Hyperglycemia Induces Trained Immunity in Macrophages and Their Precursors and Promotes Atherosclerosis
Cardiovascular risk in diabetes remains elevated despite glucose-lowering therapies. We hypothesized that hyperglycemia induces trained immunity in macrophages, promoting persistent proatherogenic characteristics. Bone marrow-derived macrophages from control mice and mice with diabetes were grown in...
Saved in:
Published in | Circulation (New York, N.Y.) Vol. 144; no. 12; pp. 961 - 982 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Lippincott Williams & Wilkins
21.09.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cardiovascular risk in diabetes remains elevated despite glucose-lowering therapies. We hypothesized that hyperglycemia induces trained immunity in macrophages, promoting persistent proatherogenic characteristics.
Bone marrow-derived macrophages from control mice and mice with diabetes were grown in physiological glucose (5 mmol/L) and subjected to RNA sequencing (n=6), assay for transposase accessible chromatin sequencing (n=6), and chromatin immunoprecipitation sequencing (n=6) for determination of hyperglycemia-induced trained immunity. Bone marrow transplantation from mice with (n=9) or without (n=6) diabetes into (normoglycemic)
mice was used to assess its functional significance in vivo. Evidence of hyperglycemia-induced trained immunity was sought in human peripheral blood mononuclear cells from patients with diabetes (n=8) compared with control subjects (n=16) and in human atherosclerotic plaque macrophages excised by laser capture microdissection.
In macrophages, high extracellular glucose promoted proinflammatory gene expression and proatherogenic functional characteristics through glycolysis-dependent mechanisms. Bone marrow-derived macrophages from diabetic mice retained these characteristics, even when cultured in physiological glucose, indicating hyperglycemia-induced trained immunity. Bone marrow transplantation from diabetic mice into (normoglycemic)
mice increased aortic root atherosclerosis, confirming a disease-relevant and persistent form of trained innate immunity. Integrated assay for transposase accessible chromatin, chromatin immunoprecipitation, and RNA sequencing analyses of hematopoietic stem cells and bone marrow-derived macrophages revealed a proinflammatory priming effect in diabetes. The pattern of open chromatin implicated transcription factor Runt-related transcription factor 1 (Runx1). Similarly, transcriptomes of atherosclerotic plaque macrophages and peripheral leukocytes in patients with type 2 diabetes were enriched for Runx1 targets, consistent with a potential role in human disease. Pharmacological inhibition of Runx1 in vitro inhibited the trained phenotype.
Hyperglycemia-induced trained immunity may explain why targeting elevated glucose is ineffective in reducing macrovascular risk in diabetes and suggests new targets for disease prevention and therapy. |
---|---|
AbstractList | Cardiovascular risk in diabetes remains elevated despite glucose-lowering therapies. We hypothesized that hyperglycemia induces trained immunity in macrophages, promoting persistent proatherogenic characteristics.BACKGROUNDCardiovascular risk in diabetes remains elevated despite glucose-lowering therapies. We hypothesized that hyperglycemia induces trained immunity in macrophages, promoting persistent proatherogenic characteristics.Bone marrow-derived macrophages from control mice and mice with diabetes were grown in physiological glucose (5 mmol/L) and subjected to RNA sequencing (n=6), assay for transposase accessible chromatin sequencing (n=6), and chromatin immunoprecipitation sequencing (n=6) for determination of hyperglycemia-induced trained immunity. Bone marrow transplantation from mice with (n=9) or without (n=6) diabetes into (normoglycemic) Ldlr-/- mice was used to assess its functional significance in vivo. Evidence of hyperglycemia-induced trained immunity was sought in human peripheral blood mononuclear cells from patients with diabetes (n=8) compared with control subjects (n=16) and in human atherosclerotic plaque macrophages excised by laser capture microdissection.METHODSBone marrow-derived macrophages from control mice and mice with diabetes were grown in physiological glucose (5 mmol/L) and subjected to RNA sequencing (n=6), assay for transposase accessible chromatin sequencing (n=6), and chromatin immunoprecipitation sequencing (n=6) for determination of hyperglycemia-induced trained immunity. Bone marrow transplantation from mice with (n=9) or without (n=6) diabetes into (normoglycemic) Ldlr-/- mice was used to assess its functional significance in vivo. Evidence of hyperglycemia-induced trained immunity was sought in human peripheral blood mononuclear cells from patients with diabetes (n=8) compared with control subjects (n=16) and in human atherosclerotic plaque macrophages excised by laser capture microdissection.In macrophages, high extracellular glucose promoted proinflammatory gene expression and proatherogenic functional characteristics through glycolysis-dependent mechanisms. Bone marrow-derived macrophages from diabetic mice retained these characteristics, even when cultured in physiological glucose, indicating hyperglycemia-induced trained immunity. Bone marrow transplantation from diabetic mice into (normoglycemic) Ldlr-/- mice increased aortic root atherosclerosis, confirming a disease-relevant and persistent form of trained innate immunity. Integrated assay for transposase accessible chromatin, chromatin immunoprecipitation, and RNA sequencing analyses of hematopoietic stem cells and bone marrow-derived macrophages revealed a proinflammatory priming effect in diabetes. The pattern of open chromatin implicated transcription factor Runt-related transcription factor 1 (Runx1). Similarly, transcriptomes of atherosclerotic plaque macrophages and peripheral leukocytes in patients with type 2 diabetes were enriched for Runx1 targets, consistent with a potential role in human disease. Pharmacological inhibition of Runx1 in vitro inhibited the trained phenotype.RESULTSIn macrophages, high extracellular glucose promoted proinflammatory gene expression and proatherogenic functional characteristics through glycolysis-dependent mechanisms. Bone marrow-derived macrophages from diabetic mice retained these characteristics, even when cultured in physiological glucose, indicating hyperglycemia-induced trained immunity. Bone marrow transplantation from diabetic mice into (normoglycemic) Ldlr-/- mice increased aortic root atherosclerosis, confirming a disease-relevant and persistent form of trained innate immunity. Integrated assay for transposase accessible chromatin, chromatin immunoprecipitation, and RNA sequencing analyses of hematopoietic stem cells and bone marrow-derived macrophages revealed a proinflammatory priming effect in diabetes. The pattern of open chromatin implicated transcription factor Runt-related transcription factor 1 (Runx1). Similarly, transcriptomes of atherosclerotic plaque macrophages and peripheral leukocytes in patients with type 2 diabetes were enriched for Runx1 targets, consistent with a potential role in human disease. Pharmacological inhibition of Runx1 in vitro inhibited the trained phenotype.Hyperglycemia-induced trained immunity may explain why targeting elevated glucose is ineffective in reducing macrovascular risk in diabetes and suggests new targets for disease prevention and therapy.CONCLUSIONSHyperglycemia-induced trained immunity may explain why targeting elevated glucose is ineffective in reducing macrovascular risk in diabetes and suggests new targets for disease prevention and therapy. Cardiovascular risk in diabetes remains elevated despite glucose-lowering therapies. We hypothesized that hyperglycemia induces trained immunity in macrophages, promoting persistent proatherogenic characteristics. Bone marrow-derived macrophages from control mice and mice with diabetes were grown in physiological glucose (5 mmol/L) and subjected to RNA sequencing (n=6), assay for transposase accessible chromatin sequencing (n=6), and chromatin immunoprecipitation sequencing (n=6) for determination of hyperglycemia-induced trained immunity. Bone marrow transplantation from mice with (n=9) or without (n=6) diabetes into (normoglycemic) mice was used to assess its functional significance in vivo. Evidence of hyperglycemia-induced trained immunity was sought in human peripheral blood mononuclear cells from patients with diabetes (n=8) compared with control subjects (n=16) and in human atherosclerotic plaque macrophages excised by laser capture microdissection. In macrophages, high extracellular glucose promoted proinflammatory gene expression and proatherogenic functional characteristics through glycolysis-dependent mechanisms. Bone marrow-derived macrophages from diabetic mice retained these characteristics, even when cultured in physiological glucose, indicating hyperglycemia-induced trained immunity. Bone marrow transplantation from diabetic mice into (normoglycemic) mice increased aortic root atherosclerosis, confirming a disease-relevant and persistent form of trained innate immunity. Integrated assay for transposase accessible chromatin, chromatin immunoprecipitation, and RNA sequencing analyses of hematopoietic stem cells and bone marrow-derived macrophages revealed a proinflammatory priming effect in diabetes. The pattern of open chromatin implicated transcription factor Runt-related transcription factor 1 (Runx1). Similarly, transcriptomes of atherosclerotic plaque macrophages and peripheral leukocytes in patients with type 2 diabetes were enriched for Runx1 targets, consistent with a potential role in human disease. Pharmacological inhibition of Runx1 in vitro inhibited the trained phenotype. Hyperglycemia-induced trained immunity may explain why targeting elevated glucose is ineffective in reducing macrovascular risk in diabetes and suggests new targets for disease prevention and therapy. Supplemental Digital Content is available in the text. |
Author | Chai, Joshua T. Carnicer, Ricardo Bock, Christoph Corbin, Alastair L. Udalova, Irina A. Gallart-Ayala, Héctor Riksen, Niels P. Bailey, Jade Channon, Keith M. Cahill, Thomas J. Edgar, Laurienne Alkhalil, Mohammad Akbar, Naveed Ziberna, Klemen Krausgruber, Thomas Arya, Ritu Netea, Mihai G. Lemieux, Madeleine E. Laurencikiene, Jurga Rydén, Mikael Wheelock, Craig E. Rendeiro, André F. Braithwaite, Adam T. Crabtree, Mark J. Choudhury, Robin P. Khoyratty, Tariq E. |
AuthorAffiliation | The Kennedy Institute of Rheumatology, University of Oxford, UK (A.L.C., T.E.K., I.A.U.) Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, UK (L.E., N.A., A.T.B., J.B., J.T.C., M.A., K.Z., R.A., T.J.C., M.J.C., K.M.C., R.C., R.P.C.) CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria (T.K., A.F.R., C.B.) Department of Medicine (H7) (J.L., M.R.), Karolinska University Hospital, Stockholm, Sweden Bioinfo, Plantagenet, ON, Canada (M.E.L.) Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands (N.P.R.., M.G.N.) |
AuthorAffiliation_xml | – name: The Kennedy Institute of Rheumatology, University of Oxford, UK (A.L.C., T.E.K., I.A.U.) – name: Bioinfo, Plantagenet, ON, Canada (M.E.L.) – name: Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, UK (L.E., N.A., A.T.B., J.B., J.T.C., M.A., K.Z., R.A., T.J.C., M.J.C., K.M.C., R.C., R.P.C.) – name: Department of Medicine (H7) (J.L., M.R.), Karolinska University Hospital, Stockholm, Sweden – name: Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands (N.P.R.., M.G.N.) – name: CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria (T.K., A.F.R., C.B.) |
Author_xml | – sequence: 1 givenname: Laurienne surname: Edgar fullname: Edgar, Laurienne organization: Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, UK (L.E., N.A., A.T.B., J.B., J.T.C., M.A., K.Z., R.A., T.J.C., M.J.C., K.M.C., R.C., R.P.C.) – sequence: 2 givenname: Naveed surname: Akbar fullname: Akbar, Naveed organization: Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, UK (L.E., N.A., A.T.B., J.B., J.T.C., M.A., K.Z., R.A., T.J.C., M.J.C., K.M.C., R.C., R.P.C.) – sequence: 3 givenname: Adam T. surname: Braithwaite fullname: Braithwaite, Adam T. organization: Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, UK (L.E., N.A., A.T.B., J.B., J.T.C., M.A., K.Z., R.A., T.J.C., M.J.C., K.M.C., R.C., R.P.C.) – sequence: 4 givenname: Thomas surname: Krausgruber fullname: Krausgruber, Thomas organization: CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria (T.K., A.F.R., C.B.) – sequence: 5 givenname: Héctor surname: Gallart-Ayala fullname: Gallart-Ayala, Héctor organization: Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden (H.G.-A., C.E.W.) – sequence: 6 givenname: Jade surname: Bailey fullname: Bailey, Jade organization: Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, UK (L.E., N.A., A.T.B., J.B., J.T.C., M.A., K.Z., R.A., T.J.C., M.J.C., K.M.C., R.C., R.P.C.) – sequence: 7 givenname: Alastair L. surname: Corbin fullname: Corbin, Alastair L. organization: The Kennedy Institute of Rheumatology, University of Oxford, UK (A.L.C., T.E.K., I.A.U.) – sequence: 8 givenname: Tariq E. surname: Khoyratty fullname: Khoyratty, Tariq E. organization: The Kennedy Institute of Rheumatology, University of Oxford, UK (A.L.C., T.E.K., I.A.U.) – sequence: 9 givenname: Joshua T. surname: Chai fullname: Chai, Joshua T. organization: Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, UK (L.E., N.A., A.T.B., J.B., J.T.C., M.A., K.Z., R.A., T.J.C., M.J.C., K.M.C., R.C., R.P.C.) – sequence: 10 givenname: Mohammad surname: Alkhalil fullname: Alkhalil, Mohammad organization: Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, UK (L.E., N.A., A.T.B., J.B., J.T.C., M.A., K.Z., R.A., T.J.C., M.J.C., K.M.C., R.C., R.P.C.) – sequence: 11 givenname: André F. surname: Rendeiro fullname: Rendeiro, André F. organization: CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria (T.K., A.F.R., C.B.) – sequence: 12 givenname: Klemen surname: Ziberna fullname: Ziberna, Klemen organization: Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, UK (L.E., N.A., A.T.B., J.B., J.T.C., M.A., K.Z., R.A., T.J.C., M.J.C., K.M.C., R.C., R.P.C.) – sequence: 13 givenname: Ritu surname: Arya fullname: Arya, Ritu organization: Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, UK (L.E., N.A., A.T.B., J.B., J.T.C., M.A., K.Z., R.A., T.J.C., M.J.C., K.M.C., R.C., R.P.C.) – sequence: 14 givenname: Thomas J. surname: Cahill fullname: Cahill, Thomas J. organization: Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, UK (L.E., N.A., A.T.B., J.B., J.T.C., M.A., K.Z., R.A., T.J.C., M.J.C., K.M.C., R.C., R.P.C.) – sequence: 15 givenname: Christoph surname: Bock fullname: Bock, Christoph organization: CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria (T.K., A.F.R., C.B.) – sequence: 16 givenname: Jurga surname: Laurencikiene fullname: Laurencikiene, Jurga organization: Department of Medicine (H7) (J.L., M.R.), Karolinska University Hospital, Stockholm, Sweden – sequence: 17 givenname: Mark J. surname: Crabtree fullname: Crabtree, Mark J. organization: Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, UK (L.E., N.A., A.T.B., J.B., J.T.C., M.A., K.Z., R.A., T.J.C., M.J.C., K.M.C., R.C., R.P.C.) – sequence: 18 givenname: Madeleine E. surname: Lemieux fullname: Lemieux, Madeleine E. organization: Bioinfo, Plantagenet, ON, Canada (M.E.L.) – sequence: 19 givenname: Niels P. surname: Riksen fullname: Riksen, Niels P. organization: Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands (N.P.R.., M.G.N.) – sequence: 20 givenname: Mihai G. surname: Netea fullname: Netea, Mihai G. organization: Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands (N.P.R.., M.G.N.) – sequence: 21 givenname: Craig E. surname: Wheelock fullname: Wheelock, Craig E. organization: Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden (H.G.-A., C.E.W.) – sequence: 22 givenname: Keith M. surname: Channon fullname: Channon, Keith M. organization: Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, UK (L.E., N.A., A.T.B., J.B., J.T.C., M.A., K.Z., R.A., T.J.C., M.J.C., K.M.C., R.C., R.P.C.) – sequence: 23 givenname: Mikael surname: Rydén fullname: Rydén, Mikael organization: Department of Medicine (H7) (J.L., M.R.), Karolinska University Hospital, Stockholm, Sweden – sequence: 24 givenname: Irina A. surname: Udalova fullname: Udalova, Irina A. organization: The Kennedy Institute of Rheumatology, University of Oxford, UK (A.L.C., T.E.K., I.A.U.) – sequence: 25 givenname: Ricardo surname: Carnicer fullname: Carnicer, Ricardo organization: Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, UK (L.E., N.A., A.T.B., J.B., J.T.C., M.A., K.Z., R.A., T.J.C., M.J.C., K.M.C., R.C., R.P.C.) – sequence: 26 givenname: Robin P. surname: Choudhury fullname: Choudhury, Robin P. organization: Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, UK (L.E., N.A., A.T.B., J.B., J.T.C., M.A., K.Z., R.A., T.J.C., M.J.C., K.M.C., R.C., R.P.C.) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34255973$$D View this record in MEDLINE/PubMed http://kipublications.ki.se/Default.aspx?queryparsed=id:147708861$$DView record from Swedish Publication Index |
BookMark | eNqNUk2P0zAQtdAitrvwF1C4cUnxZ1JfQFEFtFJhV6h7thxn0phN4mInVP33uKSLKCdk-WvmzXvSvLlBV73rAaE3BM8Jyci75frb8mFTbNd3X4tVMScUzzHP4nqGZkRQnnLB5BWaYYxlmjNKr9FNCN_jN2O5eIGuGadCyJzN0G513IPftUcDndXJuq9GAyHZem17qJJ11429HY6J7ZMv2ni3b_Qu5nVfJdsGrE_uPZjRB-en4L13nRsiohga8C6Y9nTa8BI9r3Ub4NX5vkUPnz5ul6t0c_d5vSw2qRE4y1Iuq5rIrGS1zEkNzBhSy1NqUeYSgOaVqImuaqorlpcETF1qJiq5wCA4rQi7RenEGw6wH0u197bT_qictuoceowvUDzDgmUR_37Cx0wHlYF-8Lq9KLvM9LZRO_dTLThfcEIjwdszgXc_RgiD6mww0La6BzcGFRtNxIIIcdJ6_bfWH5EnNyLgwwSIjQ7BQ62MHfRg3UnatopgdfJfXfqvov9q8j8yyH8YnkT-p5ZPtQfXDuDDYzsewKsGdDs0Kg4PZpjkKcWUYBl3in8P1C8zGcpy |
CitedBy_id | crossref_primary_10_3389_fneur_2023_1249535 crossref_primary_10_1016_j_diabres_2023_110869 crossref_primary_10_1016_j_kint_2024_10_031 crossref_primary_10_1016_j_intimp_2024_111558 crossref_primary_10_1007_s00018_023_04981_8 crossref_primary_10_1093_cvr_cvac058 crossref_primary_10_3390_ijms252010979 crossref_primary_10_3389_fendo_2022_983723 crossref_primary_10_1161_ATVBAHA_122_317163 crossref_primary_10_1038_s41577_025_01132_x crossref_primary_10_1042_CS20201293 crossref_primary_10_1161_ATVBAHA_121_317204 crossref_primary_10_1007_s12265_023_10470_x crossref_primary_10_2147_ITT_S508042 crossref_primary_10_7554_eLife_81480 crossref_primary_10_1016_j_jdiacomp_2023_108469 crossref_primary_10_3390_ijms25042312 crossref_primary_10_1001_jamapediatrics_2023_2029 crossref_primary_10_1016_j_yjmcc_2021_10_007 crossref_primary_10_1093_eurheartj_ehad787 crossref_primary_10_1016_j_ijcard_2025_132988 crossref_primary_10_1016_j_arr_2022_101836 crossref_primary_10_1016_j_cell_2022_04_004 crossref_primary_10_1111_bph_16472 crossref_primary_10_1038_s41569_021_00606_4 crossref_primary_10_3389_fimmu_2022_984859 crossref_primary_10_1016_j_ejphar_2023_175787 crossref_primary_10_1016_j_yjmcc_2023_10_011 crossref_primary_10_1111_jdi_13734 crossref_primary_10_3389_fimmu_2023_1183066 crossref_primary_10_1152_physrev_00031_2021 crossref_primary_10_3389_fimmu_2024_1483402 crossref_primary_10_1055_a_1721_5577 crossref_primary_10_1016_j_abb_2022_109430 crossref_primary_10_1016_j_dsx_2024_102968 crossref_primary_10_1186_s12974_024_03136_1 crossref_primary_10_1016_j_yexcr_2024_114052 crossref_primary_10_1016_j_isci_2024_110767 crossref_primary_10_3389_fimmu_2024_1342837 crossref_primary_10_7554_eLife_87316_3 crossref_primary_10_1016_j_tips_2024_12_003 crossref_primary_10_1093_jleuko_qiad118 crossref_primary_10_1016_j_fbio_2024_103755 crossref_primary_10_3390_biomedicines11123250 crossref_primary_10_1002_brb3_70404 crossref_primary_10_1016_j_jaci_2024_06_005 crossref_primary_10_1007_s11886_024_02167_7 crossref_primary_10_1093_cvr_cvac114 crossref_primary_10_3390_cells13191662 crossref_primary_10_3389_fimmu_2023_1130662 crossref_primary_10_1016_j_phrs_2024_107505 crossref_primary_10_1152_ajpcell_00201_2022 crossref_primary_10_1002_agm2_12189 crossref_primary_10_2174_0115733998279869231227091944 crossref_primary_10_1038_s41569_021_00668_4 crossref_primary_10_1038_s41569_023_00894_y crossref_primary_10_1016_j_isci_2024_111594 crossref_primary_10_1007_s12013_024_01269_x crossref_primary_10_1016_j_ejphar_2024_176586 crossref_primary_10_1016_j_isci_2023_107759 crossref_primary_10_1093_cvr_cvad030 crossref_primary_10_1096_fj_202302003R crossref_primary_10_1002_smll_202402673 crossref_primary_10_1021_acschemneuro_5c00021 crossref_primary_10_1016_j_jpha_2023_11_016 crossref_primary_10_1038_s41577_024_00998_7 crossref_primary_10_3389_fimmu_2025_1472197 crossref_primary_10_3390_antiox11122382 crossref_primary_10_1073_pnas_2400413121 crossref_primary_10_1016_j_procbio_2024_09_011 crossref_primary_10_3390_biomedicines11030766 crossref_primary_10_1016_j_cej_2023_143173 crossref_primary_10_1038_s44161_024_00473_5 crossref_primary_10_3389_fendo_2022_981100 crossref_primary_10_1038_s41581_022_00621_9 crossref_primary_10_3390_ncrna9030030 crossref_primary_10_1155_2024_7178920 crossref_primary_10_1177_17539447231215213 crossref_primary_10_3390_cancers15020498 crossref_primary_10_3390_biomedicines10010178 crossref_primary_10_1089_wound_2023_0149 crossref_primary_10_1186_s40001_024_01739_1 crossref_primary_10_1016_j_heliyon_2023_e15692 crossref_primary_10_31083_j_fbl2901026 crossref_primary_10_1096_fj_202301078R crossref_primary_10_12688_f1000research_131867_1 crossref_primary_10_15252_embr_202357164 crossref_primary_10_7554_eLife_87316 crossref_primary_10_1016_j_ajcnut_2024_04_029 crossref_primary_10_1080_1744666X_2022_2120470 crossref_primary_10_1093_cvr_cvae142 crossref_primary_10_1016_j_trecan_2023_08_007 crossref_primary_10_1042_BST20220441 crossref_primary_10_3390_jcm12113665 crossref_primary_10_1016_j_celrep_2024_114094 crossref_primary_10_1111_myc_13682 crossref_primary_10_3389_fendo_2022_919223 crossref_primary_10_1186_s12933_024_02273_4 crossref_primary_10_3389_fimmu_2024_1330461 crossref_primary_10_1002_wsbm_1543 crossref_primary_10_1016_j_isci_2023_107183 crossref_primary_10_1016_j_phrs_2025_107588 crossref_primary_10_1016_j_phymed_2023_154667 crossref_primary_10_1016_j_isci_2023_108637 crossref_primary_10_1016_j_jep_2024_117750 crossref_primary_10_1186_s12931_023_02663_4 crossref_primary_10_1016_j_ijbiomac_2023_128809 crossref_primary_10_1096_fj_202401452R crossref_primary_10_1089_ten_tec_2022_0066 crossref_primary_10_1161_CIRCULATIONAHA_123_065506 crossref_primary_10_3390_ijms251910240 crossref_primary_10_1016_j_isci_2022_103973 crossref_primary_10_1161_ATVBAHA_123_318956 crossref_primary_10_1016_j_jacbts_2022_12_010 crossref_primary_10_1016_j_tem_2023_10_011 crossref_primary_10_1016_j_ijcrp_2022_200143 crossref_primary_10_1016_j_heliyon_2024_e26904 crossref_primary_10_1128_iai_00472_24 crossref_primary_10_1038_s41392_024_01755_x crossref_primary_10_1172_JCI169730 crossref_primary_10_1210_endocr_bqac061 crossref_primary_10_1007_s11906_022_01222_4 crossref_primary_10_1002_mnfr_202300380 crossref_primary_10_1016_j_ijbiomac_2024_134830 crossref_primary_10_3390_ijms26052196 crossref_primary_10_1038_s41569_024_01115_w crossref_primary_10_3390_ijms23042234 crossref_primary_10_1186_s12933_024_02195_1 crossref_primary_10_1186_s12979_023_00377_1 crossref_primary_10_18632_oncotarget_28642 crossref_primary_10_1111_imm_13706 crossref_primary_10_3389_fnut_2024_1346706 crossref_primary_10_1016_j_cej_2024_154433 crossref_primary_10_1016_j_cca_2022_09_017 crossref_primary_10_1007_s13340_024_00741_6 crossref_primary_10_1177_14791641231159009 crossref_primary_10_3389_fnagi_2021_821336 crossref_primary_10_1111_acel_13863 crossref_primary_10_3390_life13112128 |
Cites_doi | 10.1161/01.ATV.0000142808.34602.25 10.1073/pnas.1200037109 10.1016/j.cmet.2014.03.029 10.1002/0471142727.mb2129s109 10.1038/srep15859 10.1161/01.cir.102.18.2180 10.1161/CIRCRESAHA.120.316653 10.2337/diabetes.52.5.1256 10.1016/j.jacc.2018.07.071 10.1371/journal.pone.0039790 10.12703/P6-13 10.1161/01.atv.0000051701.90972.e5 10.1056/NEJM199309303291401 10.1038/nmeth.3252 10.1038/ni.3306 10.1128/MCB.21.19.6470-6483.2001 10.1002/jcp.24054 10.1016/j.celrep.2016.11.011 10.15252/embj.201592534 10.1182/blood-2014-04-568691 10.1161/CIRCGENETICS.111.960773 10.1182/blood-2003-02-0618 10.1056/NEJMoa1504720 10.1084/jem.20151570 10.1161/ATVBAHA.116.308014 10.1056/NEJMoa052187 10.1126/science.1250684 10.1093/cvr/cvx196 10.1021/pr500782g 10.1016/j.chom.2012.06.006 10.1038/nbt.1630 10.18632/oncotarget.27637 10.1186/gb-2008-9-9-r137 10.2337/dc15-S011 10.1093/nar/gkv007 10.1056/NEJMoa1006524 10.1007/s12975-011-0066-4 10.1093/bioinformatics/bts635 10.1111/imm.12535 10.1016/j.cell.2017.12.013 10.1056/NEJMe0807625 10.1093/bioinformatics/btm311 10.1016/j.cmet.2017.06.001 10.1016/j.cell.2017.11.034 10.2337/db10-0778 10.1038/nature11986 10.1093/bioinformatics/btr189 10.1016/j.cell.2017.11.025 10.1056/NEJMoa1806802 10.1038/nature10730 10.1074/jbc.M113.522037 10.1038/sj.onc.1208657 10.1016/j.atherosclerosis.2020.05.002 10.1038/nri3520 10.1016/j.smim.2016.09.002 10.1016/j.cmet.2006.05.011 10.1038/cr.2017.8 10.1016/j.tem.2015.08.001 10.1111/imr.12617 10.1073/pnas.042683999 10.1093/nar/gks042 10.1371/journal.pone.0223980 10.1038/sj.onc.1207122 10.3389/fimmu.2017.00248 10.1093/bioinformatics/btq049 10.1038/s41586-019-1678-1 |
ContentType | Journal Article |
Copyright | Lippincott Williams & Wilkins 2021 The Authors. 2021 |
Copyright_xml | – notice: Lippincott Williams & Wilkins – notice: 2021 The Authors. 2021 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM ADTPV AOWAS |
DOI | 10.1161/CIRCULATIONAHA.120.046464 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) SwePub SwePub Articles |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1524-4539 |
EndPage | 982 |
ExternalDocumentID | oai_swepub_ki_se_460536 PMC8448412 34255973 10_1161_CIRCULATIONAHA_120_046464 00003017-202109210-00006 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: British Heart Foundation grantid: PG/18/53/33895 – fundername: Medical Research Council grantid: G0900747 91070 – fundername: British Heart Foundation grantid: CH/16/1/32013 – fundername: British Heart Foundation grantid: FS/14/56/31049 – fundername: British Heart Foundation grantid: RE/13/1/30181 – fundername: Wellcome Trust grantid: 090532/Z/09/Z |
GroupedDBID | --- .-D .3C .XZ .Z2 01R 0R~ 0ZK 18M 1J1 29B 2FS 2WC 354 40H 4Q1 4Q2 4Q3 53G 5GY 5RE 5VS 6PF 71W 77Y 7O~ AAAAV AAAXR AAGIX AAHPQ AAIQE AAJCS AAMOA AAMTA AAQKA AARTV AASCR AASOK AASXQ AAUEB AAWTL AAXQO ABASU ABBUW ABDIG ABJNI ABOCM ABPMR ABPXF ABQRW ABVCZ ABXVJ ABXYN ABZAD ABZZY ACDDN ACDOF ACEWG ACGFO ACGFS ACILI ACLDA ACOAL ACRKK ACWDW ACWRI ACXJB ACXNZ ACZKN ADBBV ADCYY ADGGA ADHPY AE3 AE6 AEBDS AENEX AFBFQ AFCHL AFDTB AFEXH AFMBP AFNMH AFSOK AFUWQ AGINI AHMBA AHOMT AHQNM AHQVU AHRYX AHVBC AIJEX AINUH AJCLO AJIOK AJNWD AJZMW AKCTQ AKULP ALKUP ALMA_UNASSIGNED_HOLDINGS ALMTX AMJPA AMKUR AMNEI AOHHW AOQMC ASPBG AVWKF AYCSE AZFZN BAWUL BOYCO BQLVK BYPQX C45 CS3 DIK DIWNM DU5 E3Z EBS EEVPB ERAAH EX3 F2K F2L F2M F2N F5P FCALG GNXGY GQDEL GX1 H0~ HLJTE HZ~ IKREB IKYAY IN~ IPNFZ JF9 JG8 JK3 K-A K-F K8S KD2 KMI KQ8 L-C L7B N9A N~7 N~B O9- OAG OAH OBH OCB ODMTH OGEVE OHH OHYEH OK1 OL1 OLB OLG OLH OLU OLV OLY OLZ OPUJH OVD OVDNE OVIDH OVLEI OVOZU OWBYB OWU OWV OWW OWX OWY OWZ OXXIT P2P PQQKQ RAH RIG RLZ S4R S4S T8P TEORI TR2 TSPGW UPT V2I VVN W2D W3M W8F WH7 WOQ WOW X3V X3W XXN XYM YFH YOC YSK YYM YZZ ZFV ZY1 ~H1 AAFWJ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM ADSXY .55 .GJ 1CY 41~ AAEJM ACCJW ADFPA ADNKB ADTPV AEETU AFFNX AJJEV AJNYG AOWAS BS7 C1A DUNZO E.X EJD FEDTE FL- FW0 H13 HVGLF H~9 J5H JK8 M18 MVM N4W NEJ N~M OCUKA ODA OHT ORVUJ OUVQU P-K R58 WHG X7M YQJ YXB YYP ZGI ZXP ZZMQN |
ID | FETCH-LOGICAL-c5066-49df196b3f971fe3cc1f9c5068b79ee27d5f1adf2ad37b1ecfba35d980e542d13 |
ISSN | 0009-7322 1524-4539 |
IngestDate | Mon Sep 01 03:36:21 EDT 2025 Thu Aug 21 17:41:54 EDT 2025 Thu Jul 10 22:28:10 EDT 2025 Mon Jul 21 06:03:03 EDT 2025 Tue Jul 01 01:43:40 EDT 2025 Thu Apr 24 22:53:46 EDT 2025 Fri May 16 03:52:38 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | glucose macrophages diabetes mellitus inflammation epigenetics |
Language | English |
License | Circulation is published on behalf of the American Heart Association, Inc., by Wolters Kluwer Health, Inc. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution, and reproduction in any medium, provided that the original work is properly cited. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c5066-49df196b3f971fe3cc1f9c5068b79ee27d5f1adf2ad37b1ecfba35d980e542d13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-5911-0026 0000-0001-9362-5373 0000-0002-1374-0329 0000-0002-8046-1688 0000-0003-3228-2172 0000-0001-9197-8124 0000-0002-3088-8878 0000-0001-7893-2324 0000-0003-3819-3779 0000-0003-3298-2697 0000-0001-6091-3088 0000-0001-7308-9286 0000-0003-4620-6373 0000-0002-7440-2964 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC8448412 |
PMID | 34255973 |
PQID | 2551581556 |
PQPubID | 23479 |
PageCount | 22 |
ParticipantIDs | swepub_primary_oai_swepub_ki_se_460536 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8448412 proquest_miscellaneous_2551581556 pubmed_primary_34255973 crossref_citationtrail_10_1161_CIRCULATIONAHA_120_046464 crossref_primary_10_1161_CIRCULATIONAHA_120_046464 wolterskluwer_health_00003017-202109210-00006 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-September-21 |
PublicationDateYYYYMMDD | 2021-09-21 |
PublicationDate_xml | – month: 09 year: 2021 text: 2021-September-21 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hagerstown, MD |
PublicationTitle | Circulation (New York, N.Y.) |
PublicationTitleAlternate | Circulation |
PublicationYear | 2021 |
Publisher | Lippincott Williams & Wilkins |
Publisher_xml | – name: Lippincott Williams & Wilkins |
References | e_1_3_6_30_2 e_1_3_6_51_2 e_1_3_6_32_2 e_1_3_6_53_2 e_1_3_6_19_2 e_1_3_6_13_2 e_1_3_6_38_2 e_1_3_6_59_2 e_1_3_6_11_2 e_1_3_6_17_2 e_1_3_6_34_2 e_1_3_6_55_2 e_1_3_6_15_2 e_1_3_6_36_2 e_1_3_6_57_2 e_1_3_6_40_2 e_1_3_6_65_2 e_1_3_6_21_2 e_1_3_6_42_2 e_1_3_6_63_2 e_1_3_6_61_2 e_1_3_6_4_2 e_1_3_6_2_2 e_1_3_6_8_2 e_1_3_6_6_2 e_1_3_6_27_2 e_1_3_6_48_2 e_1_3_6_29_2 e_1_3_6_23_2 e_1_3_6_44_2 e_1_3_6_25_2 e_1_3_6_46_2 e_1_3_6_67_2 e_1_3_6_52_2 e_1_3_6_31_2 e_1_3_6_54_2 e_1_3_6_10_2 e_1_3_6_50_2 e_1_3_6_14_2 e_1_3_6_37_2 e_1_3_6_12_2 e_1_3_6_39_2 e_1_3_6_18_2 e_1_3_6_33_2 e_1_3_6_56_2 e_1_3_6_16_2 e_1_3_6_35_2 e_1_3_6_58_2 e_1_3_6_41_2 e_1_3_6_64_2 e_1_3_6_20_2 e_1_3_6_43_2 e_1_3_6_62_2 e_1_3_6_60_2 e_1_3_6_5_2 e_1_3_6_3_2 e_1_3_6_9_2 e_1_3_6_7_2 e_1_3_6_26_2 e_1_3_6_49_2 e_1_3_6_28_2 e_1_3_6_22_2 e_1_3_6_45_2 e_1_3_6_68_2 e_1_3_6_24_2 e_1_3_6_47_2 e_1_3_6_66_2 34312499 - Nat Rev Cardiol. 2021 Oct;18(10):687. doi: 10.1038/s41569-021-00606-4. |
References_xml | – ident: e_1_3_6_22_2 doi: 10.1161/01.ATV.0000142808.34602.25 – ident: e_1_3_6_52_2 doi: 10.1073/pnas.1200037109 – ident: e_1_3_6_46_2 doi: 10.1016/j.cmet.2014.03.029 – ident: e_1_3_6_29_2 doi: 10.1002/0471142727.mb2129s109 – ident: e_1_3_6_61_2 doi: 10.1038/srep15859 – ident: e_1_3_6_66_2 doi: 10.1161/01.cir.102.18.2180 – ident: e_1_3_6_68_2 doi: 10.1161/CIRCRESAHA.120.316653 – ident: e_1_3_6_12_2 doi: 10.2337/diabetes.52.5.1256 – ident: e_1_3_6_7_2 doi: 10.1016/j.jacc.2018.07.071 – ident: e_1_3_6_23_2 doi: 10.1371/journal.pone.0039790 – ident: e_1_3_6_10_2 doi: 10.12703/P6-13 – ident: e_1_3_6_51_2 doi: 10.1161/01.atv.0000051701.90972.e5 – ident: e_1_3_6_4_2 doi: 10.1056/NEJM199309303291401 – ident: e_1_3_6_25_2 doi: 10.1038/nmeth.3252 – ident: e_1_3_6_58_2 doi: 10.1038/ni.3306 – ident: e_1_3_6_64_2 doi: 10.1128/MCB.21.19.6470-6483.2001 – ident: e_1_3_6_20_2 doi: 10.1002/jcp.24054 – ident: e_1_3_6_42_2 doi: 10.1016/j.celrep.2016.11.011 – ident: e_1_3_6_47_2 doi: 10.15252/embj.201592534 – ident: e_1_3_6_41_2 doi: 10.1182/blood-2014-04-568691 – ident: e_1_3_6_49_2 doi: 10.1161/CIRCGENETICS.111.960773 – ident: e_1_3_6_32_2 doi: 10.1182/blood-2003-02-0618 – ident: e_1_3_6_6_2 doi: 10.1056/NEJMoa1504720 – ident: e_1_3_6_13_2 doi: 10.1084/jem.20151570 – ident: e_1_3_6_39_2 doi: 10.1161/ATVBAHA.116.308014 – ident: e_1_3_6_3_2 doi: 10.1056/NEJMoa052187 – ident: e_1_3_6_19_2 doi: 10.1126/science.1250684 – ident: e_1_3_6_45_2 doi: 10.1093/cvr/cvx196 – ident: e_1_3_6_28_2 doi: 10.1021/pr500782g – ident: e_1_3_6_55_2 doi: 10.1016/j.chom.2012.06.006 – ident: e_1_3_6_33_2 doi: 10.1038/nbt.1630 – ident: e_1_3_6_65_2 doi: 10.18632/oncotarget.27637 – ident: e_1_3_6_30_2 doi: 10.1186/gb-2008-9-9-r137 – ident: e_1_3_6_2_2 doi: 10.2337/dc15-S011 – ident: e_1_3_6_27_2 doi: 10.1093/nar/gkv007 – ident: e_1_3_6_5_2 doi: 10.1056/NEJMoa1006524 – ident: e_1_3_6_50_2 doi: 10.1007/s12975-011-0066-4 – ident: e_1_3_6_35_2 doi: 10.1093/bioinformatics/bts635 – ident: e_1_3_6_59_2 doi: 10.1111/imm.12535 – ident: e_1_3_6_57_2 doi: 10.1016/j.cell.2017.12.013 – ident: e_1_3_6_8_2 doi: 10.1056/NEJMe0807625 – ident: e_1_3_6_26_2 doi: 10.1093/bioinformatics/btm311 – ident: e_1_3_6_37_2 – ident: e_1_3_6_17_2 doi: 10.1016/j.cmet.2017.06.001 – ident: e_1_3_6_21_2 doi: 10.1016/j.cell.2017.11.034 – ident: e_1_3_6_11_2 doi: 10.2337/db10-0778 – ident: e_1_3_6_15_2 doi: 10.1038/nature11986 – ident: e_1_3_6_34_2 doi: 10.1093/bioinformatics/btr189 – ident: e_1_3_6_18_2 doi: 10.1016/j.cell.2017.11.025 – ident: e_1_3_6_53_2 doi: 10.1056/NEJMoa1806802 – ident: e_1_3_6_31_2 doi: 10.1038/nature10730 – ident: e_1_3_6_38_2 doi: 10.1074/jbc.M113.522037 – ident: e_1_3_6_60_2 doi: 10.1038/sj.onc.1208657 – ident: e_1_3_6_67_2 doi: 10.1016/j.atherosclerosis.2020.05.002 – ident: e_1_3_6_9_2 doi: 10.1038/nri3520 – ident: e_1_3_6_54_2 doi: 10.1016/j.smim.2016.09.002 – ident: e_1_3_6_14_2 doi: 10.1016/j.cmet.2006.05.011 – ident: e_1_3_6_40_2 doi: 10.1038/cr.2017.8 – ident: e_1_3_6_44_2 doi: 10.1016/j.tem.2015.08.001 – ident: e_1_3_6_43_2 doi: 10.1111/imr.12617 – ident: e_1_3_6_24_2 doi: 10.1073/pnas.042683999 – ident: e_1_3_6_36_2 doi: 10.1093/nar/gks042 – ident: e_1_3_6_62_2 doi: 10.1371/journal.pone.0223980 – ident: e_1_3_6_63_2 doi: 10.1038/sj.onc.1207122 – ident: e_1_3_6_16_2 doi: 10.3389/fimmu.2017.00248 – ident: e_1_3_6_48_2 doi: 10.1093/bioinformatics/btq049 – ident: e_1_3_6_56_2 doi: 10.1038/s41586-019-1678-1 – reference: 34312499 - Nat Rev Cardiol. 2021 Oct;18(10):687. doi: 10.1038/s41569-021-00606-4. |
SSID | ssj0006375 |
Score | 2.673677 |
Snippet | Cardiovascular risk in diabetes remains elevated despite glucose-lowering therapies. We hypothesized that hyperglycemia induces trained immunity in... Supplemental Digital Content is available in the text. |
SourceID | swepub pubmedcentral proquest pubmed crossref wolterskluwer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 961 |
SubjectTerms | Animals Atherosclerosis - immunology Atherosclerosis - pathology Cells, Cultured Diabetes Mellitus, Experimental - immunology Diabetes Mellitus, Experimental - pathology Endarterectomy, Carotid Humans Hyperglycemia - immunology Hyperglycemia - pathology Immunity, Cellular - immunology Leukocytes, Mononuclear - immunology Leukocytes, Mononuclear - pathology Macrophages - immunology Macrophages - pathology Mice Mice, 129 Strain Mice, Transgenic Original s |
Title | Hyperglycemia Induces Trained Immunity in Macrophages and Their Precursors and Promotes Atherosclerosis |
URI | https://ovidsp.ovid.com/ovidweb.cgi?T=JS&NEWS=n&CSC=Y&PAGE=fulltext&D=ovft&AN=00003017-202109210-00006 https://www.ncbi.nlm.nih.gov/pubmed/34255973 https://www.proquest.com/docview/2551581556 https://pubmed.ncbi.nlm.nih.gov/PMC8448412 http://kipublications.ki.se/Default.aspx?queryparsed=id:147708861 |
Volume | 144 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbGkCZeEGzAyk2ehPaCMupLbo9VtdHBNhBqpb5FduJ01bYU9cI0fgC_m3Nsp23YkAZ9iCLn4rbni3OO_Z3vEPIuMvCJdBzIXKhAFrkIEm3CoIRYJClDpQqDK7qnZ1FvID8Nw-HGxq811tJirg_yn3fmlfyPVaEN7IpZsv9g2eVNoQH2wb6wBQvD9l427kEQOR1d3uTmaqzeYxUO5Ff1seoD-JHHNvVjbhP7ThWW6jpXqOiAU-V9uz7wdYqz7TOst-OTBsBwcEYHvcLJDHqD7Xi27sB2x9PcV_y6q5DP2sTCYTFy5G1Mvba0siW4LrQ7cqZ-GJ9c5Zb1x_Pza-Ur9nUKdbWicH-eqsVsNF1oD7EVr8lPWXCG_AqXB12PslwGMnQqRgfmjrZ6aHbakDUG-dpImzoN99tvgAjfAN3jb93BidMT7uGEb_sA13CdYHpTdfvsS3Y0ODnJ-ofD_gPykEO4gZUwPg5XVKFIWMHm5VfcInu-qw9_7ajp59wKXm5zcL1SLRy4niBRYnZh8yTWvJ3-E_LYhym04zD3lGyYapvsdCo1n1zd0H1qicN2RWabbJ16fsYOGTUQST0iqUckrRFJxxVdQyQF8FGLSLpCpG2sEUn_QOQzMjg67Hd7gS_lEeQhOLWBTIsSxnotyjRmpRF5zsoUDyU6To3hcRGWTBUlV4WINTN5qZUIizRpm1DygonnZLOaVGaX0FSxUnJdiNTEUgmtQm5SVmrOorDIU9kiSf3HZ7nXucdyK5eZjXcjljVtloHNMmezFuHLS787sZf7XLRXWzeDoRnX21RlJotZBtE6CxNw2KMWeeGsvbytkDaWFy0SN3CwPAFl35tHqvG5lX9PpEwk4y2y7xDTuMQ3XcCeyZDzIKDzoIGozGVYI-0E50PiAB_RdsqZlZhoRy_v8YNekUerB_s12ZxPF-YNeOdz_dY-Or8BAx7m9A |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hyperglycemia+Induces+Trained+Immunity+in+Macrophages+and+Their+Precursors+and+Promotes+Atherosclerosis&rft.jtitle=Circulation+%28New+York%2C+N.Y.%29&rft.au=Edgar%2C+Laurienne&rft.au=Akbar%2C+Naveed&rft.au=Braithwaite%2C+Adam+T&rft.au=Krausgruber%2C+Thomas&rft.date=2021-09-21&rft.issn=1524-4539&rft.eissn=1524-4539&rft.volume=144&rft.issue=12&rft.spage=961&rft_id=info:doi/10.1161%2FCIRCULATIONAHA.120.046464&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-7322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-7322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-7322&client=summon |