Species specific differences in use of ANP32 proteins by influenza A virus

Influenza A viruses (IAV) are subject to species barriers that prevent frequent zoonotic transmission and pandemics. One of these barriers is the poor activity of avian IAV polymerases in human cells. Differences between avian and mammalian ANP32 proteins underlie this host range barrier. Human ANP3...

Full description

Saved in:
Bibliographic Details
Published ineLife Vol. 8
Main Authors Long, Jason S, Idoko-Akoh, Alewo, Mistry, Bhakti, Goldhill, Daniel, Staller, Ecco, Schreyer, Jocelyn, Ross, Craig, Goodbourn, Steve, Shelton, Holly, Skinner, Michael A, Sang, Helen, McGrew, Michael J, Barclay, Wendy
Format Journal Article
LanguageEnglish
Published England eLife Science Publications, Ltd 04.06.2019
eLife Sciences Publications Ltd
eLife Sciences Publications, Ltd
Subjects
Online AccessGet full text
ISSN2050-084X
2050-084X
DOI10.7554/eLife.45066

Cover

Loading…
Abstract Influenza A viruses (IAV) are subject to species barriers that prevent frequent zoonotic transmission and pandemics. One of these barriers is the poor activity of avian IAV polymerases in human cells. Differences between avian and mammalian ANP32 proteins underlie this host range barrier. Human ANP32A and ANP32B homologues both support function of human-adapted influenza polymerase but do not support efficient activity of avian IAV polymerase which requires avian ANP32A. We show here that the gene currently designated as avian ANP32B is evolutionarily distinct from mammalian ANP32B, and that chicken ANP32B does not support IAV polymerase activity even of human-adapted viruses. Consequently, IAV relies solely on chicken ANP32A to support its replication in chicken cells. Amino acids 129I and 130N, accounted for the inactivity of chicken ANP32B. Transfer of these residues to chicken ANP32A abolished support of IAV polymerase. Understanding ANP32 function will help develop antiviral strategies and aid the design of influenza virus resilient genome edited chickens. The influenza A virus pandemic of 1918 killed more people than the armed conflicts of World War 1. Like all other pandemic and seasonal influenza, this virus originated from bird viruses. In fact, avian influenza viruses continually threaten to spark new outbreaks in humans, but pandemics do not occur often. This is because these viruses must undergo several adaptations before they can replicate in and spread between people. Viruses make new copies of themselves using the molecular machinery of the cells that they invade. The proteins that make up this machinery are often slightly different in different species, and so a virus that can replicate in cells of one species might not be able to do so when it invades a cell from another species. In 2016, researchers discovered that species differences in a cell protein called ANP32A pose a key barrier that avian influenza viruses have to overcome. Now, Long et al. – including some of the researchers involved in the 2016 study – show that the avian influenza virus cannot replicate in chicken cells that lack ANP32A. Exploring closely related versions of the genes that produce ANP32A and its relative ANP32B in different species revealed the region of the protein that the virus relies on to support its replication. Long et al. speculate that by making a few small changes to the ANP32A gene in chickens, it might be possible to generate a gene-edited chicken that is resilient to influenza. Close contact with poultry has led to hundreds of cases of ‘bird ‘flu’ in South East Asia, many of which have been fatal. Moreover, if avian influenza viruses mutate further in an infected person, a new pandemic could begin. Stopping influenza viruses from replicating in chickens would prevent people from being exposed to these dangerous viruses, whilst also improving the welfare of the chickens.
AbstractList Influenza A viruses (IAV) are subject to species barriers that prevent frequent zoonotic transmission and pandemics. One of these barriers is the poor activity of avian IAV polymerases in human cells. Differences between avian and mammalian ANP32 proteins underlie this host range barrier. Human ANP32A and ANP32B homologues both support function of human-adapted influenza polymerase but do not support efficient activity of avian IAV polymerase which requires avian ANP32A. We show here that the gene currently designated as avian ANP32B is evolutionarily distinct from mammalian ANP32B, and that chicken ANP32B does not support IAV polymerase activity even of human-adapted viruses. Consequently, IAV relies solely on chicken ANP32A to support its replication in chicken cells. Amino acids 129I and 130N, accounted for the inactivity of chicken ANP32B. Transfer of these residues to chicken ANP32A abolished support of IAV polymerase. Understanding ANP32 function will help develop antiviral strategies and aid the design of influenza virus resilient genome edited chickens. The influenza A virus pandemic of 1918 killed more people than the armed conflicts of World War 1. Like all other pandemic and seasonal influenza, this virus originated from bird viruses. In fact, avian influenza viruses continually threaten to spark new outbreaks in humans, but pandemics do not occur often. This is because these viruses must undergo several adaptations before they can replicate in and spread between people. Viruses make new copies of themselves using the molecular machinery of the cells that they invade. The proteins that make up this machinery are often slightly different in different species, and so a virus that can replicate in cells of one species might not be able to do so when it invades a cell from another species. In 2016, researchers discovered that species differences in a cell protein called ANP32A pose a key barrier that avian influenza viruses have to overcome. Now, Long et al. – including some of the researchers involved in the 2016 study – show that the avian influenza virus cannot replicate in chicken cells that lack ANP32A. Exploring closely related versions of the genes that produce ANP32A and its relative ANP32B in different species revealed the region of the protein that the virus relies on to support its replication. Long et al. speculate that by making a few small changes to the ANP32A gene in chickens, it might be possible to generate a gene-edited chicken that is resilient to influenza. Close contact with poultry has led to hundreds of cases of ‘bird ‘flu’ in South East Asia, many of which have been fatal. Moreover, if avian influenza viruses mutate further in an infected person, a new pandemic could begin. Stopping influenza viruses from replicating in chickens would prevent people from being exposed to these dangerous viruses, whilst also improving the welfare of the chickens.
Influenza A viruses (IAV) are subject to species barriers that prevent frequent zoonotic transmission and pandemics. One of these barriers is the poor activity of avian IAV polymerases in human cells. Differences between avian and mammalian ANP32 proteins underlie this host range barrier. Human ANP32A and ANP32B homologues both support function of human-adapted influenza polymerase but do not support efficient activity of avian IAV polymerase which requires avian ANP32A. We show here that the gene currently designated as avian ANP32B is evolutionarily distinct from mammalian ANP32B, and that chicken ANP32B does not support IAV polymerase activity even of human-adapted viruses. Consequently, IAV relies solely on chicken ANP32A to support its replication in chicken cells. Amino acids 129I and 130N, accounted for the inactivity of chicken ANP32B. Transfer of these residues to chicken ANP32A abolished support of IAV polymerase. Understanding ANP32 function will help develop antiviral strategies and aid the design of influenza virus resilient genome edited chickens.
Influenza A viruses (IAV) are subject to species barriers that prevent frequent zoonotic transmission and pandemics. One of these barriers is the poor activity of avian IAV polymerases in human cells. Differences between avian and mammalian ANP32 proteins underlie this host range barrier. Human ANP32A and ANP32B homologues both support function of human-adapted influenza polymerase but do not support efficient activity of avian IAV polymerase which requires avian ANP32A. We show here that the gene currently designated as avian ANP32B is evolutionarily distinct from mammalian ANP32B, and that chicken ANP32B does not support IAV polymerase activity even of human-adapted viruses. Consequently, IAV relies solely on chicken ANP32A to support its replication in chicken cells. Amino acids 129I and 130N, accounted for the inactivity of chicken ANP32B. Transfer of these residues to chicken ANP32A abolished support of IAV polymerase. Understanding ANP32 function will help develop antiviral strategies and aid the design of influenza virus resilient genome edited chickens.Influenza A viruses (IAV) are subject to species barriers that prevent frequent zoonotic transmission and pandemics. One of these barriers is the poor activity of avian IAV polymerases in human cells. Differences between avian and mammalian ANP32 proteins underlie this host range barrier. Human ANP32A and ANP32B homologues both support function of human-adapted influenza polymerase but do not support efficient activity of avian IAV polymerase which requires avian ANP32A. We show here that the gene currently designated as avian ANP32B is evolutionarily distinct from mammalian ANP32B, and that chicken ANP32B does not support IAV polymerase activity even of human-adapted viruses. Consequently, IAV relies solely on chicken ANP32A to support its replication in chicken cells. Amino acids 129I and 130N, accounted for the inactivity of chicken ANP32B. Transfer of these residues to chicken ANP32A abolished support of IAV polymerase. Understanding ANP32 function will help develop antiviral strategies and aid the design of influenza virus resilient genome edited chickens.
Influenza A viruses (IAV) are subject to species barriers that prevent frequent zoonotic transmission and pandemics. One of these barriers is the poor activity of avian IAV polymerases in human cells. Differences between avian and mammalian ANP32 proteins underlie this host range barrier. Human ANP32A and ANP32B homologues both support function of human-adapted influenza polymerase but do not support efficient activity of avian IAV polymerase which requires avian ANP32A. We show here that the gene currently designated as avian ANP32B is evolutionarily distinct from mammalian ANP32B, and that chicken ANP32B does not support IAV polymerase activity even of human-adapted viruses. Consequently, IAV relies solely on chicken ANP32A to support its replication in chicken cells. Amino acids 129I and 130N, accounted for the inactivity of chicken ANP32B. Transfer of these residues to chicken ANP32A abolished support of IAV polymerase. Understanding ANP32 function will help develop antiviral strategies and aid the design of influenza virus resilient genome edited chickens. eLife digest The influenza A virus pandemic of 1918 killed more people than the armed conflicts of World War 1. Like all other pandemic and seasonal influenza, this virus originated from bird viruses. In fact, avian influenza viruses continually threaten to spark new outbreaks in humans, but pandemics do not occur often. This is because these viruses must undergo several adaptations before they can replicate in and spread between people. Viruses make new copies of themselves using the molecular machinery of the cells that they invade. The proteins that make up this machinery are often slightly different in different species, and so a virus that can replicate in cells of one species might not be able to do so when it invades a cell from another species. In 2016, researchers discovered that species differences in a cell protein called ANP32A pose a key barrier that avian influenza viruses have to overcome. Now, Long et al. -- including some of the researchers involved in the 2016 study -- show that the avian influenza virus cannot replicate in chicken cells that lack ANP32A. Exploring closely related versions of the genes that produce ANP32A and its relative ANP32B in different species revealed the region of the protein that the virus relies on to support its replication. Long et al. speculate that by making a few small changes to the ANP32A gene in chickens, it might be possible to generate a gene-edited chicken that is resilient to influenza. Close contact with poultry has led to hundreds of cases of 'bird 'flu' in South East Asia, many of which have been fatal. Moreover, if avian influenza viruses mutate further in an infected person, a new pandemic could begin. Stopping influenza viruses from replicating in chickens would prevent people from being exposed to these dangerous viruses, whilst also improving the welfare of the chickens.
Audience Academic
Author Skinner, Michael A
Goodbourn, Steve
Shelton, Holly
Mistry, Bhakti
Goldhill, Daniel
Ross, Craig
Idoko-Akoh, Alewo
Sang, Helen
Barclay, Wendy
McGrew, Michael J
Schreyer, Jocelyn
Staller, Ecco
Long, Jason S
Author_xml – sequence: 1
  givenname: Jason S
  orcidid: 0000-0002-0251-6487
  surname: Long
  fullname: Long, Jason S
  organization: Section of Molecular Virology, Imperial College London, London, United Kingdom
– sequence: 2
  givenname: Alewo
  surname: Idoko-Akoh
  fullname: Idoko-Akoh, Alewo
  organization: The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
– sequence: 3
  givenname: Bhakti
  surname: Mistry
  fullname: Mistry, Bhakti
  organization: Section of Molecular Virology, Imperial College London, London, United Kingdom
– sequence: 4
  givenname: Daniel
  orcidid: 0000-0003-4597-5963
  surname: Goldhill
  fullname: Goldhill, Daniel
  organization: Section of Molecular Virology, Imperial College London, London, United Kingdom
– sequence: 5
  givenname: Ecco
  orcidid: 0000-0002-8443-5559
  surname: Staller
  fullname: Staller, Ecco
  organization: Section of Molecular Virology, Imperial College London, London, United Kingdom
– sequence: 6
  givenname: Jocelyn
  surname: Schreyer
  fullname: Schreyer, Jocelyn
  organization: Section of Molecular Virology, Imperial College London, London, United Kingdom
– sequence: 7
  givenname: Craig
  surname: Ross
  fullname: Ross, Craig
  organization: Institute for Infection and Immunity, St. George's, University of London, London, United Kingdom
– sequence: 8
  givenname: Steve
  surname: Goodbourn
  fullname: Goodbourn, Steve
  organization: Institute for Infection and Immunity, St. George's, University of London, London, United Kingdom
– sequence: 9
  givenname: Holly
  surname: Shelton
  fullname: Shelton, Holly
  organization: Influenza Viruses, The Pirbright Institute, Surrey, United Kingdom
– sequence: 10
  givenname: Michael A
  orcidid: 0000-0002-0050-4167
  surname: Skinner
  fullname: Skinner, Michael A
  organization: Section of Molecular Virology, Imperial College London, London, United Kingdom
– sequence: 11
  givenname: Helen
  surname: Sang
  fullname: Sang, Helen
  organization: The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
– sequence: 12
  givenname: Michael J
  orcidid: 0000-0001-8213-4632
  surname: McGrew
  fullname: McGrew, Michael J
  organization: The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
– sequence: 13
  givenname: Wendy
  orcidid: 0000-0002-3948-0895
  surname: Barclay
  fullname: Barclay, Wendy
  organization: Section of Molecular Virology, Imperial College London, London, United Kingdom
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31159925$$D View this record in MEDLINE/PubMed
BookMark eNptks1v1DAQxSNUREvpiTuKxAWEdrEdO3YuSKuKj0UrQBQkbpbtTBavsvFiJxXlr2eyW0pTNTk4mvnN8-TpPc6OutBBlj2lZC6F4K9h5RuYc0HK8kF2woggM6L4j6Nb38fZWUobgo_kStHqUXZcUCqqiomT7OPFDpyHlKfxbLzLa980EKFzWPRdPiTIQ5MvPn0pWL6LoQffpdxeYa9pB-j-mHyRX_o4pCfZw8a0Cc6uz9Ps-7u3384_zFaf3y_PF6uZwy37GZO1tQBEEiWskY2tpHWW05rbsnTcsbIsBa85cU4wLrEBlhPgFSsYrs2L02x50K2D2ehd9FsTr3QwXu8LIa61ib13LWiFYtZYahk1nDCO90kplAJOuamlQK03B63dYLdQO-j6aNqJ6LTT-Z96HS41rqgEkSjw4loghl8DpF5vfXLQtqaDMCTNWIEYJWpEn99BN2GIHVqFFK_KEjer_lNrgz-AJge8142ieiGqUhHGGEVqfg-Fbw1b7zAijcf6ZODlZACZHn73azOkpJcXX6fss9um3LjxLzUIvDoALoaUIjQ3CCV6jKXex1LvY4k0vUM735veh9FR39478xeDsuEi
CitedBy_id crossref_primary_10_1096_fj_202002006RR
crossref_primary_10_1016_j_virs_2023_10_009
crossref_primary_10_1371_journal_pbio_3001934
crossref_primary_10_1016_j_celrep_2021_109213
crossref_primary_10_3390_pathogens10050630
crossref_primary_10_1038_s41467_024_55034_y
crossref_primary_10_1128_spectrum_02073_21
crossref_primary_10_1016_j_coviro_2023_101363
crossref_primary_10_1080_22221751_2019_1676625
crossref_primary_10_1038_s41579_020_00501_8
crossref_primary_10_1038_s41467_020_17407_x
crossref_primary_10_1038_s41467_024_45205_2
crossref_primary_10_1038_s41586_020_2927_z
crossref_primary_10_1101_cshperspect_a038521
crossref_primary_10_1038_s42003_022_04082_5
crossref_primary_10_1080_21505594_2023_2223057
crossref_primary_10_1146_annurev_virology_100422_023037
crossref_primary_10_7554_eLife_56236
crossref_primary_10_1080_03079457_2022_2130173
crossref_primary_10_1099_jgv_0_001664
crossref_primary_10_1128_JVI_01700_20
crossref_primary_10_1080_00439339_2024_2344124
crossref_primary_10_1016_j_coviro_2023_101335
crossref_primary_10_3390_v12040365
crossref_primary_10_1093_biolre_ioab196
crossref_primary_10_3390_genes11101182
crossref_primary_10_3390_genes14040899
crossref_primary_10_1128_JVI_01353_19
crossref_primary_10_1186_s44149_022_00055_7
crossref_primary_10_1021_jacs_3c06965
crossref_primary_10_1038_s41467_023_41476_3
crossref_primary_10_1128_jvi_02092_21
crossref_primary_10_1111_1751_7915_14389
crossref_primary_10_1128_jvi_00213_23
crossref_primary_10_1177_0023677221998400
crossref_primary_10_1126_sciadv_adg5175
crossref_primary_10_1099_jgv_0_001362
crossref_primary_10_1016_j_psj_2022_102174
crossref_primary_10_1126_sciadv_adj4163
crossref_primary_10_1128_jvi_01840_24
crossref_primary_10_1111_cmi_13170
crossref_primary_10_1016_j_ydbio_2025_02_001
crossref_primary_10_1038_s41467_019_11388_2
crossref_primary_10_1093_nar_gkac410
crossref_primary_10_1021_acsnanoscienceau_1c00009
crossref_primary_10_1038_s41467_024_51007_3
crossref_primary_10_36233_10_36233_0507_4088_213
crossref_primary_10_1038_s41467_023_41308_4
crossref_primary_10_1038_s41467_024_48470_3
crossref_primary_10_1002_wrna_1679
crossref_primary_10_1128_JVI_00217_19
crossref_primary_10_1016_j_tim_2022_09_015
crossref_primary_10_1101_cshperspect_a038307
crossref_primary_10_1080_22221751_2024_2387449
crossref_primary_10_1128_JVI_00132_20
crossref_primary_10_7554_eLife_48084
Cites_doi 10.1093/nar/gkh340
10.1128/JVI.01399-13
10.1038/nprot.2013.143
10.1038/nmeth.1773
10.1016/j.chom.2014.11.002
10.1016/j.celrep.2017.08.061
10.1038/nature16474
10.1016/0092-8674(92)90317-6
10.1073/pnas.96.16.9345
10.1186/s12864-015-1778-8
10.1093/nar/gkw398
10.1073/pnas.1410555111
10.1016/j.celrep.2018.08.012
10.1073/pnas.1106211108
10.1038/nrmicro.2016.87
10.1038/srep23980
10.1109/gce.2010.5676129
10.3382/ps.2013-03557
10.1093/nar/gku410
10.1128/JVI.01633-12
10.1186/s12859-017-1934-z
10.7554/eLife.08939
10.1016/j.stemcr.2015.10.008
10.1038/270617a0
10.1073/pnas.95.23.13726
10.1038/s41598-018-33244-x
10.1038/ncomms1804
10.1074/mcp.M113.028688
10.1002/jcc.20084
10.1038/38444
10.1128/JVI.67.4.1761-1764.1993
10.1016/j.cell.2013.08.021
10.1016/0003-2697(76)90527-3
10.1002/1098-2795(200008)56:4<475::AID-MRD5>3.0.CO;2-M
10.1101/529412
10.1002/bies.201400058
10.1038/nature04831
10.1093/bioinformatics/btu033
10.1095/biolreprod57.5.1089
ContentType Journal Article
Copyright 2019, Long et al.
COPYRIGHT 2019 eLife Science Publications, Ltd.
2019, Long et al. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2019, Long et al 2019 Long et al
Copyright_xml – notice: 2019, Long et al.
– notice: COPYRIGHT 2019 eLife Science Publications, Ltd.
– notice: 2019, Long et al. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2019, Long et al 2019 Long et al
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7X7
7XB
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.7554/eLife.45066
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
Publicly Available Content Database

CrossRef



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2050-084X
ExternalDocumentID oai_doaj_org_article_8266bab1b21a4024ba777588e414ad75
PMC6548507
A596802221
31159925
10_7554_eLife_45066
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations United Kingdom
United Kingdom--UK
GeographicLocations_xml – name: United Kingdom
– name: United Kingdom--UK
GrantInformation_xml – fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/K002465/1
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/P013732/1
– fundername: Wellcome Trust
  grantid: 205100/Z/16/Z
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BBS/E/D/20320000
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/R007292/1
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/P013759/1
– fundername: Wellcome Trust
  grantid: 205100
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BBS/E/I/00007034
– fundername: ;
– fundername: ;
  grantid: 105396/Z/14/Z
– fundername: ;
  grantid: BB/R007292/1
– fundername: ;
  grantid: BBS/E/I/00007034
– fundername: ;
  grantid: Imperial College President's Scholarship
– fundername: ;
  grantid: BB/K002465/1
– fundername: ;
  grantid: 205100
– fundername: ;
  grantid: Principal's Career Development
– fundername: ;
  grantid: BB/P013759/1
– fundername: ;
  grantid: BB/P013732/1
GroupedDBID 53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAKDD
AAYXX
ABUWG
ACGFO
ACGOD
ACPRK
ADBBV
ADRAZ
AENEX
AFKRA
AFPKN
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
CCPQU
CITATION
DIK
DWQXO
EMOBN
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IEA
IHR
INH
INR
ISR
ITC
KQ8
LK8
M1P
M2P
M48
M7P
M~E
NQS
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RHI
RNS
RPM
UKHRP
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
PMFND
3V.
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c506t-27dbbee07085ba7fb97bcb41d4b66c4c266654d40cc524741deb40e4923211543
IEDL.DBID M48
ISSN 2050-084X
IngestDate Wed Aug 27 01:30:28 EDT 2025
Thu Aug 21 14:19:24 EDT 2025
Thu Sep 04 19:02:14 EDT 2025
Fri Jul 25 11:56:12 EDT 2025
Tue Jun 17 21:17:31 EDT 2025
Tue Jun 10 20:13:54 EDT 2025
Fri Jun 27 03:30:36 EDT 2025
Mon Jul 21 06:02:52 EDT 2025
Thu Apr 24 22:58:59 EDT 2025
Tue Jul 01 00:36:14 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords chicken
ANP32A
infectious disease
Influenza
polymerase
microbiology
ANP32B
gene editing
human
virus
Language English
License http://creativecommons.org/licenses/by/4.0
2019, Long et al.
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c506t-27dbbee07085ba7fb97bcb41d4b66c4c266654d40cc524741deb40e4923211543
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3948-0895
0000-0002-0251-6487
0000-0002-0050-4167
0000-0001-8213-4632
0000-0002-8443-5559
0000-0003-4597-5963
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.7554/eLife.45066
PMID 31159925
PQID 2249667589
PQPubID 2045579
ParticipantIDs doaj_primary_oai_doaj_org_article_8266bab1b21a4024ba777588e414ad75
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6548507
proquest_miscellaneous_2235071087
proquest_journals_2249667589
gale_infotracmisc_A596802221
gale_infotracacademiconefile_A596802221
gale_incontextgauss_ISR_A596802221
pubmed_primary_31159925
crossref_primary_10_7554_eLife_45066
crossref_citationtrail_10_7554_eLife_45066
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-06-04
PublicationDateYYYYMMDD 2019-06-04
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-06-04
  day: 04
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle eLife
PublicationTitleAlternate Elife
PublicationYear 2019
Publisher eLife Science Publications, Ltd
eLife Sciences Publications Ltd
eLife Sciences Publications, Ltd
Publisher_xml – name: eLife Science Publications, Ltd
– name: eLife Sciences Publications Ltd
– name: eLife Sciences Publications, Ltd
References Bradford (bib3) 1976; 72
Luger (bib11) 1997; 389
Pettersen (bib22) 2004; 25
Subbarao (bib32) 1993; 67
Domingues (bib5) 2017; 20
Long (bib10) 2016; 529
Reilly (bib25) 2011; 108
Stamatakis (bib31) 2014; 30
Whyte (bib38) 2015; 5
Miller (bib14) 2010
Zhang (bib39) 2019
Labun (bib8) 2016; 44
Ran (bib23) 2013; 8
Almond (bib1) 1977; 270
Neumann (bib18) 1999; 96
Park (bib21) 2000; 56
van de Lavoir (bib35) 2006; 441
Mänz (bib12) 2012; 3
Te Velthuis (bib34) 2016; 14
Montague (bib16) 2014; 42
Munier (bib17) 2013; 12
Park (bib20) 2014; 111
Sugiyama (bib33) 2015; 4
Wang (bib36) 2014; 93
Moncorgé (bib15) 2013; 87
Shim (bib29) 1997; 57
Smith (bib30) 2015; 16
Reilly (bib26) 2014; 36
Shamblott (bib28) 1998; 95
Idoko-Akoh (bib7) 2018; 8
Edgar (bib6) 2004; 32
Long (bib9) 2013; 87
Matsui (bib13) 1992; 70
Oishi (bib19) 2016; 6
Cassonnet (bib4) 2011; 8
Ran (bib24) 2013; 154
Watanabe (bib37) 2014; 16
Baker (bib2) 2018; 24
Rueden (bib27) 2017; 18
31179971 - Elife. 2019 Jun 10;8:e48084. doi: 10.7554/eLife.48084.
References_xml – volume: 32
  start-page: 1792
  year: 2004
  ident: bib6
  article-title: MUSCLE: multiple sequence alignment with high accuracy and high throughput
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gkh340
– volume: 87
  start-page: 9983
  year: 2013
  ident: bib9
  article-title: The effect of the PB2 mutation 627K on highly pathogenic H5N1 avian influenza virus is dependent on the virus lineage
  publication-title: Journal of Virology
  doi: 10.1128/JVI.01399-13
– volume: 8
  start-page: 2281
  year: 2013
  ident: bib23
  article-title: Genome engineering using the CRISPR-Cas9 system
  publication-title: Nature Protocols
  doi: 10.1038/nprot.2013.143
– volume: 8
  start-page: 990
  year: 2011
  ident: bib4
  article-title: Benchmarking a luciferase complementation assay for detecting protein complexes
  publication-title: Nature Methods
  doi: 10.1038/nmeth.1773
– volume: 16
  start-page: 795
  year: 2014
  ident: bib37
  article-title: Influenza virus-host interactome screen as a platform for antiviral drug development
  publication-title: Cell Host & Microbe
  doi: 10.1016/j.chom.2014.11.002
– volume: 20
  start-page: 2538
  year: 2017
  ident: bib5
  article-title: Functional insights into ANP32A-Dependent influenza A virus polymerase host restriction
  publication-title: Cell Reports
  doi: 10.1016/j.celrep.2017.08.061
– volume: 529
  start-page: 101
  year: 2016
  ident: bib10
  article-title: Species difference in ANP32A underlies influenza A virus polymerase host restriction
  publication-title: Nature
  doi: 10.1038/nature16474
– volume: 70
  start-page: 841
  year: 1992
  ident: bib13
  article-title: Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture
  publication-title: Cell
  doi: 10.1016/0092-8674(92)90317-6
– volume: 96
  start-page: 9345
  year: 1999
  ident: bib18
  article-title: Generation of influenza A viruses entirely from cloned cDNAs
  publication-title: PNAS
  doi: 10.1073/pnas.96.16.9345
– volume: 16
  year: 2015
  ident: bib30
  article-title: A comparative analysis of host responses to avian influenza infection in ducks and chickens highlights a role for the interferon-induced transmembrane proteins in viral resistance
  publication-title: BMC Genomics
  doi: 10.1186/s12864-015-1778-8
– volume: 44
  start-page: W272
  year: 2016
  ident: bib8
  article-title: CHOPCHOP v2: a web tool for the next generation of CRISPR genome engineering
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gkw398
– volume: 111
  start-page: 12716
  year: 2014
  ident: bib20
  article-title: Targeted gene knockout in chickens mediated by TALENs
  publication-title: PNAS
  doi: 10.1073/pnas.1410555111
– volume: 24
  start-page: 2581
  year: 2018
  ident: bib2
  article-title: Differential splicing of ANP32A in birds alters its ability to stimulate RNA synthesis by restricted influenza polymerase
  publication-title: Cell Reports
  doi: 10.1016/j.celrep.2018.08.012
– volume: 108
  start-page: 10243
  year: 2011
  ident: bib25
  article-title: Acidic nuclear phosphoprotein 32kda (ANP32)B-deficient mouse reveals a hierarchy of ANP32 importance in mammalian development
  publication-title: PNAS
  doi: 10.1073/pnas.1106211108
– volume: 14
  start-page: 479
  year: 2016
  ident: bib34
  article-title: Influenza virus RNA polymerase: insights into the mechanisms of viral RNA synthesis
  publication-title: Nature Reviews Microbiology
  doi: 10.1038/nrmicro.2016.87
– volume: 6
  year: 2016
  ident: bib19
  article-title: Targeted mutagenesis in chicken using CRISPR/Cas9 system
  publication-title: Scientific Reports
  doi: 10.1038/srep23980
– start-page: 1
  year: 2010
  ident: bib14
  article-title: Creating the CIPRES science gateway for inference of large phylogenetic trees
  doi: 10.1109/gce.2010.5676129
– volume: 93
  start-page: 485
  year: 2014
  ident: bib36
  article-title: RNA-seq analysis revealed novel genes and signaling pathway associated with disease resistance to avian influenza virus infection in chickens
  publication-title: Poultry Science
  doi: 10.3382/ps.2013-03557
– volume: 42
  start-page: W401
  year: 2014
  ident: bib16
  article-title: CHOPCHOP: a CRISPR/Cas9 and TALEN web tool for genome editing
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gku410
– volume: 87
  start-page: 384
  year: 2013
  ident: bib15
  article-title: Investigation of influenza virus polymerase activity in pig cells
  publication-title: Journal of Virology
  doi: 10.1128/JVI.01633-12
– volume: 18
  year: 2017
  ident: bib27
  article-title: ImageJ2: imagej for the next generation of scientific image data
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-017-1934-z
– volume: 4
  year: 2015
  ident: bib33
  article-title: pp32 and APRIL are host cell-derived regulators of influenza virus RNA synthesis from cRNA
  publication-title: eLife
  doi: 10.7554/eLife.08939
– volume: 5
  start-page: 1171
  year: 2015
  ident: bib38
  article-title: FGF, insulin, and SMAD signaling cooperate for avian primordial germ cell Self-Renewal
  publication-title: Stem Cell Reports
  doi: 10.1016/j.stemcr.2015.10.008
– volume: 270
  start-page: 617
  year: 1977
  ident: bib1
  article-title: A single gene determines the host range of influenza virus
  publication-title: Nature
  doi: 10.1038/270617a0
– volume: 95
  start-page: 13726
  year: 1998
  ident: bib28
  article-title: Derivation of pluripotent stem cells from cultured human primordial germ cells
  publication-title: PNAS
  doi: 10.1073/pnas.95.23.13726
– volume: 8
  year: 2018
  ident: bib7
  article-title: High fidelity CRISPR/Cas9 increases precise monoallelic and biallelic editing events in primordial germ cells
  publication-title: Scientific Reports
  doi: 10.1038/s41598-018-33244-x
– volume: 3
  year: 2012
  ident: bib12
  article-title: Adaptive mutations in NEP compensate for defective H5N1 RNA replication in cultured human cells
  publication-title: Nature Communications
  doi: 10.1038/ncomms1804
– volume: 12
  start-page: 2845
  year: 2013
  ident: bib17
  article-title: Exploration of binary virus-host interactions using an infectious protein complementation assay
  publication-title: Molecular & Cellular Proteomics
  doi: 10.1074/mcp.M113.028688
– volume: 25
  start-page: 1605
  year: 2004
  ident: bib22
  article-title: UCSF chimera--a visualization system for exploratory research and analysis
  publication-title: Journal of Computational Chemistry
  doi: 10.1002/jcc.20084
– volume: 389
  start-page: 251
  year: 1997
  ident: bib11
  article-title: Crystal structure of the nucleosome core particle at 2.8 A resolution
  publication-title: Nature
  doi: 10.1038/38444
– volume: 67
  start-page: 1761
  year: 1993
  ident: bib32
  article-title: A single amino acid in the PB2 gene of influenza A virus is a determinant of host range
  publication-title: Journal of Virology
  doi: 10.1128/JVI.67.4.1761-1764.1993
– volume: 154
  start-page: 1380
  year: 2013
  ident: bib24
  article-title: Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity
  publication-title: Cell
  doi: 10.1016/j.cell.2013.08.021
– volume: 72
  start-page: 248
  year: 1976
  ident: bib3
  article-title: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding
  publication-title: Analytical Biochemistry
  doi: 10.1016/0003-2697(76)90527-3
– volume: 56
  start-page: 475
  year: 2000
  ident: bib21
  article-title: Derivation and characterization of pluripotent embryonic germ cells in chicken
  publication-title: Molecular Reproduction and Development
  doi: 10.1002/1098-2795(200008)56:4<475::AID-MRD5>3.0.CO;2-M
– volume-title: bioRxiv
  year: 2019
  ident: bib39
  article-title: Fundamental contribution and host range determination of ANP32 protein family in influenza A virus polymerase activity
  doi: 10.1101/529412
– volume: 36
  start-page: 1062
  year: 2014
  ident: bib26
  article-title: Cracking the ANP32 whips: important functions, unequal requirement, and hints at disease implications
  publication-title: BioEssays
  doi: 10.1002/bies.201400058
– volume: 441
  start-page: 766
  year: 2006
  ident: bib35
  article-title: Germline transmission of genetically modified primordial germ cells
  publication-title: Nature
  doi: 10.1038/nature04831
– volume: 30
  start-page: 1312
  year: 2014
  ident: bib31
  article-title: RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu033
– volume: 57
  start-page: 1089
  year: 1997
  ident: bib29
  article-title: Isolation of pluripotent stem cells from cultured porcine primordial germ cells
  publication-title: Biology of Reproduction
  doi: 10.1095/biolreprod57.5.1089
– reference: 31179971 - Elife. 2019 Jun 10;8:e48084. doi: 10.7554/eLife.48084.
SSID ssj0000748819
Score 2.4592686
Snippet Influenza A viruses (IAV) are subject to species barriers that prevent frequent zoonotic transmission and pandemics. One of these barriers is the poor activity...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
SubjectTerms Amino acids
Animals
ANP32A
ANP32B
Antiviral agents
Antiviral drugs
Avian influenza
Avian influenza viruses
Cell Line
Cells (Biology)
Chickens
CRISPR
Epidemics
gene editing
Genes
Genomes
Genomics
Host range
Host Specificity
Host-Pathogen Interactions
Host-virus relationships
Humans
Infections
Influenza
Influenza A
Influenza A virus - enzymology
Influenza A virus - growth & development
Influenza viruses
Insects
Mammals
Microbiology and Infectious Disease
Nuclear Proteins - metabolism
Pandemics
Phosphoproteins
Phylogenetics
Physiological aspects
polymerase
Proteins
RNA polymerase
RNA-Binding Proteins - metabolism
RNA-Dependent RNA Polymerase - metabolism
Species (Biology)
Virus Replication
Viruses
SummonAdditionalLinks – databaseName: Directory of Open Access Journals (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBUhUOil9Ltu06KGQKDgxtbKlnzchoQkhFDaBnITGkluDcVb4nUg-fWdkb2bNS300utqvEijJ80bGL1hbA-jGmhETqq9rFPpQ5lWCI3UI5i0gIBZUazyvShPLuXZVXG10eqLasIGeeDBcQdIf0uwkIPILeY6EqxSyHF1kLm0XkX1Uox5G8lUvIMVAjOvhgd5CkPmQThv6vBRFlnUQ7wPQVGp_8_7eCMgTYslN6LP8WP2aKSNfD5M9wnbCu1T9mBoJHn7jJ3FNvKh4_Rwkop_-KrxCV4DvGl53wW-qPn84vNM8KjN0LQdh1sci01K7iyf85vmuu-es8vjo2-HJ-nYJSF1uJhlKpQHCAGPri7QOTVUChzI3EsoSycd-q8spJeZc4WQSCB8AJkFEmYTpMUze8G220UbXjGeq6ChhhkmYVZCVmsQugi584AszBYuYR9WjjNulBCnThY_DaYS5GUTvWyilxO2tzb-NShn_N3sE-3A2oTkruMPCAIzgsD8CwQJ26X9MyRo0VLFzHfbd505_frFzIuqpOfEIk_Y_mhUL3DWzo4PEHDtpIE1sdyZWOKJc9PhFUzMeOI7g1QIM0ecVJWw9-th-pKq2Nqw6MlmRvQ70yphLwdUrddNqkdVJXApaoK3iWOmI23zI-qB4_Zq_N_X_8OTb9hDpIRVLIaTO2x7ed2Ht0i7lvAunrDflOIoNg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEF_0iuCL-G1qlVUKghCb5DbJ5kmu0lKLHKVa6NuS2d20AUnq5VKof70zm720QfE1Oxcys_O5N_sbxnYxqoFEzQmlEVUojM3CAlUjNKhMMgGLVZHr8l1mR2fi-Dw99wdunW-r3PhE56hNq-mMfA9DDWbmmN0Wn69-hTQ1iv5d9SM07rMtdMEynbGt_YPlyel4yoIBUmLMGy7m5Rg69-y3urKfRBo5XMTbUOQQ-__2y3cC07Rp8k4UOnzMHvn0kS-G_X7C7tnmKXswDJS8ecaO3Th523G6QElNQHwzAAXdAa8b3neWtxVfLE_mCXcYDXXTcbjBNTes5HfJF_y6XvXdc3Z2ePDjy1HopyWEGplZh0luAKxFE5YplHkFRQ4aRGwEZJkWGiNxlgojIq3TRGAiYSyIyBJAW0KYPPMXbNa0jX3FeJxbCRXMsRgrBUSVBJStjbUBzMbKVAfs40ZwSnsocZpo8VNhSUFSVk7Kykk5YLsj8dWAoPFvsn3agZGEYK_dg3Z1obwVKayFMighhiQusfAVyGeOKiGtiEVp8jRg72n_FAFbNNQ5c1H2Xae-fj9Vi7TI6FpxEgfsgyeqWvxqXfqLCMg7YWFNKHcmlGh5erq8URPlLb9Tt3oasHfjMv2Sutka2_ZEM6c0PJJ5wF4OWjXyTehHRZEgK_lE3yaCma409aXDBcftlfje7f9_1mv2EJO-wrW7iR02W696-wYTqzW89dbzB9M7IfU
  priority: 102
  providerName: ProQuest
Title Species specific differences in use of ANP32 proteins by influenza A virus
URI https://www.ncbi.nlm.nih.gov/pubmed/31159925
https://www.proquest.com/docview/2249667589
https://www.proquest.com/docview/2235071087
https://pubmed.ncbi.nlm.nih.gov/PMC6548507
https://doaj.org/article/8266bab1b21a4024ba777588e414ad75
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swED_6wWAvY99z1wVtFAYDZ7YiWfLTSEdLV7ZQugXyJixZ7gzFXuNkLPvrd5LtUG992Gt0Dr7T73R35vQ7gCOMaloickKZsyJkuU3CFKER5ggmSbXFqsh3-c6Sszk7X_DFDvTDODsDNneWdm6e1Hx5Pf51s_mADo_561hgNHxvP5eFHTOO0XMX9jEkJQ7eX7o83x_JAnHqh3zQiHsu00V7V-_v5wfRyZP4_3tU34pVwz7KW4Hp9CE86DJKMm0h8Ah2bPUY7rUzJjdP4NxPmLcNcXcqXV8Q6Wei4AlByoqsG0vqgkxnFxNKPG1DWTVEb3DNzy_5nZEp-Vku181TmJ-efPt4FnYDFEKDyqxCKnKtrUWvllxnotCp0EazOGc6SQwzGJwTznIWGcMpw9wit5pF1nG2UUfTM3kGe1Vd2RdAYmGlLvQE67OM6aiQmkpuY5NrTNAybgJ41xtOmY5d3A25uFZYZTgrK29l5a0cwNFW-EdLqnG32LHbga2IY8L2P9TLK9U5lsLyKNGZjjWNM6yFGeopsAaSlsUsywUP4I3bP-W4LirXTHOVrZtGffp6qaY8TdxNYxoH8LYTKmp8a5N1dxNQd0ePNZA8HEiiM5rhcg8T1WNZYZaERSW-VBrA6-2ye9I1uFW2XjuZicvMIykCeN6iaqu3I0RKU4qqiAHeBoYZrlTld08Vjtsr8X8P_scIL-E-ZoOp74Njh7C3Wq7tK8y4VnoEu2IhRrB_fDK7uBz57xYj72F_ABogKmM
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6NTQheEL8JDDBoCAkprHGdxHlAqINN7VaqaWzS3rzYcUYllIymBZU_ir-ROycpi0C87TW-JvH5O3936fkOYAtZTUtEji8zkfsis5GfIDT8DMEkubYYFbks30k0PBH7p-HpGvxqz8JQWmW7J7qNOisNfSPfRqpBzxy92-T9xTefukbRv6ttC40aFgd2-QNDturd6COu7yvO93aPPwz9pquAb8JeNPd5nGltLUJdhjqNc53E2mgRZEJHkREGGSsKRSZ6xoRcIOFmVouepUJmnGrX9PG-12AD3YwErWhjZ3dyeLT6qoOELJFj64OAMVL1th1Pc_tW4KOjDvW5DgF_88AlIuwmaV5ivb3bcKtxV9mgxtcdWLPFXbheN7Bc3oN9177eVowObFLSEWsbruD2w6YFW1SWlTkbTA77nLmaENOiYnqJY645ys-UDdj36WxR3YeTK9HjA1gvysI-AhbEVupc9zH4S4Xu5VJzGdrAZBq9vzQ0HrxpFadMU7qcOmh8VRjCkJaV07JyWvZgayV8UVfs-LfYDq3ASoTKbLsL5excNVarMPaKdKoDzYMUA22B84wRgtKKQKRZHHrwktZPUSGNgjJ1ztNFVanR5yM1CJOIjjHzwIPXjVBe4lubtDn4gHOn2lsdyc2OJFq66Q63MFHNTlOpP3bhwYvVMP2SsucKWy5Ipk9uf0_GHjysUbWaN1VbShKOU4k7eOsopjtSTL-4OuS4vBLv-_j_r_UcbgyPP43VeDQ5eAI30eFMXKqd2IT1-Wxhn6JTN9fPGkticHbVxvsbF81eIg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6NTiBeEL8JDDBoCAkptHGdxHlAqGOb1m2qqsGkvZnYcUYllIymBZU_jb-OOycpi0C87TW-JvH5O3936fkOYBtZTUtEji8zkfsis5GfIDT8DMEkubYYFbks30l0cCoOz8KzDfjVnoWhtMp2T3QbdVYa-kbeR6pBzxy926SfN2kR09399xfffOogRf-0tu00aogc2dUPDN-qd-NdXOtXnO_vffpw4DcdBnwTDqKFz-NMa2sR9jLUaZzrJNZGiyATOoqMMMheUSgyMTAm5ALJN7NaDCwVNeNUx2aI970GmzGyouzB5s7eZHqy_sKD5CyRb-tDgTHSdt8ez3L7VuCjow4Num4Bf3PCJVLsJmxeYsD923CrcV3ZqMbaHdiwxV24XjezXN2DQ9fK3laMDm9SAhJrm6_gVsRmBVtWlpU5G02mQ85cfYhZUTG9wjHXKOVnykbs-2y-rO7D6ZXo8QH0irKwj4AFsZU610MMBFOhB7nUXIY2MJlGTzANjQdvWsUp05Qxp24aXxWGM6Rl5bSsnJY92F4LX9TVO_4ttkMrsBahktvuQjk_V40FK4zDIp3qQPMgxaBb4DxjhKO0IhBpFocevKT1U1RUoyB4nqfLqlLjjydqFCYRHWnmgQevG6G8xLc2aXMIAudOdbg6klsdSbR60x1uYaKaXadSf2zEgxfrYfolZdIVtlySzJBCgIGMPXhYo2o9b6q8lCQcpxJ38NZRTHekmH1xNclxeSXe9_H_X-s53ECjVcfjydETuIm-Z-Ky7sQW9BbzpX2K_t1CP2sMicHnq7bd31F-Yk4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Species+specific+differences+in+use+of+ANP32+proteins+by+influenza+A+virus&rft.jtitle=eLife&rft.au=Long%2C+Jason+S&rft.au=Idoko-Akoh%2C+Alewo&rft.au=Mistry%2C+Bhakti&rft.au=Goldhill%2C+Daniel&rft.date=2019-06-04&rft.pub=eLife+Science+Publications%2C+Ltd&rft.issn=2050-084X&rft.eissn=2050-084X&rft.volume=8&rft_id=info:doi/10.7554%2FeLife.45066&rft.externalDBID=ISR&rft.externalDocID=A596802221
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-084X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-084X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-084X&client=summon