Chiral Hybrid Perovskite Single‐Crystal Nanowire Arrays for High‐Performance Circularly Polarized Light Detection

Circularly polarized light (CPL) detection has emerged as a key technology for various optoelectronics. Chiral hybrid perovskites (CHPs) that combine CPL‐sensitive absorption induced by chiral organic ligands and superior photoelectric properties of perovskites are promising candidates for direct CP...

Full description

Saved in:
Bibliographic Details
Published inAdvanced science Vol. 8; no. 21; pp. e2102065 - n/a
Main Authors Liu, Zhen, Zhang, Chunhuan, Liu, Xiaolong, Ren, Ang, Zhou, Zhonghao, Qiao, Chan, Guan, Yuwei, Fan, Yuqing, Hu, Fengqin, Zhao, Yong Sheng
Format Journal Article
LanguageEnglish
Published Weinheim John Wiley & Sons, Inc 01.11.2021
John Wiley and Sons Inc
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Circularly polarized light (CPL) detection has emerged as a key technology for various optoelectronics. Chiral hybrid perovskites (CHPs) that combine CPL‐sensitive absorption induced by chiral organic ligands and superior photoelectric properties of perovskites are promising candidates for direct CPL detection. To date, most of the CHP detectors are made up of polycrystalline thin‐film, which results in a rather limited discrimination of CPL due to the existence of redundant impurities and intrinsic defect states originating from rapid crystallization process. Here, it is developed a direct CPL detector with high photocurrent and polarization selectivity based on low‐defect CHP single‐crystal nanowire arrays. Large‐scale CHP nanowires are obtained through a micropillar template‐assisted capillary‐bridge rise approach. Thanks to the high crystallinity and ordered crystallographic alignment of these arrays, a CPL photodetector with high light on/off ratio of 1.8 × 104, excellent responsivity of 1.4 A W−1, and an outstanding anisotropy factor of 0.24 for photocurrent has been achieved. These results would provide useful enlightenment for direct CPL detection in high‐performance chiral optoelectronics. An efficient circularly polarized light (CPL) detector is demonstrated with large‐scale chiral hybrid perovskite (CHP) nanowire arrays. Based on the high photocurrent and polarization selectivity of CHP single‐crystals, high‐performance CPL detectors with high light on/off ratio and excellent polarization distinguishability through arranging such single‐crystalline CHP nanowires into low‐defect arrays are achieved.
AbstractList Circularly polarized light (CPL) detection has emerged as a key technology for various optoelectronics. Chiral hybrid perovskites (CHPs) that combine CPL‐sensitive absorption induced by chiral organic ligands and superior photoelectric properties of perovskites are promising candidates for direct CPL detection. To date, most of the CHP detectors are made up of polycrystalline thin‐film, which results in a rather limited discrimination of CPL due to the existence of redundant impurities and intrinsic defect states originating from rapid crystallization process. Here, it is developed a direct CPL detector with high photocurrent and polarization selectivity based on low‐defect CHP single‐crystal nanowire arrays. Large‐scale CHP nanowires are obtained through a micropillar template‐assisted capillary‐bridge rise approach. Thanks to the high crystallinity and ordered crystallographic alignment of these arrays, a CPL photodetector with high light on/off ratio of 1.8 × 10 4 , excellent responsivity of 1.4 A W −1 , and an outstanding anisotropy factor of 0.24 for photocurrent has been achieved. These results would provide useful enlightenment for direct CPL detection in high‐performance chiral optoelectronics.
Circularly polarized light (CPL) detection has emerged as a key technology for various optoelectronics. Chiral hybrid perovskites (CHPs) that combine CPL‐sensitive absorption induced by chiral organic ligands and superior photoelectric properties of perovskites are promising candidates for direct CPL detection. To date, most of the CHP detectors are made up of polycrystalline thin‐film, which results in a rather limited discrimination of CPL due to the existence of redundant impurities and intrinsic defect states originating from rapid crystallization process. Here, it is developed a direct CPL detector with high photocurrent and polarization selectivity based on low‐defect CHP single‐crystal nanowire arrays. Large‐scale CHP nanowires are obtained through a micropillar template‐assisted capillary‐bridge rise approach. Thanks to the high crystallinity and ordered crystallographic alignment of these arrays, a CPL photodetector with high light on/off ratio of 1.8 × 104, excellent responsivity of 1.4 A W−1, and an outstanding anisotropy factor of 0.24 for photocurrent has been achieved. These results would provide useful enlightenment for direct CPL detection in high‐performance chiral optoelectronics. An efficient circularly polarized light (CPL) detector is demonstrated with large‐scale chiral hybrid perovskite (CHP) nanowire arrays. Based on the high photocurrent and polarization selectivity of CHP single‐crystals, high‐performance CPL detectors with high light on/off ratio and excellent polarization distinguishability through arranging such single‐crystalline CHP nanowires into low‐defect arrays are achieved.
Abstract Circularly polarized light (CPL) detection has emerged as a key technology for various optoelectronics. Chiral hybrid perovskites (CHPs) that combine CPL‐sensitive absorption induced by chiral organic ligands and superior photoelectric properties of perovskites are promising candidates for direct CPL detection. To date, most of the CHP detectors are made up of polycrystalline thin‐film, which results in a rather limited discrimination of CPL due to the existence of redundant impurities and intrinsic defect states originating from rapid crystallization process. Here, it is developed a direct CPL detector with high photocurrent and polarization selectivity based on low‐defect CHP single‐crystal nanowire arrays. Large‐scale CHP nanowires are obtained through a micropillar template‐assisted capillary‐bridge rise approach. Thanks to the high crystallinity and ordered crystallographic alignment of these arrays, a CPL photodetector with high light on/off ratio of 1.8 × 104, excellent responsivity of 1.4 A W−1, and an outstanding anisotropy factor of 0.24 for photocurrent has been achieved. These results would provide useful enlightenment for direct CPL detection in high‐performance chiral optoelectronics.
Circularly polarized light (CPL) detection has emerged as a key technology for various optoelectronics. Chiral hybrid perovskites (CHPs) that combine CPL‐sensitive absorption induced by chiral organic ligands and superior photoelectric properties of perovskites are promising candidates for direct CPL detection. To date, most of the CHP detectors are made up of polycrystalline thin‐film, which results in a rather limited discrimination of CPL due to the existence of redundant impurities and intrinsic defect states originating from rapid crystallization process. Here, it is developed a direct CPL detector with high photocurrent and polarization selectivity based on low‐defect CHP single‐crystal nanowire arrays. Large‐scale CHP nanowires are obtained through a micropillar template‐assisted capillary‐bridge rise approach. Thanks to the high crystallinity and ordered crystallographic alignment of these arrays, a CPL photodetector with high light on/off ratio of 1.8 × 104, excellent responsivity of 1.4 A W−1, and an outstanding anisotropy factor of 0.24 for photocurrent has been achieved. These results would provide useful enlightenment for direct CPL detection in high‐performance chiral optoelectronics.
Circularly polarized light (CPL) detection has emerged as a key technology for various optoelectronics. Chiral hybrid perovskites (CHPs) that combine CPL‐sensitive absorption induced by chiral organic ligands and superior photoelectric properties of perovskites are promising candidates for direct CPL detection. To date, most of the CHP detectors are made up of polycrystalline thin‐film, which results in a rather limited discrimination of CPL due to the existence of redundant impurities and intrinsic defect states originating from rapid crystallization process. Here, it is developed a direct CPL detector with high photocurrent and polarization selectivity based on low‐defect CHP single‐crystal nanowire arrays. Large‐scale CHP nanowires are obtained through a micropillar template‐assisted capillary‐bridge rise approach. Thanks to the high crystallinity and ordered crystallographic alignment of these arrays, a CPL photodetector with high light on/off ratio of 1.8 × 10 4 , excellent responsivity of 1.4 A W −1 , and an outstanding anisotropy factor of 0.24 for photocurrent has been achieved. These results would provide useful enlightenment for direct CPL detection in high‐performance chiral optoelectronics. An efficient circularly polarized light (CPL) detector is demonstrated with large‐scale chiral hybrid perovskite (CHP) nanowire arrays. Based on the high photocurrent and polarization selectivity of CHP single‐crystals, high‐performance CPL detectors with high light on/off ratio and excellent polarization distinguishability through arranging such single‐crystalline CHP nanowires into low‐defect arrays are achieved.
Circularly polarized light (CPL) detection has emerged as a key technology for various optoelectronics. Chiral hybrid perovskites (CHPs) that combine CPL-sensitive absorption induced by chiral organic ligands and superior photoelectric properties of perovskites are promising candidates for direct CPL detection. To date, most of the CHP detectors are made up of polycrystalline thin-film, which results in a rather limited discrimination of CPL due to the existence of redundant impurities and intrinsic defect states originating from rapid crystallization process. Here, it is developed a direct CPL detector with high photocurrent and polarization selectivity based on low-defect CHP single-crystal nanowire arrays. Large-scale CHP nanowires are obtained through a micropillar template-assisted capillary-bridge rise approach. Thanks to the high crystallinity and ordered crystallographic alignment of these arrays, a CPL photodetector with high light on/off ratio of 1.8 × 104 , excellent responsivity of 1.4 A W-1 , and an outstanding anisotropy factor of 0.24 for photocurrent has been achieved. These results would provide useful enlightenment for direct CPL detection in high-performance chiral optoelectronics.Circularly polarized light (CPL) detection has emerged as a key technology for various optoelectronics. Chiral hybrid perovskites (CHPs) that combine CPL-sensitive absorption induced by chiral organic ligands and superior photoelectric properties of perovskites are promising candidates for direct CPL detection. To date, most of the CHP detectors are made up of polycrystalline thin-film, which results in a rather limited discrimination of CPL due to the existence of redundant impurities and intrinsic defect states originating from rapid crystallization process. Here, it is developed a direct CPL detector with high photocurrent and polarization selectivity based on low-defect CHP single-crystal nanowire arrays. Large-scale CHP nanowires are obtained through a micropillar template-assisted capillary-bridge rise approach. Thanks to the high crystallinity and ordered crystallographic alignment of these arrays, a CPL photodetector with high light on/off ratio of 1.8 × 104 , excellent responsivity of 1.4 A W-1 , and an outstanding anisotropy factor of 0.24 for photocurrent has been achieved. These results would provide useful enlightenment for direct CPL detection in high-performance chiral optoelectronics.
Author Qiao, Chan
Fan, Yuqing
Zhao, Yong Sheng
Zhou, Zhonghao
Liu, Xiaolong
Guan, Yuwei
Hu, Fengqin
Liu, Zhen
Zhang, Chunhuan
Ren, Ang
AuthorAffiliation 2 Key Laboratory of Photochemistry Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
1 College of Chemistry Beijing Normal University Beijing 100875 China
3 University of Chinese Academy of Sciences Beijing 100049 China
AuthorAffiliation_xml – name: 2 Key Laboratory of Photochemistry Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
– name: 1 College of Chemistry Beijing Normal University Beijing 100875 China
– name: 3 University of Chinese Academy of Sciences Beijing 100049 China
Author_xml – sequence: 1
  givenname: Zhen
  surname: Liu
  fullname: Liu, Zhen
  organization: Beijing Normal University
– sequence: 2
  givenname: Chunhuan
  orcidid: 0000-0002-6704-8098
  surname: Zhang
  fullname: Zhang, Chunhuan
  organization: Chinese Academy of Sciences
– sequence: 3
  givenname: Xiaolong
  surname: Liu
  fullname: Liu, Xiaolong
  organization: University of Chinese Academy of Sciences
– sequence: 4
  givenname: Ang
  surname: Ren
  fullname: Ren, Ang
  organization: University of Chinese Academy of Sciences
– sequence: 5
  givenname: Zhonghao
  surname: Zhou
  fullname: Zhou, Zhonghao
  organization: Chinese Academy of Sciences
– sequence: 6
  givenname: Chan
  surname: Qiao
  fullname: Qiao, Chan
  organization: University of Chinese Academy of Sciences
– sequence: 7
  givenname: Yuwei
  surname: Guan
  fullname: Guan, Yuwei
  organization: Beijing Normal University
– sequence: 8
  givenname: Yuqing
  surname: Fan
  fullname: Fan, Yuqing
  organization: University of Chinese Academy of Sciences
– sequence: 9
  givenname: Fengqin
  surname: Hu
  fullname: Hu, Fengqin
  email: fqhu@bnu.edu.cn
  organization: Beijing Normal University
– sequence: 10
  givenname: Yong Sheng
  orcidid: 0000-0002-4329-0103
  surname: Zhao
  fullname: Zhao, Yong Sheng
  email: yszhao@iccas.ac.cn
  organization: University of Chinese Academy of Sciences
BookMark eNqFks9uEzEQxi1UREvplfNKXLgk-P96L0hRWkilCCoVuFpeezZx2KyLvZtqOfEIPCNPgkOqivbSk-3x7_tmPJ6X6KgLHSD0muApwZi-M26XphRTgimW4hk6oaRSE6Y4P_pvf4zOUtpgjIlgJSfqBTpmXEhSSX6ChvnaR9MWi7GO3hVXEMMuffc9FNe-W7Xw59fveRxTn5FPpgu3PkIxi9GMqWhCLBZ-tc5IluXT1nQWirmPdmhNbMfiKuTV_wRXLDPXF-fQg-196F6h541pE5zdrafo64eLL_PFZPn54-V8tpxYgSWZ1A045YDJ_IyGlcCZII7nCCcSsKC2dmVtJHZEylIZYnGjKGukIopTVTp2ii4Pvi6Yjb6JfmviqIPx-l8gxJU2sfe2BW0UNTkPA1rXvLJlzsi54mCMkZUhTfZ6f_C6GeotOAtdnxv3wPThTefXehV2WgnJuVDZ4O2dQQw_Bki93vpkoW1NB2FImopSSsGqssrom0foJgyxy63KVEUx5pLTTE0PlI0hpQjNfTEE6_2A6P2A6PsByQL-SGB9b_Yfkgv27ZOyW9_C-EQSPTv_ds2wIOwvVrXTNw
CitedBy_id crossref_primary_10_1021_acs_jpclett_3c00425
crossref_primary_10_1021_acs_nanolett_2c05085
crossref_primary_10_1063_5_0223521
crossref_primary_10_1002_advs_202404403
crossref_primary_10_1021_acsami_2c20716
crossref_primary_10_1002_adom_202301239
crossref_primary_10_1021_acsnano_4c02588
crossref_primary_10_1002_adma_202211935
crossref_primary_10_1016_j_molliq_2024_125020
crossref_primary_10_1007_s11431_022_2285_1
crossref_primary_10_1007_s11431_024_2754_7
crossref_primary_10_1039_D4NR03600J
crossref_primary_10_1002_advs_202307593
crossref_primary_10_1007_s11426_021_1146_6
crossref_primary_10_1063_5_0180188
crossref_primary_10_1021_acs_nanolett_2c04224
crossref_primary_10_1103_PhysRevLett_133_056903
crossref_primary_10_1002_solr_202400367
crossref_primary_10_1016_j_ccr_2024_216105
crossref_primary_10_1021_acs_jpclett_1c04137
crossref_primary_10_1039_D2CC02758E
crossref_primary_10_1039_D4NR00644E
crossref_primary_10_1021_acsami_3c03201
crossref_primary_10_1002_aenm_202201735
crossref_primary_10_1016_j_pquantelec_2022_100375
crossref_primary_10_1126_sciadv_ado5942
crossref_primary_10_1002_adfm_202314427
crossref_primary_10_1021_acs_jpcc_2c04313
crossref_primary_10_1021_acsami_5c01035
crossref_primary_10_1002_adfm_202202277
crossref_primary_10_1002_qute_202300178
crossref_primary_10_1016_j_apmate_2024_100250
crossref_primary_10_1002_adom_202401427
crossref_primary_10_1002_adom_202401829
crossref_primary_10_1002_smll_202402668
crossref_primary_10_1039_D4TA07010K
crossref_primary_10_1021_acsami_4c18208
crossref_primary_10_1002_adma_202203201
crossref_primary_10_1021_acsami_4c10289
crossref_primary_10_1021_acs_analchem_3c02933
crossref_primary_10_1002_adma_202414199
crossref_primary_10_1360_SSPMA_2022_0443
crossref_primary_10_1360_SSC_2024_0074
crossref_primary_10_1002_solr_202101019
crossref_primary_10_1021_acs_chemmater_3c00345
crossref_primary_10_1063_5_0200692
crossref_primary_10_1021_jacs_4c06822
crossref_primary_10_1002_lpor_202300141
crossref_primary_10_1002_admt_202202179
crossref_primary_10_1002_admt_202200275
crossref_primary_10_1002_aenm_202200792
crossref_primary_10_1021_acsami_2c21242
crossref_primary_10_1039_D2NR05022F
crossref_primary_10_1016_j_apmt_2022_101509
crossref_primary_10_1021_acs_inorgchem_4c03998
crossref_primary_10_1002_smtd_202201048
crossref_primary_10_1021_jacs_2c01994
Cites_doi 10.1039/C7MH00197E
10.1038/ncomms9724
10.1021/acsnano.9b00302
10.1039/C8SE00213D
10.1038/ncomms6404
10.1039/C6CS00896H
10.1126/science.1243167
10.1002/adma.201908340
10.1103/PhysRev.97.1538
10.1002/adfm.202008684
10.1039/B606987H
10.1002/adma.201605993
10.1002/adma.202001999
10.1021/acsnano.5b07506
10.1039/C9CS00598F
10.1126/sciadv.abd3274
10.1038/nphoton.2013.176
10.1117/1.1288369
10.1038/s41578-020-0181-5
10.1038/nmat4014
10.1002/adma.201908006
10.1039/C5TC03417E
10.1002/adma.201705011
10.1002/anie.201915912
10.1002/adom.201900350
10.1038/s41467-019-09942-z
10.1038/ncomms9379
10.1038/nphys4145
10.1364/OE.23.033564
10.1016/j.matt.2019.04.002
10.1021/ph500084b
10.1021/jacs.7b08818
10.1002/adfm.201900684
10.1126/science.1243982
10.1021/acsnano.9b04437
10.1002/adma.202003615
10.1002/adma.202006006
10.1038/ncomms12253
10.1021/acs.nanolett.7b01475
10.1126/science.aaa2725
10.1080/01431168608954660
10.1038/ncomms8586
10.1002/anie.202013947
10.1126/science.aaa5760
10.1038/nature05136
ContentType Journal Article
Copyright 2021 The Authors. Advanced Science published by Wiley‐VCH GmbH
2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 The Authors. Advanced Science published by Wiley-VCH GmbH.
Copyright_xml – notice: 2021 The Authors. Advanced Science published by Wiley‐VCH GmbH
– notice: 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 The Authors. Advanced Science published by Wiley-VCH GmbH.
DBID 24P
AAYXX
CITATION
3V.
7XB
88I
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
M2O
M2P
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1002/advs.202102065
DatabaseName Wiley-Blackwell Open Access Titles
CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
Research Library
Science Database
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Research Library Prep
ProQuest Science Journals (Alumni Edition)
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef


Publicly Available Content Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2198-3844
EndPage n/a
ExternalDocumentID oai_doaj_org_article_a82a6383e2bb49c784f4484eaaa69a1f
PMC8564458
10_1002_advs_202102065
ADVS3051
Genre article
GrantInformation_xml – fundername: Ministry of Science and Technology of China
  funderid: 2017YFA0204502
– fundername: National Natural Science Foundation of China
  funderid: 21973007; 22090023
– fundername: ;
  grantid: 21973007; 22090023
– fundername: Ministry of Science and Technology of China
  grantid: 2017YFA0204502
GroupedDBID 0R~
1OC
24P
53G
5VS
88I
8G5
AAFWJ
AAHHS
AAZKR
ABDBF
ABUWG
ACCFJ
ACCMX
ACGFS
ACUHS
ACXQS
ADBBV
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AFBPY
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
AZQEC
BCNDV
BENPR
BPHCQ
BRXPI
CCPQU
DWQXO
EBS
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
HCIFZ
HYE
IAO
ITC
KQ8
M2O
M2P
O9-
OK1
PIMPY
PQQKQ
PROAC
ROL
RPM
WIN
AAYXX
ADMLS
AFPKN
CITATION
EJD
IGS
PHGZM
PHGZT
3V.
7XB
8FK
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c5061-bfed8de36384f37e4351d48de416e052cbd7ba60d16678a1c0f823f68184287d3
IEDL.DBID DOA
ISSN 2198-3844
IngestDate Wed Aug 27 01:21:15 EDT 2025
Thu Aug 21 13:59:07 EDT 2025
Fri Jul 11 04:23:42 EDT 2025
Mon Jul 14 09:21:31 EDT 2025
Tue Jul 01 03:59:32 EDT 2025
Thu Apr 24 22:55:55 EDT 2025
Wed Jan 22 16:28:21 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
License Attribution
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5061-bfed8de36384f37e4351d48de416e052cbd7ba60d16678a1c0f823f68184287d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4329-0103
0000-0002-6704-8098
OpenAccessLink https://doaj.org/article/a82a6383e2bb49c784f4484eaaa69a1f
PMID 34561964
PQID 2592004642
PQPubID 4365299
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_a82a6383e2bb49c784f4484eaaa69a1f
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8564458
proquest_miscellaneous_2576653979
proquest_journals_2592004642
crossref_primary_10_1002_advs_202102065
crossref_citationtrail_10_1002_advs_202102065
wiley_primary_10_1002_advs_202102065_ADVS3051
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-01
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Hoboken
PublicationTitle Advanced science
PublicationYear 2021
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
– name: Wiley
References 2019; 7
2015; 6
2017; 4
2015; 347
2019; 10
2019; 1
2019; 13
2017; 46
2016; 10
2006; 8
2013; 342
2020; 59
2017; 29
2020; 32
2013; 7
2017; 139
2014; 1
2016; 4
2015; 23
2020; 6
2020; 5
2016; 7
2014; 5
2018; 2
2000; 39
2021; 33
2020; 31
2017; 17
2017; 13
2020; 49
2007; 7
2019; 29
2014; 13
2018; 30
1955; 97
2021; 60
2006; 443
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
References_xml – volume: 342
  start-page: 341
  year: 2013
  publication-title: Science
– volume: 13
  start-page: 3659
  year: 2019
  publication-title: ACS Nano
– volume: 23
  year: 2015
  publication-title: Opt. Express
– volume: 1
  start-page: 762
  year: 2014
  publication-title: ACS Photonics
– volume: 59
  start-page: 6442
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 6
  start-page: 7586
  year: 2015
  publication-title: Nat. Commun.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 5
  start-page: 5404
  year: 2014
  publication-title: Nat. Commun.
– volume: 60
  start-page: 8415
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 13
  start-page: 897
  year: 2014
  publication-title: Nat. Mater.
– volume: 4
  start-page: 851
  year: 2017
  publication-title: Mater. Horiz.
– volume: 347
  start-page: 519
  year: 2015
  publication-title: Science
– volume: 13
  start-page: 9473
  year: 2019
  publication-title: ACS Nano
– volume: 6
  year: 2020
  publication-title: Sci. Adv.
– volume: 49
  start-page: 951
  year: 2020
  publication-title: Chem. Soc. Rev.
– volume: 5
  start-page: 423
  year: 2020
  publication-title: Nat. Rev. Mater.
– volume: 7
  year: 2016
  publication-title: Nat. Commun.
– volume: 443
  start-page: 557
  year: 2006
  publication-title: Nature
– volume: 6
  start-page: 8379
  year: 2015
  publication-title: Nat. Commun.
– volume: 13
  start-page: 894
  year: 2017
  publication-title: Nat. Phys.
– volume: 139
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 46
  start-page: 5204
  year: 2017
  publication-title: Chem. Soc. Rev.
– volume: 31
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 342
  start-page: 344
  year: 2013
  publication-title: Science
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 7
  start-page: 634
  year: 2013
  publication-title: Nat. Photonics
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 4
  start-page: 11
  year: 2016
  publication-title: J. Mater. Chem. C
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 10
  start-page: 1927
  year: 2019
  publication-title: Nat. Commun.
– volume: 1
  start-page: 465
  year: 2019
  publication-title: Matter
– volume: 2
  start-page: 2237
  year: 2018
  publication-title: Sustainable Energy Fuels
– volume: 8
  start-page: 686
  year: 2006
  publication-title: CrystEngComm
– volume: 347
  start-page: 967
  year: 2015
  publication-title: Science
– volume: 97
  start-page: 1538
  year: 1955
  publication-title: Phys. Rev.
– volume: 10
  start-page: 1795
  year: 2016
  publication-title: ACS Nano
– volume: 17
  start-page: 4759
  year: 2017
  publication-title: Nano Lett.
– volume: 39
  start-page: 2439
  year: 2000
  publication-title: Opt. Eng.
– volume: 7
  year: 2019
  publication-title: Adv. Opt. Mater.
– volume: 7
  start-page: 47
  year: 2007
  publication-title: Int. J. Remote Sens.
– volume: 6
  start-page: 8724
  year: 2015
  publication-title: Nat. Commun.
– ident: e_1_2_7_37_1
  doi: 10.1039/C7MH00197E
– ident: e_1_2_7_42_1
  doi: 10.1038/ncomms9724
– ident: e_1_2_7_19_1
  doi: 10.1021/acsnano.9b00302
– ident: e_1_2_7_40_1
  doi: 10.1039/C8SE00213D
– ident: e_1_2_7_12_1
  doi: 10.1038/ncomms6404
– ident: e_1_2_7_15_1
  doi: 10.1039/C6CS00896H
– ident: e_1_2_7_17_1
  doi: 10.1126/science.1243167
– ident: e_1_2_7_33_1
  doi: 10.1002/adma.201908340
– ident: e_1_2_7_41_1
  doi: 10.1103/PhysRev.97.1538
– ident: e_1_2_7_27_1
  doi: 10.1002/adfm.202008684
– ident: e_1_2_7_9_1
  doi: 10.1039/B606987H
– ident: e_1_2_7_31_1
  doi: 10.1002/adma.201605993
– ident: e_1_2_7_36_1
  doi: 10.1002/adma.202001999
– ident: e_1_2_7_13_1
  doi: 10.1021/acsnano.5b07506
– ident: e_1_2_7_16_1
  doi: 10.1039/C9CS00598F
– ident: e_1_2_7_20_1
  doi: 10.1126/sciadv.abd3274
– ident: e_1_2_7_1_1
  doi: 10.1038/nphoton.2013.176
– ident: e_1_2_7_3_1
  doi: 10.1117/1.1288369
– ident: e_1_2_7_10_1
  doi: 10.1038/s41578-020-0181-5
– ident: e_1_2_7_39_1
  doi: 10.1038/nmat4014
– ident: e_1_2_7_35_1
  doi: 10.1002/adma.201908006
– ident: e_1_2_7_14_1
  doi: 10.1039/C5TC03417E
– ident: e_1_2_7_38_1
  doi: 10.1002/adma.201705011
– ident: e_1_2_7_29_1
  doi: 10.1002/anie.201915912
– ident: e_1_2_7_45_1
  doi: 10.1002/adom.201900350
– ident: e_1_2_7_18_1
  doi: 10.1038/s41467-019-09942-z
– ident: e_1_2_7_2_1
  doi: 10.1038/ncomms9379
– ident: e_1_2_7_44_1
  doi: 10.1038/nphys4145
– ident: e_1_2_7_6_1
  doi: 10.1364/OE.23.033564
– ident: e_1_2_7_28_1
  doi: 10.1016/j.matt.2019.04.002
– ident: e_1_2_7_7_1
  doi: 10.1021/ph500084b
– ident: e_1_2_7_32_1
  doi: 10.1021/jacs.7b08818
– ident: e_1_2_7_8_1
  doi: 10.1002/adfm.201900684
– ident: e_1_2_7_11_1
  doi: 10.1126/science.1243982
– ident: e_1_2_7_30_1
  doi: 10.1021/acsnano.9b04437
– ident: e_1_2_7_22_1
  doi: 10.1002/adma.202003615
– ident: e_1_2_7_34_1
  doi: 10.1002/adma.202006006
– ident: e_1_2_7_24_1
  doi: 10.1038/ncomms12253
– ident: e_1_2_7_23_1
  doi: 10.1021/acs.nanolett.7b01475
– ident: e_1_2_7_25_1
  doi: 10.1126/science.aaa2725
– ident: e_1_2_7_4_1
  doi: 10.1080/01431168608954660
– ident: e_1_2_7_43_1
  doi: 10.1038/ncomms8586
– ident: e_1_2_7_21_1
  doi: 10.1002/anie.202013947
– ident: e_1_2_7_26_1
  doi: 10.1126/science.aaa5760
– ident: e_1_2_7_5_1
  doi: 10.1038/nature05136
SSID ssj0001537418
Score 2.4518619
Snippet Circularly polarized light (CPL) detection has emerged as a key technology for various optoelectronics. Chiral hybrid perovskites (CHPs) that combine...
Abstract Circularly polarized light (CPL) detection has emerged as a key technology for various optoelectronics. Chiral hybrid perovskites (CHPs) that combine...
SourceID doaj
pubmedcentral
proquest
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e2102065
SubjectTerms Arrays
chiral hybrid perovskites
circularly polarized light detection
Crystal structure
Efficiency
Ligands
Light
Morphology
nanowire arrays
Nanowires
perovskite nanowires
perovskite photodetectors
Scanning electron microscopy
Sensors
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3NbtNAEF5Be-GCKD_CUNAiIQGHVb1re70-IRpaRQiqiFKpN2t_aaTILk5SKZx4BJ6RJ2HG2bgNEnCz7Ens9ezMfDOe_ZaQl8ZBFEsNZ0VuPctD7lhVCMcElzbw1KZVwDrkpxM5Pss_nBfnseA2j22VG5_YO2rXWqyRHwBM75O5XLy9_MZw1yj8uhq30LhNdsEFK0i-dg-PTiafr6ssRYb0LBu2xlQcaHeFLN2Y6aQYUW5Eo560fwtp_tkneRO_9gHo-B65G5EjfbdW9R655Zv7ZC_a5py-jgTSbx6Q5ehiCkd0vMLlWHTiu_ZqjlVaegqBauZ__fg56lYAC2cUnGuLbMXwt51ezSlAWIqtHyAyuV5SQEfTru9Xna3oBHPh6Xfv6EfM6-l7v-i7uZqH5Oz46MtozOL2CswWEMWZCd4p5zOwwDxkpQfgxF0OZwCj-bQQ1rjSaJk6LiGiaW7ToEQWJIR4zLNc9ojsNG3jHxOqMu1ksJXVARCJDMYFrnTljPKVdCFLCNu85tpG7nHcAmNWr1mTRY1qqQe1JOTVIH-5Zt34q-Qham2QQrbs_kTbfa2j8dVaCQ2jzLwwJq9sCeOFrDT3WmtZaR4Ssr_ReR1NGG4xTLiEvBgug_HhFxXd-HaJMqVEbt-ySki5NVe2Hmj7SjO96Gm8VQFYtFDwbvpZ9Z-B1gBTTsE58yf_ftin5A7-Zr1ccp_sLLqlfwa4aWGeR-P4DWo_HDI
  priority: 102
  providerName: ProQuest
– databaseName: Wiley-Blackwell Open Access Titles
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fa9RAEF-0vvgirX8wtsoWBPVhabLZbJJHPS2HqBzUQt_C_rUHRyK5u8L1qR_Bz-gncWaTyzVCEd_C7rDJZjI7v5ns_JaQ19qCF4t1wjJhHBNeWFZm3DKeSOOT2MSlxzzk129yei4-X2QXt6r4O36IIeGGlhHWazRwpZcnO9JQZa-QbhtDFnCj98kDrK9F9nwuZrssS5YiPQueMAfRNUsLIbbMjTE_GQ8x8kyBwH-EOv_eM3kbywZndLpPHvUokr7v1H5A7rn6MTno7XRJ3_Zk0u-ekPXkcg5XdLrB0iw6c21ztcSMLT0Dp7Vwv29-TdoNQMQFhYW2QeZiGLZVmyUFOEtxGwiIzHblBXQyb8Pe1cWGzjAunl87S79gjE8_ulXY2VU_Jeenn75Ppqw_aoGZDDw6097ZwroUrFH4NHcAohIroAXwmoszbrTNtZKxTSR4N5WY2Bc89RLcPcZcNn1G9uqmds8JLVJlpTelUR7QifTa-qRQpdWFK6X1aUTY9jVXpuchx-MwFlXHoMwrVEs1qCUibwb5nx0Dx52SH1BrgxQyZ4eGpv1R9YZYqYIrmGXquNaiNDnMFyJU4ZRSslSJj8jRVudVb85wi6wMmQTBI3I8dIMh4t8VVbtmjTK5RJ7fvIxIPvpWRg807qnnl4HSu8gAl2YFvJvwVf1johVAljNYqJMX_yl_SB5iY1dLeUT2Vu3avQRQtdKvgt38AWHHH0g
  priority: 102
  providerName: Wiley-Blackwell
Title Chiral Hybrid Perovskite Single‐Crystal Nanowire Arrays for High‐Performance Circularly Polarized Light Detection
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202102065
https://www.proquest.com/docview/2592004642
https://www.proquest.com/docview/2576653979
https://pubmed.ncbi.nlm.nih.gov/PMC8564458
https://doaj.org/article/a82a6383e2bb49c784f4484eaaa69a1f
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1da9swFBVb97KXse6DeeuCBoNtD6a2LMvyY5u2hNEWs6zQN6NPGgjOcJJC-tSfsN-4X7J7ZSdLBqMve7KxL7ItXemcK18dEfJRW0CxRKdxzo2Luec2LnNmY5YK49PEJKXHeciLSzG64l-v8-utrb4wJ6yTB-4q7lBJpsBHMse05qUpJJTHJXdKKVGq1OPoC5i3FUx164MzlGVZqzQm7FDZW1TnxggnQSTZQqEg1r_DMP_Oj9zmrQF4zp6TZz1jpEfdm-6TR655Qfb7Pjmnn3vh6C8vyXJ4M4EzOlrhMixauXZ2O8fZWToGgJq6X_c_h-0K6OCUwqA6Q5ViKLZVqzkF6kox5QNMqj9LCehw0oY81emKVhgDT-6cpecYz9MTtwhZXM0rcnV2-n04ivttFWKTA3rH2jsrrcugVrnPCgeEKbUcrgA3c0nOjLaFViKxqQAkU6lJvGSZFwDtGF_Z7DXZa2aNe0OozJQV3pRGeWAiwmvrU6lKq6UrhfVZROJ1Ndem1xzHrS-mdaeWzGpslnrTLBH5tLH_0alt_NPyGFttY4Uq2eEC-E7d-079kO9E5GDd5nXfdeEReRlmDTiLyIfNbeh0-CdFNW62RJtCoKZvUUak2PGVnRfavdNMboJ8t8yBg-YS6iZ41QMfWgM9GcOgnL79H1_8jjzFkrvFlAdkb9Eu3XtgVQs9II8ZrwbkydHJxfkYjsenl9W3QehWvwHSWCfk
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9AAXRHkIQ4FFAgEHq_b6fUCIpq1SmkYRbaXezHofNFJkFycpCid-Ar-EH8UvYcavNkjAqTfLHj92Z3bmm_XuNwAvMoVRzMlcO_Cltn3jKzsJuLK5G0rjOtJJDM1DHo7CwYn_4TQ4XYOf7V4YWlbZ-sTKUatC0hz5FsL0Kpnz-bvzLzZVjaK_q20JjdosDvTyK6Zss7f7O6jfl5zv7R73B3ZTVcCWAQYvOzNaxUp7aHi-8SKNeMFVPp5BaKKdgMtMRZkIHeWG6MiFKx0Tc8-EGNkovVAePvcGrPsepjI9WN_eHY0_Xs7qBB7RwbTskA7fEuqCWMEps3Iogl2JflWRgBVk--e6zKt4uQp4e3fgdoNU2fvatDZgTed3YaPxBTP2uiGsfnMPFv2zCR6xwZK2f7GxLouLGc0KsyMMjFP96_uPfrlEGDpl6MwLYkfGx5ZiOWMImRktNUGR8eUWBtaflNX62OmSjSn3nnzTig1pHoHt6Hm1eiy_DyfX0vEPoJcXuX4ILPaECo1MpDCIgEKTKePGIlFZrJNQGc8Cu-3mVDZc51RyY5rWLM08JbWknVoseNXJn9csH3-V3CatdVLEzl2dKMrPaTPYUxFzga30NM8yP5ERthezYF8LIcJEuMaCzVbnaeMy8BWdgVvwvLuMg53-4IhcFwuSiULiEo4SC6IVW1n5oNUr-eSsog2PA8S-QYx9U1nVfxqaIiw6wmDgPvr3xz6Dm4Pjw2E63B8dPIZbdH-9VXMTevNyoZ8gZptnT5uBwuDTdY_N33MtWAk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtNAFL0qqYTYIMpDhBYYJBCwsGKP3wuEaNIopSWyKJW6M-N50EiR3TpJUVjxCXwPn8OXcK9juw0SsOrOssePmfs6d3znDMDzTGEUszPH8j2pLc94yop9rizuBNI4trRjQ_OQH8bB6Nh7f-KfbMDPZi0MlVU2PrFy1KqQNEfeQ5heJXMe75m6LCIZDN-enVu0gxT9aW2201ipyIFefsX0bfZmf4CyfsH5cO9Tf2TVOwxY0sdAZmVGq0hpF5XQM26oETs4ysMzCFO07XOZqTATga2cAJ26cKRtIu6aAKMcpRrKxefegM0QsyK7A5u7e-Pk4-UMj-8SNUzDFGnznlAXxBBOWZZN0exKJKw2DFhDuX_WaF7FzlXwG96B2zVqZe9WarYFGzq_C1u1X5ixVzV59et7sOifTvCIjZa0FIwluiwuZjRDzI4wSE71r-8_-uUSIemUoWMviCkZH1uK5YwhfGZUdoJNksvlDKw_Kata2emSJZSHT75pxQ5pToEN9LyqJMvvw_G1DPwD6ORFrh8Ci1yhAiNjKQyiocBkyjiRiFUW6ThQxu2C1QxzKmvec9p-Y5quGJt5SmJJW7F04WXb_mzF-PHXlrsktbYVMXVXJ4ryS1obfioiLrCXruZZ5sUyxP5iRuxpIUQQC8d0YaeReVq7D3xFq-xdeNZeRsOnvzki18WC2oQB8QqHcRfCNV1Z-6D1K_nktKIQj3zEwX6EY1Np1X86miJEOsLA4Dz698c-hZtok-nh_vhgG27R7atVmzvQmZcL_Rjh2zx7UtsJg8_XbZq_AUSPXD4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chiral+Hybrid+Perovskite+Single%E2%80%90Crystal+Nanowire+Arrays+for+High%E2%80%90Performance+Circularly+Polarized+Light+Detection&rft.jtitle=Advanced+science&rft.au=Zhen+Liu&rft.au=Chunhuan+Zhang&rft.au=Xiaolong+Liu&rft.au=Ang+Ren&rft.date=2021-11-01&rft.pub=Wiley&rft.eissn=2198-3844&rft.volume=8&rft.issue=21&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadvs.202102065&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_a82a6383e2bb49c784f4484eaaa69a1f
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon