Lattice Softening Significantly Reduces Thermal Conductivity and Leads to High Thermoelectric Efficiency

The influence of micro/nanostructure on thermal conductivity is a topic of great scientific interest, particularly to thermoelectrics. The current understanding is that structural defects decrease thermal conductivity through phonon scattering where the phonon dispersion and speed of sound are assum...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 31; no. 21; pp. e1900108 - n/a
Main Authors Hanus, Riley, Agne, Matthias T., Rettie, Alexander J. E., Chen, Zhiwei, Tan, Gangjian, Chung, Duck Young, Kanatzidis, Mercouri G., Pei, Yanzhong, Voorhees, Peter W., Snyder, G. Jeffrey
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.05.2019
Wiley Blackwell (John Wiley & Sons)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The influence of micro/nanostructure on thermal conductivity is a topic of great scientific interest, particularly to thermoelectrics. The current understanding is that structural defects decrease thermal conductivity through phonon scattering where the phonon dispersion and speed of sound are assumed to remain constant. Experimental work on a PbTe model system is presented, which shows that the speed of sound linearly decreases with increased internal strain. This softening of the materials lattice completely accounts for the reduction in lattice thermal conductivity, without the introduction of additional phonon scattering mechanisms. Additionally, it is shown that a major contribution to the improvement in the thermoelectric figure of merit (zT > 2) of high‐efficiency Na‐doped PbTe can be attributed to lattice softening. While inhomogeneous internal strain fields are known to introduce phonon scattering centers, this study demonstrates that internal strain can modify phonon propagation speed as well. This presents new avenues to control lattice thermal conductivity, beyond phonon scattering. In practice, many engineering materials will exhibit both softening and scattering effects, as is shown in silicon. This work shines new light on studies of thermal conductivity in fields of energy materials, microelectronics, and nanoscale heat transfer. Two fundamentally different avenues for controlling thermal conductivity are phonon scattering and lattice softening, or the reduction of phonon speed. The latter mechanism is particularly attractive when phonon–phonon scattering is inherently very strong, such as in thermoelectric materials and/or at high temperatures. In this work, the importance of lattice softening is shown in two specific cases, PbTe and nanocrystalline Si.
AbstractList The influence of micro/nanostructure on thermal conductivity is a topic of great scientific interest, particularly to thermoelectrics. The current understanding is that structural defects decrease thermal conductivity through phonon scattering where the phonon dispersion and speed of sound are assumed to remain constant. Experimental work on a PbTe model system is presented, which shows that the speed of sound linearly decreases with increased internal strain. This softening of the materials lattice completely accounts for the reduction in lattice thermal conductivity, without the introduction of additional phonon scattering mechanisms. Additionally, it is shown that a major contribution to the improvement in the thermoelectric figure of merit (zT > 2) of high‐efficiency Na‐doped PbTe can be attributed to lattice softening. While inhomogeneous internal strain fields are known to introduce phonon scattering centers, this study demonstrates that internal strain can modify phonon propagation speed as well. This presents new avenues to control lattice thermal conductivity, beyond phonon scattering. In practice, many engineering materials will exhibit both softening and scattering effects, as is shown in silicon. This work shines new light on studies of thermal conductivity in fields of energy materials, microelectronics, and nanoscale heat transfer.
The influence of micro/nanostructure on thermal conductivity is a topic of great scientific interest, particularly to thermoelectrics. The current understanding is that structural defects decrease thermal conductivity through phonon scattering where the phonon dispersion and speed of sound are assumed to remain constant. Experimental work on a PbTe model system is presented, which shows that the speed of sound linearly decreases with increased internal strain. This softening of the materials lattice completely accounts for the reduction in lattice thermal conductivity, without the introduction of additional phonon scattering mechanisms. Additionally, it is shown that a major contribution to the improvement in the thermoelectric figure of merit (zT > 2) of high‐efficiency Na‐doped PbTe can be attributed to lattice softening. While inhomogeneous internal strain fields are known to introduce phonon scattering centers, this study demonstrates that internal strain can modify phonon propagation speed as well. This presents new avenues to control lattice thermal conductivity, beyond phonon scattering. In practice, many engineering materials will exhibit both softening and scattering effects, as is shown in silicon. This work shines new light on studies of thermal conductivity in fields of energy materials, microelectronics, and nanoscale heat transfer. Two fundamentally different avenues for controlling thermal conductivity are phonon scattering and lattice softening, or the reduction of phonon speed. The latter mechanism is particularly attractive when phonon–phonon scattering is inherently very strong, such as in thermoelectric materials and/or at high temperatures. In this work, the importance of lattice softening is shown in two specific cases, PbTe and nanocrystalline Si.
The influence of micro/nanostructure on thermal conductivity is a topic of great scientific interest, particularly to thermoelectrics. The current understanding is that structural defects decrease thermal conductivity through phonon scattering where the phonon dispersion and speed of sound are assumed to remain constant. Experimental work on a PbTe model system is presented, which shows that the speed of sound linearly decreases with increased internal strain. This softening of the materials lattice completely accounts for the reduction in lattice thermal conductivity, without the introduction of additional phonon scattering mechanisms. Additionally, it is shown that a major contribution to the improvement in the thermoelectric figure of merit (zT > 2) of high-efficiency Na-doped PbTe can be attributed to lattice softening. While inhomogeneous internal strain fields are known to introduce phonon scattering centers, this study demonstrates that internal strain can modify phonon propagation speed as well. This presents new avenues to control lattice thermal conductivity, beyond phonon scattering. In practice, many engineering materials will exhibit both softening and scattering effects, as is shown in silicon. This work shines new light on studies of thermal conductivity in fields of energy materials, microelectronics, and nanoscale heat transfer.The influence of micro/nanostructure on thermal conductivity is a topic of great scientific interest, particularly to thermoelectrics. The current understanding is that structural defects decrease thermal conductivity through phonon scattering where the phonon dispersion and speed of sound are assumed to remain constant. Experimental work on a PbTe model system is presented, which shows that the speed of sound linearly decreases with increased internal strain. This softening of the materials lattice completely accounts for the reduction in lattice thermal conductivity, without the introduction of additional phonon scattering mechanisms. Additionally, it is shown that a major contribution to the improvement in the thermoelectric figure of merit (zT > 2) of high-efficiency Na-doped PbTe can be attributed to lattice softening. While inhomogeneous internal strain fields are known to introduce phonon scattering centers, this study demonstrates that internal strain can modify phonon propagation speed as well. This presents new avenues to control lattice thermal conductivity, beyond phonon scattering. In practice, many engineering materials will exhibit both softening and scattering effects, as is shown in silicon. This work shines new light on studies of thermal conductivity in fields of energy materials, microelectronics, and nanoscale heat transfer.
Author Rettie, Alexander J. E.
Chen, Zhiwei
Chung, Duck Young
Voorhees, Peter W.
Snyder, G. Jeffrey
Kanatzidis, Mercouri G.
Tan, Gangjian
Pei, Yanzhong
Hanus, Riley
Agne, Matthias T.
Author_xml – sequence: 1
  givenname: Riley
  orcidid: 0000-0002-6242-0647
  surname: Hanus
  fullname: Hanus, Riley
  organization: Northwestern University
– sequence: 2
  givenname: Matthias T.
  orcidid: 0000-0001-8270-5730
  surname: Agne
  fullname: Agne, Matthias T.
  organization: Northwestern University
– sequence: 3
  givenname: Alexander J. E.
  surname: Rettie
  fullname: Rettie, Alexander J. E.
  organization: Argonne National Laboratory
– sequence: 4
  givenname: Zhiwei
  surname: Chen
  fullname: Chen, Zhiwei
  organization: Tongji University
– sequence: 5
  givenname: Gangjian
  surname: Tan
  fullname: Tan, Gangjian
  organization: Wuhan University of Technology
– sequence: 6
  givenname: Duck Young
  surname: Chung
  fullname: Chung, Duck Young
  organization: Argonne National Laboratory
– sequence: 7
  givenname: Mercouri G.
  surname: Kanatzidis
  fullname: Kanatzidis, Mercouri G.
  organization: Northwestern University
– sequence: 8
  givenname: Yanzhong
  surname: Pei
  fullname: Pei, Yanzhong
  organization: Tongji University
– sequence: 9
  givenname: Peter W.
  surname: Voorhees
  fullname: Voorhees, Peter W.
  organization: Northwestern University
– sequence: 10
  givenname: G. Jeffrey
  surname: Snyder
  fullname: Snyder, G. Jeffrey
  email: jeff.snyder@northwestern.edu
  organization: Northwestern University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30968467$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/1506139$$D View this record in Osti.gov
BookMark eNqFkcFu1DAURS1URKeFLUsUwYZNhmcnsePlaCi00iAkWtaW47zMuErsEjtF-Xs8SgtSpYqVLeuc62ffM3LivENC3lJYUwD2SbeDXjOgEoBC_YKsaMVoXoKsTsgKZFHlkpf1KTkL4RYAJAf-ipwWaVOXXKzIYadjtAaza99FdNbts2u7d7azRrvYz9kPbCeDIbs54DjoPtt6lw6ivbdxzrRrsx3qNmTRZ5d2f1gwjz2aOFqTXXQpyKIz82vystN9wDcP6zn5-eXiZnuZ775_vdpudrmpgNc5Na2QglNGi6YTDBtsBBdVaUzNTVVQ2SAUomYG2qITHKhpWlq0LQfGdCF5cU7eL7k-RKuCsRHNwXjn0kSKpjtoIRP0cYHuRv9rwhDVYIPBvtcO_RQUYyAoZyCP6Icn6K2fRpeekCgmBAghWaLePVBTM2Cr7kY76HFWjx-dgHIBzOhDGLFTaTIdrXdx1LZXFNSxT3XsU_3tM2nrJ9pj8rOCXITftsf5P7TafP62-ef-AW4vsUM
CitedBy_id crossref_primary_10_1039_C9TC03839F
crossref_primary_10_1016_j_diamond_2023_110344
crossref_primary_10_1016_j_vacuum_2024_113143
crossref_primary_10_1103_PhysRevB_103_224302
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124132
crossref_primary_10_1016_j_mtphys_2023_101016
crossref_primary_10_1021_acsnano_3c03628
crossref_primary_10_1016_j_mtphys_2023_101136
crossref_primary_10_1039_D4QM00743C
crossref_primary_10_1021_acs_chemmater_1c04445
crossref_primary_10_1039_D0MH01802C
crossref_primary_10_1039_D4CP00201F
crossref_primary_10_1016_j_cej_2020_126218
crossref_primary_10_1039_D3CC01072D
crossref_primary_10_26599_JAC_2023_9220776
crossref_primary_10_1039_D1MH01601F
crossref_primary_10_1021_acsmaterialslett_2c00846
crossref_primary_10_1039_D3TA01291C
crossref_primary_10_1039_D1MH00091H
crossref_primary_10_1021_acsami_2c12112
crossref_primary_10_1002_cnma_202400298
crossref_primary_10_1103_PhysRevMaterials_8_065403
crossref_primary_10_1016_j_mtcomm_2024_108064
crossref_primary_10_1103_PRXEnergy_1_031002
crossref_primary_10_1002_advs_201902628
crossref_primary_10_1103_PhysRevB_102_024112
crossref_primary_10_1016_j_jpcs_2022_110829
crossref_primary_10_1002_adma_202302969
crossref_primary_10_1021_acs_jpcc_4c00138
crossref_primary_10_1016_j_jmat_2019_04_008
crossref_primary_10_1021_jacs_3c12323
crossref_primary_10_1063_1_5127037
crossref_primary_10_1016_j_chempr_2020_01_002
crossref_primary_10_1021_acsami_0c22861
crossref_primary_10_1016_j_joule_2024_06_007
crossref_primary_10_1016_j_jmst_2021_02_012
crossref_primary_10_1016_j_ceramint_2021_05_034
crossref_primary_10_1039_D3TA03011C
crossref_primary_10_1063_5_0161401
crossref_primary_10_1038_s41598_023_42101_5
crossref_primary_10_1088_1361_648X_ac1d15
crossref_primary_10_34133_2020_1934848
crossref_primary_10_1016_j_ssc_2024_115700
crossref_primary_10_1007_s10854_021_07196_4
crossref_primary_10_3390_mi12070734
crossref_primary_10_1021_jacs_0c05650
crossref_primary_10_1016_j_scib_2024_02_015
crossref_primary_10_1063_5_0147000
crossref_primary_10_1063_5_0069327
crossref_primary_10_1021_acsami_4c20807
crossref_primary_10_1039_C9TC03410B
crossref_primary_10_1088_1361_6463_ad2472
crossref_primary_10_1016_j_jallcom_2021_159507
crossref_primary_10_1016_j_jallcom_2022_164827
crossref_primary_10_1016_j_nanoen_2022_106941
crossref_primary_10_1002_aenm_202200717
crossref_primary_10_1016_j_carbon_2022_03_044
crossref_primary_10_1002_advs_202409735
crossref_primary_10_1002_aenm_202101122
crossref_primary_10_1016_j_actamat_2019_07_031
crossref_primary_10_1002_adfm_202101554
crossref_primary_10_1021_acsaem_0c02489
crossref_primary_10_1016_j_ccr_2020_213437
crossref_primary_10_1016_j_jmst_2022_12_075
crossref_primary_10_1016_j_mtcomm_2020_101584
crossref_primary_10_3390_polym14204297
crossref_primary_10_1016_j_joule_2024_04_012
crossref_primary_10_1007_s11426_021_1201_0
crossref_primary_10_1063_5_0055593
crossref_primary_10_1002_adfm_202009681
crossref_primary_10_1021_jacs_3c02536
crossref_primary_10_1016_j_jeurceramsoc_2022_04_047
crossref_primary_10_1039_D4TA05332J
crossref_primary_10_1021_acs_jpcc_0c00459
crossref_primary_10_1021_acsami_1c17460
crossref_primary_10_1039_C9TA09972G
crossref_primary_10_1021_acsaem_1c02109
crossref_primary_10_1039_D1TA09489K
crossref_primary_10_7498_aps_74_20241178
crossref_primary_10_1002_adfm_202209980
crossref_primary_10_1016_j_nanoen_2019_104395
crossref_primary_10_1002_aenm_202000888
crossref_primary_10_1021_acsaem_2c00949
crossref_primary_10_1016_j_mtphys_2021_100340
crossref_primary_10_1002_adfm_202401635
crossref_primary_10_1002_adfm_202101214
crossref_primary_10_1111_jace_19233
crossref_primary_10_1016_j_actamat_2022_118565
crossref_primary_10_1021_acs_chemmater_4c00904
crossref_primary_10_1039_C9QI01054H
crossref_primary_10_1039_D4TC03056G
crossref_primary_10_3390_ma13051060
crossref_primary_10_1021_acsaem_4c02081
crossref_primary_10_1021_acs_chemmater_4c02404
crossref_primary_10_1016_j_surfin_2024_105534
crossref_primary_10_1088_1361_648X_acdb1f
crossref_primary_10_1016_j_nanoen_2019_103870
crossref_primary_10_1021_acs_chemmater_3c00586
crossref_primary_10_1002_adma_202302777
crossref_primary_10_1088_2631_7990_acfd68
crossref_primary_10_1109_TASC_2024_3350586
crossref_primary_10_1021_acs_biomac_2c00067
crossref_primary_10_20517_microstructures_2024_81
crossref_primary_10_34133_2022_9786705
crossref_primary_10_1021_jacs_4c04048
crossref_primary_10_1063_5_0063531
crossref_primary_10_1002_adfm_202305582
crossref_primary_10_1016_j_jallcom_2020_155568
crossref_primary_10_1016_j_jallcom_2024_173935
crossref_primary_10_1016_j_nanoen_2021_105879
crossref_primary_10_1021_acsenergylett_4c03369
crossref_primary_10_1039_D1CE01323H
crossref_primary_10_1016_j_carbon_2020_10_036
crossref_primary_10_1016_j_nanoen_2022_107434
crossref_primary_10_1002_adfm_202411304
crossref_primary_10_1002_anie_202213649
crossref_primary_10_1021_jacs_2c04741
crossref_primary_10_1007_s40843_023_2492_9
crossref_primary_10_1002_adem_202201695
crossref_primary_10_1039_D2QM00258B
crossref_primary_10_1002_aenm_202400408
crossref_primary_10_1002_aenm_202204321
crossref_primary_10_1021_acs_chemmater_1c01335
crossref_primary_10_1063_5_0185911
crossref_primary_10_1021_acs_chemmater_1c03198
crossref_primary_10_1021_acs_inorgchem_4c03006
crossref_primary_10_1002_ange_202213649
crossref_primary_10_1016_j_matt_2021_07_017
crossref_primary_10_1134_S0020168520080063
crossref_primary_10_2320_matertrans_MT_M2020069
crossref_primary_10_1007_s11664_025_11755_4
crossref_primary_10_1016_j_mtphys_2022_100955
crossref_primary_10_1007_s40145_022_0601_7
crossref_primary_10_1016_j_jallcom_2024_176549
crossref_primary_10_1016_j_jallcom_2024_174367
crossref_primary_10_1007_s10853_023_09034_w
crossref_primary_10_1016_j_cej_2024_150158
crossref_primary_10_1016_j_cej_2021_131153
crossref_primary_10_1016_j_mattod_2019_11_010
crossref_primary_10_1016_j_newton_2024_100008
crossref_primary_10_1063_5_0105597
crossref_primary_10_1021_acsami_1c22590
crossref_primary_10_1016_j_ceramint_2024_05_030
crossref_primary_10_1039_D1TC00902H
crossref_primary_10_1016_j_mtener_2022_100958
crossref_primary_10_1016_j_mtphys_2022_100610
crossref_primary_10_1039_D2NR06054J
crossref_primary_10_1016_j_mtphys_2021_100556
crossref_primary_10_1016_j_heliyon_2023_e21117
crossref_primary_10_1021_acs_nanolett_0c01304
crossref_primary_10_1088_1361_6528_aca20c
crossref_primary_10_54227_mlab_20220051
crossref_primary_10_1016_j_mtphys_2022_100858
crossref_primary_10_1021_acsami_0c09391
crossref_primary_10_1021_acsami_2c06822
crossref_primary_10_1039_D0TA02081H
crossref_primary_10_1002_pat_5822
crossref_primary_10_1016_j_joule_2021_03_009
crossref_primary_10_3390_ma16093512
crossref_primary_10_1002_asia_202000793
crossref_primary_10_1039_D1CP05671A
crossref_primary_10_1039_D4TC03291H
crossref_primary_10_1103_PhysRevB_104_245209
crossref_primary_10_1016_j_mtphys_2021_100405
crossref_primary_10_1063_5_0226632
crossref_primary_10_1021_acsami_1c11193
crossref_primary_10_1002_adfm_202008851
crossref_primary_10_1002_adfm_202419776
crossref_primary_10_1038_s41467_024_46895_4
crossref_primary_10_1002_advs_202308075
crossref_primary_10_1021_acs_inorgchem_3c03991
crossref_primary_10_1016_j_ijheatmasstransfer_2024_126364
crossref_primary_10_1021_acsami_1c14236
crossref_primary_10_1103_PhysRevB_110_134312
crossref_primary_10_1021_acs_chemrev_4c00786
crossref_primary_10_1016_j_mtphys_2021_100410
crossref_primary_10_1039_D0TA05458E
crossref_primary_10_1039_D3TA07026C
crossref_primary_10_1021_acsami_4c09683
crossref_primary_10_1002_adfm_202005479
crossref_primary_10_1002_adma_202104908
crossref_primary_10_1021_acsami_4c21679
crossref_primary_10_1002_aelm_202200327
crossref_primary_10_1016_j_mtphys_2020_100221
crossref_primary_10_6023_A21120616
crossref_primary_10_1039_D1SE00656H
crossref_primary_10_1002_adfm_202405158
crossref_primary_10_1021_acs_inorgchem_9b00874
crossref_primary_10_1021_jacs_0c07067
crossref_primary_10_1016_j_actamat_2024_119857
crossref_primary_10_1002_adfm_202108006
crossref_primary_10_1016_j_jmat_2019_11_002
crossref_primary_10_34133_2020_8151059
crossref_primary_10_1063_5_0073508
crossref_primary_10_1039_D1MH01539G
crossref_primary_10_1088_2515_7639_adb51a
crossref_primary_10_1021_acsami_3c12294
crossref_primary_10_1021_acsami_9b15198
crossref_primary_10_1016_j_rinma_2024_100635
crossref_primary_10_1021_acsaem_2c03374
crossref_primary_10_1016_j_optmat_2022_112797
crossref_primary_10_1111_jace_18797
crossref_primary_10_1016_j_mtcomm_2022_105134
crossref_primary_10_1021_acs_chemmater_2c01967
crossref_primary_10_1103_PhysRevApplied_19_014034
crossref_primary_10_1103_PhysRevB_110_035205
Cites_doi 10.1039/c1jm11754h
10.1007/s12274-010-1019-z
10.1039/C3CP53749H
10.1039/C6QI00161K
10.1016/j.pcrysgrow.2007.01.001
10.1002/pssa.201532500
10.1063/1.1656874
10.1016/S0022-3093(99)00796-6
10.1103/PhysRevB.93.104304
10.1038/ncomms13828
10.1063/1.4832615
10.1063/1.2130715
10.1038/ncomms12167
10.1017/CBO9780511754586
10.1021/acs.nanolett.6b04756
10.1063/1.5063274
10.1038/ncomms4525
10.1063/1.1722436
10.1063/1.2335972
10.1107/S0021889813003531
10.1107/S0365110X49000448
10.1016/j.ssc.2004.12.047
10.1021/acsenergylett.8b00137
10.1016/j.rinp.2018.03.008
10.1039/C5MH00299K
10.1016/0022-3697(63)90067-2
10.1016/S1359-6454(02)00057-5
10.1002/adfm.200900250
10.1007/s10921-015-0286-8
10.1021/nl1045395
10.1557/mrs.2018.7
10.1103/PhysRev.131.1906
10.1016/j.solidstatesciences.2010.11.024
10.1063/1.361294
10.1119/1.1987046
10.1038/s42005-018-0070-z
10.1063/1.5030558
10.1016/j.actamat.2011.12.023
10.1016/S0257-8972(02)00593-5
10.1016/j.scriptamat.2004.05.007
10.1039/c0ee00456a
10.1103/PhysRev.137.A1826
10.1021/acs.chemmater.6b04179
10.1103/PhysRev.134.A1058
10.1002/adma.201606768
10.1103/PhysRev.133.A253
10.1016/S0081-1947(08)60551-2
10.1039/C7EE03256K
10.1016/j.cpc.2016.06.014
10.1039/C6CP01730D
10.1103/PhysRevB.72.174110
10.1016/j.actamat.2012.05.008
10.1002/pssr.201409479
10.1103/PhysRevB.90.174107
ContentType Journal Article
Copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
OTOTI
DOI 10.1002/adma.201900108
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
OSTI.GOV
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef
Materials Research Database

MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 1506139
30968467
10_1002_adma_201900108
ADMA201900108
Genre article
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 51861145305; 51772215; 11804261
– fundername: U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division
  funderid: DE‐AC02‐06CH11357
– fundername: Fundamental Research Funds for the Central Universities
  funderid: 2019IVA068; 2019IVB049
– fundername: National Natural Science Foundation of China
  grantid: 11804261
– fundername: National Natural Science Foundation of China
  grantid: 51861145305
– fundername: Fundamental Research Funds for the Central Universities
  grantid: 2019IVB049
– fundername: U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division
  grantid: DE-AC02-06CH11357
– fundername: National Natural Science Foundation of China
  grantid: 51772215
– fundername: Fundamental Research Funds for the Central Universities
  grantid: 2019IVA068
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
ABTAH
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
AAPBV
ABHUG
ACXME
ADAWD
ADDAD
AFVGU
AGJLS
OTOTI
ID FETCH-LOGICAL-c5068-1cd79761213bf72ebeb76754cc86c5319be03782c0d3f7601cbd13dd6022a3963
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Thu May 18 22:31:26 EDT 2023
Fri Jul 11 11:10:14 EDT 2025
Fri Jul 25 03:07:55 EDT 2025
Wed Feb 19 02:36:24 EST 2025
Thu Apr 24 22:54:01 EDT 2025
Tue Jul 01 00:44:51 EDT 2025
Wed Jan 22 16:29:41 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Keywords thermoelectrics
thermal conductivity
lattice dynamics
Language English
License 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5068-1cd79761213bf72ebeb76754cc86c5319be03782c0d3f7601cbd13dd6022a3963
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
USDOE
DE‐AC02‐06CH11357
ORCID 0000-0001-8270-5730
0000-0002-6242-0647
0000000182705730
0000000262420647
OpenAccessLink https://www.osti.gov/biblio/1506139
PMID 30968467
PQID 2227707792
PQPubID 2045203
PageCount 10
ParticipantIDs osti_scitechconnect_1506139
proquest_miscellaneous_2207162099
proquest_journals_2227707792
pubmed_primary_30968467
crossref_citationtrail_10_1002_adma_201900108
crossref_primary_10_1002_adma_201900108
wiley_primary_10_1002_adma_201900108_ADMA201900108
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-05-01
PublicationDateYYYYMMDD 2019-05-01
PublicationDate_xml – month: 05
  year: 2019
  text: 2019-05-01
  day: 01
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Wiley Blackwell (John Wiley & Sons)
Publisher_xml – name: Wiley Subscription Services, Inc
– name: Wiley Blackwell (John Wiley & Sons)
References 2015; 34
2012; 60
2017; 8
1963; 131
2005; 133
2009; 80
2002; 50
2003; 163–164
1949; 2
1964; 134
1964; 133
2011; 11
1972
2011; 13
1996; 79
2018; 43
2014; 1
2018; 9
2018; 8
2018; 3
2014; 5
2009; 94
2018; 1
2014; 16
2000; 266–269
2011; 21
2005; 76
1982
2005; 72
2010; 3
2009; 19
1958; 7
1963; 24
2014; 90
2016; 207
2013; 46
2009
2008
2017; 29
2016; 93
2011; 4
2007; 53
2016; 18
2015; 9
2016; 7
1965; 137
2004; 51
1968; 39
2016; 3
2006; 89
2017; 17
2018; 112
1956; 27
2016; 213
2013
2018; 11
1969
e_1_2_5_27_1
e_1_2_5_25_1
e_1_2_5_48_1
e_1_2_5_23_1
e_1_2_5_46_1
e_1_2_5_21_1
e_1_2_5_44_1
e_1_2_5_42_1
e_1_2_5_40_1
Truell R. (e_1_2_5_55_1) 1969
e_1_2_5_15_1
e_1_2_5_38_1
e_1_2_5_17_1
e_1_2_5_36_1
e_1_2_5_59_1
e_1_2_5_9_1
e_1_2_5_11_1
e_1_2_5_34_1
e_1_2_5_7_1
e_1_2_5_13_1
e_1_2_5_32_1
e_1_2_5_5_1
e_1_2_5_3_1
e_1_2_5_1_1
e_1_2_5_19_1
Koh Y. K. (e_1_2_5_10_1) 2009; 94
e_1_2_5_30_1
e_1_2_5_53_1
e_1_2_5_51_1
e_1_2_5_49_1
e_1_2_5_26_1
e_1_2_5_47_1
e_1_2_5_24_1
e_1_2_5_45_1
e_1_2_5_22_1
Hirth J. (e_1_2_5_29_1) 1982
e_1_2_5_60_1
e_1_2_5_20_1
e_1_2_5_41_1
Pecharsky V. K. (e_1_2_5_28_1) 2009
e_1_2_5_14_1
e_1_2_5_39_1
e_1_2_5_16_1
e_1_2_5_37_1
e_1_2_5_58_1
e_1_2_5_8_1
e_1_2_5_35_1
e_1_2_5_56_1
e_1_2_5_6_1
e_1_2_5_12_1
e_1_2_5_33_1
e_1_2_5_54_1
e_1_2_5_4_1
e_1_2_5_2_1
e_1_2_5_18_1
(e_1_2_5_57_1) 2013
Zhang Y. (e_1_2_5_43_1) 2009; 80
e_1_2_5_31_1
e_1_2_5_52_1
e_1_2_5_50_1
References_xml – volume: 17
  start-page: 1587
  year: 2017
  publication-title: Nano Lett.
– volume: 27
  start-page: 583
  year: 1956
  publication-title: J. Appl. Phys.
– year: 2009
– volume: 213
  start-page: 515
  year: 2016
  publication-title: Phys. Status Solidi A
– volume: 60
  start-page: 4431
  year: 2012
  publication-title: Acta Mater.
– volume: 34
  start-page: 14
  year: 2015
  publication-title: J. Nondestr. Eval.
– volume: 7
  start-page: 1
  year: 1958
  publication-title: Solid State Phys.
– volume: 9
  start-page: 628
  year: 2018
  publication-title: Results Phys.
– volume: 4
  start-page: 2085
  year: 2011
  publication-title: Energy Environ. Sci.
– volume: 11
  start-page: 2206
  year: 2011
  publication-title: Nano Lett.
– volume: 163–164
  start-page: 67
  year: 2003
  publication-title: Surf. Coat. Technol.
– volume: 93
  start-page: 104304
  year: 2016
  publication-title: Phys. Rev. B
– volume: 43
  start-page: 181
  year: 2018
  publication-title: MRS Bull.
– volume: 24
  start-page: 909
  year: 1963
  publication-title: J. Phys. Chem. Solids
– volume: 13
  start-page: 251
  year: 2011
  publication-title: Solid State Sci.
– volume: 133
  start-page: 569
  year: 2005
  publication-title: Solid State Commun.
– volume: 8
  start-page: 13828
  year: 2017
  publication-title: Nat. Commun.
– volume: 112
  start-page: 191902
  year: 2018
  publication-title: Appl. Phys. Lett.
– volume: 21
  start-page: 15843
  year: 2011
  publication-title: J. Mater. Chem.
– year: 1982
– volume: 131
  start-page: 1906
  year: 1963
  publication-title: Phys. Rev.
– volume: 19
  start-page: 2445
  year: 2009
  publication-title: Adv. Funct. Mater.
– volume: 29
  start-page: 1606768
  year: 2017
  publication-title: Adv. Mater.
– volume: 29
  start-page: 2494
  year: 2017
  publication-title: Chem. Mater.
– volume: 3
  start-page: 705
  year: 2018
  publication-title: ACS Energy Lett.
– year: 1969
– year: 2008
– volume: 137
  start-page: A1826
  year: 1965
  publication-title: Phys. Rev.
– volume: 3
  start-page: 1152
  year: 2016
  publication-title: Inorg. Chem. Front.
– volume: 5
  start-page: 3525
  year: 2014
  publication-title: Nat. Commun.
– year: 1972
– volume: 72
  start-page: 174110
  year: 2005
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
– volume: 53
  start-page: 1
  year: 2007
  publication-title: Prog. Cryst. Growth Charact. Mater.
– volume: 266–269
  start-page: 161
  year: 2000
  publication-title: J. Non‐Cryst. Solids
– volume: 16
  start-page: 25701
  year: 2014
  publication-title: Phys. Chem. Chem. Phys.
– volume: 133
  start-page: A253
  year: 1964
  publication-title: Phys. Rev.
– volume: 1
  start-page: 78
  year: 2018
  publication-title: Commun. Phys.
– volume: 8
  start-page: 115227
  year: 2018
  publication-title: AIP Adv.
– volume: 134
  start-page: A1058
  year: 1964
  publication-title: Phys. Rev.
– volume: 1
  start-page: 011305
  year: 2014
  publication-title: Appl. Phys. Rev.
– volume: 60
  start-page: 2146
  year: 2012
  publication-title: Acta Mater.
– volume: 76
  start-page: 114902
  year: 2005
  publication-title: Rev. Sci. Instrum.
– volume: 207
  start-page: 445
  year: 2016
  publication-title: Comput. Phys. Commun.
– volume: 90
  start-page: 174107
  year: 2014
  publication-title: Phys. Rev. B
– volume: 39
  start-page: 3913
  year: 1968
  publication-title: J. Appl. Phys.
– volume: 2
  start-page: 163
  year: 1949
  publication-title: Acta Crystallogr.
– volume: 18
  start-page: 15874
  year: 2016
  publication-title: Phys. Chem. Chem. Phys.
– volume: 7
  start-page: 12167
  year: 2016
  publication-title: Nat. Commun.
– volume: 80
  start-page: 1
  year: 2009
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
– volume: 46
  start-page: 544
  year: 2013
  publication-title: J. Appl. Crystallogr.
– volume: 3
  start-page: 234
  year: 2016
  publication-title: Mater. Horiz.
– volume: 79
  start-page: 2975
  year: 1996
  publication-title: J. Appl. Phys.
– volume: 3
  start-page: 147
  year: 2010
  publication-title: Nano Res.
– volume: 11
  start-page: 609
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 51
  start-page: 777
  year: 2004
  publication-title: Scr. Mater.
– volume: 50
  start-page: 2309
  year: 2002
  publication-title: Acta Mater.
– volume: 9
  start-page: 57
  year: 2015
  publication-title: Phys. Status Solidi RRL
– volume: 89
  start-page: 092123
  year: 2006
  publication-title: Appl. Phys. Lett.
– volume: 94
  start-page: 2007
  year: 2009
  publication-title: Appl. Phys. Lett.
– year: 2013
– ident: e_1_2_5_6_1
  doi: 10.1039/c1jm11754h
– ident: e_1_2_5_14_1
  doi: 10.1007/s12274-010-1019-z
– ident: e_1_2_5_36_1
  doi: 10.1039/C3CP53749H
– ident: e_1_2_5_38_1
  doi: 10.1039/C6QI00161K
– ident: e_1_2_5_42_1
  doi: 10.1016/j.pcrysgrow.2007.01.001
– ident: e_1_2_5_48_1
  doi: 10.1002/pssa.201532500
– ident: e_1_2_5_21_1
  doi: 10.1063/1.1656874
– ident: e_1_2_5_51_1
  doi: 10.1016/S0022-3093(99)00796-6
– ident: e_1_2_5_44_1
  doi: 10.1103/PhysRevB.93.104304
– ident: e_1_2_5_4_1
  doi: 10.1038/ncomms13828
– ident: e_1_2_5_13_1
  doi: 10.1063/1.4832615
– ident: e_1_2_5_18_1
  doi: 10.1063/1.2130715
– ident: e_1_2_5_1_1
  doi: 10.1038/ncomms12167
– ident: e_1_2_5_5_1
  doi: 10.1017/CBO9780511754586
– ident: e_1_2_5_30_1
  doi: 10.1021/acs.nanolett.6b04756
– ident: e_1_2_5_11_1
  doi: 10.1063/1.5063274
– ident: e_1_2_5_12_1
  doi: 10.1038/ncomms4525
– volume-title: Theory of Dislocations
  year: 1982
  ident: e_1_2_5_29_1
– volume-title: Ultrasonic Methods in Solid State Physics
  year: 1969
  ident: e_1_2_5_55_1
– volume-title: Fundamentals of Powder Diffraction and Structural Characterization of Materials
  year: 2009
  ident: e_1_2_5_28_1
– ident: e_1_2_5_32_1
  doi: 10.1063/1.1722436
– ident: e_1_2_5_15_1
  doi: 10.1063/1.2335972
– ident: e_1_2_5_53_1
  doi: 10.1107/S0021889813003531
– ident: e_1_2_5_31_1
  doi: 10.1107/S0365110X49000448
– ident: e_1_2_5_35_1
  doi: 10.1016/j.ssc.2004.12.047
– ident: e_1_2_5_8_1
  doi: 10.1021/acsenergylett.8b00137
– ident: e_1_2_5_41_1
  doi: 10.1016/j.rinp.2018.03.008
– volume-title: ASTM E112–13, Standard Test Method for Determining Average Grain Size
  year: 2013
  ident: e_1_2_5_57_1
– ident: e_1_2_5_47_1
  doi: 10.1039/C5MH00299K
– ident: e_1_2_5_56_1
  doi: 10.1016/0022-3697(63)90067-2
– ident: e_1_2_5_17_1
  doi: 10.1016/S1359-6454(02)00057-5
– ident: e_1_2_5_60_1
  doi: 10.1002/adfm.200900250
– ident: e_1_2_5_26_1
  doi: 10.1007/s10921-015-0286-8
– ident: e_1_2_5_58_1
  doi: 10.1021/nl1045395
– ident: e_1_2_5_9_1
  doi: 10.1557/mrs.2018.7
– ident: e_1_2_5_59_1
  doi: 10.1103/PhysRev.131.1906
– ident: e_1_2_5_27_1
  doi: 10.1016/j.solidstatesciences.2010.11.024
– ident: e_1_2_5_52_1
  doi: 10.1063/1.361294
– ident: e_1_2_5_24_1
  doi: 10.1119/1.1987046
– ident: e_1_2_5_39_1
  doi: 10.1038/s42005-018-0070-z
– ident: e_1_2_5_50_1
  doi: 10.1063/1.5030558
– volume: 80
  start-page: 1
  year: 2009
  ident: e_1_2_5_43_1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
– ident: e_1_2_5_45_1
  doi: 10.1016/j.actamat.2011.12.023
– ident: e_1_2_5_16_1
  doi: 10.1016/S0257-8972(02)00593-5
– ident: e_1_2_5_25_1
  doi: 10.1016/j.scriptamat.2004.05.007
– ident: e_1_2_5_3_1
  doi: 10.1039/c0ee00456a
– ident: e_1_2_5_23_1
  doi: 10.1103/PhysRev.137.A1826
– ident: e_1_2_5_20_1
  doi: 10.1021/acs.chemmater.6b04179
– volume: 94
  start-page: 2007
  year: 2009
  ident: e_1_2_5_10_1
  publication-title: Appl. Phys. Lett.
– ident: e_1_2_5_37_1
  doi: 10.1103/PhysRev.134.A1058
– ident: e_1_2_5_2_1
  doi: 10.1002/adma.201606768
– ident: e_1_2_5_7_1
  doi: 10.1103/PhysRev.133.A253
– ident: e_1_2_5_34_1
  doi: 10.1016/S0081-1947(08)60551-2
– ident: e_1_2_5_40_1
  doi: 10.1039/C7EE03256K
– ident: e_1_2_5_22_1
  doi: 10.1016/j.cpc.2016.06.014
– ident: e_1_2_5_54_1
  doi: 10.1039/C6CP01730D
– ident: e_1_2_5_33_1
  doi: 10.1103/PhysRevB.72.174110
– ident: e_1_2_5_46_1
  doi: 10.1016/j.actamat.2012.05.008
– ident: e_1_2_5_49_1
  doi: 10.1002/pssr.201409479
– ident: e_1_2_5_19_1
  doi: 10.1103/PhysRevB.90.174107
SSID ssj0009606
Score 2.6476727
Snippet The influence of micro/nanostructure on thermal conductivity is a topic of great scientific interest, particularly to thermoelectrics. The current...
SourceID osti
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e1900108
SubjectTerms Figure of merit
Heat conductivity
Heat transfer
Intermetallic compounds
lattice dynamics
Materials science
Phonons
Scattering
Softening
Sound
Thermal conductivity
Thermoelectricity
thermoelectrics
Title Lattice Softening Significantly Reduces Thermal Conductivity and Leads to High Thermoelectric Efficiency
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201900108
https://www.ncbi.nlm.nih.gov/pubmed/30968467
https://www.proquest.com/docview/2227707792
https://www.proquest.com/docview/2207162099
https://www.osti.gov/biblio/1506139
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LS8QwEMcH2ZMefD_qqkQQPFVj3z0uPhBRDz7AW0jSVMWlFbd70E_vTLJbXVEEve2y6ZI2M5l_25nfAOxok0WFTaswZepjhJK-5Ir7Mo94aaJMqZAKhS8uk9Pb6OwuvvtUxe_4EO0DN_IMu1-Tg0s12P-AhsrCcoMwoOEtBVX7UsIWqaKrD34UyXML2wtjP0-ibExt5MH-5OETUalTo3d9pzgnBayNQCdzIMdzd4knT3vDRu3pty9Yx_-c3DzMjuQp6zl7WoApUy3CzCdo4RI8nMuGMubYNe7ghh6rsOvH-4pSjnCV-q_simiwZsDQAnHX77PDuiKorO1SwWRVMGrrOWBNzSjJxA2rXTueR82OLdOCCkKX4fbk-Obw1B_1a_B1zBO8GdVFiuqGIHGqTAM0D0WomEjrLNHk68rwEBWJ5kVYUi6OVsVBWBQJ6ggZ4k6wAp2qrswasJibHP_TxFlmotCUSicqLnOdZVKVGHY98MfrJfQIZk49NfrCYZgDQVdQtFfQg912_LPDePw4skvLL1CAEEVXU7qRbgSBGFEse7AxtgoxcvaBoHLilKdpHniw3f6MbkrvXmRl6iGN4cTqQj3uwaqzpnYiIdopyUAPAmsTv8xQ9I4ueu239b8c1IVp-uwSNzeg07wMzSaKq0ZtWQd6ByfeGg0
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3Lb9QwEIdHsByAQ3m1EFqKkZA4pTV5OsdVH1rKbg99SL1ZtuOUilWC2Oyh_es7Y2_SLmpVqRw360TeeMbzs3f8DcBXY0VSurQKW-UhRigVKq55qIqEVzYRWsd0UHhymI1Ok4OztMsmpLMwng_Rb7iRZ7j5mhycNqS3b6ihqnTgIIxouKYQT-EZlfV2q6qjG4IUCXSH24vTsMgS0XEbebS9fP9SXBo06F93ac5lCeti0P4r0F3vferJ7615q7fM1T9gx__6ea9hZaFQ2dCb1Bt4Yuu38PIWt_Ad_BqrlpLm2DFO4pZ2VtjxxXlNWUc4UNNLdkRAWDtjaIQ48U_ZTlMTV9YVqmCqLhlV9pyxtmGUZ-KbNb4iz4Vhew5rQWdCV-F0f-9kZxQuSjaEJuUZrkdNmaPAIU6crvIILUQTLSYxRmSG3F1bHqMoMbyMK0rHMbr8HpdlhlJCxTgZrMGgbmr7AVjKbYHPtKkQNoltpU2m06owQihdYeQNIOwGTJoFz5zKakylJzFHkt6g7N9gAN_69n88yePelus0_hI1CIF0DWUcmVYSixH1cgAbnVnIhb_PJJ0oznmeF1EAX_qv0VPp7xdV22ZObTjhulCSB_Dem1PfkRgNlZRgAJEzigd6KIe7k2H_6eNjbvoMz0cnk7Ec_zj8uQ4v6LrP49yAQft3bj-h1mr1pvOma8OjHig
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3fT9RAEMcneCRGHxT8gQWUNTHxqbD25_bxwnFBBWJAEt42-6tKuLTE6z3oX8_M7l3hjMYEH9tum213ZufbdvYzAO-ME5n1aRWuLmOMUCpWXPNYVRmvXSa0Tmmh8PFJcXiefbrIL-6s4g98iP6DG3mGn6_Jwa9tvXcLDVXWc4MwoOErhXgAq1nBBdn16PQWIEX63NP20jyuikwssI082Vs-fyksDVp0rz9JzmUF60PQ-CmoRedD5snV7qzTu-bXb1zH_7m7NXgy16dsGAxqHVZc8wwe36EWPofvR6qjlDl2hlO4o-8q7OzyW0M5RzhMk5_slHCwbsrQBHHan7D9tiGqrC9TwVRjGdX1nLKuZZRlEpq1oR7PpWEHHmpBK0JfwPn44Ov-YTwv2BCbnBf4NmpsifKGKHG6LhO0D02smMwYURhydu14ipLEcJvWlIxjtP2QWlugkFApTgUvYdC0jXsFLOeuwmu6XAiXpa7WptB5XRkhlK4x7kYQL8ZLmjnNnIpqTGTgMCeSnqDsn2AE7_v214Hj8deWWzT8EhUIYXQN5RuZThKJEdVyBNsLq5Bzb59KWk9c8rKskgje9ofRT-nni2pcO6M2nGBdKMgj2AjW1HckRTslHRhB4m3iHz2Uw9HxsN_avM9JO_Dwy2gsjz6efN6CR7Q7JHFuw6D7MXOvUWh1-o33pRtlYRzg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lattice+Softening+Significantly+Reduces+Thermal+Conductivity+and+Leads+to+High+Thermoelectric+Efficiency&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Hanus%2C+Riley&rft.au=Agne%2C+Matthias+T.&rft.au=Rettie%2C+Alexander+J.+E.&rft.au=Chen%2C+Zhiwei&rft.date=2019-05-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=31&rft.issue=21&rft_id=info:doi/10.1002%2Fadma.201900108&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adma_201900108
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon