP textural features
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2012.04.023
– start-page: 103792
  year: 2020
  ident: 10.1016/j.cmpb.2020.105532_bib0043
  article-title: Automated detection of covid-19 cases using deep neural networks with x-ray images
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2020.103792
– volume: 40
  start-page: 2069
  issue: 6
  year: 2013
  ident: 10.1016/j.cmpb.2020.105532_bib0047
  article-title: Texture-based descriptors for writer identification and verification
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2012.10.016
– start-page: 236
  year: 2008
  ident: 10.1016/j.cmpb.2020.105532_bib0054
  article-title: Blur insensitive texture classification using local phase quantization
– year: 2020
  ident: 10.1016/j.cmpb.2020.105532_bib0002
  article-title: Clinical characteristics of coronavirus disease 2019 in china
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2002032
– year: 2020
  ident: 10.1016/j.cmpb.2020.105532_bib0001
  article-title: Coronavirus Disease 2019 (COVID-19)
– volume: 22
  start-page: 1740
  issue: 5
  year: 2013
  ident: 10.1016/j.cmpb.2020.105532_bib0050
  article-title: Local directional number pattern for face analysis: face and expression recognition
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2012.2235848
– volume: 52
  start-page: 28
  year: 2017
  ident: 10.1016/j.cmpb.2020.105532_bib0045
  article-title: An evaluation of convolutional neural networks for music classification using spectrograms
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2016.12.024
– volume: 42
  start-page: 1119
  issue: 4
  year: 2012
  ident: 10.1016/j.cmpb.2020.105532_bib0011
  article-title: Multiclass imbalance problems: analysis and potential solutions
  publication-title: IEEE Trans. Syst. Man Cybern.Part B
  doi: 10.1109/TSMCB.2012.2187280
– start-page: 2818
  year: 2016
  ident: 10.1016/j.cmpb.2020.105532_bib0058
  article-title: Rethinking the inception architecture for computer vision
– start-page: 399
  year: 2005
  ident: 10.1016/j.cmpb.2020.105532_bib0012
  article-title: Early versus late fusion in semantic video analysis
– ident: 10.1016/j.cmpb.2020.105532_bib0039
  doi: 10.1007/s10044-021-00984-y
– year: 2020
  ident: 10.1016/j.cmpb.2020.105532_bib0053
  article-title: Palmprint recognition using state-of-the-art local texture descriptors: a comparative study
  publication-title: IET Biom.
  doi: 10.1049/iet-bmt.2019.0103
– ident: 10.1016/j.cmpb.2020.105532_bib0008
– volume: 11
  start-page: 507
  issue: 1
  year: 1998
  ident: 10.1016/j.cmpb.2020.105532_bib0023
  article-title: Classification by pairwise coupling
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 331
  year: 2019
  ident: 10.1016/j.cmpb.2020.105532_bib0068
  article-title: Towards an automated assessment for embodied cognition in children: the sailor step task
– start-page: 2097
  year: 2017
  ident: 10.1016/j.cmpb.2020.105532_bib0009
  article-title: ChestX-ray8: hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases
– volume: 88
  start-page: 447
  issue: 3
  year: 2010
  ident: 10.1016/j.cmpb.2020.105532_bib0055
  article-title: Using basic image features for texture classification
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-009-0315-0
– start-page: 1
  year: 2015
  ident: 10.1016/j.cmpb.2020.105532_bib0059
  article-title: Going deeper with convolutions
– volume: 47
  start-page: 2255
  issue: 6
  year: 2014
  ident: 10.1016/j.cmpb.2020.105532_bib0056
  article-title: Writer identification using oriented basic image features and the delta encoding
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2013.11.029
– ident: 10.1016/j.cmpb.2020.105532_bib0018
– volume: 49
  start-page: 117
  issue: 2
  year: 2010
  ident: 10.1016/j.cmpb.2020.105532_bib0030
  article-title: Local binary patterns variants as texture descriptors for medical image analysis
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2010.02.006
– year: 2019
  ident: 10.1016/j.cmpb.2020.105532_bib0017
– volume: 19
  start-page: 423
  issue: 4
  year: 2011
  ident: 10.1016/j.cmpb.2020.105532_bib0034
  article-title: Detection of pneumonia in chest x-ray images
  publication-title: J. Xray Sci. Technol.
– year: 2020
  ident: 10.1016/j.cmpb.2020.105532_bib0036
  article-title: Improved deep learning model for differentiating novel coronavirus pneumonia and influenza pneumonia
  publication-title: medRxiv
– volume: 42
  start-page: 97
  year: 2013
  ident: 10.1016/j.cmpb.2020.105532_bib0022
  article-title: Analysing the classification of imbalanced data-sets with multiple classes: binarization techniques and ad-hoc approaches
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2013.01.018
– start-page: 1322
  year: 2008
  ident: 10.1016/j.cmpb.2020.105532_bib0025
  article-title: ADASYN: Adaptive synthetic sampling approach for imbalanced learning
– volume: 8
  start-page: 210
  issue: 1
  year: 2007
  ident: 10.1016/j.cmpb.2020.105532_bib0032
  article-title: A multiresolution approach to automated classification of protein subcellular location images
  publication-title: BMC Bioinform.
  doi: 10.1186/1471-2105-8-210
– ident: 10.1016/j.cmpb.2020.105532_bib0041
  doi: 10.1038/s41598-020-76550-z
– ident: 10.1016/j.cmpb.2020.105532_bib0042
  doi: 10.1016/j.cmpb.2020.105581
– volume: 28
  start-page: 1565
  issue: 7
  year: 2018
  ident: 10.1016/j.cmpb.2020.105532_bib0051
  article-title: Letrist: locally encoded transform feature histogram for rotation-invariant texture classification
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2017.2671899
– year: 2020
  ident: 10.1016/j.cmpb.2020.105532_bib0005
  article-title: Critical care utilization for the COVID-19 outbreak in lombardy, italy: early experience and forecast during an emergency response
  publication-title: JAMA
  doi: 10.1001/jama.2020.4031
– volume: 6
  start-page: 20
  issue: 1
  year: 2004
  ident: 10.1016/j.cmpb.2020.105532_bib0029
  article-title: A study of the behavior of several methods for balancing machine learning training data
  publication-title: ACM SIGKDD Explor. Newsl.
  doi: 10.1145/1007730.1007735
– volume: 31
  start-page: 401
  issue: 2
  year: 2013
  ident: 10.1016/j.cmpb.2020.105532_bib0006
  article-title: High discordance of chest x-ray and computed tomography for detection of pulmonary opacities in ed patients: implications for diagnosing pneumonia
  publication-title: Am. J. Emerg. Med.
  doi: 10.1016/j.ajem.2012.08.041
– volume: 8
  start-page: 14
  issue: 1
  year: 2016
  ident: 10.1016/j.cmpb.2020.105532_bib0015
  article-title: The definition and classification of pneumonia
  publication-title: Pneumonia
  doi: 10.1186/s41479-016-0012-z
– start-page: 1
  year: 2005
  ident: 10.1016/j.cmpb.2020.105532_bib0033
  article-title: Pap-smear benchmark data for pattern classification
– volume: 16
  start-page: 321
  year: 2002
  ident: 10.1016/j.cmpb.2020.105532_bib0026
  article-title: Smote: synthetic minority over-sampling technique
  publication-title: J. Artif. Intell. Res.
  doi: 10.1613/jair.953
– start-page: 1097
  year: 2012
  ident: 10.1016/j.cmpb.2020.105532_bib0061
  article-title: ImageNet classification with deep convolutional neural networks
SSID ssj0002556
Score 2.6740668
Snippet •COVID-19 identification in chest X-ray using multi-class and hierarchical learners.•Using a database that reflects a real world scenario with its natural...
The COVID-19 can cause severe pneumonia and is estimated to have a high impact on the healthcare system. Early diagnosis is crucial for correct treatment in...
• COVID-19 identification in chest X-ray using multi-class and hierarchical learners. • Using a database that reflects a real world scenario with its natural...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 105532
SubjectTerms Algorithms
Betacoronavirus
Chest X-ray
Clinical Laboratory Techniques
Coronavirus Infections - diagnosis
Coronavirus Infections - diagnostic imaging
COVID-19
COVID-19 Testing
Databases, Factual
Deep Learning
Humans
Image Processing, Computer-Assisted - methods
Lung - diagnostic imaging
Medical image analysis
Pandemics
Pneumonia
Pneumonia, Viral - diagnostic imaging
Radiography, Thoracic - methods
SARS-CoV-2
Software
Texture
Tomography, X-Ray Computed
X-Rays
Title COVID-19 identification in chest X-ray images on flat and hierarchical classification scenarios
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0169260720309664
https://dx.doi.org/10.1016/j.cmpb.2020.105532
https://www.ncbi.nlm.nih.gov/pubmed/32446037
https://www.proquest.com/docview/2406307879
https://pubmed.ncbi.nlm.nih.gov/PMC7207172
Volume 194
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQSFUvVWlpu-UhV-oNmd3Ejr0-ogW0tIIeStHerPilBkF2xS4HLvx2ZhJn6bYqlXpM4oms8Xjms2b8DSGfh4DYHJee-UJGJmLmmI7OsgDowkfNZTbEy8ln53L8Q3yZFJM1MuruwmBZZfL9rU9vvHV600_a7M-qqv8deUQAjWMeEXC4RE5QIRRa-cHDU5kHUmy1_N6a4eh0caat8XI3MwtnxLxpd1vw_G_B6U_w-XsN5S9B6eQ1eZXQJD1sJ7xJ1kL9hrw4S_nyt8SMvl2eHrFM08qnsqBmJWhV06ZTFp2w2_KeVjfgVuYUPsTrckHL2lPskd1kGWARqUOM_SSNDFBwxp7Ot8jFyfHFaMxSSwXmioFcMO6cL6MVMVdOlc57b532IXPCljbC-uTRR2sVBC0RNIC1yEU-8MrKqGUo-TuyXk_r8IHQwiruIfgHXQAIiLmGHxeZxLSuHLqB6JGsU6VxiW4cu15cm66u7Mqg-g2q37Tq75H9pcysJdt4djTvVsh010jB8RmIBc9KFUupFUP7p9ynzggM7EBMq5R1mN7NDWIi8JRDpXvkfWsUy9kDXBVywFWPqBVzWQ5Adu_VL3X1s2H5BkXCUTv_-J_z3SYv8amtO9wh64vbu7AL-Glh95oNskc2Dk-_js8fATe_Gqc
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB4tiwRcEG_K00jckGkTO059RIVVF7bLgYJ6s-KXCNpNq233wIXfzkzidCmIReIaeyJrZjzzWfMCeDlGxOaE8twXKnIZM8d1dJYHRBc-aqGyMRUnz47V9LN8vygWezDpa2EorTLZ_s6mt9Y6fRkmbg5XdT38RH1EEI1THBFxuJJX4KrE60tjDF7_uMjzoB5bXYNvzWl7qpzpkrzc6criIzFv590WIv-bd_oTff6eRPmLVzq4BTcTnGRvuhPfhr3Q3IFrsxQwvwtm8vHL4VueaVb7lBfUioLVDWtHZbEFP6u-s_oU7cqa4UI8qTasajyjIdltmAGlyByB7AtqagGFj-zl-h7MD97NJ1OeZipwV4zUhgvnfBWtjHnpysp5763TPmRO2spGFFAefbS2RK8lg0a0FoXMR760KmoVKnEf9ptlEx4CK2wpPHr_oAtEATHX-OMiUxTXVWM3kgPIelYal_qN09iLE9Mnln0zxH5D7Dcd-wfwakuz6rptXLpb9BIyfR0pWj6DzuBSqmJLtaNp_6R70SuBwStIcZWqCcvztSFQhKZyXOoBPOiUYnt6xKtSjUQ5gHJHXbYbqL337kpTf23bfCMj8a2dP_rP8z6H69P57MgcHR5_eAw3aKVLQnwC-5uz8_AUwdTGPmsvy098qhw1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=COVID-19+identification+in+chest+X-ray+images+on+flat+and+hierarchical+classification+scenarios&rft.jtitle=Computer+methods+and+programs+in+biomedicine&rft.au=Pereira%2C+Rodolfo+M.&rft.au=Bertolini%2C+Diego&rft.au=Teixeira%2C+Lucas+O.&rft.au=Silla%2C+Carlos+N.&rft.date=2020-10-01&rft.pub=Elsevier+B.V&rft.issn=0169-2607&rft.eissn=1872-7565&rft.volume=194&rft.spage=105532&rft.epage=105532&rft_id=info:doi/10.1016%2Fj.cmpb.2020.105532&rft_id=info%3Apmid%2F32446037&rft.externalDocID=PMC7207172
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-2607&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-2607&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-2607&client=summon