Ideal Bandgap Organic–Inorganic Hybrid Perovskite Solar Cells

Extremely high power conversion efficiencies (PCEs) of ≈20–22% are realized through intensive research and development of 1.5–1.6 eV bandgap perovskite absorbers. However, development of ideal bandgap (1.3–1.4 eV) absorbers is pivotal to further improve PCE of single junction perovskite solar cells...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 29; no. 47
Main Authors Yang, Zhibin, Rajagopal, Adharsh, Jen, Alex K.‐Y.
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.12.2017
Wiley Blackwell (John Wiley & Sons)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Extremely high power conversion efficiencies (PCEs) of ≈20–22% are realized through intensive research and development of 1.5–1.6 eV bandgap perovskite absorbers. However, development of ideal bandgap (1.3–1.4 eV) absorbers is pivotal to further improve PCE of single junction perovskite solar cells (PVSCs) because of a better balance between absorption loss of sub‐bandgap photons and thermalization loss of above‐bandgap photons as demonstrated by the Shockley–Queisser detailed balanced calculation. Ideal bandgap PVSCs are currently hindered by the poor optoelectronic quality of perovskite absorbers and their PCEs have stagnated at <15%. In this work, through systematic photoluminescence and photovoltaic analysis, a new ideal bandgap (1.35 eV) absorber composition (MAPb0.5Sn0.5(I0.8Br0.2)3) is rationally designed and developed, which possesses lower nonradiative recombination states, band edge disorder, and Urbach energy coupled with a higher absorption coefficient, which yields a reduced Voc,loss (0.45 V) and improved PCE (as high as 17.63%) for the derived PVSCs. This work provides a promising platform for unleashing the complete potential of ideal bandgap PVSCs and prospects for further improvement. An ideal‐bandgap (1.35 eV) perovskite (MAPb0.5Sn0.5(I0.8Br0.2)3) is developed with lower non‐radiative recombination states, band edge disorder, and Urbach energy coupled with a higher absorption coefficient, yielding a reduced open‐circuit voltage loss of 0.45 V and improved efficiency of 17.63%. This work provides a promising platform for unleashing the complete potential of ideal‐bandgap perovskite solar cells.
AbstractList Abstract Extremely high power conversion efficiencies (PCEs) of ≈20–22% are realized through intensive research and development of 1.5–1.6 eV bandgap perovskite absorbers. However, development of ideal bandgap (1.3–1.4 eV) absorbers is pivotal to further improve PCE of single junction perovskite solar cells (PVSCs) because of a better balance between absorption loss of sub‐bandgap photons and thermalization loss of above‐bandgap photons as demonstrated by the Shockley–Queisser detailed balanced calculation. Ideal bandgap PVSCs are currently hindered by the poor optoelectronic quality of perovskite absorbers and their PCEs have stagnated at <15%. In this work, through systematic photoluminescence and photovoltaic analysis, a new ideal bandgap (1.35 eV) absorber composition (MAPb 0.5 Sn 0.5 (I 0.8 Br 0.2 ) 3 ) is rationally designed and developed, which possesses lower nonradiative recombination states, band edge disorder, and Urbach energy coupled with a higher absorption coefficient, which yields a reduced V oc,loss (0.45 V) and improved PCE (as high as 17.63%) for the derived PVSCs. This work provides a promising platform for unleashing the complete potential of ideal bandgap PVSCs and prospects for further improvement.
Extremely high power conversion efficiencies (PCEs) of ≈20–22% are realized through intensive research and development of 1.5–1.6 eV bandgap perovskite absorbers. However, development of ideal bandgap (1.3–1.4 eV) absorbers is pivotal to further improve PCE of single junction perovskite solar cells (PVSCs) because of a better balance between absorption loss of sub‐bandgap photons and thermalization loss of above‐bandgap photons as demonstrated by the Shockley–Queisser detailed balanced calculation. Ideal bandgap PVSCs are currently hindered by the poor optoelectronic quality of perovskite absorbers and their PCEs have stagnated at <15%. In this work, through systematic photoluminescence and photovoltaic analysis, a new ideal bandgap (1.35 eV) absorber composition (MAPb 0.5 Sn 0.5 (I 0.8 Br 0.2 ) 3 ) is rationally designed and developed, which possesses lower nonradiative recombination states, band edge disorder, and Urbach energy coupled with a higher absorption coefficient, which yields a reduced V oc,loss (0.45 V) and improved PCE (as high as 17.63%) for the derived PVSCs. This work provides a promising platform for unleashing the complete potential of ideal bandgap PVSCs and prospects for further improvement.
Extremely high power conversion efficiencies (PCEs) of ≈20–22% are realized through intensive research and development of 1.5–1.6 eV bandgap perovskite absorbers. However, development of ideal bandgap (1.3–1.4 eV) absorbers is pivotal to further improve PCE of single junction perovskite solar cells (PVSCs) because of a better balance between absorption loss of sub‐bandgap photons and thermalization loss of above‐bandgap photons as demonstrated by the Shockley–Queisser detailed balanced calculation. Ideal bandgap PVSCs are currently hindered by the poor optoelectronic quality of perovskite absorbers and their PCEs have stagnated at <15%. In this work, through systematic photoluminescence and photovoltaic analysis, a new ideal bandgap (1.35 eV) absorber composition (MAPb0.5Sn0.5(I0.8Br0.2)3) is rationally designed and developed, which possesses lower nonradiative recombination states, band edge disorder, and Urbach energy coupled with a higher absorption coefficient, which yields a reduced Voc,loss (0.45 V) and improved PCE (as high as 17.63%) for the derived PVSCs. This work provides a promising platform for unleashing the complete potential of ideal bandgap PVSCs and prospects for further improvement. An ideal‐bandgap (1.35 eV) perovskite (MAPb0.5Sn0.5(I0.8Br0.2)3) is developed with lower non‐radiative recombination states, band edge disorder, and Urbach energy coupled with a higher absorption coefficient, yielding a reduced open‐circuit voltage loss of 0.45 V and improved efficiency of 17.63%. This work provides a promising platform for unleashing the complete potential of ideal‐bandgap perovskite solar cells.
Extremely high power conversion efficiencies (PCEs) of ≈20-22% are realized through intensive research and development of 1.5-1.6 eV bandgap perovskite absorbers. However, development of ideal bandgap (1.3-1.4 eV) absorbers is pivotal to further improve PCE of single junction perovskite solar cells (PVSCs) because of a better balance between absorption loss of sub-bandgap photons and thermalization loss of above-bandgap photons as demonstrated by the Shockley-Queisser detailed balanced calculation. Ideal bandgap PVSCs are currently hindered by the poor optoelectronic quality of perovskite absorbers and their PCEs have stagnated at <15%. In this work, through systematic photoluminescence and photovoltaic analysis, a new ideal bandgap (1.35 eV) absorber composition (MAPb Sn (I Br ) ) is rationally designed and developed, which possesses lower nonradiative recombination states, band edge disorder, and Urbach energy coupled with a higher absorption coefficient, which yields a reduced V (0.45 V) and improved PCE (as high as 17.63%) for the derived PVSCs. This work provides a promising platform for unleashing the complete potential of ideal bandgap PVSCs and prospects for further improvement.
Extremely high power conversion efficiencies (PCEs) of ≈20-22% are realized through intensive research and development of 1.5-1.6 eV bandgap perovskite absorbers. However, development of ideal bandgap (1.3-1.4 eV) absorbers is pivotal to further improve PCE of single junction perovskite solar cells (PVSCs) because of a better balance between absorption loss of sub-bandgap photons and thermalization loss of above-bandgap photons as demonstrated by the Shockley-Queisser detailed balanced calculation. Ideal bandgap PVSCs are currently hindered by the poor optoelectronic quality of perovskite absorbers and their PCEs have stagnated at <15%. In this work, through systematic photoluminescence and photovoltaic analysis, a new ideal bandgap (1.35 eV) absorber composition (MAPb0.5 Sn0.5 (I0.8 Br0.2 )3 ) is rationally designed and developed, which possesses lower nonradiative recombination states, band edge disorder, and Urbach energy coupled with a higher absorption coefficient, which yields a reduced Voc,loss (0.45 V) and improved PCE (as high as 17.63%) for the derived PVSCs. This work provides a promising platform for unleashing the complete potential of ideal bandgap PVSCs and prospects for further improvement.Extremely high power conversion efficiencies (PCEs) of ≈20-22% are realized through intensive research and development of 1.5-1.6 eV bandgap perovskite absorbers. However, development of ideal bandgap (1.3-1.4 eV) absorbers is pivotal to further improve PCE of single junction perovskite solar cells (PVSCs) because of a better balance between absorption loss of sub-bandgap photons and thermalization loss of above-bandgap photons as demonstrated by the Shockley-Queisser detailed balanced calculation. Ideal bandgap PVSCs are currently hindered by the poor optoelectronic quality of perovskite absorbers and their PCEs have stagnated at <15%. In this work, through systematic photoluminescence and photovoltaic analysis, a new ideal bandgap (1.35 eV) absorber composition (MAPb0.5 Sn0.5 (I0.8 Br0.2 )3 ) is rationally designed and developed, which possesses lower nonradiative recombination states, band edge disorder, and Urbach energy coupled with a higher absorption coefficient, which yields a reduced Voc,loss (0.45 V) and improved PCE (as high as 17.63%) for the derived PVSCs. This work provides a promising platform for unleashing the complete potential of ideal bandgap PVSCs and prospects for further improvement.
Extremely high power conversion efficiencies (PCEs) of ≈20–22% are realized through intensive research and development of 1.5–1.6 eV bandgap perovskite absorbers. However, development of ideal bandgap (1.3–1.4 eV) absorbers is pivotal to further improve PCE of single junction perovskite solar cells (PVSCs) because of a better balance between absorption loss of sub‐bandgap photons and thermalization loss of above‐bandgap photons as demonstrated by the Shockley–Queisser detailed balanced calculation. Ideal bandgap PVSCs are currently hindered by the poor optoelectronic quality of perovskite absorbers and their PCEs have stagnated at <15%. In this work, through systematic photoluminescence and photovoltaic analysis, a new ideal bandgap (1.35 eV) absorber composition (MAPb0.5Sn0.5(I0.8Br0.2)3) is rationally designed and developed, which possesses lower nonradiative recombination states, band edge disorder, and Urbach energy coupled with a higher absorption coefficient, which yields a reduced Voc,loss (0.45 V) and improved PCE (as high as 17.63%) for the derived PVSCs. This work provides a promising platform for unleashing the complete potential of ideal bandgap PVSCs and prospects for further improvement.
Author Rajagopal, Adharsh
Yang, Zhibin
Jen, Alex K.‐Y.
Author_xml – sequence: 1
  givenname: Zhibin
  orcidid: 0000-0003-4036-9446
  surname: Yang
  fullname: Yang, Zhibin
  organization: University of Washington
– sequence: 2
  givenname: Adharsh
  surname: Rajagopal
  fullname: Rajagopal, Adharsh
  organization: University of Washington
– sequence: 3
  givenname: Alex K.‐Y.
  orcidid: 0000-0002-9219-7749
  surname: Jen
  fullname: Jen, Alex K.‐Y.
  email: ajen@uw.edu
  organization: City University of Hong Kong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29134752$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/1413784$$D View this record in Osti.gov
BookMark eNqFkUtvEzEUha2qiKaPbZdoRDfdTPD7sUJpCjRSUStB15btcYrLxE7tCSg7_gP_kF-Cq2lBqoRY3bv4ztG59-yD3ZiiB-AYwSmCEL8x3cpMMUQCUorkDpgghlFLoWK7YAIVYa3iVO6B_VLuIISKQ_4S7GGFCBUMT8DbRedN35yZ2N2adXOVb00M7tePn4uYxr252Nocuuba5_StfA2Dbz6l3uRm7vu-HIIXS9MXf_Q4D8DN-3ef5xft5dWHxXx22ToGuWwJYxIqbKgUeLm0nkkhuCXMog5D4jgnxmKPCMaUd1RK4hC1mEplrWLSGHIAXo--qQxBF1djuC8uxejdoBFFREhaodMRWud0v_Fl0KtQXI1pok-bolH9BRaEUl7Rk2foXdrkWE-olODVjktRqVeP1MaufKfXOaxM3uqn_1WAjoDLqZTsl7omM0NIccgm9BpB_VCTfqhJ_6mpyqbPZE_O_xSoUfA99H77H1rPzj_O_mp_A7Jdoeg
CitedBy_id crossref_primary_10_1002_advs_202002718
crossref_primary_10_1016_j_heliyon_2024_e40322
crossref_primary_10_1021_acs_chemrev_8b00318
crossref_primary_10_1021_acs_jpcc_0c07983
crossref_primary_10_1021_acs_chemrev_3c00667
crossref_primary_10_1002_solr_202100710
crossref_primary_10_1016_j_rinp_2019_102699
crossref_primary_10_1016_j_chempr_2024_12_002
crossref_primary_10_1039_D1TA08984F
crossref_primary_10_1002_aenm_202101045
crossref_primary_10_1039_C9TA05308E
crossref_primary_10_1016_j_seja_2025_100105
crossref_primary_10_1016_j_jechem_2021_06_011
crossref_primary_10_1016_j_joule_2019_05_005
crossref_primary_10_1002_solr_201900283
crossref_primary_10_35848_1347_4065_ac6a33
crossref_primary_10_1088_0256_307X_38_10_107801
crossref_primary_10_1126_science_aav7911
crossref_primary_10_1002_aenm_201802774
crossref_primary_10_1002_aenm_201800997
crossref_primary_10_1039_D3DT04192A
crossref_primary_10_1088_1674_4926_43_4_041106
crossref_primary_10_1002_solr_202100320
crossref_primary_10_1039_C8TA11891D
crossref_primary_10_1002_adma_201908107
crossref_primary_10_1039_D1NR01117K
crossref_primary_10_1002_eem2_12211
crossref_primary_10_1007_s12274_022_4894_1
crossref_primary_10_1021_acsaem_1c02033
crossref_primary_10_1016_j_apsusc_2019_01_233
crossref_primary_10_1002_admi_202100128
crossref_primary_10_1002_adfm_202303012
crossref_primary_10_1021_acsami_3c06392
crossref_primary_10_1016_j_scib_2020_04_025
crossref_primary_10_1002_solr_201800146
crossref_primary_10_1016_j_ssc_2024_115728
crossref_primary_10_1002_adma_201800455
crossref_primary_10_1039_D1TC00277E
crossref_primary_10_1002_aenm_201800504
crossref_primary_10_1016_j_mssp_2024_108898
crossref_primary_10_1016_j_solener_2018_11_025
crossref_primary_10_1088_1402_4896_ad9eeb
crossref_primary_10_1016_j_mssp_2024_108537
crossref_primary_10_1063_5_0155921
crossref_primary_10_3762_bjnano_9_207
crossref_primary_10_1002_solr_201800256
crossref_primary_10_1002_adma_202107729
crossref_primary_10_1002_ange_202300759
crossref_primary_10_1021_jacsau_1c00014
crossref_primary_10_1016_j_heliyon_2022_e11428
crossref_primary_10_1016_j_spmi_2020_106463
crossref_primary_10_1002_jctb_6830
crossref_primary_10_1016_j_jechem_2022_07_003
crossref_primary_10_1016_j_matt_2021_01_003
crossref_primary_10_1021_acs_energyfuels_3c00462
crossref_primary_10_1002_adma_201806105
crossref_primary_10_3390_nano14050437
crossref_primary_10_1063_1674_0068_cjcp2109154
crossref_primary_10_1039_C9TA02566A
crossref_primary_10_1039_C8TA06391E
crossref_primary_10_1021_acs_jpclett_4c02528
crossref_primary_10_1002_cssc_202000282
crossref_primary_10_1002_smll_202403920
crossref_primary_10_1149_2162_8777_ac2b3c
crossref_primary_10_1109_JPHOTOV_2019_2941181
crossref_primary_10_1039_D0QM01064B
crossref_primary_10_1002_anie_202300759
crossref_primary_10_1002_smll_202406991
crossref_primary_10_1038_s41427_023_00485_w
crossref_primary_10_1039_C9TA06455A
crossref_primary_10_1021_acs_jpclett_2c03649
crossref_primary_10_1016_j_physb_2021_413566
crossref_primary_10_1002_adma_202102300
crossref_primary_10_1021_acsami_8b03225
crossref_primary_10_1039_D0EE00132E
crossref_primary_10_1002_aenm_201800525
crossref_primary_10_1021_acsaem_9b02413
crossref_primary_10_1039_D0NJ06317G
crossref_primary_10_1002_smll_202203886
crossref_primary_10_1002_adma_202303674
crossref_primary_10_1016_j_matt_2021_04_007
crossref_primary_10_1021_acsaelm_1c01264
crossref_primary_10_1002_solr_202000344
crossref_primary_10_1021_acs_chemmater_9b01268
crossref_primary_10_1002_solr_201900080
crossref_primary_10_1002_adom_202302129
crossref_primary_10_1039_D4SE01051E
crossref_primary_10_1088_1361_6463_ac036f
crossref_primary_10_1016_j_nantod_2020_101062
crossref_primary_10_7498_aps_70_20201678
crossref_primary_10_1002_solr_201800075
crossref_primary_10_1002_solr_201900406
crossref_primary_10_1016_j_optmat_2024_115915
crossref_primary_10_1002_solr_202000616
crossref_primary_10_1021_acsenergylett_1c02044
crossref_primary_10_1002_aenm_201902583
crossref_primary_10_1021_acs_inorgchem_2c00531
crossref_primary_10_1016_j_jallcom_2019_04_117
crossref_primary_10_1016_j_joule_2021_09_008
crossref_primary_10_1088_1361_6641_ab27f7
crossref_primary_10_1016_j_physe_2024_115937
crossref_primary_10_3390_nano15060431
crossref_primary_10_1016_j_solener_2021_08_015
crossref_primary_10_1021_acs_jpclett_8b01152
crossref_primary_10_1021_acs_jpclett_1c03719
crossref_primary_10_1016_j_nanoen_2020_105634
crossref_primary_10_1088_1402_4896_ad6bd1
crossref_primary_10_1016_j_jallcom_2023_169084
crossref_primary_10_1002_aenm_201803135
crossref_primary_10_1002_adfm_202008620
crossref_primary_10_1039_D0TC05455K
crossref_primary_10_1016_j_physb_2023_414879
crossref_primary_10_1016_j_materresbull_2018_10_011
crossref_primary_10_1063_5_0035199
crossref_primary_10_1002_cssc_202101089
crossref_primary_10_1016_j_commatsci_2022_111361
crossref_primary_10_1002_solr_202100212
crossref_primary_10_1021_acsaem_0c00849
crossref_primary_10_1021_acs_nanolett_8b01480
crossref_primary_10_2139_ssrn_4071645
crossref_primary_10_1039_D0TA09209F
crossref_primary_10_1002_adfm_201808801
crossref_primary_10_35848_1347_4065_ac4ad9
crossref_primary_10_1021_acsphotonics_0c00677
crossref_primary_10_1039_C7TA09122B
crossref_primary_10_1021_acsaem_0c00175
crossref_primary_10_1016_j_spmi_2020_106540
crossref_primary_10_1007_s13391_020_00206_3
crossref_primary_10_1007_s11426_019_9486_0
crossref_primary_10_1002_solr_201900304
crossref_primary_10_1134_S003602362206016X
crossref_primary_10_1002_aenm_202003002
crossref_primary_10_1063_5_0037307
crossref_primary_10_1039_D4NR00678J
crossref_primary_10_1088_1402_4896_ab5baa
crossref_primary_10_1021_acs_jpcc_1c02571
crossref_primary_10_1007_s42247_024_00842_7
crossref_primary_10_1002_solr_202300754
crossref_primary_10_1021_acsenergylett_0c00577
crossref_primary_10_1021_acsaem_4c02526
crossref_primary_10_1002_adma_202314341
crossref_primary_10_1002_adfm_201804603
crossref_primary_10_1038_s41467_019_12513_x
crossref_primary_10_3390_ma11091759
crossref_primary_10_1021_acsenergylett_8b01165
crossref_primary_10_1021_acsmaterialslett_4c01699
crossref_primary_10_1039_D3DT04276F
crossref_primary_10_6023_A24030066
Cites_doi 10.1016/j.nanoen.2016.02.033
10.1002/aenm.201601353
10.1126/science.aai9081
10.1038/nenergy.2017.18
10.1039/C4TA05033A
10.1021/acs.jpcc.5b10728
10.1021/jz5002117
10.1021/ja5033259
10.1039/C6TA07712A
10.1039/C7TA00404D
10.1039/C4EE01076K
10.1039/C7TA00058H
10.1021/jacs.5b06658
10.1016/j.nanoen.2016.05.052
10.1038/ncomms12305
10.1002/adma.201602696
10.1038/nenergy.2016.48
10.1002/adma.201605005
10.1063/1.1840606
10.1021/acs.nanolett.6b03857
10.1002/anie.201705965
10.1126/science.aaa9272
10.1126/science.aah5557
10.1063/1.1736034
10.1038/nphoton.2016.62
10.1002/adma.201401641
10.1002/aenm.201602512
10.1002/adfm.201505127
10.1002/adma.201604744
10.1038/natrevmats.2017.42
10.1002/adma.201702140
10.1021/acs.jpclett.5b01738
10.1063/1.4994211
10.1038/nature14133
10.1039/C7TA00929A
10.1021/jacs.6b00142
10.1021/jacs.5b13470
10.1126/science.aaf9717
10.1002/aenm.201602121
10.1021/jacs.6b08337
10.1039/C6EE03397K
10.1021/acs.jpclett.5b00967
10.1021/acs.chemrev.6b00136
ContentType Journal Article
Copyright 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
OTOTI
DOI 10.1002/adma.201704418
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
OSTI.GOV
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList
CrossRef

PubMed
MEDLINE - Academic
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 1413784
29134752
10_1002_adma_201704418
ADMA201704418
Genre article
Journal Article
GrantInformation_xml – fundername: National Science Foundation
  funderid: DMR‐1608279
– fundername: Department of Energy SunShot
  funderid: DE‐EE 0006710
– fundername: Office of Naval Research
  funderid: N00014‐17‐1‐2260
– fundername: Asian Office of Aerospace R&D
  funderid: FA2386‐15‐1‐4106
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
FOJGT
HF~
HVGLF
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
NPM
7SR
8BQ
8FD
JG9
7X8
AAPBV
ABHUG
ACXME
ADAWD
ADDAD
AFVGU
AGJLS
OTOTI
ID FETCH-LOGICAL-c5068-3558092a4872ffbe58776b35b1d203c663ab2e132246d4883c14b2489bb958aa3
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Mon Sep 18 05:40:46 EDT 2023
Fri Jul 11 13:42:51 EDT 2025
Sun Jul 13 04:20:28 EDT 2025
Mon Jul 21 05:42:06 EDT 2025
Thu Apr 24 23:09:24 EDT 2025
Tue Jul 01 00:44:37 EDT 2025
Wed Jan 22 16:27:11 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 47
Keywords Pb-Sn binary alloys
Shockley-Queisser limit
compositional engineering
open-circuit voltage
optical simulations
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#am
http://onlinelibrary.wiley.com/termsAndConditions#vor
2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5068-3558092a4872ffbe58776b35b1d203c663ab2e132246d4883c14b2489bb958aa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
DE‐EE 0006710
USDOE
ORCID 0000-0002-9219-7749
0000-0003-4036-9446
0000000292197749
0000000340369446
OpenAccessLink https://www.osti.gov/biblio/1413784
PMID 29134752
PQID 1976378687
PQPubID 2045203
PageCount 7
ParticipantIDs osti_scitechconnect_1413784
proquest_miscellaneous_1964273446
proquest_journals_1976378687
pubmed_primary_29134752
crossref_citationtrail_10_1002_adma_201704418
crossref_primary_10_1002_adma_201704418
wiley_primary_10_1002_adma_201704418_ADMA201704418
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-Dec
PublicationDateYYYYMMDD 2017-12-01
PublicationDate_xml – month: 12
  year: 2017
  text: 2017-Dec
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
Wiley Blackwell (John Wiley & Sons)
Publisher_xml – name: Wiley Subscription Services, Inc
– name: Wiley Blackwell (John Wiley & Sons)
References 2017; 5
2017; 7
2015; 6
2017; 2
2015; 3
2016; 10
2014; 26
1967; 46
2017; 29
2015; 348
1961; 32
2017; 355
2016; 16
2014; 136
2016; 120
2016; 4
2016; 6
2016; 7
2014; 5
2016; 1
2015; 137
2017; 10
2017; 56
2016; 354
2017
2015; 517
2016; 138
2016; 116
2016; 28
2014; 7
2016; 26
2016; 22
e_1_2_5_27_1
e_1_2_5_28_1
e_1_2_5_25_1
e_1_2_5_26_1
e_1_2_5_23_1
e_1_2_5_46_1
e_1_2_5_24_1
e_1_2_5_45_1
e_1_2_5_21_1
e_1_2_5_44_1
e_1_2_5_22_1
e_1_2_5_43_1
e_1_2_5_29_1
Zhao Z. (e_1_2_5_30_1) 2017
e_1_2_5_42_1
e_1_2_5_20_1
e_1_2_5_41_1
e_1_2_5_40_1
Xiao J.‐W. (e_1_2_5_14_1) 2017
e_1_2_5_15_1
e_1_2_5_38_1
e_1_2_5_39_1
e_1_2_5_17_1
e_1_2_5_36_1
e_1_2_5_9_1
e_1_2_5_16_1
e_1_2_5_37_1
e_1_2_5_8_1
e_1_2_5_11_1
e_1_2_5_34_1
e_1_2_5_7_1
e_1_2_5_10_1
e_1_2_5_35_1
e_1_2_5_6_1
e_1_2_5_13_1
e_1_2_5_32_1
e_1_2_5_5_1
e_1_2_5_12_1
e_1_2_5_33_1
e_1_2_5_4_1
e_1_2_5_3_1
e_1_2_5_2_1
e_1_2_5_1_1
e_1_2_5_19_1
e_1_2_5_18_1
e_1_2_5_31_1
References_xml – volume: 354
  start-page: 861
  year: 2016
  publication-title: Science
– volume: 7
  start-page: 1602512
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 29
  start-page: 1604744
  year: 2017
  publication-title: Adv. Mater.
– year: 2017
  publication-title: Adv. Energy Mater.
– volume: 136
  start-page: 8094
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 17042
  year: 2017
  publication-title: Nat. Rev. Mater.
– volume: 26
  start-page: 620
  year: 2016
  publication-title: Nano Energy
– volume: 355
  start-page: 722
  year: 2017
  publication-title: Science
– volume: 1
  start-page: 16048
  year: 2016
  publication-title: Nat. Energy
– volume: 56
  start-page: 12658
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 138
  start-page: 12360
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 26
  start-page: 3417
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 6
  start-page: 2355
  year: 2015
  publication-title: J. Phys. Chem. Lett.
– volume: 4
  start-page: 17939
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 138
  start-page: 3974
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 120
  start-page: 893
  year: 2016
  publication-title: J. Phys. Chem. C
– volume: 10
  start-page: 710
  year: 2017
  publication-title: Energy Environ. Sci.
– year: 2017
  publication-title: Adv. Sci.
– volume: 7
  start-page: 3061
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 348
  start-page: 1234
  year: 2015
  publication-title: Science
– volume: 116
  start-page: 12956
  year: 2016
  publication-title: Chem. Rev.
– volume: 32
  start-page: 510
  year: 1961
  publication-title: J. Appl. Phys.
– volume: 5
  start-page: 1004
  year: 2014
  publication-title: J. Phys. Chem. Lett.
– volume: 22
  start-page: 328
  year: 2016
  publication-title: Nano Energy
– volume: 6
  start-page: 3503
  year: 2015
  publication-title: J. Phys. Chem. Lett.
– volume: 28
  start-page: 8990
  year: 2016
  publication-title: Adv. Mater.
– volume: 2
  start-page: 17018
  year: 2017
  publication-title: Nat. Energy
– volume: 5
  start-page: 9553
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 354
  start-page: 206
  year: 2016
  publication-title: Science
– volume: 26
  start-page: 6454
  year: 2014
  publication-title: Adv. Mater.
– volume: 16
  start-page: 7739
  year: 2016
  publication-title: Nano Lett.
– volume: 138
  start-page: 2941
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 46
  start-page: 4590
  year: 1967
  publication-title: J. Chem. Phys.
– volume: 7
  start-page: 075108
  year: 2017
  publication-title: AIP Adv.
– volume: 5
  start-page: 11401
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 29
  start-page: 1702140
  year: 2017
  publication-title: Adv. Mater.
– volume: 10
  start-page: 295
  year: 2016
  publication-title: Nat. Photonics
– volume: 517
  start-page: 476
  year: 2015
  publication-title: Nature
– volume: 29
  start-page: 1605005
  year: 2017
  publication-title: Adv. Mater.
– volume: 5
  start-page: 11518
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 6
  start-page: 1601353
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 3
  start-page: 8926
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 137
  start-page: 11445
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 1602121
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 7
  start-page: 12305
  year: 2016
  publication-title: Nat. Commun.
– ident: e_1_2_5_37_1
  doi: 10.1016/j.nanoen.2016.02.033
– ident: e_1_2_5_25_1
  doi: 10.1002/aenm.201601353
– ident: e_1_2_5_8_1
  doi: 10.1126/science.aai9081
– ident: e_1_2_5_36_1
  doi: 10.1038/nenergy.2017.18
– ident: e_1_2_5_45_1
  doi: 10.1039/C4TA05033A
– ident: e_1_2_5_33_1
  doi: 10.1021/acs.jpcc.5b10728
– ident: e_1_2_5_18_1
  doi: 10.1021/jz5002117
– ident: e_1_2_5_17_1
  doi: 10.1021/ja5033259
– ident: e_1_2_5_31_1
  doi: 10.1039/C6TA07712A
– ident: e_1_2_5_13_1
  doi: 10.1039/C7TA00404D
– ident: e_1_2_5_20_1
  doi: 10.1039/C4EE01076K
– ident: e_1_2_5_42_1
  doi: 10.1039/C7TA00058H
– ident: e_1_2_5_21_1
  doi: 10.1021/jacs.5b06658
– ident: e_1_2_5_40_1
  doi: 10.1016/j.nanoen.2016.05.052
– ident: e_1_2_5_38_1
  doi: 10.1038/ncomms12305
– ident: e_1_2_5_16_1
  doi: 10.1002/adma.201602696
– ident: e_1_2_5_2_1
  doi: 10.1038/nenergy.2016.48
– ident: e_1_2_5_28_1
  doi: 10.1002/adma.201605005
– ident: e_1_2_5_32_1
  doi: 10.1063/1.1840606
– ident: e_1_2_5_43_1
  doi: 10.1021/acs.nanolett.6b03857
– ident: e_1_2_5_15_1
  doi: 10.1002/anie.201705965
– year: 2017
  ident: e_1_2_5_14_1
  publication-title: Adv. Energy Mater.
– ident: e_1_2_5_5_1
– ident: e_1_2_5_6_1
  doi: 10.1126/science.aaa9272
– ident: e_1_2_5_7_1
  doi: 10.1126/science.aah5557
– ident: e_1_2_5_9_1
  doi: 10.1063/1.1736034
– ident: e_1_2_5_4_1
  doi: 10.1038/nphoton.2016.62
– ident: e_1_2_5_19_1
  doi: 10.1002/adma.201401641
– ident: e_1_2_5_27_1
  doi: 10.1002/aenm.201602512
– ident: e_1_2_5_26_1
  doi: 10.1002/adfm.201505127
– year: 2017
  ident: e_1_2_5_30_1
  publication-title: Adv. Sci.
– ident: e_1_2_5_23_1
  doi: 10.1002/adma.201604744
– ident: e_1_2_5_1_1
  doi: 10.1038/natrevmats.2017.42
– ident: e_1_2_5_11_1
  doi: 10.1002/adma.201702140
– ident: e_1_2_5_35_1
  doi: 10.1021/acs.jpclett.5b01738
– ident: e_1_2_5_46_1
  doi: 10.1063/1.4994211
– ident: e_1_2_5_39_1
  doi: 10.1038/nature14133
– ident: e_1_2_5_29_1
  doi: 10.1039/C7TA00929A
– ident: e_1_2_5_24_1
  doi: 10.1021/jacs.6b00142
– ident: e_1_2_5_34_1
  doi: 10.1021/jacs.5b13470
– ident: e_1_2_5_12_1
  doi: 10.1126/science.aaf9717
– ident: e_1_2_5_10_1
  doi: 10.1002/aenm.201602121
– ident: e_1_2_5_22_1
  doi: 10.1021/jacs.6b08337
– ident: e_1_2_5_3_1
  doi: 10.1039/C6EE03397K
– ident: e_1_2_5_41_1
  doi: 10.1021/acs.jpclett.5b00967
– ident: e_1_2_5_44_1
  doi: 10.1021/acs.chemrev.6b00136
SSID ssj0009606
Score 2.5877898
Snippet Extremely high power conversion efficiencies (PCEs) of ≈20–22% are realized through intensive research and development of 1.5–1.6 eV bandgap perovskite...
Extremely high power conversion efficiencies (PCEs) of ≈20-22% are realized through intensive research and development of 1.5-1.6 eV bandgap perovskite...
Abstract Extremely high power conversion efficiencies (PCEs) of ≈20–22% are realized through intensive research and development of 1.5–1.6 eV bandgap...
SourceID osti
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
SubjectTerms Absorbers
Absorptivity
compositional engineering
Energy conversion efficiency
Materials science
open‐circuit voltage
optical simulations
Optoelectronics
Pb–Sn binary alloys
Photoluminescence
Photons
Photovoltaic cells
R&D
Research & development
Shockley–Queisser limit
Solar cells
Thermalization (energy absorption)
Title Ideal Bandgap Organic–Inorganic Hybrid Perovskite Solar Cells
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201704418
https://www.ncbi.nlm.nih.gov/pubmed/29134752
https://www.proquest.com/docview/1976378687
https://www.proquest.com/docview/1964273446
https://www.osti.gov/biblio/1413784
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB2hPcEBynfaUgUJiVPaxJ_JCS0t1RapCAGVeos8jpcDq2zV3UWCE_-h_7C_hJl4N-1WVEhwSxRbcjwe-z175hngla2cE4SDsqAVERRtMUOFmOUoQ8Vy4qY7Ljj-YEYn6v2pPr2WxR_1IfoNN_aMbr5mB3c427sSDXVNpxtU2JxWdM725YAtRkWfrvSjGJ53YntSZ5VR5Uq1MRd769XXVqXBlLzrT4hzHcB2K9DhA3CrtsfAk2-7iznu-p83ZB3_5-c24P4SnqbDOJ4ewp3QPoJ710QLH8Obo4bAZfrWtc1Xd5bGZE5_-eviqI1XRPl09IPzwNKP4Xz6fcbbw-lnZtDpfphMZk_g5PDdl_1RtryGIfM6N2XGAux5JRxRGzEeY9CltQalxqIRufQEWRyKwKxWmYbmA-kLhUKVFWKlS-fkUxi00zY8h9RJU2CwQTbaKm-qUlVjIjQorfQSG5dAtjJD7Zca5XxVxqSO6sqi5o6p-45J4HVf_iyqc9xacoutWhOuYHFcz1FEfk7Ep5C2VAlsr4xdL314VheE1OijKW0CL_vP5H18pOLaMF1wGeJvVhKnTuBZHCR9QwQHNVgtEhCdqf_Swnp4cDzs3zb_pdIW3OXnGG2zDYP5-SK8IMw0x53OL34D8MoJ7Q
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6VcAAO_P-YFjASiJNbe3_tQ4VCQ5XQpkLQSr2Z3fWGA5FTNQmonHgHnoRX6SPwJMzYjksQCAmpB46219Z6d2bnm9nZbwCe6MwYhjgo8lKggyK1jaywNoot9xnRiatqu2C4p_oH4tWhPFyBb4uzMDU_RBtwI82o1mtScApIb5yxhpqiIg5KdIwmPW3yKnf8ySf02qabgx5O8VPGtl_ub_WjprBA5GSs0ogoxeOMGQTrbDSyXqZaK8ulTQoWc4dG2FjmyU8TqkAJ5y4Rlok0szaTqTEcv3sBLlIZcaLr7705Y6wih6Ci9-MyypRIFzyRMdtY7u-SHexMUJ9_h3GXIXNl87avwelitOpUlw_r85ldd59_IZL8r4bzOlxtEHjYrVXmBqz48iZc-YmX8RY8HxSIn8MXpizem6OwPq_qvn_5OijrKlgu7J_QUbfwtT-efJxSBDx8S0GCcMuPx9PbcHAuf3AHOuWk9PcgNFwl1mvPC6mFU1kqshH6bJZr7rgtTADRYt5z19CwUzWQcV4TSLOcJiJvJyKAZ237o5qA5I8tV0mMcoROxP_rKFHKzdC3S7hORQBrC-nKm2VqmicIRvGhSnUAj9vHuMDQrpEp_WRObdBF1VwIFcDdWirbjjDK29CSBcAq2fpLD_Nub9htr-7_y0uP4FJ_f7ib7w72dlbhMt2vk4vWoDM7nvsHCBFn9mGllCG8O2-x_QEGOGRm
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6VICE48P9jWsBIIE5u7f21DwiFhiihtKqASr25u-sNByInahJQOfEOvAivwivwJMzYjksQCAmpB46219Z6Z2bnm93ZbwAe6cwYhjgo8lJggCK1jaywNoot9xnRiatqu2B3Tw0OxMtDebgGX5dnYWp-iHbBjSyjmq_JwKfFaOuUNNQUFW9QomP06GmTVrnjTz5i0DZ7OuyhhB8z1n_xdnsQNXUFIidjlUbEKB5nzCBWZ6OR9TLVWlkubVKwmDv0wcYyT2GaUAUqOHeJsEykmbWZTI3h-N1zcF6oOKNiEb3Xp4RVFA9U7H5cRpkS6ZImMmZbq_1dcYOdCZrz7yDuKmKuXF7_CnxbDlad6fJ-czG3m-7TLzyS_9NoXoXLDf4Ou7XBXIM1X16HSz-xMt6AZ8MC0XP43JTFOzMN69Oq7vvnL8OyroHlwsEJHXQL9_3x5MOM1r_DN7REEG778Xh2Ew7O5A9uQaeclP4OhIarxHrteSG1cCpLRTbCiM1yzR23hQkgWoo9dw0JO9UCGec1fTTLSRB5K4gAnrTtpzX9yB9brpMW5QiciP3XUZqUm2Nkl3CdigA2lsqVN5PULE8QiuJDleoAHraPcXqhPSNT-smC2mCAqrkQKoDbtVK2HWGUtaElC4BVqvWXHubd3m63vbr7Ly89gAv7vX7-ari3sw4X6XadWbQBnfnxwt9DfDi39yuTDOHorLX2B0JJYxU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ideal+Bandgap+Organic-Inorganic+Hybrid+Perovskite+Solar+Cells&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Yang%2C+Zhibin&rft.au=Rajagopal%2C+Adharsh&rft.au=Jen%2C+Alex+K-Y&rft.date=2017-12-01&rft.eissn=1521-4095&rft.volume=29&rft.issue=47&rft_id=info:doi/10.1002%2Fadma.201704418&rft_id=info%3Apmid%2F29134752&rft.externalDocID=29134752
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon