Selection and validation of predictive models of radiation effects on tumor growth based on noninvasive imaging data

The use of mathematical and computational models for reliable predictions of tumor growth and decline in living organisms is one of the foremost challenges in modern predictive science, as it must cope with uncertainties in observational data, model selection, model parameters, and model inadequacy,...

Full description

Saved in:
Bibliographic Details
Published inComputer methods in applied mechanics and engineering Vol. 327; no. C; pp. 277 - 305
Main Authors Lima, E.A.B.F., Oden, J.T., Wohlmuth, B., Shahmoradi, A., Hormuth, D.A., Yankeelov, T.E., Scarabosio, L., Horger, T.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.12.2017
Elsevier BV
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The use of mathematical and computational models for reliable predictions of tumor growth and decline in living organisms is one of the foremost challenges in modern predictive science, as it must cope with uncertainties in observational data, model selection, model parameters, and model inadequacy, all for very complex physical and biological systems. In this paper, large classes of parametric models of tumor growth in vascular tissue are discussed including models for radiation therapy. Observational data is obtained from MRI of a murine model of glioma and observed over a period of about three weeks, with X-ray radiation administered 14.5 days into the experimental program. Parametric models of tumor proliferation and decline are presented based on the balance laws of continuum mixture theory, particularly mass balance, and from accepted biological hypotheses on tumor growth. Among these are new model classes that include characterizations of effects of radiation and simple models of mechanical deformation of tumors. The Occam Plausibility Algorithm (OPAL) is implemented to provide a Bayesian statistical calibration of the model classes, 39 models in all, as well as the determination of the most plausible models in these classes relative to the observational data, and to assess model inadequacy through statistical validation processes. Discussions of the numerical analysis of finite element approximations of the system of stochastic, nonlinear partial differential equations characterizing the model classes, as well as the sampling algorithms for Monte Carlo and Markov chain Monte Carlo (MCMC) methods employed in solving the forward stochastic problem, and in computing posterior distributions of parameters and model plausibilities are provided. The results of the analyses described suggest that the general framework developed can provide a useful approach for predicting tumor growth and the effects of radiation. •This paper presents a comprehensive approach to predict the growth of tumors in laboratory animals accounting for uncertainties in data, model selection, model inadequacy, and in model outputs.•Systems of stochastic partial differential equations are derived that characterize models of volume fractions of cell species, mechanical effects, and chemical potentials that depict the evolution of tumor masses.•Non-invasive MRI data on the growth of glioma in the brains of rat subjects are collected to provide a basis for model calibration, validation, and prediction using Bayesian methods.•The Occam Plausibility Algorithm is implemented to determine plausible models and valid models of tumor growth that include the effects of X-ray therapy on tumor viability.•Applications to tumor predictions in two dimensions, corresponding to MRI-tomographic slices, are discussed as well as three-dimensional simulations performed with a model proven valid in the 2D calculations.
AbstractList The use of mathematical and computational models for reliable predictions of tumor growth and decline in living organisms is one of the foremost challenges in modern predictive science, as it must cope with uncertainties in observational data, model selection, model parameters, and model inadequacy, all for very complex physical and biological systems. In this paper, large classes of parametric models of tumor growth in vascular tissue are discussed including models for radiation therapy. Observational data is obtained from MRI of a murine model of glioma and observed over a period of about three weeks, with X-ray radiation administered 14.5 days into the experimental program. Parametric models of tumor proliferation and decline are presented based on the balance laws of continuum mixture theory, particularly mass balance, and from accepted biological hypotheses on tumor growth. Among these are new model classes that include characterizations of effects of radiation and simple models of mechanical deformation of tumors. The Occam Plausibility Algorithm (OPAL) is implemented to provide a Bayesian statistical calibration of the model classes, 39 models in all, as well as the determination of the most plausible models in these classes relative to the observational data, and to assess model inadequacy through statistical validation processes. Discussions of the numerical analysis of finite element approximations of the system of stochastic, nonlinear partial differential equations characterizing the model classes, as well as the sampling algorithms for Monte Carlo and Markov chain Monte Carlo (MCMC) methods employed in solving the forward stochastic problem, and in computing posterior distributions of parameters and model plausibilities are provided. The results of the analyses described suggest that the general framework developed can provide a useful approach for predicting tumor growth and the effects of radiation.
The use of mathematical and computational models for reliable predictions of tumor growth and decline in living organisms is one of the foremost challenges in modern predictive science, as it must cope with uncertainties in observational data, model selection, model parameters, and model inadequacy, all for very complex physical and biological systems. In this paper, large classes of parametric models of tumor growth in vascular tissue are discussed including models for radiation therapy. Observational data is obtained from MRI of a murine model of glioma and observed over a period of about three weeks, with X-ray radiation administered 14.5 days into the experimental program. Parametric models of tumor proliferation and decline are presented based on the balance laws of continuum mixture theory, particularly mass balance, and from accepted biological hypotheses on tumor growth. Among these are new model classes that include characterizations of effects of radiation and simple models of mechanical deformation of tumors. The Occam Plausibility Algorithm (OPAL) is implemented to provide a Bayesian statistical calibration of the model classes, 39 models in all, as well as the determination of the most plausible models in these classes relative to the observational data, and to assess model inadequacy through statistical validation processes. Discussions of the numerical analysis of finite element approximations of the system of stochastic, nonlinear partial differential equations characterizing the model classes, as well as the sampling algorithms for Monte Carlo and Markov chain Monte Carlo (MCMC) methods employed in solving the forward stochastic problem, and in computing posterior distributions of parameters and model plausibilities are provided. The results of the analyses described suggest that the general framework developed can provide a useful approach for predicting tumor growth and the effects of radiation. •This paper presents a comprehensive approach to predict the growth of tumors in laboratory animals accounting for uncertainties in data, model selection, model inadequacy, and in model outputs.•Systems of stochastic partial differential equations are derived that characterize models of volume fractions of cell species, mechanical effects, and chemical potentials that depict the evolution of tumor masses.•Non-invasive MRI data on the growth of glioma in the brains of rat subjects are collected to provide a basis for model calibration, validation, and prediction using Bayesian methods.•The Occam Plausibility Algorithm is implemented to determine plausible models and valid models of tumor growth that include the effects of X-ray therapy on tumor viability.•Applications to tumor predictions in two dimensions, corresponding to MRI-tomographic slices, are discussed as well as three-dimensional simulations performed with a model proven valid in the 2D calculations.
The use of mathematical and computational models for reliable predictions of tumor growth and decline in living organisms is one of the foremost challenges in modern predictive science, as it must cope with uncertainties in observational data, model selection, model parameters, and model inadequacy, all for very complex physical and biological systems. In this paper, large classes of parametric models of tumor growth in vascular tissue are discussed including models for radiation therapy. Observational data is obtained from MRI of a murine model of glioma and observed over a period of about three weeks, with X-ray radiation administered 14.5 days into the experimental program. Parametric models of tumor proliferation and decline are presented based on the balance laws of continuum mixture theory, particularly mass balance, and from accepted biological hypotheses on tumor growth. Among these are new model classes that include characterizations of effects of radiation and simple models of mechanical deformation of tumors. The Occam Plausibility Algorithm (OPAL) is implemented to provide a Bayesian statistical calibration of the model classes, 39 models in all, as well as the determination of the most plausible models in these classes relative to the observational data, and to assess model inadequacy through statistical validation processes. Discussions of the numerical analysis of finite element approximations of the system of stochastic, nonlinear partial differential equations characterizing the model classes, as well as the sampling algorithms for Monte Carlo and Markov chain Monte Carlo (MCMC) methods employed in solving the forward stochastic problem, and in computing posterior distributions of parameters and model plausibilities are provided. The results of the analyses described suggest that the general framework developed can provide a useful approach for predicting tumor growth and the effects of radiation.
The use of mathematical and computational models for reliable predictions of tumor growth and decline in living organisms is one of the foremost challenges in modern predictive science, as it must cope with uncertainties in observational data, model selection, model parameters, and model inadequacy, all for very complex physical and biological systems. In this paper, large classes of parametric models of tumor growth in vascular tissue are discussed including models for radiation therapy. Observational data is obtained from MRI of a murine model of glioma and observed over a period of about three weeks, with X-ray radiation administered 14.5 days into the experimental program. Parametric models of tumor proliferation and decline are presented based on the balance laws of continuum mixture theory, particularly mass balance, and from accepted biological hypotheses on tumor growth. Among these are new model classes that include characterizations of effects of radiation and simple models of mechanical deformation of tumors. The Occam Plausibility Algorithm (OPAL) is implemented to provide a Bayesian statistical calibration of the model classes, 39 models in all, as well as the determination of the most plausible models in these classes relative to the observational data, and to assess model inadequacy through statistical validation processes. Discussions of the numerical analysis of finite element approximations of the system of stochastic, nonlinear partial differential equations characterizing the model classes, as well as the sampling algorithms for Monte Carlo and Markov chain Monte Carlo (MCMC) methods employed in solving the forward stochastic problem, and in computing posterior distributions of parameters and model plausibilities are provided. The results of the analyses described suggest that the general framework developed can provide a useful approach for predicting tumor growth and the effects of radiation.The use of mathematical and computational models for reliable predictions of tumor growth and decline in living organisms is one of the foremost challenges in modern predictive science, as it must cope with uncertainties in observational data, model selection, model parameters, and model inadequacy, all for very complex physical and biological systems. In this paper, large classes of parametric models of tumor growth in vascular tissue are discussed including models for radiation therapy. Observational data is obtained from MRI of a murine model of glioma and observed over a period of about three weeks, with X-ray radiation administered 14.5 days into the experimental program. Parametric models of tumor proliferation and decline are presented based on the balance laws of continuum mixture theory, particularly mass balance, and from accepted biological hypotheses on tumor growth. Among these are new model classes that include characterizations of effects of radiation and simple models of mechanical deformation of tumors. The Occam Plausibility Algorithm (OPAL) is implemented to provide a Bayesian statistical calibration of the model classes, 39 models in all, as well as the determination of the most plausible models in these classes relative to the observational data, and to assess model inadequacy through statistical validation processes. Discussions of the numerical analysis of finite element approximations of the system of stochastic, nonlinear partial differential equations characterizing the model classes, as well as the sampling algorithms for Monte Carlo and Markov chain Monte Carlo (MCMC) methods employed in solving the forward stochastic problem, and in computing posterior distributions of parameters and model plausibilities are provided. The results of the analyses described suggest that the general framework developed can provide a useful approach for predicting tumor growth and the effects of radiation.
Author Lima, E.A.B.F.
Oden, J.T.
Yankeelov, T.E.
Horger, T.
Shahmoradi, A.
Scarabosio, L.
Wohlmuth, B.
Hormuth, D.A.
AuthorAffiliation d Department of Internal Medicine, Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin
c Department of Biomedical Engineering, The University of Texas at Austin
b Technical University of Munich, Germany, Department of Mathematics, Chair of Numerical Mathematics (M2)
a Institute for Computational Engineering and Sciences (ICES), The Center of Computational Oncology (CCO), The University of Texas at Austin
AuthorAffiliation_xml – name: c Department of Biomedical Engineering, The University of Texas at Austin
– name: d Department of Internal Medicine, Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin
– name: b Technical University of Munich, Germany, Department of Mathematics, Chair of Numerical Mathematics (M2)
– name: a Institute for Computational Engineering and Sciences (ICES), The Center of Computational Oncology (CCO), The University of Texas at Austin
Author_xml – sequence: 1
  givenname: E.A.B.F.
  surname: Lima
  fullname: Lima, E.A.B.F.
  email: lima@ices.utexas.edu
  organization: Institute for Computational Engineering and Sciences (ICES), The Center of Computational Oncology (CCO), The University of Texas at Austin, United States
– sequence: 2
  givenname: J.T.
  surname: Oden
  fullname: Oden, J.T.
  email: oden@ices.utexas.edu
  organization: Institute for Computational Engineering and Sciences (ICES), The Center of Computational Oncology (CCO), The University of Texas at Austin, United States
– sequence: 3
  givenname: B.
  surname: Wohlmuth
  fullname: Wohlmuth, B.
  email: wohlmuth@ma.tum.de
  organization: Technical University of Munich, Germany, Department of Mathematics, Chair of Numerical Mathematics (M2)
– sequence: 4
  givenname: A.
  surname: Shahmoradi
  fullname: Shahmoradi, A.
  email: amir@ices.utexas.edu
  organization: Institute for Computational Engineering and Sciences (ICES), The Center of Computational Oncology (CCO), The University of Texas at Austin, United States
– sequence: 5
  givenname: D.A.
  surname: Hormuth
  fullname: Hormuth, D.A.
  email: david.hormuth@utexas.edu
  organization: Institute for Computational Engineering and Sciences (ICES), The Center of Computational Oncology (CCO), The University of Texas at Austin, United States
– sequence: 6
  givenname: T.E.
  surname: Yankeelov
  fullname: Yankeelov, T.E.
  email: thomas.yankeelov@utexas.edu
  organization: Institute for Computational Engineering and Sciences (ICES), The Center of Computational Oncology (CCO), The University of Texas at Austin, United States
– sequence: 7
  givenname: L.
  surname: Scarabosio
  fullname: Scarabosio, L.
  email: scarabos@ma.tum.de
  organization: Technical University of Munich, Germany, Department of Mathematics, Chair of Numerical Mathematics (M2)
– sequence: 8
  givenname: T.
  surname: Horger
  fullname: Horger, T.
  email: horger@ma.tum.de
  organization: Technical University of Munich, Germany, Department of Mathematics, Chair of Numerical Mathematics (M2)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29269963$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/1495602$$D View this record in Osti.gov
BookMark eNp9Uk1v1DAUtFAR3RZ-ABcUwYVLgp3EcSwkJFTxJVXiAJwtx37Z9SqxFzsJ4t_z0pQKeqgvlp9nxm-e54Kc-eCBkOeMFoyy5s2xMKMuSspEQduCUvmI7FgrZF6yqj0jO0prnou25OfkIqUjxdWy8gk5L2XZSNlUOzJ9gwHM5ILPtLfZogdn9c0x9NkpgnV4uUA2BgtDWotRW7choO-RikWfTfMYYraP4dd0yDqdwK5VbNf5RadVwI167_w-Q3X9lDzu9ZDg2e1-SX58_PD96nN-_fXTl6v317nhtJlyNFb3XDKhm66uja0ryrq-FJILqmnHK9HTVtKGgbS8o1VlmQTd1l3HrUV_1SV5t-me5m4Ea8BPUQ_qFLGZ-FsF7dT_N94d1D4siouqZlWNAi83gZAmp5JxE5iDCd6jb8VqyRtaIuj17Ssx_JwhTWp0ycAwaA9hTopJgbNuOKsQ-uoe9Bjm6HEGiGpbRgVvVsEX_7Z91-_fX0MA2wAmhpQi9HcQRtWaDHVUmAy1JkPRVmEykCPucdDNzT-iczc8yHy7MTEAsDiI6yDAG8xGXOdgg3uA_QflmtNq
CitedBy_id crossref_primary_10_1016_j_cma_2022_115484
crossref_primary_10_1142_S0218202520500220
crossref_primary_10_1017_S096249291800003X
crossref_primary_10_1137_21M1391249
crossref_primary_10_1016_j_cma_2020_112843
crossref_primary_10_1016_j_cma_2020_113410
crossref_primary_10_1007_s00285_022_01828_x
crossref_primary_10_3390_jcm9051314
crossref_primary_10_1007_s10237_021_01488_8
crossref_primary_10_1038_s41598_018_32347_9
crossref_primary_10_1142_S0218202519500519
crossref_primary_10_1007_s11081_021_09600_8
crossref_primary_10_1002_num_23159
crossref_primary_10_1016_j_cma_2022_115517
crossref_primary_10_1200_CCI_18_00055
crossref_primary_10_1109_TMI_2024_3494022
crossref_primary_10_1146_annurev_bioeng_081623_025834
crossref_primary_10_1007_s00366_023_01873_0
crossref_primary_10_3389_frai_2023_1222612
crossref_primary_10_1016_j_camwa_2024_12_023
crossref_primary_10_1109_TMI_2023_3267349
crossref_primary_10_1063_5_0190561
crossref_primary_10_1109_TMAG_2021_3069167
crossref_primary_10_1080_14737140_2018_1527689
crossref_primary_10_1088_1361_6544_abe75d
crossref_primary_10_1016_j_nonrwa_2020_103192
crossref_primary_10_1016_j_jcp_2022_111575
crossref_primary_10_1137_20M1372093
crossref_primary_10_1016_j_nonrwa_2021_103331
crossref_primary_10_1016_j_cma_2023_116595
crossref_primary_10_1142_S0218202521500299
crossref_primary_10_1137_18M1210034
crossref_primary_10_1098_rsif_2019_0195
crossref_primary_10_1007_s00245_018_9491_z
crossref_primary_10_1021_acs_jpcc_0c06470
crossref_primary_10_1016_j_jtbi_2022_111248
crossref_primary_10_1063_5_0086789
crossref_primary_10_1146_annurev_bioeng_062117_121105
crossref_primary_10_1016_j_cma_2018_12_008
crossref_primary_10_1016_j_jocs_2023_102006
crossref_primary_10_1115_1_4054925
crossref_primary_10_1016_j_addr_2022_114367
crossref_primary_10_1016_j_isci_2022_105430
crossref_primary_10_1115_1_4039689
crossref_primary_10_1073_pnas_1815735116
crossref_primary_10_1016_j_surfcoat_2021_127989
crossref_primary_10_1137_19M1275280
crossref_primary_10_1007_s12672_024_01442_x
crossref_primary_10_1007_s11538_023_01151_6
crossref_primary_10_1093_imamat_hxab009
crossref_primary_10_1002_stc_2780
crossref_primary_10_1007_s00466_023_02284_0
crossref_primary_10_3390_cancers13123008
crossref_primary_10_1017_S0956792521000012
crossref_primary_10_1515_anona_2020_0100
crossref_primary_10_1007_s11081_018_9390_9
Cites_doi 10.1103/PhysRevLett.57.2607
10.1088/0031-9155/55/9/001
10.1088/0031-9155/58/17/5851
10.1142/S0218202514500304
10.1007/s00285-008-0219-6
10.1126/scitranslmed.3005686
10.1016/j.cma.2016.08.024
10.1002/mrm.23203
10.1016/j.ejmp.2016.08.020
10.1109/42.563664
10.1063/1.1699114
10.1016/S0092-8674(00)81683-9
10.1093/biomet/57.1.97
10.1088/1478-3975/12/4/046006
10.1593/neo.81328
10.1158/0008-5472.CAN-14-2945
10.1007/s11831-015-9156-x
10.1158/0008-5472.CAN-14-2233
10.1016/0167-2789(95)00173-5
10.1142/S021820251550044X
10.1007/s00366-006-0049-3
10.2174/157340507780619179
10.1016/j.jtbi.2016.01.018
10.1142/S021820251650055X
10.1142/S0218202510004313
10.1142/S0218202508002796
10.1016/j.cell.2011.02.013
10.1615/Int.J.UncertaintyQuantification.2011003499
10.1007/s00285-012-0595-9
10.1016/j.mri.2010.10.003
10.1098/rsif.2016.1010
10.2307/3574407
10.1016/j.jcp.2015.03.071
ContentType Journal Article
Copyright 2017
Copyright Elsevier BV Dec 1, 2017
Copyright_xml – notice: 2017
– notice: Copyright Elsevier BV Dec 1, 2017
DBID AAYXX
CITATION
NPM
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
7X8
OTOTI
5PM
DOI 10.1016/j.cma.2017.08.009
DatabaseName CrossRef
PubMed
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
OSTI.GOV
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList PubMed

Civil Engineering Abstracts

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1879-2138
EndPage 305
ExternalDocumentID PMC5734134
1495602
29269963
10_1016_j_cma_2017_08_009
S0045782517305893
Genre Journal Article
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: U01 CA174706
– fundername: NCI NIH HHS
  grantid: R01 CA186193
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
TN5
WH7
XPP
ZMT
~02
~G-
29F
AAQXK
AATTM
AAXKI
AAYOK
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
SSH
VH1
VOH
WUQ
ZY4
NPM
7SC
7TB
8FD
EFKBS
FR3
JQ2
KR7
L7M
L~C
L~D
7X8
AALMO
AAPBV
ABPIF
ABPTK
OTOTI
PQEST
5PM
ID FETCH-LOGICAL-c506t-2014f5917a6b44cd4301bf279570a0b537f089061e9d5b033d19ea84bb5dd6993
IEDL.DBID .~1
ISSN 0045-7825
IngestDate Thu Aug 21 17:50:42 EDT 2025
Fri May 19 00:38:46 EDT 2023
Fri Jul 11 03:52:14 EDT 2025
Sun Jul 13 04:29:36 EDT 2025
Wed Feb 19 02:44:24 EST 2025
Thu Apr 24 22:58:19 EDT 2025
Tue Jul 01 04:06:03 EDT 2025
Fri Feb 23 02:24:27 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue C
Keywords Model plausibilities
Monte Carlo methods
Calibration and Validation of Phenomenological models
MRI imaging
Bayesian inference
Cancer
statistical sampling
phenomenological models
radiotherapy
model plausibilities
calibration
validation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c506t-2014f5917a6b44cd4301bf279570a0b537f089061e9d5b033d19ea84bb5dd6993
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
USDOE Office of Science (SC), Advanced Scientific Computing Research (ASCR)
5C0009286
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/5734134
PMID 29269963
PQID 1988107562
PQPubID 2045269
PageCount 29
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5734134
osti_scitechconnect_1495602
proquest_miscellaneous_1979966513
proquest_journals_1988107562
pubmed_primary_29269963
crossref_primary_10_1016_j_cma_2017_08_009
crossref_citationtrail_10_1016_j_cma_2017_08_009
elsevier_sciencedirect_doi_10_1016_j_cma_2017_08_009
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-12-01
PublicationDateYYYYMMDD 2017-12-01
PublicationDate_xml – month: 12
  year: 2017
  text: 2017-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
– name: Amsterdam
PublicationTitle Computer methods in applied mechanics and engineering
PublicationTitleAlternate Comput Methods Appl Mech Eng
PublicationYear 2017
Publisher Elsevier B.V
Elsevier BV
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
– name: Elsevier
References Weis, Miga, Arlinghaus, Li, Chakravarthy, Abramson, Farley, Yankeelov (b29) 2013; 58
Gurtin (b38) 1996; 92
Kirk, Peterson, Stogner, Carey (b39) 2006; 22
Borasi, Nahum (b37) 2016; 32
Yankeelov, Atuegwu, Hormuth II, Weis, Barnes, Miga, Rericha, Quaranta (b25) 2013; 5
Bellomo, Li, Maini (b2) 2008; 18
Elkind, Whitmore (b17) 1967
Bodgi, Canet, Pujo-Menjouet, Lesne, Victor, Foray (b19) 2016; 394
Cristini, Lowengrub (b4) 2010
Maes, Collignon, Vandermeulen, Marchal, Suetens (b34) 1997; 16
Oden, Hawkins, Prudhomme (b11) 2010; 20
Hanahan, Weinberg (b14) 2000; 100
Swendsen, Wang (b46) 1986; 57
Bowen (b13) 1976
Jaynes (b20) 2003
Oden, Lima, Almeida, Feng, Rylander, Fuentes, Faghihi, Rahman, DeWitt, Gadde, Zhou (b3) 2016; 23
Lima, Oden, Hormuth II, Yankeelov, Almeida (b6) 2016; 26
Atuegwu, Gore, Yankeelov (b24) 2010; 55
Bellomo, Bellouquid, Tao, Winkler (b1) 2015; 25
Hormuth II, Weis, Eldridge, Miga, Rericha, Quaranta, Yankeelov (b32) 2017; 77
Lima, Oden, Almeida (b10) 2014; 24
Yankeelov, Quaranta, Evans, Rericha (b26) 2015; 75
Colvin, Loveless, Does, Yue, Yankeelov, Gore (b33) 2011; 29
Oden (b12) 2017
Hanahan, Weinberg (b15) 2011; 144
Eyre (b40) 1998; vol. 529
Douglas, Fowler (b35) 1976; 66
Deisboeck, Stamatakos (b5) 2010
Weis, Miga, Yankeelov (b27) 2017; 314
Hastings (b45) 1970; 57
Hawkins-Daarud, Prudhomme, van der Zee, Oden (b9) 2013; 67
Padhani, Liu, Mu-Koh, Chenevert, Thoeny, Takahara, Dzik-Jurasz, Ross, Van Cauteren, Collins (b22) 2009; 11
Prudencio, Schulz (b42) 2012; vol. 7155
.
Kellerer, Rossi (b18) 1974
Crowther (b16) 1924; 96
Farrell, Oden, Faghihi (b7) 2015; 295
Yankeelov, Gore (b21) 2009; 3
K.C. Estacio-Hiroms, E.E. Prudencio, N.P. Malaya, M. Vohra, D. McDougall, The QUESO Library, User’s Manual, 2016. ArXiv preprint
Metropolis, Rosenbluth, Rosenbluth, Teller, Teller (b44) 1953; 21
Oden, Babuska, Faghihi (b8) 2017
Weis, Miga, Arlinghaus, Li, Abramson, Chakravarthy, Pendyala, Yankeelov (b28) 2015; 75
Rockne, Alvord, Rockhill, Swanson (b36) 2009; 58
Hormuth II, Weis, Barnes, Miga, Rericha, Quaranta, Yankeelov (b30) 2015; 12
Hormuth II, Weis, Barnes, Miga, Rericha, Quaranta, Yankeelov (b31) 2017; 14
Prudencio, Cheung (b41) 2012; 2
Atuegwu, Arlinghaus, Li, Welch, Chakravarthy, Gore, Yankeelov (b23) 2011; 66
Rockne (10.1016/j.cma.2017.08.009_b36) 2009; 58
Padhani (10.1016/j.cma.2017.08.009_b22) 2009; 11
Eyre (10.1016/j.cma.2017.08.009_b40) 1998; vol. 529
Bellomo (10.1016/j.cma.2017.08.009_b2) 2008; 18
Douglas (10.1016/j.cma.2017.08.009_b35) 1976; 66
Cristini (10.1016/j.cma.2017.08.009_b4) 2010
Crowther (10.1016/j.cma.2017.08.009_b16) 1924; 96
Weis (10.1016/j.cma.2017.08.009_b27) 2017; 314
Kirk (10.1016/j.cma.2017.08.009_b39) 2006; 22
Yankeelov (10.1016/j.cma.2017.08.009_b21) 2009; 3
Atuegwu (10.1016/j.cma.2017.08.009_b23) 2011; 66
Lima (10.1016/j.cma.2017.08.009_b10) 2014; 24
10.1016/j.cma.2017.08.009_b43
Elkind (10.1016/j.cma.2017.08.009_b17) 1967
Weis (10.1016/j.cma.2017.08.009_b29) 2013; 58
Lima (10.1016/j.cma.2017.08.009_b6) 2016; 26
Bellomo (10.1016/j.cma.2017.08.009_b1) 2015; 25
Atuegwu (10.1016/j.cma.2017.08.009_b24) 2010; 55
Hormuth II (10.1016/j.cma.2017.08.009_b32) 2017; 77
Maes (10.1016/j.cma.2017.08.009_b34) 1997; 16
Oden (10.1016/j.cma.2017.08.009_b12) 2017
Borasi (10.1016/j.cma.2017.08.009_b37) 2016; 32
Bodgi (10.1016/j.cma.2017.08.009_b19) 2016; 394
Kellerer (10.1016/j.cma.2017.08.009_b18) 1974
Hanahan (10.1016/j.cma.2017.08.009_b15) 2011; 144
Deisboeck (10.1016/j.cma.2017.08.009_b5) 2010
Metropolis (10.1016/j.cma.2017.08.009_b44) 1953; 21
Swendsen (10.1016/j.cma.2017.08.009_b46) 1986; 57
Hanahan (10.1016/j.cma.2017.08.009_b14) 2000; 100
Yankeelov (10.1016/j.cma.2017.08.009_b26) 2015; 75
Hastings (10.1016/j.cma.2017.08.009_b45) 1970; 57
Yankeelov (10.1016/j.cma.2017.08.009_b25) 2013; 5
Prudencio (10.1016/j.cma.2017.08.009_b41) 2012; 2
Oden (10.1016/j.cma.2017.08.009_b11) 2010; 20
Bowen (10.1016/j.cma.2017.08.009_b13) 1976
Oden (10.1016/j.cma.2017.08.009_b8) 2017
Jaynes (10.1016/j.cma.2017.08.009_b20) 2003
Hawkins-Daarud (10.1016/j.cma.2017.08.009_b9) 2013; 67
Weis (10.1016/j.cma.2017.08.009_b28) 2015; 75
Colvin (10.1016/j.cma.2017.08.009_b33) 2011; 29
Hormuth II (10.1016/j.cma.2017.08.009_b30) 2015; 12
Prudencio (10.1016/j.cma.2017.08.009_b42) 2012; vol. 7155
Hormuth II (10.1016/j.cma.2017.08.009_b31) 2017; 14
Farrell (10.1016/j.cma.2017.08.009_b7) 2015; 295
Gurtin (10.1016/j.cma.2017.08.009_b38) 1996; 92
Oden (10.1016/j.cma.2017.08.009_b3) 2016; 23
21956404 - Magn Reson Med. 2011 Dec;66(6):1689-96
19186405 - Neoplasia. 2009 Feb;11(2):102-25
20371913 - Phys Med Biol. 2010 May 7;55(9):2429-49
23920113 - Phys Med Biol. 2013 Sep 7;58(17 ):5851-66
23720579 - Sci Transl Med. 2013 May 29;5(187):187ps9
10647931 - Cell. 2000 Jan 7;100(1):57-70
26040472 - Phys Biol. 2015 Jun 04;12(4):046006
10033814 - Phys Rev Lett. 1986 Nov 24;57(21):2607-2609
25592148 - Cancer Res. 2015 Mar 15;75(6):918-23
28827890 - Math Models Methods Appl Sci. 2016 Nov;26(12 ):2341-2368
21376230 - Cell. 2011 Mar 4;144(5):646-74
1265229 - Radiat Res. 1976 May;66(2):401-26
26333809 - Cancer Res. 2015 Nov 15;75(22):4697-707
26807808 - J Theor Biol. 2016 Apr 7;394:93-101
28330985 - J R Soc Interface. 2017 Mar;14 (128)
27589895 - Phys Med. 2016 Sep;32(9):1175-9
21190804 - Magn Reson Imaging. 2011 Apr;29(3):315-23
9101328 - IEEE Trans Med Imaging. 1997 Apr;16(2):187-98
18815786 - J Math Biol. 2009 Apr;58(4-5):561-78
28042181 - Comput Methods Appl Mech Eng. 2017 Feb 1;314:494-512
19829742 - Curr Med Imaging Rev. 2009 May 1;3(2):91-107
23053536 - J Math Biol. 2013 Dec;67(6-7):1457-85
References_xml – volume: 100
  start-page: 57
  year: 2000
  end-page: 70
  ident: b14
  article-title: The hallmarks of cancer
  publication-title: Cell
– volume: 67
  start-page: 1457
  year: 2013
  end-page: 1485
  ident: b9
  article-title: Bayesian calibration, validation, and uncertainty quantification of diffuse interface models of tumor growth
  publication-title: J. Math. Biol.
– volume: 20
  start-page: 477
  year: 2010
  end-page: 517
  ident: b11
  article-title: General diffuse-interface theories and an approach to predictive tumor growth modeling
  publication-title: Math. Models Methods Appl. Sci.
– volume: 314
  start-page: 494
  year: 2017
  end-page: 512
  ident: b27
  article-title: Three-dimensional image-based mechanical modeling for predicting the response of breast cancer to neoadjuvant therapy
  publication-title: Comput. Methods Appl. Mech. Engrg.
– year: 2017
  ident: b12
  publication-title: Foundations of Predictive Computational Sciences. ICES Reports
– volume: 144
  start-page: 646
  year: 2011
  end-page: 674
  ident: b15
  article-title: Hallmarks of cancer: The next generation
  publication-title: Cell
– volume: 25
  start-page: 1663
  year: 2015
  end-page: 1763
  ident: b1
  article-title: Toward a mathematical theory of Keller–Segel models of pattern formation in biological tissues
  publication-title: Math. Models Methods Appl. Sci.
– volume: 295
  start-page: 189
  year: 2015
  end-page: 208
  ident: b7
  article-title: A Bayesian framework for adaptive selection, calibration, and validation of coarse-grained models of atomistic systems
  publication-title: J. Comput. Phys.
– year: 1967
  ident: b17
  publication-title: Radiobiology of Cultured Mammalian Cells
– volume: 55
  start-page: 2429
  year: 2010
  end-page: 2449
  ident: b24
  article-title: The integration of quantitative multi-modality imaging data into mathematical models of tumors
  publication-title: Phys. Med. Biol.
– volume: 57
  start-page: 2607
  year: 1986
  ident: b46
  article-title: Replica Monte Carlo simulation of spin-glasses
  publication-title: Phys. Rev. Lett.
– year: 1976
  ident: b13
  article-title: Theory of mixtures
  publication-title: Continuum Physics III
– volume: 77
  year: 2017
  ident: b32
  article-title: Abstract A09: Predicting response to whole brain radiotherapy in a murine model of glioma
– volume: 75
  start-page: 4697
  year: 2015
  end-page: 4707
  ident: b28
  article-title: Predicting the response of breast cancer to neoadjuvant therapy using a mechanically coupled reaction–diffusion model
  publication-title: Cancer Res.
– volume: 32
  start-page: 1175
  year: 2016
  end-page: 1179
  ident: b37
  article-title: Modelling the radiotherapy effect in the reaction-diffusion equation
  publication-title: Phys. Med.
– volume: 22
  start-page: 237
  year: 2006
  end-page: 254
  ident: b39
  article-title: : A C++ library for parallel adaptive mesh refinement/coarsening simulations
  publication-title: Eng. Comput.
– reference: K.C. Estacio-Hiroms, E.E. Prudencio, N.P. Malaya, M. Vohra, D. McDougall, The QUESO Library, User’s Manual, 2016. ArXiv preprint
– year: 2010
  ident: b4
  publication-title: Multiscale Modeling of Cancer: An Integrated Experimental and Mathematical Modeling Approach
– volume: 5
  start-page: 187ps9
  year: 2013
  ident: b25
  article-title: Clinically Relevant Modeling of Tumor Growth and Treatment Response
  publication-title: Sci. Translat. Med.
– volume: vol. 7155
  start-page: 398
  year: 2012
  end-page: 407
  ident: b42
  article-title: The Parallel C++ Statistical Library ‘QUESO’: Quantification of Uncertainty for Estimation, Simulation and Optimization
  publication-title: Euro-Par 2011: Parallel Processing Workshops
– volume: 21
  start-page: 1087
  year: 1953
  end-page: 1092
  ident: b44
  article-title: Equation of state calculations by fast computing machines
  publication-title: J. Chem. Phys.
– volume: 26
  start-page: 2341
  year: 2016
  end-page: 2368
  ident: b6
  article-title: Selection, calibration, and validation of models of tumor growth
  publication-title: Math. Models Methods Appl. Sci.
– volume: 24
  start-page: 2569
  year: 2014
  end-page: 2599
  ident: b10
  article-title: A hybrid ten-species phase-field model of tumor growth
  publication-title: Math. Models Methods Appl. Sci.
– volume: 96
  start-page: 207
  year: 1924
  end-page: 211
  ident: b16
  article-title: Some considerations relative to the action of x-rays on tissue cells
  publication-title: Proc. R. Soc. Lond. [Biol.]
– volume: 3
  start-page: 91
  year: 2009
  end-page: 107
  ident: b21
  article-title: Dynamic contrast enhanced magnetic resonance imaging in oncology: theory, data acquisition, analysis, and examples
  publication-title: Curr. Med. Imaging Rev.
– volume: 57
  start-page: 97
  year: 1970
  end-page: 109
  ident: b45
  article-title: Monte Carlo sampling methods using Markov chains and their applications
  publication-title: Biometrika
– volume: 92
  start-page: 178
  year: 1996
  end-page: 192
  ident: b38
  article-title: Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance
  publication-title: Physica D
– volume: 29
  start-page: 315
  year: 2011
  end-page: 323
  ident: b33
  article-title: Earlier detection of tumor treatment response using magnetic resonance diffusion imaging with oscillating gradients
  publication-title: Magn. Reson. Imaging
– volume: 58
  start-page: 5851
  year: 2013
  ident: b29
  article-title: A mechanically coupled reaction–diffusion model for predicting the response of breast tumors to neoadjuvant chemotherapy
  publication-title: Phys. Med. Biol.
– volume: 23
  start-page: 735
  year: 2016
  end-page: 779
  ident: b3
  article-title: Toward predictive multiscale modeling of vascular tumor growth
  publication-title: Arch. Comput. Methods Eng.
– volume: 14
  start-page: 20161010
  year: 2017
  ident: b31
  article-title: A mechanically coupled reaction–diffusion model that incorporates intra-tumoural heterogeneity to predict in vivo glioma growth
  publication-title: J. R. Soc. Interface
– volume: 66
  start-page: 401
  year: 1976
  end-page: 426
  ident: b35
  article-title: The effect of multiple small doses of X rays on skin reactions in the mouse and a basic interpretation
  publication-title: Radiat. Res.
– volume: vol. 529
  start-page: 39
  year: 1998
  end-page: 46
  ident: b40
  article-title: Unconditionally gradient stable time marching the cahn-Hilliard equation
  publication-title: Computational and Mathematical Models of Microstructural Evolution
– reference: .
– volume: 2
  start-page: 215
  year: 2012
  end-page: 237
  ident: b41
  article-title: Parallel adaptive multilevel sampling algorithms for the Bayesian analysis of mathematical models
  publication-title: Int. J. Uncertain. Quantif.
– volume: 394
  start-page: 93
  year: 2016
  end-page: 101
  ident: b19
  article-title: Mathematical models of radiation action on living cells: From the target theory to the modern approaches. A historical and critical review
  publication-title: J. Theoret. Biol.
– volume: 12
  year: 2015
  ident: b30
  article-title: Predicting in vivo glioma growth with the reaction diffusion equation constrained by quantitative magnetic resonance imaging data
  publication-title: Phys. Biol.
– start-page: 85
  year: 1974
  end-page: 158
  ident: b18
  article-title: The theory of dual radiation action
  publication-title: Curr. Top. Radiat. Res. Quart.
– volume: 58
  start-page: 561
  year: 2009
  ident: b36
  article-title: A mathematical model for brain tumor response to radiation therapy
  publication-title: J. Math. Biol.
– year: 2017
  ident: b8
  article-title: Predictive computational science: Computer predictions in the presence of uncertainty
  publication-title: Encyclopedia of Computational Mechanics
– volume: 11
  start-page: 102
  year: 2009
  end-page: 125
  ident: b22
  article-title: Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations
  publication-title: Neoplasia
– year: 2010
  ident: b5
  publication-title: Multiscale Cancer Modeling
– volume: 16
  start-page: 187
  year: 1997
  end-page: 198
  ident: b34
  article-title: Multimodality image registration by maximization of mutual information
  publication-title: IEEE Trans. Med. Imaging
– volume: 18
  start-page: 593
  year: 2008
  end-page: 646
  ident: b2
  article-title: On the foundations of cancer modelling: selected topics, speculations, and perspectives
  publication-title: Math. Models Methods Appl. Sci.
– year: 2003
  ident: b20
  publication-title: Probability Theory: The Logic of Science
– volume: 75
  start-page: 918
  year: 2015
  end-page: 923
  ident: b26
  article-title: Toward a science of tumor forecasting for clinical oncology
  publication-title: Cancer Res.
– volume: 66
  start-page: 1689
  year: 2011
  end-page: 1696
  ident: b23
  article-title: Integration of diffusion-weighted MRI data and a simple mathematical model to predict breast tumor cellularity during neoadjuvant chemotherapy
  publication-title: Magn. Reson. Med.
– volume: 57
  start-page: 2607
  issue: 21
  year: 1986
  ident: 10.1016/j.cma.2017.08.009_b46
  article-title: Replica Monte Carlo simulation of spin-glasses
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.57.2607
– volume: 55
  start-page: 2429
  issue: 9
  year: 2010
  ident: 10.1016/j.cma.2017.08.009_b24
  article-title: The integration of quantitative multi-modality imaging data into mathematical models of tumors
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/55/9/001
– volume: 58
  start-page: 5851
  issue: 17
  year: 2013
  ident: 10.1016/j.cma.2017.08.009_b29
  article-title: A mechanically coupled reaction–diffusion model for predicting the response of breast tumors to neoadjuvant chemotherapy
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/58/17/5851
– volume: 24
  start-page: 2569
  issue: 13
  year: 2014
  ident: 10.1016/j.cma.2017.08.009_b10
  article-title: A hybrid ten-species phase-field model of tumor growth
  publication-title: Math. Models Methods Appl. Sci.
  doi: 10.1142/S0218202514500304
– start-page: 85
  year: 1974
  ident: 10.1016/j.cma.2017.08.009_b18
  article-title: The theory of dual radiation action
  publication-title: Curr. Top. Radiat. Res. Quart.
– volume: 58
  start-page: 561
  issue: 4–5
  year: 2009
  ident: 10.1016/j.cma.2017.08.009_b36
  article-title: A mathematical model for brain tumor response to radiation therapy
  publication-title: J. Math. Biol.
  doi: 10.1007/s00285-008-0219-6
– volume: 96
  start-page: 207
  issue: 674
  year: 1924
  ident: 10.1016/j.cma.2017.08.009_b16
  article-title: Some considerations relative to the action of x-rays on tissue cells
  publication-title: Proc. R. Soc. Lond. [Biol.]
– year: 2017
  ident: 10.1016/j.cma.2017.08.009_b12
– volume: 5
  start-page: 187ps9
  year: 2013
  ident: 10.1016/j.cma.2017.08.009_b25
  article-title: Clinically Relevant Modeling of Tumor Growth and Treatment Response
  publication-title: Sci. Translat. Med.
  doi: 10.1126/scitranslmed.3005686
– volume: 314
  start-page: 494
  year: 2017
  ident: 10.1016/j.cma.2017.08.009_b27
  article-title: Three-dimensional image-based mechanical modeling for predicting the response of breast cancer to neoadjuvant therapy
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2016.08.024
– volume: vol. 529
  start-page: 39
  year: 1998
  ident: 10.1016/j.cma.2017.08.009_b40
  article-title: Unconditionally gradient stable time marching the cahn-Hilliard equation
– volume: 66
  start-page: 1689
  issue: 6
  year: 2011
  ident: 10.1016/j.cma.2017.08.009_b23
  article-title: Integration of diffusion-weighted MRI data and a simple mathematical model to predict breast tumor cellularity during neoadjuvant chemotherapy
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.23203
– volume: 32
  start-page: 1175
  issue: 9
  year: 2016
  ident: 10.1016/j.cma.2017.08.009_b37
  article-title: Modelling the radiotherapy effect in the reaction-diffusion equation
  publication-title: Phys. Med.
  doi: 10.1016/j.ejmp.2016.08.020
– volume: 16
  start-page: 187
  issue: 2
  year: 1997
  ident: 10.1016/j.cma.2017.08.009_b34
  article-title: Multimodality image registration by maximization of mutual information
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.563664
– volume: 21
  start-page: 1087
  issue: 6
  year: 1953
  ident: 10.1016/j.cma.2017.08.009_b44
  article-title: Equation of state calculations by fast computing machines
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1699114
– volume: 100
  start-page: 57
  year: 2000
  ident: 10.1016/j.cma.2017.08.009_b14
  article-title: The hallmarks of cancer
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81683-9
– year: 1967
  ident: 10.1016/j.cma.2017.08.009_b17
– volume: 57
  start-page: 97
  issue: 1
  year: 1970
  ident: 10.1016/j.cma.2017.08.009_b45
  article-title: Monte Carlo sampling methods using Markov chains and their applications
  publication-title: Biometrika
  doi: 10.1093/biomet/57.1.97
– volume: 77
  issue: 2
  year: 2017
  ident: 10.1016/j.cma.2017.08.009_b32
  article-title: Abstract A09: Predicting response to whole brain radiotherapy in a murine model of glioma
– volume: vol. 7155
  start-page: 398
  year: 2012
  ident: 10.1016/j.cma.2017.08.009_b42
  article-title: The Parallel C++ Statistical Library ‘QUESO’: Quantification of Uncertainty for Estimation, Simulation and Optimization
– volume: 12
  issue: 4
  year: 2015
  ident: 10.1016/j.cma.2017.08.009_b30
  article-title: Predicting in vivo glioma growth with the reaction diffusion equation constrained by quantitative magnetic resonance imaging data
  publication-title: Phys. Biol.
  doi: 10.1088/1478-3975/12/4/046006
– year: 2003
  ident: 10.1016/j.cma.2017.08.009_b20
– volume: 11
  start-page: 102
  issue: 2
  year: 2009
  ident: 10.1016/j.cma.2017.08.009_b22
  article-title: Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations
  publication-title: Neoplasia
  doi: 10.1593/neo.81328
– volume: 75
  start-page: 4697
  issue: 22
  year: 2015
  ident: 10.1016/j.cma.2017.08.009_b28
  article-title: Predicting the response of breast cancer to neoadjuvant therapy using a mechanically coupled reaction–diffusion model
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-14-2945
– volume: 23
  start-page: 735
  issue: 4
  year: 2016
  ident: 10.1016/j.cma.2017.08.009_b3
  article-title: Toward predictive multiscale modeling of vascular tumor growth
  publication-title: Arch. Comput. Methods Eng.
  doi: 10.1007/s11831-015-9156-x
– year: 2010
  ident: 10.1016/j.cma.2017.08.009_b4
– volume: 75
  start-page: 918
  issue: 6
  year: 2015
  ident: 10.1016/j.cma.2017.08.009_b26
  article-title: Toward a science of tumor forecasting for clinical oncology
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-14-2233
– volume: 92
  start-page: 178
  issue: 3–4
  year: 1996
  ident: 10.1016/j.cma.2017.08.009_b38
  article-title: Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance
  publication-title: Physica D
  doi: 10.1016/0167-2789(95)00173-5
– year: 1976
  ident: 10.1016/j.cma.2017.08.009_b13
  article-title: Theory of mixtures
– volume: 25
  start-page: 1663
  issue: 09
  year: 2015
  ident: 10.1016/j.cma.2017.08.009_b1
  article-title: Toward a mathematical theory of Keller–Segel models of pattern formation in biological tissues
  publication-title: Math. Models Methods Appl. Sci.
  doi: 10.1142/S021820251550044X
– volume: 22
  start-page: 237
  issue: 3–4
  year: 2006
  ident: 10.1016/j.cma.2017.08.009_b39
  article-title: libMesh : A C++ library for parallel adaptive mesh refinement/coarsening simulations
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-006-0049-3
– volume: 3
  start-page: 91
  issue: 2
  year: 2009
  ident: 10.1016/j.cma.2017.08.009_b21
  article-title: Dynamic contrast enhanced magnetic resonance imaging in oncology: theory, data acquisition, analysis, and examples
  publication-title: Curr. Med. Imaging Rev.
  doi: 10.2174/157340507780619179
– volume: 394
  start-page: 93
  year: 2016
  ident: 10.1016/j.cma.2017.08.009_b19
  article-title: Mathematical models of radiation action on living cells: From the target theory to the modern approaches. A historical and critical review
  publication-title: J. Theoret. Biol.
  doi: 10.1016/j.jtbi.2016.01.018
– volume: 26
  start-page: 2341
  issue: 12
  year: 2016
  ident: 10.1016/j.cma.2017.08.009_b6
  article-title: Selection, calibration, and validation of models of tumor growth
  publication-title: Math. Models Methods Appl. Sci.
  doi: 10.1142/S021820251650055X
– volume: 20
  start-page: 477
  issue: 3
  year: 2010
  ident: 10.1016/j.cma.2017.08.009_b11
  article-title: General diffuse-interface theories and an approach to predictive tumor growth modeling
  publication-title: Math. Models Methods Appl. Sci.
  doi: 10.1142/S0218202510004313
– volume: 18
  start-page: 593
  issue: 4
  year: 2008
  ident: 10.1016/j.cma.2017.08.009_b2
  article-title: On the foundations of cancer modelling: selected topics, speculations, and perspectives
  publication-title: Math. Models Methods Appl. Sci.
  doi: 10.1142/S0218202508002796
– volume: 144
  start-page: 646
  year: 2011
  ident: 10.1016/j.cma.2017.08.009_b15
  article-title: Hallmarks of cancer: The next generation
  publication-title: Cell
  doi: 10.1016/j.cell.2011.02.013
– volume: 2
  start-page: 215
  issue: 3
  year: 2012
  ident: 10.1016/j.cma.2017.08.009_b41
  article-title: Parallel adaptive multilevel sampling algorithms for the Bayesian analysis of mathematical models
  publication-title: Int. J. Uncertain. Quantif.
  doi: 10.1615/Int.J.UncertaintyQuantification.2011003499
– volume: 67
  start-page: 1457
  issue: 6–7
  year: 2013
  ident: 10.1016/j.cma.2017.08.009_b9
  article-title: Bayesian calibration, validation, and uncertainty quantification of diffuse interface models of tumor growth
  publication-title: J. Math. Biol.
  doi: 10.1007/s00285-012-0595-9
– volume: 29
  start-page: 315
  issue: 3
  year: 2011
  ident: 10.1016/j.cma.2017.08.009_b33
  article-title: Earlier detection of tumor treatment response using magnetic resonance diffusion imaging with oscillating gradients
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2010.10.003
– year: 2017
  ident: 10.1016/j.cma.2017.08.009_b8
  article-title: Predictive computational science: Computer predictions in the presence of uncertainty
– volume: 14
  start-page: 20161010
  issue: 128
  year: 2017
  ident: 10.1016/j.cma.2017.08.009_b31
  article-title: A mechanically coupled reaction–diffusion model that incorporates intra-tumoural heterogeneity to predict in vivo glioma growth
  publication-title: J. R. Soc. Interface
  doi: 10.1098/rsif.2016.1010
– volume: 66
  start-page: 401
  issue: 2
  year: 1976
  ident: 10.1016/j.cma.2017.08.009_b35
  article-title: The effect of multiple small doses of X rays on skin reactions in the mouse and a basic interpretation
  publication-title: Radiat. Res.
  doi: 10.2307/3574407
– ident: 10.1016/j.cma.2017.08.009_b43
– volume: 295
  start-page: 189
  year: 2015
  ident: 10.1016/j.cma.2017.08.009_b7
  article-title: A Bayesian framework for adaptive selection, calibration, and validation of coarse-grained models of atomistic systems
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2015.03.071
– year: 2010
  ident: 10.1016/j.cma.2017.08.009_b5
– reference: 26333809 - Cancer Res. 2015 Nov 15;75(22):4697-707
– reference: 23920113 - Phys Med Biol. 2013 Sep 7;58(17 ):5851-66
– reference: 28042181 - Comput Methods Appl Mech Eng. 2017 Feb 1;314:494-512
– reference: 27589895 - Phys Med. 2016 Sep;32(9):1175-9
– reference: 28330985 - J R Soc Interface. 2017 Mar;14 (128):
– reference: 10647931 - Cell. 2000 Jan 7;100(1):57-70
– reference: 26040472 - Phys Biol. 2015 Jun 04;12(4):046006
– reference: 20371913 - Phys Med Biol. 2010 May 7;55(9):2429-49
– reference: 9101328 - IEEE Trans Med Imaging. 1997 Apr;16(2):187-98
– reference: 19829742 - Curr Med Imaging Rev. 2009 May 1;3(2):91-107
– reference: 19186405 - Neoplasia. 2009 Feb;11(2):102-25
– reference: 1265229 - Radiat Res. 1976 May;66(2):401-26
– reference: 23053536 - J Math Biol. 2013 Dec;67(6-7):1457-85
– reference: 28827890 - Math Models Methods Appl Sci. 2016 Nov;26(12 ):2341-2368
– reference: 21190804 - Magn Reson Imaging. 2011 Apr;29(3):315-23
– reference: 10033814 - Phys Rev Lett. 1986 Nov 24;57(21):2607-2609
– reference: 21956404 - Magn Reson Med. 2011 Dec;66(6):1689-96
– reference: 18815786 - J Math Biol. 2009 Apr;58(4-5):561-78
– reference: 21376230 - Cell. 2011 Mar 4;144(5):646-74
– reference: 23720579 - Sci Transl Med. 2013 May 29;5(187):187ps9
– reference: 26807808 - J Theor Biol. 2016 Apr 7;394:93-101
– reference: 25592148 - Cancer Res. 2015 Mar 15;75(6):918-23
SSID ssj0000812
Score 2.5237339
Snippet The use of mathematical and computational models for reliable predictions of tumor growth and decline in living organisms is one of the foremost challenges in...
SourceID pubmedcentral
osti
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 277
SubjectTerms Bayesian analysis
Bayesian inference
Calibration and Validation of Phenomenological models
Cancer
Computer simulation
Deformation effects
Finite element method
Markov chains
Mathematical models
Model plausibilities
Monte Carlo methods
Monte Carlo simulation
MRI imaging
Nonlinear differential equations
Nonlinear equations
Numerical analysis
Parameter uncertainty
Partial differential equations
Prediction models
Radiation effects
Radiation therapy
Studies
Tumors
Vascular tissue
Title Selection and validation of predictive models of radiation effects on tumor growth based on noninvasive imaging data
URI https://dx.doi.org/10.1016/j.cma.2017.08.009
https://www.ncbi.nlm.nih.gov/pubmed/29269963
https://www.proquest.com/docview/1988107562
https://www.proquest.com/docview/1979966513
https://www.osti.gov/biblio/1495602
https://pubmed.ncbi.nlm.nih.gov/PMC5734134
Volume 327
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFH6qhgscWMoWWiojcUIKzWLH8bGqqAYQvUCl3izbcWgQzYxmMhz57bznOEMHVT1wS7woif02x5-_B_C2NoUyCiM3kbss5cblqa2EQ2Po0UFJVXhD_zu-nFfzC_7pUlzuwel0FoZgldH2jzY9WOtYchxH83jZdXTGlxMXu8hRSAW6XTrBziVJ-fvff2Ee6PJGxnAuUmo97WwGjJcL1EO5DCyehEm83TfNFqhut4Wg_yIpb7ims8fwMMaU7GR87Sew5_t9eBTjSxa1d70PD26QDz6F4WtIgYPzwkzfMJS4bsyvxBYtW65oA4dMIQu5ctZUuCIeg9AiokAYXg6b68WKfcfV_HDFyCc2VNrTX95fhrDxrLsOmZAYgVGfwcXZh2-n8zTmYEidyKoBlSjnrcA1naks567haBBsW0glZGYyK0rZZrXCoMCrRtisLJtceVNza0XTVBj8PIcZPtK_BOZwlGqMJgovSl55aYwqLFe-Ea3F-yqBbBp97SJBOeXJ-KknJNoPjROmacI05c7MVALvtl2WIzvHXY35NKV6R8Q0eo-7uh3Q9FMXotV1hD_CPuPKskjgcJIKHbV_rXNV17isxtAygTfbatRb2owxvV9sqI2kpabIywRejEK0_YRCFTh0FdbIHfHaNiBO8N2avrsK3OBCUljCX_3ftx7Afbob4TqHMBtWG_8ag67BHgWtOoJ7Jx8_z8__AJj9LFs
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFH4qwwF6YClLQwsYiRNSaBY7jo-oohqg7YVW6s2yE6cNopnRTIYjv533HGfooKoHbhkvysR-a_zlewDvS5MpozByE2mVxNxUaWwLUaExdOigpMqcofcdJ6fF9Jx_vRAXW3A4fgtDsMpg-web7q11aDkIq3kwb1v6xpcTF7tIUUgFut17cJ-j-lIZg4-__-I80OcNlOFcxDR8PNr0IK_Kcw-l0tN4Eijxduc0maG-3RaD_gulvOGbjp7AoxBUsk_D_34KW67bgcchwGRBfZc7sH2DffAZ9N99DRzcGGa6mqHItUOBJTZr2HxBJzhkC5kvlrOkxgURGfgRAQbC8LJfXc8W7BLT-f6KkVOsqbWj17y_DIHjWXvtSyExQqM-h_Ojz2eH0zgUYYgrkRQ9alHKG4FJnSks51XN0SLYJpNKyMQkVuSySUqFUYFTtbBJntepcqbk1oq6LjD6eQETvKXbBVbhKpUYTmRO5Lxw0hiVWa5cLRqLv4sIknH1dRUYyqlQxk89QtF-aNwwTRumqXhmoiL4sJ4yH-g57hrMxy3VGzKm0X3cNW2Ptp-mEK9uRQAknDOkllkE-6NU6KD-S52qssS8GmPLCN6tu1Fx6TTGdG62ojGSck2R5hG8HIRo_QiZynDpCuyRG-K1HkCk4Js9XXvlycGFpLiEv_q_Z30LD6ZnJ8f6-Mvptz14SD0DdmcfJv1i5V5jBNbbN17D_gAuJS3p
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Selection+and+validation+of+predictive+models+of+radiation+effects+on+tumor+growth+based+on+noninvasive+imaging+data&rft.jtitle=Computer+methods+in+applied+mechanics+and+engineering&rft.au=Lima%2C+E.+A.+B.+F.&rft.au=Oden%2C+J.+T.&rft.au=Wohlmuth%2C+B.&rft.au=Shahmoradi%2C+A.&rft.date=2017-12-01&rft.pub=Elsevier&rft.issn=0045-7825&rft.eissn=1879-2138&rft.volume=327&rft.issue=C&rft_id=info:doi/10.1016%2Fj.cma.2017.08.009&rft.externalDocID=1495602
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7825&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7825&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7825&client=summon