Hyperglycemia Induces Trained Immunity in Macrophages and Their Precursors and Promotes Atherosclerosis

Cardiovascular risk in diabetes remains elevated despite glucose-lowering therapies. We hypothesized that hyperglycemia induces trained immunity in macrophages, promoting persistent proatherogenic characteristics. Bone marrow-derived macrophages from control mice and mice with diabetes were grown in...

Full description

Saved in:
Bibliographic Details
Published inCirculation (New York, N.Y.) Vol. 144; no. 12; pp. 961 - 982
Main Authors Edgar, Laurienne, Akbar, Naveed, Braithwaite, Adam T., Krausgruber, Thomas, Gallart-Ayala, Héctor, Bailey, Jade, Corbin, Alastair L., Khoyratty, Tariq E., Chai, Joshua T., Alkhalil, Mohammad, Rendeiro, André F., Ziberna, Klemen, Arya, Ritu, Cahill, Thomas J., Bock, Christoph, Laurencikiene, Jurga, Crabtree, Mark J., Lemieux, Madeleine E., Riksen, Niels P., Netea, Mihai G., Wheelock, Craig E., Channon, Keith M., Rydén, Mikael, Udalova, Irina A., Carnicer, Ricardo, Choudhury, Robin P.
Format Journal Article
LanguageEnglish
Published United States Lippincott Williams & Wilkins 21.09.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cardiovascular risk in diabetes remains elevated despite glucose-lowering therapies. We hypothesized that hyperglycemia induces trained immunity in macrophages, promoting persistent proatherogenic characteristics. Bone marrow-derived macrophages from control mice and mice with diabetes were grown in physiological glucose (5 mmol/L) and subjected to RNA sequencing (n=6), assay for transposase accessible chromatin sequencing (n=6), and chromatin immunoprecipitation sequencing (n=6) for determination of hyperglycemia-induced trained immunity. Bone marrow transplantation from mice with (n=9) or without (n=6) diabetes into (normoglycemic) mice was used to assess its functional significance in vivo. Evidence of hyperglycemia-induced trained immunity was sought in human peripheral blood mononuclear cells from patients with diabetes (n=8) compared with control subjects (n=16) and in human atherosclerotic plaque macrophages excised by laser capture microdissection. In macrophages, high extracellular glucose promoted proinflammatory gene expression and proatherogenic functional characteristics through glycolysis-dependent mechanisms. Bone marrow-derived macrophages from diabetic mice retained these characteristics, even when cultured in physiological glucose, indicating hyperglycemia-induced trained immunity. Bone marrow transplantation from diabetic mice into (normoglycemic) mice increased aortic root atherosclerosis, confirming a disease-relevant and persistent form of trained innate immunity. Integrated assay for transposase accessible chromatin, chromatin immunoprecipitation, and RNA sequencing analyses of hematopoietic stem cells and bone marrow-derived macrophages revealed a proinflammatory priming effect in diabetes. The pattern of open chromatin implicated transcription factor Runt-related transcription factor 1 (Runx1). Similarly, transcriptomes of atherosclerotic plaque macrophages and peripheral leukocytes in patients with type 2 diabetes were enriched for Runx1 targets, consistent with a potential role in human disease. Pharmacological inhibition of Runx1 in vitro inhibited the trained phenotype. Hyperglycemia-induced trained immunity may explain why targeting elevated glucose is ineffective in reducing macrovascular risk in diabetes and suggests new targets for disease prevention and therapy.
AbstractList Cardiovascular risk in diabetes remains elevated despite glucose-lowering therapies. We hypothesized that hyperglycemia induces trained immunity in macrophages, promoting persistent proatherogenic characteristics.BACKGROUNDCardiovascular risk in diabetes remains elevated despite glucose-lowering therapies. We hypothesized that hyperglycemia induces trained immunity in macrophages, promoting persistent proatherogenic characteristics.Bone marrow-derived macrophages from control mice and mice with diabetes were grown in physiological glucose (5 mmol/L) and subjected to RNA sequencing (n=6), assay for transposase accessible chromatin sequencing (n=6), and chromatin immunoprecipitation sequencing (n=6) for determination of hyperglycemia-induced trained immunity. Bone marrow transplantation from mice with (n=9) or without (n=6) diabetes into (normoglycemic) Ldlr-/- mice was used to assess its functional significance in vivo. Evidence of hyperglycemia-induced trained immunity was sought in human peripheral blood mononuclear cells from patients with diabetes (n=8) compared with control subjects (n=16) and in human atherosclerotic plaque macrophages excised by laser capture microdissection.METHODSBone marrow-derived macrophages from control mice and mice with diabetes were grown in physiological glucose (5 mmol/L) and subjected to RNA sequencing (n=6), assay for transposase accessible chromatin sequencing (n=6), and chromatin immunoprecipitation sequencing (n=6) for determination of hyperglycemia-induced trained immunity. Bone marrow transplantation from mice with (n=9) or without (n=6) diabetes into (normoglycemic) Ldlr-/- mice was used to assess its functional significance in vivo. Evidence of hyperglycemia-induced trained immunity was sought in human peripheral blood mononuclear cells from patients with diabetes (n=8) compared with control subjects (n=16) and in human atherosclerotic plaque macrophages excised by laser capture microdissection.In macrophages, high extracellular glucose promoted proinflammatory gene expression and proatherogenic functional characteristics through glycolysis-dependent mechanisms. Bone marrow-derived macrophages from diabetic mice retained these characteristics, even when cultured in physiological glucose, indicating hyperglycemia-induced trained immunity. Bone marrow transplantation from diabetic mice into (normoglycemic) Ldlr-/- mice increased aortic root atherosclerosis, confirming a disease-relevant and persistent form of trained innate immunity. Integrated assay for transposase accessible chromatin, chromatin immunoprecipitation, and RNA sequencing analyses of hematopoietic stem cells and bone marrow-derived macrophages revealed a proinflammatory priming effect in diabetes. The pattern of open chromatin implicated transcription factor Runt-related transcription factor 1 (Runx1). Similarly, transcriptomes of atherosclerotic plaque macrophages and peripheral leukocytes in patients with type 2 diabetes were enriched for Runx1 targets, consistent with a potential role in human disease. Pharmacological inhibition of Runx1 in vitro inhibited the trained phenotype.RESULTSIn macrophages, high extracellular glucose promoted proinflammatory gene expression and proatherogenic functional characteristics through glycolysis-dependent mechanisms. Bone marrow-derived macrophages from diabetic mice retained these characteristics, even when cultured in physiological glucose, indicating hyperglycemia-induced trained immunity. Bone marrow transplantation from diabetic mice into (normoglycemic) Ldlr-/- mice increased aortic root atherosclerosis, confirming a disease-relevant and persistent form of trained innate immunity. Integrated assay for transposase accessible chromatin, chromatin immunoprecipitation, and RNA sequencing analyses of hematopoietic stem cells and bone marrow-derived macrophages revealed a proinflammatory priming effect in diabetes. The pattern of open chromatin implicated transcription factor Runt-related transcription factor 1 (Runx1). Similarly, transcriptomes of atherosclerotic plaque macrophages and peripheral leukocytes in patients with type 2 diabetes were enriched for Runx1 targets, consistent with a potential role in human disease. Pharmacological inhibition of Runx1 in vitro inhibited the trained phenotype.Hyperglycemia-induced trained immunity may explain why targeting elevated glucose is ineffective in reducing macrovascular risk in diabetes and suggests new targets for disease prevention and therapy.CONCLUSIONSHyperglycemia-induced trained immunity may explain why targeting elevated glucose is ineffective in reducing macrovascular risk in diabetes and suggests new targets for disease prevention and therapy.
Cardiovascular risk in diabetes remains elevated despite glucose-lowering therapies. We hypothesized that hyperglycemia induces trained immunity in macrophages, promoting persistent proatherogenic characteristics. Bone marrow-derived macrophages from control mice and mice with diabetes were grown in physiological glucose (5 mmol/L) and subjected to RNA sequencing (n=6), assay for transposase accessible chromatin sequencing (n=6), and chromatin immunoprecipitation sequencing (n=6) for determination of hyperglycemia-induced trained immunity. Bone marrow transplantation from mice with (n=9) or without (n=6) diabetes into (normoglycemic) mice was used to assess its functional significance in vivo. Evidence of hyperglycemia-induced trained immunity was sought in human peripheral blood mononuclear cells from patients with diabetes (n=8) compared with control subjects (n=16) and in human atherosclerotic plaque macrophages excised by laser capture microdissection. In macrophages, high extracellular glucose promoted proinflammatory gene expression and proatherogenic functional characteristics through glycolysis-dependent mechanisms. Bone marrow-derived macrophages from diabetic mice retained these characteristics, even when cultured in physiological glucose, indicating hyperglycemia-induced trained immunity. Bone marrow transplantation from diabetic mice into (normoglycemic) mice increased aortic root atherosclerosis, confirming a disease-relevant and persistent form of trained innate immunity. Integrated assay for transposase accessible chromatin, chromatin immunoprecipitation, and RNA sequencing analyses of hematopoietic stem cells and bone marrow-derived macrophages revealed a proinflammatory priming effect in diabetes. The pattern of open chromatin implicated transcription factor Runt-related transcription factor 1 (Runx1). Similarly, transcriptomes of atherosclerotic plaque macrophages and peripheral leukocytes in patients with type 2 diabetes were enriched for Runx1 targets, consistent with a potential role in human disease. Pharmacological inhibition of Runx1 in vitro inhibited the trained phenotype. Hyperglycemia-induced trained immunity may explain why targeting elevated glucose is ineffective in reducing macrovascular risk in diabetes and suggests new targets for disease prevention and therapy.
Supplemental Digital Content is available in the text.
Author Chai, Joshua T.
Carnicer, Ricardo
Bock, Christoph
Corbin, Alastair L.
Udalova, Irina A.
Gallart-Ayala, Héctor
Riksen, Niels P.
Bailey, Jade
Channon, Keith M.
Cahill, Thomas J.
Edgar, Laurienne
Alkhalil, Mohammad
Akbar, Naveed
Ziberna, Klemen
Krausgruber, Thomas
Arya, Ritu
Netea, Mihai G.
Lemieux, Madeleine E.
Laurencikiene, Jurga
Rydén, Mikael
Wheelock, Craig E.
Rendeiro, André F.
Braithwaite, Adam T.
Crabtree, Mark J.
Choudhury, Robin P.
Khoyratty, Tariq E.
AuthorAffiliation The Kennedy Institute of Rheumatology, University of Oxford, UK (A.L.C., T.E.K., I.A.U.)
Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, UK (L.E., N.A., A.T.B., J.B., J.T.C., M.A., K.Z., R.A., T.J.C., M.J.C., K.M.C., R.C., R.P.C.)
CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria (T.K., A.F.R., C.B.)
Department of Medicine (H7) (J.L., M.R.), Karolinska University Hospital, Stockholm, Sweden
Bioinfo, Plantagenet, ON, Canada (M.E.L.)
Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands (N.P.R.., M.G.N.)
AuthorAffiliation_xml – name: The Kennedy Institute of Rheumatology, University of Oxford, UK (A.L.C., T.E.K., I.A.U.)
– name: Bioinfo, Plantagenet, ON, Canada (M.E.L.)
– name: Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, UK (L.E., N.A., A.T.B., J.B., J.T.C., M.A., K.Z., R.A., T.J.C., M.J.C., K.M.C., R.C., R.P.C.)
– name: Department of Medicine (H7) (J.L., M.R.), Karolinska University Hospital, Stockholm, Sweden
– name: Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands (N.P.R.., M.G.N.)
– name: CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria (T.K., A.F.R., C.B.)
Author_xml – sequence: 1
  givenname: Laurienne
  surname: Edgar
  fullname: Edgar, Laurienne
  organization: Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, UK (L.E., N.A., A.T.B., J.B., J.T.C., M.A., K.Z., R.A., T.J.C., M.J.C., K.M.C., R.C., R.P.C.)
– sequence: 2
  givenname: Naveed
  surname: Akbar
  fullname: Akbar, Naveed
  organization: Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, UK (L.E., N.A., A.T.B., J.B., J.T.C., M.A., K.Z., R.A., T.J.C., M.J.C., K.M.C., R.C., R.P.C.)
– sequence: 3
  givenname: Adam T.
  surname: Braithwaite
  fullname: Braithwaite, Adam T.
  organization: Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, UK (L.E., N.A., A.T.B., J.B., J.T.C., M.A., K.Z., R.A., T.J.C., M.J.C., K.M.C., R.C., R.P.C.)
– sequence: 4
  givenname: Thomas
  surname: Krausgruber
  fullname: Krausgruber, Thomas
  organization: CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria (T.K., A.F.R., C.B.)
– sequence: 5
  givenname: Héctor
  surname: Gallart-Ayala
  fullname: Gallart-Ayala, Héctor
  organization: Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden (H.G.-A., C.E.W.)
– sequence: 6
  givenname: Jade
  surname: Bailey
  fullname: Bailey, Jade
  organization: Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, UK (L.E., N.A., A.T.B., J.B., J.T.C., M.A., K.Z., R.A., T.J.C., M.J.C., K.M.C., R.C., R.P.C.)
– sequence: 7
  givenname: Alastair L.
  surname: Corbin
  fullname: Corbin, Alastair L.
  organization: The Kennedy Institute of Rheumatology, University of Oxford, UK (A.L.C., T.E.K., I.A.U.)
– sequence: 8
  givenname: Tariq E.
  surname: Khoyratty
  fullname: Khoyratty, Tariq E.
  organization: The Kennedy Institute of Rheumatology, University of Oxford, UK (A.L.C., T.E.K., I.A.U.)
– sequence: 9
  givenname: Joshua T.
  surname: Chai
  fullname: Chai, Joshua T.
  organization: Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, UK (L.E., N.A., A.T.B., J.B., J.T.C., M.A., K.Z., R.A., T.J.C., M.J.C., K.M.C., R.C., R.P.C.)
– sequence: 10
  givenname: Mohammad
  surname: Alkhalil
  fullname: Alkhalil, Mohammad
  organization: Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, UK (L.E., N.A., A.T.B., J.B., J.T.C., M.A., K.Z., R.A., T.J.C., M.J.C., K.M.C., R.C., R.P.C.)
– sequence: 11
  givenname: André F.
  surname: Rendeiro
  fullname: Rendeiro, André F.
  organization: CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria (T.K., A.F.R., C.B.)
– sequence: 12
  givenname: Klemen
  surname: Ziberna
  fullname: Ziberna, Klemen
  organization: Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, UK (L.E., N.A., A.T.B., J.B., J.T.C., M.A., K.Z., R.A., T.J.C., M.J.C., K.M.C., R.C., R.P.C.)
– sequence: 13
  givenname: Ritu
  surname: Arya
  fullname: Arya, Ritu
  organization: Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, UK (L.E., N.A., A.T.B., J.B., J.T.C., M.A., K.Z., R.A., T.J.C., M.J.C., K.M.C., R.C., R.P.C.)
– sequence: 14
  givenname: Thomas J.
  surname: Cahill
  fullname: Cahill, Thomas J.
  organization: Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, UK (L.E., N.A., A.T.B., J.B., J.T.C., M.A., K.Z., R.A., T.J.C., M.J.C., K.M.C., R.C., R.P.C.)
– sequence: 15
  givenname: Christoph
  surname: Bock
  fullname: Bock, Christoph
  organization: CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria (T.K., A.F.R., C.B.)
– sequence: 16
  givenname: Jurga
  surname: Laurencikiene
  fullname: Laurencikiene, Jurga
  organization: Department of Medicine (H7) (J.L., M.R.), Karolinska University Hospital, Stockholm, Sweden
– sequence: 17
  givenname: Mark J.
  surname: Crabtree
  fullname: Crabtree, Mark J.
  organization: Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, UK (L.E., N.A., A.T.B., J.B., J.T.C., M.A., K.Z., R.A., T.J.C., M.J.C., K.M.C., R.C., R.P.C.)
– sequence: 18
  givenname: Madeleine E.
  surname: Lemieux
  fullname: Lemieux, Madeleine E.
  organization: Bioinfo, Plantagenet, ON, Canada (M.E.L.)
– sequence: 19
  givenname: Niels P.
  surname: Riksen
  fullname: Riksen, Niels P.
  organization: Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands (N.P.R.., M.G.N.)
– sequence: 20
  givenname: Mihai G.
  surname: Netea
  fullname: Netea, Mihai G.
  organization: Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands (N.P.R.., M.G.N.)
– sequence: 21
  givenname: Craig E.
  surname: Wheelock
  fullname: Wheelock, Craig E.
  organization: Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden (H.G.-A., C.E.W.)
– sequence: 22
  givenname: Keith M.
  surname: Channon
  fullname: Channon, Keith M.
  organization: Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, UK (L.E., N.A., A.T.B., J.B., J.T.C., M.A., K.Z., R.A., T.J.C., M.J.C., K.M.C., R.C., R.P.C.)
– sequence: 23
  givenname: Mikael
  surname: Rydén
  fullname: Rydén, Mikael
  organization: Department of Medicine (H7) (J.L., M.R.), Karolinska University Hospital, Stockholm, Sweden
– sequence: 24
  givenname: Irina A.
  surname: Udalova
  fullname: Udalova, Irina A.
  organization: The Kennedy Institute of Rheumatology, University of Oxford, UK (A.L.C., T.E.K., I.A.U.)
– sequence: 25
  givenname: Ricardo
  surname: Carnicer
  fullname: Carnicer, Ricardo
  organization: Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, UK (L.E., N.A., A.T.B., J.B., J.T.C., M.A., K.Z., R.A., T.J.C., M.J.C., K.M.C., R.C., R.P.C.)
– sequence: 26
  givenname: Robin P.
  surname: Choudhury
  fullname: Choudhury, Robin P.
  organization: Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, UK (L.E., N.A., A.T.B., J.B., J.T.C., M.A., K.Z., R.A., T.J.C., M.J.C., K.M.C., R.C., R.P.C.)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34255973$$D View this record in MEDLINE/PubMed
http://kipublications.ki.se/Default.aspx?queryparsed=id:147708861$$DView record from Swedish Publication Index
BookMark eNqNUk2P0zAQtdAitrvwF1C4cUnxZ1JfQFEFtFJhV6h7thxn0phN4mInVP33uKSLKCdk-WvmzXvSvLlBV73rAaE3BM8Jyci75frb8mFTbNd3X4tVMScUzzHP4nqGZkRQnnLB5BWaYYxlmjNKr9FNCN_jN2O5eIGuGadCyJzN0G513IPftUcDndXJuq9GAyHZem17qJJ11429HY6J7ZMv2ni3b_Qu5nVfJdsGrE_uPZjRB-en4L13nRsiohga8C6Y9nTa8BI9r3Ub4NX5vkUPnz5ul6t0c_d5vSw2qRE4y1Iuq5rIrGS1zEkNzBhSy1NqUeYSgOaVqImuaqorlpcETF1qJiq5wCA4rQi7RenEGw6wH0u197bT_qictuoceowvUDzDgmUR_37Cx0wHlYF-8Lq9KLvM9LZRO_dTLThfcEIjwdszgXc_RgiD6mww0La6BzcGFRtNxIIIcdJ6_bfWH5EnNyLgwwSIjQ7BQ62MHfRg3UnatopgdfJfXfqvov9q8j8yyH8YnkT-p5ZPtQfXDuDDYzsewKsGdDs0Kg4PZpjkKcWUYBl3in8P1C8zGcpy
CitedBy_id crossref_primary_10_3389_fneur_2023_1249535
crossref_primary_10_1016_j_diabres_2023_110869
crossref_primary_10_1016_j_kint_2024_10_031
crossref_primary_10_1016_j_intimp_2024_111558
crossref_primary_10_1007_s00018_023_04981_8
crossref_primary_10_1093_cvr_cvac058
crossref_primary_10_3390_ijms252010979
crossref_primary_10_3389_fendo_2022_983723
crossref_primary_10_1161_ATVBAHA_122_317163
crossref_primary_10_1038_s41577_025_01132_x
crossref_primary_10_1042_CS20201293
crossref_primary_10_1161_ATVBAHA_121_317204
crossref_primary_10_1007_s12265_023_10470_x
crossref_primary_10_2147_ITT_S508042
crossref_primary_10_7554_eLife_81480
crossref_primary_10_1016_j_jdiacomp_2023_108469
crossref_primary_10_3390_ijms25042312
crossref_primary_10_1001_jamapediatrics_2023_2029
crossref_primary_10_1016_j_yjmcc_2021_10_007
crossref_primary_10_1093_eurheartj_ehad787
crossref_primary_10_1016_j_ijcard_2025_132988
crossref_primary_10_1016_j_arr_2022_101836
crossref_primary_10_1016_j_cell_2022_04_004
crossref_primary_10_1111_bph_16472
crossref_primary_10_1038_s41569_021_00606_4
crossref_primary_10_3389_fimmu_2022_984859
crossref_primary_10_1016_j_ejphar_2023_175787
crossref_primary_10_1016_j_yjmcc_2023_10_011
crossref_primary_10_1111_jdi_13734
crossref_primary_10_3389_fimmu_2023_1183066
crossref_primary_10_1152_physrev_00031_2021
crossref_primary_10_3389_fimmu_2024_1483402
crossref_primary_10_1055_a_1721_5577
crossref_primary_10_1016_j_abb_2022_109430
crossref_primary_10_1016_j_dsx_2024_102968
crossref_primary_10_1186_s12974_024_03136_1
crossref_primary_10_1016_j_yexcr_2024_114052
crossref_primary_10_1016_j_isci_2024_110767
crossref_primary_10_3389_fimmu_2024_1342837
crossref_primary_10_7554_eLife_87316_3
crossref_primary_10_1016_j_tips_2024_12_003
crossref_primary_10_1093_jleuko_qiad118
crossref_primary_10_1016_j_fbio_2024_103755
crossref_primary_10_3390_biomedicines11123250
crossref_primary_10_1002_brb3_70404
crossref_primary_10_1016_j_jaci_2024_06_005
crossref_primary_10_1007_s11886_024_02167_7
crossref_primary_10_1093_cvr_cvac114
crossref_primary_10_3390_cells13191662
crossref_primary_10_3389_fimmu_2023_1130662
crossref_primary_10_1016_j_phrs_2024_107505
crossref_primary_10_1152_ajpcell_00201_2022
crossref_primary_10_1002_agm2_12189
crossref_primary_10_2174_0115733998279869231227091944
crossref_primary_10_1038_s41569_021_00668_4
crossref_primary_10_1038_s41569_023_00894_y
crossref_primary_10_1016_j_isci_2024_111594
crossref_primary_10_1007_s12013_024_01269_x
crossref_primary_10_1016_j_ejphar_2024_176586
crossref_primary_10_1016_j_isci_2023_107759
crossref_primary_10_1093_cvr_cvad030
crossref_primary_10_1096_fj_202302003R
crossref_primary_10_1002_smll_202402673
crossref_primary_10_1021_acschemneuro_5c00021
crossref_primary_10_1016_j_jpha_2023_11_016
crossref_primary_10_1038_s41577_024_00998_7
crossref_primary_10_3389_fimmu_2025_1472197
crossref_primary_10_3390_antiox11122382
crossref_primary_10_1073_pnas_2400413121
crossref_primary_10_1016_j_procbio_2024_09_011
crossref_primary_10_3390_biomedicines11030766
crossref_primary_10_1016_j_cej_2023_143173
crossref_primary_10_1038_s44161_024_00473_5
crossref_primary_10_3389_fendo_2022_981100
crossref_primary_10_1038_s41581_022_00621_9
crossref_primary_10_3390_ncrna9030030
crossref_primary_10_1155_2024_7178920
crossref_primary_10_1177_17539447231215213
crossref_primary_10_3390_cancers15020498
crossref_primary_10_3390_biomedicines10010178
crossref_primary_10_1089_wound_2023_0149
crossref_primary_10_1186_s40001_024_01739_1
crossref_primary_10_1016_j_heliyon_2023_e15692
crossref_primary_10_31083_j_fbl2901026
crossref_primary_10_1096_fj_202301078R
crossref_primary_10_12688_f1000research_131867_1
crossref_primary_10_15252_embr_202357164
crossref_primary_10_7554_eLife_87316
crossref_primary_10_1016_j_ajcnut_2024_04_029
crossref_primary_10_1080_1744666X_2022_2120470
crossref_primary_10_1093_cvr_cvae142
crossref_primary_10_1016_j_trecan_2023_08_007
crossref_primary_10_1042_BST20220441
crossref_primary_10_3390_jcm12113665
crossref_primary_10_1016_j_celrep_2024_114094
crossref_primary_10_1111_myc_13682
crossref_primary_10_3389_fendo_2022_919223
crossref_primary_10_1186_s12933_024_02273_4
crossref_primary_10_3389_fimmu_2024_1330461
crossref_primary_10_1002_wsbm_1543
crossref_primary_10_1016_j_isci_2023_107183
crossref_primary_10_1016_j_phrs_2025_107588
crossref_primary_10_1016_j_phymed_2023_154667
crossref_primary_10_1016_j_isci_2023_108637
crossref_primary_10_1016_j_jep_2024_117750
crossref_primary_10_1186_s12931_023_02663_4
crossref_primary_10_1016_j_ijbiomac_2023_128809
crossref_primary_10_1096_fj_202401452R
crossref_primary_10_1089_ten_tec_2022_0066
crossref_primary_10_1161_CIRCULATIONAHA_123_065506
crossref_primary_10_3390_ijms251910240
crossref_primary_10_1016_j_isci_2022_103973
crossref_primary_10_1161_ATVBAHA_123_318956
crossref_primary_10_1016_j_jacbts_2022_12_010
crossref_primary_10_1016_j_tem_2023_10_011
crossref_primary_10_1016_j_ijcrp_2022_200143
crossref_primary_10_1016_j_heliyon_2024_e26904
crossref_primary_10_1128_iai_00472_24
crossref_primary_10_1038_s41392_024_01755_x
crossref_primary_10_1172_JCI169730
crossref_primary_10_1210_endocr_bqac061
crossref_primary_10_1007_s11906_022_01222_4
crossref_primary_10_1002_mnfr_202300380
crossref_primary_10_1016_j_ijbiomac_2024_134830
crossref_primary_10_3390_ijms26052196
crossref_primary_10_1038_s41569_024_01115_w
crossref_primary_10_3390_ijms23042234
crossref_primary_10_1186_s12933_024_02195_1
crossref_primary_10_1186_s12979_023_00377_1
crossref_primary_10_18632_oncotarget_28642
crossref_primary_10_1111_imm_13706
crossref_primary_10_3389_fnut_2024_1346706
crossref_primary_10_1016_j_cej_2024_154433
crossref_primary_10_1016_j_cca_2022_09_017
crossref_primary_10_1007_s13340_024_00741_6
crossref_primary_10_1177_14791641231159009
crossref_primary_10_3389_fnagi_2021_821336
crossref_primary_10_1111_acel_13863
crossref_primary_10_3390_life13112128
Cites_doi 10.1161/01.ATV.0000142808.34602.25
10.1073/pnas.1200037109
10.1016/j.cmet.2014.03.029
10.1002/0471142727.mb2129s109
10.1038/srep15859
10.1161/01.cir.102.18.2180
10.1161/CIRCRESAHA.120.316653
10.2337/diabetes.52.5.1256
10.1016/j.jacc.2018.07.071
10.1371/journal.pone.0039790
10.12703/P6-13
10.1161/01.atv.0000051701.90972.e5
10.1056/NEJM199309303291401
10.1038/nmeth.3252
10.1038/ni.3306
10.1128/MCB.21.19.6470-6483.2001
10.1002/jcp.24054
10.1016/j.celrep.2016.11.011
10.15252/embj.201592534
10.1182/blood-2014-04-568691
10.1161/CIRCGENETICS.111.960773
10.1182/blood-2003-02-0618
10.1056/NEJMoa1504720
10.1084/jem.20151570
10.1161/ATVBAHA.116.308014
10.1056/NEJMoa052187
10.1126/science.1250684
10.1093/cvr/cvx196
10.1021/pr500782g
10.1016/j.chom.2012.06.006
10.1038/nbt.1630
10.18632/oncotarget.27637
10.1186/gb-2008-9-9-r137
10.2337/dc15-S011
10.1093/nar/gkv007
10.1056/NEJMoa1006524
10.1007/s12975-011-0066-4
10.1093/bioinformatics/bts635
10.1111/imm.12535
10.1016/j.cell.2017.12.013
10.1056/NEJMe0807625
10.1093/bioinformatics/btm311
10.1016/j.cmet.2017.06.001
10.1016/j.cell.2017.11.034
10.2337/db10-0778
10.1038/nature11986
10.1093/bioinformatics/btr189
10.1016/j.cell.2017.11.025
10.1056/NEJMoa1806802
10.1038/nature10730
10.1074/jbc.M113.522037
10.1038/sj.onc.1208657
10.1016/j.atherosclerosis.2020.05.002
10.1038/nri3520
10.1016/j.smim.2016.09.002
10.1016/j.cmet.2006.05.011
10.1038/cr.2017.8
10.1016/j.tem.2015.08.001
10.1111/imr.12617
10.1073/pnas.042683999
10.1093/nar/gks042
10.1371/journal.pone.0223980
10.1038/sj.onc.1207122
10.3389/fimmu.2017.00248
10.1093/bioinformatics/btq049
10.1038/s41586-019-1678-1
ContentType Journal Article
Copyright Lippincott Williams & Wilkins
2021 The Authors. 2021
Copyright_xml – notice: Lippincott Williams & Wilkins
– notice: 2021 The Authors. 2021
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ADTPV
AOWAS
DOI 10.1161/CIRCULATIONAHA.120.046464
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
SwePub
SwePub Articles
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1524-4539
EndPage 982
ExternalDocumentID oai_swepub_ki_se_460536
PMC8448412
34255973
10_1161_CIRCULATIONAHA_120_046464
00003017-202109210-00006
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: British Heart Foundation
  grantid: PG/18/53/33895
– fundername: Medical Research Council
  grantid: G0900747 91070
– fundername: British Heart Foundation
  grantid: CH/16/1/32013
– fundername: British Heart Foundation
  grantid: FS/14/56/31049
– fundername: British Heart Foundation
  grantid: RE/13/1/30181
– fundername: Wellcome Trust
  grantid: 090532/Z/09/Z
GroupedDBID ---
.-D
.3C
.XZ
.Z2
01R
0R~
0ZK
18M
1J1
29B
2FS
2WC
354
40H
4Q1
4Q2
4Q3
53G
5GY
5RE
5VS
6PF
71W
77Y
7O~
AAAAV
AAAXR
AAGIX
AAHPQ
AAIQE
AAJCS
AAMOA
AAMTA
AAQKA
AARTV
AASCR
AASOK
AASXQ
AAUEB
AAWTL
AAXQO
ABASU
ABBUW
ABDIG
ABJNI
ABOCM
ABPMR
ABPXF
ABQRW
ABVCZ
ABXVJ
ABXYN
ABZAD
ABZZY
ACDDN
ACDOF
ACEWG
ACGFO
ACGFS
ACILI
ACLDA
ACOAL
ACRKK
ACWDW
ACWRI
ACXJB
ACXNZ
ACZKN
ADBBV
ADCYY
ADGGA
ADHPY
AE3
AE6
AEBDS
AENEX
AFBFQ
AFCHL
AFDTB
AFEXH
AFMBP
AFNMH
AFSOK
AFUWQ
AGINI
AHMBA
AHOMT
AHQNM
AHQVU
AHRYX
AHVBC
AIJEX
AINUH
AJCLO
AJIOK
AJNWD
AJZMW
AKCTQ
AKULP
ALKUP
ALMA_UNASSIGNED_HOLDINGS
ALMTX
AMJPA
AMKUR
AMNEI
AOHHW
AOQMC
ASPBG
AVWKF
AYCSE
AZFZN
BAWUL
BOYCO
BQLVK
BYPQX
C45
CS3
DIK
DIWNM
DU5
E3Z
EBS
EEVPB
ERAAH
EX3
F2K
F2L
F2M
F2N
F5P
FCALG
GNXGY
GQDEL
GX1
H0~
HLJTE
HZ~
IKREB
IKYAY
IN~
IPNFZ
JF9
JG8
JK3
K-A
K-F
K8S
KD2
KMI
KQ8
L-C
L7B
N9A
N~7
N~B
O9-
OAG
OAH
OBH
OCB
ODMTH
OGEVE
OHH
OHYEH
OK1
OL1
OLB
OLG
OLH
OLU
OLV
OLY
OLZ
OPUJH
OVD
OVDNE
OVIDH
OVLEI
OVOZU
OWBYB
OWU
OWV
OWW
OWX
OWY
OWZ
OXXIT
P2P
PQQKQ
RAH
RIG
RLZ
S4R
S4S
T8P
TEORI
TR2
TSPGW
UPT
V2I
VVN
W2D
W3M
W8F
WH7
WOQ
WOW
X3V
X3W
XXN
XYM
YFH
YOC
YSK
YYM
YZZ
ZFV
ZY1
~H1
AAFWJ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ADSXY
.55
.GJ
1CY
41~
AAEJM
ACCJW
ADFPA
ADNKB
ADTPV
AEETU
AFFNX
AJJEV
AJNYG
AOWAS
BS7
C1A
DUNZO
E.X
EJD
FEDTE
FL-
FW0
H13
HVGLF
H~9
J5H
JK8
M18
MVM
N4W
NEJ
N~M
OCUKA
ODA
OHT
ORVUJ
OUVQU
P-K
R58
WHG
X7M
YQJ
YXB
YYP
ZGI
ZXP
ZZMQN
ID FETCH-LOGICAL-c5066-49df196b3f971fe3cc1f9c5068b79ee27d5f1adf2ad37b1ecfba35d980e542d13
ISSN 0009-7322
1524-4539
IngestDate Mon Sep 01 03:36:21 EDT 2025
Thu Aug 21 17:41:54 EDT 2025
Thu Jul 10 22:28:10 EDT 2025
Mon Jul 21 06:03:03 EDT 2025
Tue Jul 01 01:43:40 EDT 2025
Thu Apr 24 22:53:46 EDT 2025
Fri May 16 03:52:38 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords glucose
macrophages
diabetes mellitus
inflammation
epigenetics
Language English
License Circulation is published on behalf of the American Heart Association, Inc., by Wolters Kluwer Health, Inc. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution, and reproduction in any medium, provided that the original work is properly cited.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c5066-49df196b3f971fe3cc1f9c5068b79ee27d5f1adf2ad37b1ecfba35d980e542d13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5911-0026
0000-0001-9362-5373
0000-0002-1374-0329
0000-0002-8046-1688
0000-0003-3228-2172
0000-0001-9197-8124
0000-0002-3088-8878
0000-0001-7893-2324
0000-0003-3819-3779
0000-0003-3298-2697
0000-0001-6091-3088
0000-0001-7308-9286
0000-0003-4620-6373
0000-0002-7440-2964
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC8448412
PMID 34255973
PQID 2551581556
PQPubID 23479
PageCount 22
ParticipantIDs swepub_primary_oai_swepub_ki_se_460536
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8448412
proquest_miscellaneous_2551581556
pubmed_primary_34255973
crossref_citationtrail_10_1161_CIRCULATIONAHA_120_046464
crossref_primary_10_1161_CIRCULATIONAHA_120_046464
wolterskluwer_health_00003017-202109210-00006
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-September-21
PublicationDateYYYYMMDD 2021-09-21
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-September-21
  day: 21
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hagerstown, MD
PublicationTitle Circulation (New York, N.Y.)
PublicationTitleAlternate Circulation
PublicationYear 2021
Publisher Lippincott Williams & Wilkins
Publisher_xml – name: Lippincott Williams & Wilkins
References e_1_3_6_30_2
e_1_3_6_51_2
e_1_3_6_32_2
e_1_3_6_53_2
e_1_3_6_19_2
e_1_3_6_13_2
e_1_3_6_38_2
e_1_3_6_59_2
e_1_3_6_11_2
e_1_3_6_17_2
e_1_3_6_34_2
e_1_3_6_55_2
e_1_3_6_15_2
e_1_3_6_36_2
e_1_3_6_57_2
e_1_3_6_40_2
e_1_3_6_65_2
e_1_3_6_21_2
e_1_3_6_42_2
e_1_3_6_63_2
e_1_3_6_61_2
e_1_3_6_4_2
e_1_3_6_2_2
e_1_3_6_8_2
e_1_3_6_6_2
e_1_3_6_27_2
e_1_3_6_48_2
e_1_3_6_29_2
e_1_3_6_23_2
e_1_3_6_44_2
e_1_3_6_25_2
e_1_3_6_46_2
e_1_3_6_67_2
e_1_3_6_52_2
e_1_3_6_31_2
e_1_3_6_54_2
e_1_3_6_10_2
e_1_3_6_50_2
e_1_3_6_14_2
e_1_3_6_37_2
e_1_3_6_12_2
e_1_3_6_39_2
e_1_3_6_18_2
e_1_3_6_33_2
e_1_3_6_56_2
e_1_3_6_16_2
e_1_3_6_35_2
e_1_3_6_58_2
e_1_3_6_41_2
e_1_3_6_64_2
e_1_3_6_20_2
e_1_3_6_43_2
e_1_3_6_62_2
e_1_3_6_60_2
e_1_3_6_5_2
e_1_3_6_3_2
e_1_3_6_9_2
e_1_3_6_7_2
e_1_3_6_26_2
e_1_3_6_49_2
e_1_3_6_28_2
e_1_3_6_22_2
e_1_3_6_45_2
e_1_3_6_68_2
e_1_3_6_24_2
e_1_3_6_47_2
e_1_3_6_66_2
34312499 - Nat Rev Cardiol. 2021 Oct;18(10):687. doi: 10.1038/s41569-021-00606-4.
References_xml – ident: e_1_3_6_22_2
  doi: 10.1161/01.ATV.0000142808.34602.25
– ident: e_1_3_6_52_2
  doi: 10.1073/pnas.1200037109
– ident: e_1_3_6_46_2
  doi: 10.1016/j.cmet.2014.03.029
– ident: e_1_3_6_29_2
  doi: 10.1002/0471142727.mb2129s109
– ident: e_1_3_6_61_2
  doi: 10.1038/srep15859
– ident: e_1_3_6_66_2
  doi: 10.1161/01.cir.102.18.2180
– ident: e_1_3_6_68_2
  doi: 10.1161/CIRCRESAHA.120.316653
– ident: e_1_3_6_12_2
  doi: 10.2337/diabetes.52.5.1256
– ident: e_1_3_6_7_2
  doi: 10.1016/j.jacc.2018.07.071
– ident: e_1_3_6_23_2
  doi: 10.1371/journal.pone.0039790
– ident: e_1_3_6_10_2
  doi: 10.12703/P6-13
– ident: e_1_3_6_51_2
  doi: 10.1161/01.atv.0000051701.90972.e5
– ident: e_1_3_6_4_2
  doi: 10.1056/NEJM199309303291401
– ident: e_1_3_6_25_2
  doi: 10.1038/nmeth.3252
– ident: e_1_3_6_58_2
  doi: 10.1038/ni.3306
– ident: e_1_3_6_64_2
  doi: 10.1128/MCB.21.19.6470-6483.2001
– ident: e_1_3_6_20_2
  doi: 10.1002/jcp.24054
– ident: e_1_3_6_42_2
  doi: 10.1016/j.celrep.2016.11.011
– ident: e_1_3_6_47_2
  doi: 10.15252/embj.201592534
– ident: e_1_3_6_41_2
  doi: 10.1182/blood-2014-04-568691
– ident: e_1_3_6_49_2
  doi: 10.1161/CIRCGENETICS.111.960773
– ident: e_1_3_6_32_2
  doi: 10.1182/blood-2003-02-0618
– ident: e_1_3_6_6_2
  doi: 10.1056/NEJMoa1504720
– ident: e_1_3_6_13_2
  doi: 10.1084/jem.20151570
– ident: e_1_3_6_39_2
  doi: 10.1161/ATVBAHA.116.308014
– ident: e_1_3_6_3_2
  doi: 10.1056/NEJMoa052187
– ident: e_1_3_6_19_2
  doi: 10.1126/science.1250684
– ident: e_1_3_6_45_2
  doi: 10.1093/cvr/cvx196
– ident: e_1_3_6_28_2
  doi: 10.1021/pr500782g
– ident: e_1_3_6_55_2
  doi: 10.1016/j.chom.2012.06.006
– ident: e_1_3_6_33_2
  doi: 10.1038/nbt.1630
– ident: e_1_3_6_65_2
  doi: 10.18632/oncotarget.27637
– ident: e_1_3_6_30_2
  doi: 10.1186/gb-2008-9-9-r137
– ident: e_1_3_6_2_2
  doi: 10.2337/dc15-S011
– ident: e_1_3_6_27_2
  doi: 10.1093/nar/gkv007
– ident: e_1_3_6_5_2
  doi: 10.1056/NEJMoa1006524
– ident: e_1_3_6_50_2
  doi: 10.1007/s12975-011-0066-4
– ident: e_1_3_6_35_2
  doi: 10.1093/bioinformatics/bts635
– ident: e_1_3_6_59_2
  doi: 10.1111/imm.12535
– ident: e_1_3_6_57_2
  doi: 10.1016/j.cell.2017.12.013
– ident: e_1_3_6_8_2
  doi: 10.1056/NEJMe0807625
– ident: e_1_3_6_26_2
  doi: 10.1093/bioinformatics/btm311
– ident: e_1_3_6_37_2
– ident: e_1_3_6_17_2
  doi: 10.1016/j.cmet.2017.06.001
– ident: e_1_3_6_21_2
  doi: 10.1016/j.cell.2017.11.034
– ident: e_1_3_6_11_2
  doi: 10.2337/db10-0778
– ident: e_1_3_6_15_2
  doi: 10.1038/nature11986
– ident: e_1_3_6_34_2
  doi: 10.1093/bioinformatics/btr189
– ident: e_1_3_6_18_2
  doi: 10.1016/j.cell.2017.11.025
– ident: e_1_3_6_53_2
  doi: 10.1056/NEJMoa1806802
– ident: e_1_3_6_31_2
  doi: 10.1038/nature10730
– ident: e_1_3_6_38_2
  doi: 10.1074/jbc.M113.522037
– ident: e_1_3_6_60_2
  doi: 10.1038/sj.onc.1208657
– ident: e_1_3_6_67_2
  doi: 10.1016/j.atherosclerosis.2020.05.002
– ident: e_1_3_6_9_2
  doi: 10.1038/nri3520
– ident: e_1_3_6_54_2
  doi: 10.1016/j.smim.2016.09.002
– ident: e_1_3_6_14_2
  doi: 10.1016/j.cmet.2006.05.011
– ident: e_1_3_6_40_2
  doi: 10.1038/cr.2017.8
– ident: e_1_3_6_44_2
  doi: 10.1016/j.tem.2015.08.001
– ident: e_1_3_6_43_2
  doi: 10.1111/imr.12617
– ident: e_1_3_6_24_2
  doi: 10.1073/pnas.042683999
– ident: e_1_3_6_36_2
  doi: 10.1093/nar/gks042
– ident: e_1_3_6_62_2
  doi: 10.1371/journal.pone.0223980
– ident: e_1_3_6_63_2
  doi: 10.1038/sj.onc.1207122
– ident: e_1_3_6_16_2
  doi: 10.3389/fimmu.2017.00248
– ident: e_1_3_6_48_2
  doi: 10.1093/bioinformatics/btq049
– ident: e_1_3_6_56_2
  doi: 10.1038/s41586-019-1678-1
– reference: 34312499 - Nat Rev Cardiol. 2021 Oct;18(10):687. doi: 10.1038/s41569-021-00606-4.
SSID ssj0006375
Score 2.673677
Snippet Cardiovascular risk in diabetes remains elevated despite glucose-lowering therapies. We hypothesized that hyperglycemia induces trained immunity in...
Supplemental Digital Content is available in the text.
SourceID swepub
pubmedcentral
proquest
pubmed
crossref
wolterskluwer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 961
SubjectTerms Animals
Atherosclerosis - immunology
Atherosclerosis - pathology
Cells, Cultured
Diabetes Mellitus, Experimental - immunology
Diabetes Mellitus, Experimental - pathology
Endarterectomy, Carotid
Humans
Hyperglycemia - immunology
Hyperglycemia - pathology
Immunity, Cellular - immunology
Leukocytes, Mononuclear - immunology
Leukocytes, Mononuclear - pathology
Macrophages - immunology
Macrophages - pathology
Mice
Mice, 129 Strain
Mice, Transgenic
Original s
Title Hyperglycemia Induces Trained Immunity in Macrophages and Their Precursors and Promotes Atherosclerosis
URI https://ovidsp.ovid.com/ovidweb.cgi?T=JS&NEWS=n&CSC=Y&PAGE=fulltext&D=ovft&AN=00003017-202109210-00006
https://www.ncbi.nlm.nih.gov/pubmed/34255973
https://www.proquest.com/docview/2551581556
https://pubmed.ncbi.nlm.nih.gov/PMC8448412
http://kipublications.ki.se/Default.aspx?queryparsed=id:147708861
Volume 144
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbGkCZeEGzAyk2ehPaCMupLbo9VtdHBNhBqpb5FduJ01bYU9cI0fgC_m3Nsp23YkAZ9iCLn4rbni3OO_Z3vEPIuMvCJdBzIXKhAFrkIEm3CoIRYJClDpQqDK7qnZ1FvID8Nw-HGxq811tJirg_yn3fmlfyPVaEN7IpZsv9g2eVNoQH2wb6wBQvD9l427kEQOR1d3uTmaqzeYxUO5Ff1seoD-JHHNvVjbhP7ThWW6jpXqOiAU-V9uz7wdYqz7TOst-OTBsBwcEYHvcLJDHqD7Xi27sB2x9PcV_y6q5DP2sTCYTFy5G1Mvba0siW4LrQ7cqZ-GJ9c5Zb1x_Pza-Ur9nUKdbWicH-eqsVsNF1oD7EVr8lPWXCG_AqXB12PslwGMnQqRgfmjrZ6aHbakDUG-dpImzoN99tvgAjfAN3jb93BidMT7uGEb_sA13CdYHpTdfvsS3Y0ODnJ-ofD_gPykEO4gZUwPg5XVKFIWMHm5VfcInu-qw9_7ajp59wKXm5zcL1SLRy4niBRYnZh8yTWvJ3-E_LYhym04zD3lGyYapvsdCo1n1zd0H1qicN2RWabbJ16fsYOGTUQST0iqUckrRFJxxVdQyQF8FGLSLpCpG2sEUn_QOQzMjg67Hd7gS_lEeQhOLWBTIsSxnotyjRmpRF5zsoUDyU6To3hcRGWTBUlV4WINTN5qZUIizRpm1DygonnZLOaVGaX0FSxUnJdiNTEUgmtQm5SVmrOorDIU9kiSf3HZ7nXucdyK5eZjXcjljVtloHNMmezFuHLS787sZf7XLRXWzeDoRnX21RlJotZBtE6CxNw2KMWeeGsvbytkDaWFy0SN3CwPAFl35tHqvG5lX9PpEwk4y2y7xDTuMQ3XcCeyZDzIKDzoIGozGVYI-0E50PiAB_RdsqZlZhoRy_v8YNekUerB_s12ZxPF-YNeOdz_dY-Or8BAx7m9A
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hyperglycemia+Induces+Trained+Immunity+in+Macrophages+and+Their+Precursors+and+Promotes+Atherosclerosis&rft.jtitle=Circulation+%28New+York%2C+N.Y.%29&rft.au=Edgar%2C+Laurienne&rft.au=Akbar%2C+Naveed&rft.au=Braithwaite%2C+Adam+T&rft.au=Krausgruber%2C+Thomas&rft.date=2021-09-21&rft.issn=1524-4539&rft.eissn=1524-4539&rft.volume=144&rft.issue=12&rft.spage=961&rft_id=info:doi/10.1161%2FCIRCULATIONAHA.120.046464&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-7322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-7322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-7322&client=summon