Age‐related changes of skeletal muscle metabolic response to contraction are also sex‐dependent

Mitochondria adapt to increased energy demands during muscle contraction by acutely altering metabolite fluxes and substrate oxidation. With age, an impaired mitochondrial metabolic response may contribute to reduced exercise tolerance and decreased skeletal muscle mass, specific force, increased ov...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of physiology Vol. 603; no. 1; pp. 69 - 86
Main Authors Campbell, Matthew D., Djukovic, Danijel, Raftery, Daniel, Marcinek, David J.
Format Journal Article
LanguageEnglish
Published England Wiley Subscription Services, Inc 01.01.2025
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Mitochondria adapt to increased energy demands during muscle contraction by acutely altering metabolite fluxes and substrate oxidation. With age, an impaired mitochondrial metabolic response may contribute to reduced exercise tolerance and decreased skeletal muscle mass, specific force, increased overall fatty depositions in the skeletal muscle, frailty and depressed energy maintenance. We hypothesized that elevated energy stress in mitochondria with age alters the capacity of mitochondria to utilize different substrates following muscle contraction. To test this hypothesis, we used in vivo electrical stimulation to simulate high‐intensity intervals (HII) or low intensity steady‐state (LISS) exercise in young (5–7 months) and aged (27–29 months) male and female mice to characterize effects of age and sex on mitochondrial substrate utilization in skeletal muscle following contraction. Mitochondrial respiration using glutamate decreased in aged males following HII and glutamate oxidation was inhibited following HII in both the contracted and non‐stimulated muscle of aged female muscle. Analyses of the muscle metabolome of female mice indicated that changes in metabolic pathways induced by HII and LISS contractions in young muscle are absent in aged muscle. To test improved mitochondrial function on substrate utilization following HII, we treated aged females with elamipretide (ELAM), a mitochondrially‐targeted peptide shown to improve mitochondrial bioenergetics and restore redox status in aged muscle. ELAM removed inhibition of glutamate oxidation and showed increased metabolic pathway changes following HII, suggesting rescuing redox status and improving bioenergetic function in mitochondria from aged muscle increases glutamate utilization and enhances the metabolic response to muscle contraction in aged muscle. Key points Acute local contraction of gastrocnemius can systemically alter mitochondrial respiration in non‐stimulated muscle. Age‐related changes in mitochondrial respiration using glutamate or palmitoyl carnitine following contraction are sex‐dependent. Respiration using glutamate after high‐intensity contraction is inhibited in aged female muscle. Metabolite level and pathway changes following muscle contraction decrease with age in female mice. Treatment with the mitochondrially‐targeted peptide elamipretide can partially rescue metabolite response to muscle contraction. figure legend Mitochondria respond to metabolic demand of exercise by upregulating metabolic pathways to generate ATP through the utilization of specific substrates. In aged tissue, the mitochondrial substrate utilization response to exercise is reduced or inhibited, causing increased energy stress.
AbstractList Mitochondria adapt to increased energy demands during muscle contraction by acutely altering metabolite fluxes and substrate oxidation. With age, an impaired mitochondrial metabolic response may contribute to reduced exercise tolerance and decreased skeletal muscle mass, specific force, increased overall fatty depositions in the skeletal muscle, frailty and depressed energy maintenance. We hypothesized that elevated energy stress in mitochondria with age alters the capacity of mitochondria to utilize different substrates following muscle contraction. To test this hypothesis, we used in vivo electrical stimulation to simulate high‐intensity intervals (HII) or low intensity steady‐state (LISS) exercise in young (5–7 months) and aged (27–29 months) male and female mice to characterize effects of age and sex on mitochondrial substrate utilization in skeletal muscle following contraction. Mitochondrial respiration using glutamate decreased in aged males following HII and glutamate oxidation was inhibited following HII in both the contracted and non‐stimulated muscle of aged female muscle. Analyses of the muscle metabolome of female mice indicated that changes in metabolic pathways induced by HII and LISS contractions in young muscle are absent in aged muscle. To test improved mitochondrial function on substrate utilization following HII, we treated aged females with elamipretide (ELAM), a mitochondrially‐targeted peptide shown to improve mitochondrial bioenergetics and restore redox status in aged muscle. ELAM removed inhibition of glutamate oxidation and showed increased metabolic pathway changes following HII, suggesting rescuing redox status and improving bioenergetic function in mitochondria from aged muscle increases glutamate utilization and enhances the metabolic response to muscle contraction in aged muscle.Key pointsAcute local contraction of gastrocnemius can systemically alter mitochondrial respiration in non‐stimulated muscle.Age‐related changes in mitochondrial respiration using glutamate or palmitoyl carnitine following contraction are sex‐dependent.Respiration using glutamate after high‐intensity contraction is inhibited in aged female muscle.Metabolite level and pathway changes following muscle contraction decrease with age in female mice.Treatment with the mitochondrially‐targeted peptide elamipretide can partially rescue metabolite response to muscle contraction.
Mitochondria adapt to increased energy demands during muscle contraction by acutely altering metabolite fluxes and substrate oxidation. With age, an impaired mitochondrial metabolic response may contribute to reduced exercise tolerance and decreased skeletal muscle mass, specific force, increased overall fatty depositions in the skeletal muscle, frailty and depressed energy maintenance. We hypothesized that elevated energy stress in mitochondria with age alters the capacity of mitochondria to utilize different substrates following muscle contraction. To test this hypothesis, we used in vivo electrical stimulation to simulate high-intensity intervals (HII) or low intensity steady-state (LISS) exercise in young (5-7 months) and aged (27-29 months) male and female mice to characterize effects of age and sex on mitochondrial substrate utilization in skeletal muscle following contraction. Mitochondrial respiration using glutamate decreased in aged males following HII and glutamate oxidation was inhibited following HII in both the contracted and non-stimulated muscle of aged female muscle. Analyses of the muscle metabolome of female mice indicated that changes in metabolic pathways induced by HII and LISS contractions in young muscle are absent in aged muscle. To test improved mitochondrial function on substrate utilization following HII, we treated aged females with elamipretide (ELAM), a mitochondrially-targeted peptide shown to improve mitochondrial bioenergetics and restore redox status in aged muscle. ELAM removed inhibition of glutamate oxidation and showed increased metabolic pathway changes following HII, suggesting rescuing redox status and improving bioenergetic function in mitochondria from aged muscle increases glutamate utilization and enhances the metabolic response to muscle contraction in aged muscle. KEY POINTS: Acute local contraction of gastrocnemius can systemically alter mitochondrial respiration in non-stimulated muscle. Age-related changes in mitochondrial respiration using glutamate or palmitoyl carnitine following contraction are sex-dependent. Respiration using glutamate after high-intensity contraction is inhibited in aged female muscle. Metabolite level and pathway changes following muscle contraction decrease with age in female mice. Treatment with the mitochondrially-targeted peptide elamipretide can partially rescue metabolite response to muscle contraction.Mitochondria adapt to increased energy demands during muscle contraction by acutely altering metabolite fluxes and substrate oxidation. With age, an impaired mitochondrial metabolic response may contribute to reduced exercise tolerance and decreased skeletal muscle mass, specific force, increased overall fatty depositions in the skeletal muscle, frailty and depressed energy maintenance. We hypothesized that elevated energy stress in mitochondria with age alters the capacity of mitochondria to utilize different substrates following muscle contraction. To test this hypothesis, we used in vivo electrical stimulation to simulate high-intensity intervals (HII) or low intensity steady-state (LISS) exercise in young (5-7 months) and aged (27-29 months) male and female mice to characterize effects of age and sex on mitochondrial substrate utilization in skeletal muscle following contraction. Mitochondrial respiration using glutamate decreased in aged males following HII and glutamate oxidation was inhibited following HII in both the contracted and non-stimulated muscle of aged female muscle. Analyses of the muscle metabolome of female mice indicated that changes in metabolic pathways induced by HII and LISS contractions in young muscle are absent in aged muscle. To test improved mitochondrial function on substrate utilization following HII, we treated aged females with elamipretide (ELAM), a mitochondrially-targeted peptide shown to improve mitochondrial bioenergetics and restore redox status in aged muscle. ELAM removed inhibition of glutamate oxidation and showed increased metabolic pathway changes following HII, suggesting rescuing redox status and improving bioenergetic function in mitochondria from aged muscle increases glutamate utilization and enhances the metabolic response to muscle contraction in aged muscle. KEY POINTS: Acute local contraction of gastrocnemius can systemically alter mitochondrial respiration in non-stimulated muscle. Age-related changes in mitochondrial respiration using glutamate or palmitoyl carnitine following contraction are sex-dependent. Respiration using glutamate after high-intensity contraction is inhibited in aged female muscle. Metabolite level and pathway changes following muscle contraction decrease with age in female mice. Treatment with the mitochondrially-targeted peptide elamipretide can partially rescue metabolite response to muscle contraction.
Mitochondria adapt to increased energy demands during muscle contraction by acutely altering metabolite fluxes and substrate oxidation. With age, an impaired mitochondrial metabolic response may contribute to reduced exercise tolerance and decreased skeletal muscle mass, specific force, increased overall fatty depositions in the skeletal muscle, frailty and depressed energy maintenance. We hypothesized that elevated energy stress in mitochondria with age alters the capacity of mitochondria to utilize different substrates following muscle contraction. To test this hypothesis, we used in vivo electrical stimulation to simulate high‐intensity intervals (HII) or low intensity steady‐state (LISS) exercise in young (5–7 months) and aged (27–29 months) male and female mice to characterize effects of age and sex on mitochondrial substrate utilization in skeletal muscle following contraction. Mitochondrial respiration using glutamate decreased in aged males following HII and glutamate oxidation was inhibited following HII in both the contracted and non‐stimulated muscle of aged female muscle. Analyses of the muscle metabolome of female mice indicated that changes in metabolic pathways induced by HII and LISS contractions in young muscle are absent in aged muscle. To test improved mitochondrial function on substrate utilization following HII, we treated aged females with elamipretide (ELAM), a mitochondrially‐targeted peptide shown to improve mitochondrial bioenergetics and restore redox status in aged muscle. ELAM removed inhibition of glutamate oxidation and showed increased metabolic pathway changes following HII, suggesting rescuing redox status and improving bioenergetic function in mitochondria from aged muscle increases glutamate utilization and enhances the metabolic response to muscle contraction in aged muscle. Key points Acute local contraction of gastrocnemius can systemically alter mitochondrial respiration in non‐stimulated muscle. Age‐related changes in mitochondrial respiration using glutamate or palmitoyl carnitine following contraction are sex‐dependent. Respiration using glutamate after high‐intensity contraction is inhibited in aged female muscle. Metabolite level and pathway changes following muscle contraction decrease with age in female mice. Treatment with the mitochondrially‐targeted peptide elamipretide can partially rescue metabolite response to muscle contraction. figure legend Mitochondria respond to metabolic demand of exercise by upregulating metabolic pathways to generate ATP through the utilization of specific substrates. In aged tissue, the mitochondrial substrate utilization response to exercise is reduced or inhibited, causing increased energy stress.
Abstract figure legend Mitochondria respond to metabolic demand of exercise by upregulating metabolic pathways to generate ATP through the utilization of specific substrates. In aged tissue, the mitochondrial substrate utilization response to exercise is reduced or inhibited, causing increased energy stress.
Mitochondria adapt to increased energy demands during muscle contraction by acutely altering metabolite fluxes and substrate oxidation. With age, an impaired mitochondrial metabolic response may contribute to reduced exercise tolerance and decreased skeletal muscle mass, specific force, increased overall fatty depositions in the skeletal muscle, frailty and depressed energy maintenance. We hypothesized that elevated energy stress in mitochondria with age alters the capacity of mitochondria to utilize different substrates following muscle contraction. To test this hypothesis, we used in vivo electrical stimulation to simulate high-intensity intervals (HII) or low intensity steady-state (LISS) exercise in young (5-7 months) and aged (27-29 months) male and female mice to characterize effects of age and sex on mitochondrial substrate utilization in skeletal muscle following contraction. Mitochondrial respiration using glutamate decreased in aged males following HII and glutamate oxidation was inhibited following HII in both the contracted and non-stimulated muscle of aged female muscle. Analyses of the muscle metabolome of female mice indicated that changes in metabolic pathways induced by HII and LISS contractions in young muscle are absent in aged muscle. To test improved mitochondrial function on substrate utilization following HII, we treated aged females with elamipretide (ELAM), a mitochondrially-targeted peptide shown to improve mitochondrial bioenergetics and restore redox status in aged muscle. ELAM removed inhibition of glutamate oxidation and showed increased metabolic pathway changes following HII, suggesting rescuing redox status and improving bioenergetic function in mitochondria from aged muscle increases glutamate utilization and enhances the metabolic response to muscle contraction in aged muscle. KEY POINTS: Acute local contraction of gastrocnemius can systemically alter mitochondrial respiration in non-stimulated muscle. Age-related changes in mitochondrial respiration using glutamate or palmitoyl carnitine following contraction are sex-dependent. Respiration using glutamate after high-intensity contraction is inhibited in aged female muscle. Metabolite level and pathway changes following muscle contraction decrease with age in female mice. Treatment with the mitochondrially-targeted peptide elamipretide can partially rescue metabolite response to muscle contraction.
Author Campbell, Matthew D.
Raftery, Daniel
Djukovic, Danijel
Marcinek, David J.
AuthorAffiliation 2 Anesthesiology & Pain Medicine University of Washington Seattle WA USA
1 Department of Radiology University of Washington Seattle WA USA
AuthorAffiliation_xml – name: 1 Department of Radiology University of Washington Seattle WA USA
– name: 2 Anesthesiology & Pain Medicine University of Washington Seattle WA USA
Author_xml – sequence: 1
  givenname: Matthew D.
  orcidid: 0000-0002-6632-2606
  surname: Campbell
  fullname: Campbell, Matthew D.
  organization: University of Washington
– sequence: 2
  givenname: Danijel
  surname: Djukovic
  fullname: Djukovic, Danijel
  organization: University of Washington
– sequence: 3
  givenname: Daniel
  surname: Raftery
  fullname: Raftery, Daniel
  organization: University of Washington
– sequence: 4
  givenname: David J.
  orcidid: 0000-0001-5187-2149
  surname: Marcinek
  fullname: Marcinek, David J.
  email: dmarc@uw.edu
  organization: University of Washington
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37742081$$D View this record in MEDLINE/PubMed
BookMark eNp9kc9uFSEUh4mpsbfVxCcwJG66mQoDDMzKNI3_miZ2cfeEgcMtlYErzKjd9RF8Rp_EubGt2kRXBPj4-J1zDtBeygkQek7JMaWUvTq7aJWgLX-EVpR3fSNlz_bQipC2bZgUdB8d1HpFCGWk75-gfSYlb4miK2RPNvDj5nuBaCZw2F6atIGKs8f1E0SYTMTjXG0EPC6bIcdgcYG6zakCnjK2OU3F2CnkhE0BbGLNuMK3xelgC8lBmp6ix345h2e36yFav32zPn3fnH989-H05LyxgnS84c73fGAdc1w46ExvHRs8GaSQbADBrHR-EFZYThQo8B3xzPTOUiWMGTw7RK9_abfzMIKzsEsW9baE0ZRrnU3Qf9-kcKk3-YumpBe97NhiOLo1lPx5hjrpMVQLMZoEea66VZ2iLVN8h758gF7luaSlPM2ooKqjvFUL9eLPSPdZ7vr_-0dbcq0F_D1Cid6NVt-NdkGPH6A2TGbX-KWYEP_z4GuIcP1PsV6fXVAhOWc_AUlFto0
CitedBy_id crossref_primary_10_1111_acel_70026
crossref_primary_10_3390_jcm12247625
crossref_primary_10_3390_nu16101467
crossref_primary_10_1113_JP287926
crossref_primary_10_1016_j_freeradbiomed_2024_10_310
crossref_primary_10_1016_j_biopha_2024_117505
crossref_primary_10_1186_s12915_023_01779_9
crossref_primary_10_1016_j_jbiosc_2024_03_005
crossref_primary_10_1113_JP285736
Cites_doi 10.1038/s43587-023-00366-5
10.1007/s00421-021-04802-5
10.1016/j.bbadis.2020.165936
10.1038/s41574-022-00641-2
10.1530/JOE-10-0497
10.1016/j.archoralbio.2007.09.006
10.1159/000016658
10.1016/S0304-4165(99)00088-4
10.1152/jappl.1993.75.4.1654
10.1016/j.yjmcc.2022.11.010
10.1515/cclm-2011-0846
10.1186/1476-5918-5-2
10.1111/j.1365-201X.2005.01433.x
10.1152/japplphysiol.00585.2014
10.1007/s11357-023-00754-0
10.1111/acel.12102
10.1113/jphysiol.1987.sp016513
10.1152/ajpcell.00496.2010
10.1186/s12877-022-02953-4
10.1111/j.1469-7793.2000.00211.x
10.1016/j.scitotenv.2020.141097
10.1126/scitranslmed.aad3815
10.1002/(SICI)1520-7560(199911/12)15:6<412::AID-DMRR72>3.0.CO;2-8
10.1038/s42255-020-0251-4
10.1042/BJ20130644
10.1111/acel.12215
10.1152/ajpcell.1990.259.5.C834
10.1007/s11357-022-00679-0
10.3390/ijms23126747
10.1016/j.stemcr.2020.07.017
10.1073/pnas.2002250117
10.1007/s40279-021-01582-y
10.1369/0022155414549071
10.1152/ajpcell.1996.270.2.C673
10.1007/s11357-022-00564-w
10.1097/00003677-200107000-00004
10.1128/mBio.00889-14
10.1016/j.cell.2014.10.029
10.1113/EP085299
10.1152/ajpendo.1999.277.5.E890
10.1097/00075197-200111000-00006
10.18632/aging.202753
10.1016/j.exger.2018.10.003
10.1152/jappl.2000.89.1.251
10.1073/pnas.1514844112
10.1249/00003677-199800260-00013
10.1111/acel.12412
10.1007/s00702-014-1180-8
10.1111/j.1469-7793.2000.t01-1-00203.x
10.1074/jbc.R200006200
10.1152/physrev.1980.60.1.143
10.1016/j.mad.2020.111405
10.1038/s41598-020-73743-4
10.1177/0148607197021006357
10.1007/s11357-021-00447-6
10.1016/j.freeradbiomed.2018.12.031
10.1111/j.1474-9726.2010.00628.x
10.14814/phy2.15174
10.1016/j.freeradbiomed.2021.05.039
10.1152/jappl.2000.89.3.1072
10.20463/jenb.2018.0016
10.1016/j.mad.2012.08.002
10.1073/pnas.0610131104
10.3389/fmolb.2022.957549
10.3390/nu10111691
10.1016/0014-4886(85)90219-5
10.1006/mgme.1999.2857
10.1089/ars.2012.4623
10.1186/s40798-020-0238-4
10.1097/00075197-200501000-00007
10.1096/fj.11-194779
10.1152/ajpendo.00098.2004
10.1371/journal.pone.0010164
ContentType Journal Article
Copyright 2023 The Authors. published by John Wiley & Sons Ltd on behalf of The Physiological Society.
2023 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Authors. published by John Wiley & Sons Ltd on behalf of The Physiological Society.
– notice: 2023 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
– notice: 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
7TS
8FD
FR3
P64
7X8
5PM
DOI 10.1113/JP285124
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Physical Education Index
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Physical Education Index
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList Technology Research Database
MEDLINE - Academic


MEDLINE
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
DocumentTitleAlternate M. D. Campbell and others
EISSN 1469-7793
EndPage 86
ExternalDocumentID PMC10959763
37742081
10_1113_JP285124
TJP15744
Genre article
Journal Article
GrantInformation_xml – fundername: University of Washington Nathan Shock Centre
  funderid: P30 AA013280
– fundername: National Institute on Aging
  funderid: P01 AG001751
– fundername: NIAMS‐UW Center for Translational Muscle Research
  funderid: P30 AR074990
– fundername: University of Washington Nathan Shock Centre
  grantid: P30 AA013280
– fundername: NIA NIH HHS
  grantid: R01 AG078279
– fundername: NIH HHS
  grantid: S10 OD021562
– fundername: NIA NIH HHS
  grantid: R56 AG078279
– fundername: NIAMS NIH HHS
  grantid: P30 AR074990
– fundername: NIAAA NIH HHS
  grantid: K07 AA013280
– fundername: NIA NIH HHS
  grantid: P01 AG001751
– fundername: NIA NIH HHS
  grantid: P30 AG013280
– fundername: NIAMS‐UW Center for Translational Muscle Research
  grantid: P30 AR074990
– fundername: National Institute on Aging
  grantid: P01 AG001751
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
123
18M
1OC
24P
29L
2WC
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAFWJ
AAHHS
AAHQN
AAIPD
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABITZ
ABIVO
ABJNI
ABOCM
ABPPZ
ABPVW
ABQWH
ABXGK
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AI.
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AOIJS
ATUGU
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
E3Z
EBS
EX3
F00
F01
F04
F5P
FUBAC
G-S
G.N
GODZA
H.X
HGLYW
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
Q.N
Q11
QB0
R.K
ROL
RPM
RX1
SUPJJ
TEORI
TLM
TN5
TR2
UB1
UPT
V8K
VH1
W8V
W99
WBKPD
WH7
WIH
WIJ
WIK
WIN
WNSPC
WOHZO
WOQ
WOW
WQJ
WRC
WXI
WXSBR
WYISQ
XG1
YBU
YHG
YKV
YQT
YZZ
ZZTAW
~IA
~WT
.55
.GJ
.Y3
0YM
31~
3EH
3O-
53G
AASGY
AAYJJ
AAYXX
ADXHL
AEYWJ
AFFNX
AGHNM
AGYGG
C1A
CAG
CHEAL
CITATION
COF
DIK
EJD
EMOBN
FA8
FIJ
GX1
H13
HF~
H~9
LW6
MVM
NEJ
OHT
RIG
UKR
W8F
WHG
X7M
XOL
YSK
YXB
YYP
ZGI
ZXP
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
7TS
8FD
FR3
P64
7X8
5PM
ID FETCH-LOGICAL-c5064-4df94b363d45de6a9cd3bf0b7573be53c7dfb5c5c408e8ef60f3a9dc185aabf3
IEDL.DBID DR2
ISSN 0022-3751
1469-7793
IngestDate Thu Aug 21 18:34:52 EDT 2025
Fri Jul 11 16:27:42 EDT 2025
Fri Jul 25 12:06:26 EDT 2025
Mon Jul 21 05:52:28 EDT 2025
Thu Apr 24 23:07:06 EDT 2025
Tue Jul 01 04:29:39 EDT 2025
Wed Jan 22 17:11:16 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords mitochondrial adaptation
low‐intensity steady‐state
high‐intensity intervals
metabolism
sex specific effects
age
sarcopenia
Language English
License Attribution
2023 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5064-4df94b363d45de6a9cd3bf0b7573be53c7dfb5c5c408e8ef60f3a9dc185aabf3
Notes https://doi.org/10.1113/JP285124#support‐information‐section
This article was first published as a preprint. Campbell MD, Djukovic D, Raftery D, Marcinek DJ. 2023. Age and sex dependent effects of metabolic response to muscle contraction. bioRxiv.
The peer review history is available in the Supporting Information section of this article
Handling Editors: Michael Hogan & Christopher Sundberg
.
https://doi.org/10.1101/2023.05.30.542769
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
This article was first published as a preprint. Campbell MD, Djukovic D, Raftery D, Marcinek DJ. 2023. Age and sex dependent effects of metabolic response to muscle contraction. bioRxiv. https://doi.org/10.1101/2023.05.30.542769
The peer review history is available in the Supporting Information section of this article (https://doi.org/10.1113/JP285124#support‐information‐section).
ORCID 0000-0002-6632-2606
0000-0001-5187-2149
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1113%2FJP285124
PMID 37742081
PQID 3151861428
PQPubID 1086388
PageCount 18
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10959763
proquest_miscellaneous_2868123843
proquest_journals_3151861428
pubmed_primary_37742081
crossref_primary_10_1113_JP285124
crossref_citationtrail_10_1113_JP285124
wiley_primary_10_1113_JP285124_TJP15744
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 1 January 2025
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 1 January 2025
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
– name: Hoboken
PublicationTitle The Journal of physiology
PublicationTitleAlternate J Physiol
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References 2007; 104
2004; 287
1987; 385
2000; 89
2015; 100
2002; 277
1999; 1428
1999; 164
2022; 23
2020; 15
2023; 3
2020; 10
2022; 22
2014; 62
2022; 122
2013; 18
2020; 6
1990; 259
2014; 5
2012; 133
2005; 184
2020; 2
2023; 175
2013; 12
2000; 526
1999; 15
1993; 75
2021; 193
2020; 1866
2014; 13
2012; 26
2014; 121
2010; 5
2010; 9
1998; 26
2014; 117
2021; 43
1997; 21
1999; 67
2006; 5
2022; 44
2008; 53
2001; 29
2018; 22
2016; 15
1985; 87
2020; 747
2014; 159
2011; 210
2012; 50
2021; 13
2011; 300
2023; 45
2001; 4
2018; 113
2015; 112
2005; 8
2022; 9
2020; 117
1996; 270
2013; 455
2021; 172
2022; 52
1980; 60
2022; 10
1999; 277
2018; 10
2016; 8
2019; 134
2022; 18
e_1_2_6_51_1
e_1_2_6_74_1
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_70_1
e_1_2_6_30_1
e_1_2_6_72_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_62_1
e_1_2_6_64_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_66_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_68_1
e_1_2_6_52_1
e_1_2_6_73_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_71_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_63_1
e_1_2_6_42_1
e_1_2_6_65_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_61_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_67_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_69_1
37398086 - bioRxiv. 2023 Jun 01:2023.05.30.542769. doi: 10.1101/2023.05.30.542769.
References_xml – volume: 104
  start-page: 1057
  issue: 3
  year: 2007
  end-page: 1062
  article-title: Mild mitochondrial uncoupling impacts cellular aging in human muscles in vivo
  publication-title: The Proceedings of the National Academy of Sciences
– volume: 10
  issue: 1
  year: 2020
  article-title: Allosteric regulation of glutamate dehydrogenase deamination activity
  publication-title: Scientific Reports
– volume: 9
  year: 2022
  article-title: Metabolomics reveals mouse plasma metabolite responses to acute exercise and effects of disrupting AMPK‐glycogen interactions
  publication-title: Frontiers in Molecular Biosciences
– volume: 193
  year: 2021
  article-title: Novel metabolomics markers are associated with pre‐clinical decline in hand grip strength in community‐dwelling older adults
  publication-title: Mechanisms of Ageing and Development
– volume: 113
  start-page: 128
  year: 2018
  end-page: 140
  article-title: Identification of key pathways and metabolic fingerprints of longevity in C. elegans
  publication-title: Experimental Gerontology
– volume: 12
  start-page: 763
  issue: 5
  year: 2013
  end-page: 771
  article-title: Mitochondrial‐targeted peptide rapidly improves mitochondrial energetics and skeletal muscle performance in aged mice
  publication-title: Aging Cell
– volume: 2
  start-page: 817
  issue: 9
  year: 2020
  end-page: 828
  article-title: Skeletal muscle energy metabolism during exercise
  publication-title: Nature Metabolism
– volume: 747
  year: 2020
  article-title: Metabolomic profiling for juvenile Chinook salmon exposed to contaminants of emerging concern
  publication-title: Science of the Total Environment
– volume: 15
  start-page: 89
  issue: 1
  year: 2016
  end-page: 99
  article-title: Age modifies respiratory complex I and protein homeostasis in a muscle type‐specific manner
  publication-title: Aging Cell
– volume: 26
  start-page: 1909
  issue: 5
  year: 2012
  end-page: 1920
  article-title: Selective estrogen receptor‐beta activation stimulates skeletal muscle growth and regeneration
  publication-title: FASEB Journal
– volume: 277
  start-page: E890
  issue: 5
  year: 1999
  end-page: E900
  article-title: Regulation of skeletal muscle glycogen phosphorylase and PDH during maximal intermittent exercise
  publication-title: American Journal of Physiology
– volume: 1866
  issue: 12
  year: 2020
  article-title: Metabolomics, physical activity, exercise and health: A review of the current evidence
  publication-title: Biochimica et Biophysica Acta. Molecular Basis of Disease
– volume: 15
  start-page: 412
  issue: 6
  year: 1999
  end-page: 426
  article-title: Ketone bodies: A review of physiology, pathophysiology and application of monitoring to diabetes
  publication-title: Diabetes Metabolism Research and Reviews
– volume: 6
  start-page: 11
  issue: 1
  year: 2020
  article-title: Metabolite concentration changes in humans after a bout of exercise: A systematic review of exercise metabolomics studies
  publication-title: Sports Medicine ‐ Open
– volume: 29
  start-page: 109
  issue: 3
  year: 2001
  end-page: 112
  article-title: Sex differences in human skeletal muscle fatigue
  publication-title: Exercise and Sport Sciences Reviews
– volume: 385
  start-page: 661
  issue: 1
  year: 1987
  end-page: 675
  article-title: Relationship between mitochondria and oxygen consumption in isolated cat muscles
  publication-title: The Journal of Physiology
– volume: 5
  issue: 2
  year: 2014
  article-title: Revealing the bacterial butyrate synthesis pathways by analyzing (meta)genomic data
  publication-title: mBio
– volume: 8
  issue: 334
  year: 2016
  article-title: Skeletal muscle action of estrogen receptor alpha is critical for the maintenance of mitochondrial function and metabolic homeostasis in females
  publication-title: Science Translational Medicine
– volume: 67
  start-page: 100
  issue: 2
  year: 1999
  end-page: 105
  article-title: Glutamine, as a precursor of glutathione, and oxidative stress
  publication-title: Molecular Genetics and Metabolism
– volume: 18
  start-page: 273
  issue: 5
  year: 2022
  end-page: 289
  article-title: Exerkines in health, resilience and disease
  publication-title: Nature Reviews Endocrinology
– volume: 45
  start-page: 2245
  year: 2023
  end-page: 2255
  article-title: Intermittent treatment with elamipretide preserves exercise tolerance in aged female mice
  publication-title: Geroscience
– volume: 122
  start-page: 29
  issue: 1
  year: 2022
  end-page: 70
  article-title: Analysis of sex‐based differences in energy substrate utilization during moderate‐intensity aerobic exercise
  publication-title: European Journal of Applied Physiology
– volume: 117
  start-page: 15363
  issue: 26
  year: 2020
  end-page: 15373
  article-title: Mitochondrial protein interaction landscape of SS‐31
  publication-title: The Proceedings of the National Academy of Sciences
– volume: 133
  start-page: 620
  issue: 9‐10
  year: 2012
  end-page: 628
  article-title: Impaired adaptability of in vivo mitochondrial energetics to acute oxidative insult in aged skeletal muscle
  publication-title: Mechanisms of Ageing and Development
– volume: 44
  start-page: 1621
  issue: 3
  year: 2022
  end-page: 1639
  article-title: Age‐related disruption of the proteome and acetylome in mouse hearts is associated with loss of function and attenuated by elamipretide (SS‐31) and nicotinamide mononucleotide (NMN) treatment
  publication-title: Geroscience
– volume: 526
  start-page: 203
  issue: 1
  year: 2000
  end-page: 210
  article-title: Oxidative capacity and ageing in human muscle
  publication-title: The Journal of Physiology
– volume: 13
  start-page: 596
  issue: 4
  year: 2014
  end-page: 604
  article-title: Effects of age, sex, and genotype on high‐sensitivity metabolomic profiles in the fruit fly, Drosophila melanogaster
  publication-title: Aging Cell
– volume: 52
  start-page: 547
  issue: 3
  year: 2022
  end-page: 583
  article-title: Metabolomics in exercise and sports: A systematic review
  publication-title: Sports Medicine (Auckland, N.Z.)
– volume: 270
  start-page: C673
  issue: 2
  year: 1996
  end-page: C678
  article-title: Characteristics of mitochondria isolated from type I and type IIb skeletal muscle
  publication-title: American Journal of Physiology
– volume: 184
  start-page: 105
  issue: 2
  year: 2005
  end-page: 112
  article-title: Expression of oestrogen receptor alpha and beta is higher in skeletal muscle of highly endurance‐trained than of moderately active men
  publication-title: Acta Physiologica Scandinavica
– volume: 5
  start-page: 2
  issue: 1
  year: 2006
  article-title: Sex differences in the rate of fatigue development and recovery
  publication-title: Dynamic Medicine
– volume: 75
  start-page: 1654
  issue: 4
  year: 1993
  end-page: 1660
  article-title: Anaerobic energy release in working muscle during 30 s to 3 min of exhausting bicycling
  publication-title: Journal of Applied Physiology (1985)
– volume: 10
  start-page: 1691
  issue: 11
  year: 2018
  article-title: A distinct pattern of circulating amino acids characterizes older persons with physical frailty and sarcopenia: Results from the BIOSPHERE study
  publication-title: Nutrients
– volume: 164
  start-page: 179
  issue: 4
  year: 1999
  end-page: 191
  article-title: Sexual dimorphism in the rabbit masseter muscle: Myosin heavy chain composition of neuromuscular compartments
  publication-title: Cells Tissues Organs
– volume: 121
  start-page: 799
  issue: 8
  year: 2014
  end-page: 817
  article-title: Glutamate as a neurotransmitter in the healthy brain
  publication-title: Journal of Neural Transmission (Vienna)
– volume: 287
  start-page: E1125
  issue: 6
  year: 2004
  end-page: E1131
  article-title: Difference in skeletal muscle function in males vs. females: Role of estrogen receptor‐beta
  publication-title: American Journal of Physiology. Endocrinology and Metabolism
– volume: 26
  start-page: 287
  year: 1998
  end-page: 314
  article-title: Muscle amino acid metabolism at rest and during exercise: Role in human physiology and metabolism
  publication-title: Exercise and Sport Sciences Reviews
– volume: 9
  start-page: 1032
  issue: 6
  year: 2010
  end-page: 1046
  article-title: Mitochondrial functional impairment with aging is exaggerated in isolated mitochondria compared to permeabilized myofibers
  publication-title: Aging Cell
– volume: 8
  start-page: 41
  issue: 1
  year: 2005
  end-page: 51
  article-title: Skeletal muscle glutamate metabolism in health and disease: State of the art
  publication-title: Current Opinion in Clinical Nutrition and Metabolic Care
– volume: 526
  start-page: 211
  issue: 1
  year: 2000
  end-page: 217
  article-title: Ageing, muscle properties and maximal O(2) uptake rate in humans
  publication-title: The Journal of Physiology
– volume: 3
  start-page: 313
  issue: 3
  year: 2023
  end-page: 326
  article-title: Skeletal muscle mitochondrial interactome remodeling is linked to functional decline in aged female mice
  publication-title: Nature Aging
– volume: 87
  start-page: 291
  issue: 2
  year: 1985
  end-page: 299
  article-title: Long‐term effects of estrogen on rat skeletal muscle
  publication-title: Experimental Neurology
– volume: 1428
  start-page: 455
  issue: 2–3
  year: 1999
  end-page: 462
  article-title: Characterization of the CoA ligases of human liver mitochondria catalyzing the activation of short‐ and medium‐chain fatty acids and xenobiotic carboxylic acids
  publication-title: Biochimica Et Biophysica Acta
– volume: 21
  start-page: 357
  issue: 6
  year: 1997
  end-page: 365
  article-title: Role of intestinal bacteria in nutrient metabolism
  publication-title: JPEN. Journal of Parenteral and Enteral Nutrition
– volume: 18
  start-page: 603
  issue: 6
  year: 2013
  end-page: 621
  article-title: Studies of mitochondrial and nonmitochondrial sources implicate nicotinamide adenine dinucleotide phosphate oxidase(s) in the increased skeletal muscle superoxide generation that occurs during contractile activity
  publication-title: Antioxidants and Redox Signaling
– volume: 117
  start-page: 1110
  issue: 10
  year: 2014
  end-page: 1119
  article-title: Metabolomic analysis of long‐term spontaneous exercise in mice suggests increased lipolysis and altered glucose metabolism when animals are at rest
  publication-title: Journal of Applied Physiology (1985)
– volume: 44
  start-page: 2913
  issue: 6
  year: 2022
  end-page: 2924
  article-title: Elamipretide effects on the skeletal muscle phosphoproteome in aged female mice
  publication-title: Geroscience
– volume: 22
  start-page: 249
  issue: 1
  year: 2022
  article-title: Specific lysophosphatidylcholine and acylcarnitine related to sarcopenia and its components in older men
  publication-title: BMC Geriatrics
– volume: 15
  start-page: 577
  issue: 3
  year: 2020
  end-page: 586
  article-title: Estrogen receptor beta controls muscle growth and regeneration in young female mice
  publication-title: Stem Cell Reports
– volume: 259
  start-page: C834
  issue: 5
  year: 1990
  end-page: C841
  article-title: Tricarboxylic acid cycle intermediates in human muscle during prolonged exercise
  publication-title: American Journal of Physiology
– volume: 277
  start-page: 30409
  issue: 34
  year: 2002
  end-page: 30412
  article-title: The key role of anaplerosis and cataplerosis for citric acid cycle function
  publication-title: Journal of Biological Chemistry
– volume: 23
  start-page: 6747
  issue: 12
  year: 2022
  article-title: The inositol phosphate system‐a coordinator of metabolic adaptability
  publication-title: International Journal of Molecular Sciences
– volume: 210
  start-page: 219
  issue: 2
  year: 2011
  end-page: 229
  article-title: Testosterone or 17beta‐estradiol exposure reveals sex‐specific effects on glucose and lipid metabolism in human myotubes
  publication-title: Journal of Endocrinology
– volume: 60
  start-page: 143
  issue: 1
  year: 1980
  end-page: 187
  article-title: Physiological roles of ketone bodies as substrates and signals in mammalian tissues
  publication-title: Physiological Reviews
– volume: 43
  start-page: 2395
  issue: 5
  year: 2021
  end-page: 2412
  article-title: Elamipretide (SS‐31) treatment attenuates age‐associated post‐translational modifications of heart proteins
  publication-title: Geroscience
– volume: 5
  issue: 4
  year: 2010
  article-title: Estrogen regulates estrogen receptors and antioxidant gene expression in mouse skeletal muscle
  publication-title: PLoS ONE
– volume: 159
  start-page: 738
  issue: 4
  year: 2014
  end-page: 749
  article-title: Integrative biology of exercise
  publication-title: Cell
– volume: 62
  start-page: 802
  issue: 11
  year: 2014
  end-page: 812
  article-title: Determination of glutamate dehydrogenase activity and its kinetics in mouse tissues using metabolic mapping (quantitative enzyme histochemistry)
  publication-title: Journal of Histochemistry and Cytochemistry
– volume: 22
  start-page: 43
  issue: 2
  year: 2018
  end-page: 50
  article-title: Age‐ and sex‐related differences in myosin heavy chain isoforms and muscle strength, function, and quality: A cross sectional study
  publication-title: Journal of Exercise Nutrition and Biochemistry
– volume: 134
  start-page: 268
  year: 2019
  end-page: 281
  article-title: Improving mitochondrial function with SS‐31 reverses age‐related redox stress and improves exercise tolerance in aged mice
  publication-title: Free Radical Biology and Medicine
– volume: 4
  start-page: 499
  issue: 6
  year: 2001
  end-page: 502
  article-title: Gender differences in fat metabolism
  publication-title: Current Opinion in Clinical Nutrition and Metabolic Care
– volume: 175
  start-page: 1
  year: 2023
  end-page: 12
  article-title: dATP elevation induces myocardial metabolic remodeling to support improved cardiac function
  publication-title: Journal of Molecular and Cellular Cardiology
– volume: 50
  start-page: 861
  issue: 5
  year: 2012
  end-page: 870
  article-title: Age‐related changes in serum amino acids concentrations in healthy individuals
  publication-title: Clinical Chemistry and Laboratory Medicine
– volume: 13
  start-page: 6298
  issue: 5
  year: 2021
  end-page: 6329
  article-title: Calorie restriction prevents age‐related changes in the intestinal microbiota
  publication-title: Aging (Albany NY)
– volume: 89
  start-page: 251
  issue: 1
  year: 2000
  end-page: 258
  article-title: Sexually dimorphic expression of myosin heavy chains in the adult mouse masseter
  publication-title: Journal of Applied Physiology (1985)
– volume: 100
  start-page: 755
  issue: 7
  year: 2015
  end-page: 758
  article-title: Principles and standards for reporting animal experiments in The Journal of Physiology and Experimental Physiology
  publication-title: Experimental Physiology
– volume: 455
  start-page: 195
  issue: 2
  year: 2013
  end-page: 206
  article-title: Phosphatidylinositol 3‐phosphate 5‐kinase (PIKfyve) is an AMPK target participating in contraction‐stimulated glucose uptake in skeletal muscle
  publication-title: Biochemical Journal
– volume: 172
  start-page: 82
  year: 2021
  end-page: 89
  article-title: High intensity muscle stimulation activates a systemic Nrf2‐mediated redox stress response
  publication-title: Free Radical Biology and Medicine
– volume: 89
  start-page: 1072
  issue: 3
  year: 2000
  end-page: 1078
  article-title: Skeletal muscle oxidative capacity in young and older women and men
  publication-title: Journal of Applied Physiology (1985)
– volume: 112
  start-page: 11330
  issue: 36
  year: 2015
  end-page: 11334
  article-title: Effect of aging on muscle mitochondrial substrate utilization in humans
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 10
  issue: 3
  year: 2022
  article-title: Sex differences in endurance exercise capacity and skeletal muscle lipid metabolism in mice
  publication-title: Physiological Reports
– volume: 53
  start-page: 187
  issue: 2
  year: 2008
  end-page: 192
  article-title: Sexual dimorphism of murine masticatory muscle function
  publication-title: Archives of Oral Biology
– volume: 300
  start-page: C1280
  issue: 6
  year: 2011
  end-page: C1290
  article-title: Protein composition and function of red and white skeletal muscle mitochondria
  publication-title: American Journal of Physiology. Cell Physiology
– ident: e_1_2_6_5_1
  doi: 10.1038/s43587-023-00366-5
– ident: e_1_2_6_15_1
  doi: 10.1007/s00421-021-04802-5
– ident: e_1_2_6_35_1
  doi: 10.1016/j.bbadis.2020.165936
– ident: e_1_2_6_17_1
  doi: 10.1038/s41574-022-00641-2
– ident: e_1_2_6_60_1
  doi: 10.1530/JOE-10-0497
– ident: e_1_2_6_21_1
  doi: 10.1016/j.archoralbio.2007.09.006
– ident: e_1_2_6_23_1
  doi: 10.1159/000016658
– ident: e_1_2_6_68_1
  doi: 10.1016/S0304-4165(99)00088-4
– ident: e_1_2_6_44_1
  doi: 10.1152/jappl.1993.75.4.1654
– ident: e_1_2_6_46_1
  doi: 10.1016/j.yjmcc.2022.11.010
– ident: e_1_2_6_38_1
  doi: 10.1515/cclm-2011-0846
– ident: e_1_2_6_2_1
  doi: 10.1186/1476-5918-5-2
– ident: e_1_2_6_73_1
  doi: 10.1111/j.1365-201X.2005.01433.x
– ident: e_1_2_6_47_1
  doi: 10.1152/japplphysiol.00585.2014
– ident: e_1_2_6_14_1
  doi: 10.1007/s11357-023-00754-0
– ident: e_1_2_6_63_1
  doi: 10.1111/acel.12102
– ident: e_1_2_6_33_1
  doi: 10.1113/jphysiol.1987.sp016513
– ident: e_1_2_6_25_1
  doi: 10.1152/ajpcell.00496.2010
– ident: e_1_2_6_45_1
  doi: 10.1186/s12877-022-02953-4
– ident: e_1_2_6_18_1
  doi: 10.1111/j.1469-7793.2000.00211.x
– ident: e_1_2_6_43_1
  doi: 10.1016/j.scitotenv.2020.141097
– ident: e_1_2_6_55_1
  doi: 10.1126/scitranslmed.aad3815
– ident: e_1_2_6_41_1
  doi: 10.1002/(SICI)1520-7560(199911/12)15:6<412::AID-DMRR72>3.0.CO;2-8
– ident: e_1_2_6_28_1
  doi: 10.1038/s42255-020-0251-4
– ident: e_1_2_6_42_1
  doi: 10.1042/BJ20130644
– ident: e_1_2_6_31_1
  doi: 10.1111/acel.12215
– ident: e_1_2_6_58_1
  doi: 10.1152/ajpcell.1990.259.5.C834
– ident: e_1_2_6_13_1
  doi: 10.1007/s11357-022-00679-0
– ident: e_1_2_6_66_1
  doi: 10.3390/ijms23126747
– ident: e_1_2_6_62_1
  doi: 10.1016/j.stemcr.2020.07.017
– ident: e_1_2_6_16_1
  doi: 10.1073/pnas.2002250117
– ident: e_1_2_6_37_1
  doi: 10.1007/s40279-021-01582-y
– ident: e_1_2_6_10_1
  doi: 10.1369/0022155414549071
– ident: e_1_2_6_34_1
  doi: 10.1152/ajpcell.1996.270.2.C673
– ident: e_1_2_6_71_1
  doi: 10.1007/s11357-022-00564-w
– ident: e_1_2_6_30_1
  doi: 10.1097/00003677-200107000-00004
– ident: e_1_2_6_69_1
  doi: 10.1128/mBio.00889-14
– ident: e_1_2_6_29_1
  doi: 10.1016/j.cell.2014.10.029
– ident: e_1_2_6_27_1
  doi: 10.1113/EP085299
– ident: e_1_2_6_52_1
  doi: 10.1152/ajpendo.1999.277.5.E890
– ident: e_1_2_6_9_1
  doi: 10.1097/00075197-200111000-00006
– ident: e_1_2_6_40_1
  doi: 10.18632/aging.202753
– ident: e_1_2_6_24_1
  doi: 10.1016/j.exger.2018.10.003
– ident: e_1_2_6_22_1
  doi: 10.1152/jappl.2000.89.1.251
– ident: e_1_2_6_53_1
  doi: 10.1073/pnas.1514844112
– ident: e_1_2_6_70_1
  doi: 10.1249/00003677-199800260-00013
– ident: e_1_2_6_39_1
  doi: 10.1111/acel.12412
– ident: e_1_2_6_74_1
  doi: 10.1007/s00702-014-1180-8
– ident: e_1_2_6_19_1
  doi: 10.1111/j.1469-7793.2000.t01-1-00203.x
– ident: e_1_2_6_51_1
  doi: 10.1074/jbc.R200006200
– ident: e_1_2_6_56_1
  doi: 10.1152/physrev.1980.60.1.143
– ident: e_1_2_6_48_1
  doi: 10.1016/j.mad.2020.111405
– ident: e_1_2_6_8_1
  doi: 10.1038/s41598-020-73743-4
– ident: e_1_2_6_20_1
  doi: 10.1177/0148607197021006357
– ident: e_1_2_6_72_1
  doi: 10.1007/s11357-021-00447-6
– ident: e_1_2_6_12_1
  doi: 10.1016/j.freeradbiomed.2018.12.031
– ident: e_1_2_6_54_1
  doi: 10.1111/j.1474-9726.2010.00628.x
– ident: e_1_2_6_32_1
  doi: 10.14814/phy2.15174
– ident: e_1_2_6_50_1
  doi: 10.1016/j.freeradbiomed.2021.05.039
– ident: e_1_2_6_36_1
  doi: 10.1152/jappl.2000.89.3.1072
– ident: e_1_2_6_49_1
  doi: 10.20463/jenb.2018.0016
– ident: e_1_2_6_64_1
  doi: 10.1016/j.mad.2012.08.002
– ident: e_1_2_6_3_1
  doi: 10.1073/pnas.0610131104
– ident: e_1_2_6_7_1
  doi: 10.3389/fmolb.2022.957549
– ident: e_1_2_6_11_1
  doi: 10.3390/nu10111691
– ident: e_1_2_6_65_1
  doi: 10.1016/0014-4886(85)90219-5
– ident: e_1_2_6_4_1
  doi: 10.1006/mgme.1999.2857
– ident: e_1_2_6_59_1
  doi: 10.1089/ars.2012.4623
– ident: e_1_2_6_61_1
  doi: 10.1186/s40798-020-0238-4
– ident: e_1_2_6_57_1
  doi: 10.1097/00075197-200501000-00007
– ident: e_1_2_6_67_1
  doi: 10.1096/fj.11-194779
– ident: e_1_2_6_26_1
  doi: 10.1152/ajpendo.00098.2004
– ident: e_1_2_6_6_1
  doi: 10.1371/journal.pone.0010164
– reference: 37398086 - bioRxiv. 2023 Jun 01:2023.05.30.542769. doi: 10.1101/2023.05.30.542769.
SSID ssj0013099
Score 2.5083869
Snippet Mitochondria adapt to increased energy demands during muscle contraction by acutely altering metabolite fluxes and substrate oxidation. With age, an impaired...
Abstract figure legend Mitochondria respond to metabolic demand of exercise by upregulating metabolic pathways to generate ATP through the utilization of...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 69
SubjectTerms Age
Aging - physiology
Animals
Bioenergetics
Carnitine
Electrical stimuli
Energy Metabolism - drug effects
Female
Females
Glutamic Acid - metabolism
high‐intensity intervals
low‐intensity steady‐state
Male
Metabolic pathways
Metabolic response
Metabolism
Metabolites
Mice
Mice, Inbred C57BL
Mitochondria
Mitochondria, Muscle - drug effects
Mitochondria, Muscle - metabolism
mitochondrial adaptation
Muscle
Muscle contraction
Muscle Contraction - physiology
Muscle, Skeletal - drug effects
Muscle, Skeletal - metabolism
Muscle, Skeletal - physiology
Musculoskeletal system
Oligopeptides - pharmacology
Oxidation
Peptides
Recovery of function
Respiration
sarcopenia
Sex
Sex Characteristics
sex specific effects
Skeletal muscle
Title Age‐related changes of skeletal muscle metabolic response to contraction are also sex‐dependent
URI https://onlinelibrary.wiley.com/doi/abs/10.1113%2FJP285124
https://www.ncbi.nlm.nih.gov/pubmed/37742081
https://www.proquest.com/docview/3151861428
https://www.proquest.com/docview/2868123843
https://pubmed.ncbi.nlm.nih.gov/PMC10959763
Volume 603
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagJy68ymOhVEZCcEpJYjuJjytEVa0EWqFFqsQh8mMMqGyCNlmp5cRP4DfySxjbSWApSIhj5EfieMb-PJ75hpAnTHMHgueJLWWRcGdYoo3UqPFcV1anhbLe3vHqdXHyli9OxengVeljYSI_xGRw85oR1muv4EoPWUgyTzawWOaIFnJPBepdtTweepP_vEBIpZyIwkuRDbyz2PT52HB3J7oELy97Sf6KXsP2c3yDvBs_PHqdnB1te31kvvzG6fh_I7tJrg-olM6jGN0iV6C5TfbnDZ7I1xf0KQ1-osEAv0_M_D18__otBMGApTFyuKOto90Z7mEI5ul622E3dI0P2vMO0030xAXatzQ4x8dwCqo2QFH-W9rBOfY5ZuTt75DV8cvVi5NkSNWQGM94l3DrJNesYJYLC4WSxjLtUl2KkmkQzJTWaWGE4WkFFbgidUxJaxAtKKUdu0v2mraB-4RKrqyrMkBgwzmiE6msxCNaBiUIsEU5I8_GWavNQGPus2l8quNxhtXj75uRx1PNz5G64w91DsaJrwfl7WqGKKgqPBUddjEVo9r5uxTVQLvt6rzyxG2s4mxG7kU5mV7CEFLnCLVmpNqRoKmCp_TeLWk-fgjU3pk3y-KSj6MMEvLXD69Xi2UmSs4f_HPNh-Ra7pMXB_vRAdnrN1t4hIiq14fkas6Xh0GDfgBZJyAS
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VcoALr_JYKGAkBKeUJLaTWJxWiGpZ2qpCi9QDUhS_AJVN0CYrASd-Ar-RX8LYTgJLQUIcI4-dOJ6xP4_H3wA8pJJZw1ka6VxkEbOKRlIJiRbPZKFlnFXa-TsOj7LZazY_4Sdb8HS4CxP4IUaHm7MMP187A3cO6d7KHdvA_DhFuJCyc3DeJfT2-6lX6c8jhFiIkSo850nPPIt1nww1N9eiMwDzbJzkr_jVL0D7l-HN8Okh7uR0b93JPfXlN1bH_-zbFbjUA1MyDZp0FbZMfQ12pjVuypefySPiQ0W9D34H1PSt-f71m78HYzQJl4db0ljSnuIyhnieLNctNkOW-CAd9TBZhWBcQ7qG-Pj4cKOCVCtD0AQa0ppP2OaQlLe7Dov954tns6jP1hApR3oXMW0FkzSjmnFtskooTaWNZc5zKg2nKtdWcsUViwtTGJvFllZCKwQMVSUtvQHbdVObW0AEq7QtEoPYhjEEKKLSAndpickNNzrLJ_B4GLZS9UzmLqHGhzLsaGg5_L4JPBglPwb2jj_I7A4jX_b225YUgVCROTY6bGIsRstzxylVbZp1W6aF426jBaMTuBkUZXwJRVSdItqaQLGhQqOAY_XeLKnfv_Ps3onzzOKsj730KvLXDy8X8-OE54zd_mfJ-3Bhtjg8KA9eHL28AxdTl8vYu5N2Ybtbrc1dBFidvOcN6QdqeyNW
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagSIhLeRToQgEjITilTWI7sY8ryqosUK3QIlXiEPlJq7JJtclKtCd-Ar-RX8LYecBSkBDHyI_E8Yz9eTzzDULPiKLOMppGJhdZRJ0mkdJCgcZTxY2KM2m8vePdYXbwgU6P2FHnVeljYVp-iMHg5jUjrNdewc-M65Tckw1MZymghZReRddoFnMv0fvv0583CLEQA1N4zpKOeBba7vUt17eiS_jyspvkr_A17D-Tm-hj_-Wt28np7qpRu_riN1LH_xvaLbTZwVI8buXoNrpiyztoa1zCkXxxjp_j4CgaLPBbSI8_2e9fv4UoGGtwGzpc48rh-hQ2MUDzeLGqoRu8gAfliYfxsnXFtbipcPCOb-MpsFxaDApQ4dp-gT77lLzNXTSfvJq_PIi6XA2R9pR3ETVOUEUyYigzNpNCG6JcrHKWE2UZ0blximmmacwtty6LHZHCaIALUipH7qGNsirtNsKCSuN4YgHZUArwREgj4IyW2Nwya7J8hF70s1bojsfcp9P4XLTnGVL0v2-Eng41z1rujj_U2eknvui0ty4IwCCeeS466GIoBr3zlymytNWqLlLumdsIp2SE7rdyMryEAKZOAWuNEF-ToKGC5_ReLylPjgO3d-LtsrDmwyiDhPz1w4v5dJawnNIH_1zzCbo-258Ub18fvnmIbqQ-kXGwJe2gjWa5so8AXTXqcVCjHw-_Ig4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Age%E2%80%90related+changes+of+skeletal+muscle+metabolic+response+to+contraction+are+also+sex%E2%80%90dependent&rft.jtitle=The+Journal+of+physiology&rft.au=Campbell%2C+Matthew+D&rft.au=Djukovic%2C+Danijel&rft.au=Raftery%2C+Daniel&rft.au=Marcinek%2C+David+J&rft.date=2025-01-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0022-3751&rft.eissn=1469-7793&rft.volume=603&rft.issue=1&rft.spage=69&rft.epage=86&rft_id=info:doi/10.1113%2FJP285124&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3751&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3751&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3751&client=summon