Shorter Exciton Lifetimes via an External Heavy‐Atom Effect: Alleviating the Effects of Bimolecular Processes in Organic Light‐Emitting Diodes
Multiexcited‐state phenomena are believed to be the root cause of two exigent challenges in organic light‐emitting diodes; namely, efficiency roll‐off and degradation. The development of novel strategies to reduce exciton densities under heavy load is therefore highly desirable. Here, it is shown th...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 29; no. 40 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.10.2017
Wiley Blackwell (John Wiley & Sons) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Multiexcited‐state phenomena are believed to be the root cause of two exigent challenges in organic light‐emitting diodes; namely, efficiency roll‐off and degradation. The development of novel strategies to reduce exciton densities under heavy load is therefore highly desirable. Here, it is shown that triplet exciton lifetimes of thermally activated delayed‐fluorescence‐emitter molecules can be manipulated in the solid state by exploiting intermolecular interactions. The external heavy‐atom effect of brominated host molecules leads to increased spin–orbit coupling, which in turn enhances intersystem crossing rates in the guest molecule. Wave function overlap between the host and the guest is confirmed by combined molecular dynamics and density functional theory calculations. Shorter triplet exciton lifetimes are observed, while high photoluminescence quantum yields and essentially unaltered emission spectra are maintained. A change in the intersystem crossing rate ratio due to increased dielectric constants leads to almost 50% lower triplet exciton densities in the emissive layer in the steady state and results in an improved onset of the photoluminescence quantum yield roll‐off at high excitation densities. Efficient organic light‐emitting diodes with better roll‐off behavior based on these novel hosts are fabricated, demonstrating the suitability of this concept for real‐world applications.
Brominated hosts with an external heavy‐atom effect lead to shorter triplet exciton lifetimes in thermally activated, delayed‐fluorescence guest molecules due to increased spin–orbit coupling and intersystem crossing rates. Combined with externally manipulated singlet–triplet splitting of the dopants, this results in enhanced onsets of the photoluminescence quantum yield roll‐off and fabrication of organic light‐emitting diodes with improved droop behavior. |
---|---|
AbstractList | Multiexcited‐state phenomena are believed to be the root cause of two exigent challenges in organic light‐emitting diodes; namely, efficiency roll‐off and degradation. The development of novel strategies to reduce exciton densities under heavy load is therefore highly desirable. Here, it is shown that triplet exciton lifetimes of thermally activated delayed‐fluorescence‐emitter molecules can be manipulated in the solid state by exploiting intermolecular interactions. The external heavy‐atom effect of brominated host molecules leads to increased spin–orbit coupling, which in turn enhances intersystem crossing rates in the guest molecule. Wave function overlap between the host and the guest is confirmed by combined molecular dynamics and density functional theory calculations. Shorter triplet exciton lifetimes are observed, while high photoluminescence quantum yields and essentially unaltered emission spectra are maintained. A change in the intersystem crossing rate ratio due to increased dielectric constants leads to almost 50% lower triplet exciton densities in the emissive layer in the steady state and results in an improved onset of the photoluminescence quantum yield roll‐off at high excitation densities. Efficient organic light‐emitting diodes with better roll‐off behavior based on these novel hosts are fabricated, demonstrating the suitability of this concept for real‐world applications.
Brominated hosts with an external heavy‐atom effect lead to shorter triplet exciton lifetimes in thermally activated, delayed‐fluorescence guest molecules due to increased spin–orbit coupling and intersystem crossing rates. Combined with externally manipulated singlet–triplet splitting of the dopants, this results in enhanced onsets of the photoluminescence quantum yield roll‐off and fabrication of organic light‐emitting diodes with improved droop behavior. Abstract Multiexcited‐state phenomena are believed to be the root cause of two exigent challenges in organic light‐emitting diodes; namely, efficiency roll‐off and degradation. The development of novel strategies to reduce exciton densities under heavy load is therefore highly desirable. Here, it is shown that triplet exciton lifetimes of thermally activated delayed‐fluorescence‐emitter molecules can be manipulated in the solid state by exploiting intermolecular interactions. The external heavy‐atom effect of brominated host molecules leads to increased spin–orbit coupling, which in turn enhances intersystem crossing rates in the guest molecule. Wave function overlap between the host and the guest is confirmed by combined molecular dynamics and density functional theory calculations. Shorter triplet exciton lifetimes are observed, while high photoluminescence quantum yields and essentially unaltered emission spectra are maintained. A change in the intersystem crossing rate ratio due to increased dielectric constants leads to almost 50% lower triplet exciton densities in the emissive layer in the steady state and results in an improved onset of the photoluminescence quantum yield roll‐off at high excitation densities. Efficient organic light‐emitting diodes with better roll‐off behavior based on these novel hosts are fabricated, demonstrating the suitability of this concept for real‐world applications. Multiexcited-state phenomena are believed to be the root cause of two exigent challenges in organic light-emitting diodes; namely, efficiency roll-off and degradation. The development of novel strategies to reduce exciton densities under heavy load is therefore highly desirable. Here, it is shown that triplet exciton lifetimes of thermally activated delayed-fluorescence-emitter molecules can be manipulated in the solid state by exploiting intermolecular interactions. The external heavy-atom effect of brominated host molecules leads to increased spin-orbit coupling, which in turn enhances intersystem crossing rates in the guest molecule. Wave function overlap between the host and the guest is confirmed by combined molecular dynamics and density functional theory calculations. Shorter triplet exciton lifetimes are observed, while high photoluminescence quantum yields and essentially unaltered emission spectra are maintained. A change in the intersystem crossing rate ratio due to increased dielectric constants leads to almost 50% lower triplet exciton densities in the emissive layer in the steady state and results in an improved onset of the photoluminescence quantum yield roll-off at high excitation densities. Efficient organic light-emitting diodes with better roll-off behavior based on these novel hosts are fabricated, demonstrating the suitability of this concept for real-world applications.Multiexcited-state phenomena are believed to be the root cause of two exigent challenges in organic light-emitting diodes; namely, efficiency roll-off and degradation. The development of novel strategies to reduce exciton densities under heavy load is therefore highly desirable. Here, it is shown that triplet exciton lifetimes of thermally activated delayed-fluorescence-emitter molecules can be manipulated in the solid state by exploiting intermolecular interactions. The external heavy-atom effect of brominated host molecules leads to increased spin-orbit coupling, which in turn enhances intersystem crossing rates in the guest molecule. Wave function overlap between the host and the guest is confirmed by combined molecular dynamics and density functional theory calculations. Shorter triplet exciton lifetimes are observed, while high photoluminescence quantum yields and essentially unaltered emission spectra are maintained. A change in the intersystem crossing rate ratio due to increased dielectric constants leads to almost 50% lower triplet exciton densities in the emissive layer in the steady state and results in an improved onset of the photoluminescence quantum yield roll-off at high excitation densities. Efficient organic light-emitting diodes with better roll-off behavior based on these novel hosts are fabricated, demonstrating the suitability of this concept for real-world applications. Multiexcited-state phenomena are believed to be the root cause of two exigent challenges in organic light-emitting diodes; namely, efficiency roll-off and degradation. The development of novel strategies to reduce exciton densities under heavy load is therefore highly desirable. Here, it is shown that triplet exciton lifetimes of thermally activated delayed-fluorescence-emitter molecules can be manipulated in the solid state by exploiting intermolecular interactions. The external heavy-atom effect of brominated host molecules leads to increased spin-orbit coupling, which in turn enhances intersystem crossing rates in the guest molecule. Wave function overlap between the host and the guest is confirmed by combined molecular dynamics and density functional theory calculations. Shorter triplet exciton lifetimes are observed, while high photoluminescence quantum yields and essentially unaltered emission spectra are maintained. A change in the intersystem crossing rate ratio due to increased dielectric constants leads to almost 50% lower triplet exciton densities in the emissive layer in the steady state and results in an improved onset of the photoluminescence quantum yield roll-off at high excitation densities. Efficient organic light-emitting diodes with better roll-off behavior based on these novel hosts are fabricated, demonstrating the suitability of this concept for real-world applications. |
Author | Van Voorhis, Troy Einzinger, Markus Zhu, Tianyu de Silva, Piotr Swager, Timothy M. Baldo, Marc A. Belger, Christian |
Author_xml | – sequence: 1 givenname: Markus orcidid: 0000-0002-4952-2905 surname: Einzinger fullname: Einzinger, Markus email: meinzing@mit.edu organization: Massachusetts Institute of Technology – sequence: 2 givenname: Tianyu surname: Zhu fullname: Zhu, Tianyu organization: Massachusetts Institute of Technology – sequence: 3 givenname: Piotr surname: de Silva fullname: de Silva, Piotr organization: Massachusetts Institute of Technology – sequence: 4 givenname: Christian surname: Belger fullname: Belger, Christian organization: Massachusetts Institute of Technology – sequence: 5 givenname: Timothy M. surname: Swager fullname: Swager, Timothy M. organization: Massachusetts Institute of Technology – sequence: 6 givenname: Troy surname: Van Voorhis fullname: Van Voorhis, Troy organization: Massachusetts Institute of Technology – sequence: 7 givenname: Marc A. surname: Baldo fullname: Baldo, Marc A. organization: Massachusetts Institute of Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28892200$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/1401327$$D View this record in Osti.gov |
BookMark | eNqFkcFuEzEURS1URNPCliWyYMMm4dmeGY_ZDW2gSEFFAtaWx3mTuJqxy9gpZMcnID6RL8EhKUiVECtLfude-757Qo588EjIYwYzBsBfmOVgZhyYBKZqeY9MWMnZtABVHpEJKFFOVVXUx-QkxisAUBVUD8gxr2vFOcCE_PiwDmPCkc6_WpeCpwvXYXIDRnrjDDU-D_LYm55eoLnZ_vz2vUlhoPOuQ5te0qbvMYPJ-RVNazzcRxo6-soNoUe76c1I34_BYozZ1Xl6Oa6MdzY_tVqnbDgfXPptcO7CEuNDcr8zfcRHh_OUfHo9_3h2MV1cvnl71iymtoRKTjtVclsUspCmrguJVtQtW4Jpse2WgBWwti0L0cnSqjrnhVp0QnCQAk3FFRen5OneN8TkdMzx0a5t8D4H0KwAJrjM0PM9dD2GzxuMSQ8uWux74zFsomZKSFlxxsqMPruDXoXNbnM7qhRQ1VBUmXpyoDbtgEt9PbrBjFt9W0kGij1gxxDjiJ3OP8sLDj6NxvWagd41r3fN6z_NZ9nsjuzW-Z8CtRd8cT1u_0Pr5vxd81f7C_hZwe8 |
CitedBy_id | crossref_primary_10_1039_C8TC03270J crossref_primary_10_1007_s11224_025_02458_x crossref_primary_10_1016_j_cej_2020_126107 crossref_primary_10_1002_adom_202101228 crossref_primary_10_1039_D3TC00365E crossref_primary_10_1021_jacs_4c15230 crossref_primary_10_1021_acs_chemmater_2c01952 crossref_primary_10_1002_tcr_201800152 crossref_primary_10_3389_fchem_2020_00049 crossref_primary_10_1021_acs_jpcc_9b02820 crossref_primary_10_1021_acsmaterialslett_9b00369 crossref_primary_10_1016_j_dyepig_2020_108521 crossref_primary_10_1038_s41566_022_01083_y crossref_primary_10_1039_D1TC03924E crossref_primary_10_1016_j_dyepig_2023_111371 crossref_primary_10_1002_ange_202502380 crossref_primary_10_1016_j_cej_2022_139030 crossref_primary_10_1002_adom_202102568 crossref_primary_10_1002_anie_201906371 crossref_primary_10_1002_anie_202413129 crossref_primary_10_1021_acs_jpca_9b09148 crossref_primary_10_1016_j_mser_2020_100581 crossref_primary_10_1021_acs_jpcc_0c01863 crossref_primary_10_1016_j_mtener_2020_100581 crossref_primary_10_1021_acsami_3c10003 crossref_primary_10_1039_C9CC07045A crossref_primary_10_1016_j_mtener_2021_100705 crossref_primary_10_1002_ange_201906371 crossref_primary_10_1016_j_cej_2022_136292 crossref_primary_10_1002_adfm_202104646 crossref_primary_10_1039_D2TC03249J crossref_primary_10_1002_adfm_202306880 crossref_primary_10_1021_acs_chemmater_9b01601 crossref_primary_10_1002_ange_202106204 crossref_primary_10_1039_C8TC01139G crossref_primary_10_1002_advs_201800846 crossref_primary_10_1002_adma_202415289 crossref_primary_10_1002_advs_202101326 crossref_primary_10_1021_acs_jpclett_2c00300 crossref_primary_10_1021_acs_macromol_8b00565 crossref_primary_10_1016_j_cej_2021_131169 crossref_primary_10_1021_acs_jpcc_3c05567 crossref_primary_10_1021_acs_jpcc_4c04475 crossref_primary_10_1021_acs_jpcc_9b05007 crossref_primary_10_1039_D3CC05460H crossref_primary_10_1002_ange_202413129 crossref_primary_10_1021_acs_jpcc_9b03867 crossref_primary_10_1002_adom_202101343 crossref_primary_10_1021_acs_jpclett_2c01745 crossref_primary_10_1021_acsami_2c12017 crossref_primary_10_3390_molecules29194589 crossref_primary_10_1002_adfm_202204352 crossref_primary_10_1039_C9TC00346K crossref_primary_10_1021_acsami_2c12778 crossref_primary_10_1039_D1SM00061F crossref_primary_10_1002_adom_202100857 crossref_primary_10_1016_j_jsamd_2022_100432 crossref_primary_10_1126_sciadv_abm1999 crossref_primary_10_1021_acs_jpclett_8b01961 crossref_primary_10_1002_anie_202420489 crossref_primary_10_2139_ssrn_4153166 crossref_primary_10_1021_acs_jpcc_0c03341 crossref_primary_10_1021_acsphotonics_0c00732 crossref_primary_10_1039_D2CC03809A crossref_primary_10_1063_1_5114789 crossref_primary_10_1021_acsaenm_4c00196 crossref_primary_10_1016_j_cej_2020_127591 crossref_primary_10_1016_j_cej_2024_148865 crossref_primary_10_1088_1361_6528_ad18e4 crossref_primary_10_1002_anie_201904433 crossref_primary_10_1016_j_chemphys_2025_112611 crossref_primary_10_1002_adtp_202100176 crossref_primary_10_1016_j_jlumin_2023_120087 crossref_primary_10_1002_anie_202106204 crossref_primary_10_1002_adom_201900476 crossref_primary_10_1002_adom_201901048 crossref_primary_10_1016_j_dyepig_2020_108694 crossref_primary_10_1021_acs_jpclett_2c01205 crossref_primary_10_1002_anie_202502380 crossref_primary_10_1021_acs_inorgchem_4c03819 crossref_primary_10_1038_s41467_023_38197_y crossref_primary_10_1039_D4NJ05133E crossref_primary_10_1002_adom_202203030 crossref_primary_10_1002_ange_201904433 crossref_primary_10_1038_s41566_020_0668_z crossref_primary_10_1039_D3QM00799E crossref_primary_10_1039_C8TC01567H crossref_primary_10_1007_s43630_022_00326_9 crossref_primary_10_1016_j_optcom_2021_126854 crossref_primary_10_1002_chem_201904415 crossref_primary_10_1002_ange_202420489 crossref_primary_10_1038_s41598_023_34623_9 crossref_primary_10_1016_j_cclet_2024_109761 crossref_primary_10_1021_acs_jpcc_0c01499 crossref_primary_10_1002_adfm_201802031 crossref_primary_10_1021_acs_jpcc_3c07943 crossref_primary_10_1007_s11426_019_9531_4 crossref_primary_10_1002_adfm_202002064 crossref_primary_10_1021_acs_jpcc_3c06465 crossref_primary_10_1021_acsami_8b06137 |
Cites_doi | 10.1039/C5SC03739E 10.1103/PhysRevB.68.075211 10.1093/oso/9780195129632.001.0001 10.1063/1.1751232 10.1002/adma.201402532 10.1002/adma.19970090308 10.1021/acs.jpca.6b03867 10.1039/c3tc30699b 10.1039/C6OB00140H 10.1063/1.478522 10.1103/PhysRevB.74.045213 10.1038/srep30178 10.1038/srep03797 10.1021/acs.joc.5b01496 10.1002/adma.201606448 10.1021/j100818a042 10.1021/ja9621760 10.1063/1.124258 10.1038/nphoton.2012.31 10.1016/j.mseb.2013.04.012 10.1038/nmat4717 10.1038/ncomms13680 10.1038/nature11687 10.1021/nl403047m 10.1038/25954 10.1002/adom.201500689 10.1039/c2cc36237f 10.1103/PhysRevB.62.10967 10.1126/science.1255624 10.1002/adma.201301603 10.1021/acs.jpcc.5b07340 10.1063/1.1700199 10.1016/j.ccr.2011.01.042 10.1038/35001541 10.1039/c2cc34840c 10.1063/1.1747632 10.1063/1.1580806 10.1063/1.1409582 10.1002/advs.201600080 10.1002/adma.201205022 10.1103/PhysRevApplied.7.034002 10.1021/jp075556o 10.1038/lsa.2015.5 10.1002/cphc.201000395 10.1021/acs.jpclett.7b00688 10.1021/jp061010a 10.1080/00268976.2014.952696 10.1021/ct700301q |
ContentType | Journal Article |
Copyright | 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 OTOTI |
DOI | 10.1002/adma.201701987 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic OSTI.GOV |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed CrossRef Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 1401327 28892200 10_1002_adma_201701987 ADMA201701987 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: US Department of Energy funderid: DE‐FG02‐07ER46474 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AAHHS AANHP AAYOK AAYXX ABEML ACBWZ ACCFJ ACRPL ACSCC ACYXJ ADNMO ADZOD AEEZP AEQDE AETEA AFFNX AGQPQ AIWBW AJBDE ASPBG AVWKF AZFZN CITATION FEDTE FOJGT HF~ HVGLF M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 NPM 7SR 8BQ 8FD JG9 7X8 ACXME AEUQT AFPWT OTOTI RWI RWM WRC |
ID | FETCH-LOGICAL-c5067-f952c44747a8847ec38b1d0abebfd0e601bb543f75c98889083f332073ea62923 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Mon Jul 01 06:27:10 EDT 2024 Thu Jul 10 22:36:32 EDT 2025 Fri Jul 25 08:09:51 EDT 2025 Mon Jul 21 05:42:03 EDT 2025 Tue Jul 01 00:44:35 EDT 2025 Thu Apr 24 23:10:33 EDT 2025 Wed Aug 20 07:26:14 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 40 |
Keywords | intersystem crossing thermally activated delayed fluorescence external heavy-atom effect spin-orbit coupling organic light-emitting diodes |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#am http://onlinelibrary.wiley.com/termsAndConditions#vor 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5067-f952c44747a8847ec38b1d0abebfd0e601bb543f75c98889083f332073ea62923 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 USDOE DE‐FG02‐07ER46474 |
ORCID | 0000-0002-4952-2905 0000000249522905 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/adma.201701987 |
PMID | 28892200 |
PQID | 1953068046 |
PQPubID | 2045203 |
PageCount | 7 |
ParticipantIDs | osti_scitechconnect_1401327 proquest_miscellaneous_1937762115 proquest_journals_1953068046 pubmed_primary_28892200 crossref_citationtrail_10_1002_adma_201701987 crossref_primary_10_1002_adma_201701987 wiley_primary_10_1002_adma_201701987_ADMA201701987 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-Oct |
PublicationDateYYYYMMDD | 2017-10-01 |
PublicationDate_xml | – month: 10 year: 2017 text: 2017-Oct |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2017 |
Publisher | Wiley Subscription Services, Inc Wiley Blackwell (John Wiley & Sons) |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: Wiley Blackwell (John Wiley & Sons) |
References | 2010; 11 2017; 7 2017; 8 2006; 74 2003; 119 2013; 25 2013; 1 2001; 90 2014; 26 1973 2015; 80 2008; 4 1997; 9 1998; 395 2012; 492 1952; 20 2014; 4 2013; 13 2000; 403 2000; 62 2015; 4 2010 2009 2006; 110 2006 2005 2017; 29 2003 2016; 15 2011; 255 2016; 120 2016; 14 1999 2016; 4 2016; 6 1950; 18 2016; 7 2004; 95 2016; 3 2015; 113 2007; 111 2003; 68 2013; 178 1999; 110 1999; 75 2015; 119 2012; 48 1962; 66 2012; 6 2014; 345 1996; 118 e_1_2_5_27_1 Swenberg C. E. (e_1_2_5_18_1) 1973 e_1_2_5_25_1 e_1_2_5_48_1 e_1_2_5_23_1 e_1_2_5_46_1 e_1_2_5_21_1 e_1_2_5_44_1 e_1_2_5_29_1 e_1_2_5_42_1 e_1_2_5_40_1 e_1_2_5_15_1 e_1_2_5_38_1 e_1_2_5_17_1 e_1_2_5_36_1 e_1_2_5_9_1 e_1_2_5_11_1 e_1_2_5_34_1 e_1_2_5_7_1 e_1_2_5_13_1 e_1_2_5_32_1 e_1_2_5_5_1 e_1_2_5_3_1 e_1_2_5_1_1 e_1_2_5_19_1 Pope M. (e_1_2_5_16_1) 1999 e_1_2_5_30_1 e_1_2_5_53_1 e_1_2_5_51_1 e_1_2_5_28_1 e_1_2_5_49_1 e_1_2_5_26_1 e_1_2_5_47_1 e_1_2_5_24_1 e_1_2_5_45_1 e_1_2_5_22_1 e_1_2_5_43_1 e_1_2_5_20_1 e_1_2_5_41_1 e_1_2_5_14_1 e_1_2_5_39_1 e_1_2_5_37_1 e_1_2_5_8_1 e_1_2_5_10_1 e_1_2_5_35_1 e_1_2_5_6_1 e_1_2_5_12_1 e_1_2_5_33_1 e_1_2_5_54_1 e_1_2_5_4_1 e_1_2_5_2_1 e_1_2_5_31_1 e_1_2_5_52_1 e_1_2_5_50_1 |
References_xml | – volume: 25 start-page: 2114 year: 2013 publication-title: Adv. Mater. – year: 2009 – volume: 345 start-page: 1487 year: 2014 publication-title: Science – volume: 95 start-page: 7798 year: 2004 publication-title: J. Appl. Phys. – volume: 80 start-page: 9126 year: 2015 publication-title: J. Org. Chem. – year: 2005 – volume: 4 start-page: 435 year: 2008 publication-title: J. Chem. Theory Comput. – volume: 110 start-page: 6158 year: 1999 publication-title: J. Chem. Phys. – volume: 11 start-page: 3133 year: 2010 publication-title: ChemPhysChem – volume: 75 start-page: 4 year: 1999 publication-title: Appl. Phys. Lett. – volume: 3 start-page: 1600080 year: 2016 publication-title: Adv. Sci. – volume: 29 start-page: 1606448 year: 2017 publication-title: Adv. Mater. – volume: 395 start-page: 151 year: 1998 publication-title: Nature – volume: 15 start-page: 1120 year: 2016 publication-title: Nat. Mater. – volume: 110 start-page: 12809 year: 2006 publication-title: J. Phys. Chem. B – volume: 6 start-page: 253 year: 2012 publication-title: Nat. Photonics – volume: 13 start-page: 5949 year: 2013 publication-title: Nano Lett. – volume: 119 start-page: 25591 year: 2015 publication-title: J. Phys. Chem. C – volume: 48 start-page: 11392 year: 2012 publication-title: Chem. Commun. – volume: 1 start-page: 4599 year: 2013 publication-title: J. Mater. Chem. C – volume: 119 start-page: 2223 year: 2003 publication-title: J. Chem. Phys. – volume: 492 start-page: 234 year: 2012 publication-title: Nature – volume: 7 start-page: 13680 year: 2016 publication-title: Nat. Commun. – volume: 8 start-page: 2393 year: 2017 publication-title: J. Phys. Chem. Lett. – volume: 255 start-page: 2622 year: 2011 publication-title: Coord. Chem. Rev. – volume: 25 start-page: 6801 year: 2013 publication-title: Adv. Mater. – volume: 178 start-page: 863 year: 2013 publication-title: Mater. Sci. Eng. B – volume: 7 start-page: 34002 year: 2017 publication-title: Phys. Rev. Appl. – volume: 68 start-page: 75211 year: 2003 publication-title: Phys. Rev. B – year: 2003 – year: 1973 – volume: 111 start-page: 12075 year: 2007 publication-title: J. Phys. Chem. B – volume: 9 start-page: 230 year: 1997 publication-title: Adv. Mater. – volume: 26 start-page: 7931 year: 2014 publication-title: Adv. Mater. – volume: 113 start-page: 184 year: 2015 publication-title: Mol. Phys. – volume: 120 start-page: 5791 year: 2016 publication-title: J. Phys. Chem. A – volume: 6 start-page: 30178 year: 2016 publication-title: Sci. Rep. – volume: 18 start-page: 365 year: 1950 publication-title: J. Chem. Phys. – year: 2010 – volume: 4 start-page: 3797 year: 2014 publication-title: Sci. Rep. – volume: 74 start-page: 45213 year: 2006 publication-title: Phys. Rev. B – volume: 4 start-page: 597 year: 2016 publication-title: Adv. Opt. Mater. – volume: 62 start-page: 10967 year: 2000 publication-title: Phys. Rev. B – volume: 14 start-page: 2961 year: 2016 publication-title: Org. Biomol. Chem. – volume: 118 start-page: 11225 year: 1996 publication-title: J. Am. Chem. Soc. – volume: 20 start-page: 71 year: 1952 publication-title: J. Chem. Phys. – volume: 66 start-page: 2499 year: 1962 publication-title: J. Phys. Chem. – volume: 4 start-page: e232 year: 2015 publication-title: Light Sci. Appl. – year: 2006 – volume: 8 start-page: 6060 year: 2017 publication-title: Chem. Sci. – volume: 48 start-page: 10841 year: 2012 publication-title: Chem. Commun. – volume: 403 start-page: 750 year: 2000 publication-title: Nature – volume: 90 start-page: 5048 year: 2001 publication-title: J. Appl. Phys. – year: 1999 – ident: e_1_2_5_30_1 doi: 10.1039/C5SC03739E – ident: e_1_2_5_1_1 doi: 10.1103/PhysRevB.68.075211 – volume-title: Electronic Processes in Organic Crystals and Polymers year: 1999 ident: e_1_2_5_16_1 doi: 10.1093/oso/9780195129632.001.0001 – ident: e_1_2_5_43_1 doi: 10.1063/1.1751232 – ident: e_1_2_5_47_1 doi: 10.1002/adma.201402532 – ident: e_1_2_5_45_1 doi: 10.1002/adma.19970090308 – ident: e_1_2_5_31_1 doi: 10.1021/acs.jpca.6b03867 – ident: e_1_2_5_9_1 doi: 10.1039/c3tc30699b – ident: e_1_2_5_40_1 doi: 10.1039/C6OB00140H – ident: e_1_2_5_53_1 doi: 10.1063/1.478522 – ident: e_1_2_5_34_1 – ident: e_1_2_5_12_1 doi: 10.1103/PhysRevB.74.045213 – ident: e_1_2_5_33_1 doi: 10.1038/srep30178 – ident: e_1_2_5_42_1 doi: 10.1038/srep03797 – ident: e_1_2_5_24_1 doi: 10.1021/acs.joc.5b01496 – ident: e_1_2_5_49_1 doi: 10.1002/adma.201606448 – ident: e_1_2_5_26_1 doi: 10.1021/j100818a042 – ident: e_1_2_5_51_1 doi: 10.1021/ja9621760 – ident: e_1_2_5_5_1 doi: 10.1063/1.124258 – ident: e_1_2_5_46_1 doi: 10.1038/nphoton.2012.31 – ident: e_1_2_5_41_1 doi: 10.1016/j.mseb.2013.04.012 – ident: e_1_2_5_23_1 doi: 10.1038/nmat4717 – ident: e_1_2_5_14_1 doi: 10.1038/ncomms13680 – ident: e_1_2_5_7_1 doi: 10.1038/nature11687 – ident: e_1_2_5_22_1 doi: 10.1021/nl403047m – ident: e_1_2_5_2_1 doi: 10.1038/25954 – ident: e_1_2_5_15_1 doi: 10.1002/adom.201500689 – ident: e_1_2_5_38_1 – ident: e_1_2_5_35_1 – ident: e_1_2_5_8_1 doi: 10.1039/c2cc36237f – ident: e_1_2_5_17_1 doi: 10.1103/PhysRevB.62.10967 – ident: e_1_2_5_13_1 doi: 10.1126/science.1255624 – ident: e_1_2_5_20_1 doi: 10.1002/adma.201301603 – ident: e_1_2_5_11_1 doi: 10.1021/acs.jpcc.5b07340 – ident: e_1_2_5_25_1 doi: 10.1063/1.1700199 – volume-title: Organic Molecular Photophysics year: 1973 ident: e_1_2_5_18_1 – ident: e_1_2_5_4_1 doi: 10.1016/j.ccr.2011.01.042 – ident: e_1_2_5_3_1 doi: 10.1038/35001541 – ident: e_1_2_5_39_1 doi: 10.1039/c2cc34840c – ident: e_1_2_5_37_1 – ident: e_1_2_5_44_1 doi: 10.1063/1.1747632 – ident: e_1_2_5_27_1 doi: 10.1063/1.1580806 – ident: e_1_2_5_6_1 doi: 10.1063/1.1409582 – ident: e_1_2_5_10_1 doi: 10.1002/advs.201600080 – ident: e_1_2_5_21_1 doi: 10.1002/adma.201205022 – ident: e_1_2_5_36_1 – ident: e_1_2_5_50_1 doi: 10.1103/PhysRevApplied.7.034002 – ident: e_1_2_5_19_1 doi: 10.1021/jp075556o – ident: e_1_2_5_32_1 doi: 10.1038/lsa.2015.5 – ident: e_1_2_5_29_1 doi: 10.1002/cphc.201000395 – ident: e_1_2_5_48_1 doi: 10.1021/acs.jpclett.7b00688 – ident: e_1_2_5_28_1 doi: 10.1021/jp061010a – ident: e_1_2_5_54_1 doi: 10.1080/00268976.2014.952696 – ident: e_1_2_5_52_1 doi: 10.1021/ct700301q |
SSID | ssj0009606 |
Score | 2.535647 |
Snippet | Multiexcited‐state phenomena are believed to be the root cause of two exigent challenges in organic light‐emitting diodes; namely, efficiency roll‐off and... Multiexcited-state phenomena are believed to be the root cause of two exigent challenges in organic light-emitting diodes; namely, efficiency roll-off and... Abstract Multiexcited‐state phenomena are believed to be the root cause of two exigent challenges in organic light‐emitting diodes; namely, efficiency roll‐off... |
SourceID | osti proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
SubjectTerms | Bromination Coupling (molecular) Emission spectra Excitation external heavy‐atom effect Fluorescence intersystem crossing Light emitting diodes Materials science Molecular dynamics Organic light emitting diodes Photoluminescence Spin-orbit interactions spin–orbit coupling thermally activated delayed fluorescence |
Title | Shorter Exciton Lifetimes via an External Heavy‐Atom Effect: Alleviating the Effects of Bimolecular Processes in Organic Light‐Emitting Diodes |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201701987 https://www.ncbi.nlm.nih.gov/pubmed/28892200 https://www.proquest.com/docview/1953068046 https://www.proquest.com/docview/1937762115 https://www.osti.gov/biblio/1401327 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bT9swFLZQn9jDuIyNcpMnTeIp0DhJk_AWoKiaGA9sSLxZtmOPaJBMNEXAEz8B8RP5JZxjp4FOmybBW1s77qlzLp-bc75DyJdcAYaAuO2lfV94YSKZl6YihhviK-abHEKkzfI96g9Pwq-n0emLKn7HD9H-4YaWYf01GriQo-1n0lCRW94gyyeeYDk5JmwhKjp-5o9CeG7J9gIUJkwmrI09tj19-VRU6lRgXX9DnNMA1kaggzkiJrK7xJNfW-NabqnbP2gd3_Lj5sn7Bp7SzOnTApnR5SJ594K08AN5-H6GCbqXdHCtwB2U9LAw2raop1eFoKKEAccsTYdaXN083t1ndXVBHU_yDs3OsaJdYLo1BfTZfD6ilaG7oDhNt17aVDDAqkVJXcWogq_6eVbDgoOLwuZr0_2iyvVoiZwcDH7sDb2ms4OnIgiPnkkjpsIQjjIigfCoVZBIP-8JqaXJexoOiVJGYWDiSKVwRE8BJ5ogYOCOtOgzwKQfSaesSr1MKDgciLda9gwzYZzHIopYboyM0sCHZftd4k3uLFcN7Tl23zjnjrCZcdxr3u51l2y28387wo9_zlxFReEAVZBvV2Fikqq5PbEyGF2b6A9v3MKI4zNLbHYSglif22EwaHxKI0pdjXFOEEOEAqTeJZ-c3rWCMNgLBn6tS5jVnv9IyLP9b1n7buU1F62SWXzt0hfXSKe-HOt1gGG13LCm9gQ5pCmJ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB7BcgAO_EOXFjASEqe0GyfZJNwC3WqBbQ_QStws27Fp1DZB3WwFnHgExCPyJMzY2ZRFICQ4JnaciTOe-SYZfwPwpNSIIdBvB_k4lEGcKR7kuUzxhYSah7ZEF-myfPfG04P41btkmU1Ie2E8P0T_wY1WhrPXtMDpg_TWOWuoLB1xkCMUz9KLcInKeruo6s05gxQBdEe3F5E4cbbkbRzxrdXrV_zSoMH19TvMuQphnQ_auQ5qKb1PPTnaXLRqU3_-hdjxvx7vBlzrECorvErdhAumvgVXf-ItvA3f3h5Sju4pm3zUaBFqNquscVXq2VklmayxwZNLs6mRZ5--f_latM0J81TJz1hxTJvaJWVcMwSg3fk5ayx7jrrTFexl3SYGHLWqmd80qvFW7w9bHHByUrmUbbZdNaWZ34GDncn-i2nQFXcIdIIeMrB5wnUcYzQjM_SQRkeZCsuRVEbZcmQwTlQqiSObJjrHKD1HqGijiKNFMnLMEZbehUHd1GYNGNocdLlGjSy3cVqmMkl4aa1K8ijEYcdDCJavVuiO-ZwKcBwLz9nMBc216Od6CE_7_h8858cfe66TpghEK0S5qyk3SbfCBa0cWzeWCiQ6yzAX9NuS6p3EKNbjvhnXNP2okbVpFtQnStFJIVgfwj2veL0gHOeCo2kbAnfq8xcJRbG9W_RH9__lokdwebq_OxOzl3uv1-EKnffZjBswaE8X5gGislY9dOvuB755LaQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFLVgkBBd8KYdWsBISKzSJo7zYheYGQ1QKgRU6s7yk0Ztk6qTqYAVn4D4xH5Jr-1M2kEgJFgmdpwb5z6Ok-tzEXqmJGAIiNtBkUY8oLkgQVHwDF5IJElkFIRIl-W7k0536Zu9ZO_SLn7PD9F_cLOW4fy1NfBjZbYuSEO5crxBjk88z66iazQNc6vXow8XBFIWnzu2vdhKQ_MFbWNItpavXwpLgwbM63eQcxnBuhA0uYX4QnifeXKwOW_Fpvz2C6_j_zzdbXSzw6e49Ap1B13R9V20com18B76-XHfZuie4PEXCf6gxtuV0a5GPT6tOOY1NHhqaTzV_PTr2fcfZdscYU-U_AKXh3ZLO7f51hjgZ3d-hhuDX4LmdOV6cbeFAUatauy3jEq41ef9FgYcH1UuYRuPqkbp2X20Oxl_ejUNutIOgUwgPgamSIikFNYyPIf4qGWci0iFXGhhVKhhlShEQmOTJbKANXoBQNHEMQF_pHlKAJQ-QIO6qfUawuBxIOBqERpiaKYyniREGSOSIo5g2HSIgsWbZbLjPbflNw6ZZ2wmzM416-d6iJ73_Y8948cfe65bRWGAVSzhrrSZSbJlbslKoHVjoT-s8wszZn9a2monFMR62jeDRdvfNLzWzdz2iTMIUQDVh2jV610vCIG5IODYhog47fmLhKwcvSv7o4f_ctETdP39aMK2X--8XUc37GmfyriBBu3JXD8CSNaKx87qzgEsEyxc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Shorter+Exciton+Lifetimes+via+an+External+Heavy%E2%80%90Atom+Effect%3A+Alleviating+the+Effects+of+Bimolecular+Processes+in+Organic+Light%E2%80%90Emitting+Diodes&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Einzinger%2C+Markus&rft.au=Zhu%2C+Tianyu&rft.au=de+Silva%2C+Piotr&rft.au=Belger%2C+Christian&rft.date=2017-10-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=29&rft.issue=40&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.201701987&rft.externalDBID=10.1002%252Fadma.201701987&rft.externalDocID=ADMA201701987 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |