SIRT1 regulates macrophage self‐renewal

Mature differentiated macrophages can self‐maintain by local proliferation in tissues and can be extensively expanded in culture under specific conditions, but the mechanisms of this phenomenon remain only partially defined. Here, we show that SIRT1, an evolutionary conserved regulator of life span,...

Full description

Saved in:
Bibliographic Details
Published inThe EMBO journal Vol. 36; no. 16; pp. 2353 - 2372
Main Authors Imperatore, Francesco, Maurizio, Julien, Vargas Aguilar, Stephanie, Busch, Clara J, Favret, Jérémy, Kowenz‐Leutz, Elisabeth, Cathou, Wilfried, Gentek, Rebecca, Perrin, Pierre, Leutz, Achim, Berruyer, Carole, Sieweke, Michael H
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 15.08.2017
EMBO Press
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Mature differentiated macrophages can self‐maintain by local proliferation in tissues and can be extensively expanded in culture under specific conditions, but the mechanisms of this phenomenon remain only partially defined. Here, we show that SIRT1, an evolutionary conserved regulator of life span, positively affects macrophage self‐renewal ability in vitro and in vivo. Overexpression of SIRT1 during bone marrow‐derived macrophage differentiation increased their proliferative capacity. Conversely, decrease of SIRT1 expression by shRNA inactivation, CRISPR/Cas9 mediated deletion and pharmacological inhibition restricted macrophage self‐renewal in culture. Furthermore, pharmacological SIRT1 inhibition in vivo reduced steady state and cytokine‐induced proliferation of alveolar and peritoneal macrophages. Mechanistically, SIRT1 inhibition negatively regulated G1/S transition, cell cycle progression and a network of self‐renewal genes. This included inhibition of E2F1 and Myc and concomitant activation of FoxO1, SIRT1 targets mediating cell cycle progression and stress response, respectively. Our findings indicate that SIRT1 is a key regulator of macrophage self‐renewal that integrates cell cycle and longevity pathways. This suggests that macrophage self‐renewal might be a relevant parameter of ageing. Synopsis Sirtuin1 (SIRT1), a mammalian homolog of yeast Silent Information Regulator 2 (Sir2) and evolutionary conserved regulator of life span, positively affects self‐renewal ability of macrophages in vitro and in vivo. SIRT1 is a key regulator of macrophage self‐renewal that integrates cell cycle and longevity pathways. Overexpression of SIRT1 in bone‐marrow derived macrophages increases their proliferative capacity. Decrease of SIRT1 expression by shRNA inactivation, CRISPR/Cas9 mediated deletion and pharmacological inhibition by nicotinamide or inauhzin, restricts macrophage self‐renewal. SIRT1 inhibition limits alveolar and peritoneal macrophages proliferation in vivo. In macrophages, SIRT1 is required for cell cycle progression and self renewal gene activity, like E2F1 and Myc, but inhibits stress response genes like FOXO1. The life span regulator SIRT1 controls a transcriptional network for macrophage cell cycle progression and stress responses, implying macrophage self‐renewal as a potential parameter of aging.
AbstractList Mature differentiated macrophages can self-maintain by local proliferation in tissues and can be extensively expanded in culture under specific conditions, but the mechanisms of this phenomenon remain only partially defined. Here, we show that SIRT1, an evolutionary conserved regulator of life span, positively affects macrophage self-renewal ability in vitro and in vivo. Overexpression of SIRT1 during bone marrow-derived macrophage differentiation increased their proliferative capacity. Conversely, decrease of SIRT1 expression by shRNA inactivation, CRISPR/Cas9 mediated deletion and pharmacological inhibition restricted macrophage self-renewal in culture. Furthermore, pharmacological SIRT1 inhibition in vivo reduced steady state and cytokine-induced proliferation of alveolar and peritoneal macrophages. Mechanistically, SIRT1 inhibition negatively regulated G1/S transition, cell cycle progression and a network of self-renewal genes. This included inhibition of E2F1 and Myc and concomitant activation of FoxO1, SIRT1 targets mediating cell cycle progression and stress response, respectively. Our findings indicate that SIRT1 is a key regulator of macrophage self-renewal that integrates cell cycle and longevity pathways. This suggests that macrophage self-renewal might be a relevant parameter of ageing. Synopsis Sirtuin1 (SIRT1), a mammalian homolog of yeast Silent Information Regulator 2 (Sir2) and evolutionary conserved regulator of life span, positively affects self-renewal ability of macrophages in vitro and in vivo. SIRT1 is a key regulator of macrophage self-renewal that integrates cell cycle and longevity pathways. Overexpression of SIRT1 in bone-marrow derived macrophages increases their proliferative capacity. Decrease of SIRT1 expression by shRNA inactivation, CRISPR/Cas9 mediated deletion and pharmacological inhibition by nicotinamide or inauhzin, restricts macrophage self-renewal. SIRT1 inhibition limits alveolar and peritoneal macrophages proliferation in vivo. In macrophages, SIRT1 is required for cell cycle progression and self renewal gene activity, like E2F1 and Myc, but inhibits stress response genes like FOXO1.
Mature differentiated macrophages can self-maintain by local proliferation in tissues and can be extensively expanded in culture under specific conditions, but the mechanisms of this phenomenon remain only partially defined. Here, we show that SIRT1, an evolutionary conserved regulator of life span, positively affects macrophage self-renewal ability and Overexpression of SIRT1 during bone marrow-derived macrophage differentiation increased their proliferative capacity. Conversely, decrease of SIRT1 expression by shRNA inactivation, CRISPR/Cas9 mediated deletion and pharmacological inhibition restricted macrophage self-renewal in culture. Furthermore, pharmacological SIRT1 inhibition reduced steady state and cytokine-induced proliferation of alveolar and peritoneal macrophages. Mechanistically, SIRT1 inhibition negatively regulated G1/S transition, cell cycle progression and a network of self-renewal genes. This included inhibition of E2F1 and Myc and concomitant activation of FoxO1, SIRT1 targets mediating cell cycle progression and stress response, respectively. Our findings indicate that SIRT1 is a key regulator of macrophage self-renewal that integrates cell cycle and longevity pathways. This suggests that macrophage self-renewal might be a relevant parameter of ageing.
Mature differentiated macrophages can self-maintain by local proliferation in tissues and can be extensively expanded in culture under specific conditions, but the mechanisms of this phenomenon remain only partially defined. Here, we show that SIRT1, an evolutionary conserved regulator of life span, positively affects macrophage self-renewal ability in vitro and in vivo. Overexpression of SIRT1 during bone marrow-derived macrophage differentiation increased their proliferative capacity. Conversely, decrease of SIRT1 expression by shRNA inactivation, CRISPR/Cas9 mediated deletion and pharmacological inhibition restricted macrophage self-renewal in culture. Furthermore, pharmacological SIRT1 inhibition in vivo reduced steady state and cytokine-induced proliferation of alveolar and peritoneal macrophages. Mechanistically, SIRT1 inhibition negatively regulated G1/S transition, cell cycle progression and a network of self-renewal genes. This included inhibition of E2F1 and Myc and concomitant activation of FoxO1, SIRT1 targets mediating cell cycle progression and stress response, respectively. Our findings indicate that SIRT1 is a key regulator of macrophage self-renewal that integrates cell cycle and longevity pathways. This suggests that macrophage self-renewal might be a relevant parameter of ageing.
Mature differentiated macrophages can self‐maintain by local proliferation in tissues and can be extensively expanded in culture under specific conditions, but the mechanisms of this phenomenon remain only partially defined. Here, we show that SIRT1, an evolutionary conserved regulator of life span, positively affects macrophage self‐renewal ability in vitro and in vivo . Overexpression of SIRT1 during bone marrow‐derived macrophage differentiation increased their proliferative capacity. Conversely, decrease of SIRT1 expression by shRNA inactivation, CRISPR/Cas9 mediated deletion and pharmacological inhibition restricted macrophage self‐renewal in culture. Furthermore, pharmacological SIRT1 inhibition in vivo reduced steady state and cytokine‐induced proliferation of alveolar and peritoneal macrophages. Mechanistically, SIRT1 inhibition negatively regulated G1/S transition, cell cycle progression and a network of self‐renewal genes. This included inhibition of E2F1 and Myc and concomitant activation of FoxO1, SIRT1 targets mediating cell cycle progression and stress response, respectively. Our findings indicate that SIRT1 is a key regulator of macrophage self‐renewal that integrates cell cycle and longevity pathways. This suggests that macrophage self‐renewal might be a relevant parameter of ageing.
Mature differentiated macrophages can self‐maintain by local proliferation in tissues and can be extensively expanded in culture under specific conditions, but the mechanisms of this phenomenon remain only partially defined. Here, we show that SIRT1, an evolutionary conserved regulator of life span, positively affects macrophage self‐renewal ability in vitro and in vivo. Overexpression of SIRT1 during bone marrow‐derived macrophage differentiation increased their proliferative capacity. Conversely, decrease of SIRT1 expression by shRNA inactivation, CRISPR/Cas9 mediated deletion and pharmacological inhibition restricted macrophage self‐renewal in culture. Furthermore, pharmacological SIRT1 inhibition in vivo reduced steady state and cytokine‐induced proliferation of alveolar and peritoneal macrophages. Mechanistically, SIRT1 inhibition negatively regulated G1/S transition, cell cycle progression and a network of self‐renewal genes. This included inhibition of E2F1 and Myc and concomitant activation of FoxO1, SIRT1 targets mediating cell cycle progression and stress response, respectively. Our findings indicate that SIRT1 is a key regulator of macrophage self‐renewal that integrates cell cycle and longevity pathways. This suggests that macrophage self‐renewal might be a relevant parameter of ageing. Synopsis Sirtuin1 (SIRT1), a mammalian homolog of yeast Silent Information Regulator 2 (Sir2) and evolutionary conserved regulator of life span, positively affects self‐renewal ability of macrophages in vitro and in vivo. SIRT1 is a key regulator of macrophage self‐renewal that integrates cell cycle and longevity pathways. Overexpression of SIRT1 in bone‐marrow derived macrophages increases their proliferative capacity. Decrease of SIRT1 expression by shRNA inactivation, CRISPR/Cas9 mediated deletion and pharmacological inhibition by nicotinamide or inauhzin, restricts macrophage self‐renewal. SIRT1 inhibition limits alveolar and peritoneal macrophages proliferation in vivo. In macrophages, SIRT1 is required for cell cycle progression and self renewal gene activity, like E2F1 and Myc, but inhibits stress response genes like FOXO1. The life span regulator SIRT1 controls a transcriptional network for macrophage cell cycle progression and stress responses, implying macrophage self‐renewal as a potential parameter of aging.
Author Favret, Jérémy
Kowenz‐Leutz, Elisabeth
Vargas Aguilar, Stephanie
Gentek, Rebecca
Imperatore, Francesco
Perrin, Pierre
Sieweke, Michael H
Cathou, Wilfried
Leutz, Achim
Berruyer, Carole
Maurizio, Julien
Busch, Clara J
AuthorAffiliation 1 Aix Marseille Université CNRS, INSERM, CIML Marseille France
2 Max‐Delbrück‐Centrum für Molekulare Medizin in der Helmholtzgemeinschaft (MDC) Berlin Germany
AuthorAffiliation_xml – name: 1 Aix Marseille Université CNRS, INSERM, CIML Marseille France
– name: 2 Max‐Delbrück‐Centrum für Molekulare Medizin in der Helmholtzgemeinschaft (MDC) Berlin Germany
Author_xml – sequence: 1
  givenname: Francesco
  surname: Imperatore
  fullname: Imperatore, Francesco
  organization: CNRS, INSERM, CIML
– sequence: 2
  givenname: Julien
  surname: Maurizio
  fullname: Maurizio, Julien
  organization: CNRS, INSERM, CIML
– sequence: 3
  givenname: Stephanie
  surname: Vargas Aguilar
  fullname: Vargas Aguilar, Stephanie
  organization: Max‐Delbrück‐Centrum für Molekulare Medizin in der Helmholtzgemeinschaft (MDC)
– sequence: 4
  givenname: Clara J
  surname: Busch
  fullname: Busch, Clara J
  organization: Max‐Delbrück‐Centrum für Molekulare Medizin in der Helmholtzgemeinschaft (MDC)
– sequence: 5
  givenname: Jérémy
  surname: Favret
  fullname: Favret, Jérémy
  organization: Max‐Delbrück‐Centrum für Molekulare Medizin in der Helmholtzgemeinschaft (MDC)
– sequence: 6
  givenname: Elisabeth
  surname: Kowenz‐Leutz
  fullname: Kowenz‐Leutz, Elisabeth
  organization: Max‐Delbrück‐Centrum für Molekulare Medizin in der Helmholtzgemeinschaft (MDC)
– sequence: 7
  givenname: Wilfried
  surname: Cathou
  fullname: Cathou, Wilfried
  organization: CNRS, INSERM, CIML
– sequence: 8
  givenname: Rebecca
  surname: Gentek
  fullname: Gentek, Rebecca
  organization: CNRS, INSERM, CIML
– sequence: 9
  givenname: Pierre
  surname: Perrin
  fullname: Perrin, Pierre
  organization: CNRS, INSERM, CIML
– sequence: 10
  givenname: Achim
  surname: Leutz
  fullname: Leutz, Achim
  organization: Max‐Delbrück‐Centrum für Molekulare Medizin in der Helmholtzgemeinschaft (MDC)
– sequence: 11
  givenname: Carole
  surname: Berruyer
  fullname: Berruyer, Carole
  organization: CNRS, INSERM, CIML
– sequence: 12
  givenname: Michael H
  orcidid: 0000-0002-3228-9537
  surname: Sieweke
  fullname: Sieweke, Michael H
  email: sieweke@ciml.univ-mrs.fr
  organization: Max‐Delbrück‐Centrum für Molekulare Medizin in der Helmholtzgemeinschaft (MDC)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28701484$$D View this record in MEDLINE/PubMed
https://amu.hal.science/hal-01765090$$DView record in HAL
BookMark eNqFkctOGzEUhi0EIuGyZldF6oYsBo7t8SVdIAGCQpUKqYW15XHOJBPNJdgZInY8Qp-xT4LTQGiz6cqS_Z3vHJ9_j2zXTY2EHFE4oYIJdopVNj1hQOVAKK62SJemEhIGSmyTLjBJk5TqQYfshTAFAKEV3SUdphXQVKdd0v95--Oe9jyO29LOMfQq63wzm9gx9gKW-e-XXx5rXNjygOzktgx4-Hbuk4frq_vLm2R49_X28nyYOAFSJTmyVKVcSwdc6lGep8CzjMeOqDKJjmbgQMuR49KlDDOugHPmRkqD5C5W7pOzlXfWZhWOHNZzb0sz80Vl_bNpbGH-famLiRk3T0YIIZlUUdBfCSYbZTfnQ7O8A6qkgAE80cgevzXzzWOLYW6qIjgsS1tj0wZDB1RrwRRbaj9voNOm9XVcRaSYlpQzBpE6XVFxiyF4zNcTUDB_IjPLyMw6sljx6e__rvn3jCLwZQUsihKf_-czV98vvn3YXwENKqNo
CitedBy_id crossref_primary_10_1111_cpr_12854
crossref_primary_10_3389_fncel_2021_774305
crossref_primary_10_1093_nar_gkz1127
crossref_primary_10_1186_s13020_024_00886_1
crossref_primary_10_1016_j_bbadis_2024_167053
crossref_primary_10_1016_j_imbio_2022_152300
crossref_primary_10_1016_j_intimp_2023_110942
crossref_primary_10_1080_1547691X_2021_1979699
crossref_primary_10_1155_2022_1068962
crossref_primary_10_3390_ijms24021532
crossref_primary_10_3892_etm_2021_10312
crossref_primary_10_3389_fmolb_2021_697359
crossref_primary_10_3390_genes12111698
crossref_primary_10_3389_fimmu_2019_01720
crossref_primary_10_3389_fimmu_2021_632383
crossref_primary_10_3389_fimmu_2021_790122
crossref_primary_10_3389_fendo_2022_888611
crossref_primary_10_1007_s00011_024_01883_8
crossref_primary_10_1016_j_lfs_2020_118895
crossref_primary_10_1016_j_ijbiomac_2023_128270
crossref_primary_10_1016_j_tice_2024_102400
crossref_primary_10_1038_s42003_021_02084_3
crossref_primary_10_18632_aging_202191
crossref_primary_10_1016_j_cellsig_2022_110398
crossref_primary_10_1186_s12864_024_10294_2
crossref_primary_10_3390_ijms241411281
crossref_primary_10_4049_jimmunol_2100230
crossref_primary_10_1007_s10522_021_09936_9
crossref_primary_10_1038_s41392_022_01257_8
crossref_primary_10_3390_ijms241612732
crossref_primary_10_1016_j_jare_2023_06_008
crossref_primary_10_1007_s12640_022_00624_1
crossref_primary_10_1182_blood_2017_10_812859
crossref_primary_10_1016_j_ejphar_2021_174610
crossref_primary_10_1016_j_biopha_2022_113620
crossref_primary_10_3389_fimmu_2021_779177
crossref_primary_10_1038_s41467_021_22923_5
crossref_primary_10_3389_fcell_2020_589016
crossref_primary_10_18632_aging_205236
crossref_primary_10_3389_fncel_2023_1140916
crossref_primary_10_1111_febs_15436
crossref_primary_10_1016_j_bbrc_2023_09_075
crossref_primary_10_1016_j_exger_2023_112248
crossref_primary_10_1038_s44319_024_00152_3
crossref_primary_10_1016_j_gene_2021_145752
crossref_primary_10_1155_2022_3086010
crossref_primary_10_1016_j_cellimm_2021_104458
crossref_primary_10_21769_BioProtoc_3302
crossref_primary_10_1161_CIRCRESAHA_119_316428
crossref_primary_10_1074_mcp_RA118_000929
crossref_primary_10_3390_biomedicines10112709
crossref_primary_10_1016_j_ijbiomac_2024_130761
crossref_primary_10_1080_0886022X_2021_1942915
crossref_primary_10_1007_s11357_023_00863_w
crossref_primary_10_3390_cancers14051213
crossref_primary_10_1111_acel_13856
crossref_primary_10_1007_s00018_018_2879_8
crossref_primary_10_1016_j_phrs_2021_105923
crossref_primary_10_1002_hep_32738
crossref_primary_10_1186_s12967_023_03889_y
crossref_primary_10_1007_s12015_022_10425_w
crossref_primary_10_1016_j_fct_2022_113556
crossref_primary_10_2334_josnusd_17_0412
crossref_primary_10_1002_JLB_3HI0721_368R
crossref_primary_10_1038_s41467_020_19664_2
crossref_primary_10_1126_sciadv_aay2793
crossref_primary_10_1111_imm_13154
crossref_primary_10_3389_fnut_2021_791861
crossref_primary_10_3390_cells7080103
crossref_primary_10_1038_s41590_022_01146_w
crossref_primary_10_3748_wjg_v28_i17_1798
crossref_primary_10_1016_j_biopha_2022_113162
crossref_primary_10_3389_fimmu_2022_831168
crossref_primary_10_1016_j_biopha_2023_114474
crossref_primary_10_1038_s41590_019_0382_5
crossref_primary_10_3390_cells12242824
crossref_primary_10_1007_s00109_023_02364_x
crossref_primary_10_1038_s41420_020_00300_3
crossref_primary_10_1093_jleuko_qiad093
crossref_primary_10_7759_cureus_40463
crossref_primary_10_1038_s41423_021_00731_7
crossref_primary_10_1172_JCI158419
crossref_primary_10_1007_s11010_018_3324_x
crossref_primary_10_1038_s41385_021_00480_w
crossref_primary_10_3390_genes12121856
crossref_primary_10_18632_aging_205651
Cites_doi 10.1073/pnas.1001399107
10.1016/j.it.2015.08.005
10.1016/j.stemcr.2014.04.015
10.1016/S0076-6879(85)16044-1
10.1128/MCB.22.22.7842-7852.2002
10.1101/gad.13.19.2570
10.1016/j.molmet.2013.10.006
10.1371/journal.pone.0013984
10.1073/pnas.1105304109
10.1186/s12864-015-2012-4
10.1016/j.redox.2015.06.019
10.1172/JCI72181
10.1038/nri3671
10.1016/S0092-8674(94)90522-3
10.1111/acel.12427
10.1038/nm.3258
10.1089/ars.2012.4921
10.1016/j.immuni.2016.02.024
10.1007/s00109-011-0825-4
10.1074/jbc.M412357200
10.1016/j.biocel.2011.07.006
10.1038/ni.3703
10.1084/jem.20131199
10.1186/gb-2004-5-5-224
10.1042/BJ20070151
10.1016/j.cell.2006.04.036
10.1002/eji.201141817
10.1016/S0092-8674(04)00126-6
10.1371/journal.pone.0097378
10.1016/B978-0-12-417028-5.00003-X
10.1038/nrn3722
10.1126/science.1176056
10.1038/ni.3341
10.1093/biostatistics/4.2.249
10.1016/j.tem.2013.12.001
10.1126/science.274.5293.1672
10.1016/S0092-8674(00)80493-6
10.1002/pmic.201100066
10.1146/annurev.pathol.4.110807.092250
10.1101/gad.813200
10.1074/jbc.M205670200
10.1126/science.1179050
10.1161/CIRCRESAHA.113.301159
10.3389/fphar.2012.00040
10.1083/jcb.200809167
10.1038/nature11228
10.1016/j.molcel.2005.02.022
10.1038/nrneurol.2010.17
10.1016/j.tem.2005.03.010
10.1038/nn.2923
10.1084/jem.20121608
10.1016/j.semcancer.2013.05.008
10.1038/35001622
10.1016/S0003-9861(03)00054-7
10.1038/ncomms2877
10.1038/mt.2014.112
10.1016/j.cmet.2013.07.013
10.2202/1544-6115.1027
10.1126/science.1242974
10.1084/jem.20121999
10.1038/35065638
10.1186/s13058-014-0482-y
10.1016/j.celrep.2013.01.005
10.1006/bbrc.2000.3000
10.1093/nar/17.15.6419
10.1007/BF00971360
10.1161/CIRCRESAHA.112.300749
10.1172/JCI111487
10.1089/rej.2015.1719
10.1073/pnas.0506580102
10.1016/j.bbamcr.2011.03.010
10.1371/journal.pgen.1002135
10.1007/978-1-4939-2627-5_10
10.1111/imr.12224
10.1083/jcb.201010131
10.1073/pnas.1934713100
10.1073/pnas.1300290110
10.1038/nrm3293
10.1126/science.1178331
10.1038/35008115
10.1016/j.cmet.2005.08.004
10.1038/onc.2008.21
10.1074/jbc.M306552200
10.1038/nri3920
10.1126/science.aaf2693
10.4161/cc.4.7.1796
10.18632/aging.100176
10.1073/pnas.96.13.7421
10.1016/j.immuni.2013.04.004
10.1111/cbdd.12680
10.1016/j.cell.2008.07.002
10.1016/j.modgep.2005.07.003
10.1016/j.cell.2007.01.003
10.1182/blood-2003-09-3314
10.1023/A:1021651811345
10.1101/gad.227439.113
10.1016/j.tibs.2014.02.003
10.1002/emmm.201100211
10.1038/onc.2008.312
10.1016/j.abb.2010.05.003
10.1038/nn2014
10.1016/S0092-8674(04)00298-3
10.1038/nri3070
10.1016/S0092-8674(04)00452-0
10.1016/j.ejcb.2008.08.003
10.1242/dev.098459
10.1182/blood-2012-02-408252
10.1016/j.cell.2006.01.040
10.1016/j.stem.2008.02.009
10.1038/nm.3651
10.1038/nature12034
10.1021/bi034959l
10.1073/pnas.1613884113
10.1016/j.bbadis.2015.08.017
10.1038/ncomms11852
10.1016/j.bbaexp.2007.04.001
10.1016/j.stem.2008.01.002
10.1016/j.cell.2005.02.002
10.1101/gad.13.12.1501
10.1126/science.aad5510
ContentType Journal Article
Copyright 2017 The Authors
2017 The Authors.
2017 EMBO
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2017 The Authors
– notice: 2017 The Authors.
– notice: 2017 EMBO
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QG
7QL
7QP
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
7X8
1XC
5PM
DOI 10.15252/embj.201695737
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList Virology and AIDS Abstracts
MEDLINE



Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
DocumentTitleAlternate Francesco Imperatore et al
EISSN 1460-2075
EndPage 2372
ExternalDocumentID oai_HAL_hal_01765090v1
10_15252_embj_201695737
28701484
EMBJ201695737
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: France Bio Imaging
  funderid: ANR‐10‐INBS‐04
– fundername: Fondation pour la Recherche Médicale (FRM)
  funderid: DEQ.20071210559; DEQ.20110421320; FDT20111223609
– fundername: Aix‐Marseille University
– fundername: INSERM
– fundername: Agence Nationale de la Recherche (ANR)
  funderid: ANR‐11‐BSV3‐0026
– fundername: Volkswagen Foundation
  funderid: I/79 994‐996
– fundername: CNRS
– fundername: European Research Council (ERC)
  funderid: 695093 MacAge
– fundername: Volkswagen Foundation
  grantid: I/79 994‐996
– fundername: France Bio Imaging
  grantid: ANR‐10‐INBS‐04
– fundername: European Research Council (ERC)
  grantid: 695093 MacAge
– fundername: Agence Nationale de la Recherche (ANR)
  grantid: ANR‐11‐BSV3‐0026
– fundername: Fondation pour la Recherche Médicale (FRM)
  grantid: DEQ.20071210559; DEQ.20110421320; FDT20111223609
GroupedDBID ---
-DZ
-Q-
-~X
0R~
123
1OC
24P
29G
2WC
33P
36B
39C
53G
5VS
70F
8R4
8R5
A8Z
AAESR
AAEVG
AAHBH
AAHHS
AAIHA
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCUV
ABJNI
ABLJU
ACAHQ
ACCFJ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACSMW
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFNX
AFGKR
AFPWT
AFRAH
AFZJQ
AHMBA
AIAGR
AIURR
AIWBW
AJBDE
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
AOIJS
AUFTA
AZBYB
AZFZN
AZVAB
BAWUL
BDRZF
BENPR
BFHJK
BMNLL
BMXJE
BRXPI
BTFSW
C6C
CS3
DCZOG
DIK
DPXWK
DRFUL
DRSTM
DU5
E3Z
EBD
EBLON
EBS
EJD
EMB
EMOBN
ESTFP
F5P
G-S
GROUPED_DOAJ
GX1
HH5
HK~
HYE
KQ8
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
MY~
O9-
OK1
P2P
P2W
Q2X
R.K
RHF
RHI
RNS
ROL
RPM
SV3
TN5
TR2
WBKPD
WH7
WIH
WIK
WIN
WOHZO
WXSBR
WYJ
YSK
ZCA
ZZTAW
~KM
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QG
7QL
7QP
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
7X8
.55
1XC
3O-
3V.
4.4
7X7
88A
88E
8AO
8C1
8CJ
8FE
8FH
8FI
8FJ
8G5
ABUWG
ABZEH
ACBWZ
ACKIV
AFKRA
AI.
ASPBG
AVWKF
AZQEC
BBNVY
BHPHI
BKSAR
BPHCQ
BVXVI
C1A
CAG
CCPQU
COF
D1J
DWQXO
FA8
FEDTE
FYUFA
GNUQQ
GODZA
GUQSH
H13
HCIFZ
HMCUK
HVGLF
H~9
LH4
LK8
LW6
M0L
M1P
M2O
M7P
PCBAR
PQQKQ
PROAC
PSQYO
RIG
RNI
RZO
UKHRP
VH1
WOQ
X7M
XSW
Y6R
YYP
ZGI
ZXP
5PM
ID FETCH-LOGICAL-c5067-fe2474386c0368dff403bb3287e7b6ec1b0c086dc36c42eb370332cd78063c743
IEDL.DBID RPM
ISSN 0261-4189
IngestDate Tue Sep 17 21:14:52 EDT 2024
Fri Sep 06 12:36:35 EDT 2024
Fri Aug 16 05:13:47 EDT 2024
Sun Oct 06 07:30:39 EDT 2024
Fri Aug 23 03:16:23 EDT 2024
Sat Sep 28 08:27:06 EDT 2024
Sat Aug 24 00:47:02 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Keywords self‐renewal
macrophage
cell cycle regulation
sirtuins
replicative life span
Language English
License 2017 The Authors.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5067-fe2474386c0368dff403bb3287e7b6ec1b0c086dc36c42eb370332cd78063c743
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMCID: PMC5556267
These authors contributed equally to this work
ORCID 0000-0002-3228-9537
0000-0002-6387-5125
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.15252/embj.201695737
PMID 28701484
PQID 1928613220
PQPubID 35985
PageCount 20
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5556267
hal_primary_oai_HAL_hal_01765090v1
proquest_miscellaneous_1918852727
proquest_journals_1928613220
crossref_primary_10_15252_embj_201695737
pubmed_primary_28701484
wiley_primary_10_15252_embj_201695737_EMBJ201695737
PublicationCentury 2000
PublicationDate 15 August 2017
PublicationDateYYYYMMDD 2017-08-15
PublicationDate_xml – month: 08
  year: 2017
  text: 15 August 2017
  day: 15
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Heidelberg
– name: Hoboken
PublicationTitle The EMBO journal
PublicationTitleAlternate EMBO J
PublicationYear 2017
Publisher Blackwell Publishing Ltd
EMBO Press
John Wiley and Sons Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: EMBO Press
– name: John Wiley and Sons Inc
References 2009; 88
2012; 120
2013; 3
2013; 4
2012; 487
2010; 107
2010; 501
2002; 277
2004; 3
2014; 25
2004; 5
2013; 120
2012; 13
2003; 278
2011; 193
2014; 22
2014; 20
2001; 410
2016a; 352
2000; 14
2005; 102
2000; 403
2000; 404
2008; 27
1994; 78
2013; 112
2014; 16
2014; 15
2014; 14
2013; 110
2010; 2
2010; 5
2003; 42
2010; 6
2014; 124
2016; 44
2016; 19
2010; 327
2013; 342
2016; 1303
2015; 1852
2007; 1769
2007; 10
2016; 17
2016; 15
2011; 7
2012; 109
2016; 7
2005; 120
2013; 210
2005; 4
2011; 1813
2009; 185
2005; 2
2014; 39
2008; 134
2005; 16
2005; 17
2014; 262
2014; 141
2003; 100
2015; 36
2013; 27
2013; 23
2011; 11
2011; 14
2008; 2
2013; 19
1997; 91
2013; 18
2014; 3
2016; 113
2016; 87
1999; 13
2003; 4
1999; 96
2014; 9
2003; 243
2016; 351
2006; 125
2009; 326
2006; 124
2015; 15
1987; 12
2015; 6
2015; 16
2016b; 15
2004; 103
2007; 128
2000; 273
2006; 6
2003; 412
2007; 407
2005; 280
1984; 74
2004; 116
2012; 90
2012; 3
2013; 38
2002; 22
2011; 41
1995; 107
2013; 496
2011; 43
1985; 116
2017; 18
1996; 274
2012; 4
2004; 117
1989; 17
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_5_1
e_1_2_8_9_1
e_1_2_8_117_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_113_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_19_1
e_1_2_8_109_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_120_1
e_1_2_8_91_1
e_1_2_8_95_1
e_1_2_8_99_1
e_1_2_8_105_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_101_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_48_1
Sherr CJ (e_1_2_8_94_1) 1995; 107
e_1_2_8_2_1
e_1_2_8_110_1
e_1_2_8_6_1
e_1_2_8_21_1
e_1_2_8_67_1
e_1_2_8_44_1
e_1_2_8_86_1
e_1_2_8_118_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_82_1
e_1_2_8_114_1
e_1_2_8_18_1
e_1_2_8_14_1
e_1_2_8_37_1
e_1_2_8_79_1
e_1_2_8_90_1
e_1_2_8_121_1
e_1_2_8_98_1
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_106_1
e_1_2_8_33_1
e_1_2_8_75_1
e_1_2_8_52_1
e_1_2_8_102_1
e_1_2_8_71_1
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_3_1
e_1_2_8_81_1
e_1_2_8_111_1
e_1_2_8_7_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_119_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_115_1
e_1_2_8_17_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_70_1
e_1_2_8_122_1
e_1_2_8_97_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_107_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_103_1
e_1_2_8_93_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_69_1
e_1_2_8_80_1
e_1_2_8_4_1
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_88_1
e_1_2_8_116_1
e_1_2_8_23_1
e_1_2_8_65_1
e_1_2_8_84_1
e_1_2_8_112_1
e_1_2_8_61_1
e_1_2_8_39_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_58_1
Zhang QB (e_1_2_8_123_1) 2016; 15
e_1_2_8_92_1
e_1_2_8_96_1
e_1_2_8_100_1
e_1_2_8_31_1
e_1_2_8_77_1
e_1_2_8_12_1
e_1_2_8_54_1
e_1_2_8_108_1
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_104_1
References_xml – volume: 12
  start-page: 27
  year: 1987
  end-page: 31
  article-title: Niacinamide transport through the blood‐brain barrier
  publication-title: Neurochem Res
– volume: 87
  start-page: 478
  year: 2016
  end-page: 482
  article-title: Sirtuins are unaffected by PARP inhibitors containing planar nicotinamide bioisosteres
  publication-title: Chem Biol Drug Des
– volume: 124
  start-page: 1382
  year: 2014
  end-page: 1392
  article-title: Macrophages are required for neonatal heart regeneration
  publication-title: J Clin Invest
– volume: 14
  start-page: 392
  year: 2014
  end-page: 404
  article-title: Monocytes and macrophages: developmental pathways and tissue homeostasis
  publication-title: Nat Rev Immunol
– volume: 11
  start-page: 3598
  year: 2011
  end-page: 3613
  article-title: Reactome pathway analysis to enrich biological discovery in proteomics data sets
  publication-title: Proteomics
– volume: 117
  start-page: 421
  year: 2004
  end-page: 426
  article-title: FoxOs at the crossroads of cellular metabolism, differentiation, and transformation
  publication-title: Cell
– volume: 43
  start-page: 1573
  year: 2011
  end-page: 1581
  article-title: Sirt1 deacetylates c‐Myc and promotes c‐Myc/Max association
  publication-title: Int J Biochem Cell Biol
– volume: 2
  start-page: 241
  year: 2008
  end-page: 251
  article-title: SIRT1 regulates apoptosis and Nanog expression in mouse embryonic stem cells by controlling p53 subcellular localization
  publication-title: Cell Stem Cell
– volume: 22
  start-page: 7842
  year: 2002
  end-page: 7852
  article-title: Cell cycle inhibition by FoxO forkhead transcription factors involves downregulation of cyclin D
  publication-title: Mol Cell Biol
– volume: 19
  start-page: 120
  year: 2016
  end-page: 130
  article-title: miR‐204 regulates the proliferation of dairy goat spermatogonial stem cells via targeting to Sirt1
  publication-title: Rejuvenation Res
– volume: 5
  start-page: 253
  year: 2010
  end-page: 295
  article-title: Mammalian sirtuins: biological insights and disease relevance
  publication-title: Annu Rev Pathol
– volume: 342
  start-page: 1242974
  year: 2013
  article-title: Beyond stem cells: self‐renewal of differentiated macrophages
  publication-title: Science
– volume: 117
  start-page: 211
  year: 2004
  end-page: 223
  article-title: Integration of Smad and forkhead pathways in the control of neuroepithelial and glioblastoma cell proliferation
  publication-title: Cell
– volume: 19
  start-page: 1400
  year: 2013
  end-page: 1419
  article-title: Forkhead box(O) in control of reactive oxygen species and genomic stability to ensure healthy lifespan
  publication-title: Antioxid Redox Signal
– volume: 17
  start-page: 6419
  year: 1989
  article-title: Rapid detection of octamer binding proteins with ‘mini‐extracts’, prepared from a small number of cells
  publication-title: Nucleic Acids Res
– volume: 496
  start-page: 445
  year: 2013
  end-page: 455
  article-title: Macrophage biology in development, homeostasis and disease
  publication-title: Nature
– volume: 273
  start-page: 793
  year: 2000
  end-page: 798
  article-title: Phylogenetic classification of prokaryotic and eukaryotic Sir2‐like proteins
  publication-title: Biochem Biophys Res Commun
– volume: 403
  start-page: 795
  year: 2000
  end-page: 800
  article-title: Transcriptional silencing and longevity protein Sir2 is an NAD‐dependent histone deacetylase
  publication-title: Nature
– volume: 16
  start-page: 814
  year: 2015
  article-title: BubbleGUM: automatic extraction of phenotype molecular signatures and comprehensive visualization of multiple Gene Set Enrichment Analyses
  publication-title: BMC Genom
– volume: 3
  start-page: 319
  year: 2013
  end-page: 327
  article-title: SIRT3 reverses aging‐associated degeneration
  publication-title: Cell Rep
– volume: 6
  start-page: 134
  year: 2006
  end-page: 140
  article-title: Spatial and temporal expression of FoxO transcription factors in the developing and adult murine brain
  publication-title: Gene Expr Patterns
– volume: 243
  start-page: 113
  year: 2003
  end-page: 122
  article-title: Nicotinamide‐ and caspase‐mediated inhibition of poly(ADP‐ribose) polymerase are associated with p53‐independent cell cycle (G2) arrest and apoptosis
  publication-title: Mol Cell Biochem
– volume: 102
  start-page: 15545
  year: 2005
  end-page: 15550
  article-title: Gene set enrichment analysis: a knowledge‐based approach for interpreting genome‐wide expression profiles
  publication-title: Proc Natl Acad Sci USA
– volume: 110
  start-page: 9415
  year: 2013
  end-page: 9420
  article-title: Macrophages are required for adult salamander limb regeneration
  publication-title: Proc Natl Acad Sci USA
– volume: 210
  start-page: 1977
  year: 2013
  end-page: 1992
  article-title: Alveolar macrophages develop from fetal monocytes that differentiate into long‐lived cells in the first week of life via GM‐CSF
  publication-title: J Exp Med
– volume: 6
  start-page: 51
  year: 2015
  end-page: 72
  article-title: Redox regulation of FoxO transcription factors
  publication-title: Redox Biol
– volume: 103
  start-page: 2956
  year: 2004
  end-page: 2964
  article-title: Gene expression in human embryonic stem cell lines: unique molecular signature
  publication-title: Blood
– volume: 42
  start-page: 9249
  year: 2003
  end-page: 9256
  article-title: Sir2 regulation by nicotinamide results from switching between base exchange and deacetylation chemistry
  publication-title: Biochemistry
– volume: 124
  start-page: 1283
  year: 2006
  end-page: 1298
  article-title: A lentiviral RNAi library for human and mouse genes applied to an arrayed viral high‐content screen
  publication-title: Cell
– volume: 20
  start-page: 870
  year: 2014
  end-page: 880
  article-title: Stem cell aging: mechanisms, regulators and therapeutic opportunities
  publication-title: Nat Med
– volume: 193
  start-page: 257
  year: 2011
  end-page: 266
  article-title: Manifestations and mechanisms of stem cell aging
  publication-title: J Cell Biol
– volume: 10
  start-page: 1538
  year: 2007
  end-page: 1543
  article-title: Local self‐renewal can sustain CNS microglia maintenance and function throughout adult life
  publication-title: Nat Neurosci
– volume: 280
  start-page: 20589
  year: 2005
  end-page: 20595
  article-title: Nuclear trapping of the forkhead transcription factor FoxO1 via Sirt‐dependent deacetylation promotes expression of glucogenetic genes
  publication-title: J Biol Chem
– volume: 112
  start-page: 992
  year: 2013
  end-page: 1003
  article-title: Expanded granulocyte/monocyte compartment in myeloid‐specific triple FoxO knockout increases oxidative stress and accelerates atherosclerosis in mice
  publication-title: Circ Res
– volume: 13
  start-page: 1501
  year: 1999
  end-page: 1512
  article-title: CDK inhibitors: positive and negative regulators of G1‐phase progression
  publication-title: Genes Dev
– volume: 17
  start-page: 2
  year: 2016
  end-page: 8
  article-title: The development and maintenance of resident macrophages
  publication-title: Nat Immunol
– volume: 13
  start-page: 2570
  year: 1999
  end-page: 2580
  article-title: The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms
  publication-title: Genes Dev
– volume: 44
  start-page: 439
  year: 2016
  end-page: 449
  article-title: Tissue‐resident macrophage ontogeny and homeostasis
  publication-title: Immunity
– volume: 18
  start-page: 385
  year: 2017
  end-page: 392
  article-title: Ontogeny and homeostasis of CNS myeloid cells
  publication-title: Nat Immunol
– volume: 210
  start-page: 987
  year: 2013
  end-page: 1001
  article-title: Sirt1 ablation promotes stress‐induced loss of epigenetic and genomic hematopoietic stem and progenitor cell maintenance
  publication-title: J Exp Med
– volume: 2
  start-page: 415
  year: 2010
  end-page: 431
  article-title: miRNAs regulate SIRT1 expression during mouse embryonic stem cell differentiation and in adult mouse tissues
  publication-title: Aging (Albany NY)
– volume: 17
  start-page: 855
  year: 2005
  end-page: 868
  article-title: Mechanism of sirtuin inhibition by nicotinamide: altering the NAD(+) cosubstrate specificity of a Sir2 enzyme
  publication-title: Mol Cell
– volume: 7
  start-page: e1002135
  year: 2011
  article-title: SIRT1 promotes N‐Myc oncogenesis through a positive feedback loop involving the effects of MKP3 and ERK on N‐Myc protein stability
  publication-title: PLoS Genet
– volume: 19
  start-page: 1166
  year: 2013
  end-page: 1172
  article-title: Local proliferation dominates lesional macrophage accumulation in atherosclerosis
  publication-title: Nat Med
– volume: 185
  start-page: 203
  year: 2009
  end-page: 211
  article-title: A c‐Myc‐SIRT1 feedback loop regulates cell growth and transformation
  publication-title: J Cell Biol
– volume: 113
  start-page: 12514
  year: 2016
  end-page: 12519
  article-title: Efficient CRISPR‐mediated mutagenesis in primary immune cells using CrispRGold and a C57BL/6 Cas9 transgenic mouse line
  publication-title: Proc Natl Acad Sci USA
– volume: 4
  start-page: 298
  year: 2012
  end-page: 312
  article-title: A small molecule Inauhzin inhibits SIRT1 activity and suppresses tumour growth through activation of p53
  publication-title: EMBO Mol Med
– volume: 7
  start-page: ncomms11852
  year: 2016
  article-title: Long‐lived self‐renewing bone marrow‐derived macrophages displace embryo‐derived cells to inhabit adult serous cavities
  publication-title: Nat Commun
– volume: 125
  start-page: 1165
  year: 2006
  end-page: 1177
  article-title: SIR‐2.1 interacts with 14‐3‐3 proteins to activate DAF‐16 and extend life span
  publication-title: Cell
– volume: 1813
  start-page: 1978
  year: 2011
  end-page: 1986
  article-title: Akt, FoxO and regulation of apoptosis
  publication-title: Biochem Biophys Acta
– volume: 5
  start-page: e13984
  year: 2010
  article-title: Enrichment map: a network‐based method for gene‐set enrichment visualization and interpretation
  publication-title: PLoS ONE
– volume: 91
  start-page: 1033
  year: 1997
  end-page: 1042
  article-title: Extrachromosomal rDNA circles–a cause of aging in yeast
  publication-title: Cell
– volume: 116
  start-page: 564
  year: 1985
  end-page: 587
  article-title: The macrophage colony‐stimulating factor, CSF‐1
  publication-title: Methods Enzymol
– volume: 351
  start-page: aad5510
  year: 2016
  article-title: Lineage‐specific enhancers activate self‐renewal genes in macrophages and embryonic stem cells
  publication-title: Science
– volume: 27
  start-page: 6462
  year: 2008
  end-page: 6472
  article-title: Apoptotic signaling by c‐MYC
  publication-title: Oncogene
– volume: 23
  start-page: 310
  year: 2013
  end-page: 322
  article-title: Regulation of autophagy by stress‐responsive transcription factors
  publication-title: Semin Cancer Biol
– volume: 6
  start-page: 193
  year: 2010
  end-page: 201
  article-title: Microglia in neurodegenerative disease
  publication-title: Nat Rev Neurol
– volume: 487
  start-page: 477
  year: 2012
  end-page: 481
  article-title: ACE2 links amino acid malnutrition to microbial ecology and intestinal inflammation
  publication-title: Nature
– volume: 134
  start-page: 329
  year: 2008
  end-page: 340
  article-title: The NAD ‐dependent deacetylase SIRT1 modulates CLOCK‐mediated chromatin remodeling and circadian control
  publication-title: Cell
– volume: 120
  start-page: 449
  year: 2005
  end-page: 460
  article-title: The plasticity of aging: insights from long‐lived mutants
  publication-title: Cell
– volume: 27
  start-page: 2276
  year: 2008
  end-page: 2288
  article-title: The FoxO code
  publication-title: Oncogene
– volume: 3
  start-page: 44
  year: 2014
  end-page: 59
  article-title: Aging‐like phenotype and defective lineage specification in SIRT1‐deleted hematopoietic stem and progenitor cells
  publication-title: Stem Cell Reports
– volume: 1769
  start-page: 244
  year: 2007
  end-page: 252
  article-title: E2F‐1 regulates expression of FOXO1 and FOXO3a
  publication-title: Biochem Biophys Acta
– volume: 14
  start-page: 1227
  year: 2011
  end-page: 1235
  article-title: Heterogeneity of CNS myeloid cells and their roles in neurodegeneration
  publication-title: Nat Neurosci
– volume: 326
  start-page: 257
  year: 2009
  end-page: 263
  article-title: Unbiased reconstruction of a mammalian transcriptional network mediating pathogen responses
  publication-title: Science
– volume: 112
  start-page: 978
  year: 2013
  end-page: 982
  article-title: OutFOXing myeloid cells in atherosclerosis with FoxOs
  publication-title: Circ Res
– volume: 128
  start-page: 325
  year: 2007
  end-page: 339
  article-title: FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress
  publication-title: Cell
– volume: 352
  start-page: 1436
  year: 2016a
  end-page: 1443
  article-title: NAD(+) repletion improves mitochondrial and stem cell function and enhances life span in mice
  publication-title: Science
– volume: 25
  start-page: 138
  year: 2014
  end-page: 145
  article-title: SIRT1 and other sirtuins in metabolism
  publication-title: Trends Endocrinol Metab
– volume: 407
  start-page: 451
  year: 2007
  end-page: 460
  article-title: Deacetylation of the retinoblastoma tumour suppressor protein by SIRT1
  publication-title: Biochem J
– volume: 277
  start-page: 45099
  year: 2002
  end-page: 45107
  article-title: Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast sir2 and human SIRT1
  publication-title: J Biol Chem
– volume: 1852
  start-page: 2442
  year: 2015
  end-page: 2455
  article-title: Sirtuin regulation in aging and injury
  publication-title: Biochem Biophys Acta
– volume: 278
  start-page: 50985
  year: 2003
  end-page: 50998
  article-title: Mechanism of nicotinamide inhibition and transglycosidation by Sir2 histone/protein deacetylases
  publication-title: J Biol Chem
– volume: 96
  start-page: 7421
  year: 1999
  end-page: 7426
  article-title: Protein kinase B/Akt‐mediated phosphorylation promotes nuclear exclusion of the winged helix transcription factor FKHR1
  publication-title: Proc Natl Acad Sci USA
– volume: 326
  start-page: 867
  year: 2009
  end-page: 871
  article-title: MafB/c‐Maf deficiency enables self‐renewal of differentiated functional macrophages
  publication-title: Science
– volume: 109
  start-page: E187
  year: 2012
  end-page: E196
  article-title: The c‐MYC oncoprotein, the NAMPT enzyme, the SIRT1‐inhibitor DBC1, and the SIRT1 deacetylase form a positive feedback loop
  publication-title: Proc Natl Acad Sci USA
– volume: 4
  start-page: 249
  year: 2003
  end-page: 264
  article-title: Exploration, normalization, and summaries of high density oligonucleotide array probe level data
  publication-title: Biostatistics
– volume: 9
  start-page: e97378
  year: 2014
  article-title: NAMPT‐mediated salvage synthesis of NAD controls morphofunctional changes of macrophages
  publication-title: PLoS ONE
– volume: 4
  start-page: 1886
  year: 2013
  article-title: Distinct bone marrow‐derived and tissue‐resident macrophage lineages proliferate at key stages during inflammation
  publication-title: Nat Commun
– volume: 120
  start-page: 69
  year: 2013
  end-page: 103
  article-title: A close encounter of the third kind: monocyte‐derived cells
  publication-title: Adv Immunol
– volume: 1303
  start-page: 185
  year: 2016
  end-page: 193
  article-title: Analysis of microglial proliferation in Alzheimer's disease
  publication-title: Methods Mol Biol
– volume: 15
  start-page: 731
  year: 2015
  end-page: 744
  article-title: Regulation of macrophage development and function in peripheral tissues
  publication-title: Nat Rev Immunol
– volume: 15
  start-page: 196
  year: 2016
  end-page: 207
  article-title: Long live FOXO: unraveling the role of FOXO proteins in aging and longevity
  publication-title: Aging Cell
– volume: 116
  start-page: 551
  year: 2004
  end-page: 563
  article-title: Mammalian SIRT1 represses forkhead transcription factors
  publication-title: Cell
– volume: 15
  start-page: 300
  year: 2014
  end-page: 312
  article-title: Microglia and brain macrophages in the molecular age: from origin to neuropsychiatric disease
  publication-title: Nat Rev Neurosci
– volume: 501
  start-page: 79
  year: 2010
  end-page: 90
  article-title: Regulation of SIRT1 in cellular functions: role of polyphenols
  publication-title: Arch Biochem Biophys
– volume: 262
  start-page: 56
  year: 2014
  end-page: 73
  article-title: Tissue macrophage identity and self‐renewal
  publication-title: Immunol Rev
– volume: 141
  start-page: 2581
  year: 2014
  end-page: 2591
  article-title: Macrophages modulate adult zebrafish tail fin regeneration
  publication-title: Development
– volume: 210
  start-page: 2477
  year: 2013
  end-page: 2491
  article-title: IL‐4 directly signals tissue‐resident macrophages to proliferate beyond homeostatic levels controlled by CSF‐1
  publication-title: J Exp Med
– volume: 410
  start-page: 227
  year: 2001
  end-page: 230
  article-title: Increased dosage of a sir‐2 gene extends lifespan in
  publication-title: Nature
– volume: 74
  start-page: 715
  year: 1984
  end-page: 722
  article-title: Multiple low‐dose streptozotocin‐induced diabetes in the mouse. Evidence for stimulation of a cytotoxic cellular immune response against an insulin‐producing beta cell line
  publication-title: J Clin Invest
– volume: 120
  start-page: 2307
  year: 2012
  end-page: 2316
  article-title: Induction of IL‐4Ralpha‐dependent microRNAs identifies PI3K/Akt signaling as essential for IL‐4‐driven murine macrophage proliferation
  publication-title: Blood
– volume: 4
  start-page: 908
  year: 2005
  end-page: 913
  article-title: Triple layer control: phosphorylation, acetylation and ubiquitination of FOXO proteins
  publication-title: Cell Cycle
– volume: 15
  start-page: gmr5234
  year: 2016b
  article-title: Effects of Sirtuin 1 on the proliferation and osteoblastic differentiation of periodontal ligament stem cells and stem cells from apical papilla
  publication-title: Genet Mol Res
– volume: 3
  start-page: 40
  year: 2012
  article-title: Interactomic and pharmacological insights on human sirt‐1
  publication-title: Front Pharmacol
– volume: 22
  start-page: 1580
  year: 2014
  end-page: 1592
  article-title: Characterisation of a novel Fc conjugate of macrophage colony‐stimulating factor
  publication-title: Mol Ther
– volume: 5
  start-page: 224
  year: 2004
  article-title: Sirtuins: Sir2‐related NAD‐dependent protein deacetylases
  publication-title: Genome Biol
– volume: 39
  start-page: 159
  year: 2014
  end-page: 169
  article-title: FOXO transcription factors: key regulators of cellular quality control
  publication-title: Trends Biochem Sci
– volume: 16
  start-page: 183
  year: 2005
  end-page: 189
  article-title: FoxO proteins in insulin action and metabolism
  publication-title: Trends Endocrinol Metab
– volume: 404
  start-page: 782
  year: 2000
  end-page: 787
  article-title: AFX‐like Forkhead transcription factors mediate cell‐cycle regulation by Ras and PKB through p27kip1
  publication-title: Nature
– volume: 13
  start-page: 225
  year: 2012
  end-page: 238
  article-title: Sirtuins as regulators of metabolism and healthspan
  publication-title: Nat Rev Mol Cell Biol
– volume: 3
  start-page: Article3
  year: 2004
  article-title: Linear models and empirical bayes methods for assessing differential expression in microarray experiments
  publication-title: Stat Appl Genet Mol Biol
– volume: 2
  start-page: 333
  year: 2008
  end-page: 344
  article-title: Module map of stem cell genes guides creation of epithelial cancer stem cells
  publication-title: Cell Stem Cell
– volume: 16
  start-page: 482
  year: 2014
  article-title: A novel phosphatidylinositol 3‐kinase (PI3K) inhibitor directs a potent FOXO‐dependent, p53‐independent cell cycle arrest phenotype characterized by the differential induction of a subset of FOXO‐regulated genes
  publication-title: Breast Cancer Res
– volume: 107
  start-page: 181
  year: 1995
  end-page: 186
  article-title: Mammalian G1 cyclins and cell cycle progression
  publication-title: Proc Assoc Am Physicians
– volume: 11
  start-page: 762
  year: 2011
  end-page: 774
  article-title: Monocyte recruitment during infection and inflammation
  publication-title: Nat Rev Immunol
– volume: 3
  start-page: 5
  year: 2014
  end-page: 18
  article-title: SIRT1 metabolic actions: integrating recent advances from mouse models
  publication-title: Mol Metab
– volume: 2
  start-page: 153
  year: 2005
  end-page: 163
  article-title: FoxO1 protects against pancreatic beta cell failure through NeuroD and MafA induction
  publication-title: Cell Metab
– volume: 36
  start-page: 625
  year: 2015
  end-page: 636
  article-title: Homeostasis of microglia in the adult brain: review of novel microglia depletion systems
  publication-title: Trends Immunol
– volume: 14
  start-page: 2393
  year: 2000
  end-page: 2409
  article-title: The Rb/E2F pathway: expanding roles and emerging paradigms
  publication-title: Genes Dev
– volume: 90
  start-page: 389
  year: 2012
  end-page: 400
  article-title: SIRT1 is required for long‐term growth of human mesenchymal stem cells
  publication-title: J Mol Med (Berl)
– volume: 41
  start-page: 2155
  year: 2011
  end-page: 2164
  article-title: A quantifiable proliferative burst of tissue macrophages restores homeostatic macrophage populations after acute inflammation
  publication-title: Eur J Immunol
– volume: 100
  start-page: 10794
  year: 2003
  end-page: 10799
  article-title: Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)‐deficient mice
  publication-title: Proc Natl Acad Sci USA
– volume: 107
  start-page: 13736
  year: 2010
  end-page: 13741
  article-title: Sirtuin 1 regulation of developmental genes during differentiation of stem cells
  publication-title: Proc Natl Acad Sci USA
– volume: 18
  start-page: 416
  year: 2013
  end-page: 430
  article-title: Sirt1 extends life span and delays aging in mice through the regulation of Nk2 homeobox 1 in the DMH and LH
  publication-title: Cell Metab
– volume: 78
  start-page: 799
  year: 1994
  end-page: 811
  article-title: Phosphorylation of E2F‐1 modulates its interaction with the retinoblastoma gene product and the adenoviral E4 19 kDa protein
  publication-title: Cell
– volume: 27
  start-page: 2072
  year: 2013
  end-page: 2085
  article-title: Calorie restriction and sirtuins revisited
  publication-title: Genes Dev
– volume: 412
  start-page: 157
  year: 2003
  end-page: 169
  article-title: E2F and cell cycle control: a double‐edged sword
  publication-title: Arch Biochem Biophys
– volume: 274
  start-page: 1672
  year: 1996
  end-page: 1677
  article-title: Cancer cell cycles
  publication-title: Science
– volume: 38
  start-page: 792
  year: 2013
  end-page: 804
  article-title: Tissue‐resident macrophages self‐maintain locally throughout adult life with minimal contribution from circulating monocytes
  publication-title: Immunity
– volume: 88
  start-page: 35
  year: 2009
  end-page: 44
  article-title: Sirt1 increases skeletal muscle precursor cell proliferation
  publication-title: Eur J Cell Biol
– volume: 327
  start-page: 656
  year: 2010
  end-page: 661
  article-title: Development of monocytes, macrophages, and dendritic cells
  publication-title: Science
– ident: e_1_2_8_17_1
  doi: 10.1073/pnas.1001399107
– ident: e_1_2_8_113_1
  doi: 10.1016/j.it.2015.08.005
– ident: e_1_2_8_83_1
  doi: 10.1016/j.stemcr.2014.04.015
– ident: e_1_2_8_105_1
  doi: 10.1016/S0076-6879(85)16044-1
– ident: e_1_2_8_90_1
  doi: 10.1128/MCB.22.22.7842-7852.2002
– ident: e_1_2_8_53_1
  doi: 10.1101/gad.13.19.2570
– ident: e_1_2_8_14_1
  doi: 10.1016/j.molmet.2013.10.006
– ident: e_1_2_8_65_1
  doi: 10.1371/journal.pone.0013984
– ident: e_1_2_8_64_1
  doi: 10.1073/pnas.1105304109
– ident: e_1_2_8_104_1
  doi: 10.1186/s12864-015-2012-4
– ident: e_1_2_8_56_1
  doi: 10.1016/j.redox.2015.06.019
– ident: e_1_2_8_5_1
  doi: 10.1172/JCI72181
– ident: e_1_2_8_32_1
  doi: 10.1038/nri3671
– ident: e_1_2_8_26_1
  doi: 10.1016/S0092-8674(94)90522-3
– ident: e_1_2_8_61_1
  doi: 10.1111/acel.12427
– ident: e_1_2_8_84_1
  doi: 10.1038/nm.3258
– ident: e_1_2_8_19_1
  doi: 10.1089/ars.2012.4921
– ident: e_1_2_8_33_1
  doi: 10.1016/j.immuni.2016.02.024
– ident: e_1_2_8_119_1
  doi: 10.1007/s00109-011-0825-4
– ident: e_1_2_8_28_1
  doi: 10.1074/jbc.M412357200
– ident: e_1_2_8_59_1
  doi: 10.1016/j.biocel.2011.07.006
– ident: e_1_2_8_81_1
  doi: 10.1038/ni.3703
– ident: e_1_2_8_38_1
  doi: 10.1084/jem.20131199
– ident: e_1_2_8_71_1
  doi: 10.1186/gb-2004-5-5-224
– ident: e_1_2_8_115_1
  doi: 10.1042/BJ20070151
– ident: e_1_2_8_10_1
  doi: 10.1016/j.cell.2006.04.036
– ident: e_1_2_8_23_1
  doi: 10.1002/eji.201141817
– ident: e_1_2_8_68_1
  doi: 10.1016/S0092-8674(04)00126-6
– ident: e_1_2_8_111_1
  doi: 10.1371/journal.pone.0097378
– ident: e_1_2_8_66_1
  doi: 10.1016/B978-0-12-417028-5.00003-X
– ident: e_1_2_8_80_1
  doi: 10.1038/nrn3722
– ident: e_1_2_8_7_1
  doi: 10.1126/science.1176056
– ident: e_1_2_8_74_1
  doi: 10.1038/ni.3341
– ident: e_1_2_8_50_1
  doi: 10.1093/biostatistics/4.2.249
– ident: e_1_2_8_18_1
  doi: 10.1016/j.tem.2013.12.001
– ident: e_1_2_8_95_1
  doi: 10.1126/science.274.5293.1672
– ident: e_1_2_8_99_1
  doi: 10.1016/S0092-8674(00)80493-6
– ident: e_1_2_8_44_1
  doi: 10.1002/pmic.201100066
– ident: e_1_2_8_39_1
  doi: 10.1146/annurev.pathol.4.110807.092250
– ident: e_1_2_8_41_1
  doi: 10.1101/gad.813200
– ident: e_1_2_8_13_1
  doi: 10.1074/jbc.M205670200
– ident: e_1_2_8_4_1
  doi: 10.1126/science.1179050
– ident: e_1_2_8_27_1
  doi: 10.1161/CIRCRESAHA.113.301159
– ident: e_1_2_8_93_1
  doi: 10.3389/fphar.2012.00040
– ident: e_1_2_8_118_1
  doi: 10.1083/jcb.200809167
– ident: e_1_2_8_42_1
  doi: 10.1038/nature11228
– ident: e_1_2_8_6_1
  doi: 10.1016/j.molcel.2005.02.022
– ident: e_1_2_8_75_1
  doi: 10.1038/nrneurol.2010.17
– ident: e_1_2_8_9_1
  doi: 10.1016/j.tem.2005.03.010
– ident: e_1_2_8_79_1
  doi: 10.1038/nn.2923
– ident: e_1_2_8_100_1
  doi: 10.1084/jem.20121608
– ident: e_1_2_8_77_1
  doi: 10.1016/j.semcancer.2013.05.008
– ident: e_1_2_8_49_1
  doi: 10.1038/35001622
– ident: e_1_2_8_106_1
  doi: 10.1016/S0003-9861(03)00054-7
– ident: e_1_2_8_24_1
  doi: 10.1038/ncomms2877
– ident: e_1_2_8_36_1
  doi: 10.1038/mt.2014.112
– ident: e_1_2_8_87_1
  doi: 10.1016/j.cmet.2013.07.013
– volume: 15
  start-page: gmr5234
  year: 2016
  ident: e_1_2_8_123_1
  article-title: Effects of Sirtuin 1 on the proliferation and osteoblastic differentiation of periodontal ligament stem cells and stem cells from apical papilla
  publication-title: Genet Mol Res
  contributor:
    fullname: Zhang QB
– ident: e_1_2_8_101_1
  doi: 10.2202/1544-6115.1027
– ident: e_1_2_8_98_1
  doi: 10.1126/science.1242974
– ident: e_1_2_8_52_1
  doi: 10.1084/jem.20121999
– ident: e_1_2_8_108_1
  doi: 10.1038/35065638
– ident: e_1_2_8_45_1
  doi: 10.1186/s13058-014-0482-y
– ident: e_1_2_8_15_1
  doi: 10.1016/j.celrep.2013.01.005
– ident: e_1_2_8_29_1
  doi: 10.1006/bbrc.2000.3000
– ident: e_1_2_8_91_1
  doi: 10.1093/nar/17.15.6419
– ident: e_1_2_8_103_1
  doi: 10.1007/BF00971360
– ident: e_1_2_8_110_1
  doi: 10.1161/CIRCRESAHA.112.300749
– ident: e_1_2_8_62_1
  doi: 10.1172/JCI111487
– ident: e_1_2_8_70_1
  doi: 10.1089/rej.2015.1719
– ident: e_1_2_8_107_1
  doi: 10.1073/pnas.0506580102
– ident: e_1_2_8_120_1
  doi: 10.1016/j.bbamcr.2011.03.010
– ident: e_1_2_8_60_1
  doi: 10.1371/journal.pgen.1002135
– ident: e_1_2_8_35_1
  doi: 10.1007/978-1-4939-2627-5_10
– ident: e_1_2_8_31_1
  doi: 10.1111/imr.12224
– ident: e_1_2_8_58_1
  doi: 10.1083/jcb.201010131
– ident: e_1_2_8_20_1
  doi: 10.1073/pnas.1934713100
– ident: e_1_2_8_34_1
  doi: 10.1073/pnas.1300290110
– ident: e_1_2_8_48_1
  doi: 10.1038/nrm3293
– ident: e_1_2_8_30_1
  doi: 10.1126/science.1178331
– ident: e_1_2_8_63_1
  doi: 10.1038/35008115
– ident: e_1_2_8_55_1
  doi: 10.1016/j.cmet.2005.08.004
– ident: e_1_2_8_16_1
  doi: 10.1038/onc.2008.21
– ident: e_1_2_8_51_1
  doi: 10.1074/jbc.M306552200
– ident: e_1_2_8_57_1
  doi: 10.1038/nri3920
– ident: e_1_2_8_122_1
  doi: 10.1126/science.aaf2693
– ident: e_1_2_8_112_1
  doi: 10.4161/cc.4.7.1796
– ident: e_1_2_8_88_1
  doi: 10.18632/aging.100176
– ident: e_1_2_8_12_1
  doi: 10.1073/pnas.96.13.7421
– ident: e_1_2_8_43_1
  doi: 10.1016/j.immuni.2013.04.004
– ident: e_1_2_8_25_1
  doi: 10.1111/cbdd.12680
– ident: e_1_2_8_69_1
  doi: 10.1016/j.cell.2008.07.002
– volume: 107
  start-page: 181
  year: 1995
  ident: e_1_2_8_94_1
  article-title: Mammalian G1 cyclins and cell cycle progression
  publication-title: Proc Assoc Am Physicians
  contributor:
    fullname: Sherr CJ
– ident: e_1_2_8_46_1
  doi: 10.1016/j.modgep.2005.07.003
– ident: e_1_2_8_109_1
  doi: 10.1016/j.cell.2007.01.003
– ident: e_1_2_8_11_1
  doi: 10.1182/blood-2003-09-3314
– ident: e_1_2_8_86_1
  doi: 10.1023/A:1021651811345
– ident: e_1_2_8_37_1
  doi: 10.1101/gad.227439.113
– ident: e_1_2_8_114_1
  doi: 10.1016/j.tibs.2014.02.003
– ident: e_1_2_8_121_1
  doi: 10.1002/emmm.201100211
– ident: e_1_2_8_47_1
  doi: 10.1038/onc.2008.312
– ident: e_1_2_8_22_1
  doi: 10.1016/j.abb.2010.05.003
– ident: e_1_2_8_3_1
  doi: 10.1038/nn2014
– ident: e_1_2_8_92_1
  doi: 10.1016/S0092-8674(04)00298-3
– ident: e_1_2_8_97_1
  doi: 10.1038/nri3070
– ident: e_1_2_8_2_1
  doi: 10.1016/S0092-8674(04)00452-0
– ident: e_1_2_8_82_1
  doi: 10.1016/j.ejcb.2008.08.003
– ident: e_1_2_8_76_1
  doi: 10.1242/dev.098459
– ident: e_1_2_8_85_1
  doi: 10.1182/blood-2012-02-408252
– ident: e_1_2_8_67_1
  doi: 10.1016/j.cell.2006.01.040
– ident: e_1_2_8_116_1
  doi: 10.1016/j.stem.2008.02.009
– ident: e_1_2_8_73_1
  doi: 10.1038/nm.3651
– ident: e_1_2_8_117_1
  doi: 10.1038/nature12034
– ident: e_1_2_8_89_1
  doi: 10.1021/bi034959l
– ident: e_1_2_8_21_1
  doi: 10.1073/pnas.1613884113
– ident: e_1_2_8_78_1
  doi: 10.1016/j.bbadis.2015.08.017
– ident: e_1_2_8_8_1
  doi: 10.1038/ncomms11852
– ident: e_1_2_8_72_1
  doi: 10.1016/j.bbaexp.2007.04.001
– ident: e_1_2_8_40_1
  doi: 10.1016/j.stem.2008.01.002
– ident: e_1_2_8_54_1
  doi: 10.1016/j.cell.2005.02.002
– ident: e_1_2_8_96_1
  doi: 10.1101/gad.13.12.1501
– ident: e_1_2_8_102_1
  doi: 10.1126/science.aad5510
SSID ssj0005871
Score 2.5785227
Snippet Mature differentiated macrophages can self‐maintain by local proliferation in tissues and can be extensively expanded in culture under specific conditions, but...
Mature differentiated macrophages can self-maintain by local proliferation in tissues and can be extensively expanded in culture under specific conditions, but...
SourceID pubmedcentral
hal
proquest
crossref
pubmed
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 2353
SubjectTerms Animals
Bone marrow
Cell culture
Cell Cycle
cell cycle regulation
Cell Proliferation
Cell Self Renewal
Clonal deletion
CRISPR
Deactivation
Differentiation
Evolutionary conservation
FOXO1 protein
Gene Expression
Gene Knockdown Techniques
Gene Knockout Techniques
Genes
Homology
Immunology
In vitro methods and tests
Inactivation
Inhibition
Life Sciences
Life span
Longevity
macrophage
Macrophages
Macrophages - physiology
Mice
Myc protein
Nicotinamide
Peritoneum
Pharmacology
replicative life span
self‐renewal
SIRT1 protein
Sirtuin 1 - genetics
Sirtuin 1 - metabolism
sirtuins
Steady state
Stress response
Yeast
Yeasts
Title SIRT1 regulates macrophage self‐renewal
URI https://onlinelibrary.wiley.com/doi/abs/10.15252%2Fembj.201695737
https://www.ncbi.nlm.nih.gov/pubmed/28701484
https://www.proquest.com/docview/1928613220/abstract/
https://search.proquest.com/docview/1918852727
https://amu.hal.science/hal-01765090
https://pubmed.ncbi.nlm.nih.gov/PMC5556267
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB6xSBVcKkp5BChKEQc4hE3iZ450BdoitkI8JG7R2nG0W-0GxPIQt_6E_sb-ks7kpa44VOKY2JHtb2zPN_F4BmBf6SSXKskCFHgWcJNEAeqdPNA60SbLtUkSuo08-CH7N_zsVtwugGjuwpRO-9aMj4rJ9KgYj0rfyvup7TZ-Yt2LQU8I1NpSdTvQUYw1Jnrj16FLK6v8scIjndTxfEQs4q6bmp_kziUToRjl36NjPjQI-JxW6ozIJ_It4XzrN_kvny0V0ukKfKyZpH9c9fgTLLhiFT5UuSVfV2Gp16Ry-wyHV98vryP_oco772b-dEiZu0a4l_gzN8n__PpNkS1fhpM1uDk9ue71gzpHQmAFKpogdzFHEqClRVWkszznITOG4bicMtLZyIQWrZbMMml5jJYzrnAW20xp5CYWv1yHxeKucJvgR9ZaliOhCFXGJR1IitBGUjsulJXSeHDQYJTeV6EwUjIhCNmUkE1bZD3YQwzbWhTCun98ntI73AEoaF_4HHmw00Cc1gtnliLh1JIs5NCDr20xwkXnGMPC3T1RnUhrESPz8mCjkkjbVCNQD9ScrOb6Ml-Cs6wMq13PKg9YKdX_jTE9GXw7a5-23t3eNizHRBUozK7YgcXHhyf3BYnOo9klNSN2y-n9F9PO95Q
link.rule.ids 230,315,733,786,790,891,27957,27958,53827,53829
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9NAEB21RahcChRKDQUM4gAHJ_7YLx9L1CotSYUgRb1Z2fVaKSRu1SQgOPET-I38EmZsr0XoAcHR3rXs3be788b7dgbghVRpIWSaBwh4HjCdRgHanSJQKlU6L5ROUzqNPDwR_VN2fMbP1oC7szCVaN_o8045nXXK80mlrbycma7TiXXfDnuco9UWsrsON3C-xtI56U7ZoSo_q_q1wiKVNhF9eMzjrp3pjyToEimXCWXgo40-dAnYil1an5Aq8jrlvK6c_J3RVibp8DZ8cI2plSifOsuF7phvf8R5_OfW3oGthqT6-3XxXViz5TbcrNNWft2GzZ7LEncPXr0_ejeK_Ks6pb2d-7MxJQWb4DLlz-20-Pn9BwXN_DKe3ofTw4NRrx806RcCw9GGBYWNGfILJQxaOZUXBQsTrRPsMCu1sCbSoUGHKDeJMCxGpxwXjyQ2uVRIeww-uQMb5UVpd8GPjDFJgVwllDkTtNfJQxMJZRmXRgjtwUvX-dllHWUjI--EIMsIsqyFzIPnCE5bi6Jj9_cHGd3DxYXiAYafIw_2HHZZMyfnGXJZJcj5Dj141hZjd9EWybi0F0uqEynFYyR1HjyooW5f5UaKB3JlEKx8y2oJQlpF7G4g9CCphsvf2pgdDF8ft1cP__t9T2GzPxoOssHRyZtHcCsmRkLRfPkebCyulvYx8qmFflLNnl94YBi5
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7RIh6XAuWVUiAgDnDI5mU7zrEsXW1Lt6qglapeorVjawu76aq7S1VO_AR-I7-EmbzUpQekHhM7cuzP9nwTT74BeJfI1IokzT0EPPeYSkMP7Y71pEylyq1UaUp_Iw_2Rf-I7R7z4yupvsqgfa1OO8V40ilOR2Vs5XSi_SZOzD8YdDlHqy0Sf5pbfwVu45qN0sZRb6I7ZOlrlZ9XWCjTWtWHRzzyzUR9o6AukfIkpix8dNiHbgFbsk0rI4qMvE47r0dPXmW1pVnqPYCTpkNVNMr3zmKuOvrnP1qPN-rxQ1iryaq7VVV5BLdMsQ53qvSVl-twr9tki3sMH77ufDkM3fMqtb2ZuZMhJQcb4XblzszY_vn1m8QzL4bjJ3DU2z7s9r06DYOnOdoyz5qIIc-QQqO1k7m1LIiVinHQTKKE0aEKNDpGuY6FZhE657iJxJHOE4n0R-OTT2G1OCvMc3BDrXVskbMESc4EnXnyQIdCGsYTLYRy4H0DQDat1DYy8lIItoxgy1rYHHiLALW1SCW7v7WX0T3cZEgXMPgROrDZ4JfVa3OWIaeVgpzwwIE3bTEOFx2VDAtztqA6oZQ8QnLnwLMK7rapZrY4kCxNhKV3WS5BWEvl7hpGB-Jyyvyvj9n24ONue7Vx4_Zew92DT71sb2f_8wu4HxExIVFfvgmr8_OFeYm0aq5elQvoL3VjGzk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SIRT1+regulates+macrophage+self-renewal&rft.jtitle=The+EMBO+journal&rft.au=Imperatore%2C+Francesco&rft.au=Maurizio%2C+Julien&rft.au=Vargas+Aguilar%2C+Stephanie&rft.au=Busch%2C+Clara+J&rft.date=2017-08-15&rft.eissn=1460-2075&rft.volume=36&rft.issue=16&rft.spage=2353&rft_id=info:doi/10.15252%2Fembj.201695737&rft_id=info%3Apmid%2F28701484&rft.externalDocID=28701484
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0261-4189&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0261-4189&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0261-4189&client=summon