LS-DYNA MAT54 modeling of the axial crushing of a composite tape sinusoidal specimen
The suitability of a progressive failure material model to simulate the quasi-static crushing of a composite specimen is evaluated. The commercially available material model MAT54 “Enhanced Composite Damage” in LS-DYNA is often utilized to simulate damage progression in dynamic failure simulations b...
Saved in:
Published in | Composites. Part A, Applied science and manufacturing Vol. 42; no. 11; pp. 1809 - 1825 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
01.11.2011
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 1359-835X 1878-5840 |
DOI | 10.1016/j.compositesa.2011.08.004 |
Cover
Abstract | The suitability of a progressive failure material model to simulate the quasi-static crushing of a composite specimen is evaluated. The commercially available material model MAT54 “Enhanced Composite Damage” in LS-DYNA is often utilized to simulate damage progression in dynamic failure simulations because it requires a reduced number of experimental input parameters compared to damage mechanics-based material models. The composite specimen used for the experiments is a semi-circular sinusoid, and is comprised of carbon fiber/epoxy unidirectional prepreg tape. Results show that MAT54 can successfully reproduce experimental results, however the simulation is highly sensitive to changes in model parameters, which are either non-physical (i.e. are purely mathematical expedients), or cannot be measured experimentally. These include element size, contact definition, load–penetration curve, and crush front softening parameter, among others. Therefore, achieving successful simulation results requires extensive calibration of these parameters by trial and error, and a deep understanding of the strengths and challenges of the selected modeling strategy. |
---|---|
AbstractList | The suitability of a progressive failure material model to simulate the quasi-static crushing of a composite specimen is evaluated. The commercially available material model MAT54 “Enhanced Composite Damage” in LS-DYNA is often utilized to simulate damage progression in dynamic failure simulations because it requires a reduced number of experimental input parameters compared to damage mechanics-based material models. The composite specimen used for the experiments is a semi-circular sinusoid, and is comprised of carbon fiber/epoxy unidirectional prepreg tape. Results show that MAT54 can successfully reproduce experimental results, however the simulation is highly sensitive to changes in model parameters, which are either non-physical (i.e. are purely mathematical expedients), or cannot be measured experimentally. These include element size, contact definition, load–penetration curve, and crush front softening parameter, among others. Therefore, achieving successful simulation results requires extensive calibration of these parameters by trial and error, and a deep understanding of the strengths and challenges of the selected modeling strategy. |
Author | Wade, Bonnie Byar, Alan Feraboli, Paolo Deleo, Francesco Higgins, Mark Rassaian, Mostafa |
Author_xml | – sequence: 1 givenname: Paolo surname: Feraboli fullname: Feraboli, Paolo email: feraboli@aa.washington.edu organization: Automobili Lamborghini Advanced Composite Structures Laboratory, Dept. of Aeronautics & Astronautics, University of Washington, Seattle, WA 98195-2400, United States – sequence: 2 givenname: Bonnie surname: Wade fullname: Wade, Bonnie organization: Automobili Lamborghini Advanced Composite Structures Laboratory, Dept. of Aeronautics & Astronautics, University of Washington, Seattle, WA 98195-2400, United States – sequence: 3 givenname: Francesco surname: Deleo fullname: Deleo, Francesco organization: Automobili Lamborghini Advanced Composite Structures Laboratory, Dept. of Aeronautics & Astronautics, University of Washington, Seattle, WA 98195-2400, United States – sequence: 4 givenname: Mostafa surname: Rassaian fullname: Rassaian, Mostafa organization: Crashworthiness and Impact Survivability, Applied Structural Methods, Boeing Research & Technology, Seattle, WA, United States – sequence: 5 givenname: Mark surname: Higgins fullname: Higgins, Mark organization: Crashworthiness and Impact Survivability, Applied Structural Methods, Boeing Research & Technology, Seattle, WA, United States – sequence: 6 givenname: Alan surname: Byar fullname: Byar, Alan organization: Crashworthiness and Impact Survivability, Applied Structural Methods, Boeing Research & Technology, Seattle, WA, United States |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24607505$$DView record in Pascal Francis |
BookMark | eNqNkc1u1DAUhS1UJPrDMxAWCDZJ7TiOnRUaDeVHGmDRqQQr68a5bj1K4tTOVO3b4yoDQixQV7auvnuOre-EHI1-REJeM1owyurzXWH8MPnoZoxQlJSxgqqC0uoZOWZKqlyoih6lOxdNrrj48YKcxLijlHLesGOy3VzmH35-W2VfV1tRZYPvsHfjdeZtNt9gBvcO-syEfbw5TCH7U5jNMGEW3biP3nWJixMaN-B4Rp5b6CO-PJyn5OrjxXb9Od98__RlvdrkRtB6zlkjpeGUt7IViisosQHRSiu7GjnnirNWlSUoU6dxa4RV0qIQHW-N5S0v-Sl5u-ROwd_uMc56cNFg38OIfh91U9acyaaqE_nuvySTglelqBqe0DcHFKKB3gYYjYt6Cm6A8KDLqqZSUJG49wtngo8xoNXGzTA7P84BXK8Z1Y-G9E7_ZUg_GtJU6WQoJTT_JPwuecruq2XXgtdwHdILry4TICgtmVi-vF4ITAbuHAYdjcPRYOcCmll33j2h5xcO6r1n |
CitedBy_id | crossref_primary_10_1016_j_compositesb_2019_01_013 crossref_primary_10_1016_j_tws_2017_11_052 crossref_primary_10_1016_j_compstruct_2014_06_024 crossref_primary_10_1016_j_compositesb_2017_03_021 crossref_primary_10_1016_j_compstruct_2024_118147 crossref_primary_10_1016_j_compstruct_2024_118785 crossref_primary_10_1061__ASCE_CC_1943_5614_0001245 crossref_primary_10_1007_s11804_025_00687_4 crossref_primary_10_1016_j_compositesa_2014_03_014 crossref_primary_10_1016_j_compositesb_2013_12_062 crossref_primary_10_1016_j_compositesa_2021_106761 crossref_primary_10_1016_j_compstruct_2019_110920 crossref_primary_10_1007_s11029_019_09820_1 crossref_primary_10_1016_j_compstruct_2020_113093 crossref_primary_10_1108_AEAT_03_2017_0081 crossref_primary_10_1016_j_ijmecsci_2019_03_028 crossref_primary_10_4028_www_scientific_net_AMM_878_61 crossref_primary_10_3390_ma16041601 crossref_primary_10_6089_jscm_46_256 crossref_primary_10_12985_ksaa_2019_27_2_009 crossref_primary_10_1007_s12239_021_0106_3 crossref_primary_10_1016_j_tws_2020_106948 crossref_primary_10_3390_polym14071360 crossref_primary_10_1177_0021998320981142 crossref_primary_10_1016_j_compstruct_2020_112848 crossref_primary_10_1016_j_compositesb_2015_05_016 crossref_primary_10_1016_j_compstruct_2020_113017 crossref_primary_10_1016_j_tws_2020_107010 crossref_primary_10_1016_j_tws_2017_07_004 crossref_primary_10_1016_j_finel_2015_01_007 crossref_primary_10_1016_j_ijlmm_2022_07_006 crossref_primary_10_3390_app14177679 crossref_primary_10_4236_ojcm_2015_51006 crossref_primary_10_1002_pc_26278 crossref_primary_10_1016_j_compstruct_2022_116371 crossref_primary_10_1177_0731684418783847 crossref_primary_10_1016_j_compstruct_2017_03_047 crossref_primary_10_1093_jcde_qwae007 crossref_primary_10_1016_j_tws_2024_112551 crossref_primary_10_1016_j_compositesa_2014_08_016 crossref_primary_10_1016_j_tws_2025_113022 crossref_primary_10_3390_polym14051060 crossref_primary_10_1016_j_tws_2017_03_034 crossref_primary_10_1016_j_compositesb_2020_108320 crossref_primary_10_1080_13588265_2024_2352287 crossref_primary_10_1016_j_engfailanal_2024_108196 crossref_primary_10_1016_j_tws_2020_106930 crossref_primary_10_3390_polym16152099 crossref_primary_10_1007_s12239_016_0099_5 crossref_primary_10_1177_09544062231182036 crossref_primary_10_1016_j_compositesa_2022_107033 crossref_primary_10_3390_polym13193364 crossref_primary_10_1016_j_tws_2024_111611 crossref_primary_10_1109_TPS_2018_2890453 crossref_primary_10_1016_j_compstruct_2023_117115 crossref_primary_10_1016_j_tws_2022_110203 crossref_primary_10_3390_ma10060620 crossref_primary_10_1002_pc_26222 crossref_primary_10_1016_j_compscitech_2016_07_015 crossref_primary_10_1061__ASCE_AS_1943_5525_0001171 crossref_primary_10_1016_j_compositesb_2022_109728 crossref_primary_10_1007_s10443_017_9610_z crossref_primary_10_1016_j_ijimpeng_2024_104932 crossref_primary_10_1007_s11665_019_04047_6 crossref_primary_10_1016_j_compstruct_2016_01_013 crossref_primary_10_1016_j_compstruct_2019_01_075 crossref_primary_10_1016_j_compstruct_2020_112465 crossref_primary_10_1016_j_matpr_2023_01_354 crossref_primary_10_1016_j_compstruct_2017_09_001 crossref_primary_10_1016_j_engstruct_2023_116729 crossref_primary_10_3390_polym11111798 crossref_primary_10_3390_jcs6080224 crossref_primary_10_1016_j_compositesa_2022_107265 crossref_primary_10_1016_j_engstruct_2021_113660 crossref_primary_10_1016_j_tws_2023_110695 crossref_primary_10_1515_mt_2024_0192 crossref_primary_10_3390_aerospace12020122 crossref_primary_10_1016_j_conbuildmat_2018_04_132 crossref_primary_10_1016_j_ijmecsci_2020_105994 crossref_primary_10_1080_13588265_2019_1687153 crossref_primary_10_1016_j_istruc_2024_106575 crossref_primary_10_1016_j_ymssp_2024_111545 crossref_primary_10_1088_1757_899X_1313_1_012002 crossref_primary_10_1088_1742_6596_2891_8_082008 crossref_primary_10_1017_aer_2018_64 crossref_primary_10_62520_fujece_1516879 crossref_primary_10_1016_j_compstruct_2016_10_032 crossref_primary_10_1088_1757_899X_1037_1_012027 crossref_primary_10_1016_j_tws_2020_106815 crossref_primary_10_3390_jmse11081590 crossref_primary_10_3390_pr11102875 crossref_primary_10_1016_j_compstruct_2018_10_112 crossref_primary_10_1016_j_oceaneng_2018_09_026 crossref_primary_10_1016_j_compstruct_2024_118063 crossref_primary_10_1016_j_ijadhadh_2024_103835 crossref_primary_10_1016_j_tws_2020_106995 crossref_primary_10_1002_nme_5536 crossref_primary_10_1016_j_compstruct_2023_117809 crossref_primary_10_3390_aerospace8100279 crossref_primary_10_1007_s40430_022_03662_0 crossref_primary_10_1016_j_compstruct_2022_115628 crossref_primary_10_12989_scs_2014_17_4_387 crossref_primary_10_1016_j_compstruct_2021_114898 crossref_primary_10_3390_ma12193164 crossref_primary_10_1016_j_dt_2022_07_006 crossref_primary_10_1016_j_tws_2022_110341 crossref_primary_10_1016_j_tws_2023_111156 crossref_primary_10_1002_pc_28387 crossref_primary_10_1016_j_compstruct_2019_111531 crossref_primary_10_1016_j_matpr_2017_09_044 crossref_primary_10_1016_j_compstruct_2019_111375 crossref_primary_10_1177_09544062241281418 crossref_primary_10_1016_j_compositesb_2020_107887 crossref_primary_10_1016_j_tws_2020_106628 crossref_primary_10_1016_j_cja_2016_02_002 crossref_primary_10_1002_pc_25705 crossref_primary_10_1016_j_ijimpeng_2022_104230 crossref_primary_10_1016_j_compstruct_2021_114646 crossref_primary_10_1177_0731684414555743 crossref_primary_10_1080_09243046_2024_2395104 crossref_primary_10_1080_13588265_2017_1301082 crossref_primary_10_1016_j_tws_2021_108760 crossref_primary_10_1016_j_compositesb_2021_109284 crossref_primary_10_1080_20550340_2020_1739402 crossref_primary_10_3390_ma16196378 crossref_primary_10_1016_j_compstruct_2020_112370 crossref_primary_10_1002_pc_29184 crossref_primary_10_1016_j_compositesb_2017_09_072 crossref_primary_10_1016_j_compstruct_2015_02_055 crossref_primary_10_1016_j_tws_2022_110214 crossref_primary_10_1080_13588265_2019_1617095 crossref_primary_10_1016_j_tws_2025_113223 crossref_primary_10_3390_jcs8080331 crossref_primary_10_1590_1679_78252446 crossref_primary_10_1007_s12572_021_00287_9 crossref_primary_10_1016_j_dt_2021_09_009 crossref_primary_10_1016_j_compstruct_2016_03_028 crossref_primary_10_1080_13588265_2019_1603850 crossref_primary_10_1016_j_matdes_2015_05_080 crossref_primary_10_1080_13588265_2020_1807693 crossref_primary_10_1016_j_engstruct_2025_119974 crossref_primary_10_1080_15376494_2022_2123579 crossref_primary_10_1098_rsta_2021_0336 crossref_primary_10_1080_13588265_2016_1215589 crossref_primary_10_1139_tcsme_2023_0184 crossref_primary_10_1016_j_ast_2024_108927 crossref_primary_10_1177_0021998320957702 crossref_primary_10_1016_j_tws_2018_05_003 crossref_primary_10_1142_S0219876218410037 crossref_primary_10_3390_ma15228123 crossref_primary_10_1016_j_compstruct_2019_02_102 crossref_primary_10_1016_j_compstruct_2022_116300 crossref_primary_10_1051_matecconf_202134700038 crossref_primary_10_1142_S1758825120500428 crossref_primary_10_1016_j_compstruct_2021_114085 crossref_primary_10_1016_j_tws_2018_05_008 crossref_primary_10_1016_j_compstruct_2022_116142 crossref_primary_10_1016_j_ijmecsci_2022_107427 crossref_primary_10_2514_1_J059216 crossref_primary_10_4028_p_w0hue6 crossref_primary_10_1016_j_compstruct_2015_05_008 crossref_primary_10_1016_j_compstruct_2016_03_038 crossref_primary_10_1002_pc_27911 crossref_primary_10_1016_j_compositesb_2018_01_021 crossref_primary_10_1080_09243046_2024_2396175 crossref_primary_10_1016_j_ijimpeng_2024_104974 crossref_primary_10_1080_09243046_2023_2269743 crossref_primary_10_1177_07316844211063865 crossref_primary_10_1177_1056789520927074 crossref_primary_10_3390_ma13204501 crossref_primary_10_1016_j_ijimpeng_2018_09_014 crossref_primary_10_1016_j_tws_2023_110648 crossref_primary_10_1016_j_compstruct_2021_114902 crossref_primary_10_1177_07316844221142772 crossref_primary_10_1016_j_compstruct_2021_114588 crossref_primary_10_1109_TPS_2018_2822665 crossref_primary_10_1007_s10443_015_9470_3 crossref_primary_10_1080_13588265_2024_2321664 crossref_primary_10_1016_j_compstruct_2021_114232 crossref_primary_10_1016_j_compstruct_2022_115346 crossref_primary_10_1016_j_compstruct_2023_117303 crossref_primary_10_1016_j_compstruct_2022_116554 crossref_primary_10_1016_j_compstruct_2023_116695 crossref_primary_10_1007_s10443_023_10150_8 |
Cites_doi | 10.1177/0021998309343025 10.1177/002199839202600103 10.1016/j.compositesa.2009.05.021 10.1177/0021998307086202 10.1016/j.compositesa.2010.02.012 10.1177/0021998308097686 10.1177/002199838702100904 10.1016/S0266-3538(02)00125-2 10.1115/1.3100758 |
ContentType | Journal Article |
Copyright | 2011 Elsevier Ltd 2015 INIST-CNRS |
Copyright_xml | – notice: 2011 Elsevier Ltd – notice: 2015 INIST-CNRS |
DBID | FBQ AAYXX CITATION IQODW 7S9 L.6 7SR 8FD F28 FR3 JG9 |
DOI | 10.1016/j.compositesa.2011.08.004 |
DatabaseName | AGRIS CrossRef Pascal-Francis AGRICOLA AGRICOLA - Academic Engineered Materials Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Materials Research Database |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic Materials Research Database Engineered Materials Abstracts Engineering Research Database Technology Research Database ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | AGRICOLA Materials Research Database |
Database_xml | – sequence: 1 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Applied Sciences |
EISSN | 1878-5840 |
EndPage | 1825 |
ExternalDocumentID | 24607505 10_1016_j_compositesa_2011_08_004 US201500215946 S1359835X11002648 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADIYS ADMUD AEBSH AEKER AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSM SSZ T5K TN5 ZMT ~G- ABPIF FBQ AAHBH AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ADNMO AEIPS AFJKZ AFXIZ AGCQF AGQPQ AGRNS AIIUN ANKPU APXCP BNPGV CITATION SSH EFKBS IQODW 7S9 L.6 7SR 8FD F28 FR3 JG9 |
ID | FETCH-LOGICAL-c506t-1977c303b7b5838a2e9a5b7f7d6e333831b822a8c6a5bbc5f87fe55d3bcf3b323 |
IEDL.DBID | AIKHN |
ISSN | 1359-835X |
IngestDate | Thu Sep 04 23:15:18 EDT 2025 Thu Sep 04 23:27:11 EDT 2025 Mon Jul 21 09:14:41 EDT 2025 Thu Apr 24 23:06:19 EDT 2025 Tue Jul 01 02:01:17 EDT 2025 Wed Dec 27 19:13:03 EST 2023 Fri Feb 23 02:19:10 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | C. FEA A. Carbon fiber B. Impact behavior Crashworthiness Experimental test Fracture mechanics Laminate Mechanical model Unidirectional fiber material Epoxy resin Theoretical study Mechanical properties Compressive strength Mineral fiber Modeling Composite material Numerical simulation Sinusoidal shape Crush Damaging Carbon fiber |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c506t-1977c303b7b5838a2e9a5b7f7d6e333831b822a8c6a5bbc5f87fe55d3bcf3b323 |
Notes | http://dx.doi.org/10.1016/j.compositesa.2011.08.004 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
PQID | 1753425493 |
PQPubID | 24069 |
PageCount | 17 |
ParticipantIDs | proquest_miscellaneous_926317946 proquest_miscellaneous_1753425493 pascalfrancis_primary_24607505 crossref_citationtrail_10_1016_j_compositesa_2011_08_004 crossref_primary_10_1016_j_compositesa_2011_08_004 fao_agris_US201500215946 elsevier_sciencedirect_doi_10_1016_j_compositesa_2011_08_004 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-11-01 |
PublicationDateYYYYMMDD | 2011-11-01 |
PublicationDate_xml | – month: 11 year: 2011 text: 2011-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | Composites. Part A, Applied science and manufacturing |
PublicationYear | 2011 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Hallquist JO. LS-DYNA Theoretical Manual. Livermore Software Technology Corporation; 2005. Chang, Chang (b0065) 1987; 21 Carruthers, Kettle, Robinson (b0005) 1998; 51 Feraboli P, Rassaian M. Proceedings of the CMH-17 (MIL-HDBK-17) Crashworthiness Working Group Numerical Round Robin. Costa Mesa, CA, July 2010. Fasanella EL, Jackson KE. Best practices for crash modeling simulation. NASA TM-2002-211944, ARL-TR-2849, October 2002. Zukas, Nicholas, Swift, Greszczuk, Curran (b0095) 1982 Feraboli, Norris, McLarty (b0045) 2007; 44 Browne AL, Johnson NL. Dynamic axial crush of automotive rail sized composite tubes, Part 5: Effect of test conditions. American Society for Composites (ASC). 18th Annual Technical Conference, Paper 152; September 2003, Gainesville, FL. Feraboli (b0040) 2009; 43 T700SC 12K/2510 Plain Weave Fabric. Composite Materials Handbook (CMH-17), vol. 2. Rev. G. [chapter 4.2.38]. Feraboli, Deleo, Wade, Rassaian, Higgins, Byar (b0070) 2010; 41 Tomblin J, Sherraden J, Seneviratne W, Raju KS. A-basis and B-basis Design Allowables for Epoxy-based prepreg Toray T700SC-12K-50C/#2510 Plain Weave Fabric. AGATE-WP3.3-033051-131; September 2002. Farley, Jones (b0010) 1992; 26 Hinton, Kaddour, Soden (b0015) 2002; 62 Feraboli, Wade, Deleo, Rassaian (b0080) 2009; 40 Paz (b0085) 1991 Xiao (b0020) 2009; 43 Feraboli (b0035) 2008; 42 Meyer, Will (b0090) 1987 Carruthers (10.1016/j.compositesa.2011.08.004_b0005) 1998; 51 10.1016/j.compositesa.2011.08.004_b0025 Feraboli (10.1016/j.compositesa.2011.08.004_b0045) 2007; 44 Meyer (10.1016/j.compositesa.2011.08.004_b0090) 1987 10.1016/j.compositesa.2011.08.004_b0055 Zukas (10.1016/j.compositesa.2011.08.004_b0095) 1982 10.1016/j.compositesa.2011.08.004_b0050 Xiao (10.1016/j.compositesa.2011.08.004_b0020) 2009; 43 Feraboli (10.1016/j.compositesa.2011.08.004_b0040) 2009; 43 10.1016/j.compositesa.2011.08.004_b0060 Feraboli (10.1016/j.compositesa.2011.08.004_b0080) 2009; 40 Farley (10.1016/j.compositesa.2011.08.004_b0010) 1992; 26 Feraboli (10.1016/j.compositesa.2011.08.004_b0035) 2008; 42 Feraboli (10.1016/j.compositesa.2011.08.004_b0070) 2010; 41 10.1016/j.compositesa.2011.08.004_b0075 10.1016/j.compositesa.2011.08.004_b0030 Chang (10.1016/j.compositesa.2011.08.004_b0065) 1987; 21 Paz (10.1016/j.compositesa.2011.08.004_b0085) 1991 Hinton (10.1016/j.compositesa.2011.08.004_b0015) 2002; 62 |
References_xml | – reference: Browne AL, Johnson NL. Dynamic axial crush of automotive rail sized composite tubes, Part 5: Effect of test conditions. American Society for Composites (ASC). 18th Annual Technical Conference, Paper 152; September 2003, Gainesville, FL. – volume: 51 start-page: 635 year: 1998 end-page: 649 ident: b0005 article-title: Energy absorption capability and crashworthiness of composite material structures: a review publication-title: Appl Mech Rev – volume: 44 start-page: 15 year: 2007 end-page: 36 ident: b0045 article-title: Design and certification of a composite thin-walled structure for energy absorption publication-title: Int J Vehicle Des – volume: 40 start-page: 1248 year: 2009 end-page: 1256 ident: b0080 article-title: Crush energy absorption of composite channel section specimens publication-title: Composites (Part A) – year: 1982 ident: b0095 article-title: Impact dynamics – volume: 43 start-page: 427 year: 2009 end-page: 444 ident: b0020 article-title: Modeling energy absorption with a damage mechanics based composite material model publication-title: J Compos Mater – volume: 21 start-page: 834 year: 1987 end-page: 855 ident: b0065 article-title: A progressive damage model for laminated composites containing stress concentration publication-title: J Compos Mater – volume: 62 start-page: 1725 year: 2002 end-page: 1797 ident: b0015 article-title: A comparison of the predictive capabilities of current failure theories for composite laminates, judged against experimental evidence publication-title: Compos Sci Technol – reference: Hallquist JO. LS-DYNA Theoretical Manual. Livermore Software Technology Corporation; 2005. – reference: Fasanella EL, Jackson KE. Best practices for crash modeling simulation. NASA TM-2002-211944, ARL-TR-2849, October 2002. – volume: 43 start-page: 1967 year: 2009 end-page: 1990 ident: b0040 article-title: Development of a modified flat plate test and fixture specimen for composite materials crush energy absorption publication-title: J Compos Mater – reference: Tomblin J, Sherraden J, Seneviratne W, Raju KS. A-basis and B-basis Design Allowables for Epoxy-based prepreg Toray T700SC-12K-50C/#2510 Plain Weave Fabric. AGATE-WP3.3-033051-131; September 2002. – volume: 41 start-page: 774 year: 2010 end-page: 786 ident: b0070 article-title: Predictive modeling of an energy-absorbing sandwich structural concept using the building block approach publication-title: Composites (Part A) – volume: 42 start-page: 229 year: 2008 end-page: 256 ident: b0035 article-title: Development of a corrugated test specimen for composite materials energy absorption publication-title: J Compos Mater – reference: T700SC 12K/2510 Plain Weave Fabric. Composite Materials Handbook (CMH-17), vol. 2. Rev. G. [chapter 4.2.38]. – year: 1991 ident: b0085 article-title: Structural dynamics theory and computation – reference: Feraboli P, Rassaian M. Proceedings of the CMH-17 (MIL-HDBK-17) Crashworthiness Working Group Numerical Round Robin. Costa Mesa, CA, July 2010. – year: 1987 ident: b0090 article-title: Models for dynamic analysis in finite element idealization – volume: 26 start-page: 37 year: 1992 end-page: 50 ident: b0010 article-title: Crushing characteristics of continuous fiber-reinforced composite tubes publication-title: J Compos Mater – ident: 10.1016/j.compositesa.2011.08.004_b0030 – volume: 43 start-page: 1967 issue: 19 year: 2009 ident: 10.1016/j.compositesa.2011.08.004_b0040 article-title: Development of a modified flat plate test and fixture specimen for composite materials crush energy absorption publication-title: J Compos Mater doi: 10.1177/0021998309343025 – volume: 26 start-page: 37 issue: 1 year: 1992 ident: 10.1016/j.compositesa.2011.08.004_b0010 article-title: Crushing characteristics of continuous fiber-reinforced composite tubes publication-title: J Compos Mater doi: 10.1177/002199839202600103 – ident: 10.1016/j.compositesa.2011.08.004_b0075 – volume: 40 start-page: 1248 issue: 8 year: 2009 ident: 10.1016/j.compositesa.2011.08.004_b0080 article-title: Crush energy absorption of composite channel section specimens publication-title: Composites (Part A) doi: 10.1016/j.compositesa.2009.05.021 – year: 1982 ident: 10.1016/j.compositesa.2011.08.004_b0095 – volume: 42 start-page: 229 issue: 3 year: 2008 ident: 10.1016/j.compositesa.2011.08.004_b0035 article-title: Development of a corrugated test specimen for composite materials energy absorption publication-title: J Compos Mater doi: 10.1177/0021998307086202 – ident: 10.1016/j.compositesa.2011.08.004_b0060 – volume: 41 start-page: 774 issue: 6 year: 2010 ident: 10.1016/j.compositesa.2011.08.004_b0070 article-title: Predictive modeling of an energy-absorbing sandwich structural concept using the building block approach publication-title: Composites (Part A) doi: 10.1016/j.compositesa.2010.02.012 – volume: 43 start-page: 427 issue: 5 year: 2009 ident: 10.1016/j.compositesa.2011.08.004_b0020 article-title: Modeling energy absorption with a damage mechanics based composite material model publication-title: J Compos Mater doi: 10.1177/0021998308097686 – year: 1991 ident: 10.1016/j.compositesa.2011.08.004_b0085 – year: 1987 ident: 10.1016/j.compositesa.2011.08.004_b0090 – volume: 21 start-page: 834 year: 1987 ident: 10.1016/j.compositesa.2011.08.004_b0065 article-title: A progressive damage model for laminated composites containing stress concentration publication-title: J Compos Mater doi: 10.1177/002199838702100904 – ident: 10.1016/j.compositesa.2011.08.004_b0025 – volume: 44 start-page: 15 issue: 3–4 year: 2007 ident: 10.1016/j.compositesa.2011.08.004_b0045 article-title: Design and certification of a composite thin-walled structure for energy absorption publication-title: Int J Vehicle Des – volume: 62 start-page: 1725 issue: 12–13 year: 2002 ident: 10.1016/j.compositesa.2011.08.004_b0015 article-title: A comparison of the predictive capabilities of current failure theories for composite laminates, judged against experimental evidence publication-title: Compos Sci Technol doi: 10.1016/S0266-3538(02)00125-2 – volume: 51 start-page: 635 year: 1998 ident: 10.1016/j.compositesa.2011.08.004_b0005 article-title: Energy absorption capability and crashworthiness of composite material structures: a review publication-title: Appl Mech Rev doi: 10.1115/1.3100758 – ident: 10.1016/j.compositesa.2011.08.004_b0055 – ident: 10.1016/j.compositesa.2011.08.004_b0050 |
SSID | ssj0003391 |
Score | 2.4681122 |
Snippet | The suitability of a progressive failure material model to simulate the quasi-static crushing of a composite specimen is evaluated. The commercially available... |
SourceID | proquest pascalfrancis crossref fao elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1809 |
SubjectTerms | A. Carbon fiber Applied sciences B. Impact behavior C. FEA Calibration carbon fibers Computer simulation Crashworthiness Crushing Damage epoxides Exact sciences and technology Failure Forms of application and semi-finished materials Laminates Mathematical models Polymer industry, paints, wood Prepregs simulation models Strategy Technology of polymers |
Title | LS-DYNA MAT54 modeling of the axial crushing of a composite tape sinusoidal specimen |
URI | https://dx.doi.org/10.1016/j.compositesa.2011.08.004 https://www.proquest.com/docview/1753425493 https://www.proquest.com/docview/926317946 |
Volume | 42 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LaxsxEB5iB0p7COmLbJsYBXrd2quXd6EXkza4j_hiG9yTkLRScSm7JmtDT_nt0ezDSWgLge5RqwFpRpr5NBrNALzLOTWM-jQe0YzHXDgXZ06y2LDEUI2fQX_H1UxOl_zLSqwO4KJ7C4Nhla3ub3R6ra3blmHLzeFmvR7OE0w-x8QKk55hnFYPDinLpOjD4eTz1-lsr5AZy5pzF3q8AsETOL8L88LIbQyPcpW-S-jZlm37i5nqeV1i_KSuAgt9U_viDzVe26bLYzhqQSWZNON-DgeueAHP7qUafAmLb_P44_fZhFxNFoKTugBO-EFKTwIEJPp3WIfEXu9qjxS2arIfM9nqjSPVuthV5ToP_fB5JlYFeAXLy0-Li2ncVlSIrRjJbZwEtGeD0TJjg9elmrpMCzP241w6hofVxATAoFMrQ7Oxwqdj74TImbGeBZmy19AvysKdAEmc4SMnA75ihlsrQu_Mcma8yxOdMhNB2jFQ2TbdOFa9-KW6uLKf6h7vFfJeYUXMEY-A7kk3Tc6NxxB96KSkHiwgFWzDY8hPgmSV_hFUq1rOKTqCEA5lXEYweCDu_Zgolwi4RATnnfxV2Jx446ILV-4qhWlQOR7BWQTkH30yKhlqRfnm_2bwFp7W_u76neQp9LfXO3cWANPWDKD3_iYZtNviFtljFZ4 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9tAEB4SB_o4lD6J-kg30KuwpX1Ygl5M2uA0ti-2wT0tu6tVcCmSiWzIz8-MHk5CWwhUx9UOrGZWM9_Mzs4AfMlEbHmcJ-EgTkUopPdh6hUPLY9sbOixFO-YztR4KX6s5OoAzrq7MJRW2er-RqfX2rod6bfc7G_W6_48ouJzXK6o6BnlaR3CkZDo7fXgaHRxOZ7tFTLnaeN3UcQLCZ7A6V2aF2VuU3qUr8xdQc-2bdtfzNRhbkrKnzQVsjBvel_8ocZr23T-El60oJKNmnW_ggNfvIbn90oNvoHFZB5--zkbseloIQWrG-DgC1bmDCEgMze4D5m73tURKRo1bL9mtjUbz6p1savKdYbz6HomdQV4C8vz74uzcdh2VAidHKhtGCHac2i07NDScamJfWqkHebDTHlOzmpkETCYxCkctk7myTD3UmbcupyjTPk76BVl4Y-BRd6KgVeIr7gVzkmcnTrBbe6zyCTcBpB0DNSuLTdOXS9-6y6v7Je-x3tNvNfUEXMgAoj3pJum5sZjiL52UtIPNpBG2_AY8mOUrDZXqFr1ch5TIIjgUCpUACcPxL1fUywUAS4ZwGknf40_J524mMKXu0pTGVRBLjgPgP1jThorTlpRvf-_L_gMT8eL6URPLmaXH-BZHfuu70x-hN72euc_IXja2pP257gFfdsXjQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LS-DYNA+MAT54+modeling+of+the+axial+crushing+of+a+composite+tape+sinusoidal+specimen&rft.jtitle=Composites.+Part+A%2C+Applied+science+and+manufacturing&rft.au=Feraboli%2C+Paolo&rft.au=Wade%2C+Bonnie&rft.au=Deleo%2C+Francesco&rft.au=Rassaian%2C+Mostafa&rft.date=2011-11-01&rft.issn=1359-835X&rft.volume=42&rft.issue=11&rft.spage=1809&rft.epage=1825&rft_id=info:doi/10.1016%2Fj.compositesa.2011.08.004&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compositesa_2011_08_004 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-835X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-835X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-835X&client=summon |