Species specific differences in use of ANP32 proteins by influenza A virus
Influenza A viruses (IAV) are subject to species barriers that prevent frequent zoonotic transmission and pandemics. One of these barriers is the poor activity of avian IAV polymerases in human cells. Differences between avian and mammalian ANP32 proteins underlie this host range barrier. Human ANP3...
Saved in:
Published in | eLife Vol. 8 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
eLife Science Publications, Ltd
04.06.2019
eLife Sciences Publications Ltd eLife Sciences Publications, Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 2050-084X 2050-084X |
DOI | 10.7554/eLife.45066 |
Cover
Loading…
Abstract | Influenza A viruses (IAV) are subject to species barriers that prevent frequent zoonotic transmission and pandemics. One of these barriers is the poor activity of avian IAV polymerases in human cells. Differences between avian and mammalian ANP32 proteins underlie this host range barrier. Human ANP32A and ANP32B homologues both support function of human-adapted influenza polymerase but do not support efficient activity of avian IAV polymerase which requires avian ANP32A. We show here that the gene currently designated as avian ANP32B is evolutionarily distinct from mammalian ANP32B, and that chicken ANP32B does not support IAV polymerase activity even of human-adapted viruses. Consequently, IAV relies solely on chicken ANP32A to support its replication in chicken cells. Amino acids 129I and 130N, accounted for the inactivity of chicken ANP32B. Transfer of these residues to chicken ANP32A abolished support of IAV polymerase. Understanding ANP32 function will help develop antiviral strategies and aid the design of influenza virus resilient genome edited chickens.
The influenza A virus pandemic of 1918 killed more people than the armed conflicts of World War 1. Like all other pandemic and seasonal influenza, this virus originated from bird viruses. In fact, avian influenza viruses continually threaten to spark new outbreaks in humans, but pandemics do not occur often. This is because these viruses must undergo several adaptations before they can replicate in and spread between people.
Viruses make new copies of themselves using the molecular machinery of the cells that they invade. The proteins that make up this machinery are often slightly different in different species, and so a virus that can replicate in cells of one species might not be able to do so when it invades a cell from another species. In 2016, researchers discovered that species differences in a cell protein called ANP32A pose a key barrier that avian influenza viruses have to overcome.
Now, Long et al. – including some of the researchers involved in the 2016 study – show that the avian influenza virus cannot replicate in chicken cells that lack ANP32A. Exploring closely related versions of the genes that produce ANP32A and its relative ANP32B in different species revealed the region of the protein that the virus relies on to support its replication. Long et al. speculate that by making a few small changes to the ANP32A gene in chickens, it might be possible to generate a gene-edited chicken that is resilient to influenza.
Close contact with poultry has led to hundreds of cases of ‘bird ‘flu’ in South East Asia, many of which have been fatal. Moreover, if avian influenza viruses mutate further in an infected person, a new pandemic could begin. Stopping influenza viruses from replicating in chickens would prevent people from being exposed to these dangerous viruses, whilst also improving the welfare of the chickens. |
---|---|
AbstractList | Influenza A viruses (IAV) are subject to species barriers that prevent frequent zoonotic transmission and pandemics. One of these barriers is the poor activity of avian IAV polymerases in human cells. Differences between avian and mammalian ANP32 proteins underlie this host range barrier. Human ANP32A and ANP32B homologues both support function of human-adapted influenza polymerase but do not support efficient activity of avian IAV polymerase which requires avian ANP32A. We show here that the gene currently designated as avian ANP32B is evolutionarily distinct from mammalian ANP32B, and that chicken ANP32B does not support IAV polymerase activity even of human-adapted viruses. Consequently, IAV relies solely on chicken ANP32A to support its replication in chicken cells. Amino acids 129I and 130N, accounted for the inactivity of chicken ANP32B. Transfer of these residues to chicken ANP32A abolished support of IAV polymerase. Understanding ANP32 function will help develop antiviral strategies and aid the design of influenza virus resilient genome edited chickens.
The influenza A virus pandemic of 1918 killed more people than the armed conflicts of World War 1. Like all other pandemic and seasonal influenza, this virus originated from bird viruses. In fact, avian influenza viruses continually threaten to spark new outbreaks in humans, but pandemics do not occur often. This is because these viruses must undergo several adaptations before they can replicate in and spread between people.
Viruses make new copies of themselves using the molecular machinery of the cells that they invade. The proteins that make up this machinery are often slightly different in different species, and so a virus that can replicate in cells of one species might not be able to do so when it invades a cell from another species. In 2016, researchers discovered that species differences in a cell protein called ANP32A pose a key barrier that avian influenza viruses have to overcome.
Now, Long et al. – including some of the researchers involved in the 2016 study – show that the avian influenza virus cannot replicate in chicken cells that lack ANP32A. Exploring closely related versions of the genes that produce ANP32A and its relative ANP32B in different species revealed the region of the protein that the virus relies on to support its replication. Long et al. speculate that by making a few small changes to the ANP32A gene in chickens, it might be possible to generate a gene-edited chicken that is resilient to influenza.
Close contact with poultry has led to hundreds of cases of ‘bird ‘flu’ in South East Asia, many of which have been fatal. Moreover, if avian influenza viruses mutate further in an infected person, a new pandemic could begin. Stopping influenza viruses from replicating in chickens would prevent people from being exposed to these dangerous viruses, whilst also improving the welfare of the chickens. Influenza A viruses (IAV) are subject to species barriers that prevent frequent zoonotic transmission and pandemics. One of these barriers is the poor activity of avian IAV polymerases in human cells. Differences between avian and mammalian ANP32 proteins underlie this host range barrier. Human ANP32A and ANP32B homologues both support function of human-adapted influenza polymerase but do not support efficient activity of avian IAV polymerase which requires avian ANP32A. We show here that the gene currently designated as avian ANP32B is evolutionarily distinct from mammalian ANP32B, and that chicken ANP32B does not support IAV polymerase activity even of human-adapted viruses. Consequently, IAV relies solely on chicken ANP32A to support its replication in chicken cells. Amino acids 129I and 130N, accounted for the inactivity of chicken ANP32B. Transfer of these residues to chicken ANP32A abolished support of IAV polymerase. Understanding ANP32 function will help develop antiviral strategies and aid the design of influenza virus resilient genome edited chickens. Influenza A viruses (IAV) are subject to species barriers that prevent frequent zoonotic transmission and pandemics. One of these barriers is the poor activity of avian IAV polymerases in human cells. Differences between avian and mammalian ANP32 proteins underlie this host range barrier. Human ANP32A and ANP32B homologues both support function of human-adapted influenza polymerase but do not support efficient activity of avian IAV polymerase which requires avian ANP32A. We show here that the gene currently designated as avian ANP32B is evolutionarily distinct from mammalian ANP32B, and that chicken ANP32B does not support IAV polymerase activity even of human-adapted viruses. Consequently, IAV relies solely on chicken ANP32A to support its replication in chicken cells. Amino acids 129I and 130N, accounted for the inactivity of chicken ANP32B. Transfer of these residues to chicken ANP32A abolished support of IAV polymerase. Understanding ANP32 function will help develop antiviral strategies and aid the design of influenza virus resilient genome edited chickens.Influenza A viruses (IAV) are subject to species barriers that prevent frequent zoonotic transmission and pandemics. One of these barriers is the poor activity of avian IAV polymerases in human cells. Differences between avian and mammalian ANP32 proteins underlie this host range barrier. Human ANP32A and ANP32B homologues both support function of human-adapted influenza polymerase but do not support efficient activity of avian IAV polymerase which requires avian ANP32A. We show here that the gene currently designated as avian ANP32B is evolutionarily distinct from mammalian ANP32B, and that chicken ANP32B does not support IAV polymerase activity even of human-adapted viruses. Consequently, IAV relies solely on chicken ANP32A to support its replication in chicken cells. Amino acids 129I and 130N, accounted for the inactivity of chicken ANP32B. Transfer of these residues to chicken ANP32A abolished support of IAV polymerase. Understanding ANP32 function will help develop antiviral strategies and aid the design of influenza virus resilient genome edited chickens. Influenza A viruses (IAV) are subject to species barriers that prevent frequent zoonotic transmission and pandemics. One of these barriers is the poor activity of avian IAV polymerases in human cells. Differences between avian and mammalian ANP32 proteins underlie this host range barrier. Human ANP32A and ANP32B homologues both support function of human-adapted influenza polymerase but do not support efficient activity of avian IAV polymerase which requires avian ANP32A. We show here that the gene currently designated as avian ANP32B is evolutionarily distinct from mammalian ANP32B, and that chicken ANP32B does not support IAV polymerase activity even of human-adapted viruses. Consequently, IAV relies solely on chicken ANP32A to support its replication in chicken cells. Amino acids 129I and 130N, accounted for the inactivity of chicken ANP32B. Transfer of these residues to chicken ANP32A abolished support of IAV polymerase. Understanding ANP32 function will help develop antiviral strategies and aid the design of influenza virus resilient genome edited chickens. eLife digest The influenza A virus pandemic of 1918 killed more people than the armed conflicts of World War 1. Like all other pandemic and seasonal influenza, this virus originated from bird viruses. In fact, avian influenza viruses continually threaten to spark new outbreaks in humans, but pandemics do not occur often. This is because these viruses must undergo several adaptations before they can replicate in and spread between people. Viruses make new copies of themselves using the molecular machinery of the cells that they invade. The proteins that make up this machinery are often slightly different in different species, and so a virus that can replicate in cells of one species might not be able to do so when it invades a cell from another species. In 2016, researchers discovered that species differences in a cell protein called ANP32A pose a key barrier that avian influenza viruses have to overcome. Now, Long et al. -- including some of the researchers involved in the 2016 study -- show that the avian influenza virus cannot replicate in chicken cells that lack ANP32A. Exploring closely related versions of the genes that produce ANP32A and its relative ANP32B in different species revealed the region of the protein that the virus relies on to support its replication. Long et al. speculate that by making a few small changes to the ANP32A gene in chickens, it might be possible to generate a gene-edited chicken that is resilient to influenza. Close contact with poultry has led to hundreds of cases of 'bird 'flu' in South East Asia, many of which have been fatal. Moreover, if avian influenza viruses mutate further in an infected person, a new pandemic could begin. Stopping influenza viruses from replicating in chickens would prevent people from being exposed to these dangerous viruses, whilst also improving the welfare of the chickens. |
Audience | Academic |
Author | Skinner, Michael A Goodbourn, Steve Shelton, Holly Mistry, Bhakti Goldhill, Daniel Ross, Craig Idoko-Akoh, Alewo Sang, Helen Barclay, Wendy McGrew, Michael J Schreyer, Jocelyn Staller, Ecco Long, Jason S |
Author_xml | – sequence: 1 givenname: Jason S orcidid: 0000-0002-0251-6487 surname: Long fullname: Long, Jason S organization: Section of Molecular Virology, Imperial College London, London, United Kingdom – sequence: 2 givenname: Alewo surname: Idoko-Akoh fullname: Idoko-Akoh, Alewo organization: The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom – sequence: 3 givenname: Bhakti surname: Mistry fullname: Mistry, Bhakti organization: Section of Molecular Virology, Imperial College London, London, United Kingdom – sequence: 4 givenname: Daniel orcidid: 0000-0003-4597-5963 surname: Goldhill fullname: Goldhill, Daniel organization: Section of Molecular Virology, Imperial College London, London, United Kingdom – sequence: 5 givenname: Ecco orcidid: 0000-0002-8443-5559 surname: Staller fullname: Staller, Ecco organization: Section of Molecular Virology, Imperial College London, London, United Kingdom – sequence: 6 givenname: Jocelyn surname: Schreyer fullname: Schreyer, Jocelyn organization: Section of Molecular Virology, Imperial College London, London, United Kingdom – sequence: 7 givenname: Craig surname: Ross fullname: Ross, Craig organization: Institute for Infection and Immunity, St. George's, University of London, London, United Kingdom – sequence: 8 givenname: Steve surname: Goodbourn fullname: Goodbourn, Steve organization: Institute for Infection and Immunity, St. George's, University of London, London, United Kingdom – sequence: 9 givenname: Holly surname: Shelton fullname: Shelton, Holly organization: Influenza Viruses, The Pirbright Institute, Surrey, United Kingdom – sequence: 10 givenname: Michael A orcidid: 0000-0002-0050-4167 surname: Skinner fullname: Skinner, Michael A organization: Section of Molecular Virology, Imperial College London, London, United Kingdom – sequence: 11 givenname: Helen surname: Sang fullname: Sang, Helen organization: The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom – sequence: 12 givenname: Michael J orcidid: 0000-0001-8213-4632 surname: McGrew fullname: McGrew, Michael J organization: The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom – sequence: 13 givenname: Wendy orcidid: 0000-0002-3948-0895 surname: Barclay fullname: Barclay, Wendy organization: Section of Molecular Virology, Imperial College London, London, United Kingdom |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31159925$$D View this record in MEDLINE/PubMed |
BookMark | eNptks1v1DAQxSNUREvpiTuKxAWEdrEdO3YuSKuKj0UrQBQkbpbtTBavsvFiJxXlr2eyW0pTNTk4mvnN8-TpPc6OutBBlj2lZC6F4K9h5RuYc0HK8kF2woggM6L4j6Nb38fZWUobgo_kStHqUXZcUCqqiomT7OPFDpyHlKfxbLzLa980EKFzWPRdPiTIQ5MvPn0pWL6LoQffpdxeYa9pB-j-mHyRX_o4pCfZw8a0Cc6uz9Ps-7u3384_zFaf3y_PF6uZwy37GZO1tQBEEiWskY2tpHWW05rbsnTcsbIsBa85cU4wLrEBlhPgFSsYrs2L02x50K2D2ehd9FsTr3QwXu8LIa61ib13LWiFYtZYahk1nDCO90kplAJOuamlQK03B63dYLdQO-j6aNqJ6LTT-Z96HS41rqgEkSjw4loghl8DpF5vfXLQtqaDMCTNWIEYJWpEn99BN2GIHVqFFK_KEjer_lNrgz-AJge8142ieiGqUhHGGEVqfg-Fbw1b7zAijcf6ZODlZACZHn73azOkpJcXX6fss9um3LjxLzUIvDoALoaUIjQ3CCV6jKXex1LvY4k0vUM735veh9FR39478xeDsuEi |
CitedBy_id | crossref_primary_10_1096_fj_202002006RR crossref_primary_10_1016_j_virs_2023_10_009 crossref_primary_10_1371_journal_pbio_3001934 crossref_primary_10_1016_j_celrep_2021_109213 crossref_primary_10_3390_pathogens10050630 crossref_primary_10_1038_s41467_024_55034_y crossref_primary_10_1128_spectrum_02073_21 crossref_primary_10_1016_j_coviro_2023_101363 crossref_primary_10_1080_22221751_2019_1676625 crossref_primary_10_1038_s41579_020_00501_8 crossref_primary_10_1038_s41467_020_17407_x crossref_primary_10_1038_s41467_024_45205_2 crossref_primary_10_1038_s41586_020_2927_z crossref_primary_10_1101_cshperspect_a038521 crossref_primary_10_1038_s42003_022_04082_5 crossref_primary_10_1080_21505594_2023_2223057 crossref_primary_10_1146_annurev_virology_100422_023037 crossref_primary_10_7554_eLife_56236 crossref_primary_10_1080_03079457_2022_2130173 crossref_primary_10_1099_jgv_0_001664 crossref_primary_10_1128_JVI_01700_20 crossref_primary_10_1080_00439339_2024_2344124 crossref_primary_10_1016_j_coviro_2023_101335 crossref_primary_10_3390_v12040365 crossref_primary_10_1093_biolre_ioab196 crossref_primary_10_3390_genes11101182 crossref_primary_10_3390_genes14040899 crossref_primary_10_1128_JVI_01353_19 crossref_primary_10_1186_s44149_022_00055_7 crossref_primary_10_1021_jacs_3c06965 crossref_primary_10_1038_s41467_023_41476_3 crossref_primary_10_1128_jvi_02092_21 crossref_primary_10_1111_1751_7915_14389 crossref_primary_10_1128_jvi_00213_23 crossref_primary_10_1177_0023677221998400 crossref_primary_10_1126_sciadv_adg5175 crossref_primary_10_1099_jgv_0_001362 crossref_primary_10_1016_j_psj_2022_102174 crossref_primary_10_1126_sciadv_adj4163 crossref_primary_10_1128_jvi_01840_24 crossref_primary_10_1111_cmi_13170 crossref_primary_10_1016_j_ydbio_2025_02_001 crossref_primary_10_1038_s41467_019_11388_2 crossref_primary_10_1093_nar_gkac410 crossref_primary_10_1021_acsnanoscienceau_1c00009 crossref_primary_10_1038_s41467_024_51007_3 crossref_primary_10_36233_10_36233_0507_4088_213 crossref_primary_10_1038_s41467_023_41308_4 crossref_primary_10_1038_s41467_024_48470_3 crossref_primary_10_1002_wrna_1679 crossref_primary_10_1128_JVI_00217_19 crossref_primary_10_1016_j_tim_2022_09_015 crossref_primary_10_1101_cshperspect_a038307 crossref_primary_10_1080_22221751_2024_2387449 crossref_primary_10_1128_JVI_00132_20 crossref_primary_10_7554_eLife_48084 |
Cites_doi | 10.1093/nar/gkh340 10.1128/JVI.01399-13 10.1038/nprot.2013.143 10.1038/nmeth.1773 10.1016/j.chom.2014.11.002 10.1016/j.celrep.2017.08.061 10.1038/nature16474 10.1016/0092-8674(92)90317-6 10.1073/pnas.96.16.9345 10.1186/s12864-015-1778-8 10.1093/nar/gkw398 10.1073/pnas.1410555111 10.1016/j.celrep.2018.08.012 10.1073/pnas.1106211108 10.1038/nrmicro.2016.87 10.1038/srep23980 10.1109/gce.2010.5676129 10.3382/ps.2013-03557 10.1093/nar/gku410 10.1128/JVI.01633-12 10.1186/s12859-017-1934-z 10.7554/eLife.08939 10.1016/j.stemcr.2015.10.008 10.1038/270617a0 10.1073/pnas.95.23.13726 10.1038/s41598-018-33244-x 10.1038/ncomms1804 10.1074/mcp.M113.028688 10.1002/jcc.20084 10.1038/38444 10.1128/JVI.67.4.1761-1764.1993 10.1016/j.cell.2013.08.021 10.1016/0003-2697(76)90527-3 10.1002/1098-2795(200008)56:4<475::AID-MRD5>3.0.CO;2-M 10.1101/529412 10.1002/bies.201400058 10.1038/nature04831 10.1093/bioinformatics/btu033 10.1095/biolreprod57.5.1089 |
ContentType | Journal Article |
Copyright | 2019, Long et al. COPYRIGHT 2019 eLife Science Publications, Ltd. 2019, Long et al. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2019, Long et al 2019 Long et al |
Copyright_xml | – notice: 2019, Long et al. – notice: COPYRIGHT 2019 eLife Science Publications, Ltd. – notice: 2019, Long et al. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2019, Long et al 2019 Long et al |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 3V. 7X7 7XB 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.7554/eLife.45066 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2050-084X |
ExternalDocumentID | oai_doaj_org_article_8266bab1b21a4024ba777588e414ad75 PMC6548507 A596802221 31159925 10_7554_eLife_45066 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | United Kingdom United Kingdom--UK |
GeographicLocations_xml | – name: United Kingdom – name: United Kingdom--UK |
GrantInformation_xml | – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/K002465/1 – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/P013732/1 – fundername: Wellcome Trust grantid: 205100/Z/16/Z – fundername: Biotechnology and Biological Sciences Research Council grantid: BBS/E/D/20320000 – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/R007292/1 – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/P013759/1 – fundername: Wellcome Trust grantid: 205100 – fundername: Biotechnology and Biological Sciences Research Council grantid: BBS/E/I/00007034 – fundername: ; – fundername: ; grantid: 105396/Z/14/Z – fundername: ; grantid: BB/R007292/1 – fundername: ; grantid: BBS/E/I/00007034 – fundername: ; grantid: Imperial College President's Scholarship – fundername: ; grantid: BB/K002465/1 – fundername: ; grantid: 205100 – fundername: ; grantid: Principal's Career Development – fundername: ; grantid: BB/P013759/1 – fundername: ; grantid: BB/P013732/1 |
GroupedDBID | 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAKDD AAYXX ABUWG ACGFO ACGOD ACPRK ADBBV ADRAZ AENEX AFKRA AFPKN ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI CCPQU CITATION DIK DWQXO EMOBN FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IEA IHR INH INR ISR ITC KQ8 LK8 M1P M2P M48 M7P M~E NQS OK1 PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RHI RNS RPM UKHRP CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB PMFND 3V. 7XB 8FK K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c506t-27dbbee07085ba7fb97bcb41d4b66c4c266654d40cc524741deb40e4923211543 |
IEDL.DBID | M48 |
ISSN | 2050-084X |
IngestDate | Wed Aug 27 01:30:28 EDT 2025 Thu Aug 21 14:19:24 EDT 2025 Thu Sep 04 19:02:14 EDT 2025 Fri Jul 25 11:56:12 EDT 2025 Tue Jun 17 21:17:31 EDT 2025 Tue Jun 10 20:13:54 EDT 2025 Fri Jun 27 03:30:36 EDT 2025 Mon Jul 21 06:02:52 EDT 2025 Thu Apr 24 22:58:59 EDT 2025 Tue Jul 01 00:36:14 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | chicken ANP32A infectious disease Influenza polymerase microbiology ANP32B gene editing human virus |
Language | English |
License | http://creativecommons.org/licenses/by/4.0 2019, Long et al. This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c506t-27dbbee07085ba7fb97bcb41d4b66c4c266654d40cc524741deb40e4923211543 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-3948-0895 0000-0002-0251-6487 0000-0002-0050-4167 0000-0001-8213-4632 0000-0002-8443-5559 0000-0003-4597-5963 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.7554/eLife.45066 |
PMID | 31159925 |
PQID | 2249667589 |
PQPubID | 2045579 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_8266bab1b21a4024ba777588e414ad75 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6548507 proquest_miscellaneous_2235071087 proquest_journals_2249667589 gale_infotracmisc_A596802221 gale_infotracacademiconefile_A596802221 gale_incontextgauss_ISR_A596802221 pubmed_primary_31159925 crossref_primary_10_7554_eLife_45066 crossref_citationtrail_10_7554_eLife_45066 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-06-04 |
PublicationDateYYYYMMDD | 2019-06-04 |
PublicationDate_xml | – month: 06 year: 2019 text: 2019-06-04 day: 04 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | eLife |
PublicationTitleAlternate | Elife |
PublicationYear | 2019 |
Publisher | eLife Science Publications, Ltd eLife Sciences Publications Ltd eLife Sciences Publications, Ltd |
Publisher_xml | – name: eLife Science Publications, Ltd – name: eLife Sciences Publications Ltd – name: eLife Sciences Publications, Ltd |
References | Bradford (bib3) 1976; 72 Luger (bib11) 1997; 389 Pettersen (bib22) 2004; 25 Subbarao (bib32) 1993; 67 Domingues (bib5) 2017; 20 Long (bib10) 2016; 529 Reilly (bib25) 2011; 108 Stamatakis (bib31) 2014; 30 Whyte (bib38) 2015; 5 Miller (bib14) 2010 Zhang (bib39) 2019 Labun (bib8) 2016; 44 Ran (bib23) 2013; 8 Almond (bib1) 1977; 270 Neumann (bib18) 1999; 96 Park (bib21) 2000; 56 van de Lavoir (bib35) 2006; 441 Mänz (bib12) 2012; 3 Te Velthuis (bib34) 2016; 14 Montague (bib16) 2014; 42 Munier (bib17) 2013; 12 Park (bib20) 2014; 111 Sugiyama (bib33) 2015; 4 Wang (bib36) 2014; 93 Moncorgé (bib15) 2013; 87 Shim (bib29) 1997; 57 Smith (bib30) 2015; 16 Reilly (bib26) 2014; 36 Shamblott (bib28) 1998; 95 Idoko-Akoh (bib7) 2018; 8 Edgar (bib6) 2004; 32 Long (bib9) 2013; 87 Matsui (bib13) 1992; 70 Oishi (bib19) 2016; 6 Cassonnet (bib4) 2011; 8 Ran (bib24) 2013; 154 Watanabe (bib37) 2014; 16 Baker (bib2) 2018; 24 Rueden (bib27) 2017; 18 31179971 - Elife. 2019 Jun 10;8:e48084. doi: 10.7554/eLife.48084. |
References_xml | – volume: 32 start-page: 1792 year: 2004 ident: bib6 article-title: MUSCLE: multiple sequence alignment with high accuracy and high throughput publication-title: Nucleic Acids Research doi: 10.1093/nar/gkh340 – volume: 87 start-page: 9983 year: 2013 ident: bib9 article-title: The effect of the PB2 mutation 627K on highly pathogenic H5N1 avian influenza virus is dependent on the virus lineage publication-title: Journal of Virology doi: 10.1128/JVI.01399-13 – volume: 8 start-page: 2281 year: 2013 ident: bib23 article-title: Genome engineering using the CRISPR-Cas9 system publication-title: Nature Protocols doi: 10.1038/nprot.2013.143 – volume: 8 start-page: 990 year: 2011 ident: bib4 article-title: Benchmarking a luciferase complementation assay for detecting protein complexes publication-title: Nature Methods doi: 10.1038/nmeth.1773 – volume: 16 start-page: 795 year: 2014 ident: bib37 article-title: Influenza virus-host interactome screen as a platform for antiviral drug development publication-title: Cell Host & Microbe doi: 10.1016/j.chom.2014.11.002 – volume: 20 start-page: 2538 year: 2017 ident: bib5 article-title: Functional insights into ANP32A-Dependent influenza A virus polymerase host restriction publication-title: Cell Reports doi: 10.1016/j.celrep.2017.08.061 – volume: 529 start-page: 101 year: 2016 ident: bib10 article-title: Species difference in ANP32A underlies influenza A virus polymerase host restriction publication-title: Nature doi: 10.1038/nature16474 – volume: 70 start-page: 841 year: 1992 ident: bib13 article-title: Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture publication-title: Cell doi: 10.1016/0092-8674(92)90317-6 – volume: 96 start-page: 9345 year: 1999 ident: bib18 article-title: Generation of influenza A viruses entirely from cloned cDNAs publication-title: PNAS doi: 10.1073/pnas.96.16.9345 – volume: 16 year: 2015 ident: bib30 article-title: A comparative analysis of host responses to avian influenza infection in ducks and chickens highlights a role for the interferon-induced transmembrane proteins in viral resistance publication-title: BMC Genomics doi: 10.1186/s12864-015-1778-8 – volume: 44 start-page: W272 year: 2016 ident: bib8 article-title: CHOPCHOP v2: a web tool for the next generation of CRISPR genome engineering publication-title: Nucleic Acids Research doi: 10.1093/nar/gkw398 – volume: 111 start-page: 12716 year: 2014 ident: bib20 article-title: Targeted gene knockout in chickens mediated by TALENs publication-title: PNAS doi: 10.1073/pnas.1410555111 – volume: 24 start-page: 2581 year: 2018 ident: bib2 article-title: Differential splicing of ANP32A in birds alters its ability to stimulate RNA synthesis by restricted influenza polymerase publication-title: Cell Reports doi: 10.1016/j.celrep.2018.08.012 – volume: 108 start-page: 10243 year: 2011 ident: bib25 article-title: Acidic nuclear phosphoprotein 32kda (ANP32)B-deficient mouse reveals a hierarchy of ANP32 importance in mammalian development publication-title: PNAS doi: 10.1073/pnas.1106211108 – volume: 14 start-page: 479 year: 2016 ident: bib34 article-title: Influenza virus RNA polymerase: insights into the mechanisms of viral RNA synthesis publication-title: Nature Reviews Microbiology doi: 10.1038/nrmicro.2016.87 – volume: 6 year: 2016 ident: bib19 article-title: Targeted mutagenesis in chicken using CRISPR/Cas9 system publication-title: Scientific Reports doi: 10.1038/srep23980 – start-page: 1 year: 2010 ident: bib14 article-title: Creating the CIPRES science gateway for inference of large phylogenetic trees doi: 10.1109/gce.2010.5676129 – volume: 93 start-page: 485 year: 2014 ident: bib36 article-title: RNA-seq analysis revealed novel genes and signaling pathway associated with disease resistance to avian influenza virus infection in chickens publication-title: Poultry Science doi: 10.3382/ps.2013-03557 – volume: 42 start-page: W401 year: 2014 ident: bib16 article-title: CHOPCHOP: a CRISPR/Cas9 and TALEN web tool for genome editing publication-title: Nucleic Acids Research doi: 10.1093/nar/gku410 – volume: 87 start-page: 384 year: 2013 ident: bib15 article-title: Investigation of influenza virus polymerase activity in pig cells publication-title: Journal of Virology doi: 10.1128/JVI.01633-12 – volume: 18 year: 2017 ident: bib27 article-title: ImageJ2: imagej for the next generation of scientific image data publication-title: BMC Bioinformatics doi: 10.1186/s12859-017-1934-z – volume: 4 year: 2015 ident: bib33 article-title: pp32 and APRIL are host cell-derived regulators of influenza virus RNA synthesis from cRNA publication-title: eLife doi: 10.7554/eLife.08939 – volume: 5 start-page: 1171 year: 2015 ident: bib38 article-title: FGF, insulin, and SMAD signaling cooperate for avian primordial germ cell Self-Renewal publication-title: Stem Cell Reports doi: 10.1016/j.stemcr.2015.10.008 – volume: 270 start-page: 617 year: 1977 ident: bib1 article-title: A single gene determines the host range of influenza virus publication-title: Nature doi: 10.1038/270617a0 – volume: 95 start-page: 13726 year: 1998 ident: bib28 article-title: Derivation of pluripotent stem cells from cultured human primordial germ cells publication-title: PNAS doi: 10.1073/pnas.95.23.13726 – volume: 8 year: 2018 ident: bib7 article-title: High fidelity CRISPR/Cas9 increases precise monoallelic and biallelic editing events in primordial germ cells publication-title: Scientific Reports doi: 10.1038/s41598-018-33244-x – volume: 3 year: 2012 ident: bib12 article-title: Adaptive mutations in NEP compensate for defective H5N1 RNA replication in cultured human cells publication-title: Nature Communications doi: 10.1038/ncomms1804 – volume: 12 start-page: 2845 year: 2013 ident: bib17 article-title: Exploration of binary virus-host interactions using an infectious protein complementation assay publication-title: Molecular & Cellular Proteomics doi: 10.1074/mcp.M113.028688 – volume: 25 start-page: 1605 year: 2004 ident: bib22 article-title: UCSF chimera--a visualization system for exploratory research and analysis publication-title: Journal of Computational Chemistry doi: 10.1002/jcc.20084 – volume: 389 start-page: 251 year: 1997 ident: bib11 article-title: Crystal structure of the nucleosome core particle at 2.8 A resolution publication-title: Nature doi: 10.1038/38444 – volume: 67 start-page: 1761 year: 1993 ident: bib32 article-title: A single amino acid in the PB2 gene of influenza A virus is a determinant of host range publication-title: Journal of Virology doi: 10.1128/JVI.67.4.1761-1764.1993 – volume: 154 start-page: 1380 year: 2013 ident: bib24 article-title: Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity publication-title: Cell doi: 10.1016/j.cell.2013.08.021 – volume: 72 start-page: 248 year: 1976 ident: bib3 article-title: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding publication-title: Analytical Biochemistry doi: 10.1016/0003-2697(76)90527-3 – volume: 56 start-page: 475 year: 2000 ident: bib21 article-title: Derivation and characterization of pluripotent embryonic germ cells in chicken publication-title: Molecular Reproduction and Development doi: 10.1002/1098-2795(200008)56:4<475::AID-MRD5>3.0.CO;2-M – volume-title: bioRxiv year: 2019 ident: bib39 article-title: Fundamental contribution and host range determination of ANP32 protein family in influenza A virus polymerase activity doi: 10.1101/529412 – volume: 36 start-page: 1062 year: 2014 ident: bib26 article-title: Cracking the ANP32 whips: important functions, unequal requirement, and hints at disease implications publication-title: BioEssays doi: 10.1002/bies.201400058 – volume: 441 start-page: 766 year: 2006 ident: bib35 article-title: Germline transmission of genetically modified primordial germ cells publication-title: Nature doi: 10.1038/nature04831 – volume: 30 start-page: 1312 year: 2014 ident: bib31 article-title: RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu033 – volume: 57 start-page: 1089 year: 1997 ident: bib29 article-title: Isolation of pluripotent stem cells from cultured porcine primordial germ cells publication-title: Biology of Reproduction doi: 10.1095/biolreprod57.5.1089 – reference: 31179971 - Elife. 2019 Jun 10;8:e48084. doi: 10.7554/eLife.48084. |
SSID | ssj0000748819 |
Score | 2.4592686 |
Snippet | Influenza A viruses (IAV) are subject to species barriers that prevent frequent zoonotic transmission and pandemics. One of these barriers is the poor activity... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
SubjectTerms | Amino acids Animals ANP32A ANP32B Antiviral agents Antiviral drugs Avian influenza Avian influenza viruses Cell Line Cells (Biology) Chickens CRISPR Epidemics gene editing Genes Genomes Genomics Host range Host Specificity Host-Pathogen Interactions Host-virus relationships Humans Infections Influenza Influenza A Influenza A virus - enzymology Influenza A virus - growth & development Influenza viruses Insects Mammals Microbiology and Infectious Disease Nuclear Proteins - metabolism Pandemics Phosphoproteins Phylogenetics Physiological aspects polymerase Proteins RNA polymerase RNA-Binding Proteins - metabolism RNA-Dependent RNA Polymerase - metabolism Species (Biology) Virus Replication Viruses |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBUhUOil9Ltu06KGQKDgxtbKlnzchoQkhFDaBnITGkluDcVb4nUg-fWdkb2bNS300utqvEijJ80bGL1hbA-jGmhETqq9rFPpQ5lWCI3UI5i0gIBZUazyvShPLuXZVXG10eqLasIGeeDBcQdIf0uwkIPILeY6EqxSyHF1kLm0XkX1Uox5G8lUvIMVAjOvhgd5CkPmQThv6vBRFlnUQ7wPQVGp_8_7eCMgTYslN6LP8WP2aKSNfD5M9wnbCu1T9mBoJHn7jJ3FNvKh4_Rwkop_-KrxCV4DvGl53wW-qPn84vNM8KjN0LQdh1sci01K7iyf85vmuu-es8vjo2-HJ-nYJSF1uJhlKpQHCAGPri7QOTVUChzI3EsoSycd-q8spJeZc4WQSCB8AJkFEmYTpMUze8G220UbXjGeq6ChhhkmYVZCVmsQugi584AszBYuYR9WjjNulBCnThY_DaYS5GUTvWyilxO2tzb-NShn_N3sE-3A2oTkruMPCAIzgsD8CwQJ26X9MyRo0VLFzHfbd505_frFzIuqpOfEIk_Y_mhUL3DWzo4PEHDtpIE1sdyZWOKJc9PhFUzMeOI7g1QIM0ecVJWw9-th-pKq2Nqw6MlmRvQ70yphLwdUrddNqkdVJXApaoK3iWOmI23zI-qB4_Zq_N_X_8OTb9hDpIRVLIaTO2x7ed2Ht0i7lvAunrDflOIoNg priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEF_0iuCL-G1qlVUKghCb5DbJ5kmu0lKLHKVa6NuS2d20AUnq5VKof70zm720QfE1Oxcys_O5N_sbxnYxqoFEzQmlEVUojM3CAlUjNKhMMgGLVZHr8l1mR2fi-Dw99wdunW-r3PhE56hNq-mMfA9DDWbmmN0Wn69-hTQ1iv5d9SM07rMtdMEynbGt_YPlyel4yoIBUmLMGy7m5Rg69-y3urKfRBo5XMTbUOQQ-__2y3cC07Rp8k4UOnzMHvn0kS-G_X7C7tnmKXswDJS8ecaO3Th523G6QElNQHwzAAXdAa8b3neWtxVfLE_mCXcYDXXTcbjBNTes5HfJF_y6XvXdc3Z2ePDjy1HopyWEGplZh0luAKxFE5YplHkFRQ4aRGwEZJkWGiNxlgojIq3TRGAiYSyIyBJAW0KYPPMXbNa0jX3FeJxbCRXMsRgrBUSVBJStjbUBzMbKVAfs40ZwSnsocZpo8VNhSUFSVk7Kykk5YLsj8dWAoPFvsn3agZGEYK_dg3Z1obwVKayFMighhiQusfAVyGeOKiGtiEVp8jRg72n_FAFbNNQ5c1H2Xae-fj9Vi7TI6FpxEgfsgyeqWvxqXfqLCMg7YWFNKHcmlGh5erq8URPlLb9Tt3oasHfjMv2Sutka2_ZEM6c0PJJ5wF4OWjXyTehHRZEgK_lE3yaCma409aXDBcftlfje7f9_1mv2EJO-wrW7iR02W696-wYTqzW89dbzB9M7IfU priority: 102 providerName: ProQuest |
Title | Species specific differences in use of ANP32 proteins by influenza A virus |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31159925 https://www.proquest.com/docview/2249667589 https://www.proquest.com/docview/2235071087 https://pubmed.ncbi.nlm.nih.gov/PMC6548507 https://doaj.org/article/8266bab1b21a4024ba777588e414ad75 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swED_6wWAvY99z1wVtFAYDZ7YiWfLTSEdLV7ZQugXyJixZ7gzFXuNkLPvrd5LtUG992Gt0Dr7T73R35vQ7gCOMaloickKZsyJkuU3CFKER5ggmSbXFqsh3-c6Sszk7X_DFDvTDODsDNneWdm6e1Hx5Pf51s_mADo_561hgNHxvP5eFHTOO0XMX9jEkJQ7eX7o83x_JAnHqh3zQiHsu00V7V-_v5wfRyZP4_3tU34pVwz7KW4Hp9CE86DJKMm0h8Ah2bPUY7rUzJjdP4NxPmLcNcXcqXV8Q6Wei4AlByoqsG0vqgkxnFxNKPG1DWTVEb3DNzy_5nZEp-Vku181TmJ-efPt4FnYDFEKDyqxCKnKtrUWvllxnotCp0EazOGc6SQwzGJwTznIWGcMpw9wit5pF1nG2UUfTM3kGe1Vd2RdAYmGlLvQE67OM6aiQmkpuY5NrTNAybgJ41xtOmY5d3A25uFZYZTgrK29l5a0cwNFW-EdLqnG32LHbga2IY8L2P9TLK9U5lsLyKNGZjjWNM6yFGeopsAaSlsUsywUP4I3bP-W4LirXTHOVrZtGffp6qaY8TdxNYxoH8LYTKmp8a5N1dxNQd0ePNZA8HEiiM5rhcg8T1WNZYZaERSW-VBrA6-2ye9I1uFW2XjuZicvMIykCeN6iaqu3I0RKU4qqiAHeBoYZrlTld08Vjtsr8X8P_scIL-E-ZoOp74Njh7C3Wq7tK8y4VnoEu2IhRrB_fDK7uBz57xYj72F_ABogKmM |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6NTQheEL8JDDBoCAkprHGdxHlAqINN7VaqaWzS3rzYcUYllIymBZU_ir-ROycpi0C87TW-JvH5O3936fkOYAtZTUtEji8zkfsis5GfIDT8DMEkubYYFbks30k0PBH7p-HpGvxqz8JQWmW7J7qNOisNfSPfRqpBzxy92-T9xTefukbRv6ttC40aFgd2-QNDturd6COu7yvO93aPPwz9pquAb8JeNPd5nGltLUJdhjqNc53E2mgRZEJHkREGGSsKRSZ6xoRcIOFmVouepUJmnGrX9PG-12AD3YwErWhjZ3dyeLT6qoOELJFj64OAMVL1th1Pc_tW4KOjDvW5DgF_88AlIuwmaV5ivb3bcKtxV9mgxtcdWLPFXbheN7Bc3oN9177eVowObFLSEWsbruD2w6YFW1SWlTkbTA77nLmaENOiYnqJY645ys-UDdj36WxR3YeTK9HjA1gvysI-AhbEVupc9zH4S4Xu5VJzGdrAZBq9vzQ0HrxpFadMU7qcOmh8VRjCkJaV07JyWvZgayV8UVfs-LfYDq3ASoTKbLsL5excNVarMPaKdKoDzYMUA22B84wRgtKKQKRZHHrwktZPUSGNgjJ1ztNFVanR5yM1CJOIjjHzwIPXjVBe4lubtDn4gHOn2lsdyc2OJFq66Q63MFHNTlOpP3bhwYvVMP2SsucKWy5Ipk9uf0_GHjysUbWaN1VbShKOU4k7eOsopjtSTL-4OuS4vBLv-_j_r_UcbgyPP43VeDQ5eAI30eFMXKqd2IT1-Wxhn6JTN9fPGkticHbVxvsbF81eIg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6NTiBeEL8JDDBoCAkptHGdxHlAqGOb1m2qqsGkvZnYcUYllIymBZU_jb-OOycpi0C87TW-JvH5O3936fkOYBtZTUtEji8zkfsis5GfIDT8DMEkubYYFbks30l0cCoOz8KzDfjVnoWhtMp2T3QbdVYa-kbeR6pBzxy926SfN2kR09399xfffOogRf-0tu00aogc2dUPDN-qd-NdXOtXnO_vffpw4DcdBnwTDqKFz-NMa2sR9jLUaZzrJNZGiyATOoqMMMheUSgyMTAm5ALJN7NaDCwVNeNUx2aI970GmzGyouzB5s7eZHqy_sKD5CyRb-tDgTHSdt8ez3L7VuCjow4Num4Bf3PCJVLsJmxeYsD923CrcV3ZqMbaHdiwxV24XjezXN2DQ9fK3laMDm9SAhJrm6_gVsRmBVtWlpU5G02mQ85cfYhZUTG9wjHXKOVnykbs-2y-rO7D6ZXo8QH0irKwj4AFsZU610MMBFOhB7nUXIY2MJlGTzANjQdvWsUp05Qxp24aXxWGM6Rl5bSsnJY92F4LX9TVO_4ttkMrsBahktvuQjk_V40FK4zDIp3qQPMgxaBb4DxjhKO0IhBpFocevKT1U1RUoyB4nqfLqlLjjydqFCYRHWnmgQevG6G8xLc2aXMIAudOdbg6klsdSbR60x1uYaKaXadSf2zEgxfrYfolZdIVtlySzJBCgIGMPXhYo2o9b6q8lCQcpxJ38NZRTHekmH1xNclxeSXe9_H_X-s53ECjVcfjydETuIm-Z-Ky7sQW9BbzpX2K_t1CP2sMicHnq7bd31F-Yk4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Species+specific+differences+in+use+of+ANP32+proteins+by+influenza+A+virus&rft.jtitle=eLife&rft.au=Long%2C+Jason+S&rft.au=Idoko-Akoh%2C+Alewo&rft.au=Mistry%2C+Bhakti&rft.au=Goldhill%2C+Daniel&rft.date=2019-06-04&rft.pub=eLife+Science+Publications%2C+Ltd&rft.issn=2050-084X&rft.eissn=2050-084X&rft.volume=8&rft_id=info:doi/10.7554%2FeLife.45066&rft.externalDBID=ISR&rft.externalDocID=A596802221 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-084X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-084X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-084X&client=summon |