LS-DYNA MAT54 modeling of the axial crushing of a composite tape sinusoidal specimen

The suitability of a progressive failure material model to simulate the quasi-static crushing of a composite specimen is evaluated. The commercially available material model MAT54 “Enhanced Composite Damage” in LS-DYNA is often utilized to simulate damage progression in dynamic failure simulations b...

Full description

Saved in:
Bibliographic Details
Published inComposites. Part A, Applied science and manufacturing Vol. 42; no. 11; pp. 1809 - 1825
Main Authors Feraboli, Paolo, Wade, Bonnie, Deleo, Francesco, Rassaian, Mostafa, Higgins, Mark, Byar, Alan
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.11.2011
Elsevier
Subjects
Online AccessGet full text
ISSN1359-835X
1878-5840
DOI10.1016/j.compositesa.2011.08.004

Cover

Abstract The suitability of a progressive failure material model to simulate the quasi-static crushing of a composite specimen is evaluated. The commercially available material model MAT54 “Enhanced Composite Damage” in LS-DYNA is often utilized to simulate damage progression in dynamic failure simulations because it requires a reduced number of experimental input parameters compared to damage mechanics-based material models. The composite specimen used for the experiments is a semi-circular sinusoid, and is comprised of carbon fiber/epoxy unidirectional prepreg tape. Results show that MAT54 can successfully reproduce experimental results, however the simulation is highly sensitive to changes in model parameters, which are either non-physical (i.e. are purely mathematical expedients), or cannot be measured experimentally. These include element size, contact definition, load–penetration curve, and crush front softening parameter, among others. Therefore, achieving successful simulation results requires extensive calibration of these parameters by trial and error, and a deep understanding of the strengths and challenges of the selected modeling strategy.
AbstractList The suitability of a progressive failure material model to simulate the quasi-static crushing of a composite specimen is evaluated. The commercially available material model MAT54 “Enhanced Composite Damage” in LS-DYNA is often utilized to simulate damage progression in dynamic failure simulations because it requires a reduced number of experimental input parameters compared to damage mechanics-based material models. The composite specimen used for the experiments is a semi-circular sinusoid, and is comprised of carbon fiber/epoxy unidirectional prepreg tape. Results show that MAT54 can successfully reproduce experimental results, however the simulation is highly sensitive to changes in model parameters, which are either non-physical (i.e. are purely mathematical expedients), or cannot be measured experimentally. These include element size, contact definition, load–penetration curve, and crush front softening parameter, among others. Therefore, achieving successful simulation results requires extensive calibration of these parameters by trial and error, and a deep understanding of the strengths and challenges of the selected modeling strategy.
Author Wade, Bonnie
Byar, Alan
Feraboli, Paolo
Deleo, Francesco
Higgins, Mark
Rassaian, Mostafa
Author_xml – sequence: 1
  givenname: Paolo
  surname: Feraboli
  fullname: Feraboli, Paolo
  email: feraboli@aa.washington.edu
  organization: Automobili Lamborghini Advanced Composite Structures Laboratory, Dept. of Aeronautics & Astronautics, University of Washington, Seattle, WA 98195-2400, United States
– sequence: 2
  givenname: Bonnie
  surname: Wade
  fullname: Wade, Bonnie
  organization: Automobili Lamborghini Advanced Composite Structures Laboratory, Dept. of Aeronautics & Astronautics, University of Washington, Seattle, WA 98195-2400, United States
– sequence: 3
  givenname: Francesco
  surname: Deleo
  fullname: Deleo, Francesco
  organization: Automobili Lamborghini Advanced Composite Structures Laboratory, Dept. of Aeronautics & Astronautics, University of Washington, Seattle, WA 98195-2400, United States
– sequence: 4
  givenname: Mostafa
  surname: Rassaian
  fullname: Rassaian, Mostafa
  organization: Crashworthiness and Impact Survivability, Applied Structural Methods, Boeing Research & Technology, Seattle, WA, United States
– sequence: 5
  givenname: Mark
  surname: Higgins
  fullname: Higgins, Mark
  organization: Crashworthiness and Impact Survivability, Applied Structural Methods, Boeing Research & Technology, Seattle, WA, United States
– sequence: 6
  givenname: Alan
  surname: Byar
  fullname: Byar, Alan
  organization: Crashworthiness and Impact Survivability, Applied Structural Methods, Boeing Research & Technology, Seattle, WA, United States
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24607505$$DView record in Pascal Francis
BookMark eNqNkc1u1DAUhS1UJPrDMxAWCDZJ7TiOnRUaDeVHGmDRqQQr68a5bj1K4tTOVO3b4yoDQixQV7auvnuOre-EHI1-REJeM1owyurzXWH8MPnoZoxQlJSxgqqC0uoZOWZKqlyoih6lOxdNrrj48YKcxLijlHLesGOy3VzmH35-W2VfV1tRZYPvsHfjdeZtNt9gBvcO-syEfbw5TCH7U5jNMGEW3biP3nWJixMaN-B4Rp5b6CO-PJyn5OrjxXb9Od98__RlvdrkRtB6zlkjpeGUt7IViisosQHRSiu7GjnnirNWlSUoU6dxa4RV0qIQHW-N5S0v-Sl5u-ROwd_uMc56cNFg38OIfh91U9acyaaqE_nuvySTglelqBqe0DcHFKKB3gYYjYt6Cm6A8KDLqqZSUJG49wtngo8xoNXGzTA7P84BXK8Z1Y-G9E7_ZUg_GtJU6WQoJTT_JPwuecruq2XXgtdwHdILry4TICgtmVi-vF4ITAbuHAYdjcPRYOcCmll33j2h5xcO6r1n
CitedBy_id crossref_primary_10_1016_j_compositesb_2019_01_013
crossref_primary_10_1016_j_tws_2017_11_052
crossref_primary_10_1016_j_compstruct_2014_06_024
crossref_primary_10_1016_j_compositesb_2017_03_021
crossref_primary_10_1016_j_compstruct_2024_118147
crossref_primary_10_1016_j_compstruct_2024_118785
crossref_primary_10_1061__ASCE_CC_1943_5614_0001245
crossref_primary_10_1007_s11804_025_00687_4
crossref_primary_10_1016_j_compositesa_2014_03_014
crossref_primary_10_1016_j_compositesb_2013_12_062
crossref_primary_10_1016_j_compositesa_2021_106761
crossref_primary_10_1016_j_compstruct_2019_110920
crossref_primary_10_1007_s11029_019_09820_1
crossref_primary_10_1016_j_compstruct_2020_113093
crossref_primary_10_1108_AEAT_03_2017_0081
crossref_primary_10_1016_j_ijmecsci_2019_03_028
crossref_primary_10_4028_www_scientific_net_AMM_878_61
crossref_primary_10_3390_ma16041601
crossref_primary_10_6089_jscm_46_256
crossref_primary_10_12985_ksaa_2019_27_2_009
crossref_primary_10_1007_s12239_021_0106_3
crossref_primary_10_1016_j_tws_2020_106948
crossref_primary_10_3390_polym14071360
crossref_primary_10_1177_0021998320981142
crossref_primary_10_1016_j_compstruct_2020_112848
crossref_primary_10_1016_j_compositesb_2015_05_016
crossref_primary_10_1016_j_compstruct_2020_113017
crossref_primary_10_1016_j_tws_2020_107010
crossref_primary_10_1016_j_tws_2017_07_004
crossref_primary_10_1016_j_finel_2015_01_007
crossref_primary_10_1016_j_ijlmm_2022_07_006
crossref_primary_10_3390_app14177679
crossref_primary_10_4236_ojcm_2015_51006
crossref_primary_10_1002_pc_26278
crossref_primary_10_1016_j_compstruct_2022_116371
crossref_primary_10_1177_0731684418783847
crossref_primary_10_1016_j_compstruct_2017_03_047
crossref_primary_10_1093_jcde_qwae007
crossref_primary_10_1016_j_tws_2024_112551
crossref_primary_10_1016_j_compositesa_2014_08_016
crossref_primary_10_1016_j_tws_2025_113022
crossref_primary_10_3390_polym14051060
crossref_primary_10_1016_j_tws_2017_03_034
crossref_primary_10_1016_j_compositesb_2020_108320
crossref_primary_10_1080_13588265_2024_2352287
crossref_primary_10_1016_j_engfailanal_2024_108196
crossref_primary_10_1016_j_tws_2020_106930
crossref_primary_10_3390_polym16152099
crossref_primary_10_1007_s12239_016_0099_5
crossref_primary_10_1177_09544062231182036
crossref_primary_10_1016_j_compositesa_2022_107033
crossref_primary_10_3390_polym13193364
crossref_primary_10_1016_j_tws_2024_111611
crossref_primary_10_1109_TPS_2018_2890453
crossref_primary_10_1016_j_compstruct_2023_117115
crossref_primary_10_1016_j_tws_2022_110203
crossref_primary_10_3390_ma10060620
crossref_primary_10_1002_pc_26222
crossref_primary_10_1016_j_compscitech_2016_07_015
crossref_primary_10_1061__ASCE_AS_1943_5525_0001171
crossref_primary_10_1016_j_compositesb_2022_109728
crossref_primary_10_1007_s10443_017_9610_z
crossref_primary_10_1016_j_ijimpeng_2024_104932
crossref_primary_10_1007_s11665_019_04047_6
crossref_primary_10_1016_j_compstruct_2016_01_013
crossref_primary_10_1016_j_compstruct_2019_01_075
crossref_primary_10_1016_j_compstruct_2020_112465
crossref_primary_10_1016_j_matpr_2023_01_354
crossref_primary_10_1016_j_compstruct_2017_09_001
crossref_primary_10_1016_j_engstruct_2023_116729
crossref_primary_10_3390_polym11111798
crossref_primary_10_3390_jcs6080224
crossref_primary_10_1016_j_compositesa_2022_107265
crossref_primary_10_1016_j_engstruct_2021_113660
crossref_primary_10_1016_j_tws_2023_110695
crossref_primary_10_1515_mt_2024_0192
crossref_primary_10_3390_aerospace12020122
crossref_primary_10_1016_j_conbuildmat_2018_04_132
crossref_primary_10_1016_j_ijmecsci_2020_105994
crossref_primary_10_1080_13588265_2019_1687153
crossref_primary_10_1016_j_istruc_2024_106575
crossref_primary_10_1016_j_ymssp_2024_111545
crossref_primary_10_1088_1757_899X_1313_1_012002
crossref_primary_10_1088_1742_6596_2891_8_082008
crossref_primary_10_1017_aer_2018_64
crossref_primary_10_62520_fujece_1516879
crossref_primary_10_1016_j_compstruct_2016_10_032
crossref_primary_10_1088_1757_899X_1037_1_012027
crossref_primary_10_1016_j_tws_2020_106815
crossref_primary_10_3390_jmse11081590
crossref_primary_10_3390_pr11102875
crossref_primary_10_1016_j_compstruct_2018_10_112
crossref_primary_10_1016_j_oceaneng_2018_09_026
crossref_primary_10_1016_j_compstruct_2024_118063
crossref_primary_10_1016_j_ijadhadh_2024_103835
crossref_primary_10_1016_j_tws_2020_106995
crossref_primary_10_1002_nme_5536
crossref_primary_10_1016_j_compstruct_2023_117809
crossref_primary_10_3390_aerospace8100279
crossref_primary_10_1007_s40430_022_03662_0
crossref_primary_10_1016_j_compstruct_2022_115628
crossref_primary_10_12989_scs_2014_17_4_387
crossref_primary_10_1016_j_compstruct_2021_114898
crossref_primary_10_3390_ma12193164
crossref_primary_10_1016_j_dt_2022_07_006
crossref_primary_10_1016_j_tws_2022_110341
crossref_primary_10_1016_j_tws_2023_111156
crossref_primary_10_1002_pc_28387
crossref_primary_10_1016_j_compstruct_2019_111531
crossref_primary_10_1016_j_matpr_2017_09_044
crossref_primary_10_1016_j_compstruct_2019_111375
crossref_primary_10_1177_09544062241281418
crossref_primary_10_1016_j_compositesb_2020_107887
crossref_primary_10_1016_j_tws_2020_106628
crossref_primary_10_1016_j_cja_2016_02_002
crossref_primary_10_1002_pc_25705
crossref_primary_10_1016_j_ijimpeng_2022_104230
crossref_primary_10_1016_j_compstruct_2021_114646
crossref_primary_10_1177_0731684414555743
crossref_primary_10_1080_09243046_2024_2395104
crossref_primary_10_1080_13588265_2017_1301082
crossref_primary_10_1016_j_tws_2021_108760
crossref_primary_10_1016_j_compositesb_2021_109284
crossref_primary_10_1080_20550340_2020_1739402
crossref_primary_10_3390_ma16196378
crossref_primary_10_1016_j_compstruct_2020_112370
crossref_primary_10_1002_pc_29184
crossref_primary_10_1016_j_compositesb_2017_09_072
crossref_primary_10_1016_j_compstruct_2015_02_055
crossref_primary_10_1016_j_tws_2022_110214
crossref_primary_10_1080_13588265_2019_1617095
crossref_primary_10_1016_j_tws_2025_113223
crossref_primary_10_3390_jcs8080331
crossref_primary_10_1590_1679_78252446
crossref_primary_10_1007_s12572_021_00287_9
crossref_primary_10_1016_j_dt_2021_09_009
crossref_primary_10_1016_j_compstruct_2016_03_028
crossref_primary_10_1080_13588265_2019_1603850
crossref_primary_10_1016_j_matdes_2015_05_080
crossref_primary_10_1080_13588265_2020_1807693
crossref_primary_10_1016_j_engstruct_2025_119974
crossref_primary_10_1080_15376494_2022_2123579
crossref_primary_10_1098_rsta_2021_0336
crossref_primary_10_1080_13588265_2016_1215589
crossref_primary_10_1139_tcsme_2023_0184
crossref_primary_10_1016_j_ast_2024_108927
crossref_primary_10_1177_0021998320957702
crossref_primary_10_1016_j_tws_2018_05_003
crossref_primary_10_1142_S0219876218410037
crossref_primary_10_3390_ma15228123
crossref_primary_10_1016_j_compstruct_2019_02_102
crossref_primary_10_1016_j_compstruct_2022_116300
crossref_primary_10_1051_matecconf_202134700038
crossref_primary_10_1142_S1758825120500428
crossref_primary_10_1016_j_compstruct_2021_114085
crossref_primary_10_1016_j_tws_2018_05_008
crossref_primary_10_1016_j_compstruct_2022_116142
crossref_primary_10_1016_j_ijmecsci_2022_107427
crossref_primary_10_2514_1_J059216
crossref_primary_10_4028_p_w0hue6
crossref_primary_10_1016_j_compstruct_2015_05_008
crossref_primary_10_1016_j_compstruct_2016_03_038
crossref_primary_10_1002_pc_27911
crossref_primary_10_1016_j_compositesb_2018_01_021
crossref_primary_10_1080_09243046_2024_2396175
crossref_primary_10_1016_j_ijimpeng_2024_104974
crossref_primary_10_1080_09243046_2023_2269743
crossref_primary_10_1177_07316844211063865
crossref_primary_10_1177_1056789520927074
crossref_primary_10_3390_ma13204501
crossref_primary_10_1016_j_ijimpeng_2018_09_014
crossref_primary_10_1016_j_tws_2023_110648
crossref_primary_10_1016_j_compstruct_2021_114902
crossref_primary_10_1177_07316844221142772
crossref_primary_10_1016_j_compstruct_2021_114588
crossref_primary_10_1109_TPS_2018_2822665
crossref_primary_10_1007_s10443_015_9470_3
crossref_primary_10_1080_13588265_2024_2321664
crossref_primary_10_1016_j_compstruct_2021_114232
crossref_primary_10_1016_j_compstruct_2022_115346
crossref_primary_10_1016_j_compstruct_2023_117303
crossref_primary_10_1016_j_compstruct_2022_116554
crossref_primary_10_1016_j_compstruct_2023_116695
crossref_primary_10_1007_s10443_023_10150_8
Cites_doi 10.1177/0021998309343025
10.1177/002199839202600103
10.1016/j.compositesa.2009.05.021
10.1177/0021998307086202
10.1016/j.compositesa.2010.02.012
10.1177/0021998308097686
10.1177/002199838702100904
10.1016/S0266-3538(02)00125-2
10.1115/1.3100758
ContentType Journal Article
Copyright 2011 Elsevier Ltd
2015 INIST-CNRS
Copyright_xml – notice: 2011 Elsevier Ltd
– notice: 2015 INIST-CNRS
DBID FBQ
AAYXX
CITATION
IQODW
7S9
L.6
7SR
8FD
F28
FR3
JG9
DOI 10.1016/j.compositesa.2011.08.004
DatabaseName AGRIS
CrossRef
Pascal-Francis
AGRICOLA
AGRICOLA - Academic
Engineered Materials Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Materials Research Database
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
Materials Research Database
Engineered Materials Abstracts
Engineering Research Database
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList

AGRICOLA
Materials Research Database
Database_xml – sequence: 1
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1878-5840
EndPage 1825
ExternalDocumentID 24607505
10_1016_j_compositesa_2011_08_004
US201500215946
S1359835X11002648
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADIYS
ADMUD
AEBSH
AEKER
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSM
SSZ
T5K
TN5
ZMT
~G-
ABPIF
FBQ
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ADNMO
AEIPS
AFJKZ
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
IQODW
7S9
L.6
7SR
8FD
F28
FR3
JG9
ID FETCH-LOGICAL-c506t-1977c303b7b5838a2e9a5b7f7d6e333831b822a8c6a5bbc5f87fe55d3bcf3b323
IEDL.DBID AIKHN
ISSN 1359-835X
IngestDate Thu Sep 04 23:15:18 EDT 2025
Thu Sep 04 23:27:11 EDT 2025
Mon Jul 21 09:14:41 EDT 2025
Thu Apr 24 23:06:19 EDT 2025
Tue Jul 01 02:01:17 EDT 2025
Wed Dec 27 19:13:03 EST 2023
Fri Feb 23 02:19:10 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords C. FEA
A. Carbon fiber
B. Impact behavior
Crashworthiness
Experimental test
Fracture mechanics
Laminate
Mechanical model
Unidirectional fiber material
Epoxy resin
Theoretical study
Mechanical properties
Compressive strength
Mineral fiber
Modeling
Composite material
Numerical simulation
Sinusoidal shape
Crush
Damaging
Carbon fiber
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c506t-1977c303b7b5838a2e9a5b7f7d6e333831b822a8c6a5bbc5f87fe55d3bcf3b323
Notes http://dx.doi.org/10.1016/j.compositesa.2011.08.004
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PQID 1753425493
PQPubID 24069
PageCount 17
ParticipantIDs proquest_miscellaneous_926317946
proquest_miscellaneous_1753425493
pascalfrancis_primary_24607505
crossref_citationtrail_10_1016_j_compositesa_2011_08_004
crossref_primary_10_1016_j_compositesa_2011_08_004
fao_agris_US201500215946
elsevier_sciencedirect_doi_10_1016_j_compositesa_2011_08_004
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-11-01
PublicationDateYYYYMMDD 2011-11-01
PublicationDate_xml – month: 11
  year: 2011
  text: 2011-11-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Composites. Part A, Applied science and manufacturing
PublicationYear 2011
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Hallquist JO. LS-DYNA Theoretical Manual. Livermore Software Technology Corporation; 2005.
Chang, Chang (b0065) 1987; 21
Carruthers, Kettle, Robinson (b0005) 1998; 51
Feraboli P, Rassaian M. Proceedings of the CMH-17 (MIL-HDBK-17) Crashworthiness Working Group Numerical Round Robin. Costa Mesa, CA, July 2010.
Fasanella EL, Jackson KE. Best practices for crash modeling simulation. NASA TM-2002-211944, ARL-TR-2849, October 2002.
Zukas, Nicholas, Swift, Greszczuk, Curran (b0095) 1982
Feraboli, Norris, McLarty (b0045) 2007; 44
Browne AL, Johnson NL. Dynamic axial crush of automotive rail sized composite tubes, Part 5: Effect of test conditions. American Society for Composites (ASC). 18th Annual Technical Conference, Paper 152; September 2003, Gainesville, FL.
Feraboli (b0040) 2009; 43
T700SC 12K/2510 Plain Weave Fabric. Composite Materials Handbook (CMH-17), vol. 2. Rev. G. [chapter 4.2.38].
Feraboli, Deleo, Wade, Rassaian, Higgins, Byar (b0070) 2010; 41
Tomblin J, Sherraden J, Seneviratne W, Raju KS. A-basis and B-basis Design Allowables for Epoxy-based prepreg Toray T700SC-12K-50C/#2510 Plain Weave Fabric. AGATE-WP3.3-033051-131; September 2002.
Farley, Jones (b0010) 1992; 26
Hinton, Kaddour, Soden (b0015) 2002; 62
Feraboli, Wade, Deleo, Rassaian (b0080) 2009; 40
Paz (b0085) 1991
Xiao (b0020) 2009; 43
Feraboli (b0035) 2008; 42
Meyer, Will (b0090) 1987
Carruthers (10.1016/j.compositesa.2011.08.004_b0005) 1998; 51
10.1016/j.compositesa.2011.08.004_b0025
Feraboli (10.1016/j.compositesa.2011.08.004_b0045) 2007; 44
Meyer (10.1016/j.compositesa.2011.08.004_b0090) 1987
10.1016/j.compositesa.2011.08.004_b0055
Zukas (10.1016/j.compositesa.2011.08.004_b0095) 1982
10.1016/j.compositesa.2011.08.004_b0050
Xiao (10.1016/j.compositesa.2011.08.004_b0020) 2009; 43
Feraboli (10.1016/j.compositesa.2011.08.004_b0040) 2009; 43
10.1016/j.compositesa.2011.08.004_b0060
Feraboli (10.1016/j.compositesa.2011.08.004_b0080) 2009; 40
Farley (10.1016/j.compositesa.2011.08.004_b0010) 1992; 26
Feraboli (10.1016/j.compositesa.2011.08.004_b0035) 2008; 42
Feraboli (10.1016/j.compositesa.2011.08.004_b0070) 2010; 41
10.1016/j.compositesa.2011.08.004_b0075
10.1016/j.compositesa.2011.08.004_b0030
Chang (10.1016/j.compositesa.2011.08.004_b0065) 1987; 21
Paz (10.1016/j.compositesa.2011.08.004_b0085) 1991
Hinton (10.1016/j.compositesa.2011.08.004_b0015) 2002; 62
References_xml – reference: Browne AL, Johnson NL. Dynamic axial crush of automotive rail sized composite tubes, Part 5: Effect of test conditions. American Society for Composites (ASC). 18th Annual Technical Conference, Paper 152; September 2003, Gainesville, FL.
– volume: 51
  start-page: 635
  year: 1998
  end-page: 649
  ident: b0005
  article-title: Energy absorption capability and crashworthiness of composite material structures: a review
  publication-title: Appl Mech Rev
– volume: 44
  start-page: 15
  year: 2007
  end-page: 36
  ident: b0045
  article-title: Design and certification of a composite thin-walled structure for energy absorption
  publication-title: Int J Vehicle Des
– volume: 40
  start-page: 1248
  year: 2009
  end-page: 1256
  ident: b0080
  article-title: Crush energy absorption of composite channel section specimens
  publication-title: Composites (Part A)
– year: 1982
  ident: b0095
  article-title: Impact dynamics
– volume: 43
  start-page: 427
  year: 2009
  end-page: 444
  ident: b0020
  article-title: Modeling energy absorption with a damage mechanics based composite material model
  publication-title: J Compos Mater
– volume: 21
  start-page: 834
  year: 1987
  end-page: 855
  ident: b0065
  article-title: A progressive damage model for laminated composites containing stress concentration
  publication-title: J Compos Mater
– volume: 62
  start-page: 1725
  year: 2002
  end-page: 1797
  ident: b0015
  article-title: A comparison of the predictive capabilities of current failure theories for composite laminates, judged against experimental evidence
  publication-title: Compos Sci Technol
– reference: Hallquist JO. LS-DYNA Theoretical Manual. Livermore Software Technology Corporation; 2005.
– reference: Fasanella EL, Jackson KE. Best practices for crash modeling simulation. NASA TM-2002-211944, ARL-TR-2849, October 2002.
– volume: 43
  start-page: 1967
  year: 2009
  end-page: 1990
  ident: b0040
  article-title: Development of a modified flat plate test and fixture specimen for composite materials crush energy absorption
  publication-title: J Compos Mater
– reference: Tomblin J, Sherraden J, Seneviratne W, Raju KS. A-basis and B-basis Design Allowables for Epoxy-based prepreg Toray T700SC-12K-50C/#2510 Plain Weave Fabric. AGATE-WP3.3-033051-131; September 2002.
– volume: 41
  start-page: 774
  year: 2010
  end-page: 786
  ident: b0070
  article-title: Predictive modeling of an energy-absorbing sandwich structural concept using the building block approach
  publication-title: Composites (Part A)
– volume: 42
  start-page: 229
  year: 2008
  end-page: 256
  ident: b0035
  article-title: Development of a corrugated test specimen for composite materials energy absorption
  publication-title: J Compos Mater
– reference: T700SC 12K/2510 Plain Weave Fabric. Composite Materials Handbook (CMH-17), vol. 2. Rev. G. [chapter 4.2.38].
– year: 1991
  ident: b0085
  article-title: Structural dynamics theory and computation
– reference: Feraboli P, Rassaian M. Proceedings of the CMH-17 (MIL-HDBK-17) Crashworthiness Working Group Numerical Round Robin. Costa Mesa, CA, July 2010.
– year: 1987
  ident: b0090
  article-title: Models for dynamic analysis in finite element idealization
– volume: 26
  start-page: 37
  year: 1992
  end-page: 50
  ident: b0010
  article-title: Crushing characteristics of continuous fiber-reinforced composite tubes
  publication-title: J Compos Mater
– ident: 10.1016/j.compositesa.2011.08.004_b0030
– volume: 43
  start-page: 1967
  issue: 19
  year: 2009
  ident: 10.1016/j.compositesa.2011.08.004_b0040
  article-title: Development of a modified flat plate test and fixture specimen for composite materials crush energy absorption
  publication-title: J Compos Mater
  doi: 10.1177/0021998309343025
– volume: 26
  start-page: 37
  issue: 1
  year: 1992
  ident: 10.1016/j.compositesa.2011.08.004_b0010
  article-title: Crushing characteristics of continuous fiber-reinforced composite tubes
  publication-title: J Compos Mater
  doi: 10.1177/002199839202600103
– ident: 10.1016/j.compositesa.2011.08.004_b0075
– volume: 40
  start-page: 1248
  issue: 8
  year: 2009
  ident: 10.1016/j.compositesa.2011.08.004_b0080
  article-title: Crush energy absorption of composite channel section specimens
  publication-title: Composites (Part A)
  doi: 10.1016/j.compositesa.2009.05.021
– year: 1982
  ident: 10.1016/j.compositesa.2011.08.004_b0095
– volume: 42
  start-page: 229
  issue: 3
  year: 2008
  ident: 10.1016/j.compositesa.2011.08.004_b0035
  article-title: Development of a corrugated test specimen for composite materials energy absorption
  publication-title: J Compos Mater
  doi: 10.1177/0021998307086202
– ident: 10.1016/j.compositesa.2011.08.004_b0060
– volume: 41
  start-page: 774
  issue: 6
  year: 2010
  ident: 10.1016/j.compositesa.2011.08.004_b0070
  article-title: Predictive modeling of an energy-absorbing sandwich structural concept using the building block approach
  publication-title: Composites (Part A)
  doi: 10.1016/j.compositesa.2010.02.012
– volume: 43
  start-page: 427
  issue: 5
  year: 2009
  ident: 10.1016/j.compositesa.2011.08.004_b0020
  article-title: Modeling energy absorption with a damage mechanics based composite material model
  publication-title: J Compos Mater
  doi: 10.1177/0021998308097686
– year: 1991
  ident: 10.1016/j.compositesa.2011.08.004_b0085
– year: 1987
  ident: 10.1016/j.compositesa.2011.08.004_b0090
– volume: 21
  start-page: 834
  year: 1987
  ident: 10.1016/j.compositesa.2011.08.004_b0065
  article-title: A progressive damage model for laminated composites containing stress concentration
  publication-title: J Compos Mater
  doi: 10.1177/002199838702100904
– ident: 10.1016/j.compositesa.2011.08.004_b0025
– volume: 44
  start-page: 15
  issue: 3–4
  year: 2007
  ident: 10.1016/j.compositesa.2011.08.004_b0045
  article-title: Design and certification of a composite thin-walled structure for energy absorption
  publication-title: Int J Vehicle Des
– volume: 62
  start-page: 1725
  issue: 12–13
  year: 2002
  ident: 10.1016/j.compositesa.2011.08.004_b0015
  article-title: A comparison of the predictive capabilities of current failure theories for composite laminates, judged against experimental evidence
  publication-title: Compos Sci Technol
  doi: 10.1016/S0266-3538(02)00125-2
– volume: 51
  start-page: 635
  year: 1998
  ident: 10.1016/j.compositesa.2011.08.004_b0005
  article-title: Energy absorption capability and crashworthiness of composite material structures: a review
  publication-title: Appl Mech Rev
  doi: 10.1115/1.3100758
– ident: 10.1016/j.compositesa.2011.08.004_b0055
– ident: 10.1016/j.compositesa.2011.08.004_b0050
SSID ssj0003391
Score 2.4681122
Snippet The suitability of a progressive failure material model to simulate the quasi-static crushing of a composite specimen is evaluated. The commercially available...
SourceID proquest
pascalfrancis
crossref
fao
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1809
SubjectTerms A. Carbon fiber
Applied sciences
B. Impact behavior
C. FEA
Calibration
carbon fibers
Computer simulation
Crashworthiness
Crushing
Damage
epoxides
Exact sciences and technology
Failure
Forms of application and semi-finished materials
Laminates
Mathematical models
Polymer industry, paints, wood
Prepregs
simulation models
Strategy
Technology of polymers
Title LS-DYNA MAT54 modeling of the axial crushing of a composite tape sinusoidal specimen
URI https://dx.doi.org/10.1016/j.compositesa.2011.08.004
https://www.proquest.com/docview/1753425493
https://www.proquest.com/docview/926317946
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LaxsxEB5iB0p7COmLbJsYBXrd2quXd6EXkza4j_hiG9yTkLRScSm7JmtDT_nt0ezDSWgLge5RqwFpRpr5NBrNALzLOTWM-jQe0YzHXDgXZ06y2LDEUI2fQX_H1UxOl_zLSqwO4KJ7C4Nhla3ub3R6ra3blmHLzeFmvR7OE0w-x8QKk55hnFYPDinLpOjD4eTz1-lsr5AZy5pzF3q8AsETOL8L88LIbQyPcpW-S-jZlm37i5nqeV1i_KSuAgt9U_viDzVe26bLYzhqQSWZNON-DgeueAHP7qUafAmLb_P44_fZhFxNFoKTugBO-EFKTwIEJPp3WIfEXu9qjxS2arIfM9nqjSPVuthV5ToP_fB5JlYFeAXLy0-Li2ncVlSIrRjJbZwEtGeD0TJjg9elmrpMCzP241w6hofVxATAoFMrQ7Oxwqdj74TImbGeBZmy19AvysKdAEmc4SMnA75ihlsrQu_Mcma8yxOdMhNB2jFQ2TbdOFa9-KW6uLKf6h7vFfJeYUXMEY-A7kk3Tc6NxxB96KSkHiwgFWzDY8hPgmSV_hFUq1rOKTqCEA5lXEYweCDu_Zgolwi4RATnnfxV2Jx446ILV-4qhWlQOR7BWQTkH30yKhlqRfnm_2bwFp7W_u76neQp9LfXO3cWANPWDKD3_iYZtNviFtljFZ4
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9tAEB4SB_o4lD6J-kg30KuwpX1Ygl5M2uA0ti-2wT0tu6tVcCmSiWzIz8-MHk5CWwhUx9UOrGZWM9_Mzs4AfMlEbHmcJ-EgTkUopPdh6hUPLY9sbOixFO-YztR4KX6s5OoAzrq7MJRW2er-RqfX2rod6bfc7G_W6_48ouJzXK6o6BnlaR3CkZDo7fXgaHRxOZ7tFTLnaeN3UcQLCZ7A6V2aF2VuU3qUr8xdQc-2bdtfzNRhbkrKnzQVsjBvel_8ocZr23T-El60oJKNmnW_ggNfvIbn90oNvoHFZB5--zkbseloIQWrG-DgC1bmDCEgMze4D5m73tURKRo1bL9mtjUbz6p1savKdYbz6HomdQV4C8vz74uzcdh2VAidHKhtGCHac2i07NDScamJfWqkHebDTHlOzmpkETCYxCkctk7myTD3UmbcupyjTPk76BVl4Y-BRd6KgVeIr7gVzkmcnTrBbe6zyCTcBpB0DNSuLTdOXS9-6y6v7Je-x3tNvNfUEXMgAoj3pJum5sZjiL52UtIPNpBG2_AY8mOUrDZXqFr1ch5TIIjgUCpUACcPxL1fUywUAS4ZwGknf40_J524mMKXu0pTGVRBLjgPgP1jThorTlpRvf-_L_gMT8eL6URPLmaXH-BZHfuu70x-hN72euc_IXja2pP257gFfdsXjQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LS-DYNA+MAT54+modeling+of+the+axial+crushing+of+a+composite+tape+sinusoidal+specimen&rft.jtitle=Composites.+Part+A%2C+Applied+science+and+manufacturing&rft.au=Feraboli%2C+Paolo&rft.au=Wade%2C+Bonnie&rft.au=Deleo%2C+Francesco&rft.au=Rassaian%2C+Mostafa&rft.date=2011-11-01&rft.issn=1359-835X&rft.volume=42&rft.issue=11&rft.spage=1809&rft.epage=1825&rft_id=info:doi/10.1016%2Fj.compositesa.2011.08.004&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compositesa_2011_08_004
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-835X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-835X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-835X&client=summon