Ideal Bandgap Organic–Inorganic Hybrid Perovskite Solar Cells
Extremely high power conversion efficiencies (PCEs) of ≈20–22% are realized through intensive research and development of 1.5–1.6 eV bandgap perovskite absorbers. However, development of ideal bandgap (1.3–1.4 eV) absorbers is pivotal to further improve PCE of single junction perovskite solar cells...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 29; no. 47 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.12.2017
Wiley Blackwell (John Wiley & Sons) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Extremely high power conversion efficiencies (PCEs) of ≈20–22% are realized through intensive research and development of 1.5–1.6 eV bandgap perovskite absorbers. However, development of ideal bandgap (1.3–1.4 eV) absorbers is pivotal to further improve PCE of single junction perovskite solar cells (PVSCs) because of a better balance between absorption loss of sub‐bandgap photons and thermalization loss of above‐bandgap photons as demonstrated by the Shockley–Queisser detailed balanced calculation. Ideal bandgap PVSCs are currently hindered by the poor optoelectronic quality of perovskite absorbers and their PCEs have stagnated at <15%. In this work, through systematic photoluminescence and photovoltaic analysis, a new ideal bandgap (1.35 eV) absorber composition (MAPb0.5Sn0.5(I0.8Br0.2)3) is rationally designed and developed, which possesses lower nonradiative recombination states, band edge disorder, and Urbach energy coupled with a higher absorption coefficient, which yields a reduced Voc,loss (0.45 V) and improved PCE (as high as 17.63%) for the derived PVSCs. This work provides a promising platform for unleashing the complete potential of ideal bandgap PVSCs and prospects for further improvement.
An ideal‐bandgap (1.35 eV) perovskite (MAPb0.5Sn0.5(I0.8Br0.2)3) is developed with lower non‐radiative recombination states, band edge disorder, and Urbach energy coupled with a higher absorption coefficient, yielding a reduced open‐circuit voltage loss of 0.45 V and improved efficiency of 17.63%. This work provides a promising platform for unleashing the complete potential of ideal‐bandgap perovskite solar cells. |
---|---|
AbstractList | Abstract
Extremely high power conversion efficiencies (PCEs) of ≈20–22% are realized through intensive research and development of 1.5–1.6 eV bandgap perovskite absorbers. However, development of ideal bandgap (1.3–1.4 eV) absorbers is pivotal to further improve PCE of single junction perovskite solar cells (PVSCs) because of a better balance between absorption loss of sub‐bandgap photons and thermalization loss of above‐bandgap photons as demonstrated by the Shockley–Queisser detailed balanced calculation. Ideal bandgap PVSCs are currently hindered by the poor optoelectronic quality of perovskite absorbers and their PCEs have stagnated at <15%. In this work, through systematic photoluminescence and photovoltaic analysis, a new ideal bandgap (1.35 eV) absorber composition (MAPb
0.5
Sn
0.5
(I
0.8
Br
0.2
)
3
) is rationally designed and developed, which possesses lower nonradiative recombination states, band edge disorder, and Urbach energy coupled with a higher absorption coefficient, which yields a reduced
V
oc,loss
(0.45 V) and improved PCE (as high as 17.63%) for the derived PVSCs. This work provides a promising platform for unleashing the complete potential of ideal bandgap PVSCs and prospects for further improvement. Extremely high power conversion efficiencies (PCEs) of ≈20–22% are realized through intensive research and development of 1.5–1.6 eV bandgap perovskite absorbers. However, development of ideal bandgap (1.3–1.4 eV) absorbers is pivotal to further improve PCE of single junction perovskite solar cells (PVSCs) because of a better balance between absorption loss of sub‐bandgap photons and thermalization loss of above‐bandgap photons as demonstrated by the Shockley–Queisser detailed balanced calculation. Ideal bandgap PVSCs are currently hindered by the poor optoelectronic quality of perovskite absorbers and their PCEs have stagnated at <15%. In this work, through systematic photoluminescence and photovoltaic analysis, a new ideal bandgap (1.35 eV) absorber composition (MAPb 0.5 Sn 0.5 (I 0.8 Br 0.2 ) 3 ) is rationally designed and developed, which possesses lower nonradiative recombination states, band edge disorder, and Urbach energy coupled with a higher absorption coefficient, which yields a reduced V oc,loss (0.45 V) and improved PCE (as high as 17.63%) for the derived PVSCs. This work provides a promising platform for unleashing the complete potential of ideal bandgap PVSCs and prospects for further improvement. Extremely high power conversion efficiencies (PCEs) of ≈20–22% are realized through intensive research and development of 1.5–1.6 eV bandgap perovskite absorbers. However, development of ideal bandgap (1.3–1.4 eV) absorbers is pivotal to further improve PCE of single junction perovskite solar cells (PVSCs) because of a better balance between absorption loss of sub‐bandgap photons and thermalization loss of above‐bandgap photons as demonstrated by the Shockley–Queisser detailed balanced calculation. Ideal bandgap PVSCs are currently hindered by the poor optoelectronic quality of perovskite absorbers and their PCEs have stagnated at <15%. In this work, through systematic photoluminescence and photovoltaic analysis, a new ideal bandgap (1.35 eV) absorber composition (MAPb0.5Sn0.5(I0.8Br0.2)3) is rationally designed and developed, which possesses lower nonradiative recombination states, band edge disorder, and Urbach energy coupled with a higher absorption coefficient, which yields a reduced Voc,loss (0.45 V) and improved PCE (as high as 17.63%) for the derived PVSCs. This work provides a promising platform for unleashing the complete potential of ideal bandgap PVSCs and prospects for further improvement. An ideal‐bandgap (1.35 eV) perovskite (MAPb0.5Sn0.5(I0.8Br0.2)3) is developed with lower non‐radiative recombination states, band edge disorder, and Urbach energy coupled with a higher absorption coefficient, yielding a reduced open‐circuit voltage loss of 0.45 V and improved efficiency of 17.63%. This work provides a promising platform for unleashing the complete potential of ideal‐bandgap perovskite solar cells. Extremely high power conversion efficiencies (PCEs) of ≈20-22% are realized through intensive research and development of 1.5-1.6 eV bandgap perovskite absorbers. However, development of ideal bandgap (1.3-1.4 eV) absorbers is pivotal to further improve PCE of single junction perovskite solar cells (PVSCs) because of a better balance between absorption loss of sub-bandgap photons and thermalization loss of above-bandgap photons as demonstrated by the Shockley-Queisser detailed balanced calculation. Ideal bandgap PVSCs are currently hindered by the poor optoelectronic quality of perovskite absorbers and their PCEs have stagnated at <15%. In this work, through systematic photoluminescence and photovoltaic analysis, a new ideal bandgap (1.35 eV) absorber composition (MAPb Sn (I Br ) ) is rationally designed and developed, which possesses lower nonradiative recombination states, band edge disorder, and Urbach energy coupled with a higher absorption coefficient, which yields a reduced V (0.45 V) and improved PCE (as high as 17.63%) for the derived PVSCs. This work provides a promising platform for unleashing the complete potential of ideal bandgap PVSCs and prospects for further improvement. Extremely high power conversion efficiencies (PCEs) of ≈20-22% are realized through intensive research and development of 1.5-1.6 eV bandgap perovskite absorbers. However, development of ideal bandgap (1.3-1.4 eV) absorbers is pivotal to further improve PCE of single junction perovskite solar cells (PVSCs) because of a better balance between absorption loss of sub-bandgap photons and thermalization loss of above-bandgap photons as demonstrated by the Shockley-Queisser detailed balanced calculation. Ideal bandgap PVSCs are currently hindered by the poor optoelectronic quality of perovskite absorbers and their PCEs have stagnated at <15%. In this work, through systematic photoluminescence and photovoltaic analysis, a new ideal bandgap (1.35 eV) absorber composition (MAPb0.5 Sn0.5 (I0.8 Br0.2 )3 ) is rationally designed and developed, which possesses lower nonradiative recombination states, band edge disorder, and Urbach energy coupled with a higher absorption coefficient, which yields a reduced Voc,loss (0.45 V) and improved PCE (as high as 17.63%) for the derived PVSCs. This work provides a promising platform for unleashing the complete potential of ideal bandgap PVSCs and prospects for further improvement.Extremely high power conversion efficiencies (PCEs) of ≈20-22% are realized through intensive research and development of 1.5-1.6 eV bandgap perovskite absorbers. However, development of ideal bandgap (1.3-1.4 eV) absorbers is pivotal to further improve PCE of single junction perovskite solar cells (PVSCs) because of a better balance between absorption loss of sub-bandgap photons and thermalization loss of above-bandgap photons as demonstrated by the Shockley-Queisser detailed balanced calculation. Ideal bandgap PVSCs are currently hindered by the poor optoelectronic quality of perovskite absorbers and their PCEs have stagnated at <15%. In this work, through systematic photoluminescence and photovoltaic analysis, a new ideal bandgap (1.35 eV) absorber composition (MAPb0.5 Sn0.5 (I0.8 Br0.2 )3 ) is rationally designed and developed, which possesses lower nonradiative recombination states, band edge disorder, and Urbach energy coupled with a higher absorption coefficient, which yields a reduced Voc,loss (0.45 V) and improved PCE (as high as 17.63%) for the derived PVSCs. This work provides a promising platform for unleashing the complete potential of ideal bandgap PVSCs and prospects for further improvement. Extremely high power conversion efficiencies (PCEs) of ≈20–22% are realized through intensive research and development of 1.5–1.6 eV bandgap perovskite absorbers. However, development of ideal bandgap (1.3–1.4 eV) absorbers is pivotal to further improve PCE of single junction perovskite solar cells (PVSCs) because of a better balance between absorption loss of sub‐bandgap photons and thermalization loss of above‐bandgap photons as demonstrated by the Shockley–Queisser detailed balanced calculation. Ideal bandgap PVSCs are currently hindered by the poor optoelectronic quality of perovskite absorbers and their PCEs have stagnated at <15%. In this work, through systematic photoluminescence and photovoltaic analysis, a new ideal bandgap (1.35 eV) absorber composition (MAPb0.5Sn0.5(I0.8Br0.2)3) is rationally designed and developed, which possesses lower nonradiative recombination states, band edge disorder, and Urbach energy coupled with a higher absorption coefficient, which yields a reduced Voc,loss (0.45 V) and improved PCE (as high as 17.63%) for the derived PVSCs. This work provides a promising platform for unleashing the complete potential of ideal bandgap PVSCs and prospects for further improvement. |
Author | Rajagopal, Adharsh Yang, Zhibin Jen, Alex K.‐Y. |
Author_xml | – sequence: 1 givenname: Zhibin orcidid: 0000-0003-4036-9446 surname: Yang fullname: Yang, Zhibin organization: University of Washington – sequence: 2 givenname: Adharsh surname: Rajagopal fullname: Rajagopal, Adharsh organization: University of Washington – sequence: 3 givenname: Alex K.‐Y. orcidid: 0000-0002-9219-7749 surname: Jen fullname: Jen, Alex K.‐Y. email: ajen@uw.edu organization: City University of Hong Kong |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29134752$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/1413784$$D View this record in Osti.gov |
BookMark | eNqFkUtvEzEUha2qiKaPbZdoRDfdTPD7sUJpCjRSUStB15btcYrLxE7tCSg7_gP_kF-Cq2lBqoRY3bv4ztG59-yD3ZiiB-AYwSmCEL8x3cpMMUQCUorkDpgghlFLoWK7YAIVYa3iVO6B_VLuIISKQ_4S7GGFCBUMT8DbRedN35yZ2N2adXOVb00M7tePn4uYxr252Nocuuba5_StfA2Dbz6l3uRm7vu-HIIXS9MXf_Q4D8DN-3ef5xft5dWHxXx22ToGuWwJYxIqbKgUeLm0nkkhuCXMog5D4jgnxmKPCMaUd1RK4hC1mEplrWLSGHIAXo--qQxBF1djuC8uxejdoBFFREhaodMRWud0v_Fl0KtQXI1pok-bolH9BRaEUl7Rk2foXdrkWE-olODVjktRqVeP1MaufKfXOaxM3uqn_1WAjoDLqZTsl7omM0NIccgm9BpB_VCTfqhJ_6mpyqbPZE_O_xSoUfA99H77H1rPzj_O_mp_A7Jdoeg |
CitedBy_id | crossref_primary_10_1002_advs_202002718 crossref_primary_10_1016_j_heliyon_2024_e40322 crossref_primary_10_1021_acs_chemrev_8b00318 crossref_primary_10_1021_acs_jpcc_0c07983 crossref_primary_10_1021_acs_chemrev_3c00667 crossref_primary_10_1002_solr_202100710 crossref_primary_10_1016_j_rinp_2019_102699 crossref_primary_10_1016_j_chempr_2024_12_002 crossref_primary_10_1039_D1TA08984F crossref_primary_10_1002_aenm_202101045 crossref_primary_10_1039_C9TA05308E crossref_primary_10_1016_j_seja_2025_100105 crossref_primary_10_1016_j_jechem_2021_06_011 crossref_primary_10_1016_j_joule_2019_05_005 crossref_primary_10_1002_solr_201900283 crossref_primary_10_35848_1347_4065_ac6a33 crossref_primary_10_1088_0256_307X_38_10_107801 crossref_primary_10_1126_science_aav7911 crossref_primary_10_1002_aenm_201802774 crossref_primary_10_1002_aenm_201800997 crossref_primary_10_1039_D3DT04192A crossref_primary_10_1088_1674_4926_43_4_041106 crossref_primary_10_1002_solr_202100320 crossref_primary_10_1039_C8TA11891D crossref_primary_10_1002_adma_201908107 crossref_primary_10_1039_D1NR01117K crossref_primary_10_1002_eem2_12211 crossref_primary_10_1007_s12274_022_4894_1 crossref_primary_10_1021_acsaem_1c02033 crossref_primary_10_1016_j_apsusc_2019_01_233 crossref_primary_10_1002_admi_202100128 crossref_primary_10_1002_adfm_202303012 crossref_primary_10_1021_acsami_3c06392 crossref_primary_10_1016_j_scib_2020_04_025 crossref_primary_10_1002_solr_201800146 crossref_primary_10_1016_j_ssc_2024_115728 crossref_primary_10_1002_adma_201800455 crossref_primary_10_1039_D1TC00277E crossref_primary_10_1002_aenm_201800504 crossref_primary_10_1016_j_mssp_2024_108898 crossref_primary_10_1016_j_solener_2018_11_025 crossref_primary_10_1088_1402_4896_ad9eeb crossref_primary_10_1016_j_mssp_2024_108537 crossref_primary_10_1063_5_0155921 crossref_primary_10_3762_bjnano_9_207 crossref_primary_10_1002_solr_201800256 crossref_primary_10_1002_adma_202107729 crossref_primary_10_1002_ange_202300759 crossref_primary_10_1021_jacsau_1c00014 crossref_primary_10_1016_j_heliyon_2022_e11428 crossref_primary_10_1016_j_spmi_2020_106463 crossref_primary_10_1002_jctb_6830 crossref_primary_10_1016_j_jechem_2022_07_003 crossref_primary_10_1016_j_matt_2021_01_003 crossref_primary_10_1021_acs_energyfuels_3c00462 crossref_primary_10_1002_adma_201806105 crossref_primary_10_3390_nano14050437 crossref_primary_10_1063_1674_0068_cjcp2109154 crossref_primary_10_1039_C9TA02566A crossref_primary_10_1039_C8TA06391E crossref_primary_10_1021_acs_jpclett_4c02528 crossref_primary_10_1002_cssc_202000282 crossref_primary_10_1002_smll_202403920 crossref_primary_10_1149_2162_8777_ac2b3c crossref_primary_10_1109_JPHOTOV_2019_2941181 crossref_primary_10_1039_D0QM01064B crossref_primary_10_1002_anie_202300759 crossref_primary_10_1002_smll_202406991 crossref_primary_10_1038_s41427_023_00485_w crossref_primary_10_1039_C9TA06455A crossref_primary_10_1021_acs_jpclett_2c03649 crossref_primary_10_1016_j_physb_2021_413566 crossref_primary_10_1002_adma_202102300 crossref_primary_10_1021_acsami_8b03225 crossref_primary_10_1039_D0EE00132E crossref_primary_10_1002_aenm_201800525 crossref_primary_10_1021_acsaem_9b02413 crossref_primary_10_1039_D0NJ06317G crossref_primary_10_1002_smll_202203886 crossref_primary_10_1002_adma_202303674 crossref_primary_10_1016_j_matt_2021_04_007 crossref_primary_10_1021_acsaelm_1c01264 crossref_primary_10_1002_solr_202000344 crossref_primary_10_1021_acs_chemmater_9b01268 crossref_primary_10_1002_solr_201900080 crossref_primary_10_1002_adom_202302129 crossref_primary_10_1039_D4SE01051E crossref_primary_10_1088_1361_6463_ac036f crossref_primary_10_1016_j_nantod_2020_101062 crossref_primary_10_7498_aps_70_20201678 crossref_primary_10_1002_solr_201800075 crossref_primary_10_1002_solr_201900406 crossref_primary_10_1016_j_optmat_2024_115915 crossref_primary_10_1002_solr_202000616 crossref_primary_10_1021_acsenergylett_1c02044 crossref_primary_10_1002_aenm_201902583 crossref_primary_10_1021_acs_inorgchem_2c00531 crossref_primary_10_1016_j_jallcom_2019_04_117 crossref_primary_10_1016_j_joule_2021_09_008 crossref_primary_10_1088_1361_6641_ab27f7 crossref_primary_10_1016_j_physe_2024_115937 crossref_primary_10_3390_nano15060431 crossref_primary_10_1016_j_solener_2021_08_015 crossref_primary_10_1021_acs_jpclett_8b01152 crossref_primary_10_1021_acs_jpclett_1c03719 crossref_primary_10_1016_j_nanoen_2020_105634 crossref_primary_10_1088_1402_4896_ad6bd1 crossref_primary_10_1016_j_jallcom_2023_169084 crossref_primary_10_1002_aenm_201803135 crossref_primary_10_1002_adfm_202008620 crossref_primary_10_1039_D0TC05455K crossref_primary_10_1016_j_physb_2023_414879 crossref_primary_10_1016_j_materresbull_2018_10_011 crossref_primary_10_1063_5_0035199 crossref_primary_10_1002_cssc_202101089 crossref_primary_10_1016_j_commatsci_2022_111361 crossref_primary_10_1002_solr_202100212 crossref_primary_10_1021_acsaem_0c00849 crossref_primary_10_1021_acs_nanolett_8b01480 crossref_primary_10_2139_ssrn_4071645 crossref_primary_10_1039_D0TA09209F crossref_primary_10_1002_adfm_201808801 crossref_primary_10_35848_1347_4065_ac4ad9 crossref_primary_10_1021_acsphotonics_0c00677 crossref_primary_10_1039_C7TA09122B crossref_primary_10_1021_acsaem_0c00175 crossref_primary_10_1016_j_spmi_2020_106540 crossref_primary_10_1007_s13391_020_00206_3 crossref_primary_10_1007_s11426_019_9486_0 crossref_primary_10_1002_solr_201900304 crossref_primary_10_1134_S003602362206016X crossref_primary_10_1002_aenm_202003002 crossref_primary_10_1063_5_0037307 crossref_primary_10_1039_D4NR00678J crossref_primary_10_1088_1402_4896_ab5baa crossref_primary_10_1021_acs_jpcc_1c02571 crossref_primary_10_1007_s42247_024_00842_7 crossref_primary_10_1002_solr_202300754 crossref_primary_10_1021_acsenergylett_0c00577 crossref_primary_10_1021_acsaem_4c02526 crossref_primary_10_1002_adma_202314341 crossref_primary_10_1002_adfm_201804603 crossref_primary_10_1038_s41467_019_12513_x crossref_primary_10_3390_ma11091759 crossref_primary_10_1021_acsenergylett_8b01165 crossref_primary_10_1021_acsmaterialslett_4c01699 crossref_primary_10_1039_D3DT04276F crossref_primary_10_6023_A24030066 |
Cites_doi | 10.1016/j.nanoen.2016.02.033 10.1002/aenm.201601353 10.1126/science.aai9081 10.1038/nenergy.2017.18 10.1039/C4TA05033A 10.1021/acs.jpcc.5b10728 10.1021/jz5002117 10.1021/ja5033259 10.1039/C6TA07712A 10.1039/C7TA00404D 10.1039/C4EE01076K 10.1039/C7TA00058H 10.1021/jacs.5b06658 10.1016/j.nanoen.2016.05.052 10.1038/ncomms12305 10.1002/adma.201602696 10.1038/nenergy.2016.48 10.1002/adma.201605005 10.1063/1.1840606 10.1021/acs.nanolett.6b03857 10.1002/anie.201705965 10.1126/science.aaa9272 10.1126/science.aah5557 10.1063/1.1736034 10.1038/nphoton.2016.62 10.1002/adma.201401641 10.1002/aenm.201602512 10.1002/adfm.201505127 10.1002/adma.201604744 10.1038/natrevmats.2017.42 10.1002/adma.201702140 10.1021/acs.jpclett.5b01738 10.1063/1.4994211 10.1038/nature14133 10.1039/C7TA00929A 10.1021/jacs.6b00142 10.1021/jacs.5b13470 10.1126/science.aaf9717 10.1002/aenm.201602121 10.1021/jacs.6b08337 10.1039/C6EE03397K 10.1021/acs.jpclett.5b00967 10.1021/acs.chemrev.6b00136 |
ContentType | Journal Article |
Copyright | 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 OTOTI |
DOI | 10.1002/adma.201704418 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic OSTI.GOV |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed MEDLINE - Academic Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 1413784 29134752 10_1002_adma_201704418 ADMA201704418 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Science Foundation funderid: DMR‐1608279 – fundername: Department of Energy SunShot funderid: DE‐EE 0006710 – fundername: Office of Naval Research funderid: N00014‐17‐1‐2260 – fundername: Asian Office of Aerospace R&D funderid: FA2386‐15‐1‐4106 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION FEDTE FOJGT HF~ HVGLF M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 AAMMB AEFGJ AGXDD AIDQK AIDYY NPM 7SR 8BQ 8FD JG9 7X8 AAPBV ABHUG ACXME ADAWD ADDAD AFVGU AGJLS OTOTI |
ID | FETCH-LOGICAL-c5068-3558092a4872ffbe58776b35b1d203c663ab2e132246d4883c14b2489bb958aa3 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Mon Sep 18 05:40:46 EDT 2023 Fri Jul 11 13:42:51 EDT 2025 Sun Jul 13 04:20:28 EDT 2025 Mon Jul 21 05:42:06 EDT 2025 Thu Apr 24 23:09:24 EDT 2025 Tue Jul 01 00:44:37 EDT 2025 Wed Jan 22 16:27:11 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 47 |
Keywords | Pb-Sn binary alloys Shockley-Queisser limit compositional engineering open-circuit voltage optical simulations |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#am http://onlinelibrary.wiley.com/termsAndConditions#vor 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5068-3558092a4872ffbe58776b35b1d203c663ab2e132246d4883c14b2489bb958aa3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 DE‐EE 0006710 USDOE |
ORCID | 0000-0002-9219-7749 0000-0003-4036-9446 0000000292197749 0000000340369446 |
OpenAccessLink | https://www.osti.gov/biblio/1413784 |
PMID | 29134752 |
PQID | 1976378687 |
PQPubID | 2045203 |
PageCount | 7 |
ParticipantIDs | osti_scitechconnect_1413784 proquest_miscellaneous_1964273446 proquest_journals_1976378687 pubmed_primary_29134752 crossref_citationtrail_10_1002_adma_201704418 crossref_primary_10_1002_adma_201704418 wiley_primary_10_1002_adma_201704418_ADMA201704418 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-Dec |
PublicationDateYYYYMMDD | 2017-12-01 |
PublicationDate_xml | – month: 12 year: 2017 text: 2017-Dec |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2017 |
Publisher | Wiley Subscription Services, Inc Wiley Blackwell (John Wiley & Sons) |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: Wiley Blackwell (John Wiley & Sons) |
References | 2017; 5 2017; 7 2015; 6 2017; 2 2015; 3 2016; 10 2014; 26 1967; 46 2017; 29 2015; 348 1961; 32 2017; 355 2016; 16 2014; 136 2016; 120 2016; 4 2016; 6 2016; 7 2014; 5 2016; 1 2015; 137 2017; 10 2017; 56 2016; 354 2017 2015; 517 2016; 138 2016; 116 2016; 28 2014; 7 2016; 26 2016; 22 e_1_2_5_27_1 e_1_2_5_28_1 e_1_2_5_25_1 e_1_2_5_26_1 e_1_2_5_23_1 e_1_2_5_46_1 e_1_2_5_24_1 e_1_2_5_45_1 e_1_2_5_21_1 e_1_2_5_44_1 e_1_2_5_22_1 e_1_2_5_43_1 e_1_2_5_29_1 Zhao Z. (e_1_2_5_30_1) 2017 e_1_2_5_42_1 e_1_2_5_20_1 e_1_2_5_41_1 e_1_2_5_40_1 Xiao J.‐W. (e_1_2_5_14_1) 2017 e_1_2_5_15_1 e_1_2_5_38_1 e_1_2_5_39_1 e_1_2_5_17_1 e_1_2_5_36_1 e_1_2_5_9_1 e_1_2_5_16_1 e_1_2_5_37_1 e_1_2_5_8_1 e_1_2_5_11_1 e_1_2_5_34_1 e_1_2_5_7_1 e_1_2_5_10_1 e_1_2_5_35_1 e_1_2_5_6_1 e_1_2_5_13_1 e_1_2_5_32_1 e_1_2_5_5_1 e_1_2_5_12_1 e_1_2_5_33_1 e_1_2_5_4_1 e_1_2_5_3_1 e_1_2_5_2_1 e_1_2_5_1_1 e_1_2_5_19_1 e_1_2_5_18_1 e_1_2_5_31_1 |
References_xml | – volume: 354 start-page: 861 year: 2016 publication-title: Science – volume: 7 start-page: 1602512 year: 2017 publication-title: Adv. Energy Mater. – volume: 29 start-page: 1604744 year: 2017 publication-title: Adv. Mater. – year: 2017 publication-title: Adv. Energy Mater. – volume: 136 start-page: 8094 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 17042 year: 2017 publication-title: Nat. Rev. Mater. – volume: 26 start-page: 620 year: 2016 publication-title: Nano Energy – volume: 355 start-page: 722 year: 2017 publication-title: Science – volume: 1 start-page: 16048 year: 2016 publication-title: Nat. Energy – volume: 56 start-page: 12658 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 138 start-page: 12360 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 26 start-page: 3417 year: 2016 publication-title: Adv. Funct. Mater. – volume: 6 start-page: 2355 year: 2015 publication-title: J. Phys. Chem. Lett. – volume: 4 start-page: 17939 year: 2016 publication-title: J. Mater. Chem. A – volume: 138 start-page: 3974 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 120 start-page: 893 year: 2016 publication-title: J. Phys. Chem. C – volume: 10 start-page: 710 year: 2017 publication-title: Energy Environ. Sci. – year: 2017 publication-title: Adv. Sci. – volume: 7 start-page: 3061 year: 2014 publication-title: Energy Environ. Sci. – volume: 348 start-page: 1234 year: 2015 publication-title: Science – volume: 116 start-page: 12956 year: 2016 publication-title: Chem. Rev. – volume: 32 start-page: 510 year: 1961 publication-title: J. Appl. Phys. – volume: 5 start-page: 1004 year: 2014 publication-title: J. Phys. Chem. Lett. – volume: 22 start-page: 328 year: 2016 publication-title: Nano Energy – volume: 6 start-page: 3503 year: 2015 publication-title: J. Phys. Chem. Lett. – volume: 28 start-page: 8990 year: 2016 publication-title: Adv. Mater. – volume: 2 start-page: 17018 year: 2017 publication-title: Nat. Energy – volume: 5 start-page: 9553 year: 2017 publication-title: J. Mater. Chem. A – volume: 354 start-page: 206 year: 2016 publication-title: Science – volume: 26 start-page: 6454 year: 2014 publication-title: Adv. Mater. – volume: 16 start-page: 7739 year: 2016 publication-title: Nano Lett. – volume: 138 start-page: 2941 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 46 start-page: 4590 year: 1967 publication-title: J. Chem. Phys. – volume: 7 start-page: 075108 year: 2017 publication-title: AIP Adv. – volume: 5 start-page: 11401 year: 2017 publication-title: J. Mater. Chem. A – volume: 29 start-page: 1702140 year: 2017 publication-title: Adv. Mater. – volume: 10 start-page: 295 year: 2016 publication-title: Nat. Photonics – volume: 517 start-page: 476 year: 2015 publication-title: Nature – volume: 29 start-page: 1605005 year: 2017 publication-title: Adv. Mater. – volume: 5 start-page: 11518 year: 2017 publication-title: J. Mater. Chem. A – volume: 6 start-page: 1601353 year: 2016 publication-title: Adv. Energy Mater. – volume: 3 start-page: 8926 year: 2015 publication-title: J. Mater. Chem. A – volume: 137 start-page: 11445 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 1602121 year: 2017 publication-title: Adv. Energy Mater. – volume: 7 start-page: 12305 year: 2016 publication-title: Nat. Commun. – ident: e_1_2_5_37_1 doi: 10.1016/j.nanoen.2016.02.033 – ident: e_1_2_5_25_1 doi: 10.1002/aenm.201601353 – ident: e_1_2_5_8_1 doi: 10.1126/science.aai9081 – ident: e_1_2_5_36_1 doi: 10.1038/nenergy.2017.18 – ident: e_1_2_5_45_1 doi: 10.1039/C4TA05033A – ident: e_1_2_5_33_1 doi: 10.1021/acs.jpcc.5b10728 – ident: e_1_2_5_18_1 doi: 10.1021/jz5002117 – ident: e_1_2_5_17_1 doi: 10.1021/ja5033259 – ident: e_1_2_5_31_1 doi: 10.1039/C6TA07712A – ident: e_1_2_5_13_1 doi: 10.1039/C7TA00404D – ident: e_1_2_5_20_1 doi: 10.1039/C4EE01076K – ident: e_1_2_5_42_1 doi: 10.1039/C7TA00058H – ident: e_1_2_5_21_1 doi: 10.1021/jacs.5b06658 – ident: e_1_2_5_40_1 doi: 10.1016/j.nanoen.2016.05.052 – ident: e_1_2_5_38_1 doi: 10.1038/ncomms12305 – ident: e_1_2_5_16_1 doi: 10.1002/adma.201602696 – ident: e_1_2_5_2_1 doi: 10.1038/nenergy.2016.48 – ident: e_1_2_5_28_1 doi: 10.1002/adma.201605005 – ident: e_1_2_5_32_1 doi: 10.1063/1.1840606 – ident: e_1_2_5_43_1 doi: 10.1021/acs.nanolett.6b03857 – ident: e_1_2_5_15_1 doi: 10.1002/anie.201705965 – year: 2017 ident: e_1_2_5_14_1 publication-title: Adv. Energy Mater. – ident: e_1_2_5_5_1 – ident: e_1_2_5_6_1 doi: 10.1126/science.aaa9272 – ident: e_1_2_5_7_1 doi: 10.1126/science.aah5557 – ident: e_1_2_5_9_1 doi: 10.1063/1.1736034 – ident: e_1_2_5_4_1 doi: 10.1038/nphoton.2016.62 – ident: e_1_2_5_19_1 doi: 10.1002/adma.201401641 – ident: e_1_2_5_27_1 doi: 10.1002/aenm.201602512 – ident: e_1_2_5_26_1 doi: 10.1002/adfm.201505127 – year: 2017 ident: e_1_2_5_30_1 publication-title: Adv. Sci. – ident: e_1_2_5_23_1 doi: 10.1002/adma.201604744 – ident: e_1_2_5_1_1 doi: 10.1038/natrevmats.2017.42 – ident: e_1_2_5_11_1 doi: 10.1002/adma.201702140 – ident: e_1_2_5_35_1 doi: 10.1021/acs.jpclett.5b01738 – ident: e_1_2_5_46_1 doi: 10.1063/1.4994211 – ident: e_1_2_5_39_1 doi: 10.1038/nature14133 – ident: e_1_2_5_29_1 doi: 10.1039/C7TA00929A – ident: e_1_2_5_24_1 doi: 10.1021/jacs.6b00142 – ident: e_1_2_5_34_1 doi: 10.1021/jacs.5b13470 – ident: e_1_2_5_12_1 doi: 10.1126/science.aaf9717 – ident: e_1_2_5_10_1 doi: 10.1002/aenm.201602121 – ident: e_1_2_5_22_1 doi: 10.1021/jacs.6b08337 – ident: e_1_2_5_3_1 doi: 10.1039/C6EE03397K – ident: e_1_2_5_41_1 doi: 10.1021/acs.jpclett.5b00967 – ident: e_1_2_5_44_1 doi: 10.1021/acs.chemrev.6b00136 |
SSID | ssj0009606 |
Score | 2.5877898 |
Snippet | Extremely high power conversion efficiencies (PCEs) of ≈20–22% are realized through intensive research and development of 1.5–1.6 eV bandgap perovskite... Extremely high power conversion efficiencies (PCEs) of ≈20-22% are realized through intensive research and development of 1.5-1.6 eV bandgap perovskite... Abstract Extremely high power conversion efficiencies (PCEs) of ≈20–22% are realized through intensive research and development of 1.5–1.6 eV bandgap... |
SourceID | osti proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
SubjectTerms | Absorbers Absorptivity compositional engineering Energy conversion efficiency Materials science open‐circuit voltage optical simulations Optoelectronics Pb–Sn binary alloys Photoluminescence Photons Photovoltaic cells R&D Research & development Shockley–Queisser limit Solar cells Thermalization (energy absorption) |
Title | Ideal Bandgap Organic–Inorganic Hybrid Perovskite Solar Cells |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201704418 https://www.ncbi.nlm.nih.gov/pubmed/29134752 https://www.proquest.com/docview/1976378687 https://www.proquest.com/docview/1964273446 https://www.osti.gov/biblio/1413784 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB2hPcEBynfaUgUJiVPaxJ_JCS0t1RapCAGVeos8jpcDq2zV3UWCE_-h_7C_hJl4N-1WVEhwSxRbcjwe-z175hngla2cE4SDsqAVERRtMUOFmOUoQ8Vy4qY7Ljj-YEYn6v2pPr2WxR_1IfoNN_aMbr5mB3c427sSDXVNpxtU2JxWdM725YAtRkWfrvSjGJ53YntSZ5VR5Uq1MRd769XXVqXBlLzrT4hzHcB2K9DhA3CrtsfAk2-7iznu-p83ZB3_5-c24P4SnqbDOJ4ewp3QPoJ710QLH8Obo4bAZfrWtc1Xd5bGZE5_-eviqI1XRPl09IPzwNKP4Xz6fcbbw-lnZtDpfphMZk_g5PDdl_1RtryGIfM6N2XGAux5JRxRGzEeY9CltQalxqIRufQEWRyKwKxWmYbmA-kLhUKVFWKlS-fkUxi00zY8h9RJU2CwQTbaKm-qUlVjIjQorfQSG5dAtjJD7Zca5XxVxqSO6sqi5o6p-45J4HVf_iyqc9xacoutWhOuYHFcz1FEfk7Ep5C2VAlsr4xdL314VheE1OijKW0CL_vP5H18pOLaMF1wGeJvVhKnTuBZHCR9QwQHNVgtEhCdqf_Swnp4cDzs3zb_pdIW3OXnGG2zDYP5-SK8IMw0x53OL34D8MoJ7Q |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6VcAAO_P-YFjASiJNbe3_tQ4VCQ5XQpkLQSr2Z3fWGA5FTNQmonHgHnoRX6SPwJMzYjksQCAmpB46219Z6d2bnm9nZbwCe6MwYhjgo8lKggyK1jaywNoot9xnRiatqu2C4p_oH4tWhPFyBb4uzMDU_RBtwI82o1mtScApIb5yxhpqiIg5KdIwmPW3yKnf8ySf02qabgx5O8VPGtl_ub_WjprBA5GSs0ogoxeOMGQTrbDSyXqZaK8ulTQoWc4dG2FjmyU8TqkAJ5y4Rlok0szaTqTEcv3sBLlIZcaLr7705Y6wih6Ci9-MyypRIFzyRMdtY7u-SHexMUJ9_h3GXIXNl87avwelitOpUlw_r85ldd59_IZL8r4bzOlxtEHjYrVXmBqz48iZc-YmX8RY8HxSIn8MXpizem6OwPq_qvn_5OijrKlgu7J_QUbfwtT-efJxSBDx8S0GCcMuPx9PbcHAuf3AHOuWk9PcgNFwl1mvPC6mFU1kqshH6bJZr7rgtTADRYt5z19CwUzWQcV4TSLOcJiJvJyKAZ237o5qA5I8tV0mMcoROxP_rKFHKzdC3S7hORQBrC-nKm2VqmicIRvGhSnUAj9vHuMDQrpEp_WRObdBF1VwIFcDdWirbjjDK29CSBcAq2fpLD_Nub9htr-7_y0uP4FJ_f7ib7w72dlbhMt2vk4vWoDM7nvsHCBFn9mGllCG8O2-x_QEGOGRm |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6VICE48P9jWsBIIE5u7f21DwiFhiihtKqASr25u-sNByInahJQOfEOvAivwivwJMzYjksQCAmpB46219Z6Z2bnm93ZbwAe6cwYhjgo8lJggCK1jaywNoot9xnRiatqu2B3Tw0OxMtDebgGX5dnYWp-iHbBjSyjmq_JwKfFaOuUNNQUFW9QomP06GmTVrnjTz5i0DZ7OuyhhB8z1n_xdnsQNXUFIidjlUbEKB5nzCBWZ6OR9TLVWlkubVKwmDv0wcYyT2GaUAUqOHeJsEykmbWZTI3h-N1zcF6oOKNiEb3Xp4RVFA9U7H5cRpkS6ZImMmZbq_1dcYOdCZrz7yDuKmKuXF7_CnxbDlad6fJ-czG3m-7TLzyS_9NoXoXLDf4Ou7XBXIM1X16HSz-xMt6AZ8MC0XP43JTFOzMN69Oq7vvnL8OyroHlwsEJHXQL9_3x5MOM1r_DN7REEG778Xh2Ew7O5A9uQaeclP4OhIarxHrteSG1cCpLRTbCiM1yzR23hQkgWoo9dw0JO9UCGec1fTTLSRB5K4gAnrTtpzX9yB9brpMW5QiciP3XUZqUm2Nkl3CdigA2lsqVN5PULE8QiuJDleoAHraPcXqhPSNT-smC2mCAqrkQKoDbtVK2HWGUtaElC4BVqvWXHubd3m63vbr7Ly89gAv7vX7-ari3sw4X6XadWbQBnfnxwt9DfDi39yuTDOHorLX2B0JJYxU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ideal+Bandgap+Organic-Inorganic+Hybrid+Perovskite+Solar+Cells&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Yang%2C+Zhibin&rft.au=Rajagopal%2C+Adharsh&rft.au=Jen%2C+Alex+K-Y&rft.date=2017-12-01&rft.eissn=1521-4095&rft.volume=29&rft.issue=47&rft_id=info:doi/10.1002%2Fadma.201704418&rft_id=info%3Apmid%2F29134752&rft.externalDocID=29134752 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |