Chiral Hybrid Perovskite Single‐Crystal Nanowire Arrays for High‐Performance Circularly Polarized Light Detection
Circularly polarized light (CPL) detection has emerged as a key technology for various optoelectronics. Chiral hybrid perovskites (CHPs) that combine CPL‐sensitive absorption induced by chiral organic ligands and superior photoelectric properties of perovskites are promising candidates for direct CP...
Saved in:
Published in | Advanced science Vol. 8; no. 21; pp. e2102065 - n/a |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
John Wiley & Sons, Inc
01.11.2021
John Wiley and Sons Inc Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Circularly polarized light (CPL) detection has emerged as a key technology for various optoelectronics. Chiral hybrid perovskites (CHPs) that combine CPL‐sensitive absorption induced by chiral organic ligands and superior photoelectric properties of perovskites are promising candidates for direct CPL detection. To date, most of the CHP detectors are made up of polycrystalline thin‐film, which results in a rather limited discrimination of CPL due to the existence of redundant impurities and intrinsic defect states originating from rapid crystallization process. Here, it is developed a direct CPL detector with high photocurrent and polarization selectivity based on low‐defect CHP single‐crystal nanowire arrays. Large‐scale CHP nanowires are obtained through a micropillar template‐assisted capillary‐bridge rise approach. Thanks to the high crystallinity and ordered crystallographic alignment of these arrays, a CPL photodetector with high light on/off ratio of 1.8 × 104, excellent responsivity of 1.4 A W−1, and an outstanding anisotropy factor of 0.24 for photocurrent has been achieved. These results would provide useful enlightenment for direct CPL detection in high‐performance chiral optoelectronics.
An efficient circularly polarized light (CPL) detector is demonstrated with large‐scale chiral hybrid perovskite (CHP) nanowire arrays. Based on the high photocurrent and polarization selectivity of CHP single‐crystals, high‐performance CPL detectors with high light on/off ratio and excellent polarization distinguishability through arranging such single‐crystalline CHP nanowires into low‐defect arrays are achieved. |
---|---|
AbstractList | Circularly polarized light (CPL) detection has emerged as a key technology for various optoelectronics. Chiral hybrid perovskites (CHPs) that combine CPL‐sensitive absorption induced by chiral organic ligands and superior photoelectric properties of perovskites are promising candidates for direct CPL detection. To date, most of the CHP detectors are made up of polycrystalline thin‐film, which results in a rather limited discrimination of CPL due to the existence of redundant impurities and intrinsic defect states originating from rapid crystallization process. Here, it is developed a direct CPL detector with high photocurrent and polarization selectivity based on low‐defect CHP single‐crystal nanowire arrays. Large‐scale CHP nanowires are obtained through a micropillar template‐assisted capillary‐bridge rise approach. Thanks to the high crystallinity and ordered crystallographic alignment of these arrays, a CPL photodetector with high light on/off ratio of 1.8 × 10
4
, excellent responsivity of 1.4 A W
−1
, and an outstanding anisotropy factor of 0.24 for photocurrent has been achieved. These results would provide useful enlightenment for direct CPL detection in high‐performance chiral optoelectronics. Circularly polarized light (CPL) detection has emerged as a key technology for various optoelectronics. Chiral hybrid perovskites (CHPs) that combine CPL‐sensitive absorption induced by chiral organic ligands and superior photoelectric properties of perovskites are promising candidates for direct CPL detection. To date, most of the CHP detectors are made up of polycrystalline thin‐film, which results in a rather limited discrimination of CPL due to the existence of redundant impurities and intrinsic defect states originating from rapid crystallization process. Here, it is developed a direct CPL detector with high photocurrent and polarization selectivity based on low‐defect CHP single‐crystal nanowire arrays. Large‐scale CHP nanowires are obtained through a micropillar template‐assisted capillary‐bridge rise approach. Thanks to the high crystallinity and ordered crystallographic alignment of these arrays, a CPL photodetector with high light on/off ratio of 1.8 × 104, excellent responsivity of 1.4 A W−1, and an outstanding anisotropy factor of 0.24 for photocurrent has been achieved. These results would provide useful enlightenment for direct CPL detection in high‐performance chiral optoelectronics. An efficient circularly polarized light (CPL) detector is demonstrated with large‐scale chiral hybrid perovskite (CHP) nanowire arrays. Based on the high photocurrent and polarization selectivity of CHP single‐crystals, high‐performance CPL detectors with high light on/off ratio and excellent polarization distinguishability through arranging such single‐crystalline CHP nanowires into low‐defect arrays are achieved. Abstract Circularly polarized light (CPL) detection has emerged as a key technology for various optoelectronics. Chiral hybrid perovskites (CHPs) that combine CPL‐sensitive absorption induced by chiral organic ligands and superior photoelectric properties of perovskites are promising candidates for direct CPL detection. To date, most of the CHP detectors are made up of polycrystalline thin‐film, which results in a rather limited discrimination of CPL due to the existence of redundant impurities and intrinsic defect states originating from rapid crystallization process. Here, it is developed a direct CPL detector with high photocurrent and polarization selectivity based on low‐defect CHP single‐crystal nanowire arrays. Large‐scale CHP nanowires are obtained through a micropillar template‐assisted capillary‐bridge rise approach. Thanks to the high crystallinity and ordered crystallographic alignment of these arrays, a CPL photodetector with high light on/off ratio of 1.8 × 104, excellent responsivity of 1.4 A W−1, and an outstanding anisotropy factor of 0.24 for photocurrent has been achieved. These results would provide useful enlightenment for direct CPL detection in high‐performance chiral optoelectronics. Circularly polarized light (CPL) detection has emerged as a key technology for various optoelectronics. Chiral hybrid perovskites (CHPs) that combine CPL‐sensitive absorption induced by chiral organic ligands and superior photoelectric properties of perovskites are promising candidates for direct CPL detection. To date, most of the CHP detectors are made up of polycrystalline thin‐film, which results in a rather limited discrimination of CPL due to the existence of redundant impurities and intrinsic defect states originating from rapid crystallization process. Here, it is developed a direct CPL detector with high photocurrent and polarization selectivity based on low‐defect CHP single‐crystal nanowire arrays. Large‐scale CHP nanowires are obtained through a micropillar template‐assisted capillary‐bridge rise approach. Thanks to the high crystallinity and ordered crystallographic alignment of these arrays, a CPL photodetector with high light on/off ratio of 1.8 × 104, excellent responsivity of 1.4 A W−1, and an outstanding anisotropy factor of 0.24 for photocurrent has been achieved. These results would provide useful enlightenment for direct CPL detection in high‐performance chiral optoelectronics. Circularly polarized light (CPL) detection has emerged as a key technology for various optoelectronics. Chiral hybrid perovskites (CHPs) that combine CPL‐sensitive absorption induced by chiral organic ligands and superior photoelectric properties of perovskites are promising candidates for direct CPL detection. To date, most of the CHP detectors are made up of polycrystalline thin‐film, which results in a rather limited discrimination of CPL due to the existence of redundant impurities and intrinsic defect states originating from rapid crystallization process. Here, it is developed a direct CPL detector with high photocurrent and polarization selectivity based on low‐defect CHP single‐crystal nanowire arrays. Large‐scale CHP nanowires are obtained through a micropillar template‐assisted capillary‐bridge rise approach. Thanks to the high crystallinity and ordered crystallographic alignment of these arrays, a CPL photodetector with high light on/off ratio of 1.8 × 10 4 , excellent responsivity of 1.4 A W −1 , and an outstanding anisotropy factor of 0.24 for photocurrent has been achieved. These results would provide useful enlightenment for direct CPL detection in high‐performance chiral optoelectronics. An efficient circularly polarized light (CPL) detector is demonstrated with large‐scale chiral hybrid perovskite (CHP) nanowire arrays. Based on the high photocurrent and polarization selectivity of CHP single‐crystals, high‐performance CPL detectors with high light on/off ratio and excellent polarization distinguishability through arranging such single‐crystalline CHP nanowires into low‐defect arrays are achieved. Circularly polarized light (CPL) detection has emerged as a key technology for various optoelectronics. Chiral hybrid perovskites (CHPs) that combine CPL-sensitive absorption induced by chiral organic ligands and superior photoelectric properties of perovskites are promising candidates for direct CPL detection. To date, most of the CHP detectors are made up of polycrystalline thin-film, which results in a rather limited discrimination of CPL due to the existence of redundant impurities and intrinsic defect states originating from rapid crystallization process. Here, it is developed a direct CPL detector with high photocurrent and polarization selectivity based on low-defect CHP single-crystal nanowire arrays. Large-scale CHP nanowires are obtained through a micropillar template-assisted capillary-bridge rise approach. Thanks to the high crystallinity and ordered crystallographic alignment of these arrays, a CPL photodetector with high light on/off ratio of 1.8 × 104 , excellent responsivity of 1.4 A W-1 , and an outstanding anisotropy factor of 0.24 for photocurrent has been achieved. These results would provide useful enlightenment for direct CPL detection in high-performance chiral optoelectronics.Circularly polarized light (CPL) detection has emerged as a key technology for various optoelectronics. Chiral hybrid perovskites (CHPs) that combine CPL-sensitive absorption induced by chiral organic ligands and superior photoelectric properties of perovskites are promising candidates for direct CPL detection. To date, most of the CHP detectors are made up of polycrystalline thin-film, which results in a rather limited discrimination of CPL due to the existence of redundant impurities and intrinsic defect states originating from rapid crystallization process. Here, it is developed a direct CPL detector with high photocurrent and polarization selectivity based on low-defect CHP single-crystal nanowire arrays. Large-scale CHP nanowires are obtained through a micropillar template-assisted capillary-bridge rise approach. Thanks to the high crystallinity and ordered crystallographic alignment of these arrays, a CPL photodetector with high light on/off ratio of 1.8 × 104 , excellent responsivity of 1.4 A W-1 , and an outstanding anisotropy factor of 0.24 for photocurrent has been achieved. These results would provide useful enlightenment for direct CPL detection in high-performance chiral optoelectronics. |
Author | Qiao, Chan Fan, Yuqing Zhao, Yong Sheng Zhou, Zhonghao Liu, Xiaolong Guan, Yuwei Hu, Fengqin Liu, Zhen Zhang, Chunhuan Ren, Ang |
AuthorAffiliation | 2 Key Laboratory of Photochemistry Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China 1 College of Chemistry Beijing Normal University Beijing 100875 China 3 University of Chinese Academy of Sciences Beijing 100049 China |
AuthorAffiliation_xml | – name: 2 Key Laboratory of Photochemistry Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China – name: 1 College of Chemistry Beijing Normal University Beijing 100875 China – name: 3 University of Chinese Academy of Sciences Beijing 100049 China |
Author_xml | – sequence: 1 givenname: Zhen surname: Liu fullname: Liu, Zhen organization: Beijing Normal University – sequence: 2 givenname: Chunhuan orcidid: 0000-0002-6704-8098 surname: Zhang fullname: Zhang, Chunhuan organization: Chinese Academy of Sciences – sequence: 3 givenname: Xiaolong surname: Liu fullname: Liu, Xiaolong organization: University of Chinese Academy of Sciences – sequence: 4 givenname: Ang surname: Ren fullname: Ren, Ang organization: University of Chinese Academy of Sciences – sequence: 5 givenname: Zhonghao surname: Zhou fullname: Zhou, Zhonghao organization: Chinese Academy of Sciences – sequence: 6 givenname: Chan surname: Qiao fullname: Qiao, Chan organization: University of Chinese Academy of Sciences – sequence: 7 givenname: Yuwei surname: Guan fullname: Guan, Yuwei organization: Beijing Normal University – sequence: 8 givenname: Yuqing surname: Fan fullname: Fan, Yuqing organization: University of Chinese Academy of Sciences – sequence: 9 givenname: Fengqin surname: Hu fullname: Hu, Fengqin email: fqhu@bnu.edu.cn organization: Beijing Normal University – sequence: 10 givenname: Yong Sheng orcidid: 0000-0002-4329-0103 surname: Zhao fullname: Zhao, Yong Sheng email: yszhao@iccas.ac.cn organization: University of Chinese Academy of Sciences |
BookMark | eNqFks9uEzEQxi1UREvplfNKXLgk-P96L0hRWkilCCoVuFpeezZx2KyLvZtqOfEIPCNPgkOqivbSk-3x7_tmPJ6X6KgLHSD0muApwZi-M26XphRTgimW4hk6oaRSE6Y4P_pvf4zOUtpgjIlgJSfqBTpmXEhSSX6ChvnaR9MWi7GO3hVXEMMuffc9FNe-W7Xw59fveRxTn5FPpgu3PkIxi9GMqWhCLBZ-tc5IluXT1nQWirmPdmhNbMfiKuTV_wRXLDPXF-fQg-196F6h541pE5zdrafo64eLL_PFZPn54-V8tpxYgSWZ1A045YDJ_IyGlcCZII7nCCcSsKC2dmVtJHZEylIZYnGjKGukIopTVTp2ii4Pvi6Yjb6JfmviqIPx-l8gxJU2sfe2BW0UNTkPA1rXvLJlzsi54mCMkZUhTfZ6f_C6GeotOAtdnxv3wPThTefXehV2WgnJuVDZ4O2dQQw_Bki93vpkoW1NB2FImopSSsGqssrom0foJgyxy63KVEUx5pLTTE0PlI0hpQjNfTEE6_2A6P2A6PsByQL-SGB9b_Yfkgv27ZOyW9_C-EQSPTv_ds2wIOwvVrXTNw |
CitedBy_id | crossref_primary_10_1021_acs_jpclett_3c00425 crossref_primary_10_1021_acs_nanolett_2c05085 crossref_primary_10_1063_5_0223521 crossref_primary_10_1002_advs_202404403 crossref_primary_10_1021_acsami_2c20716 crossref_primary_10_1002_adom_202301239 crossref_primary_10_1021_acsnano_4c02588 crossref_primary_10_1002_adma_202211935 crossref_primary_10_1016_j_molliq_2024_125020 crossref_primary_10_1007_s11431_022_2285_1 crossref_primary_10_1007_s11431_024_2754_7 crossref_primary_10_1039_D4NR03600J crossref_primary_10_1002_advs_202307593 crossref_primary_10_1007_s11426_021_1146_6 crossref_primary_10_1063_5_0180188 crossref_primary_10_1021_acs_nanolett_2c04224 crossref_primary_10_1103_PhysRevLett_133_056903 crossref_primary_10_1002_solr_202400367 crossref_primary_10_1016_j_ccr_2024_216105 crossref_primary_10_1021_acs_jpclett_1c04137 crossref_primary_10_1039_D2CC02758E crossref_primary_10_1039_D4NR00644E crossref_primary_10_1021_acsami_3c03201 crossref_primary_10_1002_aenm_202201735 crossref_primary_10_1016_j_pquantelec_2022_100375 crossref_primary_10_1126_sciadv_ado5942 crossref_primary_10_1002_adfm_202314427 crossref_primary_10_1021_acs_jpcc_2c04313 crossref_primary_10_1021_acsami_5c01035 crossref_primary_10_1002_adfm_202202277 crossref_primary_10_1002_qute_202300178 crossref_primary_10_1016_j_apmate_2024_100250 crossref_primary_10_1002_adom_202401427 crossref_primary_10_1002_adom_202401829 crossref_primary_10_1002_smll_202402668 crossref_primary_10_1039_D4TA07010K crossref_primary_10_1021_acsami_4c18208 crossref_primary_10_1002_adma_202203201 crossref_primary_10_1021_acsami_4c10289 crossref_primary_10_1021_acs_analchem_3c02933 crossref_primary_10_1002_adma_202414199 crossref_primary_10_1360_SSPMA_2022_0443 crossref_primary_10_1360_SSC_2024_0074 crossref_primary_10_1002_solr_202101019 crossref_primary_10_1021_acs_chemmater_3c00345 crossref_primary_10_1063_5_0200692 crossref_primary_10_1021_jacs_4c06822 crossref_primary_10_1002_lpor_202300141 crossref_primary_10_1002_admt_202202179 crossref_primary_10_1002_admt_202200275 crossref_primary_10_1002_aenm_202200792 crossref_primary_10_1021_acsami_2c21242 crossref_primary_10_1039_D2NR05022F crossref_primary_10_1016_j_apmt_2022_101509 crossref_primary_10_1021_acs_inorgchem_4c03998 crossref_primary_10_1002_smtd_202201048 crossref_primary_10_1021_jacs_2c01994 |
Cites_doi | 10.1039/C7MH00197E 10.1038/ncomms9724 10.1021/acsnano.9b00302 10.1039/C8SE00213D 10.1038/ncomms6404 10.1039/C6CS00896H 10.1126/science.1243167 10.1002/adma.201908340 10.1103/PhysRev.97.1538 10.1002/adfm.202008684 10.1039/B606987H 10.1002/adma.201605993 10.1002/adma.202001999 10.1021/acsnano.5b07506 10.1039/C9CS00598F 10.1126/sciadv.abd3274 10.1038/nphoton.2013.176 10.1117/1.1288369 10.1038/s41578-020-0181-5 10.1038/nmat4014 10.1002/adma.201908006 10.1039/C5TC03417E 10.1002/adma.201705011 10.1002/anie.201915912 10.1002/adom.201900350 10.1038/s41467-019-09942-z 10.1038/ncomms9379 10.1038/nphys4145 10.1364/OE.23.033564 10.1016/j.matt.2019.04.002 10.1021/ph500084b 10.1021/jacs.7b08818 10.1002/adfm.201900684 10.1126/science.1243982 10.1021/acsnano.9b04437 10.1002/adma.202003615 10.1002/adma.202006006 10.1038/ncomms12253 10.1021/acs.nanolett.7b01475 10.1126/science.aaa2725 10.1080/01431168608954660 10.1038/ncomms8586 10.1002/anie.202013947 10.1126/science.aaa5760 10.1038/nature05136 |
ContentType | Journal Article |
Copyright | 2021 The Authors. Advanced Science published by Wiley‐VCH GmbH 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 The Authors. Advanced Science published by Wiley-VCH GmbH. |
Copyright_xml | – notice: 2021 The Authors. Advanced Science published by Wiley‐VCH GmbH – notice: 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 The Authors. Advanced Science published by Wiley-VCH GmbH. |
DBID | 24P AAYXX CITATION 3V. 7XB 88I 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ GUQSH HCIFZ M2O M2P MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1002/advs.202102065 |
DatabaseName | Wiley-Blackwell Open Access Titles CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea ProQuest Central Student Research Library Prep SciTech Premium Collection Research Library Science Database Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Research Library Prep ProQuest Science Journals (Alumni Edition) ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2198-3844 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_a82a6383e2bb49c784f4484eaaa69a1f PMC8564458 10_1002_advs_202102065 ADVS3051 |
Genre | article |
GrantInformation_xml | – fundername: Ministry of Science and Technology of China funderid: 2017YFA0204502 – fundername: National Natural Science Foundation of China funderid: 21973007; 22090023 – fundername: ; grantid: 21973007; 22090023 – fundername: Ministry of Science and Technology of China grantid: 2017YFA0204502 |
GroupedDBID | 0R~ 1OC 24P 53G 5VS 88I 8G5 AAFWJ AAHHS AAZKR ABDBF ABUWG ACCFJ ACCMX ACGFS ACUHS ACXQS ADBBV ADKYN ADZMN ADZOD AEEZP AEQDE AFBPY AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU AZQEC BCNDV BENPR BPHCQ BRXPI CCPQU DWQXO EBS GNUQQ GODZA GROUPED_DOAJ GUQSH HCIFZ HYE IAO ITC KQ8 M2O M2P O9- OK1 PIMPY PQQKQ PROAC ROL RPM WIN AAYXX ADMLS AFPKN CITATION EJD IGS PHGZM PHGZT 3V. 7XB 8FK AAMMB AEFGJ AGXDD AIDQK AIDYY MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c5061-bfed8de36384f37e4351d48de416e052cbd7ba60d16678a1c0f823f68184287d3 |
IEDL.DBID | DOA |
ISSN | 2198-3844 |
IngestDate | Wed Aug 27 01:21:15 EDT 2025 Thu Aug 21 13:59:07 EDT 2025 Fri Jul 11 04:23:42 EDT 2025 Mon Jul 14 09:21:31 EDT 2025 Tue Jul 01 03:59:32 EDT 2025 Thu Apr 24 22:55:55 EDT 2025 Wed Jan 22 16:28:21 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Language | English |
License | Attribution This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5061-bfed8de36384f37e4351d48de416e052cbd7ba60d16678a1c0f823f68184287d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4329-0103 0000-0002-6704-8098 |
OpenAccessLink | https://doaj.org/article/a82a6383e2bb49c784f4484eaaa69a1f |
PMID | 34561964 |
PQID | 2592004642 |
PQPubID | 4365299 |
PageCount | 8 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a82a6383e2bb49c784f4484eaaa69a1f pubmedcentral_primary_oai_pubmedcentral_nih_gov_8564458 proquest_miscellaneous_2576653979 proquest_journals_2592004642 crossref_primary_10_1002_advs_202102065 crossref_citationtrail_10_1002_advs_202102065 wiley_primary_10_1002_advs_202102065_ADVS3051 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-11-01 |
PublicationDateYYYYMMDD | 2021-11-01 |
PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim – name: Hoboken |
PublicationTitle | Advanced science |
PublicationYear | 2021 |
Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc – name: Wiley |
References | 2019; 7 2015; 6 2017; 4 2015; 347 2019; 10 2019; 1 2019; 13 2017; 46 2016; 10 2006; 8 2013; 342 2020; 59 2017; 29 2020; 32 2013; 7 2017; 139 2014; 1 2016; 4 2015; 23 2020; 6 2020; 5 2016; 7 2014; 5 2018; 2 2000; 39 2021; 33 2020; 31 2017; 17 2017; 13 2020; 49 2007; 7 2019; 29 2014; 13 2018; 30 1955; 97 2021; 60 2006; 443 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 |
References_xml | – volume: 342 start-page: 341 year: 2013 publication-title: Science – volume: 13 start-page: 3659 year: 2019 publication-title: ACS Nano – volume: 23 year: 2015 publication-title: Opt. Express – volume: 1 start-page: 762 year: 2014 publication-title: ACS Photonics – volume: 59 start-page: 6442 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 6 start-page: 7586 year: 2015 publication-title: Nat. Commun. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 5 start-page: 5404 year: 2014 publication-title: Nat. Commun. – volume: 60 start-page: 8415 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 13 start-page: 897 year: 2014 publication-title: Nat. Mater. – volume: 4 start-page: 851 year: 2017 publication-title: Mater. Horiz. – volume: 347 start-page: 519 year: 2015 publication-title: Science – volume: 13 start-page: 9473 year: 2019 publication-title: ACS Nano – volume: 6 year: 2020 publication-title: Sci. Adv. – volume: 49 start-page: 951 year: 2020 publication-title: Chem. Soc. Rev. – volume: 5 start-page: 423 year: 2020 publication-title: Nat. Rev. Mater. – volume: 7 year: 2016 publication-title: Nat. Commun. – volume: 443 start-page: 557 year: 2006 publication-title: Nature – volume: 6 start-page: 8379 year: 2015 publication-title: Nat. Commun. – volume: 13 start-page: 894 year: 2017 publication-title: Nat. Phys. – volume: 139 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 46 start-page: 5204 year: 2017 publication-title: Chem. Soc. Rev. – volume: 31 year: 2020 publication-title: Adv. Funct. Mater. – volume: 342 start-page: 344 year: 2013 publication-title: Science – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 7 start-page: 634 year: 2013 publication-title: Nat. Photonics – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 4 start-page: 11 year: 2016 publication-title: J. Mater. Chem. C – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 10 start-page: 1927 year: 2019 publication-title: Nat. Commun. – volume: 1 start-page: 465 year: 2019 publication-title: Matter – volume: 2 start-page: 2237 year: 2018 publication-title: Sustainable Energy Fuels – volume: 8 start-page: 686 year: 2006 publication-title: CrystEngComm – volume: 347 start-page: 967 year: 2015 publication-title: Science – volume: 97 start-page: 1538 year: 1955 publication-title: Phys. Rev. – volume: 10 start-page: 1795 year: 2016 publication-title: ACS Nano – volume: 17 start-page: 4759 year: 2017 publication-title: Nano Lett. – volume: 39 start-page: 2439 year: 2000 publication-title: Opt. Eng. – volume: 7 year: 2019 publication-title: Adv. Opt. Mater. – volume: 7 start-page: 47 year: 2007 publication-title: Int. J. Remote Sens. – volume: 6 start-page: 8724 year: 2015 publication-title: Nat. Commun. – ident: e_1_2_7_37_1 doi: 10.1039/C7MH00197E – ident: e_1_2_7_42_1 doi: 10.1038/ncomms9724 – ident: e_1_2_7_19_1 doi: 10.1021/acsnano.9b00302 – ident: e_1_2_7_40_1 doi: 10.1039/C8SE00213D – ident: e_1_2_7_12_1 doi: 10.1038/ncomms6404 – ident: e_1_2_7_15_1 doi: 10.1039/C6CS00896H – ident: e_1_2_7_17_1 doi: 10.1126/science.1243167 – ident: e_1_2_7_33_1 doi: 10.1002/adma.201908340 – ident: e_1_2_7_41_1 doi: 10.1103/PhysRev.97.1538 – ident: e_1_2_7_27_1 doi: 10.1002/adfm.202008684 – ident: e_1_2_7_9_1 doi: 10.1039/B606987H – ident: e_1_2_7_31_1 doi: 10.1002/adma.201605993 – ident: e_1_2_7_36_1 doi: 10.1002/adma.202001999 – ident: e_1_2_7_13_1 doi: 10.1021/acsnano.5b07506 – ident: e_1_2_7_16_1 doi: 10.1039/C9CS00598F – ident: e_1_2_7_20_1 doi: 10.1126/sciadv.abd3274 – ident: e_1_2_7_1_1 doi: 10.1038/nphoton.2013.176 – ident: e_1_2_7_3_1 doi: 10.1117/1.1288369 – ident: e_1_2_7_10_1 doi: 10.1038/s41578-020-0181-5 – ident: e_1_2_7_39_1 doi: 10.1038/nmat4014 – ident: e_1_2_7_35_1 doi: 10.1002/adma.201908006 – ident: e_1_2_7_14_1 doi: 10.1039/C5TC03417E – ident: e_1_2_7_38_1 doi: 10.1002/adma.201705011 – ident: e_1_2_7_29_1 doi: 10.1002/anie.201915912 – ident: e_1_2_7_45_1 doi: 10.1002/adom.201900350 – ident: e_1_2_7_18_1 doi: 10.1038/s41467-019-09942-z – ident: e_1_2_7_2_1 doi: 10.1038/ncomms9379 – ident: e_1_2_7_44_1 doi: 10.1038/nphys4145 – ident: e_1_2_7_6_1 doi: 10.1364/OE.23.033564 – ident: e_1_2_7_28_1 doi: 10.1016/j.matt.2019.04.002 – ident: e_1_2_7_7_1 doi: 10.1021/ph500084b – ident: e_1_2_7_32_1 doi: 10.1021/jacs.7b08818 – ident: e_1_2_7_8_1 doi: 10.1002/adfm.201900684 – ident: e_1_2_7_11_1 doi: 10.1126/science.1243982 – ident: e_1_2_7_30_1 doi: 10.1021/acsnano.9b04437 – ident: e_1_2_7_22_1 doi: 10.1002/adma.202003615 – ident: e_1_2_7_34_1 doi: 10.1002/adma.202006006 – ident: e_1_2_7_24_1 doi: 10.1038/ncomms12253 – ident: e_1_2_7_23_1 doi: 10.1021/acs.nanolett.7b01475 – ident: e_1_2_7_25_1 doi: 10.1126/science.aaa2725 – ident: e_1_2_7_4_1 doi: 10.1080/01431168608954660 – ident: e_1_2_7_43_1 doi: 10.1038/ncomms8586 – ident: e_1_2_7_21_1 doi: 10.1002/anie.202013947 – ident: e_1_2_7_26_1 doi: 10.1126/science.aaa5760 – ident: e_1_2_7_5_1 doi: 10.1038/nature05136 |
SSID | ssj0001537418 |
Score | 2.4518619 |
Snippet | Circularly polarized light (CPL) detection has emerged as a key technology for various optoelectronics. Chiral hybrid perovskites (CHPs) that combine... Abstract Circularly polarized light (CPL) detection has emerged as a key technology for various optoelectronics. Chiral hybrid perovskites (CHPs) that combine... |
SourceID | doaj pubmedcentral proquest crossref wiley |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | e2102065 |
SubjectTerms | Arrays chiral hybrid perovskites circularly polarized light detection Crystal structure Efficiency Ligands Light Morphology nanowire arrays Nanowires perovskite nanowires perovskite photodetectors Scanning electron microscopy Sensors |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3NbtNAEF5Be-GCKD_CUNAiIQGHVb1re70-IRpaRQiqiFKpN2t_aaTILk5SKZx4BJ6RJ2HG2bgNEnCz7Ens9ezMfDOe_ZaQl8ZBFEsNZ0VuPctD7lhVCMcElzbw1KZVwDrkpxM5Pss_nBfnseA2j22VG5_YO2rXWqyRHwBM75O5XLy9_MZw1yj8uhq30LhNdsEFK0i-dg-PTiafr6ssRYb0LBu2xlQcaHeFLN2Y6aQYUW5Eo560fwtp_tkneRO_9gHo-B65G5EjfbdW9R655Zv7ZC_a5py-jgTSbx6Q5ehiCkd0vMLlWHTiu_ZqjlVaegqBauZ__fg56lYAC2cUnGuLbMXwt51ezSlAWIqtHyAyuV5SQEfTru9Xna3oBHPh6Xfv6EfM6-l7v-i7uZqH5Oz46MtozOL2CswWEMWZCd4p5zOwwDxkpQfgxF0OZwCj-bQQ1rjSaJk6LiGiaW7ToEQWJIR4zLNc9ojsNG3jHxOqMu1ksJXVARCJDMYFrnTljPKVdCFLCNu85tpG7nHcAmNWr1mTRY1qqQe1JOTVIH-5Zt34q-Qham2QQrbs_kTbfa2j8dVaCQ2jzLwwJq9sCeOFrDT3WmtZaR4Ssr_ReR1NGG4xTLiEvBgug_HhFxXd-HaJMqVEbt-ySki5NVe2Hmj7SjO96Gm8VQFYtFDwbvpZ9Z-B1gBTTsE58yf_ftin5A7-Zr1ccp_sLLqlfwa4aWGeR-P4DWo_HDI priority: 102 providerName: ProQuest – databaseName: Wiley-Blackwell Open Access Titles dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fa9RAEF-0vvgirX8wtsoWBPVhabLZbJJHPS2HqBzUQt_C_rUHRyK5u8L1qR_Bz-gncWaTyzVCEd_C7rDJZjI7v5ns_JaQ19qCF4t1wjJhHBNeWFZm3DKeSOOT2MSlxzzk129yei4-X2QXt6r4O36IIeGGlhHWazRwpZcnO9JQZa-QbhtDFnCj98kDrK9F9nwuZrssS5YiPQueMAfRNUsLIbbMjTE_GQ8x8kyBwH-EOv_eM3kbywZndLpPHvUokr7v1H5A7rn6MTno7XRJ3_Zk0u-ekPXkcg5XdLrB0iw6c21ztcSMLT0Dp7Vwv29-TdoNQMQFhYW2QeZiGLZVmyUFOEtxGwiIzHblBXQyb8Pe1cWGzjAunl87S79gjE8_ulXY2VU_Jeenn75Ppqw_aoGZDDw6097ZwroUrFH4NHcAohIroAXwmoszbrTNtZKxTSR4N5WY2Bc89RLcPcZcNn1G9uqmds8JLVJlpTelUR7QifTa-qRQpdWFK6X1aUTY9jVXpuchx-MwFlXHoMwrVEs1qCUibwb5nx0Dx52SH1BrgxQyZ4eGpv1R9YZYqYIrmGXquNaiNDnMFyJU4ZRSslSJj8jRVudVb85wi6wMmQTBI3I8dIMh4t8VVbtmjTK5RJ7fvIxIPvpWRg807qnnl4HSu8gAl2YFvJvwVf1johVAljNYqJMX_yl_SB5iY1dLeUT2Vu3avQRQtdKvgt38AWHHH0g priority: 102 providerName: Wiley-Blackwell |
Title | Chiral Hybrid Perovskite Single‐Crystal Nanowire Arrays for High‐Performance Circularly Polarized Light Detection |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202102065 https://www.proquest.com/docview/2592004642 https://www.proquest.com/docview/2576653979 https://pubmed.ncbi.nlm.nih.gov/PMC8564458 https://doaj.org/article/a82a6383e2bb49c784f4484eaaa69a1f |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1da9swFBVb97KXse6DeeuCBoNtD6a2LMvyY5u2hNEWs6zQN6NPGgjOcJJC-tSfsN-4X7J7ZSdLBqMve7KxL7ItXemcK18dEfJRW0CxRKdxzo2Luec2LnNmY5YK49PEJKXHeciLSzG64l-v8-utrb4wJ6yTB-4q7lBJpsBHMse05qUpJJTHJXdKKVGq1OPoC5i3FUx164MzlGVZqzQm7FDZW1TnxggnQSTZQqEg1r_DMP_Oj9zmrQF4zp6TZz1jpEfdm-6TR655Qfb7Pjmnn3vh6C8vyXJ4M4EzOlrhMixauXZ2O8fZWToGgJq6X_c_h-0K6OCUwqA6Q5ViKLZVqzkF6kox5QNMqj9LCehw0oY81emKVhgDT-6cpecYz9MTtwhZXM0rcnV2-n04ivttFWKTA3rH2jsrrcugVrnPCgeEKbUcrgA3c0nOjLaFViKxqQAkU6lJvGSZFwDtGF_Z7DXZa2aNe0OozJQV3pRGeWAiwmvrU6lKq6UrhfVZROJ1Ndem1xzHrS-mdaeWzGpslnrTLBH5tLH_0alt_NPyGFttY4Uq2eEC-E7d-079kO9E5GDd5nXfdeEReRlmDTiLyIfNbeh0-CdFNW62RJtCoKZvUUak2PGVnRfavdNMboJ8t8yBg-YS6iZ41QMfWgM9GcOgnL79H1_8jjzFkrvFlAdkb9Eu3XtgVQs9II8ZrwbkydHJxfkYjsenl9W3QehWvwHSWCfk |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9AAXRHkIQ4FFAgEHq_b6fUCIpq1SmkYRbaXezHofNFJkFycpCid-Ar-EH8UvYcavNkjAqTfLHj92Z3bmm_XuNwAvMoVRzMlcO_Cltn3jKzsJuLK5G0rjOtJJDM1DHo7CwYn_4TQ4XYOf7V4YWlbZ-sTKUatC0hz5FsL0Kpnz-bvzLzZVjaK_q20JjdosDvTyK6Zss7f7O6jfl5zv7R73B3ZTVcCWAQYvOzNaxUp7aHi-8SKNeMFVPp5BaKKdgMtMRZkIHeWG6MiFKx0Tc8-EGNkovVAePvcGrPsepjI9WN_eHY0_Xs7qBB7RwbTskA7fEuqCWMEps3Iogl2JflWRgBVk--e6zKt4uQp4e3fgdoNU2fvatDZgTed3YaPxBTP2uiGsfnMPFv2zCR6xwZK2f7GxLouLGc0KsyMMjFP96_uPfrlEGDpl6MwLYkfGx5ZiOWMImRktNUGR8eUWBtaflNX62OmSjSn3nnzTig1pHoHt6Hm1eiy_DyfX0vEPoJcXuX4ILPaECo1MpDCIgEKTKePGIlFZrJNQGc8Cu-3mVDZc51RyY5rWLM08JbWknVoseNXJn9csH3-V3CatdVLEzl2dKMrPaTPYUxFzga30NM8yP5ERthezYF8LIcJEuMaCzVbnaeMy8BWdgVvwvLuMg53-4IhcFwuSiULiEo4SC6IVW1n5oNUr-eSsog2PA8S-QYx9U1nVfxqaIiw6wmDgPvr3xz6Dm4Pjw2E63B8dPIZbdH-9VXMTevNyoZ8gZptnT5uBwuDTdY_N33MtWAk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtNAFL0qqYTYIMpDhBYYJBCwsGKP3wuEaNIopSWyKJW6M-N50EiR3TpJUVjxCXwPn8OXcK9juw0SsOrOssePmfs6d3znDMDzTGEUszPH8j2pLc94yop9rizuBNI4trRjQ_OQH8bB6Nh7f-KfbMDPZi0MlVU2PrFy1KqQNEfeQ5heJXMe75m6LCIZDN-enVu0gxT9aW2201ipyIFefsX0bfZmf4CyfsH5cO9Tf2TVOwxY0sdAZmVGq0hpF5XQM26oETs4ysMzCFO07XOZqTATga2cAJ26cKRtIu6aAKMcpRrKxefegM0QsyK7A5u7e-Pk4-UMj-8SNUzDFGnznlAXxBBOWZZN0exKJKw2DFhDuX_WaF7FzlXwG96B2zVqZe9WarYFGzq_C1u1X5ixVzV59et7sOifTvCIjZa0FIwluiwuZjRDzI4wSE71r-8_-uUSIemUoWMviCkZH1uK5YwhfGZUdoJNksvlDKw_Kata2emSJZSHT75pxQ5pToEN9LyqJMvvw_G1DPwD6ORFrh8Ci1yhAiNjKQyiocBkyjiRiFUW6ThQxu2C1QxzKmvec9p-Y5quGJt5SmJJW7F04WXb_mzF-PHXlrsktbYVMXVXJ4ryS1obfioiLrCXruZZ5sUyxP5iRuxpIUQQC8d0YaeReVq7D3xFq-xdeNZeRsOnvzki18WC2oQB8QqHcRfCNV1Z-6D1K_nktKIQj3zEwX6EY1Np1X86miJEOsLA4Dz698c-hZtok-nh_vhgG27R7atVmzvQmZcL_Rjh2zx7UtsJg8_XbZq_AUSPXD4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chiral+Hybrid+Perovskite+Single%E2%80%90Crystal+Nanowire+Arrays+for+High%E2%80%90Performance+Circularly+Polarized+Light+Detection&rft.jtitle=Advanced+science&rft.au=Zhen+Liu&rft.au=Chunhuan+Zhang&rft.au=Xiaolong+Liu&rft.au=Ang+Ren&rft.date=2021-11-01&rft.pub=Wiley&rft.eissn=2198-3844&rft.volume=8&rft.issue=21&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadvs.202102065&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_a82a6383e2bb49c784f4484eaaa69a1f |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon |