COVID-19 identification in chest X-ray images on flat and hierarchical classification scenarios
•COVID-19 identification in chest X-ray using multi-class and hierarchical learners.•Using a database that reflects a real world scenario with its natural imbalance.•Exploring the textural content from the chest X-ray images with pneumonia.•Evaluating handcrafted and learned features to investigate...
Saved in:
Published in | Computer methods and programs in biomedicine Vol. 194; p. 105532 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Ireland
Elsevier B.V
01.10.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •COVID-19 identification in chest X-ray using multi-class and hierarchical learners.•Using a database that reflects a real world scenario with its natural imbalance.•Exploring the textural content from the chest X-ray images with pneumonia.•Evaluating handcrafted and learned features to investigate its complementarities.
[Display omitted]
Background and Objective:The COVID-19 can cause severe pneumonia and is estimated to have a high impact on the healthcare system. Early diagnosis is crucial for correct treatment in order to possibly reduce the stress in the healthcare system. The standard image diagnosis tests for pneumonia are chest X-ray (CXR) and computed tomography (CT) scan. Although CT scan is the gold standard, CXR are still useful because it is cheaper, faster and more widespread. This study aims to identify pneumonia caused by COVID-19 from other types and also healthy lungs using only CXR images.
Methods:In order to achieve the objectives, we have proposed a classification schema considering the following perspectives: i) a multi-class classification; ii) hierarchical classification, since pneumonia can be structured as a hierarchy. Given the natural data imbalance in this domain, we also proposed the use of resampling algorithms in the schema in order to re-balance the classes distribution. We observed that, texture is one of the main visual attributes of CXR images, our classification schema extract features using some well-known texture descriptors and also using a pre-trained CNN model. We also explored early and late fusion techniques in the schema in order to leverage the strength of multiple texture descriptors and base classifiers at once.
To evaluate the approach, we composed a database, named RYDLS-20, containing CXR images of pneumonia caused by different pathogens as well as CXR images of healthy lungs. The classes distribution follows a real-world scenario in which some pathogens are more common than others.
Results:The proposed approach tested in RYDLS-20 achieved a macro-avg F1-Score of 0.65 using a multi-class approach and a F1-Score of 0.89 for the COVID-19 identification in the hierarchical classification scenario.
Conclusions:As far as we know, the top identification rate obtained in this paper is the best nominal rate obtained for COVID-19 identification in an unbalanced environment with more than three classes. We must also highlight the novel proposed hierarchical classification approach for this task, which considers the types of pneumonia caused by the different pathogens and lead us to the best COVID-19 recognition rate obtained here. |
---|---|
AbstractList | •
COVID-19 identification in chest X-ray using multi-class and hierarchical learners.
•
Using a database that reflects a real world scenario with its natural imbalance.
•
Exploring the textural content from the chest X-ray images with pneumonia.
•
Evaluating handcrafted and learned features to investigate its complementarities.
Background and Objective:
The COVID-19 can cause severe pneumonia and is estimated to have a high impact on the healthcare system. Early diagnosis is crucial for correct treatment in order to possibly reduce the stress in the healthcare system. The standard image diagnosis tests for pneumonia are chest X-ray (CXR) and computed tomography (CT) scan. Although CT scan is the gold standard, CXR are still useful because it is cheaper, faster and more widespread. This study aims to identify pneumonia caused by COVID-19 from other types and also healthy lungs using only CXR images.
Methods:
In order to achieve the objectives, we have proposed a classification schema considering the following perspectives: i) a multi-class classification; ii) hierarchical classification, since pneumonia can be structured as a hierarchy. Given the natural data imbalance in this domain, we also proposed the use of resampling algorithms in the schema in order to re-balance the classes distribution. We observed that, texture is one of the main visual attributes of CXR images, our classification schema extract features using some well-known texture descriptors and also using a pre-trained CNN model. We also explored early and late fusion techniques in the schema in order to leverage the strength of multiple texture descriptors and base classifiers at once.
To evaluate the approach, we composed a database, named RYDLS-20, containing CXR images of pneumonia caused by different pathogens as well as CXR images of healthy lungs. The classes distribution follows a real-world scenario in which some pathogens are more common than others.
Results:
The proposed approach tested in RYDLS-20 achieved a macro-avg F1-Score of 0.65 using a multi-class approach and a F1-Score of 0.89 for the COVID-19 identification in the hierarchical classification scenario.
Conclusions:
As far as we know, the top identification rate obtained in this paper is the best nominal rate obtained for COVID-19 identification in an unbalanced environment with more than three classes. We must also highlight the novel proposed hierarchical classification approach for this task, which considers the types of pneumonia caused by the different pathogens and lead us to the best COVID-19 recognition rate obtained here. •COVID-19 identification in chest X-ray using multi-class and hierarchical learners.•Using a database that reflects a real world scenario with its natural imbalance.•Exploring the textural content from the chest X-ray images with pneumonia.•Evaluating handcrafted and learned features to investigate its complementarities. [Display omitted] Background and Objective:The COVID-19 can cause severe pneumonia and is estimated to have a high impact on the healthcare system. Early diagnosis is crucial for correct treatment in order to possibly reduce the stress in the healthcare system. The standard image diagnosis tests for pneumonia are chest X-ray (CXR) and computed tomography (CT) scan. Although CT scan is the gold standard, CXR are still useful because it is cheaper, faster and more widespread. This study aims to identify pneumonia caused by COVID-19 from other types and also healthy lungs using only CXR images. Methods:In order to achieve the objectives, we have proposed a classification schema considering the following perspectives: i) a multi-class classification; ii) hierarchical classification, since pneumonia can be structured as a hierarchy. Given the natural data imbalance in this domain, we also proposed the use of resampling algorithms in the schema in order to re-balance the classes distribution. We observed that, texture is one of the main visual attributes of CXR images, our classification schema extract features using some well-known texture descriptors and also using a pre-trained CNN model. We also explored early and late fusion techniques in the schema in order to leverage the strength of multiple texture descriptors and base classifiers at once. To evaluate the approach, we composed a database, named RYDLS-20, containing CXR images of pneumonia caused by different pathogens as well as CXR images of healthy lungs. The classes distribution follows a real-world scenario in which some pathogens are more common than others. Results:The proposed approach tested in RYDLS-20 achieved a macro-avg F1-Score of 0.65 using a multi-class approach and a F1-Score of 0.89 for the COVID-19 identification in the hierarchical classification scenario. Conclusions:As far as we know, the top identification rate obtained in this paper is the best nominal rate obtained for COVID-19 identification in an unbalanced environment with more than three classes. We must also highlight the novel proposed hierarchical classification approach for this task, which considers the types of pneumonia caused by the different pathogens and lead us to the best COVID-19 recognition rate obtained here. The COVID-19 can cause severe pneumonia and is estimated to have a high impact on the healthcare system. Early diagnosis is crucial for correct treatment in order to possibly reduce the stress in the healthcare system. The standard image diagnosis tests for pneumonia are chest X-ray (CXR) and computed tomography (CT) scan. Although CT scan is the gold standard, CXR are still useful because it is cheaper, faster and more widespread. This study aims to identify pneumonia caused by COVID-19 from other types and also healthy lungs using only CXR images.BACKGROUND AND OBJECTIVEThe COVID-19 can cause severe pneumonia and is estimated to have a high impact on the healthcare system. Early diagnosis is crucial for correct treatment in order to possibly reduce the stress in the healthcare system. The standard image diagnosis tests for pneumonia are chest X-ray (CXR) and computed tomography (CT) scan. Although CT scan is the gold standard, CXR are still useful because it is cheaper, faster and more widespread. This study aims to identify pneumonia caused by COVID-19 from other types and also healthy lungs using only CXR images.In order to achieve the objectives, we have proposed a classification schema considering the following perspectives: i) a multi-class classification; ii) hierarchical classification, since pneumonia can be structured as a hierarchy. Given the natural data imbalance in this domain, we also proposed the use of resampling algorithms in the schema in order to re-balance the classes distribution. We observed that, texture is one of the main visual attributes of CXR images, our classification schema extract features using some well-known texture descriptors and also using a pre-trained CNN model. We also explored early and late fusion techniques in the schema in order to leverage the strength of multiple texture descriptors and base classifiers at once. To evaluate the approach, we composed a database, named RYDLS-20, containing CXR images of pneumonia caused by different pathogens as well as CXR images of healthy lungs. The classes distribution follows a real-world scenario in which some pathogens are more common than others.METHODSIn order to achieve the objectives, we have proposed a classification schema considering the following perspectives: i) a multi-class classification; ii) hierarchical classification, since pneumonia can be structured as a hierarchy. Given the natural data imbalance in this domain, we also proposed the use of resampling algorithms in the schema in order to re-balance the classes distribution. We observed that, texture is one of the main visual attributes of CXR images, our classification schema extract features using some well-known texture descriptors and also using a pre-trained CNN model. We also explored early and late fusion techniques in the schema in order to leverage the strength of multiple texture descriptors and base classifiers at once. To evaluate the approach, we composed a database, named RYDLS-20, containing CXR images of pneumonia caused by different pathogens as well as CXR images of healthy lungs. The classes distribution follows a real-world scenario in which some pathogens are more common than others.The proposed approach tested in RYDLS-20 achieved a macro-avg F1-Score of 0.65 using a multi-class approach and a F1-Score of 0.89 for the COVID-19 identification in the hierarchical classification scenario.RESULTSThe proposed approach tested in RYDLS-20 achieved a macro-avg F1-Score of 0.65 using a multi-class approach and a F1-Score of 0.89 for the COVID-19 identification in the hierarchical classification scenario.As far as we know, the top identification rate obtained in this paper is the best nominal rate obtained for COVID-19 identification in an unbalanced environment with more than three classes. We must also highlight the novel proposed hierarchical classification approach for this task, which considers the types of pneumonia caused by the different pathogens and lead us to the best COVID-19 recognition rate obtained here.CONCLUSIONSAs far as we know, the top identification rate obtained in this paper is the best nominal rate obtained for COVID-19 identification in an unbalanced environment with more than three classes. We must also highlight the novel proposed hierarchical classification approach for this task, which considers the types of pneumonia caused by the different pathogens and lead us to the best COVID-19 recognition rate obtained here. The COVID-19 can cause severe pneumonia and is estimated to have a high impact on the healthcare system. Early diagnosis is crucial for correct treatment in order to possibly reduce the stress in the healthcare system. The standard image diagnosis tests for pneumonia are chest X-ray (CXR) and computed tomography (CT) scan. Although CT scan is the gold standard, CXR are still useful because it is cheaper, faster and more widespread. This study aims to identify pneumonia caused by COVID-19 from other types and also healthy lungs using only CXR images. In order to achieve the objectives, we have proposed a classification schema considering the following perspectives: i) a multi-class classification; ii) hierarchical classification, since pneumonia can be structured as a hierarchy. Given the natural data imbalance in this domain, we also proposed the use of resampling algorithms in the schema in order to re-balance the classes distribution. We observed that, texture is one of the main visual attributes of CXR images, our classification schema extract features using some well-known texture descriptors and also using a pre-trained CNN model. We also explored early and late fusion techniques in the schema in order to leverage the strength of multiple texture descriptors and base classifiers at once. To evaluate the approach, we composed a database, named RYDLS-20, containing CXR images of pneumonia caused by different pathogens as well as CXR images of healthy lungs. The classes distribution follows a real-world scenario in which some pathogens are more common than others. The proposed approach tested in RYDLS-20 achieved a macro-avg F1-Score of 0.65 using a multi-class approach and a F1-Score of 0.89 for the COVID-19 identification in the hierarchical classification scenario. As far as we know, the top identification rate obtained in this paper is the best nominal rate obtained for COVID-19 identification in an unbalanced environment with more than three classes. We must also highlight the novel proposed hierarchical classification approach for this task, which considers the types of pneumonia caused by the different pathogens and lead us to the best COVID-19 recognition rate obtained here. |
ArticleNumber | 105532 |
Author | Bertolini, Diego Costa, Yandre M.G. Pereira, Rodolfo M. Silla, Carlos N. Teixeira, Lucas O. |
Author_xml | – sequence: 1 givenname: Rodolfo M. surname: Pereira fullname: Pereira, Rodolfo M. email: rodolfomp123@gmail.com organization: Instituto Federal de Educação, Ciência e Tecnologia do Paraná (IFPR), Pinhais, PR, Brazil – sequence: 2 givenname: Diego surname: Bertolini fullname: Bertolini, Diego organization: Universidade Estadual de Maringá (UEM), Maringá, PR, Brazil – sequence: 3 givenname: Lucas O. surname: Teixeira fullname: Teixeira, Lucas O. organization: Universidade Estadual de Maringá (UEM), Maringá, PR, Brazil – sequence: 4 givenname: Carlos N. surname: Silla fullname: Silla, Carlos N. organization: Pontifícia Universidade Catalica do Paraná (PUCPR), Curitiba, PR, Brazil – sequence: 5 givenname: Yandre M.G. surname: Costa fullname: Costa, Yandre M.G. organization: Universidade Estadual de Maringá (UEM), Maringá, PR, Brazil |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32446037$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkV9vFCEUxYmpsdvqF_DB8OjLrMAwsGOMSbPa2qRJXxrjG4ELdFlZZoXZJvvtZdzWP32oTyRwfudw7zlBR2lIDqHXlMwpoeLdeg6brZkzwqaLrmvZMzSjC8ka2YnuCM2qqG-YIPIYnZSyJoSwrhMv0HHLOBeklTOkltdfLz81tMfBujQGH0CPYUg4JAwrV0b8rcl6j8NG37qC64OPesQ6WbwKLusMq0pEDFGX8ocu4JLOYSgv0XOvY3Gv7s9TdHP--Wb5pbm6vrhcnl010BExNi2A1d5wzyRIDdZaA711FLjRxlNBmbfeGMkWnLueU-FbzoiVRvheON2eoo8H2-3ObJyt6WPWUW1z_Xfeq0EH9e9LCit1O9wpyYikklWDt_cGefixq3OrTahDxKiTG3ZFMU5ES-RC9lX65u-s3yEPS62CxUEAeSglO68gjL_2UqNDVJSoqT-1VlN_aupPHfqrKHuEPrg_CX04QK4u-K62ogoEl8DZkB2Myg7hafz9IxxiSFOr393-f_BPbP7Jkg |
CitedBy_id | crossref_primary_10_1080_0952813X_2021_2021300 crossref_primary_10_3390_electronics11152296 crossref_primary_10_1007_s00500_024_10362_5 crossref_primary_10_3233_IDT_200178 crossref_primary_10_1016_j_bspc_2022_104392 crossref_primary_10_1007_s12559_020_09779_5 crossref_primary_10_1016_j_procs_2024_04_007 crossref_primary_10_1007_s12553_021_00520_2 crossref_primary_10_1007_s12530_023_09484_2 crossref_primary_10_32604_iasc_2021_018350 crossref_primary_10_1080_21681163_2022_2140074 crossref_primary_10_1002_ima_22654 crossref_primary_10_3390_app12083895 crossref_primary_10_1016_j_compbiomed_2021_104210 crossref_primary_10_3390_app13074119 crossref_primary_10_1016_j_compbiomed_2021_104453 crossref_primary_10_1007_s42979_024_02695_7 crossref_primary_10_1155_2022_1306664 crossref_primary_10_1109_JIOT_2020_3034074 crossref_primary_10_1155_2022_7124199 crossref_primary_10_29328_journal_jprr_1001044 crossref_primary_10_1016_j_chaos_2020_110210 crossref_primary_10_1016_j_compbiomed_2021_104348 crossref_primary_10_1109_RBME_2021_3115703 crossref_primary_10_2196_25181 crossref_primary_10_7759_cureus_38373 crossref_primary_10_7717_peerj_cs_358 crossref_primary_10_36306_konjes_821782 crossref_primary_10_1007_s11227_024_06295_3 crossref_primary_10_7717_peerj_cs_364 crossref_primary_10_1007_s00530_021_00884_5 crossref_primary_10_3390_s20236764 crossref_primary_10_1038_s41598_023_46147_3 crossref_primary_10_1016_j_chaos_2020_110338 crossref_primary_10_1016_j_chaos_2020_110337 crossref_primary_10_2174_0115680266282179240124072121 crossref_primary_10_1007_s12553_023_00757_z crossref_primary_10_1109_JBHI_2021_3072076 crossref_primary_10_1155_2021_3281135 crossref_primary_10_1007_s42979_021_00782_7 crossref_primary_10_3389_fams_2023_1303714 crossref_primary_10_1016_j_eswa_2022_116740 crossref_primary_10_1007_s00500_023_08915_1 crossref_primary_10_3390_electronics11010103 crossref_primary_10_1155_2021_9437538 crossref_primary_10_7717_peerj_cs_495 crossref_primary_10_1007_s10489_020_02102_7 crossref_primary_10_1007_s11277_024_11309_7 crossref_primary_10_1016_j_asoc_2021_107490 crossref_primary_10_2196_21604 crossref_primary_10_1016_j_cmpb_2024_108198 crossref_primary_10_1007_s42979_022_01326_3 crossref_primary_10_32604_cmc_2022_024193 crossref_primary_10_1007_s00607_021_00992_0 crossref_primary_10_1016_j_displa_2023_102403 crossref_primary_10_1002_ima_22747 crossref_primary_10_3390_jimaging10080176 crossref_primary_10_7717_peerj_10309 crossref_primary_10_1109_ACCESS_2021_3095222 crossref_primary_10_1016_j_imu_2022_100929 crossref_primary_10_1007_s12530_022_09419_3 crossref_primary_10_1109_TCBB_2023_3294333 crossref_primary_10_4103_jmp_jmp_104_22 crossref_primary_10_1007_s42979_022_01184_z crossref_primary_10_4018_JITR_299391 crossref_primary_10_3390_diagnostics11030530 crossref_primary_10_1093_comjnl_bxac136 crossref_primary_10_1002_ima_22613 crossref_primary_10_1007_s10586_022_03703_2 crossref_primary_10_1007_s00521_023_08997_w crossref_primary_10_1007_s42979_021_00690_w crossref_primary_10_1155_2022_7451551 crossref_primary_10_1007_s00034_022_02226_w crossref_primary_10_1007_s12539_021_00431_w crossref_primary_10_1371_journal_pone_0247109 crossref_primary_10_1016_j_procs_2021_03_070 crossref_primary_10_1088_1742_6596_1601_5_052021 crossref_primary_10_1007_s00138_020_01101_5 crossref_primary_10_1007_s11063_022_11114_y crossref_primary_10_1007_s10489_021_02199_4 crossref_primary_10_1016_j_compbiomed_2022_105976 crossref_primary_10_7717_peerj_cs_564 crossref_primary_10_1007_s00521_020_05641_9 crossref_primary_10_1109_JBHI_2021_3069798 crossref_primary_10_1016_j_inffus_2021_04_008 crossref_primary_10_1016_j_jiph_2021_11_013 crossref_primary_10_3389_fdata_2023_1120989 crossref_primary_10_1109_ACCESS_2021_3058537 crossref_primary_10_3390_diagnostics11081317 crossref_primary_10_4018_IJRQEH_308801 crossref_primary_10_1016_j_bbe_2021_12_001 crossref_primary_10_1016_j_neucom_2022_02_040 crossref_primary_10_1038_s41746_021_00546_w crossref_primary_10_1007_s42600_021_00151_6 crossref_primary_10_3390_diagnostics11122343 crossref_primary_10_1155_2020_8889023 crossref_primary_10_1002_ima_22715 crossref_primary_10_1016_j_neucom_2024_127317 crossref_primary_10_1155_2021_2295920 crossref_primary_10_1007_s00354_023_00213_6 crossref_primary_10_1016_j_asoc_2023_110014 crossref_primary_10_3390_cancers15010314 crossref_primary_10_3390_app11167174 crossref_primary_10_1002_cpe_7314 crossref_primary_10_1007_s11831_021_09667_7 crossref_primary_10_1007_s42979_021_00980_3 crossref_primary_10_17946_JRST_2024_47_6_523 crossref_primary_10_1007_s00521_022_07953_4 crossref_primary_10_1186_s41747_020_00203_z crossref_primary_10_2478_acss_2023_0005 crossref_primary_10_1016_j_bspc_2021_102583 crossref_primary_10_1016_j_cmpb_2021_106288 crossref_primary_10_2174_18750362_v15_e2207290 crossref_primary_10_1155_2021_5528144 crossref_primary_10_1007_s10278_024_01169_9 crossref_primary_10_1142_S0218348X21502558 crossref_primary_10_2139_ssrn_4088408 crossref_primary_10_1155_2022_1658615 crossref_primary_10_3389_fmed_2021_629134 crossref_primary_10_53070_bbd_990750 crossref_primary_10_1007_s42979_022_01464_8 crossref_primary_10_1007_s00521_023_08612_y crossref_primary_10_1016_j_asoc_2021_107669 crossref_primary_10_3390_diagnostics13081397 crossref_primary_10_1155_2022_5297709 crossref_primary_10_1007_s11042_022_12156_z crossref_primary_10_1007_s12559_020_09775_9 crossref_primary_10_1016_j_cmpb_2021_106336 crossref_primary_10_3390_tomography9060173 crossref_primary_10_3934_math_2024998 crossref_primary_10_1007_s00354_024_00255_4 crossref_primary_10_1155_2021_5513679 crossref_primary_10_1016_j_cmpb_2022_107141 crossref_primary_10_1080_0952813X_2023_2165724 crossref_primary_10_1016_j_engappai_2025_110583 crossref_primary_10_1016_j_compbiomed_2022_106195 crossref_primary_10_1093_comjnl_bxae071 crossref_primary_10_1007_s00521_021_06164_7 crossref_primary_10_1109_ACCESS_2022_3208138 crossref_primary_10_1007_s13246_022_01110_w crossref_primary_10_3390_diagnostics11071155 crossref_primary_10_1016_j_eswa_2021_115658 crossref_primary_10_1016_j_compeleceng_2023_108711 crossref_primary_10_3390_s22197303 crossref_primary_10_1016_j_bspc_2020_102257 crossref_primary_10_1016_j_compbiomed_2021_104869 crossref_primary_10_1016_j_radi_2021_02_004 crossref_primary_10_21015_vtcs_v12i2_1999 crossref_primary_10_3390_ijerph19042013 crossref_primary_10_28979_jarnas_952700 crossref_primary_10_1016_j_compmedimag_2021_102008 crossref_primary_10_1371_journal_pone_0274098 crossref_primary_10_1016_j_ins_2021_07_033 crossref_primary_10_1007_s11831_023_09882_4 crossref_primary_10_1016_j_asoc_2023_109988 crossref_primary_10_1186_s12880_024_01394_2 crossref_primary_10_1140_epjs_s11734_022_00647_x crossref_primary_10_1007_s13369_021_05958_0 crossref_primary_10_1016_j_patcog_2021_108110 crossref_primary_10_37121_jectr_vol2_122 crossref_primary_10_1155_2022_6354579 crossref_primary_10_1007_s13755_021_00166_4 crossref_primary_10_1051_e3sconf_202337103003 crossref_primary_10_1007_s12559_021_09848_3 crossref_primary_10_1007_s42979_021_00823_1 crossref_primary_10_1108_DTA_08_2021_0210 crossref_primary_10_1016_j_knosys_2022_110040 crossref_primary_10_1016_j_chemolab_2022_104680 crossref_primary_10_1080_15321819_2021_1951291 crossref_primary_10_1016_j_compbiomed_2021_104729 crossref_primary_10_3390_s24082641 crossref_primary_10_1155_2022_9036457 crossref_primary_10_1016_j_cmpb_2021_106004 crossref_primary_10_15302_J_QB_021_0274 crossref_primary_10_3390_app122010535 crossref_primary_10_3390_jimaging7050081 crossref_primary_10_1016_j_ijmedinf_2022_104778 crossref_primary_10_1259_bjro_20220058 crossref_primary_10_1016_j_compbiomed_2021_104605 crossref_primary_10_1016_j_matpr_2021_01_820 crossref_primary_10_1007_s42600_021_00135_6 crossref_primary_10_1088_1742_6596_1878_1_012060 crossref_primary_10_1021_acs_nanolett_1c04125 crossref_primary_10_1007_s12553_021_00609_8 crossref_primary_10_1371_journal_pone_0282608 crossref_primary_10_1016_j_asoc_2022_109588 crossref_primary_10_3389_fcvm_2021_638011 crossref_primary_10_1108_WJE_08_2020_0358 crossref_primary_10_1016_j_eswa_2023_121300 crossref_primary_10_3233_HIS_210008 crossref_primary_10_3390_diagnostics12102549 crossref_primary_10_1155_2022_2564022 crossref_primary_10_3390_s21217116 crossref_primary_10_1007_s10489_020_02076_6 crossref_primary_10_3390_s21020455 crossref_primary_10_1186_s13040_024_00366_0 crossref_primary_10_3389_fpubh_2020_599550 crossref_primary_10_1016_j_patcog_2021_108255 crossref_primary_10_1016_j_imu_2020_100405 crossref_primary_10_1111_1754_9485_13273 crossref_primary_10_1109_ACCESS_2020_3044858 crossref_primary_10_1016_j_bspc_2022_103778 crossref_primary_10_1007_s44174_024_00212_1 crossref_primary_10_1177_20552076241232882 crossref_primary_10_1155_2021_9942873 crossref_primary_10_1155_2022_3836498 crossref_primary_10_1177_20552076231215915 crossref_primary_10_2339_politeknik_861536 crossref_primary_10_3389_frsip_2024_1384744 crossref_primary_10_3390_ijerph18158052 crossref_primary_10_1109_ACCESS_2021_3116067 crossref_primary_10_1186_s12911_024_02591_3 crossref_primary_10_1016_j_compbiomed_2021_104306 crossref_primary_10_1016_j_compbiomed_2021_104425 crossref_primary_10_1016_j_eswa_2021_115452 crossref_primary_10_1109_ACCESS_2020_3028012 crossref_primary_10_1016_j_inffus_2023_102139 crossref_primary_10_1016_j_jksuci_2023_101596 crossref_primary_10_1049_csy2_12005 crossref_primary_10_3390_sym12091530 crossref_primary_10_1007_s11042_022_12508_9 crossref_primary_10_1007_s42979_023_02467_9 crossref_primary_10_1016_j_imu_2021_100709 crossref_primary_10_1038_s41392_021_00731_z crossref_primary_10_1007_s10115_022_01772_8 crossref_primary_10_1016_j_chaos_2020_110122 crossref_primary_10_3390_s22197474 crossref_primary_10_1007_s11042_023_14960_7 crossref_primary_10_1016_j_ijar_2025_109411 crossref_primary_10_1002_ima_22558 crossref_primary_10_1016_j_ins_2020_09_041 crossref_primary_10_1007_s11042_024_19549_2 crossref_primary_10_1080_27690911_2023_2220872 crossref_primary_10_4103_jmss_jmss_111_21 crossref_primary_10_1016_j_eswa_2022_116942 crossref_primary_10_1155_2021_8890226 crossref_primary_10_1016_j_asoc_2020_107052 crossref_primary_10_1007_s12553_022_00677_4 crossref_primary_10_1007_s12652_020_02612_9 crossref_primary_10_32604_cmc_2021_013191 crossref_primary_10_1016_j_asoc_2020_106744 crossref_primary_10_1038_s41598_021_04529_5 crossref_primary_10_1016_j_ipemt_2022_100008 crossref_primary_10_1038_s41598_022_18463_7 crossref_primary_10_1016_j_inffus_2022_09_023 crossref_primary_10_1007_s11831_022_09768_x crossref_primary_10_5937_medrec2003127B crossref_primary_10_3390_technologies11050134 crossref_primary_10_3390_diagnostics14050500 crossref_primary_10_1016_j_bspc_2022_104538 crossref_primary_10_1155_2021_6677314 crossref_primary_10_1002_jmv_28293 crossref_primary_10_1007_s11227_023_05452_4 crossref_primary_10_1109_ACCESS_2021_3080180 crossref_primary_10_1016_j_compbiomed_2022_105350 crossref_primary_10_1016_j_irbm_2021_07_002 crossref_primary_10_1016_j_bea_2022_100041 crossref_primary_10_1109_JTEHM_2022_3186836 crossref_primary_10_46810_tdfd_948098 crossref_primary_10_1016_j_media_2021_102046 crossref_primary_10_4103_crst_crst_162_21 |
Cites_doi | 10.1016/j.chest.2020.04.003 10.1016/j.inffus.2021.04.008 10.1016/j.cviu.2016.04.002 10.1016/j.eswa.2018.01.038 10.1259/bjr.20160642 10.1016/S0140-6736(20)30627-9 10.1007/s10618-010-0175-9 10.1007/s00138-014-0592-7 10.1155/2019/1065652 10.1056/NEJMra1312885 10.2807/1560-7917.ES.2020.25.11.2000258 10.1109/34.667881 10.15172/pneu.2014.5/482 10.1016/0031-3203(95)00067-4 10.1016/j.patcog.2017.05.025 10.1016/j.knosys.2015.07.019 10.1016/j.sigpro.2012.04.023 10.1016/j.compbiomed.2020.103792 10.1016/j.eswa.2012.10.016 10.1056/NEJMoa2002032 10.1109/TIP.2012.2235848 10.1016/j.asoc.2016.12.024 10.1109/TSMCB.2012.2187280 10.1007/s10044-021-00984-y 10.1049/iet-bmt.2019.0103 10.1007/s11263-009-0315-0 10.1016/j.patcog.2013.11.029 10.1016/j.artmed.2010.02.006 10.1016/j.knosys.2013.01.018 10.1186/1471-2105-8-210 10.1038/s41598-020-76550-z 10.1016/j.cmpb.2020.105581 10.1109/TCSVT.2017.2671899 10.1001/jama.2020.4031 10.1145/1007730.1007735 10.1016/j.ajem.2012.08.041 10.1186/s41479-016-0012-z 10.1613/jair.953 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. Copyright © 2020 Elsevier B.V. All rights reserved. 2020 Elsevier B.V. All rights reserved. 2020 Elsevier B.V. |
Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Copyright © 2020 Elsevier B.V. All rights reserved. – notice: 2020 Elsevier B.V. All rights reserved. 2020 Elsevier B.V. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.cmpb.2020.105532 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1872-7565 |
EndPage | 105532 |
ExternalDocumentID | PMC7207172 32446037 10_1016_j_cmpb_2020_105532 S0169260720309664 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .1- .DC .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACNNM ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HMK HMO HVGLF HZ~ IHE J1W KOM LG9 M29 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SBC SDF SDG SEL SES SEW SPC SPCBC SSH SSV SSZ T5K UHS WUQ XPP Z5R ZGI ZY4 ~G- AACTN AAIAV ABLVK ABTAH ABYKQ AFKWA AJBFU AJOXV AMFUW EFLBG LCYCR RIG AAYXX AFCTW AGRNS CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c506t-3ccdafb4f27c7acdddbc9de1c4babf1612fdfbb72844e9416f3420d7b6f96ea3 |
IEDL.DBID | .~1 |
ISSN | 0169-2607 1872-7565 |
IngestDate | Thu Aug 21 18:07:39 EDT 2025 Fri Jul 11 02:23:03 EDT 2025 Thu Apr 03 07:00:15 EDT 2025 Thu Apr 24 22:51:21 EDT 2025 Tue Jul 01 02:41:02 EDT 2025 Fri Feb 23 02:46:43 EST 2024 Tue Aug 26 16:33:41 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | COVID-19 Pneumonia Chest X-ray Texture Medical image analysis |
Language | English |
License | This article is made available under the Elsevier license. Copyright © 2020 Elsevier B.V. All rights reserved. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c506t-3ccdafb4f27c7acdddbc9de1c4babf1612fdfbb72844e9416f3420d7b6f96ea3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC7207172 |
PMID | 32446037 |
PQID | 2406307879 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7207172 proquest_miscellaneous_2406307879 pubmed_primary_32446037 crossref_citationtrail_10_1016_j_cmpb_2020_105532 crossref_primary_10_1016_j_cmpb_2020_105532 elsevier_sciencedirect_doi_10_1016_j_cmpb_2020_105532 elsevier_clinicalkey_doi_10_1016_j_cmpb_2020_105532 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-10-01 |
PublicationDateYYYYMMDD | 2020-10-01 |
PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Ireland |
PublicationPlace_xml | – name: Ireland |
PublicationTitle | Computer methods and programs in biomedicine |
PublicationTitleAlternate | Comput Methods Programs Biomed |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Wang, Peng, Lu, Lu, Bagheri, Summers (bib0009) 2017 Parveen, Sathik (bib0034) 2011; 19 Kannala, Rahtu (bib0052) 2012 Hastie, Tibshirani (bib0023) 1998; 11 Association (bib0017) 2019 S. Kumar, H.A. Rowley, X. Wang, J.J.M. Rodrigues, Hierarchical Classification in Credit Card Data Extraction, 2015. US Patent 9,213,907. Silla, Freitas (bib0010) 2011; 22 Ozturk, Talo, Yildirim, Baloglu, Yildirim, Acharya (bib0043) 2020 Grasselli, Pesenti, Cecconi (bib0005) 2020 L. Wang, A. Wong, COVID-Net: a tailored deep convolutional neural network design for detection of COVID-19 cases from chest radiography images Szegedy, Vanhoucke, Ioffe, Shlens, Wojna (bib0058) 2016 J.P. Cohen, P. Morrison, L. Dao, COVID-19 image data collection Nanni, Lumini, Brahnam (bib0030) 2010; 49 He, Zhang, Ren, Sun (bib0038) 2016 G. Maguolo, L. Nanni, A critic evaluation of methods for covid-19 automatic detection from x-ray images He, Bai, Garcia, Li (bib0025) 2008 Buchanan, Tsiakas, Bell (bib0068) 2019 Crosier, Griffin (bib0055) 2010; 88 Arias, Martinez-Gomez, Gamez, de Herrera, Müller (bib0019) 2016; 151 Novel (bib0013) 2020; 41 O. Gozes, M. Frid-Adar, H. Greenspan, P.D. Browning, H. Zhang, W. Ji, A. Bernheim, E. Siegel, Rapid ai development cycle for the coronavirus (COVID-19) pandemic: initial results for automated detection & patient monitoring using deep learning CT image analysis Charte, Rivera, del Jesus, Herrera (bib0069) 2015; 89 Mackenzie (bib0015) 2016; 8 Rifkin, Klautau (bib0024) 2004; 5 Musher, Thorner (bib0003) 2014; 371 Song, Li, Meng, Wu, Cai (bib0051) 2018; 28 Costa, Oliveira, Silla Jr (bib0045) 2017; 52 Jantzen, Norup, Dounias, Bjerregaard (bib0033) 2005 Ojala, Pietikäinen, Harwood (bib0046) 1996; 29 Rubin, Ryerson, Haramati, Sverzellati, Kanne, Raoof, Schluger, Volpi, Yim, Martin (bib0007) 2020 Chebira, Barbotin, Jackson, Merryman, Srinivasa, Murphy, Kovačević (bib0032) 2007; 8 Remuzzi, Remuzzi (bib0014) 2020 Newell, Griffin (bib0056) 2014; 47 Fernández, LóPez, Galar, Del Jesus, Herrera (bib0022) 2013; 42 Krizhevsky, Sutskever, Hinton (bib0061) 2012 Cerri, Barros, de Carvalho (bib0064) 2015 Organization (bib0001) 2020 Bertolini, Oliveira, Justino, Sabourin (bib0047) 2013; 40 Tolksdorf, Buda, Schuler, Wieler, Haas (bib0004) 2020; 25 Ojansivu, Heikkilä (bib0054) 2008 OGrady, Torzillo, Frawley, Chang (bib0016) 2014; 5 Bai, Jiang, Li, Ma (bib0020) 2019; 2019 Abdulrazzaq, Yaseen, Noah, Fadhil, Ashour (bib0021) 2019 Guan, Ni, Hu, Liang, Ou, He, Liu, Shan, Lei, Hui (bib0002) 2020 Wang, Yao (bib0011) 2012; 42 Goutte, Gaussier (bib0067) 2005 (2020). Nanni, Ghidoni, Brahnam (bib0044) 2017; 71 Tomek (bib0028) 1976; 6 Zhou, Chen, Wang, Xu, Yao, Huang, Jin, Pan, Tan, Wang, Xia, Zou, Xu, Wei, Guan, Feng, Zhang, Qu (bib0036) 2020 Costa, Oliveira, Koerich, Gouyon, Martins (bib0048) 2012; 92 A. Narin, C. Kaya, Z. Pamuk, Automatic detection of coronavirus disease (COVID-19) using x-ray images and deep convolutional neural networks EL IDRSSI, Ruichek (bib0053) 2020 Wehrmann, Cerri, Barros (bib0065) 2018 Chawla, Bowyer, Hall, Kegelmeyer (bib0026) 2002; 16 Han, Wang, Mao (bib0027) 2005 Kittler, Hatef, Duin, Matas (bib0062) 1998; 20 K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition (2014). Paula Filho, Oliveira, Nisgoski, Britto (bib0049) 2014; 25 Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan, Vanhoucke, Rabinovich (bib0059) 2015 Batista, Prati, Monard (bib0029) 2004; 6 Pereira, Gabriel, Cerri (bib0066) 2019 Snoek, Worring, Smeulders (bib0012) 2005 Brahnam, Nanni, Sexton (bib0031) 2007 Li, Qin, Xu, Yin, Wang, Kong, Bai, Lu, Fang, Song (bib0037) 2020 Scalco, Rizzo (bib0035) 2017; 90 Self, Courtney, McNaughton, Wunderink, Kline (bib0006) 2013; 31 Ramirez Rivera, Rojas Castillo, Oksam Chae (bib0050) 2013; 22 Gattal, Djeddi, Siddiqi, Chibani (bib0057) 2018; 99 A.I. Khan, J.L. Shah, M. Bhat, CoroNet: a deep neural network for detection and diagnosis of COVID-19 from chest x-ray images Nanni (10.1016/j.cmpb.2020.105532_bib0030) 2010; 49 10.1016/j.cmpb.2020.105532_bib0039 Musher (10.1016/j.cmpb.2020.105532_bib0003) 2014; 371 Crosier (10.1016/j.cmpb.2020.105532_bib0055) 2010; 88 Szegedy (10.1016/j.cmpb.2020.105532_bib0058) 2016 Tomek (10.1016/j.cmpb.2020.105532_bib0028) 1976; 6 Rifkin (10.1016/j.cmpb.2020.105532_bib0024) 2004; 5 Goutte (10.1016/j.cmpb.2020.105532_bib0067) 2005 Chawla (10.1016/j.cmpb.2020.105532_bib0026) 2002; 16 Association (10.1016/j.cmpb.2020.105532_bib0017) 2019 Ramirez Rivera (10.1016/j.cmpb.2020.105532_bib0050) 2013; 22 10.1016/j.cmpb.2020.105532_bib0041 10.1016/j.cmpb.2020.105532_bib0040 Parveen (10.1016/j.cmpb.2020.105532_bib0034) 2011; 19 10.1016/j.cmpb.2020.105532_bib0042 He (10.1016/j.cmpb.2020.105532_bib0025) 2008 Han (10.1016/j.cmpb.2020.105532_bib0027) 2005 Grasselli (10.1016/j.cmpb.2020.105532_bib0005) 2020 Rubin (10.1016/j.cmpb.2020.105532_bib0007) 2020 Arias (10.1016/j.cmpb.2020.105532_bib0019) 2016; 151 10.1016/j.cmpb.2020.105532_bib0008 Charte (10.1016/j.cmpb.2020.105532_bib0069) 2015; 89 Nanni (10.1016/j.cmpb.2020.105532_bib0044) 2017; 71 Newell (10.1016/j.cmpb.2020.105532_bib0056) 2014; 47 Song (10.1016/j.cmpb.2020.105532_bib0051) 2018; 28 Bai (10.1016/j.cmpb.2020.105532_bib0020) 2019; 2019 Mackenzie (10.1016/j.cmpb.2020.105532_bib0015) 2016; 8 Abdulrazzaq (10.1016/j.cmpb.2020.105532_bib0021) 2019 Jantzen (10.1016/j.cmpb.2020.105532_bib0033) 2005 Costa (10.1016/j.cmpb.2020.105532_bib0045) 2017; 52 10.1016/j.cmpb.2020.105532_bib0018 Wang (10.1016/j.cmpb.2020.105532_bib0011) 2012; 42 Fernández (10.1016/j.cmpb.2020.105532_bib0022) 2013; 42 Paula Filho (10.1016/j.cmpb.2020.105532_bib0049) 2014; 25 Bertolini (10.1016/j.cmpb.2020.105532_bib0047) 2013; 40 Chebira (10.1016/j.cmpb.2020.105532_bib0032) 2007; 8 He (10.1016/j.cmpb.2020.105532_bib0038) 2016 Buchanan (10.1016/j.cmpb.2020.105532_bib0068) 2019 Wehrmann (10.1016/j.cmpb.2020.105532_bib0065) 2018 Pereira (10.1016/j.cmpb.2020.105532_bib0066) 2019 Self (10.1016/j.cmpb.2020.105532_bib0006) 2013; 31 Silla (10.1016/j.cmpb.2020.105532_bib0010) 2011; 22 EL IDRSSI (10.1016/j.cmpb.2020.105532_bib0053) 2020 Li (10.1016/j.cmpb.2020.105532_bib0037) 2020 Remuzzi (10.1016/j.cmpb.2020.105532_bib0014) 2020 Ozturk (10.1016/j.cmpb.2020.105532_bib0043) 2020 Ojala (10.1016/j.cmpb.2020.105532_bib0046) 1996; 29 10.1016/j.cmpb.2020.105532_bib0060 Ojansivu (10.1016/j.cmpb.2020.105532_bib0054) 2008 10.1016/j.cmpb.2020.105532_bib0063 Kittler (10.1016/j.cmpb.2020.105532_bib0062) 1998; 20 Costa (10.1016/j.cmpb.2020.105532_bib0048) 2012; 92 Kannala (10.1016/j.cmpb.2020.105532_bib0052) 2012 OGrady (10.1016/j.cmpb.2020.105532_bib0016) 2014; 5 Guan (10.1016/j.cmpb.2020.105532_bib0002) 2020 Novel (10.1016/j.cmpb.2020.105532_bib0013) 2020; 41 Scalco (10.1016/j.cmpb.2020.105532_bib0035) 2017; 90 Gattal (10.1016/j.cmpb.2020.105532_bib0057) 2018; 99 Cerri (10.1016/j.cmpb.2020.105532_bib0064) 2015 Szegedy (10.1016/j.cmpb.2020.105532_bib0059) 2015 Brahnam (10.1016/j.cmpb.2020.105532_bib0031) 2007 Krizhevsky (10.1016/j.cmpb.2020.105532_bib0061) 2012 Batista (10.1016/j.cmpb.2020.105532_bib0029) 2004; 6 Organization (10.1016/j.cmpb.2020.105532_bib0001) 2020 Wang (10.1016/j.cmpb.2020.105532_bib0009) 2017 Zhou (10.1016/j.cmpb.2020.105532_bib0036) 2020 Hastie (10.1016/j.cmpb.2020.105532_bib0023) 1998; 11 Snoek (10.1016/j.cmpb.2020.105532_bib0012) 2005 Tolksdorf (10.1016/j.cmpb.2020.105532_bib0004) 2020; 25 |
References_xml | – start-page: 2818 year: 2016 end-page: 2826 ident: bib0058 article-title: Rethinking the inception architecture for computer vision publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 2019 year: 2019 ident: bib0020 article-title: NHL Pathological image classification based on hierarchical local information and googlenet-based representations publication-title: Biomed Res Int – reference: (2014). – start-page: 1 year: 2015 end-page: 8 ident: bib0064 article-title: Hierarchical classification of gene ontology-based protein functions with neural networks publication-title: Proceedings of the International Joint Conference on Neural Networks (IJCNN) – volume: 25 start-page: 1019 year: 2014 end-page: 1031 ident: bib0049 article-title: Forest species recognition using macroscopic images publication-title: Mach. Vis. Appl. – reference: K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition, – start-page: 638 year: 2019 end-page: 651 ident: bib0021 article-title: XMIAR: X-ray medical image annotation and retrieval publication-title: Science and Information Conference – volume: 6 start-page: 448 year: 1976 end-page: 452 ident: bib0028 article-title: An experiment with the edited nearest-neighbor rule publication-title: IEEE Trans. Syst. Man Cybern. – volume: 22 start-page: 1740 year: 2013 end-page: 1752 ident: bib0050 article-title: Local directional number pattern for face analysis: face and expression recognition publication-title: IEEE Trans. Image Process. – start-page: 1097 year: 2012 end-page: 1105 ident: bib0061 article-title: ImageNet classification with deep convolutional neural networks publication-title: Advances in Neural Information Processing Systems – volume: 25 year: 2020 ident: bib0004 article-title: Influenza-associated pneumonia as reference to assess seriousness of coronavirus disease (COVID-19) publication-title: Eurosurveillance – volume: 40 start-page: 2069 year: 2013 end-page: 2080 ident: bib0047 article-title: Texture-based descriptors for writer identification and verification publication-title: Expert Syst. Appl. – volume: 16 start-page: 321 year: 2002 end-page: 357 ident: bib0026 article-title: Smote: synthetic minority over-sampling technique publication-title: J. Artif. Intell. Res. – volume: 8 start-page: 210 year: 2007 ident: bib0032 article-title: A multiresolution approach to automated classification of protein subcellular location images publication-title: BMC Bioinform. – volume: 31 start-page: 401 year: 2013 end-page: 405 ident: bib0006 article-title: High discordance of chest x-ray and computed tomography for detection of pulmonary opacities in ed patients: implications for diagnosing pneumonia publication-title: Am. J. Emerg. Med. – volume: 88 start-page: 447 year: 2010 end-page: 460 ident: bib0055 article-title: Using basic image features for texture classification publication-title: Int. J. Comput. Vis. – volume: 28 start-page: 1565 year: 2018 end-page: 1579 ident: bib0051 article-title: Letrist: locally encoded transform feature histogram for rotation-invariant texture classification publication-title: IEEE Trans. Circuits Syst. Video Technol. – year: 2020 ident: bib0036 article-title: Improved deep learning model for differentiating novel coronavirus pneumonia and influenza pneumonia publication-title: medRxiv – reference: O. Gozes, M. Frid-Adar, H. Greenspan, P.D. Browning, H. Zhang, W. Ji, A. Bernheim, E. Siegel, Rapid ai development cycle for the coronavirus (COVID-19) pandemic: initial results for automated detection & patient monitoring using deep learning CT image analysis, – year: 2020 ident: bib0001 article-title: Coronavirus Disease 2019 (COVID-19) publication-title: Situation Report 72 – volume: 5 start-page: 38 year: 2014 ident: bib0016 article-title: The radiological diagnosis of pneumonia in children publication-title: Pneumonia – volume: 19 start-page: 423 year: 2011 end-page: 428 ident: bib0034 article-title: Detection of pneumonia in chest x-ray images publication-title: J. Xray Sci. Technol. – reference: (2020). – start-page: 103792 year: 2020 ident: bib0043 article-title: Automated detection of covid-19 cases using deep neural networks with x-ray images publication-title: Comput. Biol. Med. – start-page: 878 year: 2005 end-page: 887 ident: bib0027 article-title: Borderline-smote: a new oversampling method in imbalanced datasets learning publication-title: International Conference on Intelligent Computing – volume: 90 start-page: 20160642 year: 2017 ident: bib0035 article-title: Texture analysis of medical images for radiotherapy applications publication-title: Br. J. Radiol. – volume: 52 start-page: 28 year: 2017 end-page: 38 ident: bib0045 article-title: An evaluation of convolutional neural networks for music classification using spectrograms publication-title: Appl. Soft Comput. – reference: (2020). – volume: 42 start-page: 97 year: 2013 end-page: 110 ident: bib0022 article-title: Analysing the classification of imbalanced data-sets with multiple classes: binarization techniques and ad-hoc approaches publication-title: Knowl. Based Syst. – reference: L. Wang, A. Wong, COVID-Net: a tailored deep convolutional neural network design for detection of COVID-19 cases from chest radiography images, – volume: 29 start-page: 51 year: 1996 end-page: 59 ident: bib0046 article-title: A comparative study of texture measures with classification based on featured distributions publication-title: Pattern Recognit. – volume: 41 start-page: 145 year: 2020 ident: bib0013 article-title: The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) in China publication-title: Zhonghua Liu Xing Bing Xue Za Zhi – start-page: 1 year: 2005 end-page: 9 ident: bib0033 article-title: Pap-smear benchmark data for pattern classification publication-title: Nature inspired Smart Information Systems (NiSIS 2005) – start-page: 200905 year: 2020 ident: bib0037 article-title: Artificial intelligence distinguishes COVID-19 from community acquired pneumonia on chest ct publication-title: Radiology – volume: 42 start-page: 1119 year: 2012 end-page: 1130 ident: bib0011 article-title: Multiclass imbalance problems: analysis and potential solutions publication-title: IEEE Trans. Syst. Man Cybern.Part B – start-page: 2097 year: 2017 end-page: 2106 ident: bib0009 article-title: ChestX-ray8: hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – year: 2020 ident: bib0014 article-title: COVID-19 and Italy: what next? publication-title: Lancet – volume: 11 start-page: 507 year: 1998 end-page: 513 ident: bib0023 article-title: Classification by pairwise coupling publication-title: Adv. Neural Inf. Process. Syst. – volume: 47 start-page: 2255 year: 2014 end-page: 2265 ident: bib0056 article-title: Writer identification using oriented basic image features and the delta encoding publication-title: Pattern Recognit. – start-page: 737 year: 2019 end-page: 749 ident: bib0066 article-title: Hierarchical classification of transposable elements with a weighted genetic algorithm publication-title: Proceedings of the EPIA Conference on Artificial Intelligence – start-page: 1363 year: 2012 end-page: 1366 ident: bib0052 article-title: BSIF: Binarized statistical image features publication-title: Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012) – volume: 92 start-page: 2723 year: 2012 end-page: 2737 ident: bib0048 article-title: Music genre classification using LBP textural features publication-title: Signal Process. – year: 2020 ident: bib0053 article-title: Palmprint recognition using state-of-the-art local texture descriptors: a comparative study publication-title: IET Biom. – start-page: 225 year: 2007 end-page: 253 ident: bib0031 article-title: Introduction to neonatal facial pain detection using common and advanced face classification techniques publication-title: Advanced Computational Intelligence Paradigms in Healthcare–1 – volume: 99 start-page: 155 year: 2018 end-page: 167 ident: bib0057 article-title: Gender classification from offline multi-script handwriting images using oriented basic image features (oBIFs) publication-title: Expert Syst. Appl. – volume: 151 start-page: 61 year: 2016 end-page: 71 ident: bib0019 article-title: Medical image modality classification using discrete bayesian networks publication-title: Comput. Vis. Image Underst. – reference: S. Kumar, H.A. Rowley, X. Wang, J.J.M. Rodrigues, Hierarchical Classification in Credit Card Data Extraction, 2015. US Patent 9,213,907. – year: 2020 ident: bib0002 article-title: Clinical characteristics of coronavirus disease 2019 in china publication-title: N. Engl. J. Med. – reference: J.P. Cohen, P. Morrison, L. Dao, COVID-19 image data collection, – volume: 371 start-page: 1619 year: 2014 end-page: 1628 ident: bib0003 article-title: Community-acquired pneumonia publication-title: N. Engl. J. Med. – volume: 6 start-page: 20 year: 2004 end-page: 29 ident: bib0029 article-title: A study of the behavior of several methods for balancing machine learning training data publication-title: ACM SIGKDD Explor. Newsl. – volume: 20 start-page: 226 year: 1998 end-page: 239 ident: bib0062 article-title: On combining classifiers publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 770 year: 2016 end-page: 778 ident: bib0038 article-title: Deep residual learning for image recognition publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 89 start-page: 385 year: 2015 end-page: 397 ident: bib0069 article-title: MLSMOTE: Approaching imbalanced multilabel learning through synthetic instance generation publication-title: Knowl. Based Syst. – start-page: 1 year: 2015 end-page: 9 ident: bib0059 article-title: Going deeper with convolutions publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 8 start-page: 14 year: 2016 ident: bib0015 article-title: The definition and classification of pneumonia publication-title: Pneumonia – volume: 71 start-page: 158 year: 2017 end-page: 172 ident: bib0044 article-title: Handcrafted vs. non-handcrafted features for computer vision classification publication-title: Pattern Recognit. – start-page: 236 year: 2008 end-page: 243 ident: bib0054 article-title: Blur insensitive texture classification using local phase quantization publication-title: International Conference on Image and Signal Processing – reference: G. Maguolo, L. Nanni, A critic evaluation of methods for covid-19 automatic detection from x-ray images, – start-page: 345 year: 2005 end-page: 359 ident: bib0067 article-title: A probabilistic interpretation of precision, recall and f-score, with implication for evaluation publication-title: European Conference on Information Retrieval – start-page: 331 year: 2019 end-page: 332 ident: bib0068 article-title: Towards an automated assessment for embodied cognition in children: the sailor step task publication-title: Proceedings of the 12th ACM International Conference on PErvasive Technologies Related to Assistive Environments – reference: A. Narin, C. Kaya, Z. Pamuk, Automatic detection of coronavirus disease (COVID-19) using x-ray images and deep convolutional neural networks, – reference: A.I. Khan, J.L. Shah, M. Bhat, CoroNet: a deep neural network for detection and diagnosis of COVID-19 from chest x-ray images, – year: 2019 ident: bib0017 article-title: ICD-10-CM 2020 The complete official codebook – volume: 5 start-page: 101 year: 2004 end-page: 141 ident: bib0024 article-title: In defense of one-vs-all classification publication-title: J. Mach. Learn. Res. – volume: 49 start-page: 117 year: 2010 end-page: 125 ident: bib0030 article-title: Local binary patterns variants as texture descriptors for medical image analysis publication-title: Artif. Intell. Med. – volume: 22 start-page: 31 year: 2011 end-page: 72 ident: bib0010 article-title: A survey of hierarchical classification across different application domains publication-title: Data Min. Knowl. Discov. – year: 2020 ident: bib0007 article-title: The role of chest imaging in patient management during the covid-19 pandemic: a multinational consensus statement from the fleischner society publication-title: Chest – start-page: 5225 year: 2018 end-page: 5234 ident: bib0065 article-title: Hierarchical multi-label classification networks publication-title: Proceedings of the International Conference on Machine Learning – year: 2020 ident: bib0005 article-title: Critical care utilization for the COVID-19 outbreak in lombardy, italy: early experience and forecast during an emergency response publication-title: JAMA – start-page: 399 year: 2005 end-page: 402 ident: bib0012 article-title: Early versus late fusion in semantic video analysis publication-title: Proceedings of the ACM International Conference on Multimedia – start-page: 1322 year: 2008 end-page: 1328 ident: bib0025 article-title: ADASYN: Adaptive synthetic sampling approach for imbalanced learning publication-title: IEEE International Joint Conference Neural Networks – volume: 5 start-page: 101 issue: Jan year: 2004 ident: 10.1016/j.cmpb.2020.105532_bib0024 article-title: In defense of one-vs-all classification publication-title: J. Mach. Learn. Res. – volume: 6 start-page: 448 issue: 6 year: 1976 ident: 10.1016/j.cmpb.2020.105532_bib0028 article-title: An experiment with the edited nearest-neighbor rule publication-title: IEEE Trans. Syst. Man Cybern. – year: 2020 ident: 10.1016/j.cmpb.2020.105532_bib0007 article-title: The role of chest imaging in patient management during the covid-19 pandemic: a multinational consensus statement from the fleischner society publication-title: Chest doi: 10.1016/j.chest.2020.04.003 – start-page: 1363 year: 2012 ident: 10.1016/j.cmpb.2020.105532_bib0052 article-title: BSIF: Binarized statistical image features – ident: 10.1016/j.cmpb.2020.105532_bib0063 doi: 10.1016/j.inffus.2021.04.008 – start-page: 345 year: 2005 ident: 10.1016/j.cmpb.2020.105532_bib0067 article-title: A probabilistic interpretation of precision, recall and f-score, with implication for evaluation – volume: 151 start-page: 61 year: 2016 ident: 10.1016/j.cmpb.2020.105532_bib0019 article-title: Medical image modality classification using discrete bayesian networks publication-title: Comput. Vis. Image Underst. doi: 10.1016/j.cviu.2016.04.002 – volume: 99 start-page: 155 year: 2018 ident: 10.1016/j.cmpb.2020.105532_bib0057 article-title: Gender classification from offline multi-script handwriting images using oriented basic image features (oBIFs) publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.01.038 – start-page: 638 year: 2019 ident: 10.1016/j.cmpb.2020.105532_bib0021 article-title: XMIAR: X-ray medical image annotation and retrieval – volume: 90 start-page: 20160642 issue: 1070 year: 2017 ident: 10.1016/j.cmpb.2020.105532_bib0035 article-title: Texture analysis of medical images for radiotherapy applications publication-title: Br. J. Radiol. doi: 10.1259/bjr.20160642 – ident: 10.1016/j.cmpb.2020.105532_bib0040 – year: 2020 ident: 10.1016/j.cmpb.2020.105532_bib0014 article-title: COVID-19 and Italy: what next? publication-title: Lancet doi: 10.1016/S0140-6736(20)30627-9 – volume: 22 start-page: 31 issue: 1–2 year: 2011 ident: 10.1016/j.cmpb.2020.105532_bib0010 article-title: A survey of hierarchical classification across different application domains publication-title: Data Min. Knowl. Discov. doi: 10.1007/s10618-010-0175-9 – start-page: 770 year: 2016 ident: 10.1016/j.cmpb.2020.105532_bib0038 article-title: Deep residual learning for image recognition – start-page: 737 year: 2019 ident: 10.1016/j.cmpb.2020.105532_bib0066 article-title: Hierarchical classification of transposable elements with a weighted genetic algorithm – volume: 25 start-page: 1019 issue: 4 year: 2014 ident: 10.1016/j.cmpb.2020.105532_bib0049 article-title: Forest species recognition using macroscopic images publication-title: Mach. Vis. Appl. doi: 10.1007/s00138-014-0592-7 – volume: 41 start-page: 145 issue: 2 year: 2020 ident: 10.1016/j.cmpb.2020.105532_bib0013 article-title: The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) in China publication-title: Zhonghua Liu Xing Bing Xue Za Zhi – start-page: 878 year: 2005 ident: 10.1016/j.cmpb.2020.105532_bib0027 article-title: Borderline-smote: a new oversampling method in imbalanced datasets learning – volume: 2019 year: 2019 ident: 10.1016/j.cmpb.2020.105532_bib0020 article-title: NHL Pathological image classification based on hierarchical local information and googlenet-based representations publication-title: Biomed Res Int doi: 10.1155/2019/1065652 – start-page: 1 year: 2015 ident: 10.1016/j.cmpb.2020.105532_bib0064 article-title: Hierarchical classification of gene ontology-based protein functions with neural networks – volume: 371 start-page: 1619 issue: 17 year: 2014 ident: 10.1016/j.cmpb.2020.105532_bib0003 article-title: Community-acquired pneumonia publication-title: N. Engl. J. Med. doi: 10.1056/NEJMra1312885 – start-page: 225 year: 2007 ident: 10.1016/j.cmpb.2020.105532_bib0031 article-title: Introduction to neonatal facial pain detection using common and advanced face classification techniques – ident: 10.1016/j.cmpb.2020.105532_bib0060 – start-page: 5225 year: 2018 ident: 10.1016/j.cmpb.2020.105532_bib0065 article-title: Hierarchical multi-label classification networks – volume: 25 issue: 11 year: 2020 ident: 10.1016/j.cmpb.2020.105532_bib0004 article-title: Influenza-associated pneumonia as reference to assess seriousness of coronavirus disease (COVID-19) publication-title: Eurosurveillance doi: 10.2807/1560-7917.ES.2020.25.11.2000258 – volume: 20 start-page: 226 issue: 3 year: 1998 ident: 10.1016/j.cmpb.2020.105532_bib0062 article-title: On combining classifiers publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.667881 – volume: 5 start-page: 38 issue: 1 year: 2014 ident: 10.1016/j.cmpb.2020.105532_bib0016 article-title: The radiological diagnosis of pneumonia in children publication-title: Pneumonia doi: 10.15172/pneu.2014.5/482 – volume: 29 start-page: 51 issue: 1 year: 1996 ident: 10.1016/j.cmpb.2020.105532_bib0046 article-title: A comparative study of texture measures with classification based on featured distributions publication-title: Pattern Recognit. doi: 10.1016/0031-3203(95)00067-4 – start-page: 200905 year: 2020 ident: 10.1016/j.cmpb.2020.105532_bib0037 article-title: Artificial intelligence distinguishes COVID-19 from community acquired pneumonia on chest ct publication-title: Radiology – volume: 71 start-page: 158 year: 2017 ident: 10.1016/j.cmpb.2020.105532_bib0044 article-title: Handcrafted vs. non-handcrafted features for computer vision classification publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2017.05.025 – volume: 89 start-page: 385 year: 2015 ident: 10.1016/j.cmpb.2020.105532_bib0069 article-title: MLSMOTE: Approaching imbalanced multilabel learning through synthetic instance generation publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2015.07.019 – volume: 92 start-page: 2723 issue: 11 year: 2012 ident: 10.1016/j.cmpb.2020.105532_bib0048 article-title: Music genre classification using LBP textural features publication-title: Signal Process. doi: 10.1016/j.sigpro.2012.04.023 – start-page: 103792 year: 2020 ident: 10.1016/j.cmpb.2020.105532_bib0043 article-title: Automated detection of covid-19 cases using deep neural networks with x-ray images publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2020.103792 – volume: 40 start-page: 2069 issue: 6 year: 2013 ident: 10.1016/j.cmpb.2020.105532_bib0047 article-title: Texture-based descriptors for writer identification and verification publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2012.10.016 – start-page: 236 year: 2008 ident: 10.1016/j.cmpb.2020.105532_bib0054 article-title: Blur insensitive texture classification using local phase quantization – year: 2020 ident: 10.1016/j.cmpb.2020.105532_bib0002 article-title: Clinical characteristics of coronavirus disease 2019 in china publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2002032 – year: 2020 ident: 10.1016/j.cmpb.2020.105532_bib0001 article-title: Coronavirus Disease 2019 (COVID-19) – volume: 22 start-page: 1740 issue: 5 year: 2013 ident: 10.1016/j.cmpb.2020.105532_bib0050 article-title: Local directional number pattern for face analysis: face and expression recognition publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2012.2235848 – volume: 52 start-page: 28 year: 2017 ident: 10.1016/j.cmpb.2020.105532_bib0045 article-title: An evaluation of convolutional neural networks for music classification using spectrograms publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2016.12.024 – volume: 42 start-page: 1119 issue: 4 year: 2012 ident: 10.1016/j.cmpb.2020.105532_bib0011 article-title: Multiclass imbalance problems: analysis and potential solutions publication-title: IEEE Trans. Syst. Man Cybern.Part B doi: 10.1109/TSMCB.2012.2187280 – start-page: 2818 year: 2016 ident: 10.1016/j.cmpb.2020.105532_bib0058 article-title: Rethinking the inception architecture for computer vision – start-page: 399 year: 2005 ident: 10.1016/j.cmpb.2020.105532_bib0012 article-title: Early versus late fusion in semantic video analysis – ident: 10.1016/j.cmpb.2020.105532_bib0039 doi: 10.1007/s10044-021-00984-y – year: 2020 ident: 10.1016/j.cmpb.2020.105532_bib0053 article-title: Palmprint recognition using state-of-the-art local texture descriptors: a comparative study publication-title: IET Biom. doi: 10.1049/iet-bmt.2019.0103 – ident: 10.1016/j.cmpb.2020.105532_bib0008 – volume: 11 start-page: 507 issue: 1 year: 1998 ident: 10.1016/j.cmpb.2020.105532_bib0023 article-title: Classification by pairwise coupling publication-title: Adv. Neural Inf. Process. Syst. – start-page: 331 year: 2019 ident: 10.1016/j.cmpb.2020.105532_bib0068 article-title: Towards an automated assessment for embodied cognition in children: the sailor step task – start-page: 2097 year: 2017 ident: 10.1016/j.cmpb.2020.105532_bib0009 article-title: ChestX-ray8: hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases – volume: 88 start-page: 447 issue: 3 year: 2010 ident: 10.1016/j.cmpb.2020.105532_bib0055 article-title: Using basic image features for texture classification publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-009-0315-0 – start-page: 1 year: 2015 ident: 10.1016/j.cmpb.2020.105532_bib0059 article-title: Going deeper with convolutions – volume: 47 start-page: 2255 issue: 6 year: 2014 ident: 10.1016/j.cmpb.2020.105532_bib0056 article-title: Writer identification using oriented basic image features and the delta encoding publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2013.11.029 – ident: 10.1016/j.cmpb.2020.105532_bib0018 – volume: 49 start-page: 117 issue: 2 year: 2010 ident: 10.1016/j.cmpb.2020.105532_bib0030 article-title: Local binary patterns variants as texture descriptors for medical image analysis publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2010.02.006 – year: 2019 ident: 10.1016/j.cmpb.2020.105532_bib0017 – volume: 19 start-page: 423 issue: 4 year: 2011 ident: 10.1016/j.cmpb.2020.105532_bib0034 article-title: Detection of pneumonia in chest x-ray images publication-title: J. Xray Sci. Technol. – year: 2020 ident: 10.1016/j.cmpb.2020.105532_bib0036 article-title: Improved deep learning model for differentiating novel coronavirus pneumonia and influenza pneumonia publication-title: medRxiv – volume: 42 start-page: 97 year: 2013 ident: 10.1016/j.cmpb.2020.105532_bib0022 article-title: Analysing the classification of imbalanced data-sets with multiple classes: binarization techniques and ad-hoc approaches publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2013.01.018 – start-page: 1322 year: 2008 ident: 10.1016/j.cmpb.2020.105532_bib0025 article-title: ADASYN: Adaptive synthetic sampling approach for imbalanced learning – volume: 8 start-page: 210 issue: 1 year: 2007 ident: 10.1016/j.cmpb.2020.105532_bib0032 article-title: A multiresolution approach to automated classification of protein subcellular location images publication-title: BMC Bioinform. doi: 10.1186/1471-2105-8-210 – ident: 10.1016/j.cmpb.2020.105532_bib0041 doi: 10.1038/s41598-020-76550-z – ident: 10.1016/j.cmpb.2020.105532_bib0042 doi: 10.1016/j.cmpb.2020.105581 – volume: 28 start-page: 1565 issue: 7 year: 2018 ident: 10.1016/j.cmpb.2020.105532_bib0051 article-title: Letrist: locally encoded transform feature histogram for rotation-invariant texture classification publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2017.2671899 – year: 2020 ident: 10.1016/j.cmpb.2020.105532_bib0005 article-title: Critical care utilization for the COVID-19 outbreak in lombardy, italy: early experience and forecast during an emergency response publication-title: JAMA doi: 10.1001/jama.2020.4031 – volume: 6 start-page: 20 issue: 1 year: 2004 ident: 10.1016/j.cmpb.2020.105532_bib0029 article-title: A study of the behavior of several methods for balancing machine learning training data publication-title: ACM SIGKDD Explor. Newsl. doi: 10.1145/1007730.1007735 – volume: 31 start-page: 401 issue: 2 year: 2013 ident: 10.1016/j.cmpb.2020.105532_bib0006 article-title: High discordance of chest x-ray and computed tomography for detection of pulmonary opacities in ed patients: implications for diagnosing pneumonia publication-title: Am. J. Emerg. Med. doi: 10.1016/j.ajem.2012.08.041 – volume: 8 start-page: 14 issue: 1 year: 2016 ident: 10.1016/j.cmpb.2020.105532_bib0015 article-title: The definition and classification of pneumonia publication-title: Pneumonia doi: 10.1186/s41479-016-0012-z – start-page: 1 year: 2005 ident: 10.1016/j.cmpb.2020.105532_bib0033 article-title: Pap-smear benchmark data for pattern classification – volume: 16 start-page: 321 year: 2002 ident: 10.1016/j.cmpb.2020.105532_bib0026 article-title: Smote: synthetic minority over-sampling technique publication-title: J. Artif. Intell. Res. doi: 10.1613/jair.953 – start-page: 1097 year: 2012 ident: 10.1016/j.cmpb.2020.105532_bib0061 article-title: ImageNet classification with deep convolutional neural networks |
SSID | ssj0002556 |
Score | 2.6740668 |
Snippet | •COVID-19 identification in chest X-ray using multi-class and hierarchical learners.•Using a database that reflects a real world scenario with its natural... The COVID-19 can cause severe pneumonia and is estimated to have a high impact on the healthcare system. Early diagnosis is crucial for correct treatment in... • COVID-19 identification in chest X-ray using multi-class and hierarchical learners. • Using a database that reflects a real world scenario with its natural... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 105532 |
SubjectTerms | Algorithms Betacoronavirus Chest X-ray Clinical Laboratory Techniques Coronavirus Infections - diagnosis Coronavirus Infections - diagnostic imaging COVID-19 COVID-19 Testing Databases, Factual Deep Learning Humans Image Processing, Computer-Assisted - methods Lung - diagnostic imaging Medical image analysis Pandemics Pneumonia Pneumonia, Viral - diagnostic imaging Radiography, Thoracic - methods SARS-CoV-2 Software Texture Tomography, X-Ray Computed X-Rays |
Title | COVID-19 identification in chest X-ray images on flat and hierarchical classification scenarios |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0169260720309664 https://dx.doi.org/10.1016/j.cmpb.2020.105532 https://www.ncbi.nlm.nih.gov/pubmed/32446037 https://www.proquest.com/docview/2406307879 https://pubmed.ncbi.nlm.nih.gov/PMC7207172 |
Volume | 194 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQSFUvVWlpu-UhV-oNmd3Ejr0-ogW0tIIeStHerPilBkF2xS4HLvx2ZhJn6bYqlXpM4oms8Xjms2b8DSGfh4DYHJee-UJGJmLmmI7OsgDowkfNZTbEy8ln53L8Q3yZFJM1MuruwmBZZfL9rU9vvHV600_a7M-qqv8deUQAjWMeEXC4RE5QIRRa-cHDU5kHUmy1_N6a4eh0caat8XI3MwtnxLxpd1vw_G_B6U_w-XsN5S9B6eQ1eZXQJD1sJ7xJ1kL9hrw4S_nyt8SMvl2eHrFM08qnsqBmJWhV06ZTFp2w2_KeVjfgVuYUPsTrckHL2lPskd1kGWARqUOM_SSNDFBwxp7Ot8jFyfHFaMxSSwXmioFcMO6cL6MVMVdOlc57b532IXPCljbC-uTRR2sVBC0RNIC1yEU-8MrKqGUo-TuyXk_r8IHQwiruIfgHXQAIiLmGHxeZxLSuHLqB6JGsU6VxiW4cu15cm66u7Mqg-g2q37Tq75H9pcysJdt4djTvVsh010jB8RmIBc9KFUupFUP7p9ynzggM7EBMq5R1mN7NDWIi8JRDpXvkfWsUy9kDXBVywFWPqBVzWQ5Adu_VL3X1s2H5BkXCUTv_-J_z3SYv8amtO9wh64vbu7AL-Glh95oNskc2Dk-_js8fATe_Gqc |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB4tiwRcEG_K00jckGkTO059RIVVF7bLgYJ6s-KXCNpNq233wIXfzkzidCmIReIaeyJrZjzzWfMCeDlGxOaE8twXKnIZM8d1dJYHRBc-aqGyMRUnz47V9LN8vygWezDpa2EorTLZ_s6mt9Y6fRkmbg5XdT38RH1EEI1THBFxuJJX4KrE60tjDF7_uMjzoB5bXYNvzWl7qpzpkrzc6criIzFv590WIv-bd_oTff6eRPmLVzq4BTcTnGRvuhPfhr3Q3IFrsxQwvwtm8vHL4VueaVb7lBfUioLVDWtHZbEFP6u-s_oU7cqa4UI8qTasajyjIdltmAGlyByB7AtqagGFj-zl-h7MD97NJ1OeZipwV4zUhgvnfBWtjHnpysp5763TPmRO2spGFFAefbS2RK8lg0a0FoXMR760KmoVKnEf9ptlEx4CK2wpPHr_oAtEATHX-OMiUxTXVWM3kgPIelYal_qN09iLE9Mnln0zxH5D7Dcd-wfwakuz6rptXLpb9BIyfR0pWj6DzuBSqmJLtaNp_6R70SuBwStIcZWqCcvztSFQhKZyXOoBPOiUYnt6xKtSjUQ5gHJHXbYbqL337kpTf23bfCMj8a2dP_rP8z6H69P57MgcHR5_eAw3aKVLQnwC-5uz8_AUwdTGPmsvy098qhw1 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=COVID-19+identification+in+chest+X-ray+images+on+flat+and+hierarchical+classification+scenarios&rft.jtitle=Computer+methods+and+programs+in+biomedicine&rft.au=Pereira%2C+Rodolfo+M.&rft.au=Bertolini%2C+Diego&rft.au=Teixeira%2C+Lucas+O.&rft.au=Silla%2C+Carlos+N.&rft.date=2020-10-01&rft.pub=Elsevier+B.V&rft.issn=0169-2607&rft.eissn=1872-7565&rft.volume=194&rft.spage=105532&rft.epage=105532&rft_id=info:doi/10.1016%2Fj.cmpb.2020.105532&rft_id=info%3Apmid%2F32446037&rft.externalDocID=PMC7207172 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-2607&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-2607&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-2607&client=summon |