Lattice Softening Significantly Reduces Thermal Conductivity and Leads to High Thermoelectric Efficiency
The influence of micro/nanostructure on thermal conductivity is a topic of great scientific interest, particularly to thermoelectrics. The current understanding is that structural defects decrease thermal conductivity through phonon scattering where the phonon dispersion and speed of sound are assum...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 31; no. 21; pp. e1900108 - n/a |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.05.2019
Wiley Blackwell (John Wiley & Sons) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The influence of micro/nanostructure on thermal conductivity is a topic of great scientific interest, particularly to thermoelectrics. The current understanding is that structural defects decrease thermal conductivity through phonon scattering where the phonon dispersion and speed of sound are assumed to remain constant. Experimental work on a PbTe model system is presented, which shows that the speed of sound linearly decreases with increased internal strain. This softening of the materials lattice completely accounts for the reduction in lattice thermal conductivity, without the introduction of additional phonon scattering mechanisms. Additionally, it is shown that a major contribution to the improvement in the thermoelectric figure of merit (zT > 2) of high‐efficiency Na‐doped PbTe can be attributed to lattice softening. While inhomogeneous internal strain fields are known to introduce phonon scattering centers, this study demonstrates that internal strain can modify phonon propagation speed as well. This presents new avenues to control lattice thermal conductivity, beyond phonon scattering. In practice, many engineering materials will exhibit both softening and scattering effects, as is shown in silicon. This work shines new light on studies of thermal conductivity in fields of energy materials, microelectronics, and nanoscale heat transfer.
Two fundamentally different avenues for controlling thermal conductivity are phonon scattering and lattice softening, or the reduction of phonon speed. The latter mechanism is particularly attractive when phonon–phonon scattering is inherently very strong, such as in thermoelectric materials and/or at high temperatures. In this work, the importance of lattice softening is shown in two specific cases, PbTe and nanocrystalline Si. |
---|---|
AbstractList | The influence of micro/nanostructure on thermal conductivity is a topic of great scientific interest, particularly to thermoelectrics. The current understanding is that structural defects decrease thermal conductivity through phonon scattering where the phonon dispersion and speed of sound are assumed to remain constant. Experimental work on a PbTe model system is presented, which shows that the speed of sound linearly decreases with increased internal strain. This softening of the materials lattice completely accounts for the reduction in lattice thermal conductivity, without the introduction of additional phonon scattering mechanisms. Additionally, it is shown that a major contribution to the improvement in the thermoelectric figure of merit (zT > 2) of high‐efficiency Na‐doped PbTe can be attributed to lattice softening. While inhomogeneous internal strain fields are known to introduce phonon scattering centers, this study demonstrates that internal strain can modify phonon propagation speed as well. This presents new avenues to control lattice thermal conductivity, beyond phonon scattering. In practice, many engineering materials will exhibit both softening and scattering effects, as is shown in silicon. This work shines new light on studies of thermal conductivity in fields of energy materials, microelectronics, and nanoscale heat transfer. The influence of micro/nanostructure on thermal conductivity is a topic of great scientific interest, particularly to thermoelectrics. The current understanding is that structural defects decrease thermal conductivity through phonon scattering where the phonon dispersion and speed of sound are assumed to remain constant. Experimental work on a PbTe model system is presented, which shows that the speed of sound linearly decreases with increased internal strain. This softening of the materials lattice completely accounts for the reduction in lattice thermal conductivity, without the introduction of additional phonon scattering mechanisms. Additionally, it is shown that a major contribution to the improvement in the thermoelectric figure of merit (zT > 2) of high‐efficiency Na‐doped PbTe can be attributed to lattice softening. While inhomogeneous internal strain fields are known to introduce phonon scattering centers, this study demonstrates that internal strain can modify phonon propagation speed as well. This presents new avenues to control lattice thermal conductivity, beyond phonon scattering. In practice, many engineering materials will exhibit both softening and scattering effects, as is shown in silicon. This work shines new light on studies of thermal conductivity in fields of energy materials, microelectronics, and nanoscale heat transfer. Two fundamentally different avenues for controlling thermal conductivity are phonon scattering and lattice softening, or the reduction of phonon speed. The latter mechanism is particularly attractive when phonon–phonon scattering is inherently very strong, such as in thermoelectric materials and/or at high temperatures. In this work, the importance of lattice softening is shown in two specific cases, PbTe and nanocrystalline Si. The influence of micro/nanostructure on thermal conductivity is a topic of great scientific interest, particularly to thermoelectrics. The current understanding is that structural defects decrease thermal conductivity through phonon scattering where the phonon dispersion and speed of sound are assumed to remain constant. Experimental work on a PbTe model system is presented, which shows that the speed of sound linearly decreases with increased internal strain. This softening of the materials lattice completely accounts for the reduction in lattice thermal conductivity, without the introduction of additional phonon scattering mechanisms. Additionally, it is shown that a major contribution to the improvement in the thermoelectric figure of merit (zT > 2) of high-efficiency Na-doped PbTe can be attributed to lattice softening. While inhomogeneous internal strain fields are known to introduce phonon scattering centers, this study demonstrates that internal strain can modify phonon propagation speed as well. This presents new avenues to control lattice thermal conductivity, beyond phonon scattering. In practice, many engineering materials will exhibit both softening and scattering effects, as is shown in silicon. This work shines new light on studies of thermal conductivity in fields of energy materials, microelectronics, and nanoscale heat transfer.The influence of micro/nanostructure on thermal conductivity is a topic of great scientific interest, particularly to thermoelectrics. The current understanding is that structural defects decrease thermal conductivity through phonon scattering where the phonon dispersion and speed of sound are assumed to remain constant. Experimental work on a PbTe model system is presented, which shows that the speed of sound linearly decreases with increased internal strain. This softening of the materials lattice completely accounts for the reduction in lattice thermal conductivity, without the introduction of additional phonon scattering mechanisms. Additionally, it is shown that a major contribution to the improvement in the thermoelectric figure of merit (zT > 2) of high-efficiency Na-doped PbTe can be attributed to lattice softening. While inhomogeneous internal strain fields are known to introduce phonon scattering centers, this study demonstrates that internal strain can modify phonon propagation speed as well. This presents new avenues to control lattice thermal conductivity, beyond phonon scattering. In practice, many engineering materials will exhibit both softening and scattering effects, as is shown in silicon. This work shines new light on studies of thermal conductivity in fields of energy materials, microelectronics, and nanoscale heat transfer. |
Author | Rettie, Alexander J. E. Chen, Zhiwei Chung, Duck Young Voorhees, Peter W. Snyder, G. Jeffrey Kanatzidis, Mercouri G. Tan, Gangjian Pei, Yanzhong Hanus, Riley Agne, Matthias T. |
Author_xml | – sequence: 1 givenname: Riley orcidid: 0000-0002-6242-0647 surname: Hanus fullname: Hanus, Riley organization: Northwestern University – sequence: 2 givenname: Matthias T. orcidid: 0000-0001-8270-5730 surname: Agne fullname: Agne, Matthias T. organization: Northwestern University – sequence: 3 givenname: Alexander J. E. surname: Rettie fullname: Rettie, Alexander J. E. organization: Argonne National Laboratory – sequence: 4 givenname: Zhiwei surname: Chen fullname: Chen, Zhiwei organization: Tongji University – sequence: 5 givenname: Gangjian surname: Tan fullname: Tan, Gangjian organization: Wuhan University of Technology – sequence: 6 givenname: Duck Young surname: Chung fullname: Chung, Duck Young organization: Argonne National Laboratory – sequence: 7 givenname: Mercouri G. surname: Kanatzidis fullname: Kanatzidis, Mercouri G. organization: Northwestern University – sequence: 8 givenname: Yanzhong surname: Pei fullname: Pei, Yanzhong organization: Tongji University – sequence: 9 givenname: Peter W. surname: Voorhees fullname: Voorhees, Peter W. organization: Northwestern University – sequence: 10 givenname: G. Jeffrey surname: Snyder fullname: Snyder, G. Jeffrey email: jeff.snyder@northwestern.edu organization: Northwestern University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30968467$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/1506139$$D View this record in Osti.gov |
BookMark | eNqFkcFu1DAURS1URKeFLUsUwYZNhmcnsePlaCi00iAkWtaW47zMuErsEjtF-Xs8SgtSpYqVLeuc62ffM3LivENC3lJYUwD2SbeDXjOgEoBC_YKsaMVoXoKsTsgKZFHlkpf1KTkL4RYAJAf-ipwWaVOXXKzIYadjtAaza99FdNbts2u7d7azRrvYz9kPbCeDIbs54DjoPtt6lw6ivbdxzrRrsx3qNmTRZ5d2f1gwjz2aOFqTXXQpyKIz82vystN9wDcP6zn5-eXiZnuZ775_vdpudrmpgNc5Na2QglNGi6YTDBtsBBdVaUzNTVVQ2SAUomYG2qITHKhpWlq0LQfGdCF5cU7eL7k-RKuCsRHNwXjn0kSKpjtoIRP0cYHuRv9rwhDVYIPBvtcO_RQUYyAoZyCP6Icn6K2fRpeekCgmBAghWaLePVBTM2Cr7kY76HFWjx-dgHIBzOhDGLFTaTIdrXdx1LZXFNSxT3XsU_3tM2nrJ9pj8rOCXITftsf5P7TafP62-ef-AW4vsUM |
CitedBy_id | crossref_primary_10_1039_C9TC03839F crossref_primary_10_1016_j_diamond_2023_110344 crossref_primary_10_1016_j_vacuum_2024_113143 crossref_primary_10_1103_PhysRevB_103_224302 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124132 crossref_primary_10_1016_j_mtphys_2023_101016 crossref_primary_10_1021_acsnano_3c03628 crossref_primary_10_1016_j_mtphys_2023_101136 crossref_primary_10_1039_D4QM00743C crossref_primary_10_1021_acs_chemmater_1c04445 crossref_primary_10_1039_D0MH01802C crossref_primary_10_1039_D4CP00201F crossref_primary_10_1016_j_cej_2020_126218 crossref_primary_10_1039_D3CC01072D crossref_primary_10_26599_JAC_2023_9220776 crossref_primary_10_1039_D1MH01601F crossref_primary_10_1021_acsmaterialslett_2c00846 crossref_primary_10_1039_D3TA01291C crossref_primary_10_1039_D1MH00091H crossref_primary_10_1021_acsami_2c12112 crossref_primary_10_1002_cnma_202400298 crossref_primary_10_1103_PhysRevMaterials_8_065403 crossref_primary_10_1016_j_mtcomm_2024_108064 crossref_primary_10_1103_PRXEnergy_1_031002 crossref_primary_10_1002_advs_201902628 crossref_primary_10_1103_PhysRevB_102_024112 crossref_primary_10_1016_j_jpcs_2022_110829 crossref_primary_10_1002_adma_202302969 crossref_primary_10_1021_acs_jpcc_4c00138 crossref_primary_10_1016_j_jmat_2019_04_008 crossref_primary_10_1021_jacs_3c12323 crossref_primary_10_1063_1_5127037 crossref_primary_10_1016_j_chempr_2020_01_002 crossref_primary_10_1021_acsami_0c22861 crossref_primary_10_1016_j_joule_2024_06_007 crossref_primary_10_1016_j_jmst_2021_02_012 crossref_primary_10_1016_j_ceramint_2021_05_034 crossref_primary_10_1039_D3TA03011C crossref_primary_10_1063_5_0161401 crossref_primary_10_1038_s41598_023_42101_5 crossref_primary_10_1088_1361_648X_ac1d15 crossref_primary_10_34133_2020_1934848 crossref_primary_10_1016_j_ssc_2024_115700 crossref_primary_10_1007_s10854_021_07196_4 crossref_primary_10_3390_mi12070734 crossref_primary_10_1021_jacs_0c05650 crossref_primary_10_1016_j_scib_2024_02_015 crossref_primary_10_1063_5_0147000 crossref_primary_10_1063_5_0069327 crossref_primary_10_1021_acsami_4c20807 crossref_primary_10_1039_C9TC03410B crossref_primary_10_1088_1361_6463_ad2472 crossref_primary_10_1016_j_jallcom_2021_159507 crossref_primary_10_1016_j_jallcom_2022_164827 crossref_primary_10_1016_j_nanoen_2022_106941 crossref_primary_10_1002_aenm_202200717 crossref_primary_10_1016_j_carbon_2022_03_044 crossref_primary_10_1002_advs_202409735 crossref_primary_10_1002_aenm_202101122 crossref_primary_10_1016_j_actamat_2019_07_031 crossref_primary_10_1002_adfm_202101554 crossref_primary_10_1021_acsaem_0c02489 crossref_primary_10_1016_j_ccr_2020_213437 crossref_primary_10_1016_j_jmst_2022_12_075 crossref_primary_10_1016_j_mtcomm_2020_101584 crossref_primary_10_3390_polym14204297 crossref_primary_10_1016_j_joule_2024_04_012 crossref_primary_10_1007_s11426_021_1201_0 crossref_primary_10_1063_5_0055593 crossref_primary_10_1002_adfm_202009681 crossref_primary_10_1021_jacs_3c02536 crossref_primary_10_1016_j_jeurceramsoc_2022_04_047 crossref_primary_10_1039_D4TA05332J crossref_primary_10_1021_acs_jpcc_0c00459 crossref_primary_10_1021_acsami_1c17460 crossref_primary_10_1039_C9TA09972G crossref_primary_10_1021_acsaem_1c02109 crossref_primary_10_1039_D1TA09489K crossref_primary_10_7498_aps_74_20241178 crossref_primary_10_1002_adfm_202209980 crossref_primary_10_1016_j_nanoen_2019_104395 crossref_primary_10_1002_aenm_202000888 crossref_primary_10_1021_acsaem_2c00949 crossref_primary_10_1016_j_mtphys_2021_100340 crossref_primary_10_1002_adfm_202401635 crossref_primary_10_1002_adfm_202101214 crossref_primary_10_1111_jace_19233 crossref_primary_10_1016_j_actamat_2022_118565 crossref_primary_10_1021_acs_chemmater_4c00904 crossref_primary_10_1039_C9QI01054H crossref_primary_10_1039_D4TC03056G crossref_primary_10_3390_ma13051060 crossref_primary_10_1021_acsaem_4c02081 crossref_primary_10_1021_acs_chemmater_4c02404 crossref_primary_10_1016_j_surfin_2024_105534 crossref_primary_10_1088_1361_648X_acdb1f crossref_primary_10_1016_j_nanoen_2019_103870 crossref_primary_10_1021_acs_chemmater_3c00586 crossref_primary_10_1002_adma_202302777 crossref_primary_10_1088_2631_7990_acfd68 crossref_primary_10_1109_TASC_2024_3350586 crossref_primary_10_1021_acs_biomac_2c00067 crossref_primary_10_20517_microstructures_2024_81 crossref_primary_10_34133_2022_9786705 crossref_primary_10_1021_jacs_4c04048 crossref_primary_10_1063_5_0063531 crossref_primary_10_1002_adfm_202305582 crossref_primary_10_1016_j_jallcom_2020_155568 crossref_primary_10_1016_j_jallcom_2024_173935 crossref_primary_10_1016_j_nanoen_2021_105879 crossref_primary_10_1021_acsenergylett_4c03369 crossref_primary_10_1039_D1CE01323H crossref_primary_10_1016_j_carbon_2020_10_036 crossref_primary_10_1016_j_nanoen_2022_107434 crossref_primary_10_1002_adfm_202411304 crossref_primary_10_1002_anie_202213649 crossref_primary_10_1021_jacs_2c04741 crossref_primary_10_1007_s40843_023_2492_9 crossref_primary_10_1002_adem_202201695 crossref_primary_10_1039_D2QM00258B crossref_primary_10_1002_aenm_202400408 crossref_primary_10_1002_aenm_202204321 crossref_primary_10_1021_acs_chemmater_1c01335 crossref_primary_10_1063_5_0185911 crossref_primary_10_1021_acs_chemmater_1c03198 crossref_primary_10_1021_acs_inorgchem_4c03006 crossref_primary_10_1002_ange_202213649 crossref_primary_10_1016_j_matt_2021_07_017 crossref_primary_10_1134_S0020168520080063 crossref_primary_10_2320_matertrans_MT_M2020069 crossref_primary_10_1007_s11664_025_11755_4 crossref_primary_10_1016_j_mtphys_2022_100955 crossref_primary_10_1007_s40145_022_0601_7 crossref_primary_10_1016_j_jallcom_2024_176549 crossref_primary_10_1016_j_jallcom_2024_174367 crossref_primary_10_1007_s10853_023_09034_w crossref_primary_10_1016_j_cej_2024_150158 crossref_primary_10_1016_j_cej_2021_131153 crossref_primary_10_1016_j_mattod_2019_11_010 crossref_primary_10_1016_j_newton_2024_100008 crossref_primary_10_1063_5_0105597 crossref_primary_10_1021_acsami_1c22590 crossref_primary_10_1016_j_ceramint_2024_05_030 crossref_primary_10_1039_D1TC00902H crossref_primary_10_1016_j_mtener_2022_100958 crossref_primary_10_1016_j_mtphys_2022_100610 crossref_primary_10_1039_D2NR06054J crossref_primary_10_1016_j_mtphys_2021_100556 crossref_primary_10_1016_j_heliyon_2023_e21117 crossref_primary_10_1021_acs_nanolett_0c01304 crossref_primary_10_1088_1361_6528_aca20c crossref_primary_10_54227_mlab_20220051 crossref_primary_10_1016_j_mtphys_2022_100858 crossref_primary_10_1021_acsami_0c09391 crossref_primary_10_1021_acsami_2c06822 crossref_primary_10_1039_D0TA02081H crossref_primary_10_1002_pat_5822 crossref_primary_10_1016_j_joule_2021_03_009 crossref_primary_10_3390_ma16093512 crossref_primary_10_1002_asia_202000793 crossref_primary_10_1039_D1CP05671A crossref_primary_10_1039_D4TC03291H crossref_primary_10_1103_PhysRevB_104_245209 crossref_primary_10_1016_j_mtphys_2021_100405 crossref_primary_10_1063_5_0226632 crossref_primary_10_1021_acsami_1c11193 crossref_primary_10_1002_adfm_202008851 crossref_primary_10_1002_adfm_202419776 crossref_primary_10_1038_s41467_024_46895_4 crossref_primary_10_1002_advs_202308075 crossref_primary_10_1021_acs_inorgchem_3c03991 crossref_primary_10_1016_j_ijheatmasstransfer_2024_126364 crossref_primary_10_1021_acsami_1c14236 crossref_primary_10_1103_PhysRevB_110_134312 crossref_primary_10_1021_acs_chemrev_4c00786 crossref_primary_10_1016_j_mtphys_2021_100410 crossref_primary_10_1039_D0TA05458E crossref_primary_10_1039_D3TA07026C crossref_primary_10_1021_acsami_4c09683 crossref_primary_10_1002_adfm_202005479 crossref_primary_10_1002_adma_202104908 crossref_primary_10_1021_acsami_4c21679 crossref_primary_10_1002_aelm_202200327 crossref_primary_10_1016_j_mtphys_2020_100221 crossref_primary_10_6023_A21120616 crossref_primary_10_1039_D1SE00656H crossref_primary_10_1002_adfm_202405158 crossref_primary_10_1021_acs_inorgchem_9b00874 crossref_primary_10_1021_jacs_0c07067 crossref_primary_10_1016_j_actamat_2024_119857 crossref_primary_10_1002_adfm_202108006 crossref_primary_10_1016_j_jmat_2019_11_002 crossref_primary_10_34133_2020_8151059 crossref_primary_10_1063_5_0073508 crossref_primary_10_1039_D1MH01539G crossref_primary_10_1088_2515_7639_adb51a crossref_primary_10_1021_acsami_3c12294 crossref_primary_10_1021_acsami_9b15198 crossref_primary_10_1016_j_rinma_2024_100635 crossref_primary_10_1021_acsaem_2c03374 crossref_primary_10_1016_j_optmat_2022_112797 crossref_primary_10_1111_jace_18797 crossref_primary_10_1016_j_mtcomm_2022_105134 crossref_primary_10_1021_acs_chemmater_2c01967 crossref_primary_10_1103_PhysRevApplied_19_014034 crossref_primary_10_1103_PhysRevB_110_035205 |
Cites_doi | 10.1039/c1jm11754h 10.1007/s12274-010-1019-z 10.1039/C3CP53749H 10.1039/C6QI00161K 10.1016/j.pcrysgrow.2007.01.001 10.1002/pssa.201532500 10.1063/1.1656874 10.1016/S0022-3093(99)00796-6 10.1103/PhysRevB.93.104304 10.1038/ncomms13828 10.1063/1.4832615 10.1063/1.2130715 10.1038/ncomms12167 10.1017/CBO9780511754586 10.1021/acs.nanolett.6b04756 10.1063/1.5063274 10.1038/ncomms4525 10.1063/1.1722436 10.1063/1.2335972 10.1107/S0021889813003531 10.1107/S0365110X49000448 10.1016/j.ssc.2004.12.047 10.1021/acsenergylett.8b00137 10.1016/j.rinp.2018.03.008 10.1039/C5MH00299K 10.1016/0022-3697(63)90067-2 10.1016/S1359-6454(02)00057-5 10.1002/adfm.200900250 10.1007/s10921-015-0286-8 10.1021/nl1045395 10.1557/mrs.2018.7 10.1103/PhysRev.131.1906 10.1016/j.solidstatesciences.2010.11.024 10.1063/1.361294 10.1119/1.1987046 10.1038/s42005-018-0070-z 10.1063/1.5030558 10.1016/j.actamat.2011.12.023 10.1016/S0257-8972(02)00593-5 10.1016/j.scriptamat.2004.05.007 10.1039/c0ee00456a 10.1103/PhysRev.137.A1826 10.1021/acs.chemmater.6b04179 10.1103/PhysRev.134.A1058 10.1002/adma.201606768 10.1103/PhysRev.133.A253 10.1016/S0081-1947(08)60551-2 10.1039/C7EE03256K 10.1016/j.cpc.2016.06.014 10.1039/C6CP01730D 10.1103/PhysRevB.72.174110 10.1016/j.actamat.2012.05.008 10.1002/pssr.201409479 10.1103/PhysRevB.90.174107 |
ContentType | Journal Article |
Copyright | 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 OTOTI |
DOI | 10.1002/adma.201900108 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic OSTI.GOV |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef Materials Research Database MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 1506139 30968467 10_1002_adma_201900108 ADMA201900108 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 51861145305; 51772215; 11804261 – fundername: U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division funderid: DE‐AC02‐06CH11357 – fundername: Fundamental Research Funds for the Central Universities funderid: 2019IVA068; 2019IVB049 – fundername: National Natural Science Foundation of China grantid: 11804261 – fundername: National Natural Science Foundation of China grantid: 51861145305 – fundername: Fundamental Research Funds for the Central Universities grantid: 2019IVB049 – fundername: U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division grantid: DE-AC02-06CH11357 – fundername: National Natural Science Foundation of China grantid: 51772215 – fundername: Fundamental Research Funds for the Central Universities grantid: 2019IVA068 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 ABTAH NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 AAPBV ABHUG ACXME ADAWD ADDAD AFVGU AGJLS OTOTI |
ID | FETCH-LOGICAL-c5068-1cd79761213bf72ebeb76754cc86c5319be03782c0d3f7601cbd13dd6022a3963 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Thu May 18 22:31:26 EDT 2023 Fri Jul 11 11:10:14 EDT 2025 Fri Jul 25 03:07:55 EDT 2025 Wed Feb 19 02:36:24 EST 2025 Thu Apr 24 22:54:01 EDT 2025 Tue Jul 01 00:44:51 EDT 2025 Wed Jan 22 16:29:41 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Keywords | thermoelectrics thermal conductivity lattice dynamics |
Language | English |
License | 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5068-1cd79761213bf72ebeb76754cc86c5319be03782c0d3f7601cbd13dd6022a3963 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 USDOE DE‐AC02‐06CH11357 |
ORCID | 0000-0001-8270-5730 0000-0002-6242-0647 0000000182705730 0000000262420647 |
OpenAccessLink | https://www.osti.gov/biblio/1506139 |
PMID | 30968467 |
PQID | 2227707792 |
PQPubID | 2045203 |
PageCount | 10 |
ParticipantIDs | osti_scitechconnect_1506139 proquest_miscellaneous_2207162099 proquest_journals_2227707792 pubmed_primary_30968467 crossref_citationtrail_10_1002_adma_201900108 crossref_primary_10_1002_adma_201900108 wiley_primary_10_1002_adma_201900108_ADMA201900108 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-05-01 |
PublicationDateYYYYMMDD | 2019-05-01 |
PublicationDate_xml | – month: 05 year: 2019 text: 2019-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc Wiley Blackwell (John Wiley & Sons) |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: Wiley Blackwell (John Wiley & Sons) |
References | 2015; 34 2012; 60 2017; 8 1963; 131 2005; 133 2009; 80 2002; 50 2003; 163–164 1949; 2 1964; 134 1964; 133 2011; 11 1972 2011; 13 1996; 79 2018; 43 2014; 1 2018; 9 2018; 8 2018; 3 2014; 5 2009; 94 2018; 1 2014; 16 2000; 266–269 2011; 21 2005; 76 1982 2005; 72 2010; 3 2009; 19 1958; 7 1963; 24 2014; 90 2016; 207 2013; 46 2009 2008 2017; 29 2016; 93 2011; 4 2007; 53 2016; 18 2015; 9 2016; 7 1965; 137 2004; 51 1968; 39 2016; 3 2006; 89 2017; 17 2018; 112 1956; 27 2016; 213 2013 2018; 11 1969 e_1_2_5_27_1 e_1_2_5_25_1 e_1_2_5_48_1 e_1_2_5_23_1 e_1_2_5_46_1 e_1_2_5_21_1 e_1_2_5_44_1 e_1_2_5_42_1 e_1_2_5_40_1 Truell R. (e_1_2_5_55_1) 1969 e_1_2_5_15_1 e_1_2_5_38_1 e_1_2_5_17_1 e_1_2_5_36_1 e_1_2_5_59_1 e_1_2_5_9_1 e_1_2_5_11_1 e_1_2_5_34_1 e_1_2_5_7_1 e_1_2_5_13_1 e_1_2_5_32_1 e_1_2_5_5_1 e_1_2_5_3_1 e_1_2_5_1_1 e_1_2_5_19_1 Koh Y. K. (e_1_2_5_10_1) 2009; 94 e_1_2_5_30_1 e_1_2_5_53_1 e_1_2_5_51_1 e_1_2_5_49_1 e_1_2_5_26_1 e_1_2_5_47_1 e_1_2_5_24_1 e_1_2_5_45_1 e_1_2_5_22_1 Hirth J. (e_1_2_5_29_1) 1982 e_1_2_5_60_1 e_1_2_5_20_1 e_1_2_5_41_1 Pecharsky V. K. (e_1_2_5_28_1) 2009 e_1_2_5_14_1 e_1_2_5_39_1 e_1_2_5_16_1 e_1_2_5_37_1 e_1_2_5_58_1 e_1_2_5_8_1 e_1_2_5_35_1 e_1_2_5_56_1 e_1_2_5_6_1 e_1_2_5_12_1 e_1_2_5_33_1 e_1_2_5_54_1 e_1_2_5_4_1 e_1_2_5_2_1 e_1_2_5_18_1 (e_1_2_5_57_1) 2013 Zhang Y. (e_1_2_5_43_1) 2009; 80 e_1_2_5_31_1 e_1_2_5_52_1 e_1_2_5_50_1 |
References_xml | – volume: 17 start-page: 1587 year: 2017 publication-title: Nano Lett. – volume: 27 start-page: 583 year: 1956 publication-title: J. Appl. Phys. – year: 2009 – volume: 213 start-page: 515 year: 2016 publication-title: Phys. Status Solidi A – volume: 60 start-page: 4431 year: 2012 publication-title: Acta Mater. – volume: 34 start-page: 14 year: 2015 publication-title: J. Nondestr. Eval. – volume: 7 start-page: 1 year: 1958 publication-title: Solid State Phys. – volume: 9 start-page: 628 year: 2018 publication-title: Results Phys. – volume: 4 start-page: 2085 year: 2011 publication-title: Energy Environ. Sci. – volume: 11 start-page: 2206 year: 2011 publication-title: Nano Lett. – volume: 163–164 start-page: 67 year: 2003 publication-title: Surf. Coat. Technol. – volume: 93 start-page: 104304 year: 2016 publication-title: Phys. Rev. B – volume: 43 start-page: 181 year: 2018 publication-title: MRS Bull. – volume: 24 start-page: 909 year: 1963 publication-title: J. Phys. Chem. Solids – volume: 13 start-page: 251 year: 2011 publication-title: Solid State Sci. – volume: 133 start-page: 569 year: 2005 publication-title: Solid State Commun. – volume: 8 start-page: 13828 year: 2017 publication-title: Nat. Commun. – volume: 112 start-page: 191902 year: 2018 publication-title: Appl. Phys. Lett. – volume: 21 start-page: 15843 year: 2011 publication-title: J. Mater. Chem. – year: 1982 – volume: 131 start-page: 1906 year: 1963 publication-title: Phys. Rev. – volume: 19 start-page: 2445 year: 2009 publication-title: Adv. Funct. Mater. – volume: 29 start-page: 1606768 year: 2017 publication-title: Adv. Mater. – volume: 29 start-page: 2494 year: 2017 publication-title: Chem. Mater. – volume: 3 start-page: 705 year: 2018 publication-title: ACS Energy Lett. – year: 1969 – year: 2008 – volume: 137 start-page: A1826 year: 1965 publication-title: Phys. Rev. – volume: 3 start-page: 1152 year: 2016 publication-title: Inorg. Chem. Front. – volume: 5 start-page: 3525 year: 2014 publication-title: Nat. Commun. – year: 1972 – volume: 72 start-page: 174110 year: 2005 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. – volume: 53 start-page: 1 year: 2007 publication-title: Prog. Cryst. Growth Charact. Mater. – volume: 266–269 start-page: 161 year: 2000 publication-title: J. Non‐Cryst. Solids – volume: 16 start-page: 25701 year: 2014 publication-title: Phys. Chem. Chem. Phys. – volume: 133 start-page: A253 year: 1964 publication-title: Phys. Rev. – volume: 1 start-page: 78 year: 2018 publication-title: Commun. Phys. – volume: 8 start-page: 115227 year: 2018 publication-title: AIP Adv. – volume: 134 start-page: A1058 year: 1964 publication-title: Phys. Rev. – volume: 1 start-page: 011305 year: 2014 publication-title: Appl. Phys. Rev. – volume: 60 start-page: 2146 year: 2012 publication-title: Acta Mater. – volume: 76 start-page: 114902 year: 2005 publication-title: Rev. Sci. Instrum. – volume: 207 start-page: 445 year: 2016 publication-title: Comput. Phys. Commun. – volume: 90 start-page: 174107 year: 2014 publication-title: Phys. Rev. B – volume: 39 start-page: 3913 year: 1968 publication-title: J. Appl. Phys. – volume: 2 start-page: 163 year: 1949 publication-title: Acta Crystallogr. – volume: 18 start-page: 15874 year: 2016 publication-title: Phys. Chem. Chem. Phys. – volume: 7 start-page: 12167 year: 2016 publication-title: Nat. Commun. – volume: 80 start-page: 1 year: 2009 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. – volume: 46 start-page: 544 year: 2013 publication-title: J. Appl. Crystallogr. – volume: 3 start-page: 234 year: 2016 publication-title: Mater. Horiz. – volume: 79 start-page: 2975 year: 1996 publication-title: J. Appl. Phys. – volume: 3 start-page: 147 year: 2010 publication-title: Nano Res. – volume: 11 start-page: 609 year: 2018 publication-title: Energy Environ. Sci. – volume: 51 start-page: 777 year: 2004 publication-title: Scr. Mater. – volume: 50 start-page: 2309 year: 2002 publication-title: Acta Mater. – volume: 9 start-page: 57 year: 2015 publication-title: Phys. Status Solidi RRL – volume: 89 start-page: 092123 year: 2006 publication-title: Appl. Phys. Lett. – volume: 94 start-page: 2007 year: 2009 publication-title: Appl. Phys. Lett. – year: 2013 – ident: e_1_2_5_6_1 doi: 10.1039/c1jm11754h – ident: e_1_2_5_14_1 doi: 10.1007/s12274-010-1019-z – ident: e_1_2_5_36_1 doi: 10.1039/C3CP53749H – ident: e_1_2_5_38_1 doi: 10.1039/C6QI00161K – ident: e_1_2_5_42_1 doi: 10.1016/j.pcrysgrow.2007.01.001 – ident: e_1_2_5_48_1 doi: 10.1002/pssa.201532500 – ident: e_1_2_5_21_1 doi: 10.1063/1.1656874 – ident: e_1_2_5_51_1 doi: 10.1016/S0022-3093(99)00796-6 – ident: e_1_2_5_44_1 doi: 10.1103/PhysRevB.93.104304 – ident: e_1_2_5_4_1 doi: 10.1038/ncomms13828 – ident: e_1_2_5_13_1 doi: 10.1063/1.4832615 – ident: e_1_2_5_18_1 doi: 10.1063/1.2130715 – ident: e_1_2_5_1_1 doi: 10.1038/ncomms12167 – ident: e_1_2_5_5_1 doi: 10.1017/CBO9780511754586 – ident: e_1_2_5_30_1 doi: 10.1021/acs.nanolett.6b04756 – ident: e_1_2_5_11_1 doi: 10.1063/1.5063274 – ident: e_1_2_5_12_1 doi: 10.1038/ncomms4525 – volume-title: Theory of Dislocations year: 1982 ident: e_1_2_5_29_1 – volume-title: Ultrasonic Methods in Solid State Physics year: 1969 ident: e_1_2_5_55_1 – volume-title: Fundamentals of Powder Diffraction and Structural Characterization of Materials year: 2009 ident: e_1_2_5_28_1 – ident: e_1_2_5_32_1 doi: 10.1063/1.1722436 – ident: e_1_2_5_15_1 doi: 10.1063/1.2335972 – ident: e_1_2_5_53_1 doi: 10.1107/S0021889813003531 – ident: e_1_2_5_31_1 doi: 10.1107/S0365110X49000448 – ident: e_1_2_5_35_1 doi: 10.1016/j.ssc.2004.12.047 – ident: e_1_2_5_8_1 doi: 10.1021/acsenergylett.8b00137 – ident: e_1_2_5_41_1 doi: 10.1016/j.rinp.2018.03.008 – volume-title: ASTM E112–13, Standard Test Method for Determining Average Grain Size year: 2013 ident: e_1_2_5_57_1 – ident: e_1_2_5_47_1 doi: 10.1039/C5MH00299K – ident: e_1_2_5_56_1 doi: 10.1016/0022-3697(63)90067-2 – ident: e_1_2_5_17_1 doi: 10.1016/S1359-6454(02)00057-5 – ident: e_1_2_5_60_1 doi: 10.1002/adfm.200900250 – ident: e_1_2_5_26_1 doi: 10.1007/s10921-015-0286-8 – ident: e_1_2_5_58_1 doi: 10.1021/nl1045395 – ident: e_1_2_5_9_1 doi: 10.1557/mrs.2018.7 – ident: e_1_2_5_59_1 doi: 10.1103/PhysRev.131.1906 – ident: e_1_2_5_27_1 doi: 10.1016/j.solidstatesciences.2010.11.024 – ident: e_1_2_5_52_1 doi: 10.1063/1.361294 – ident: e_1_2_5_24_1 doi: 10.1119/1.1987046 – ident: e_1_2_5_39_1 doi: 10.1038/s42005-018-0070-z – ident: e_1_2_5_50_1 doi: 10.1063/1.5030558 – volume: 80 start-page: 1 year: 2009 ident: e_1_2_5_43_1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. – ident: e_1_2_5_45_1 doi: 10.1016/j.actamat.2011.12.023 – ident: e_1_2_5_16_1 doi: 10.1016/S0257-8972(02)00593-5 – ident: e_1_2_5_25_1 doi: 10.1016/j.scriptamat.2004.05.007 – ident: e_1_2_5_3_1 doi: 10.1039/c0ee00456a – ident: e_1_2_5_23_1 doi: 10.1103/PhysRev.137.A1826 – ident: e_1_2_5_20_1 doi: 10.1021/acs.chemmater.6b04179 – volume: 94 start-page: 2007 year: 2009 ident: e_1_2_5_10_1 publication-title: Appl. Phys. Lett. – ident: e_1_2_5_37_1 doi: 10.1103/PhysRev.134.A1058 – ident: e_1_2_5_2_1 doi: 10.1002/adma.201606768 – ident: e_1_2_5_7_1 doi: 10.1103/PhysRev.133.A253 – ident: e_1_2_5_34_1 doi: 10.1016/S0081-1947(08)60551-2 – ident: e_1_2_5_40_1 doi: 10.1039/C7EE03256K – ident: e_1_2_5_22_1 doi: 10.1016/j.cpc.2016.06.014 – ident: e_1_2_5_54_1 doi: 10.1039/C6CP01730D – ident: e_1_2_5_33_1 doi: 10.1103/PhysRevB.72.174110 – ident: e_1_2_5_46_1 doi: 10.1016/j.actamat.2012.05.008 – ident: e_1_2_5_49_1 doi: 10.1002/pssr.201409479 – ident: e_1_2_5_19_1 doi: 10.1103/PhysRevB.90.174107 |
SSID | ssj0009606 |
Score | 2.6476727 |
Snippet | The influence of micro/nanostructure on thermal conductivity is a topic of great scientific interest, particularly to thermoelectrics. The current... |
SourceID | osti proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e1900108 |
SubjectTerms | Figure of merit Heat conductivity Heat transfer Intermetallic compounds lattice dynamics Materials science Phonons Scattering Softening Sound Thermal conductivity Thermoelectricity thermoelectrics |
Title | Lattice Softening Significantly Reduces Thermal Conductivity and Leads to High Thermoelectric Efficiency |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201900108 https://www.ncbi.nlm.nih.gov/pubmed/30968467 https://www.proquest.com/docview/2227707792 https://www.proquest.com/docview/2207162099 https://www.osti.gov/biblio/1506139 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LS8QwEMcH2ZMefD_qqkQQPFVj3z0uPhBRDz7AW0jSVMWlFbd70E_vTLJbXVEEve2y6ZI2M5l_25nfAOxok0WFTaswZepjhJK-5Ir7Mo94aaJMqZAKhS8uk9Pb6OwuvvtUxe_4EO0DN_IMu1-Tg0s12P-AhsrCcoMwoOEtBVX7UsIWqaKrD34UyXML2wtjP0-ibExt5MH-5OETUalTo3d9pzgnBayNQCdzIMdzd4knT3vDRu3pty9Yx_-c3DzMjuQp6zl7WoApUy3CzCdo4RI8nMuGMubYNe7ghh6rsOvH-4pSjnCV-q_simiwZsDQAnHX77PDuiKorO1SwWRVMGrrOWBNzSjJxA2rXTueR82OLdOCCkKX4fbk-Obw1B_1a_B1zBO8GdVFiuqGIHGqTAM0D0WomEjrLNHk68rwEBWJ5kVYUi6OVsVBWBQJ6ggZ4k6wAp2qrswasJibHP_TxFlmotCUSicqLnOdZVKVGHY98MfrJfQIZk49NfrCYZgDQVdQtFfQg912_LPDePw4skvLL1CAEEVXU7qRbgSBGFEse7AxtgoxcvaBoHLilKdpHniw3f6MbkrvXmRl6iGN4cTqQj3uwaqzpnYiIdopyUAPAmsTv8xQ9I4ueu239b8c1IVp-uwSNzeg07wMzSaKq0ZtWQd6ByfeGg0 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3Lb9QwEIdHsByAQ3m1EFqKkZA4pTV5OsdVH1rKbg99SL1ZtuOUilWC2Oyh_es7Y2_SLmpVqRw360TeeMbzs3f8DcBXY0VSurQKW-UhRigVKq55qIqEVzYRWsd0UHhymI1Ok4OztMsmpLMwng_Rb7iRZ7j5mhycNqS3b6ihqnTgIIxouKYQT-EZlfV2q6qjG4IUCXSH24vTsMgS0XEbebS9fP9SXBo06F93ac5lCeti0P4r0F3vferJ7615q7fM1T9gx__6ea9hZaFQ2dCb1Bt4Yuu38PIWt_Ad_BqrlpLm2DFO4pZ2VtjxxXlNWUc4UNNLdkRAWDtjaIQ48U_ZTlMTV9YVqmCqLhlV9pyxtmGUZ-KbNb4iz4Vhew5rQWdCV-F0f-9kZxQuSjaEJuUZrkdNmaPAIU6crvIILUQTLSYxRmSG3F1bHqMoMbyMK0rHMbr8HpdlhlJCxTgZrMGgbmr7AVjKbYHPtKkQNoltpU2m06owQihdYeQNIOwGTJoFz5zKakylJzFHkt6g7N9gAN_69n88yePelus0_hI1CIF0DWUcmVYSixH1cgAbnVnIhb_PJJ0oznmeF1EAX_qv0VPp7xdV22ZObTjhulCSB_Dem1PfkRgNlZRgAJEzigd6KIe7k2H_6eNjbvoMz0cnk7Ec_zj8uQ4v6LrP49yAQft3bj-h1mr1pvOma8OjHig |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3fT9RAEMcneCRGHxT8gQWUNTHxqbD25_bxwnFBBWJAEt42-6tKuLTE6z3oX8_M7l3hjMYEH9tum213ZufbdvYzAO-ME5n1aRWuLmOMUCpWXPNYVRmvXSa0Tmmh8PFJcXiefbrIL-6s4g98iP6DG3mGn6_Jwa9tvXcLDVXWc4MwoOErhXgAq1nBBdn16PQWIEX63NP20jyuikwssI082Vs-fyksDVp0rz9JzmUF60PQ-CmoRedD5snV7qzTu-bXb1zH_7m7NXgy16dsGAxqHVZc8wwe36EWPofvR6qjlDl2hlO4o-8q7OzyW0M5RzhMk5_slHCwbsrQBHHan7D9tiGqrC9TwVRjGdX1nLKuZZRlEpq1oR7PpWEHHmpBK0JfwPn44Ov-YTwv2BCbnBf4NmpsifKGKHG6LhO0D02smMwYURhydu14ipLEcJvWlIxjtP2QWlugkFApTgUvYdC0jXsFLOeuwmu6XAiXpa7WptB5XRkhlK4x7kYQL8ZLmjnNnIpqTGTgMCeSnqDsn2AE7_v214Hj8deWWzT8EhUIYXQN5RuZThKJEdVyBNsLq5Bzb59KWk9c8rKskgje9ofRT-nni2pcO6M2nGBdKMgj2AjW1HckRTslHRhB4m3iHz2Uw9HxsN_avM9JO_Dwy2gsjz6efN6CR7Q7JHFuw6D7MXOvUWh1-o33pRtlYRzg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lattice+Softening+Significantly+Reduces+Thermal+Conductivity+and+Leads+to+High+Thermoelectric+Efficiency&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Hanus%2C+Riley&rft.au=Agne%2C+Matthias+T.&rft.au=Rettie%2C+Alexander+J.+E.&rft.au=Chen%2C+Zhiwei&rft.date=2019-05-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=31&rft.issue=21&rft_id=info:doi/10.1002%2Fadma.201900108&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adma_201900108 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |