Analysis of human liver disease using a cluster of differentiation (CD) antibody microarray

Background A CD antibody microarray has been previously developed allowing semi‐quantitative identification of greater than 80 CD antigens on circulating leucocytes from peripheral blood samples. This assay, which uses a live cell‐capture technique, enables an extensive leucocyte immunophenotype det...

Full description

Saved in:
Bibliographic Details
Published inLiver international Vol. 32; no. 10; pp. 1527 - 1534
Main Authors Rahman, Wassim, Huang, Pauline, Belov, Larissa, Chrisp, Jeremy S., Christopherson, Richard I., Stapelberg, Peter M., Warner, Fiona J., George, Jacob, Bowen, David G., Strasser, Simone I., Koorey, David, Sharland, Alexandra F., McCaughan, Geoffrey W., Shackel, Nicholas A.
Format Journal Article
LanguageEnglish
Published United States Blackwell Publishing Ltd 01.11.2012
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Background A CD antibody microarray has been previously developed allowing semi‐quantitative identification of greater than 80 CD antigens on circulating leucocytes from peripheral blood samples. This assay, which uses a live cell‐capture technique, enables an extensive leucocyte immunophenotype determination in a single analysis and to date this has been used successfully to characterise diseases including human leukaemias and HIV infection. Aims To determine CD antigen expression profiles for patients with various liver diseases and to look for preserved disease‐specific signatures. Methods Three liver disease groups including hepatitis C (HCV) (n = 35), non‐alcoholic steatohepatitis (NASH) (n = 21) and alcohol‐related liver disease (n = 14) were compared with a normal group (n = 23). Hierarchal Clustering (HCL) and Principal Component Analysis (PCA) of the data revealed distinct binding patterns for patients with and without cirrhosis. Results Patients with cirrhosis and portal hypertension compared with those without cirrhosis had significantly reduced expression of several markers of T‐cell function including CD45, CD8, CD28 and TCR α/β. Disease prediction algorithms based on the expression data were able to discriminate cirrhotics from non‐cirrhotics with 71% overall success, which improved to 77% when only patients with HCV were considered. Conclusions These results demonstrate disease‐specific consensus patterns of expression of CD antigens for patients with chronic liver disease, suggesting that the CD antibody array is a promising tool in the analysis of human liver disease, and with further refinement may have future research and clinical utility.
AbstractList A CD antibody microarray has been previously developed allowing semi-quantitative identification of greater than 80 CD antigens on circulating leucocytes from peripheral blood samples. This assay, which uses a live cell-capture technique, enables an extensive leucocyte immunophenotype determination in a single analysis and to date this has been used successfully to characterise diseases including human leukaemias and HIV infection. To determine CD antigen expression profiles for patients with various liver diseases and to look for preserved disease-specific signatures. Three liver disease groups including hepatitis C (HCV) (n = 35), non-alcoholic steatohepatitis (NASH) (n = 21) and alcohol-related liver disease (n = 14) were compared with a normal group (n = 23). Hierarchal Clustering (HCL) and Principal Component Analysis (PCA) of the data revealed distinct binding patterns for patients with and without cirrhosis. Patients with cirrhosis and portal hypertension compared with those without cirrhosis had significantly reduced expression of several markers of T-cell function including CD45, CD8, CD28 and TCR α/β. Disease prediction algorithms based on the expression data were able to discriminate cirrhotics from non-cirrhotics with 71% overall success, which improved to 77% when only patients with HCV were considered. These results demonstrate disease-specific consensus patterns of expression of CD antigens for patients with chronic liver disease, suggesting that the CD antibody array is a promising tool in the analysis of human liver disease, and with further refinement may have future research and clinical utility.
Background A CD antibody microarray has been previously developed allowing semi‐quantitative identification of greater than 80 CD antigens on circulating leucocytes from peripheral blood samples. This assay, which uses a live cell‐capture technique, enables an extensive leucocyte immunophenotype determination in a single analysis and to date this has been used successfully to characterise diseases including human leukaemias and HIV infection. Aims To determine CD antigen expression profiles for patients with various liver diseases and to look for preserved disease‐specific signatures. Methods Three liver disease groups including hepatitis C (HCV) (n = 35), non‐alcoholic steatohepatitis (NASH) (n = 21) and alcohol‐related liver disease (n = 14) were compared with a normal group (n = 23). Hierarchal Clustering (HCL) and Principal Component Analysis (PCA) of the data revealed distinct binding patterns for patients with and without cirrhosis. Results Patients with cirrhosis and portal hypertension compared with those without cirrhosis had significantly reduced expression of several markers of T‐cell function including CD45, CD8, CD28 and TCR α/β. Disease prediction algorithms based on the expression data were able to discriminate cirrhotics from non‐cirrhotics with 71% overall success, which improved to 77% when only patients with HCV were considered. Conclusions These results demonstrate disease‐specific consensus patterns of expression of CD antigens for patients with chronic liver disease, suggesting that the CD antibody array is a promising tool in the analysis of human liver disease, and with further refinement may have future research and clinical utility.
A CD antibody microarray has been previously developed allowing semi-quantitative identification of greater than 80 CD antigens on circulating leucocytes from peripheral blood samples. This assay, which uses a live cell-capture technique, enables an extensive leucocyte immunophenotype determination in a single analysis and to date this has been used successfully to characterise diseases including human leukaemias and HIV infection. To determine CD antigen expression profiles for patients with various liver diseases and to look for preserved disease-specific signatures. Three liver disease groups including hepatitis C (HCV) (n = 35), non-alcoholic steatohepatitis (NASH) (n = 21) and alcohol-related liver disease (n = 14) were compared with a normal group (n = 23). Hierarchal Clustering (HCL) and Principal Component Analysis (PCA) of the data revealed distinct binding patterns for patients with and without cirrhosis. Patients with cirrhosis and portal hypertension compared with those without cirrhosis had significantly reduced expression of several markers of T-cell function including CD45, CD8, CD28 and TCR alpha / beta . Disease prediction algorithms based on the expression data were able to discriminate cirrhotics from non-cirrhotics with 71% overall success, which improved to 77% when only patients with HCV were considered. These results demonstrate disease-specific consensus patterns of expression of CD antigens for patients with chronic liver disease, suggesting that the CD antibody array is a promising tool in the analysis of human liver disease, and with further refinement may have future research and clinical utility.
BACKGROUNDA CD antibody microarray has been previously developed allowing semi-quantitative identification of greater than 80 CD antigens on circulating leucocytes from peripheral blood samples. This assay, which uses a live cell-capture technique, enables an extensive leucocyte immunophenotype determination in a single analysis and to date this has been used successfully to characterise diseases including human leukaemias and HIV infection.AIMSTo determine CD antigen expression profiles for patients with various liver diseases and to look for preserved disease-specific signatures.METHODSThree liver disease groups including hepatitis C (HCV) (n = 35), non-alcoholic steatohepatitis (NASH) (n = 21) and alcohol-related liver disease (n = 14) were compared with a normal group (n = 23). Hierarchal Clustering (HCL) and Principal Component Analysis (PCA) of the data revealed distinct binding patterns for patients with and without cirrhosis.RESULTSPatients with cirrhosis and portal hypertension compared with those without cirrhosis had significantly reduced expression of several markers of T-cell function including CD45, CD8, CD28 and TCR α/β. Disease prediction algorithms based on the expression data were able to discriminate cirrhotics from non-cirrhotics with 71% overall success, which improved to 77% when only patients with HCV were considered.CONCLUSIONSThese results demonstrate disease-specific consensus patterns of expression of CD antigens for patients with chronic liver disease, suggesting that the CD antibody array is a promising tool in the analysis of human liver disease, and with further refinement may have future research and clinical utility.
Author Belov, Larissa
Stapelberg, Peter M.
Christopherson, Richard I.
Warner, Fiona J.
Shackel, Nicholas A.
Koorey, David
McCaughan, Geoffrey W.
Bowen, David G.
Strasser, Simone I.
Sharland, Alexandra F.
Rahman, Wassim
George, Jacob
Huang, Pauline
Chrisp, Jeremy S.
Author_xml – sequence: 1
  givenname: Wassim
  surname: Rahman
  fullname: Rahman, Wassim
  organization: A.W. Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, NSW, Sydney, Australia
– sequence: 2
  givenname: Pauline
  surname: Huang
  fullname: Huang, Pauline
  organization: National Innovation Centre, Medsaic Pty Ltd, Sydney, NSW, Australia
– sequence: 3
  givenname: Larissa
  surname: Belov
  fullname: Belov, Larissa
  organization: National Innovation Centre, Medsaic Pty Ltd, Sydney, NSW, Australia
– sequence: 4
  givenname: Jeremy S.
  surname: Chrisp
  fullname: Chrisp, Jeremy S.
  organization: National Innovation Centre, Medsaic Pty Ltd, NSW, Sydney, Australia
– sequence: 5
  givenname: Richard I.
  surname: Christopherson
  fullname: Christopherson, Richard I.
  organization: School of Molecular and Microbial Biosciences, The University of Sydney, NSW, Sydney, Australia
– sequence: 6
  givenname: Peter M.
  surname: Stapelberg
  fullname: Stapelberg, Peter M.
  organization: Centenary Institute, NSW, Sydney, Australia
– sequence: 7
  givenname: Fiona J.
  surname: Warner
  fullname: Warner, Fiona J.
  organization: Centenary Institute, NSW, Sydney, Australia
– sequence: 8
  givenname: Jacob
  surname: George
  fullname: George, Jacob
  organization: Storr Liver Unit, Westmead Millenium Institute, University of Sydney, NSW, Sydney, Australia
– sequence: 9
  givenname: David G.
  surname: Bowen
  fullname: Bowen, David G.
  organization: A.W. Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Sydney, NSW, Australia
– sequence: 10
  givenname: Simone I.
  surname: Strasser
  fullname: Strasser, Simone I.
  organization: A.W. Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, NSW, Sydney, Australia
– sequence: 11
  givenname: David
  surname: Koorey
  fullname: Koorey, David
  organization: A.W. Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, NSW, Sydney, Australia
– sequence: 12
  givenname: Alexandra F.
  surname: Sharland
  fullname: Sharland, Alexandra F.
  organization: Collaborative Transplantation Research Group, Bosch Institute, The University of Sydney, NSW, Sydney, Australia
– sequence: 13
  givenname: Geoffrey W.
  surname: McCaughan
  fullname: McCaughan, Geoffrey W.
  organization: A.W. Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Sydney, NSW, Australia
– sequence: 14
  givenname: Nicholas A.
  surname: Shackel
  fullname: Shackel, Nicholas A.
  email: n.shackel@centenary.usyd.edu.au
  organization: A.W. Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Sydney, NSW, Australia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22863037$$D View this record in MEDLINE/PubMed
BookMark eNqNUctSHCEUpSxTvn8hxVIX3eHRDfTChTVRYzKlG181WVBM9yVh7IeBaZ3--9AZM1tlAffCOQc4Zx9tt10LCGFKUhrHl0VKM6kSzjhNGaEsJUzlWbraQnubg-1Nzfgu2g9hQQgtipzuoF3GlOCEyz3086w19RBcwJ3Fv_vGtLh2L-Bx5QKYALgPrv2FDS7rPizjfoRVzlrw0C6dWbquxceTryfYxHbeVQNuXOk7470ZDtEna-oAR2_rAbq7OL-dfEumN5dXk7NpUuZEZAkTmSBCEJZVnFoZ31yWhbUSOFWlBcGFmc9NFWeiCka5YKoouVAcYpcB5wfoeK377Ls_PYSlblwooa5NC10fNOVFUZCcqPx9KFHRLinFqKrW0PidEDxY_exdY_wQQXpMQS_0aLAezdZjCvpfCnoVqZ_fbunnDVQb4n_bI-B0DXh1NQwfFtbTq_uxivxkzXcxk9WGb_yTFpLLXD9cX-ofM3k7e_j-qGf8L-mwpbI
CitedBy_id crossref_primary_10_1088_0034_4885_78_1_016601
crossref_primary_10_1007_s00018_014_1595_2
crossref_primary_10_1111_hel_12913
crossref_primary_10_2147_DMSO_S369712
crossref_primary_10_1016_j_cgh_2017_08_024
crossref_primary_10_1021_acsabm_1c00898
crossref_primary_10_1097_TP_0000000000000617
crossref_primary_10_3390_ijms18030593
Cites_doi 10.1111/j.1478-3231.2007.01542.x
10.1002/pmic.200300599
10.1128/JVI.02640-06
10.1002/hep.21063
10.1186/1742-4690-5-24
10.1111/j.1478-3231.2005.01117.x
10.1046/j.1440-1711.2002.01062.x
10.1101/gr.182601
10.1016/j.imlet.2004.03.007
10.1016/j.jhep.2008.02.010
10.1016/j.jcv.2004.05.008
10.1002/rmv.466
10.1002/hep.21835
10.1002/hep.1840360603
10.1073/pnas.091062498
10.1182/blood-2004-12-4642
10.1086/501365
10.1093/bioinformatics/bth449
10.1002/hep.21060
10.1186/1476-5926-5-6
10.1016/j.it.2004.09.006
10.1097/MEG.0b013e32832a21c1
10.1111/j.1365-2141.2006.06266.x
10.1002/hep.22006
ContentType Journal Article
Copyright 2012 John Wiley & Sons A/S
2012 John Wiley & Sons A/S.
Copyright_xml – notice: 2012 John Wiley & Sons A/S
– notice: 2012 John Wiley & Sons A/S.
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
7QO
8FD
FR3
P64
DOI 10.1111/j.1478-3231.2012.02854.x
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitleList MEDLINE

Engineering Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1478-3231
EndPage 1534
ExternalDocumentID 10_1111_j_1478_3231_2012_02854_x
22863037
LIV2854
ark_67375_WNG_KZ7TZWJX_Z
Genre article
Evaluation Studies
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Sylvia and Charles Viertel Foundation
GroupedDBID ---
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1OC
29L
31~
33P
36B
3O-
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAKAS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZCM
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CAG
COF
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EAD
EAP
EBD
EBS
EJD
EMB
EMK
EMOBN
ESX
EX3
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GODZA
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
SV3
TEORI
TUS
UB1
W8V
W99
WBKPD
WHWMO
WIH
WIJ
WIK
WOHZO
WOW
WQJ
WRC
WVDHM
WXI
WXSBR
X7M
XG1
ZXP
ZZTAW
~IA
~WT
CGR
CUY
CVF
ECM
EIF
NPM
AAMNL
AAYXX
ACRPL
ACYXJ
CITATION
7X8
7QO
8FD
FR3
P64
ID FETCH-LOGICAL-c5064-2646066024d31f7478cc9ff7e318cfe636abbad6ab0892136289c3683e9214e33
IEDL.DBID DR2
ISSN 1478-3223
IngestDate Wed Dec 04 03:15:00 EST 2024
Wed Dec 04 09:38:30 EST 2024
Fri Dec 06 03:50:35 EST 2024
Sat Sep 28 07:53:17 EDT 2024
Sat Aug 24 00:52:13 EDT 2024
Wed Oct 30 09:55:24 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License 2012 John Wiley & Sons A/S.
http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5064-2646066024d31f7478cc9ff7e318cfe636abbad6ab0892136289c3683e9214e33
Notes istex:19A49D2040B1F7E4F0C9AB6B4ED40758F4F94C62
ark:/67375/WNG-KZ7TZWJX-Z
ArticleID:LIV2854
Sylvia and Charles Viertel Foundation
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PMID 22863037
PQID 1082237763
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_1399905085
proquest_miscellaneous_1082237763
crossref_primary_10_1111_j_1478_3231_2012_02854_x
pubmed_primary_22863037
wiley_primary_10_1111_j_1478_3231_2012_02854_x_LIV2854
istex_primary_ark_67375_WNG_KZ7TZWJX_Z
PublicationCentury 2000
PublicationDate November 2012
PublicationDateYYYYMMDD 2012-11-01
PublicationDate_xml – month: 11
  year: 2012
  text: November 2012
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Liver international
PublicationTitleAlternate Liver Int
PublicationYear 2012
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Racanelli V, Rehermann B. The liver as an immunological organ. Hepatology 2006; 2Suppl 1: S54-62.
Shackel NA, Seth D, Haber PS, Gorrell MD, Mccaughan GW. The hepatic transcriptome in human liver disease. Comp Hepatol 2006; 5: 6.
Belov L, Mulligan SP, Barber N, et al. Analysis of human leukaemias and lymphomas using extensive immunophenotypes from an antibody microarray. Br J Haematol 2006; 135: 184-97.
Belov L, Huang P, Barber N, Mulligan SP, Christopherson RI. Identification of repertoires of surface antigens on leukemias using an antibody microarray. Proteomics 2003; 3: 2147-54.
Lalor PF, Shields P, Grant A, Adams DH. Recruitment of lymphocytes to the human liver. Immunol Cell Biol 2002; 80: 52-64.
Klugewitz K, Blumenthal-Barby F, Eulenburg K, Emoto M, Hamann A. The spectrum of lymphoid subsets preferentially recruited into the liver reflects that of resident populations. Immunol Lett 2004b; 3: 159-62.
Klugewitz K, Adams DH, Emoto M, Eulenburg K, Hamann A. The composition of intrahepatic lymphocytes: shaped by selective recruitment? Trends Immunol 2004a; 25: 590-4.
Kim MY, Baik SK, Yea CJ, et al. Hepatic venous pressure gradient can predict the development of hepatocellular carcinoma and hyponatremia in decompensated alcoholic cirrhosis. Eur J Gastroenterol Hepatol 2009; 21: 1241-6.
Selzner N, Chen L, Borozan I, et al. Hepatic gene expression and prediction of therapy response in chronic hepatitis C patients. J Hepatol 2008; 48: 708-13.
Theilhaber J, Connolly T, Roman-Roman S, et al. Finding genes in the C2C12 osteogenic pathway by k-nearest-neighbor classification of expression data. Genome Res 2002; 12: 165-76.
Gremion C, Cerny A. Hepatitis C virus and the immune system: a concise review. Rev Med Virol 2005; 15: 235-68.
Shackel NA, Gorrell MD, Mccaughan GW. Gene array analysis and the liver. Hepatology 2002; 36: 1313-25.
Wu JQ, Dyer WB, Chrisp J, et al. Longitudinal microarray analysis of cell surface antigens on peripheral blood mononuclear cells from HIV+ individuals on highly active antiretroviral therapy. Retrovirology 2008; 5: 24.
Raychaudhuri S, Stuart JM, Altman RB. Principal components analysis to summarize microarray experiments: application to sporulation time series. Pac Symp Biocomput 2000; 455-66.
Huang XX, Mccaughan GW, Shackel NA, Gorrell MD. Up-regulation of proproliferative genes and the ligand/receptor pair placental growth factor and vascular endothelial growth factor receptor 1 in hepatitis C cirrhosis. Liver Int 2007; 27: 960-8.
Neumann-Haefelin C, Blum HE, Chisari FV, Thimme R. T cell response in hepatitis C virus infection. J Clin Virol 2005; 32: 75-85.
Thorgeirsson SS, Lee JS, Grisham JW. Functional genomics of hepatocellular carcinoma. Hepatology 2006; 2Suppl 1: S145-50.
Taylor MW, Tsukahara T, Brodsky L, et al. Changes in gene expression during pegylated interferon and ribavirin therapy of chronic hepatitis C virus distinguish responders from nonresponders to antiviral therapy. J Virol 2007; 81: 3391-401.
Woolfson A, Stebbing J, Tom BD, et al. Conservation of unique cell-surface CD antigen mosaics in HIV-1-infected individuals. Blood 2005; 106: 1003-7.
Tusher VG, Tibshirani R, Chu G. Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A 2001; 98: 5116-21.
Wettenhall JM, Smyth GKlimmaGUI: a graphical user interface for linear modeling of microarray data. Bioinformatics 2004; 20: 3705-6.
Lempicki RA, Polis MA, Yang J, et al. Gene expression profiles in hepatitis C virus (HCV) and HIV coinfection: class prediction analyses before treatment predict the outcome of anti-HCV therapy among HIV-coinfected persons. J Infect Dis 2006; 193: 1172-7.
Younossi ZM, Gorreta F, Ong JP, et al. Hepatic gene expression in patients with obesity-related non-alcoholic steatohepatitis. Liver Int 2005; 25: 760-71.
Shackel NA, Mccaughan GW. Intrahepatic interferon-stimulated gene responses: can they predict treatment responses in chronic hepatitis C infection? Hepatology 2007; 46: 1326-8.
Belov L, De La Vega O, Dos Remedios CG, Mulligan SP, Christopherson RI. Immunophenotyping of leukemias using a cluster of differentiation antibody microarray. Cancer Res 2001; 61: 4483-9.
Shaheen AA, Myers RP. Diagnostic accuracy of the aspartate aminotransferase-to-platelet ratio index for the prediction of hepatitis C-related fibrosis: a systematic review. Hepatology 2007; 46: 912-21.
2002; 36
2001; 61
2004; 20
2009; 21
2004a; 25
2000
2002; 12
2005; 106
2008; 48
2003; 3
2006; 5
2007; 81
2005; 32
2008; 5
2004b; 3
2006; 2
2006; 193
2002; 80
2005; 15
2007; 46
2007; 27
2005; 25
2006; 135
2001; 98
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
Belov L (e_1_2_7_17_1) 2001; 61
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
Klugewitz K (e_1_2_7_23_1) 2004; 3
Raychaudhuri S (e_1_2_7_18_1) 2000
e_1_2_7_25_1
e_1_2_7_24_1
e_1_2_7_22_1
e_1_2_7_21_1
e_1_2_7_20_1
Racanelli V (e_1_2_7_12_1) 2006; 2
References_xml – volume: 20
  start-page: 3705
  year: 2004
  end-page: 6
  article-title: limmaGUI: a graphical user interface for linear modeling of microarray data
  publication-title: Bioinformatics
– volume: 81
  start-page: 3391
  year: 2007
  end-page: 401
  article-title: Changes in gene expression during pegylated interferon and ribavirin therapy of chronic hepatitis C virus distinguish responders from nonresponders to antiviral therapy
  publication-title: J Virol
– volume: 3
  start-page: 159
  year: 2004b
  end-page: 62
  article-title: The spectrum of lymphoid subsets preferentially recruited into the liver reflects that of resident populations
  publication-title: Immunol Lett
– volume: 48
  start-page: 708
  year: 2008
  end-page: 13
  article-title: Hepatic gene expression and prediction of therapy response in chronic hepatitis C patients
  publication-title: J Hepatol
– start-page: 455
  year: 2000
  end-page: 66
  article-title: Principal components analysis to summarize microarray experiments: application to sporulation time series
  publication-title: Pac Symp Biocomput
– volume: 12
  start-page: 165
  year: 2002
  end-page: 76
  article-title: Finding genes in the C2C12 osteogenic pathway by k‐nearest‐neighbor classification of expression data
  publication-title: Genome Res
– volume: 27
  start-page: 960
  year: 2007
  end-page: 8
  article-title: Up‐regulation of proproliferative genes and the ligand/receptor pair placental growth factor and vascular endothelial growth factor receptor 1 in hepatitis C cirrhosis
  publication-title: Liver Int
– volume: 2
  start-page: S54
  issue: Suppl 1
  year: 2006
  end-page: 62
  article-title: The liver as an immunological organ
  publication-title: Hepatology
– volume: 25
  start-page: 760
  year: 2005
  end-page: 71
  article-title: Hepatic gene expression in patients with obesity‐related non‐alcoholic steatohepatitis
  publication-title: Liver Int
– volume: 3
  start-page: 2147
  year: 2003
  end-page: 54
  article-title: Identification of repertoires of surface antigens on leukemias using an antibody microarray
  publication-title: Proteomics
– volume: 61
  start-page: 4483
  year: 2001
  end-page: 9
  article-title: Immunophenotyping of leukemias using a cluster of differentiation antibody microarray
  publication-title: Cancer Res
– volume: 25
  start-page: 590
  year: 2004a
  end-page: 4
  article-title: The composition of intrahepatic lymphocytes: shaped by selective recruitment?
  publication-title: Trends Immunol
– volume: 5
  start-page: 6
  year: 2006
  article-title: The hepatic transcriptome in human liver disease
  publication-title: Comp Hepatol
– volume: 2
  start-page: S145
  issue: Suppl 1
  year: 2006
  end-page: 50
  article-title: Functional genomics of hepatocellular carcinoma
  publication-title: Hepatology
– volume: 106
  start-page: 1003
  year: 2005
  end-page: 7
  article-title: Conservation of unique cell‐surface CD antigen mosaics in HIV‐1‐infected individuals
  publication-title: Blood
– volume: 15
  start-page: 235
  year: 2005
  end-page: 68
  article-title: Hepatitis C virus and the immune system: a concise review
  publication-title: Rev Med Virol
– volume: 5
  start-page: 24
  year: 2008
  article-title: Longitudinal microarray analysis of cell surface antigens on peripheral blood mononuclear cells from HIV+ individuals on highly active antiretroviral therapy
  publication-title: Retrovirology
– volume: 135
  start-page: 184
  year: 2006
  end-page: 97
  article-title: Analysis of human leukaemias and lymphomas using extensive immunophenotypes from an antibody microarray
  publication-title: Br J Haematol
– volume: 193
  start-page: 1172
  year: 2006
  end-page: 7
  article-title: Gene expression profiles in hepatitis C virus (HCV) and HIV coinfection: class prediction analyses before treatment predict the outcome of anti‐HCV therapy among HIV‐coinfected persons
  publication-title: J Infect Dis
– volume: 36
  start-page: 1313
  year: 2002
  end-page: 25
  article-title: Gene array analysis and the liver
  publication-title: Hepatology
– volume: 32
  start-page: 75
  year: 2005
  end-page: 85
  article-title: T cell response in hepatitis C virus infection
  publication-title: J Clin Virol
– volume: 46
  start-page: 1326
  year: 2007
  end-page: 8
  article-title: Intrahepatic interferon‐stimulated gene responses: can they predict treatment responses in chronic hepatitis C infection?
  publication-title: Hepatology
– volume: 98
  start-page: 5116
  year: 2001
  end-page: 21
  article-title: Significance analysis of microarrays applied to the ionizing radiation response
  publication-title: Proc Natl Acad Sci U S A
– volume: 80
  start-page: 52
  year: 2002
  end-page: 64
  article-title: Recruitment of lymphocytes to the human liver
  publication-title: Immunol Cell Biol
– volume: 46
  start-page: 912
  year: 2007
  end-page: 21
  article-title: Diagnostic accuracy of the aspartate aminotransferase‐to‐platelet ratio index for the prediction of hepatitis C‐related fibrosis: a systematic review
  publication-title: Hepatology
– volume: 21
  start-page: 1241
  year: 2009
  end-page: 6
  article-title: Hepatic venous pressure gradient can predict the development of hepatocellular carcinoma and hyponatremia in decompensated alcoholic cirrhosis
  publication-title: Eur J Gastroenterol Hepatol
– ident: e_1_2_7_4_1
  doi: 10.1111/j.1478-3231.2007.01542.x
– ident: e_1_2_7_8_1
  doi: 10.1002/pmic.200300599
– ident: e_1_2_7_16_1
  doi: 10.1128/JVI.02640-06
– ident: e_1_2_7_5_1
  doi: 10.1002/hep.21063
– ident: e_1_2_7_11_1
  doi: 10.1186/1742-4690-5-24
– ident: e_1_2_7_7_1
  doi: 10.1111/j.1478-3231.2005.01117.x
– ident: e_1_2_7_24_1
  doi: 10.1046/j.1440-1711.2002.01062.x
– ident: e_1_2_7_21_1
  doi: 10.1101/gr.182601
– volume: 3
  start-page: 159
  year: 2004
  ident: e_1_2_7_23_1
  article-title: The spectrum of lymphoid subsets preferentially recruited into the liver reflects that of resident populations
  publication-title: Immunol Lett
  doi: 10.1016/j.imlet.2004.03.007
  contributor:
    fullname: Klugewitz K
– ident: e_1_2_7_6_1
  doi: 10.1016/j.jhep.2008.02.010
– ident: e_1_2_7_25_1
  doi: 10.1016/j.jcv.2004.05.008
– volume: 61
  start-page: 4483
  year: 2001
  ident: e_1_2_7_17_1
  article-title: Immunophenotyping of leukemias using a cluster of differentiation antibody microarray
  publication-title: Cancer Res
  contributor:
    fullname: Belov L
– ident: e_1_2_7_26_1
  doi: 10.1002/rmv.466
– ident: e_1_2_7_22_1
  doi: 10.1002/hep.21835
– ident: e_1_2_7_3_1
  doi: 10.1002/hep.1840360603
– ident: e_1_2_7_19_1
  doi: 10.1073/pnas.091062498
– ident: e_1_2_7_10_1
  doi: 10.1182/blood-2004-12-4642
– ident: e_1_2_7_15_1
  doi: 10.1086/501365
– start-page: 455
  year: 2000
  ident: e_1_2_7_18_1
  article-title: Principal components analysis to summarize microarray experiments: application to sporulation time series
  publication-title: Pac Symp Biocomput
  contributor:
    fullname: Raychaudhuri S
– ident: e_1_2_7_20_1
  doi: 10.1093/bioinformatics/bth449
– volume: 2
  start-page: S54
  issue: 1
  year: 2006
  ident: e_1_2_7_12_1
  article-title: The liver as an immunological organ
  publication-title: Hepatology
  doi: 10.1002/hep.21060
  contributor:
    fullname: Racanelli V
– ident: e_1_2_7_2_1
  doi: 10.1186/1476-5926-5-6
– ident: e_1_2_7_13_1
  doi: 10.1016/j.it.2004.09.006
– ident: e_1_2_7_27_1
  doi: 10.1097/MEG.0b013e32832a21c1
– ident: e_1_2_7_9_1
  doi: 10.1111/j.1365-2141.2006.06266.x
– ident: e_1_2_7_14_1
  doi: 10.1002/hep.22006
SSID ssj0019951
Score 2.1392536
Snippet Background A CD antibody microarray has been previously developed allowing semi‐quantitative identification of greater than 80 CD antigens on circulating...
A CD antibody microarray has been previously developed allowing semi-quantitative identification of greater than 80 CD antigens on circulating leucocytes from...
BACKGROUNDA CD antibody microarray has been previously developed allowing semi-quantitative identification of greater than 80 CD antigens on circulating...
SourceID proquest
crossref
pubmed
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 1527
SubjectTerms Adult
Aged
Aged, 80 and over
Algorithms
Antibodies - metabolism
Antigens, CD - metabolism
CD array
Cluster Analysis
Female
hepatitis C
Hepatitis C virus
Human immunodeficiency virus
Humans
Immunophenotyping - methods
Leukocytes - metabolism
liver disease
Liver Diseases - diagnosis
Male
Middle Aged
Principal Component Analysis
Protein Array Analysis - methods
Title Analysis of human liver disease using a cluster of differentiation (CD) antibody microarray
URI https://api.istex.fr/ark:/67375/WNG-KZ7TZWJX-Z/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1478-3231.2012.02854.x
https://www.ncbi.nlm.nih.gov/pubmed/22863037
https://search.proquest.com/docview/1082237763
https://search.proquest.com/docview/1399905085
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB5VVKq49AFtSSmVKyFUDlltYsfOHhGUUlo4IB6r7cGyHaeqFrJo2ZXY_npmnGTVRQhVVS9REsV5ODP2N_Y3nwE2eaGcEyaJfYmxiTA2i22RqVh1sW-2pTBeUL7z0bE8OBOH_azf8J8oF6bWh5gPuJFnhPaaHNzYm3tOTlP7CFCIoZV2upQM2CE8mXBF7L69k7mSFCUih9irLpLyRVLPgzda6KmeUqXfPgRDF1Ft6Jb2X8Cw_aCajTLsTCe2437f03r8P1_8Ep436JXt1Ob2Cp74agVWdyqM3K9mbIsFPmkYqF-BZ0fNtP0q_GilT9ioZGFVQHZJfBDWTA8xYt__ZIa5yykJN9Bl7cotk9p22KfdvW2GZvDLjooZuyIeoRmPzew1nO1_Pt09iJtVHWJH4nhEqaOgCbFBwZOS5Pudo4FjGox1pZdcGmtNgdtu3ksT7GDznuMy5x6PhOf8DSxVo8qvActliYDTF1IoL5xQVhXYpsgkty6RqSkjSNo_qK9r8Q79Z9Cjck2VqakydahMfRvBVvjV8wJmPCTym8r0xfEX_W2gTgcXh309iOBjawsaXZLmWUzlR9Mb0lxFC1PYcj9yDQLDXhfRcRbB29qQ5k9M01wislARyGAOf_3u-vvXc9p7968F12GZTte5lu9haTKe-g0EXRP7IbjTHcG5G3U
link.rule.ids 314,780,784,1375,27924,27925,46294,46718
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwED6hTQJeBmwwsvHDSGiCh1RN4tjp47Qxyrb2AXWsKg-W7ThoWpdOpZXW_fXcOUlFpwkhxEvVSHabOHf2d-fvPgO8T3JpLddR6AqMTbg2aWjyVIayjWuzKbh2nOqde33RPePHw3RYHwdEtTCVPsQy4Uae4edrcnBKSN_xctrbR4RCFK241aZqwBYCynX0_oj4XYdfl1pSVIrso6-qT5ys0nru_aWVtWqdhv3mPiC6imv9wnT0BMbNI1V8lMvWfGZa9vaO2uN_euansFEDWLZfWdwzeODKTdjaLzF4v1qwPeYppT5XvwkPe_XO_RZ8b9RP2KRg_mBANiZKCKt3iBgR8H8wzex4TtoN1Kw5vGVWmQ_7cHD4kaElXJhJvmBXRCXU06lePIezo0-Dg25YH-wQWtLHI1YdxU0ID_IkKkjB31rKHVM-1hZOJEIbo3P8bGedOMI1NuvYRGSJwyvukuQFrJWT0r0ElokCMafLBZeOWy6NzHFaEVFmbCRiXQQQNa9QXVf6Her3uEdmigZT0WAqP5jqJoA9_66XHfT0kvhvMlXn_c_qZCQHo_PjoRoF8K4xBoVeSVstunST-U-SXUUTkzh5_6ENYsNOGwFyGsB2ZUnLf4zjTCC4kAEIbw9_fe_q9Ms3-rbzrx3fwqPuoHeKl_2TXXhMTarSy1ewNpvO3WvEYDPzxvvWL5l1H5Y
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9swFD6MFspedmm7zbtVhVK2B4fYliXnsTRLu15CGe0asgchyfIYaZ2SJdDs1-8c2Q5LKWOMvhgbJF_kc6TvSN_5BLCT5NJarqPQFRibcG3S0OSpDGUbx2ZTcO045Tuf9sXhBT8apIOa_0S5MJU-xGLCjTzD99fk4Dd5ccfJaWkfAQoxtOJWm5IBW4gnV7mIO6Sj3_2ykJKiTGQffFV14mSZ1XPvnZaGqlVq9dv7cOgyrPXjUu8pjJovqugoo9Zsalr21x2xx4f55GfwpIavbK-yt-fwyJXrsLFXYuh-PWe7zBNK_Uz9Oqyd1uv2G_Ct0T5h44L5bQHZFRFCWL0-xIh-_51pZq9mpNxAxZqtW6aV8bAP-92PDO3ghxnnc3ZNREI9mej5Jlz0Pp3vH4b1tg6hJXU84tRR1ITgIE-igvT7raWZY5qNtYUTidDG6ByP7awTRzjCZh2biCxxeMVdkryAlXJculfAMlEg4nS54NJxy6WROXYqIsqMjUSsiwCi5g-qm0q9Q_0Z9chMUWMqakzlG1PdBrDrf_Wigp6MiP0mU3XZP1DHQ3k-vDwaqGEA240tKPRJWmjRpRvPfpLoKlqYxK77L2UQGXbaCI_TAF5WhrR4YhxnAqGFDEB4c_jnd1cnn7_S2ev_rbgFa2fdHl71j9_AYypR5V2-hZXpZObeIQCbmvfes34DCq8eRQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+human+liver+disease+using+a+cluster+of+differentiation+%28CD%29+antibody+microarray&rft.jtitle=Liver+international&rft.au=Rahman%2C+Wassim&rft.au=Huang%2C+Pauline&rft.au=Belov%2C+Larissa&rft.au=Chrisp%2C+Jeremy+S.&rft.date=2012-11-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1478-3223&rft.eissn=1478-3231&rft.volume=32&rft.issue=10&rft.spage=1527&rft.epage=1534&rft_id=info:doi/10.1111%2Fj.1478-3231.2012.02854.x&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_KZ7TZWJX_Z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1478-3223&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1478-3223&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1478-3223&client=summon