Shorter Exciton Lifetimes via an External Heavy‐Atom Effect: Alleviating the Effects of Bimolecular Processes in Organic Light‐Emitting Diodes

Multiexcited‐state phenomena are believed to be the root cause of two exigent challenges in organic light‐emitting diodes; namely, efficiency roll‐off and degradation. The development of novel strategies to reduce exciton densities under heavy load is therefore highly desirable. Here, it is shown th...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 29; no. 40
Main Authors Einzinger, Markus, Zhu, Tianyu, de Silva, Piotr, Belger, Christian, Swager, Timothy M., Van Voorhis, Troy, Baldo, Marc A.
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.10.2017
Wiley Blackwell (John Wiley & Sons)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Multiexcited‐state phenomena are believed to be the root cause of two exigent challenges in organic light‐emitting diodes; namely, efficiency roll‐off and degradation. The development of novel strategies to reduce exciton densities under heavy load is therefore highly desirable. Here, it is shown that triplet exciton lifetimes of thermally activated delayed‐fluorescence‐emitter molecules can be manipulated in the solid state by exploiting intermolecular interactions. The external heavy‐atom effect of brominated host molecules leads to increased spin–orbit coupling, which in turn enhances intersystem crossing rates in the guest molecule. Wave function overlap between the host and the guest is confirmed by combined molecular dynamics and density functional theory calculations. Shorter triplet exciton lifetimes are observed, while high photoluminescence quantum yields and essentially unaltered emission spectra are maintained. A change in the intersystem crossing rate ratio due to increased dielectric constants leads to almost 50% lower triplet exciton densities in the emissive layer in the steady state and results in an improved onset of the photoluminescence quantum yield roll‐off at high excitation densities. Efficient organic light‐emitting diodes with better roll‐off behavior based on these novel hosts are fabricated, demonstrating the suitability of this concept for real‐world applications. Brominated hosts with an external heavy‐atom effect lead to shorter triplet exciton lifetimes in thermally activated, delayed‐fluorescence guest molecules due to increased spin–orbit coupling and intersystem crossing rates. Combined with externally manipulated singlet–triplet splitting of the dopants, this results in enhanced onsets of the photoluminescence quantum yield roll‐off and fabrication of organic light‐emitting diodes with improved droop behavior.
AbstractList Multiexcited‐state phenomena are believed to be the root cause of two exigent challenges in organic light‐emitting diodes; namely, efficiency roll‐off and degradation. The development of novel strategies to reduce exciton densities under heavy load is therefore highly desirable. Here, it is shown that triplet exciton lifetimes of thermally activated delayed‐fluorescence‐emitter molecules can be manipulated in the solid state by exploiting intermolecular interactions. The external heavy‐atom effect of brominated host molecules leads to increased spin–orbit coupling, which in turn enhances intersystem crossing rates in the guest molecule. Wave function overlap between the host and the guest is confirmed by combined molecular dynamics and density functional theory calculations. Shorter triplet exciton lifetimes are observed, while high photoluminescence quantum yields and essentially unaltered emission spectra are maintained. A change in the intersystem crossing rate ratio due to increased dielectric constants leads to almost 50% lower triplet exciton densities in the emissive layer in the steady state and results in an improved onset of the photoluminescence quantum yield roll‐off at high excitation densities. Efficient organic light‐emitting diodes with better roll‐off behavior based on these novel hosts are fabricated, demonstrating the suitability of this concept for real‐world applications. Brominated hosts with an external heavy‐atom effect lead to shorter triplet exciton lifetimes in thermally activated, delayed‐fluorescence guest molecules due to increased spin–orbit coupling and intersystem crossing rates. Combined with externally manipulated singlet–triplet splitting of the dopants, this results in enhanced onsets of the photoluminescence quantum yield roll‐off and fabrication of organic light‐emitting diodes with improved droop behavior.
Abstract Multiexcited‐state phenomena are believed to be the root cause of two exigent challenges in organic light‐emitting diodes; namely, efficiency roll‐off and degradation. The development of novel strategies to reduce exciton densities under heavy load is therefore highly desirable. Here, it is shown that triplet exciton lifetimes of thermally activated delayed‐fluorescence‐emitter molecules can be manipulated in the solid state by exploiting intermolecular interactions. The external heavy‐atom effect of brominated host molecules leads to increased spin–orbit coupling, which in turn enhances intersystem crossing rates in the guest molecule. Wave function overlap between the host and the guest is confirmed by combined molecular dynamics and density functional theory calculations. Shorter triplet exciton lifetimes are observed, while high photoluminescence quantum yields and essentially unaltered emission spectra are maintained. A change in the intersystem crossing rate ratio due to increased dielectric constants leads to almost 50% lower triplet exciton densities in the emissive layer in the steady state and results in an improved onset of the photoluminescence quantum yield roll‐off at high excitation densities. Efficient organic light‐emitting diodes with better roll‐off behavior based on these novel hosts are fabricated, demonstrating the suitability of this concept for real‐world applications.
Multiexcited-state phenomena are believed to be the root cause of two exigent challenges in organic light-emitting diodes; namely, efficiency roll-off and degradation. The development of novel strategies to reduce exciton densities under heavy load is therefore highly desirable. Here, it is shown that triplet exciton lifetimes of thermally activated delayed-fluorescence-emitter molecules can be manipulated in the solid state by exploiting intermolecular interactions. The external heavy-atom effect of brominated host molecules leads to increased spin-orbit coupling, which in turn enhances intersystem crossing rates in the guest molecule. Wave function overlap between the host and the guest is confirmed by combined molecular dynamics and density functional theory calculations. Shorter triplet exciton lifetimes are observed, while high photoluminescence quantum yields and essentially unaltered emission spectra are maintained. A change in the intersystem crossing rate ratio due to increased dielectric constants leads to almost 50% lower triplet exciton densities in the emissive layer in the steady state and results in an improved onset of the photoluminescence quantum yield roll-off at high excitation densities. Efficient organic light-emitting diodes with better roll-off behavior based on these novel hosts are fabricated, demonstrating the suitability of this concept for real-world applications.Multiexcited-state phenomena are believed to be the root cause of two exigent challenges in organic light-emitting diodes; namely, efficiency roll-off and degradation. The development of novel strategies to reduce exciton densities under heavy load is therefore highly desirable. Here, it is shown that triplet exciton lifetimes of thermally activated delayed-fluorescence-emitter molecules can be manipulated in the solid state by exploiting intermolecular interactions. The external heavy-atom effect of brominated host molecules leads to increased spin-orbit coupling, which in turn enhances intersystem crossing rates in the guest molecule. Wave function overlap between the host and the guest is confirmed by combined molecular dynamics and density functional theory calculations. Shorter triplet exciton lifetimes are observed, while high photoluminescence quantum yields and essentially unaltered emission spectra are maintained. A change in the intersystem crossing rate ratio due to increased dielectric constants leads to almost 50% lower triplet exciton densities in the emissive layer in the steady state and results in an improved onset of the photoluminescence quantum yield roll-off at high excitation densities. Efficient organic light-emitting diodes with better roll-off behavior based on these novel hosts are fabricated, demonstrating the suitability of this concept for real-world applications.
Multiexcited-state phenomena are believed to be the root cause of two exigent challenges in organic light-emitting diodes; namely, efficiency roll-off and degradation. The development of novel strategies to reduce exciton densities under heavy load is therefore highly desirable. Here, it is shown that triplet exciton lifetimes of thermally activated delayed-fluorescence-emitter molecules can be manipulated in the solid state by exploiting intermolecular interactions. The external heavy-atom effect of brominated host molecules leads to increased spin-orbit coupling, which in turn enhances intersystem crossing rates in the guest molecule. Wave function overlap between the host and the guest is confirmed by combined molecular dynamics and density functional theory calculations. Shorter triplet exciton lifetimes are observed, while high photoluminescence quantum yields and essentially unaltered emission spectra are maintained. A change in the intersystem crossing rate ratio due to increased dielectric constants leads to almost 50% lower triplet exciton densities in the emissive layer in the steady state and results in an improved onset of the photoluminescence quantum yield roll-off at high excitation densities. Efficient organic light-emitting diodes with better roll-off behavior based on these novel hosts are fabricated, demonstrating the suitability of this concept for real-world applications.
Author Van Voorhis, Troy
Einzinger, Markus
Zhu, Tianyu
de Silva, Piotr
Swager, Timothy M.
Baldo, Marc A.
Belger, Christian
Author_xml – sequence: 1
  givenname: Markus
  orcidid: 0000-0002-4952-2905
  surname: Einzinger
  fullname: Einzinger, Markus
  email: meinzing@mit.edu
  organization: Massachusetts Institute of Technology
– sequence: 2
  givenname: Tianyu
  surname: Zhu
  fullname: Zhu, Tianyu
  organization: Massachusetts Institute of Technology
– sequence: 3
  givenname: Piotr
  surname: de Silva
  fullname: de Silva, Piotr
  organization: Massachusetts Institute of Technology
– sequence: 4
  givenname: Christian
  surname: Belger
  fullname: Belger, Christian
  organization: Massachusetts Institute of Technology
– sequence: 5
  givenname: Timothy M.
  surname: Swager
  fullname: Swager, Timothy M.
  organization: Massachusetts Institute of Technology
– sequence: 6
  givenname: Troy
  surname: Van Voorhis
  fullname: Van Voorhis, Troy
  organization: Massachusetts Institute of Technology
– sequence: 7
  givenname: Marc A.
  surname: Baldo
  fullname: Baldo, Marc A.
  organization: Massachusetts Institute of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28892200$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/1401327$$D View this record in Osti.gov
BookMark eNqFkcFuEzEURS1URNPCliWyYMMm4dmeGY_ZDW2gSEFFAtaWx3mTuJqxy9gpZMcnID6RL8EhKUiVECtLfude-757Qo588EjIYwYzBsBfmOVgZhyYBKZqeY9MWMnZtABVHpEJKFFOVVXUx-QkxisAUBVUD8gxr2vFOcCE_PiwDmPCkc6_WpeCpwvXYXIDRnrjDDU-D_LYm55eoLnZ_vz2vUlhoPOuQ5te0qbvMYPJ-RVNazzcRxo6-soNoUe76c1I34_BYozZ1Xl6Oa6MdzY_tVqnbDgfXPptcO7CEuNDcr8zfcRHh_OUfHo9_3h2MV1cvnl71iymtoRKTjtVclsUspCmrguJVtQtW4Jpse2WgBWwti0L0cnSqjrnhVp0QnCQAk3FFRen5OneN8TkdMzx0a5t8D4H0KwAJrjM0PM9dD2GzxuMSQ8uWux74zFsomZKSFlxxsqMPruDXoXNbnM7qhRQ1VBUmXpyoDbtgEt9PbrBjFt9W0kGij1gxxDjiJ3OP8sLDj6NxvWagd41r3fN6z_NZ9nsjuzW-Z8CtRd8cT1u_0Pr5vxd81f7C_hZwe8
CitedBy_id crossref_primary_10_1039_C8TC03270J
crossref_primary_10_1007_s11224_025_02458_x
crossref_primary_10_1016_j_cej_2020_126107
crossref_primary_10_1002_adom_202101228
crossref_primary_10_1039_D3TC00365E
crossref_primary_10_1021_jacs_4c15230
crossref_primary_10_1021_acs_chemmater_2c01952
crossref_primary_10_1002_tcr_201800152
crossref_primary_10_3389_fchem_2020_00049
crossref_primary_10_1021_acs_jpcc_9b02820
crossref_primary_10_1021_acsmaterialslett_9b00369
crossref_primary_10_1016_j_dyepig_2020_108521
crossref_primary_10_1038_s41566_022_01083_y
crossref_primary_10_1039_D1TC03924E
crossref_primary_10_1016_j_dyepig_2023_111371
crossref_primary_10_1002_ange_202502380
crossref_primary_10_1016_j_cej_2022_139030
crossref_primary_10_1002_adom_202102568
crossref_primary_10_1002_anie_201906371
crossref_primary_10_1002_anie_202413129
crossref_primary_10_1021_acs_jpca_9b09148
crossref_primary_10_1016_j_mser_2020_100581
crossref_primary_10_1021_acs_jpcc_0c01863
crossref_primary_10_1016_j_mtener_2020_100581
crossref_primary_10_1021_acsami_3c10003
crossref_primary_10_1039_C9CC07045A
crossref_primary_10_1016_j_mtener_2021_100705
crossref_primary_10_1002_ange_201906371
crossref_primary_10_1016_j_cej_2022_136292
crossref_primary_10_1002_adfm_202104646
crossref_primary_10_1039_D2TC03249J
crossref_primary_10_1002_adfm_202306880
crossref_primary_10_1021_acs_chemmater_9b01601
crossref_primary_10_1002_ange_202106204
crossref_primary_10_1039_C8TC01139G
crossref_primary_10_1002_advs_201800846
crossref_primary_10_1002_adma_202415289
crossref_primary_10_1002_advs_202101326
crossref_primary_10_1021_acs_jpclett_2c00300
crossref_primary_10_1021_acs_macromol_8b00565
crossref_primary_10_1016_j_cej_2021_131169
crossref_primary_10_1021_acs_jpcc_3c05567
crossref_primary_10_1021_acs_jpcc_4c04475
crossref_primary_10_1021_acs_jpcc_9b05007
crossref_primary_10_1039_D3CC05460H
crossref_primary_10_1002_ange_202413129
crossref_primary_10_1021_acs_jpcc_9b03867
crossref_primary_10_1002_adom_202101343
crossref_primary_10_1021_acs_jpclett_2c01745
crossref_primary_10_1021_acsami_2c12017
crossref_primary_10_3390_molecules29194589
crossref_primary_10_1002_adfm_202204352
crossref_primary_10_1039_C9TC00346K
crossref_primary_10_1021_acsami_2c12778
crossref_primary_10_1039_D1SM00061F
crossref_primary_10_1002_adom_202100857
crossref_primary_10_1016_j_jsamd_2022_100432
crossref_primary_10_1126_sciadv_abm1999
crossref_primary_10_1021_acs_jpclett_8b01961
crossref_primary_10_1002_anie_202420489
crossref_primary_10_2139_ssrn_4153166
crossref_primary_10_1021_acs_jpcc_0c03341
crossref_primary_10_1021_acsphotonics_0c00732
crossref_primary_10_1039_D2CC03809A
crossref_primary_10_1063_1_5114789
crossref_primary_10_1021_acsaenm_4c00196
crossref_primary_10_1016_j_cej_2020_127591
crossref_primary_10_1016_j_cej_2024_148865
crossref_primary_10_1088_1361_6528_ad18e4
crossref_primary_10_1002_anie_201904433
crossref_primary_10_1016_j_chemphys_2025_112611
crossref_primary_10_1002_adtp_202100176
crossref_primary_10_1016_j_jlumin_2023_120087
crossref_primary_10_1002_anie_202106204
crossref_primary_10_1002_adom_201900476
crossref_primary_10_1002_adom_201901048
crossref_primary_10_1016_j_dyepig_2020_108694
crossref_primary_10_1021_acs_jpclett_2c01205
crossref_primary_10_1002_anie_202502380
crossref_primary_10_1021_acs_inorgchem_4c03819
crossref_primary_10_1038_s41467_023_38197_y
crossref_primary_10_1039_D4NJ05133E
crossref_primary_10_1002_adom_202203030
crossref_primary_10_1002_ange_201904433
crossref_primary_10_1038_s41566_020_0668_z
crossref_primary_10_1039_D3QM00799E
crossref_primary_10_1039_C8TC01567H
crossref_primary_10_1007_s43630_022_00326_9
crossref_primary_10_1016_j_optcom_2021_126854
crossref_primary_10_1002_chem_201904415
crossref_primary_10_1002_ange_202420489
crossref_primary_10_1038_s41598_023_34623_9
crossref_primary_10_1016_j_cclet_2024_109761
crossref_primary_10_1021_acs_jpcc_0c01499
crossref_primary_10_1002_adfm_201802031
crossref_primary_10_1021_acs_jpcc_3c07943
crossref_primary_10_1007_s11426_019_9531_4
crossref_primary_10_1002_adfm_202002064
crossref_primary_10_1021_acs_jpcc_3c06465
crossref_primary_10_1021_acsami_8b06137
Cites_doi 10.1039/C5SC03739E
10.1103/PhysRevB.68.075211
10.1093/oso/9780195129632.001.0001
10.1063/1.1751232
10.1002/adma.201402532
10.1002/adma.19970090308
10.1021/acs.jpca.6b03867
10.1039/c3tc30699b
10.1039/C6OB00140H
10.1063/1.478522
10.1103/PhysRevB.74.045213
10.1038/srep30178
10.1038/srep03797
10.1021/acs.joc.5b01496
10.1002/adma.201606448
10.1021/j100818a042
10.1021/ja9621760
10.1063/1.124258
10.1038/nphoton.2012.31
10.1016/j.mseb.2013.04.012
10.1038/nmat4717
10.1038/ncomms13680
10.1038/nature11687
10.1021/nl403047m
10.1038/25954
10.1002/adom.201500689
10.1039/c2cc36237f
10.1103/PhysRevB.62.10967
10.1126/science.1255624
10.1002/adma.201301603
10.1021/acs.jpcc.5b07340
10.1063/1.1700199
10.1016/j.ccr.2011.01.042
10.1038/35001541
10.1039/c2cc34840c
10.1063/1.1747632
10.1063/1.1580806
10.1063/1.1409582
10.1002/advs.201600080
10.1002/adma.201205022
10.1103/PhysRevApplied.7.034002
10.1021/jp075556o
10.1038/lsa.2015.5
10.1002/cphc.201000395
10.1021/acs.jpclett.7b00688
10.1021/jp061010a
10.1080/00268976.2014.952696
10.1021/ct700301q
ContentType Journal Article
Copyright 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
OTOTI
DOI 10.1002/adma.201701987
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
OSTI.GOV
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
PubMed
CrossRef
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 1401327
28892200
10_1002_adma_201701987
ADMA201701987
Genre article
Journal Article
GrantInformation_xml – fundername: US Department of Energy
  funderid: DE‐FG02‐07ER46474
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AAHHS
AANHP
AAYOK
AAYXX
ABEML
ACBWZ
ACCFJ
ACRPL
ACSCC
ACYXJ
ADNMO
ADZOD
AEEZP
AEQDE
AETEA
AFFNX
AGQPQ
AIWBW
AJBDE
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
FOJGT
HF~
HVGLF
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
NPM
7SR
8BQ
8FD
JG9
7X8
ACXME
AEUQT
AFPWT
OTOTI
RWI
RWM
WRC
ID FETCH-LOGICAL-c5067-f952c44747a8847ec38b1d0abebfd0e601bb543f75c98889083f332073ea62923
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Mon Jul 01 06:27:10 EDT 2024
Thu Jul 10 22:36:32 EDT 2025
Fri Jul 25 08:09:51 EDT 2025
Mon Jul 21 05:42:03 EDT 2025
Tue Jul 01 00:44:35 EDT 2025
Thu Apr 24 23:10:33 EDT 2025
Wed Aug 20 07:26:14 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 40
Keywords intersystem crossing
thermally activated delayed fluorescence
external heavy-atom effect
spin-orbit coupling
organic light-emitting diodes
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#am
http://onlinelibrary.wiley.com/termsAndConditions#vor
2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5067-f952c44747a8847ec38b1d0abebfd0e601bb543f75c98889083f332073ea62923
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
USDOE
DE‐FG02‐07ER46474
ORCID 0000-0002-4952-2905
0000000249522905
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/adma.201701987
PMID 28892200
PQID 1953068046
PQPubID 2045203
PageCount 7
ParticipantIDs osti_scitechconnect_1401327
proquest_miscellaneous_1937762115
proquest_journals_1953068046
pubmed_primary_28892200
crossref_citationtrail_10_1002_adma_201701987
crossref_primary_10_1002_adma_201701987
wiley_primary_10_1002_adma_201701987_ADMA201701987
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-Oct
PublicationDateYYYYMMDD 2017-10-01
PublicationDate_xml – month: 10
  year: 2017
  text: 2017-Oct
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
Wiley Blackwell (John Wiley & Sons)
Publisher_xml – name: Wiley Subscription Services, Inc
– name: Wiley Blackwell (John Wiley & Sons)
References 2010; 11
2017; 7
2017; 8
2006; 74
2003; 119
2013; 25
2013; 1
2001; 90
2014; 26
1973
2015; 80
2008; 4
1997; 9
1998; 395
2012; 492
1952; 20
2014; 4
2013; 13
2000; 403
2000; 62
2015; 4
2010
2009
2006; 110
2006
2005
2017; 29
2003
2016; 15
2011; 255
2016; 120
2016; 14
1999
2016; 4
2016; 6
1950; 18
2016; 7
2004; 95
2016; 3
2015; 113
2007; 111
2003; 68
2013; 178
1999; 110
1999; 75
2015; 119
2012; 48
1962; 66
2012; 6
2014; 345
1996; 118
e_1_2_5_27_1
Swenberg C. E. (e_1_2_5_18_1) 1973
e_1_2_5_25_1
e_1_2_5_48_1
e_1_2_5_23_1
e_1_2_5_46_1
e_1_2_5_21_1
e_1_2_5_44_1
e_1_2_5_29_1
e_1_2_5_42_1
e_1_2_5_40_1
e_1_2_5_15_1
e_1_2_5_38_1
e_1_2_5_17_1
e_1_2_5_36_1
e_1_2_5_9_1
e_1_2_5_11_1
e_1_2_5_34_1
e_1_2_5_7_1
e_1_2_5_13_1
e_1_2_5_32_1
e_1_2_5_5_1
e_1_2_5_3_1
e_1_2_5_1_1
e_1_2_5_19_1
Pope M. (e_1_2_5_16_1) 1999
e_1_2_5_30_1
e_1_2_5_53_1
e_1_2_5_51_1
e_1_2_5_28_1
e_1_2_5_49_1
e_1_2_5_26_1
e_1_2_5_47_1
e_1_2_5_24_1
e_1_2_5_45_1
e_1_2_5_22_1
e_1_2_5_43_1
e_1_2_5_20_1
e_1_2_5_41_1
e_1_2_5_14_1
e_1_2_5_39_1
e_1_2_5_37_1
e_1_2_5_8_1
e_1_2_5_10_1
e_1_2_5_35_1
e_1_2_5_6_1
e_1_2_5_12_1
e_1_2_5_33_1
e_1_2_5_54_1
e_1_2_5_4_1
e_1_2_5_2_1
e_1_2_5_31_1
e_1_2_5_52_1
e_1_2_5_50_1
References_xml – volume: 25
  start-page: 2114
  year: 2013
  publication-title: Adv. Mater.
– year: 2009
– volume: 345
  start-page: 1487
  year: 2014
  publication-title: Science
– volume: 95
  start-page: 7798
  year: 2004
  publication-title: J. Appl. Phys.
– volume: 80
  start-page: 9126
  year: 2015
  publication-title: J. Org. Chem.
– year: 2005
– volume: 4
  start-page: 435
  year: 2008
  publication-title: J. Chem. Theory Comput.
– volume: 110
  start-page: 6158
  year: 1999
  publication-title: J. Chem. Phys.
– volume: 11
  start-page: 3133
  year: 2010
  publication-title: ChemPhysChem
– volume: 75
  start-page: 4
  year: 1999
  publication-title: Appl. Phys. Lett.
– volume: 3
  start-page: 1600080
  year: 2016
  publication-title: Adv. Sci.
– volume: 29
  start-page: 1606448
  year: 2017
  publication-title: Adv. Mater.
– volume: 395
  start-page: 151
  year: 1998
  publication-title: Nature
– volume: 15
  start-page: 1120
  year: 2016
  publication-title: Nat. Mater.
– volume: 110
  start-page: 12809
  year: 2006
  publication-title: J. Phys. Chem. B
– volume: 6
  start-page: 253
  year: 2012
  publication-title: Nat. Photonics
– volume: 13
  start-page: 5949
  year: 2013
  publication-title: Nano Lett.
– volume: 119
  start-page: 25591
  year: 2015
  publication-title: J. Phys. Chem. C
– volume: 48
  start-page: 11392
  year: 2012
  publication-title: Chem. Commun.
– volume: 1
  start-page: 4599
  year: 2013
  publication-title: J. Mater. Chem. C
– volume: 119
  start-page: 2223
  year: 2003
  publication-title: J. Chem. Phys.
– volume: 492
  start-page: 234
  year: 2012
  publication-title: Nature
– volume: 7
  start-page: 13680
  year: 2016
  publication-title: Nat. Commun.
– volume: 8
  start-page: 2393
  year: 2017
  publication-title: J. Phys. Chem. Lett.
– volume: 255
  start-page: 2622
  year: 2011
  publication-title: Coord. Chem. Rev.
– volume: 25
  start-page: 6801
  year: 2013
  publication-title: Adv. Mater.
– volume: 178
  start-page: 863
  year: 2013
  publication-title: Mater. Sci. Eng. B
– volume: 7
  start-page: 34002
  year: 2017
  publication-title: Phys. Rev. Appl.
– volume: 68
  start-page: 75211
  year: 2003
  publication-title: Phys. Rev. B
– year: 2003
– year: 1973
– volume: 111
  start-page: 12075
  year: 2007
  publication-title: J. Phys. Chem. B
– volume: 9
  start-page: 230
  year: 1997
  publication-title: Adv. Mater.
– volume: 26
  start-page: 7931
  year: 2014
  publication-title: Adv. Mater.
– volume: 113
  start-page: 184
  year: 2015
  publication-title: Mol. Phys.
– volume: 120
  start-page: 5791
  year: 2016
  publication-title: J. Phys. Chem. A
– volume: 6
  start-page: 30178
  year: 2016
  publication-title: Sci. Rep.
– volume: 18
  start-page: 365
  year: 1950
  publication-title: J. Chem. Phys.
– year: 2010
– volume: 4
  start-page: 3797
  year: 2014
  publication-title: Sci. Rep.
– volume: 74
  start-page: 45213
  year: 2006
  publication-title: Phys. Rev. B
– volume: 4
  start-page: 597
  year: 2016
  publication-title: Adv. Opt. Mater.
– volume: 62
  start-page: 10967
  year: 2000
  publication-title: Phys. Rev. B
– volume: 14
  start-page: 2961
  year: 2016
  publication-title: Org. Biomol. Chem.
– volume: 118
  start-page: 11225
  year: 1996
  publication-title: J. Am. Chem. Soc.
– volume: 20
  start-page: 71
  year: 1952
  publication-title: J. Chem. Phys.
– volume: 66
  start-page: 2499
  year: 1962
  publication-title: J. Phys. Chem.
– volume: 4
  start-page: e232
  year: 2015
  publication-title: Light Sci. Appl.
– year: 2006
– volume: 8
  start-page: 6060
  year: 2017
  publication-title: Chem. Sci.
– volume: 48
  start-page: 10841
  year: 2012
  publication-title: Chem. Commun.
– volume: 403
  start-page: 750
  year: 2000
  publication-title: Nature
– volume: 90
  start-page: 5048
  year: 2001
  publication-title: J. Appl. Phys.
– year: 1999
– ident: e_1_2_5_30_1
  doi: 10.1039/C5SC03739E
– ident: e_1_2_5_1_1
  doi: 10.1103/PhysRevB.68.075211
– volume-title: Electronic Processes in Organic Crystals and Polymers
  year: 1999
  ident: e_1_2_5_16_1
  doi: 10.1093/oso/9780195129632.001.0001
– ident: e_1_2_5_43_1
  doi: 10.1063/1.1751232
– ident: e_1_2_5_47_1
  doi: 10.1002/adma.201402532
– ident: e_1_2_5_45_1
  doi: 10.1002/adma.19970090308
– ident: e_1_2_5_31_1
  doi: 10.1021/acs.jpca.6b03867
– ident: e_1_2_5_9_1
  doi: 10.1039/c3tc30699b
– ident: e_1_2_5_40_1
  doi: 10.1039/C6OB00140H
– ident: e_1_2_5_53_1
  doi: 10.1063/1.478522
– ident: e_1_2_5_34_1
– ident: e_1_2_5_12_1
  doi: 10.1103/PhysRevB.74.045213
– ident: e_1_2_5_33_1
  doi: 10.1038/srep30178
– ident: e_1_2_5_42_1
  doi: 10.1038/srep03797
– ident: e_1_2_5_24_1
  doi: 10.1021/acs.joc.5b01496
– ident: e_1_2_5_49_1
  doi: 10.1002/adma.201606448
– ident: e_1_2_5_26_1
  doi: 10.1021/j100818a042
– ident: e_1_2_5_51_1
  doi: 10.1021/ja9621760
– ident: e_1_2_5_5_1
  doi: 10.1063/1.124258
– ident: e_1_2_5_46_1
  doi: 10.1038/nphoton.2012.31
– ident: e_1_2_5_41_1
  doi: 10.1016/j.mseb.2013.04.012
– ident: e_1_2_5_23_1
  doi: 10.1038/nmat4717
– ident: e_1_2_5_14_1
  doi: 10.1038/ncomms13680
– ident: e_1_2_5_7_1
  doi: 10.1038/nature11687
– ident: e_1_2_5_22_1
  doi: 10.1021/nl403047m
– ident: e_1_2_5_2_1
  doi: 10.1038/25954
– ident: e_1_2_5_15_1
  doi: 10.1002/adom.201500689
– ident: e_1_2_5_38_1
– ident: e_1_2_5_35_1
– ident: e_1_2_5_8_1
  doi: 10.1039/c2cc36237f
– ident: e_1_2_5_17_1
  doi: 10.1103/PhysRevB.62.10967
– ident: e_1_2_5_13_1
  doi: 10.1126/science.1255624
– ident: e_1_2_5_20_1
  doi: 10.1002/adma.201301603
– ident: e_1_2_5_11_1
  doi: 10.1021/acs.jpcc.5b07340
– ident: e_1_2_5_25_1
  doi: 10.1063/1.1700199
– volume-title: Organic Molecular Photophysics
  year: 1973
  ident: e_1_2_5_18_1
– ident: e_1_2_5_4_1
  doi: 10.1016/j.ccr.2011.01.042
– ident: e_1_2_5_3_1
  doi: 10.1038/35001541
– ident: e_1_2_5_39_1
  doi: 10.1039/c2cc34840c
– ident: e_1_2_5_37_1
– ident: e_1_2_5_44_1
  doi: 10.1063/1.1747632
– ident: e_1_2_5_27_1
  doi: 10.1063/1.1580806
– ident: e_1_2_5_6_1
  doi: 10.1063/1.1409582
– ident: e_1_2_5_10_1
  doi: 10.1002/advs.201600080
– ident: e_1_2_5_21_1
  doi: 10.1002/adma.201205022
– ident: e_1_2_5_36_1
– ident: e_1_2_5_50_1
  doi: 10.1103/PhysRevApplied.7.034002
– ident: e_1_2_5_19_1
  doi: 10.1021/jp075556o
– ident: e_1_2_5_32_1
  doi: 10.1038/lsa.2015.5
– ident: e_1_2_5_29_1
  doi: 10.1002/cphc.201000395
– ident: e_1_2_5_48_1
  doi: 10.1021/acs.jpclett.7b00688
– ident: e_1_2_5_28_1
  doi: 10.1021/jp061010a
– ident: e_1_2_5_54_1
  doi: 10.1080/00268976.2014.952696
– ident: e_1_2_5_52_1
  doi: 10.1021/ct700301q
SSID ssj0009606
Score 2.535647
Snippet Multiexcited‐state phenomena are believed to be the root cause of two exigent challenges in organic light‐emitting diodes; namely, efficiency roll‐off and...
Multiexcited-state phenomena are believed to be the root cause of two exigent challenges in organic light-emitting diodes; namely, efficiency roll-off and...
Abstract Multiexcited‐state phenomena are believed to be the root cause of two exigent challenges in organic light‐emitting diodes; namely, efficiency roll‐off...
SourceID osti
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
SubjectTerms Bromination
Coupling (molecular)
Emission spectra
Excitation
external heavy‐atom effect
Fluorescence
intersystem crossing
Light emitting diodes
Materials science
Molecular dynamics
Organic light emitting diodes
Photoluminescence
Spin-orbit interactions
spin–orbit coupling
thermally activated delayed fluorescence
Title Shorter Exciton Lifetimes via an External Heavy‐Atom Effect: Alleviating the Effects of Bimolecular Processes in Organic Light‐Emitting Diodes
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201701987
https://www.ncbi.nlm.nih.gov/pubmed/28892200
https://www.proquest.com/docview/1953068046
https://www.proquest.com/docview/1937762115
https://www.osti.gov/biblio/1401327
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bT9swFLZQn9jDuIyNcpMnTeIp0DhJk_AWoKiaGA9sSLxZtmOPaJBMNEXAEz8B8RP5JZxjp4FOmybBW1s77qlzLp-bc75DyJdcAYaAuO2lfV94YSKZl6YihhviK-abHEKkzfI96g9Pwq-n0emLKn7HD9H-4YaWYf01GriQo-1n0lCRW94gyyeeYDk5JmwhKjp-5o9CeG7J9gIUJkwmrI09tj19-VRU6lRgXX9DnNMA1kaggzkiJrK7xJNfW-NabqnbP2gd3_Lj5sn7Bp7SzOnTApnR5SJ594K08AN5-H6GCbqXdHCtwB2U9LAw2raop1eFoKKEAccsTYdaXN083t1ndXVBHU_yDs3OsaJdYLo1BfTZfD6ilaG7oDhNt17aVDDAqkVJXcWogq_6eVbDgoOLwuZr0_2iyvVoiZwcDH7sDb2ms4OnIgiPnkkjpsIQjjIigfCoVZBIP-8JqaXJexoOiVJGYWDiSKVwRE8BJ5ogYOCOtOgzwKQfSaesSr1MKDgciLda9gwzYZzHIopYboyM0sCHZftd4k3uLFcN7Tl23zjnjrCZcdxr3u51l2y28387wo9_zlxFReEAVZBvV2Fikqq5PbEyGF2b6A9v3MKI4zNLbHYSglif22EwaHxKI0pdjXFOEEOEAqTeJZ-c3rWCMNgLBn6tS5jVnv9IyLP9b1n7buU1F62SWXzt0hfXSKe-HOt1gGG13LCm9gQ5pCmJ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB7BcgAO_EOXFjASEqe0GyfZJNwC3WqBbQ_QStws27Fp1DZB3WwFnHgExCPyJMzY2ZRFICQ4JnaciTOe-SYZfwPwpNSIIdBvB_k4lEGcKR7kuUzxhYSah7ZEF-myfPfG04P41btkmU1Ie2E8P0T_wY1WhrPXtMDpg_TWOWuoLB1xkCMUz9KLcInKeruo6s05gxQBdEe3F5E4cbbkbRzxrdXrV_zSoMH19TvMuQphnQ_auQ5qKb1PPTnaXLRqU3_-hdjxvx7vBlzrECorvErdhAumvgVXf-ItvA3f3h5Sju4pm3zUaBFqNquscVXq2VklmayxwZNLs6mRZ5--f_latM0J81TJz1hxTJvaJWVcMwSg3fk5ayx7jrrTFexl3SYGHLWqmd80qvFW7w9bHHByUrmUbbZdNaWZ34GDncn-i2nQFXcIdIIeMrB5wnUcYzQjM_SQRkeZCsuRVEbZcmQwTlQqiSObJjrHKD1HqGijiKNFMnLMEZbehUHd1GYNGNocdLlGjSy3cVqmMkl4aa1K8ijEYcdDCJavVuiO-ZwKcBwLz9nMBc216Od6CE_7_h8858cfe66TpghEK0S5qyk3SbfCBa0cWzeWCiQ6yzAX9NuS6p3EKNbjvhnXNP2okbVpFtQnStFJIVgfwj2veL0gHOeCo2kbAnfq8xcJRbG9W_RH9__lokdwebq_OxOzl3uv1-EKnffZjBswaE8X5gGislY9dOvuB755LaQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFLVgkBBd8KYdWsBISKzSJo7zYheYGQ1QKgRU6s7yk0Ztk6qTqYAVn4D4xH5Jr-1M2kEgJFgmdpwb5z6Ok-tzEXqmJGAIiNtBkUY8oLkgQVHwDF5IJElkFIRIl-W7k0536Zu9ZO_SLn7PD9F_cLOW4fy1NfBjZbYuSEO5crxBjk88z66iazQNc6vXow8XBFIWnzu2vdhKQ_MFbWNItpavXwpLgwbM63eQcxnBuhA0uYX4QnifeXKwOW_Fpvz2C6_j_zzdbXSzw6e49Ap1B13R9V20com18B76-XHfZuie4PEXCf6gxtuV0a5GPT6tOOY1NHhqaTzV_PTr2fcfZdscYU-U_AKXh3ZLO7f51hjgZ3d-hhuDX4LmdOV6cbeFAUatauy3jEq41ef9FgYcH1UuYRuPqkbp2X20Oxl_ejUNutIOgUwgPgamSIikFNYyPIf4qGWci0iFXGhhVKhhlShEQmOTJbKANXoBQNHEMQF_pHlKAJQ-QIO6qfUawuBxIOBqERpiaKYyniREGSOSIo5g2HSIgsWbZbLjPbflNw6ZZ2wmzM416-d6iJ73_Y8948cfe65bRWGAVSzhrrSZSbJlbslKoHVjoT-s8wszZn9a2monFMR62jeDRdvfNLzWzdz2iTMIUQDVh2jV610vCIG5IODYhog47fmLhKwcvSv7o4f_ctETdP39aMK2X--8XUc37GmfyriBBu3JXD8CSNaKx87qzgEsEyxc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Shorter+Exciton+Lifetimes+via+an+External+Heavy%E2%80%90Atom+Effect%3A+Alleviating+the+Effects+of+Bimolecular+Processes+in+Organic+Light%E2%80%90Emitting+Diodes&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Einzinger%2C+Markus&rft.au=Zhu%2C+Tianyu&rft.au=de+Silva%2C+Piotr&rft.au=Belger%2C+Christian&rft.date=2017-10-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=29&rft.issue=40&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.201701987&rft.externalDBID=10.1002%252Fadma.201701987&rft.externalDocID=ADMA201701987
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon