Carbon footprint of rice production under biochar amendment – a case study in a Chinese rice cropping system
As a controversial strategy to mitigate global warming, biochar application into soil highlights the need for life cycle assessment before large‐scale practice. This study focused on the effect of biochar on carbon footprint of rice production. A field experiment was performed with three treatments:...
Saved in:
Published in | Global change biology. Bioenergy Vol. 8; no. 1; pp. 148 - 159 |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
John Wiley & Sons, Inc
01.01.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | As a controversial strategy to mitigate global warming, biochar application into soil highlights the need for life cycle assessment before large‐scale practice. This study focused on the effect of biochar on carbon footprint of rice production. A field experiment was performed with three treatments: no residue amendment (Control), 6 t ha−1 yr−1 corn straw (CS) amendment, and 2.4 t ha−1 yr−1 corn straw‐derived biochar amendment (CBC). Carbon footprint was calculated by considering carbon source processes (pyrolysis energy cost, fertilizer and pesticide input, farmwork, and soil greenhouse gas emissions) and carbon sink processes (soil carbon increment and energy offset from pyrolytic gas). On average over three consecutive rice‐growing cycles from year 2011 to 2013, the CS treatment had a much higher carbon intensity of rice (0.68 kg CO2‐C equivalent (CO2‐Ce) kg−1 grain) than that of Control (0.24 kg CO2‐Ce kg−1 grain), resulting from large soil CH4 emissions. Biochar amendment significantly increased soil carbon pool and showed no significant effect on soil total N2O and CH4 emissions relative to Control; however, due to a variation in net electric energy input of biochar production based on different pyrolysis settings, carbon intensity of rice under CBC treatment ranged from 0.04 to 0.44 kg CO2‐Ce kg−1 grain. The results indicated that biochar strategy had the potential to significantly reduce the carbon footprint of crop production, but the energy‐efficient pyrolysis technique does matter. |
---|---|
AbstractList | As a controversial strategy to mitigate global warming, biochar application into soil highlights the need for life cycle assessment before large‐scale practice. This study focused on the effect of biochar on carbon footprint of rice production. A field experiment was performed with three treatments: no residue amendment (Control), 6 t ha
−1
yr
−1
corn straw (
CS
) amendment, and 2.4 t ha
−1
yr
−1
corn straw‐derived biochar amendment (
CBC
). Carbon footprint was calculated by considering carbon source processes (pyrolysis energy cost, fertilizer and pesticide input, farmwork, and soil greenhouse gas emissions) and carbon sink processes (soil carbon increment and energy offset from pyrolytic gas). On average over three consecutive rice‐growing cycles from year 2011 to 2013, the
CS
treatment had a much higher carbon intensity of rice (0.68 kg
CO
2
‐C equivalent (
CO
2
‐C
e
) kg
−1
grain) than that of Control (0.24 kg
CO
2
‐C
e
kg
−1
grain), resulting from large soil
CH
4
emissions. Biochar amendment significantly increased soil carbon pool and showed no significant effect on soil total N
2
O and
CH
4
emissions relative to Control; however, due to a variation in net electric energy input of biochar production based on different pyrolysis settings, carbon intensity of rice under
CBC
treatment ranged from 0.04 to 0.44 kg
CO
2
‐C
e
kg
−1
grain. The results indicated that biochar strategy had the potential to significantly reduce the carbon footprint of crop production, but the energy‐efficient pyrolysis technique does matter. As a controversial strategy to mitigate global warming, biochar application into soil highlights the need for life cycle assessment before large‐scale practice. This study focused on the effect of biochar on carbon footprint of rice production. A field experiment was performed with three treatments: no residue amendment (Control), 6 t ha−1 yr−1 corn straw (CS) amendment, and 2.4 t ha−1 yr−1 corn straw‐derived biochar amendment (CBC). Carbon footprint was calculated by considering carbon source processes (pyrolysis energy cost, fertilizer and pesticide input, farmwork, and soil greenhouse gas emissions) and carbon sink processes (soil carbon increment and energy offset from pyrolytic gas). On average over three consecutive rice‐growing cycles from year 2011 to 2013, the CS treatment had a much higher carbon intensity of rice (0.68 kg CO2‐C equivalent (CO2‐Ce) kg−1 grain) than that of Control (0.24 kg CO2‐Ce kg−1 grain), resulting from large soil CH4 emissions. Biochar amendment significantly increased soil carbon pool and showed no significant effect on soil total N2O and CH4 emissions relative to Control; however, due to a variation in net electric energy input of biochar production based on different pyrolysis settings, carbon intensity of rice under CBC treatment ranged from 0.04 to 0.44 kg CO2‐Ce kg−1 grain. The results indicated that biochar strategy had the potential to significantly reduce the carbon footprint of crop production, but the energy‐efficient pyrolysis technique does matter. As a controversial strategy to mitigate global warming, biochar application into soil highlights the need for life cycle assessment before large-scale practice. This study focused on the effect of biochar on carbon footprint of rice production. A field experiment was performed with three treatments: no residue amendment (Control), 6 t ha−1 yr−1 corn straw (CS) amendment, and 2.4 t ha−1 yr−1 corn straw-derived biochar amendment (CBC). Carbon footprint was calculated by considering carbon source processes (pyrolysis energy cost, fertilizer and pesticide input, farmwork, and soil greenhouse gas emissions) and carbon sink processes (soil carbon increment and energy offset from pyrolytic gas). On average over three consecutive rice-growing cycles from year 2011 to 2013, the CS treatment had a much higher carbon intensity of rice (0.68 kg CO2-C equivalent (CO2-Ce) kg−1 grain) than that of Control (0.24 kg CO2-Ce kg−1 grain), resulting from large soil CH4 emissions. Biochar amendment significantly increased soil carbon pool and showed no significant effect on soil total N2O and CH4 emissions relative to Control; however, due to a variation in net electric energy input of biochar production based on different pyrolysis settings, carbon intensity of rice under CBC treatment ranged from 0.04 to 0.44 kg CO2-Ce kg−1 grain. The results indicated that biochar strategy had the potential to significantly reduce the carbon footprint of crop production, but the energy-efficient pyrolysis technique does matter. As a controversial strategy to mitigate global warming, biochar application into soil highlights the need for life cycle assessment before large-scale practice. This study focused on the effect of biochar on carbon footprint of rice production. A field experiment was performed with three treatments: no residue amendment (Control), 6 t ha super(-1) yr super(-1) corn straw (CS) amendment, and 2.4 t ha super(-1 )y r super(-1) corn straw-derived biochar amendment (CBC). Carbon footprint was calculated by considering carbon source processes (pyrolysis energy cost, fertilizer and pesticide input, farmwork, and soil greenhouse gas emissions) and carbon sink processes (soil carbon increment and energy offset from pyrolytic gas). On average over three consecutive rice-growing cycles from year 2011 to 2013, the CS treatment had a much higher carbon intensity of rice (0.68 kg CO sub(2)-C equivalent (CO sub(2)-C sub(e)) kg super(-1 )grain) than that of Control (0.24 kg CO sub(2)-C sub(e )kg super(-1) grain), resulting from large soil CH sub(4) emissions. Biochar amendment significantly increased soil carbon pool and showed no significant effect on soil total N sub(2)O and CH sub(4) emissions relative to Control; however, due to a variation in net electric energy input of biochar production based on different pyrolysis settings, carbon intensity of rice under CBC treatment ranged from 0.04 to 0.44 kg CO sub(2)-C sub(e )kg super(-1) grain. The results indicated that biochar strategy had the potential to significantly reduce the carbon footprint of crop production, but the energy-efficient pyrolysis technique does matter. |
Author | Liu, Gang Zhu, Jianguo Shen, Dachun Lin, Xingwu Zhang, Yanhui Yu, Yongchang Liu, Qi Liu, Benjuan Ma, Jing Zhu, Chunwu Hansen, Veronika Lin, Zhibin Ambus, Per Xie, Zubin Wang, Xiaojie Bei, Qicheng |
Author_xml | – sequence: 1 givenname: Qi surname: Liu fullname: Liu, Qi organization: University of Chinese Academy of Sciences – sequence: 2 givenname: Benjuan surname: Liu fullname: Liu, Benjuan organization: University of Chinese Academy of Sciences – sequence: 3 givenname: Per surname: Ambus fullname: Ambus, Per organization: Technical University of Denmark – sequence: 4 givenname: Yanhui surname: Zhang fullname: Zhang, Yanhui organization: Huaibei Normal University – sequence: 5 givenname: Veronika surname: Hansen fullname: Hansen, Veronika organization: Technical University of Denmark – sequence: 6 givenname: Zhibin surname: Lin fullname: Lin, Zhibin organization: University of Chinese Academy of Sciences – sequence: 7 givenname: Dachun surname: Shen fullname: Shen, Dachun organization: Nanjing Agricultural University – sequence: 8 givenname: Gang surname: Liu fullname: Liu, Gang organization: Chinese Academy of Sciences – sequence: 9 givenname: Qicheng surname: Bei fullname: Bei, Qicheng organization: Chinese Academy of Sciences – sequence: 10 givenname: Jianguo surname: Zhu fullname: Zhu, Jianguo organization: Chinese Academy of Sciences – sequence: 11 givenname: Xiaojie surname: Wang fullname: Wang, Xiaojie organization: University of Chinese Academy of Sciences – sequence: 12 givenname: Jing surname: Ma fullname: Ma, Jing organization: University of Chinese Academy of Sciences – sequence: 13 givenname: Xingwu surname: Lin fullname: Lin, Xingwu organization: Chinese Academy of Sciences – sequence: 14 givenname: Yongchang surname: Yu fullname: Yu, Yongchang organization: Nantong Science and Technology College – sequence: 15 givenname: Chunwu surname: Zhu fullname: Zhu, Chunwu organization: Chinese Academy of Sciences – sequence: 16 givenname: Zubin surname: Xie fullname: Xie, Zubin organization: Chinese Academy of Sciences |
BookMark | eNp9kc9q3DAQxkXZQrJpL3kCQS8hsKlky5J9TEy7CQR6ac9irD8bBa-0kWSCb3mHvGGfpNrd9hJKBIM00u8bNPMt0cIHbxA6p-SKlvV1o4bhilYVaz-gUyoasaKCiMW_M-_qE7RM6ZEQ3nDanSLfQxyCxzaEvIvOZxwsjk4ZvItBTyq78jh5bSIeXFAPEDFsjdclMv798ooBK0gGpzzpGTtf8v7BeVOuDlVUDLud8xuc5pTN9hP6aGFM5vPf_Qz9-v7tZ3-7uv-xvuuv71eqIbxdmUYwa4nVtBWVqC0FrQUMwFrOatZqzjtT8ZoDqwjXAK2wDTSkVsAaMnRQn6GLY93SxdNkUpZbl5QZR_AmTElSITjnrGWkoF_eoI9hir78TlZVRyipaVMXihyp0lBK0VipXIb9dHIEN0pK5N4AuTdAHgwokss3kjLgLcT5_zA9ws9uNPM7pFz3NzdHzR8SGpkX |
CitedBy_id | crossref_primary_10_1016_j_rser_2025_115579 crossref_primary_10_2134_jeq2018_10_0354 crossref_primary_10_1002_jeq2_20475 crossref_primary_10_1016_j_scitotenv_2024_175448 crossref_primary_10_3390_e23020260 crossref_primary_10_1016_j_jclepro_2021_125964 crossref_primary_10_1016_j_scitotenv_2022_154344 crossref_primary_10_1016_j_agwat_2024_109181 crossref_primary_10_3389_fpls_2022_895402 crossref_primary_10_1016_j_eti_2024_103577 crossref_primary_10_1016_j_agee_2021_107571 crossref_primary_10_1002_ldr_3495 crossref_primary_10_1016_j_fcr_2022_108796 crossref_primary_10_1016_j_fcr_2023_109247 crossref_primary_10_1007_s42729_022_01107_0 crossref_primary_10_1016_j_scitotenv_2024_171693 crossref_primary_10_3390_pr8101275 crossref_primary_10_3390_ijerph15112580 crossref_primary_10_1111_gcbb_13116 crossref_primary_10_1016_j_agee_2021_107663 crossref_primary_10_3390_su10040928 crossref_primary_10_1016_j_spc_2019_03_008 crossref_primary_10_1016_j_jclepro_2021_128586 crossref_primary_10_3390_su151813421 crossref_primary_10_1016_j_ecolind_2020_106634 crossref_primary_10_1080_00380768_2019_1705737 crossref_primary_10_1007_s10653_018_0224_7 crossref_primary_10_1016_j_jenvman_2021_113698 crossref_primary_10_1016_j_jia_2022_12_005 crossref_primary_10_1007_s42729_024_01651_x crossref_primary_10_1016_j_jclepro_2018_04_173 crossref_primary_10_1016_j_scitotenv_2021_152022 crossref_primary_10_1007_s11104_018_3619_4 crossref_primary_10_1016_j_scitotenv_2020_137390 crossref_primary_10_1016_j_eti_2025_104133 crossref_primary_10_1016_j_ecoenv_2021_112332 crossref_primary_10_3390_agronomy12020247 crossref_primary_10_1007_s11368_016_1360_2 crossref_primary_10_1016_j_jenvman_2019_03_051 crossref_primary_10_1016_j_jclepro_2022_133365 crossref_primary_10_1016_j_jclepro_2017_06_026 crossref_primary_10_1016_j_pedsph_2022_11_001 crossref_primary_10_1016_j_envpol_2020_115846 crossref_primary_10_21467_jmm_6_1_40_51 crossref_primary_10_1007_s11270_020_4466_5 crossref_primary_10_1016_j_scienta_2018_07_021 crossref_primary_10_3389_fpls_2022_990105 crossref_primary_10_1016_j_scitotenv_2021_151140 crossref_primary_10_1016_j_jenvman_2024_120936 crossref_primary_10_1016_j_scitotenv_2019_01_425 crossref_primary_10_1021_acs_est_6b03239 crossref_primary_10_1016_j_scitotenv_2018_09_332 crossref_primary_10_1016_j_spc_2022_09_001 crossref_primary_10_1016_j_agee_2018_04_017 crossref_primary_10_1016_S2095_3119_20_63278_6 crossref_primary_10_1016_j_scitotenv_2023_165176 crossref_primary_10_1111_gcbb_12561 |
Cites_doi | 10.2136/sssaj1981.03615995004500020017x 10.1038/ncomms1053 10.1007/s11434-008-0145-4 10.1016/j.energy.2010.09.031 10.1021/es902266r 10.1029/2008GB003299 10.1016/j.envint.2004.03.005 10.1021/ef900912s 10.1016/S0038-0717(96)00303-3 10.1023/A:1004263405020 10.1071/SR10010 10.1016/j.agee.2011.05.012 10.1016/j.enpol.2003.08.010 10.1111/j.1365-2672.2006.02927.x 10.1002/ep.10378 10.1038/srep01732 10.1016/j.agee.2011.08.015 10.1007/s10584-005-6791-5 10.4141/S96-107 10.1016/j.enpol.2010.06.004 10.3763/ijas.2009.0419 10.4155/cmt.10.32 10.1007/s10533-012-9764-6 10.1007/s11367-009-0064-x 10.1016/S0167-8809(01)00233-X 10.1016/j.energy.2011.08.047 10.1029/2004GB002435 10.2136/sssaj2005.0383 10.1016/j.agee.2010.07.002 10.1029/97JD03460 10.1038/447143a 10.1016/j.enpol.2011.02.033 10.1016/j.agee.2013.10.009 10.1021/es0705137 10.1111/j.1757-1707.2010.01055.x 10.1111/gcbb.12032 10.1128/aem.56.6.1799-1805.1990 10.1128/aem.55.8.2068-2072.1989 10.1016/j.soilbio.2011.11.016 10.1016/j.fcr.2011.11.020 10.1007/s11104-013-1636-x 10.1007/BF00478364 10.2136/sssaj1984.03615995004800060013x 10.1016/j.biortech.2010.11.018 10.1016/j.soilbio.2011.07.020 10.1046/j.1365-2486.1998.00161.x 10.1016/j.foodpol.2008.09.001 10.1021/es302720k 10.1007/s11430-011-4309-8 10.1016/j.agee.2010.12.005 10.1021/es9031419 10.1016/j.soilbio.2010.07.012 10.1007/s11430-010-4014-z |
ContentType | Journal Article |
Copyright | 2015 John Wiley & Sons Ltd 2016. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2015 John Wiley & Sons Ltd – notice: 2016. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7SN 7ST 7U6 7XB 8FE 8FG 8FH 8FK 8G5 ABJCF ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO GNUQQ GUQSH HCIFZ KB. LK8 M2O M7P MBDVC PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7TV SOI |
DOI | 10.1111/gcbb.12248 |
DatabaseName | CrossRef ProQuest Central (Corporate) Ecology Abstracts Environment Abstracts Sustainability Science Abstracts ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library Materials Science & Engineering Collection (ProQuest) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection (subscription) ProQuest Central Technology collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea ProQuest Central Student Research Library Prep SciTech Premium Collection Materials Science Database Biological Sciences Research Library Biological science database Research Library (Corporate) Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Pollution Abstracts Environment Abstracts |
DatabaseTitle | CrossRef Publicly Available Content Database Research Library Prep ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection Sustainability Science Abstracts ProQuest Central Korea Biological Science Collection Materials Science Database ProQuest Research Library ProQuest Central (New) ProQuest Materials Science Collection ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Technology Collection Biological Science Database ProQuest SciTech Collection Ecology Abstracts ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic Environment Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) Pollution Abstracts |
DatabaseTitleList | CrossRef Publicly Available Content Database Ecology Abstracts |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Agriculture |
EISSN | 1757-1707 |
EndPage | 159 |
ExternalDocumentID | 10_1111_gcbb_12248 GCBB12248 |
Genre | article |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: NFSC‐41171191; 41105100 – fundername: Knowledge Innovation Program of Chinese Academy of Sciences funderid: KZCX2‐EW‐409 – fundername: Science and Technology Supporting Project of China funderid: 2013BAD11B01 – fundername: Jiangsu Province funderid: BE2013451 |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OC 24P 31~ 33P 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52W 52X 5HH 5LA 5VS 702 7PT 8-0 8-1 8-3 8-4 8-5 8FE 8FG 8FH 8G5 8UM 930 A03 AAEVG AAHBH AAHHS AANHP AAONW AAZKR ABCQN ABDBF ABEML ABJCF ABPVW ABUWG ACBWZ ACCFJ ACCMX ACIWK ACPRK ACRPL ACSCC ACUHS ACXQS ACYXJ ADBBV ADIZJ ADKYN ADNMO ADZMN ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AEUYN AFBPY AFKRA AFRAH AFZJQ AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR ASPBG ATUGU AVUZU AVWKF AZBYB AZFZN AZQEC BAFTC BBNVY BCNDV BDRZF BENPR BFHJK BGLVJ BHPHI BNHUX BPHCQ BROTX BRXPI BY8 CAG CCPQU COF D-E D-F D1I DPXWK DR2 DU5 DWQXO EBD EBS ECGQY EJD ESX F00 F01 F04 F5P FEDTE G-S G.N GNUQQ GODZA GROUPED_DOAJ GUQSH H.T H.X HCIFZ HF~ HOLLA HVGLF HZ~ IAO IGS IHR ITC J0M KB. KQ8 L8X LC2 LC3 LH4 LK8 LP6 LP7 LW6 M2O M7P MK4 M~E N04 N05 N9A NF~ O66 O9- OIG OK1 OVD P2X P4D PDBOC PIMPY PQQKQ PROAC Q.N Q11 QB0 R.K ROL RWI RX1 SUPJJ TEORI TUS UB1 W8V W99 WIH WIN WNSPC WQJ WRC XG1 XV2 ~IA ~WT AAYXX AGQPQ CITATION PHGZM PHGZT 3V. 7SN 7ST 7U6 7XB 8FK AAMMB AEFGJ AGXDD AIDQK AIDYY C1K MBDVC PKEHL PQEST PQGLB PQUKI PRINS Q9U 7TV SOI |
ID | FETCH-LOGICAL-c5068-e574ff0fd187273f1add7aba4864348d669e2636a4206daa87f5a503ca450b9a3 |
IEDL.DBID | DR2 |
ISSN | 1757-1693 |
IngestDate | Tue Aug 05 08:40:35 EDT 2025 Wed Aug 13 09:32:27 EDT 2025 Tue Jul 01 02:14:44 EDT 2025 Thu Apr 24 23:05:41 EDT 2025 Wed Jan 22 16:22:39 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5068-e574ff0fd187273f1add7aba4864348d669e2636a4206daa87f5a503ca450b9a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Report-3 ObjectType-Case Study-4 content type line 23 |
OpenAccessLink | https://www.proquest.com/docview/2290103153?pq-origsite=%requestingapplication% |
PQID | 2290103153 |
PQPubID | 866396 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_1776664840 proquest_journals_2290103153 crossref_citationtrail_10_1111_gcbb_12248 crossref_primary_10_1111_gcbb_12248 wiley_primary_10_1111_gcbb_12248_GCBB12248 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2016 |
PublicationDateYYYYMMDD | 2016-01-01 |
PublicationDate_xml | – month: 01 year: 2016 text: January 2016 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Global change biology. Bioenergy |
PublicationYear | 2016 |
Publisher | John Wiley & Sons, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc |
References | 2006; 70 2010; 53 2013; 3 1990; 56 1997; 196 2011; 13 2013; 5 2012; 127 2012; 55 1981; 45 2009; 14 2004; 30 2010; 1 2005; 72 2002; 91 2010; 2 2005; 33 2009; 23 2009; 24 2010; 38 2013; 47 2007; 447 1984; 48 2008; 19 2014; 191 1997; 29 2008 2013b 2013a 2008; 53 2011; 36 2011; 39 2012; 31 2009; 28 2009; 34 2010; 44 2011; 102 2005; 19 1989; 55 2010; 48 2012; 111 1997; 77 2010; 139 2011; 43 2009; 7 1998; 103 2014 2007; 41 2012; 46 2011; 140 2013; 370 1998; 4 2006; 101 2011; 144 1992; 61 2011; 142 e_1_2_6_53_1 e_1_2_6_32_1 IPCC (e_1_2_6_22_1) 2013 IPCC (e_1_2_6_24_1) 2014 e_1_2_6_30_1 Tortoso AC (e_1_2_6_51_1) 1990; 56 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_62_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_60_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 IPCC (e_1_2_6_23_1) 2013 e_1_2_6_52_1 e_1_2_6_10_1 e_1_2_6_31_1 Shi YC (e_1_2_6_46_1) 2011; 13 e_1_2_6_50_1 Lu F (e_1_2_6_39_1) 2008; 19 Papen H (e_1_2_6_43_1) 1989; 55 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_56_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 Wiedmann T (e_1_2_6_54_1) 2008 e_1_2_6_42_1 e_1_2_6_21_1 Fang K (e_1_2_6_14_1) 2012; 31 e_1_2_6_40_1 e_1_2_6_61_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_27_1 |
References_xml | – volume: 72 start-page: 321 year: 2005 end-page: 338 article-title: Carbon sequestration in arable soils is likely to increase nitrous oxide emissions, offsetting reductions in climate radiative forcing publication-title: Climatic Change – start-page: 5 year: 2013a end-page: 6 – volume: 38 start-page: 6180 year: 2010 end-page: 6193 article-title: Greenhouse gas emissions in China 2007: Inventory and input‐output analysis publication-title: Energy Policy – volume: 53 start-page: 1351 year: 2010 end-page: 1357 article-title: CO mitigation potential in farmland of China by altering current organic matter amendment pattern publication-title: Science China Earth Sciences – volume: 43 start-page: 2304 year: 2011 end-page: 2314 article-title: Short term soil priming effects and the mineralisation of biochar following its incorporation to soils of different pH publication-title: Soil Biology and Biochemistry – volume: 44 start-page: 827 year: 2010 end-page: 833 article-title: Life cycle assessment of biochar systems: estimating the energetic, economic, and climate change potential publication-title: Environmental Science & Technology – volume: 4 start-page: 387 year: 1998 end-page: 396 article-title: Influence of O availability on NO and N O release by nitrification and denitrification in soils publication-title: Global Change Biology – volume: 1 start-page: 289 year: 2010 end-page: 303 article-title: Review of the stability of biochar in soils: predictability of O: C molar ratios publication-title: Carbon Management – volume: 53 start-page: 784 year: 2008 end-page: 790 article-title: Estimation of emissions from field burning of crop straw in China publication-title: Chinese Science Bulletin – volume: 13 start-page: 16 year: 2011 end-page: 23 article-title: China's resources of biomass feedstock publication-title: Engineering Sciences – volume: 1 start-page: 56 year: 2010 article-title: Sustainable biochar to mitigate global climate publication-title: Nature Communications – year: 2014 – volume: 46 start-page: 80 year: 2012 end-page: 88 article-title: Mechanisms of biochar decreasing methane emission from Chinese paddy soils publication-title: Soil Biology and Biochemistry – volume: 111 start-page: 83 year: 2012 end-page: 95 article-title: Modelling the long‐term response to positive and negative priming of soil organic carbon by black carbon publication-title: Biogeochemistry – volume: 7 start-page: 107 year: 2009 end-page: 118 article-title: The carbon footprints of food crop production publication-title: International Journal of Agricultural Sustainability – volume: 142 start-page: 231 year: 2011 end-page: 237 article-title: Carbon footprint of China's crop production—an estimation using agro‐statistics data over 1993–2007 publication-title: Agriculture, Ecosystems & Environment – volume: 19 start-page: 2239 year: 2008 end-page: 2250 article-title: Assessment on the availability of nitrogen fertilization in improving carbon sequestration potential of China's cropland soil publication-title: The Journal of Applied Ecology – volume: 2 start-page: 201 year: 2010 end-page: 213 article-title: Bioenergy by‐products as soil amendments? Implications for carbon sequestration and greenhouse gas emissions publication-title: Global Change Biology Bioenergy – start-page: 710 year: 2013b end-page: 716 – volume: 30 start-page: 981 year: 2004 end-page: 990 article-title: Carbon emission from farm operations publication-title: Environment International – volume: 370 start-page: 527 year: 2013 end-page: 540 article-title: Impact of biochar application on nitrogen nutrition of rice, greenhouse‐gas emissions and soil organic carbon dynamics in two paddy soils of China publication-title: Plant and Soil – start-page: 1 year: 2008 end-page: 11 – volume: 3 start-page: 1732 year: 2013 article-title: Biochar and denitrification in soils: when, how much and why does biochar reduce N O emissions? publication-title: Scientific Reports – volume: 36 start-page: 2011 year: 2011 end-page: 2016 article-title: Biochar as a viable carbon sequestration option: global and Canadian perspective publication-title: Energy – volume: 127 start-page: 153 year: 2012 end-page: 160 article-title: Effects of biochar amendment on soil quality, crop yield and greenhouse gas emission in a Chinese rice paddy: a field study of 2 consecutive rice growing cycles publication-title: Field Crops Research – volume: 139 start-page: 66 year: 2010 end-page: 73 article-title: Carbon footprints of Indian food items publication-title: Agriculture, Ecosystems & Environment – volume: 45 start-page: 311 year: 1981 end-page: 316 article-title: Improved soil cover method for field measurement of nitrous oxide fluxes publication-title: Soil Science Society of America Journal – volume: 44 start-page: 1247 year: 2010 end-page: 1253 article-title: Dynamic molecular structure of plant biomass‐derived black carbon (biochar) publication-title: Environmental Science & Technology – volume: 55 start-page: 173 year: 2012 end-page: 182 article-title: Greenhouse gas budget for terrestrial ecosystems in China publication-title: Science China Earth Sciences – volume: 70 start-page: 1719 year: 2006 end-page: 1730 article-title: Black carbon increases cation exchange capacity in soils publication-title: Soil Science Society of America Journal – volume: 91 start-page: 217 year: 2002 end-page: 232 article-title: A synthesis of carbon sequestration, carbon emissions, and net carbon flux in agriculture: comparing tillage practices in the United States publication-title: Agriculture, Ecosystems & Environment – volume: 19 start-page: GB1013 year: 2005 article-title: Near‐edge X‐ray absorption fine structure (NEXAFS) spectroscopy for mapping nano‐scale distribution of organic carbon forms in soils: application to black carbon particles publication-title: Global Biogeochemical Cycles – volume: 47 start-page: 1206 year: 2013 end-page: 1215 article-title: Life cycle assessment to evaluate the environmental impact of biochar implementation in conservation agriculture in Zambia publication-title: Environmental Science and Technology – volume: 196 start-page: 7 year: 1997 end-page: 14 article-title: Methane and nitrous oxide emissions from rice paddy fields as affected by nitrogen fertilizers and water management publication-title: Plant and Soil – volume: 39 start-page: 2646 year: 2011 end-page: 2655 article-title: Prospective life cycle carbon abatement for pyrolysis biochar systems in the UK publication-title: Energy Policy – volume: 144 start-page: 175 year: 2011 end-page: 187 article-title: A quantitative review of the effects of biochar application to soils on crop productivity using meta‐analysis publication-title: Agriculture, Ecosystems & Environment – volume: 24 start-page: 699 year: 2009 end-page: 706 article-title: Analysis and comparison of bio‐oil produced by fast pyrolysis from three barley biomass/byproduct streams publication-title: Energy & Fuels – volume: 43 start-page: 1768 year: 2011 end-page: 1778 article-title: Degradability of black carbon and its impact on trace gas fluxes and carbon turnover in paddy soils publication-title: Soil Biology and Biochemistry – volume: 103 start-page: 8237 year: 1998 end-page: 8242 article-title: Contribution of rice straw carbon to CH emission from rice paddies using C‐enriched rice straw publication-title: Journal of Geophysical Research – volume: 55 start-page: 2068 year: 1989 end-page: 2072 article-title: Heterotrophic nitrification by : NO , NO , N O, and NO production in exponentially growing cultures publication-title: Applied and Environmental Microbiology – volume: 34 start-page: 130 year: 2009 end-page: 140 article-title: Footprints of water and energy inputs in food production–Global perspectives publication-title: Food Policy – volume: 33 start-page: 451 year: 2005 end-page: 465 article-title: Carbon intensity of electricity generation and CDM baseline: case studies of three Chinese provinces publication-title: Energy Policy – volume: 140 start-page: 309 year: 2011 end-page: 313 article-title: Biochar addition to agricultural soil increased CH uptake and water holding capacity – results from a short‐term pilot field study publication-title: Agriculture, Ecosystems & Environment – volume: 101 start-page: 655 year: 2006 end-page: 667 article-title: Effect of pH, temperature and substrate on N O, NO and CO production by p publication-title: Journal of Applied Microbiology – volume: 48 start-page: 1267 year: 1984 end-page: 1272 article-title: Effect of water‐filled pore space on carbon dioxide and nitrous oxide production in tilled and nontilled soils publication-title: Soil Science Society of America Journal – volume: 61 start-page: 37 year: 1992 end-page: 45 article-title: Production of dinitrogen and nitrous oxide in soil suspensions as affected by redox potential publication-title: Water, Air, and Soil Pollution – volume: 447 start-page: 143 year: 2007 end-page: 144 article-title: A handful of carbon publication-title: Nature – volume: 191 start-page: 5 year: 2014 end-page: 16 article-title: Biochar's role in mitigating soil nitrous oxide emissions: a review and meta‐analysis publication-title: Agriculture, Ecosystems & Environment – volume: 56 start-page: 1799 year: 1990 end-page: 1805 article-title: Contributions of autotrophic and heterotrophic nitrifiers to soil NO and N O emissions publication-title: Applied and Environmental Microbiology – volume: 14 start-page: 91 year: 2009 end-page: 94 article-title: Carbon footprint‐opportunities and threats publication-title: The International Journal of Life Cycle Assessment – volume: 41 start-page: 6052 year: 2007 end-page: 6058 article-title: Particulate and trace gas emissions from open burning of wheat straw and corn stover in China publication-title: Environmental Science & Technology – volume: 77 start-page: 167 year: 1997 end-page: 178 article-title: Soils as sources and sinks for atmospheric methane publication-title: Canadian Journal of Soil Science – volume: 31 start-page: 3160 year: 2012 end-page: 3166 article-title: Carbon footprint of global electricity and its equivalent calculation publication-title: Chinese Journal of Ecology – volume: 28 start-page: 386 year: 2009 end-page: 396 article-title: Characterization of biochar from fast pyrolysis and gasification systems publication-title: Environmental Progress & Sustainable Energy – volume: 29 start-page: 139 year: 1997 end-page: 151 article-title: Measuring the contributions of nitrification and denitrification to the flux of nitrous oxide from soil publication-title: Soil Biology and Biochemistry – volume: 23 start-page: GB2002 year: 2009 article-title: Global estimations of the inventory and mitigation potential of methane emissions from rice cultivation conducted using the 2006 Intergovernmental Panel on Climate Change Guidelines publication-title: Global Biogeochemical Cycles – volume: 102 start-page: 3488 year: 2011 end-page: 3497 article-title: The forms of alkalis in the biochar produced from crop residues at different temperatures publication-title: Bioresource Technology – volume: 48 start-page: 618 year: 2010 end-page: 626 article-title: Chemical and structural properties of carbonaceous products obtained by pyrolysis and hydrothermal carbonisation of corn stover publication-title: Soil Research – volume: 5 start-page: 177 year: 2013 end-page: 191 article-title: Distributed biochar and bioenergy coproduction: a regionally specific case study of environmental benefits and economic impacts publication-title: Global Change Biology Bioenergy – volume: 36 start-page: 5805 year: 2011 end-page: 5814 article-title: Thermodynamic analysis of small‐scale dimethyl ether (DME) and methanol plants based on the efficient two‐stage gasifier publication-title: Energy – ident: e_1_2_6_21_1 doi: 10.2136/sssaj1981.03615995004500020017x – ident: e_1_2_6_56_1 doi: 10.1038/ncomms1053 – ident: e_1_2_6_6_1 doi: 10.1007/s11434-008-0145-4 – ident: e_1_2_6_41_1 doi: 10.1016/j.energy.2010.09.031 – volume-title: Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change year: 2014 ident: e_1_2_6_24_1 – volume: 19 start-page: 2239 year: 2008 ident: e_1_2_6_39_1 article-title: Assessment on the availability of nitrogen fertilization in improving carbon sequestration potential of China's cropland soil publication-title: The Journal of Applied Ecology – ident: e_1_2_6_45_1 doi: 10.1021/es902266r – ident: e_1_2_6_59_1 doi: 10.1029/2008GB003299 – ident: e_1_2_6_32_1 doi: 10.1016/j.envint.2004.03.005 – ident: e_1_2_6_42_1 doi: 10.1021/ef900912s – ident: e_1_2_6_49_1 doi: 10.1016/S0038-0717(96)00303-3 – ident: e_1_2_6_5_1 doi: 10.1023/A:1004263405020 – volume: 13 start-page: 16 year: 2011 ident: e_1_2_6_46_1 article-title: China's resources of biomass feedstock publication-title: Engineering Sciences – ident: e_1_2_6_18_1 doi: 10.1071/SR10010 – ident: e_1_2_6_11_1 doi: 10.1016/j.agee.2011.05.012 – ident: e_1_2_6_61_1 doi: 10.1016/j.enpol.2003.08.010 – ident: e_1_2_6_28_1 doi: 10.1111/j.1365-2672.2006.02927.x – ident: e_1_2_6_3_1 doi: 10.1002/ep.10378 – ident: e_1_2_6_8_1 doi: 10.1038/srep01732 – start-page: 710 volume-title: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change year: 2013 ident: e_1_2_6_23_1 – ident: e_1_2_6_25_1 doi: 10.1016/j.agee.2011.08.015 – ident: e_1_2_6_35_1 doi: 10.1007/s10584-005-6791-5 – ident: e_1_2_6_50_1 doi: 10.4141/S96-107 – ident: e_1_2_6_10_1 doi: 10.1016/j.enpol.2010.06.004 – ident: e_1_2_6_20_1 doi: 10.3763/ijas.2009.0419 – ident: e_1_2_6_48_1 doi: 10.4155/cmt.10.32 – ident: e_1_2_6_55_1 doi: 10.1007/s10533-012-9764-6 – ident: e_1_2_6_17_1 doi: 10.1007/s11367-009-0064-x – ident: e_1_2_6_53_1 doi: 10.1016/S0167-8809(01)00233-X – ident: e_1_2_6_12_1 doi: 10.1016/j.energy.2011.08.047 – ident: e_1_2_6_34_1 doi: 10.1029/2004GB002435 – ident: e_1_2_6_37_1 doi: 10.2136/sssaj2005.0383 – ident: e_1_2_6_44_1 doi: 10.1016/j.agee.2010.07.002 – ident: e_1_2_6_52_1 doi: 10.1029/97JD03460 – ident: e_1_2_6_33_1 doi: 10.1038/447143a – ident: e_1_2_6_19_1 doi: 10.1016/j.enpol.2011.02.033 – volume: 31 start-page: 3160 year: 2012 ident: e_1_2_6_14_1 article-title: Carbon footprint of global electricity and its equivalent calculation publication-title: Chinese Journal of Ecology – start-page: 5 volume-title: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change year: 2013 ident: e_1_2_6_22_1 – ident: e_1_2_6_9_1 doi: 10.1016/j.agee.2013.10.009 – ident: e_1_2_6_36_1 doi: 10.1021/es0705137 – ident: e_1_2_6_7_1 doi: 10.1111/j.1757-1707.2010.01055.x – start-page: 1 volume-title: Ecological Economics Research Trends year: 2008 ident: e_1_2_6_54_1 – ident: e_1_2_6_16_1 doi: 10.1111/gcbb.12032 – volume: 56 start-page: 1799 year: 1990 ident: e_1_2_6_51_1 article-title: Contributions of autotrophic and heterotrophic nitrifiers to soil NO and N2O emissions publication-title: Applied and Environmental Microbiology doi: 10.1128/aem.56.6.1799-1805.1990 – volume: 55 start-page: 2068 year: 1989 ident: e_1_2_6_43_1 article-title: Heterotrophic nitrification by Alcaligenes faecalis: NO2 ‐, NO3 ‐, N2O, and NO production in exponentially growing cultures publication-title: Applied and Environmental Microbiology doi: 10.1128/aem.55.8.2068-2072.1989 – ident: e_1_2_6_15_1 doi: 10.1016/j.soilbio.2011.11.016 – ident: e_1_2_6_62_1 doi: 10.1016/j.fcr.2011.11.020 – ident: e_1_2_6_58_1 doi: 10.1007/s11104-013-1636-x – ident: e_1_2_6_31_1 doi: 10.1007/BF00478364 – ident: e_1_2_6_13_1 – ident: e_1_2_6_38_1 doi: 10.2136/sssaj1984.03615995004800060013x – ident: e_1_2_6_60_1 doi: 10.1016/j.biortech.2010.11.018 – ident: e_1_2_6_40_1 doi: 10.1016/j.soilbio.2011.07.020 – ident: e_1_2_6_2_1 doi: 10.1046/j.1365-2486.1998.00161.x – ident: e_1_2_6_29_1 doi: 10.1016/j.foodpol.2008.09.001 – ident: e_1_2_6_47_1 doi: 10.1021/es302720k – ident: e_1_2_6_4_1 doi: 10.1007/s11430-011-4309-8 – ident: e_1_2_6_26_1 doi: 10.1016/j.agee.2010.12.005 – ident: e_1_2_6_27_1 doi: 10.1021/es9031419 – ident: e_1_2_6_30_1 doi: 10.1016/j.soilbio.2010.07.012 – ident: e_1_2_6_57_1 doi: 10.1007/s11430-010-4014-z |
SSID | ssj0065619 ssib009979516 ssib036249247 |
Score | 2.3325543 |
Snippet | As a controversial strategy to mitigate global warming, biochar application into soil highlights the need for life cycle assessment before large‐scale... As a controversial strategy to mitigate global warming, biochar application into soil highlights the need for life cycle assessment before large-scale... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 148 |
SubjectTerms | Agricultural economics Agricultural production Agriculture biochar Biomass Carbon dioxide Carbon footprint Carbon sequestration Carbon sinks Carbon sources Cereal crops CH 4 Charcoal Climate change Corn Corn straw Crop production Cropping systems Emissions Energy Energy costs Energy efficiency Environmental impact Footprint analysis Global warming Grain Greenhouse effect Greenhouse gases Industrial plant emissions Life cycle analysis Life cycle assessment Life cycles Methane N2O Nitrous oxide Oryza Pesticides Precipitation Pyrolysis Raw materials Rice Rice fields Soil gases Soils Straw |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NaxsxEB1a59IeStO01G0SVNJLC2rXXmlXOoXYJA2BhlAayG3RZwgku47t3Psf-g_7Szojy3YCIbfVrliBRhq9GUnvAXyWZdDSK8kdRhdcICjlymvFFZ3fCYjYfaCE_s_T6vhcnFzIi5xwm-VjlUufmBy17xzlyL8TL3mSJCj3J7ecVKNodzVLaDyHDXTBSvVgY3R4evZrNaK0rrVcAyD01gIDjlVIhmAmSX_gGlpzoiXJBKZ01ufSWfuN9p3UwyVrjUPvo9m0HB29hlcZR7KDheE34Vlo38DLg8tp5tIIWLrHNbgF7dhMbdey2HVzSubNWRcZMQqxyYL0FQ3E6EbZlNmrji5jMXMTWk_ZQ_bvz19mmMMVjyU-WnbVYpm0twO-Sn8hKTC6e8UW3NBv4fzo8Pf4mGexBe5kUSkeZC1iLKIfKII0cYCOrzbWCIWYRShfVToMq7IyYlhU3hhVR2lkUTojZGG1Kd9Br-3a8B5YNC5KOzBDi2hLYwzs6kqLaH2p0aU42Ycvy_5sXGYiJ0GM62YZkVDfN6nv-7C3qjtZ8G88Wmt7aZYmz8FZsx4xffi0-oyzh7ZETBu6u1kzqGuM3wRGuX34msz5RCvNj_FolJ4-PN3eR3iBuCpnarahN5_ehR3ELnO7mwfof9gd6es priority: 102 providerName: ProQuest |
Title | Carbon footprint of rice production under biochar amendment – a case study in a Chinese rice cropping system |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcbb.12248 https://www.proquest.com/docview/2290103153 https://www.proquest.com/docview/1776664840 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB6V9gKHAi2IhbIyKpciZZXd2IktcWFX3VYgqlJRqRcU2Y6NKmhS7WYvnHgH3rBP0hkn2V0QQioXKz-WI9sZzzdjzzcAr0XilCikiCxaFxFHUBrJQslI0vkdh4i9cOTQ_3iSHp_z9xfiYgPedrEwDT_E0uFGkhHWaxJwbeZrQv7VGjOgfSGK9KXDWoSIzla6WqlMiRX2wYWao62xtMYQx4SsH6g-s4gYSVruUjrms2r6d221gqDrQDZooulD-NL1oTmA8m2wqM3A_viD3vF_O_kItluIyt41_9Rj2HDlDjxYIy7chXKiZ6Yqma-qmjyDNas8I3oidt0wyOJsMwpPmzFzWVFkF9NXrizIFclufv5imllUnyyQ27LLEu8pkbfDR6EVyitGgVysIZp-AufTw8-T46jN3BBZEacyciLj3se-GErCR36Iq2imjeYSARCXRZoqN0qTVPNRnBZay8wLLeLEai5io3TyFDbLqnTPgHltvTBDPTII3RQa1DZLFfemSBSuT1b04KCbody2tOaUXeN73pk3NIZ5GMMe7C_rXjdkHn-ttddNdN4K9DwnWvyQESPpwavlaxRF2l_RpasW83yYZWgMcjSZe_AmzOo_vpIfTcbjcPX8LpVfwH2EbK0TaA8269nCvURYVJs-3BvxUyzl9KgPW-PDk9OzfnAx9INgYPnhk7wFWVMKfw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VcgAOiF-xUMAIOIBkyCZ2Yh8Qahe2W_pzaqXegu3YVSVIlt2tEDfegffgoXgSZpxkt0iot97ixHIkz9jzzdjzDcALmXktKyW5Q--CCwSlXFVacUX3dzwi9spTQH__IJ8ciU_H8ngNfve5MHStst8T40ZdNY5i5G-JlzyWJMjeT79xqhpFp6t9CY1WLXb9j-_oss3f7XxA-b5M0_HHw9GEd1UFuJNJrriXhQghCdVQke0OQ1zhhbFGKDTOQlV5rn2aZ7kRaZJXxqgiSCOTzBkhE6tNhuNegasiQ0tOmenj7aX-al1ouYJbaBsEujdLBxChUyw0gha74ESC0tGl0s2iE2ftGzrlUv8ayBXqPY-do_Eb34KbHWplm62a3YY1X9-BG5sns465w2PrHLPhXahHZmabmoWmWVDocMGawIi_iE1billUB0b5azNmTxtK_WLmq68rilWyPz9_McMc2lcW2W_ZaY1tqvTt8VUchQqPUaYXa5mo78HRpQjhPqzXTe0fAAvGBWmHJrWI7TR63K7ItQi2yjRuYE4O4FU_n6XreM-p_MaXsvd_aO7LOPcDeL7sO23ZPv7ba6MXS9mt-Hm50s8BPFt-xrVKBzCm9s3ZvBwWBXqLAn3qAbyO4rzgL-X2aGsrPj28-H9P4drkcH-v3Ns52H0E1xHRdTGiDVhfzM78Y0RNC_skqiqDz5e9Nv4C8Tskxg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VrYTggPgVCwWMgANIbrOJndgHhLrbLi2FVYWo1FuwHbuqBMmyuxXixjvwNjwOT8JMfnaLhHrrLU6iRLJnPN83tr8BeC4Tr2WhJHfILrhAUMpVoRVXtH_HI2IvPCX0P0zSvSPx7lger8Hv7iwMbavs5sR6oi4qRznyLdIlr0sSJFuh3RZxuDN-M_3GqYIUrbR25TQaEznwP74jfZu_3t_BsX4Rx-PdT6M93lYY4E5GqeJeZiKEKBQDRXE8DNDbM2ONUBiohSrSVPs4TVIj4igtjFFZkEZGiTNCRlabBL97BdYzYkU9WB_uTg4_Lq1Z60zLFfjCSCGQ7CzpIAKpuuwIxu-MkyRKK55K-4xOnLWbtOal_g2XKwx8HknXoXB8E260GJZtN0Z3C9Z8eRuub5_MWh0Pj61zOod3oByZma1KFqpqQYnEBasCIzUjNm0EZ9E4GJ1mmzF7WtFBMGa--rKgzCX78_MXM8xhtGW1Fi47LbFNdb893qq_QmXI6NwXa3Sp78LRpQzDPeiVVenvAwvGBWkHJraI9DTyb5elWgRbJBqnMyf78LLrz9y1KuhUjONL3rEh6vu87vs-PFu-O220P_771kY3LHnr__N8Za19eLp8jJ5LyzGm9NXZPB9kGXJHgQy7D6_q4bzgL_nb0XBYXz24-H9P4Cr6Rf5-f3LwEK4hvGsTRhvQW8zO_COEUAv7uLVVBp8v2z3-Ap5mKlg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Carbon+footprint+of+rice+production+under+biochar+amendment+%E2%80%93+a+case+study+in+a+Chinese+rice+cropping+system&rft.jtitle=Global+change+biology.+Bioenergy&rft.au=Liu%2C+Qi&rft.au=Liu%2C+Benjuan&rft.au=Ambus%2C+Per&rft.au=Zhang%2C+Yanhui&rft.date=2016-01-01&rft.issn=1757-1693&rft.eissn=1757-1707&rft.volume=8&rft.issue=1&rft.spage=148&rft.epage=159&rft_id=info:doi/10.1111%2Fgcbb.12248&rft.externalDBID=10.1111%252Fgcbb.12248&rft.externalDocID=GCBB12248 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1757-1693&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1757-1693&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1757-1693&client=summon |