High-resolution peptide separations using nano-LC at ultra-high pressure

We report on the optimization of nano‐LC gradient separations of proteomic samples that vary in complexity. The gradient performance limits were visualized by kinetic plots depicting the gradient time needed to achieve a certain peak capacity, while using the maximum system pressure of 80 MPa. The s...

Full description

Saved in:
Bibliographic Details
Published inJournal of separation science Vol. 36; no. 7; pp. 1192 - 1199
Main Authors Nováková, Lucie, Vaast, Axel, Stassen, Catherine, Broeckhoven, Ken, De Pra, Mauro, Swart, Remco, Desmet, Gert, Eeltink, Sebastiaan
Format Journal Article
LanguageEnglish
Published Weinheim Blackwell Publishing Ltd 01.04.2013
Wiley
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We report on the optimization of nano‐LC gradient separations of proteomic samples that vary in complexity. The gradient performance limits were visualized by kinetic plots depicting the gradient time needed to achieve a certain peak capacity, while using the maximum system pressure of 80 MPa. The selection of the optimal particle size/column length combination and corresponding gradient steepness was based on scouting the performance of 75 μm id capillary columns packed with 2, 3, and 5 μm fully porous silica C18 particles. At optimal gradient conditions, peak capacities up to 500 can be obtained within a 120 min gradient using 2 μm particle‐packed capillary columns. Separations of proteomic samples including a cytochrome c tryptic digest, a bovine serum albumin tryptic digest, a six protein mix digest, and an Escherichia coli digest are demonstrated while operating at the kinetic‐performance limit, i.e. using 2‐μm packed columns, adjusting the column length and scaling the gradient steepness according to sample complexity. Finally, good run‐to‐run retention time stability (RSD values below 0.18%) was demonstrated applying ultra‐high pressure conditions.
AbstractList We report on the optimization of nano‐ LC gradient separations of proteomic samples that vary in complexity. The gradient performance limits were visualized by kinetic plots depicting the gradient time needed to achieve a certain peak capacity, while using the maximum system pressure of 80 MPa. The selection of the optimal particle size/column length combination and corresponding gradient steepness was based on scouting the performance of 75 μm id capillary columns packed with 2, 3, and 5 μm fully porous silica C 18 particles. At optimal gradient conditions, peak capacities up to 500 can be obtained within a 120 min gradient using 2 μm particle‐packed capillary columns. Separations of proteomic samples including a cytochrome c tryptic digest, a bovine serum albumin tryptic digest, a six protein mix digest, and an Escherichia coli digest are demonstrated while operating at the kinetic‐performance limit, i.e. using 2‐μm packed columns, adjusting the column length and scaling the gradient steepness according to sample complexity. Finally, good run‐to‐run retention time stability ( RSD values below 0.18%) was demonstrated applying ultra‐high pressure conditions.
We report on the optimization of nano-LC gradient separations of proteomic samples that vary in complexity. The gradient performance limits were visualized by kinetic plots depicting the gradient time needed to achieve a certain peak capacity, while using the maximum system pressure of 80 MPa. The selection of the optimal particle size/column length combination and corresponding gradient steepness was based on scouting the performance of 75 mu m id capillary columns packed with 2, 3, and 5 mu m fully porous silica C18 particles. At optimal gradient conditions, peak capacities up to 500 can be obtained within a 120 min gradient using 2 mu m particle-packed capillary columns. Separations of proteomic samples including a cytochrome c tryptic digest, a bovine serum albumin tryptic digest, a six protein mix digest, and an Escherichia coli digest are demonstrated while operating at the kinetic-performance limit, i.e. using 2- mu m packed columns, adjusting the column length and scaling the gradient steepness according to sample complexity. Finally, good run-to-run retention time stability (RSD values below 0.18%) was demonstrated applying ultra-high pressure conditions.
We report on the optimization of nano-LC gradient separations of proteomic samples that vary in complexity. The gradient performance limits were visualized by kinetic plots depicting the gradient time needed to achieve a certain peak capacity, while using the maximum system pressure of 80 MPa. The selection of the optimal particle size/column length combination and corresponding gradient steepness was based on scouting the performance of 75 µm id capillary columns packed with 2, 3, and 5 µm fully porous silica C18 particles. At optimal gradient conditions, peak capacities up to 500 can be obtained within a 120 min gradient using 2 µm particle-packed capillary columns. Separations of proteomic samples including a cytochrome c tryptic digest, a bovine serum albumin tryptic digest, a six protein mix digest, and an Escherichia coli digest are demonstrated while operating at the kinetic-performance limit, i.e. using 2-µm packed columns, adjusting the column length and scaling the gradient steepness according to sample complexity. Finally, good run-to-run retention time stability (RSD values below 0.18%) was demonstrated applying ultra-high pressure conditions. [PUBLICATION ABSTRACT]
We report on the optimization of nano-LC gradient separations of proteomic samples that vary in complexity. The gradient performance limits were visualized by kinetic plots depicting the gradient time needed to achieve a certain peak capacity, while using the maximum system pressure of 80 MPa. The selection of the optimal particle size/column length combination and corresponding gradient steepness was based on scouting the performance of 75 μm id capillary columns packed with 2, 3, and 5 μm fully porous silica C18 particles. At optimal gradient conditions, peak capacities up to 500 can be obtained within a 120 min gradient using 2 μm particle-packed capillary columns. Separations of proteomic samples including a cytochrome c tryptic digest, a bovine serum albumin tryptic digest, a six protein mix digest, and an Escherichia coli digest are demonstrated while operating at the kinetic-performance limit, i.e. using 2-μm packed columns, adjusting the column length and scaling the gradient steepness according to sample complexity. Finally, good run-to-run retention time stability (RSD values below 0.18%) was demonstrated applying ultra-high pressure conditions.
Author Desmet, Gert
Eeltink, Sebastiaan
Nováková, Lucie
De Pra, Mauro
Vaast, Axel
Stassen, Catherine
Swart, Remco
Broeckhoven, Ken
Author_xml – sequence: 1
  givenname: Lucie
  surname: Nováková
  fullname: Nováková, Lucie
  organization: Vrije Universiteit Brussel, Department of Chemical Engineering, Brussels, Belgium
– sequence: 2
  givenname: Axel
  surname: Vaast
  fullname: Vaast, Axel
  organization: Vrije Universiteit Brussel, Department of Chemical Engineering, Brussels, Belgium
– sequence: 3
  givenname: Catherine
  surname: Stassen
  fullname: Stassen, Catherine
  organization: Vrije Universiteit Brussel, Department of Chemical Engineering, Brussels, Belgium
– sequence: 4
  givenname: Ken
  surname: Broeckhoven
  fullname: Broeckhoven, Ken
  organization: Vrije Universiteit Brussel, Department of Chemical Engineering, Brussels, Belgium
– sequence: 5
  givenname: Mauro
  surname: De Pra
  fullname: De Pra, Mauro
  organization: Thermo Fisher Scientific, Amsterdam, The Netherlands
– sequence: 6
  givenname: Remco
  surname: Swart
  fullname: Swart, Remco
  organization: Thermo Fisher Scientific, Amsterdam, The Netherlands
– sequence: 7
  givenname: Gert
  surname: Desmet
  fullname: Desmet, Gert
  organization: Vrije Universiteit Brussel, Department of Chemical Engineering, Brussels, Belgium
– sequence: 8
  givenname: Sebastiaan
  surname: Eeltink
  fullname: Eeltink, Sebastiaan
  email: seeltink@vub.ac.be
  organization: Vrije Universiteit Brussel, Department of Chemical Engineering, Brussels, Belgium
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27232499$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/23457143$$D View this record in MEDLINE/PubMed
BookMark eNqFkd2L1DAUxYPs4n7oq49SkAVfOuarTfMog7vjMqzIKPoWkvR2t2Mnrbktuv-9KTOO4MtCIJfwO-dyci7ISegDEPKK0QWjlL_bIvoFpywdWqln5JyVrMi1YPLkONPyjFwgbillqtL0OTnjQhaKSXFOVqv2_iGPgH03jW0fsgGGsa0hQxhstPMTZhO24T4LNvT5epnZMZu6Mdr8IUmzIWlxivCCnDa2Q3h5uC_J1-sPX5arfP3p5uPy_Tr3BS1Z7ppyXq4VZw2vC-etAqGdrQCcK7VykmvvGNW1kJSWlRJO1K5MSC0bDl5ckrd73yH2PyfA0exa9NB1NkA_oWEyhaxoUdGnUcFLJZhWM_rmP3TbTzGkIMlQaM0Vr0SiFnvKxx4xQmOG2O5sfDSMmrkOM9dhjnUkweuD7eR2UB_xv_-fgKsDYNHbrok2-Bb_cYoLLrVOnNxzv9oOHp9Ya243m6VIc5Lle1mLI_w-ymz8YVJyVZhvdzfmuxa3m-KzNFr8AVvSsiA
CitedBy_id crossref_primary_10_1016_j_aca_2014_09_006
crossref_primary_10_1016_j_chroma_2022_463251
crossref_primary_10_1002_jssc_201600775
crossref_primary_10_1016_j_aca_2019_08_068
crossref_primary_10_1016_j_chroma_2015_07_090
crossref_primary_10_1002_jssc_202100116
crossref_primary_10_1016_j_jprot_2017_06_013
crossref_primary_10_1007_s10337_018_3647_5
crossref_primary_10_4155_fsoa_2016_0014
crossref_primary_10_1002_jssc_201500765
crossref_primary_10_4155_bio_15_92
crossref_primary_10_56530_lcgc_eu_bm1469g6
crossref_primary_10_1016_j_chroma_2021_462310
crossref_primary_10_1021_acs_analchem_5b04093
Cites_doi 10.1016/S0021-9673(97)00376-2
10.1016/j.chroma.2009.02.075
10.1016/j.chroma.2011.07.089
10.1016/j.chroma.2004.10.107
10.1038/nprot.2012.036
10.1016/j.chroma.2005.11.112
10.1371/journal.pbio.1000048
10.1016/j.chroma.2010.02.023
10.1002/jssc.200800639
10.1016/j.chroma.2010.05.015
10.1016/j.aca.2012.04.010
10.1021/ac0202280
10.1016/j.chroma.2011.12.088
10.1002/jssc.201000023
10.1002/jssc.201000339
10.1016/j.chroma.2010.03.037
10.1021/ac60220a012
10.1016/S0021-9673(99)00765-7
10.1016/0021-9673(96)00319-6
10.1016/j.copbio.2010.09.002
10.1016/j.chroma.2006.07.090
10.1016/j.aca.2008.06.017
10.1016/j.chroma.2009.02.032
10.1016/j.chroma.2005.12.050
10.1021/ac048455k
10.1016/j.drudis.2009.02.007
10.1021/pr050205c
10.1016/j.chroma.2007.02.016
10.1016/1044-0305(94)87010-1
10.1021/ac9001244
10.1007/s00216-009-3305-8
ContentType Journal Article
Copyright 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2014 INIST-CNRS
2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2014 INIST-CNRS
– notice: 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7U5
8FD
L7M
7X8
DOI 10.1002/jssc.201201087
DatabaseName Istex
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Solid State and Superconductivity Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
Technology Research Database
Technology Research Database
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1615-9314
EndPage 1199
ExternalDocumentID 3091882541
10_1002_jssc_201201087
23457143
27232499
JSSC3201
ark_67375_WNG_X93JS5Q4_9
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Research Foundation Flanders
  funderid: G.0919.09
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCUV
ABDBF
ABHUG
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFVGU
AFZJQ
AGJLS
AHBTC
AI.
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TUS
UB1
UPT
VH1
W8V
W99
WBFHL
WBKPD
WIH
WIK
WJL
WOHZO
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YQT
~IA
~KM
~WT
AAHBH
AITYG
HGLYW
OIG
EBS
IPNFZ
IQODW
PQEST
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7U5
8FD
L7M
7X8
ID FETCH-LOGICAL-c5061-bf623459721f2d5bca7e39ba8eebb697b429cb109d34006873b3db639bd4f2ec3
IEDL.DBID DR2
ISSN 1615-9306
IngestDate Fri Aug 16 05:39:41 EDT 2024
Sat Aug 17 03:15:34 EDT 2024
Thu Oct 10 16:11:46 EDT 2024
Fri Aug 23 03:19:10 EDT 2024
Sat Sep 28 07:51:11 EDT 2024
Tue Sep 20 21:47:14 EDT 2022
Sat Aug 24 00:49:56 EDT 2024
Wed Jan 17 05:02:06 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Capillary column
Ultra-high pressures
Elution
Gradient
Peak resolution
Chemical analysis
Flow rate
Nano flow rate
Peptides
HPLC chromatography
Kinetic method
Kinetic plot
Packed capillary columns
Protein
Operating conditions
Column coupling
Reversed phase chromatography
Ultraviolet detector
Pressure effect
Analysis method
Plate efficiency
Peptide fragment
Proteomics
Packed column
Language English
License CC BY 4.0
2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5061-bf623459721f2d5bca7e39ba8eebb697b429cb109d34006873b3db639bd4f2ec3
Notes istex:74D5B3171265453C19693A4B963477C238A67E4B
Research Foundation Flanders - No. G.0919.09
ark:/67375/WNG-X93JS5Q4-9
ArticleID:JSSC3201
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PMID 23457143
PQID 1439927283
PQPubID 105495
PageCount 8
ParticipantIDs proquest_miscellaneous_1417880580
proquest_miscellaneous_1326731970
proquest_journals_1439927283
crossref_primary_10_1002_jssc_201201087
pubmed_primary_23457143
pascalfrancis_primary_27232499
wiley_primary_10_1002_jssc_201201087_JSSC3201
istex_primary_ark_67375_WNG_X93JS5Q4_9
PublicationCentury 2000
PublicationDate April 2013
PublicationDateYYYYMMDD 2013-04-01
PublicationDate_xml – month: 04
  year: 2013
  text: April 2013
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Germany
PublicationTitle Journal of separation science
PublicationTitleAlternate J. Sep. Science
PublicationYear 2013
Publisher Blackwell Publishing Ltd
Wiley
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley
– name: Wiley Subscription Services, Inc
References Wu, Q., Yuan, H., Zhang, L., Zhang, Y., Anal. Chim. Acta 2012, 731, 1-10.
Horie, K., Sato, Y., Kimura, T., Nakamura, T., Ishihama, Y. Oda, Y., Ikegami, T., Tanaka, N., J. Chromatogr. A 2012, 1228, 283-291.
Ruta, J., Guillarme, D., Rudaz, S., Veuthey, J.-L., J. Sep. Sci. 2010, 33, 2465-2477.
Wang, X., Barber, W. E., Carr, P. W., J. Chromatogr. A 2006, 1107, 139-151.
Beck, M., Claassen, M., Aebersold, R., Curr. Opin. Biotechnol. 2011, 22, 3-8.
Eeltink, S., Decrop, W. M. C., Steiner, F., Ursem, M., Cabooter, D., Desmet, G., Kok, W. T., J. Sep. Sci. 2010, 33, 2629-2635.
Poppe, H., J. Chromatogr. A 1997, 778, 3-21.
Ishihama, Y., J. Chromatogr. A 2005, 1067, 73-83.
Silva, J. C., Denny, R., Dorschel, C. A., Gorenstein, M., Kass, I. J., Li, G. Z., McKenna, T., Nold, M. J., Richardson, K., Young, P., Geromanos, S., Anal. Chem. 2005, 77, 2187-2200.
Eeltink, S., Desmet, G., Vivó-Truyols, G., Rozing, G. P., Schoenmakers, P. J., Kok, W. T., J. Chromatogr. A 2006, 1104, 256-262.
Broeckhoven, K., Cabooter, D., Lynen, F., Sandra, P., Desmet, G., J. Chromatogr. A 2010, 1217, 2787-2795.
Vaast, A., Broeckhoven, K., Dolman, S., Desmet, G., Eeltink, S., J. Chromatogr. A 2012, 1228, 270-275.
Carr, P. W., Wang, X. L., Stoll, D. R., Anal. Chem. 2009, 81, 5342-5353.
Chen, G., Pramanik, B. N., Drug Discovery Today 2009, 14, 465-471.
Köcher, T., Pichler, P., Swart, R., Mechtler, K., Nat. Protoc. 2012, 7, 882-890.
Chen, C.-H., Anal. Chim. Acta 2008, 624, 16-36.
Eeltink, S., Dolman, S., Detobel, F., Swart, R., Ursem, M., Schoenmakers, P. J., J. Chromatogr. A 2010, 1217, 6610-6615.
Dolan, J. W., Snyder, L. R., Djordjevic, N. M., Hill, D. W., Waeghe, T. J., J. Chromatogr. A 1999, 857, 1-20.
Lanckmans, K., Van Eeckhaut, A., Sarre, S., Smolders, I., Michotte, Y., J. Chromatogr. A 2006, 1131, 166-175.
Eeltink, S., Dolman, S., Swart, R., Ursem, M., Schoenmakers, P. J., J. Chromatogr. A 2009, 1216, 7368-7374.
Banks, J. F. Jr, J. Chromatogr. 1996, 743, 99-104.
Andren, P. E., Emmet, M. R., Caprioli, R. M., J. Am. Soc. Mass Spectrom. 1994, 5, 867-869.
Giddings, J. C., Anal. Chem. 1965, 37, 60-63.
Fairchild, J. N., Walworth, M. J., Horváth, K., Guiochon, G., J. Chromatogr. A 2010, 1217, 4779-4783.
Shen, Y., Zhao, R., Berger, S. J., Anderson, G. A., Rodriguez, N., Smith, R. D., Anal. Chem. 2002, 74, 4235-4249.
Donato, P., Dugo, P., Cacciola, F., Dugo, G., Mondello, L., J. Sep. Sci. 2009, 32, 1129-1136.
Guillarme, D., Grata, E., Glauser, G., Wolfender, J. L., Veuthey, J.-L., Rudaz, S., J. Chromatogr. A 2009, 1216, 3232-3243.
Guillarme, D., Ruta, J., Rudaz, S., Veuthey, J.-L., Anal. Bioanal. Chem. 2010, 397, 1069-1082.
Liu, H., Finch, J. W., Lavallee, M. J., Collamati, R. A., Benevides, C. C., Gebler, J. C., J. Chromatogr. A 2007, 1147, 30-36.
Vanrobaeys, F., Van Coster, R., Dhondt, G., Devreese, B., Van Beeumen, J., J. Proteome Res. 2005, 4, 2283-2293.
Schrimpf, S. P., Weiss, M., Reiter, L., Ahrens, C. H., Jovanovic, M., Malmstrom, J., Brunner, E., Mohanty, S., Lercher, M. J., Hunziker, P. E., Aebersold, R., von Mering, C., Hengartner, M. O., PLoS Biol. 2009, 7, 616-627.
2010; 33
1997; 778
2002; 74
2009; 81
2006; 1107
2007; 1147
2012; 1228
2010; 1217
2006; 1104
2008; 624
1965; 37
1996; 743
2009; 14
2009; 1216
2009; 32
2010; 397
2005; 4
2011; 22
2009; 7
2012; 731
2012; 7
2006; 1131
1994; 5
2005; 77
2005; 1067
1999; 857
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_22_1
e_1_2_7_21_1
e_1_2_7_20_1
References_xml – volume: 857
  start-page: 1
  year: 1999
  end-page: 20
  publication-title: J. Chromatogr. A
– volume: 778
  start-page: 3
  year: 1997
  end-page: 21
  publication-title: J. Chromatogr. A
– volume: 1217
  start-page: 6610
  year: 2010
  end-page: 6615
  publication-title: J. Chromatogr. A
– volume: 743
  start-page: 99
  year: 1996
  end-page: 104
  publication-title: J. Chromatogr.
– volume: 32
  start-page: 1129
  year: 2009
  end-page: 1136
  publication-title: J. Sep. Sci.
– volume: 14
  start-page: 465
  year: 2009
  end-page: 471
  publication-title: Drug Discovery Today
– volume: 5
  start-page: 867
  year: 1994
  end-page: 869
  publication-title: J. Am. Soc. Mass Spectrom.
– volume: 1217
  start-page: 4779
  year: 2010
  end-page: 4783
  publication-title: J. Chromatogr. A
– volume: 1107
  start-page: 139
  year: 2006
  end-page: 151
  publication-title: J. Chromatogr. A
– volume: 37
  start-page: 60
  year: 1965
  end-page: 63
  publication-title: Anal. Chem.
– volume: 7
  start-page: 616
  year: 2009
  end-page: 627
  publication-title: PLoS Biol.
– volume: 397
  start-page: 1069
  year: 2010
  end-page: 1082
  publication-title: Anal. Bioanal. Chem.
– volume: 33
  start-page: 2465
  year: 2010
  end-page: 2477
  publication-title: J. Sep. Sci.
– volume: 77
  start-page: 2187
  year: 2005
  end-page: 2200
  publication-title: Anal. Chem.
– volume: 1104
  start-page: 256
  year: 2006
  end-page: 262
  publication-title: J. Chromatogr. A
– volume: 74
  start-page: 4235
  year: 2002
  end-page: 4249
  publication-title: Anal. Chem.
– volume: 4
  start-page: 2283
  year: 2005
  end-page: 2293
  publication-title: J. Proteome Res.
– volume: 1216
  start-page: 7368
  year: 2009
  end-page: 7374
  publication-title: J. Chromatogr. A
– volume: 1217
  start-page: 2787
  year: 2010
  end-page: 2795
  publication-title: J. Chromatogr. A
– volume: 1147
  start-page: 30
  year: 2007
  end-page: 36
  publication-title: J. Chromatogr. A
– volume: 1228
  start-page: 270
  year: 2012
  end-page: 275
  publication-title: J. Chromatogr. A
– volume: 1131
  start-page: 166
  year: 2006
  end-page: 175
  publication-title: J. Chromatogr. A
– volume: 1216
  start-page: 3232
  year: 2009
  end-page: 3243
  publication-title: J. Chromatogr. A
– volume: 22
  start-page: 3
  year: 2011
  end-page: 8
  publication-title: Curr. Opin. Biotechnol.
– volume: 33
  start-page: 2629
  year: 2010
  end-page: 2635
  publication-title: J. Sep. Sci.
– volume: 81
  start-page: 5342
  year: 2009
  end-page: 5353
  publication-title: Anal. Chem.
– volume: 7
  start-page: 882
  year: 2012
  end-page: 890
  publication-title: Nat. Protoc.
– volume: 731
  start-page: 1
  year: 2012
  end-page: 10
  publication-title: Anal. Chim. Acta
– volume: 1067
  start-page: 73
  year: 2005
  end-page: 83
  publication-title: J. Chromatogr. A
– volume: 1228
  start-page: 283
  year: 2012
  end-page: 291
  publication-title: J. Chromatogr. A
– volume: 624
  start-page: 16
  year: 2008
  end-page: 36
  publication-title: Anal. Chim. Acta
– ident: e_1_2_7_21_1
  doi: 10.1016/S0021-9673(97)00376-2
– ident: e_1_2_7_19_1
  doi: 10.1016/j.chroma.2009.02.075
– ident: e_1_2_7_30_1
  doi: 10.1016/j.chroma.2011.07.089
– ident: e_1_2_7_5_1
  doi: 10.1016/j.chroma.2004.10.107
– ident: e_1_2_7_11_1
  doi: 10.1038/nprot.2012.036
– ident: e_1_2_7_22_1
  doi: 10.1016/j.chroma.2005.11.112
– ident: e_1_2_7_10_1
  doi: 10.1371/journal.pbio.1000048
– ident: e_1_2_7_29_1
  doi: 10.1016/j.chroma.2010.02.023
– ident: e_1_2_7_16_1
  doi: 10.1002/jssc.200800639
– ident: e_1_2_7_12_1
  doi: 10.1016/j.chroma.2010.05.015
– ident: e_1_2_7_2_1
  doi: 10.1016/j.aca.2012.04.010
– ident: e_1_2_7_15_1
  doi: 10.1021/ac0202280
– ident: e_1_2_7_18_1
  doi: 10.1016/j.chroma.2011.12.088
– ident: e_1_2_7_28_1
  doi: 10.1002/jssc.201000023
– ident: e_1_2_7_25_1
  doi: 10.1002/jssc.201000339
– ident: e_1_2_7_17_1
  doi: 10.1016/j.chroma.2010.03.037
– ident: e_1_2_7_20_1
  doi: 10.1021/ac60220a012
– ident: e_1_2_7_13_1
  doi: 10.1016/S0021-9673(99)00765-7
– ident: e_1_2_7_7_1
  doi: 10.1016/0021-9673(96)00319-6
– ident: e_1_2_7_9_1
  doi: 10.1016/j.copbio.2010.09.002
– ident: e_1_2_7_6_1
  doi: 10.1016/j.chroma.2006.07.090
– ident: e_1_2_7_3_1
  doi: 10.1016/j.aca.2008.06.017
– ident: e_1_2_7_23_1
  doi: 10.1016/j.chroma.2009.02.032
– ident: e_1_2_7_26_1
  doi: 10.1016/j.chroma.2005.12.050
– ident: e_1_2_7_32_1
  doi: 10.1021/ac048455k
– ident: e_1_2_7_4_1
  doi: 10.1016/j.drudis.2009.02.007
– ident: e_1_2_7_31_1
  doi: 10.1021/pr050205c
– ident: e_1_2_7_14_1
  doi: 10.1016/j.chroma.2007.02.016
– ident: e_1_2_7_8_1
  doi: 10.1016/1044-0305(94)87010-1
– ident: e_1_2_7_24_1
  doi: 10.1021/ac9001244
– ident: e_1_2_7_27_1
  doi: 10.1007/s00216-009-3305-8
SSID ssj0017890
Score 2.156423
Snippet We report on the optimization of nano‐LC gradient separations of proteomic samples that vary in complexity. The gradient performance limits were visualized by...
We report on the optimization of nano-LC gradient separations of proteomic samples that vary in complexity. The gradient performance limits were visualized by...
We report on the optimization of nano‐ LC gradient separations of proteomic samples that vary in complexity. The gradient performance limits were visualized by...
SourceID proquest
crossref
pubmed
pascalfrancis
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 1192
SubjectTerms Analytical, structural and metabolic biochemistry
Biological and medical sciences
Capillarity
Chromatography
Chromatography, High Pressure Liquid
Column coupling
Column packings
Fundamental and applied biological sciences. Psychology
General aspects, investigation methods
Kinetic plot
Nano flow rate
Nanomaterials
Nanostructure
Nanotechnology - methods
Optimization
Packed capillary columns
Particle Size
Peptides
Peptides - chemistry
Peptides - isolation & purification
Pressure
Proteins
Proteomics
Separation
Steepness
Ultra-high pressures
Title High-resolution peptide separations using nano-LC at ultra-high pressure
URI https://api.istex.fr/ark:/67375/WNG-X93JS5Q4-9/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjssc.201201087
https://www.ncbi.nlm.nih.gov/pubmed/23457143
https://www.proquest.com/docview/1439927283
https://search.proquest.com/docview/1326731970
https://search.proquest.com/docview/1417880580
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZQewAO_JS_QKmMhOCU1ontOD6iFaVawUqwVOzNsh2nEkXZapNIiBOP0Gfsk3Qm2aRdhECIW6KMpXhmHH8Tz3xDyMuQChVYkcSKewhQMsdjKzFqtZ6pMniRl1go_GGWHR2L6UIurlXx9_wQ4w83XBnd9xoXuHX1wRVp6Ne6RgrCBI9zcywnRzY9REWfRv6oBKs8MeKCbTvWAI4H1kaWHmwO39iVtlHB3zFL0tagqLLvcPE7CLqJaLst6fAuscNk-kyU0_22cfv-xy88j_8z23vkzhqv0je9g90nN0K1Q25OhjZxO-T2NUbDB2SGeSMXP88hiF_7ND3DvJki0Dr0NOPg5hSz7U9oZaslyL6fUNvQ9luzsnCH_Mm0y85tV-EhOT58-3lyFK9bNsReAjKIXQlwSkikBCrTQjpvVeDa2TwE5zKtHGx_3iVMF1xgdYrijhcOUJIrRJkGzx-RrWpZhSeEZkp55lgKg60oGde-VMJ6nUmXAQxKIvJ6MJk565k5TM_BnBrUlhm1FZFXnUVHMbs6xXw2Jc2X2Tuz0Hw6lx-F0RHZ2zD5OCBVCDw1COwOPmDWa72G4AnJfRXgtIi8GB-DFfDoxVZh2YIMoGQFXzvF_iAjwF9zJnOQedz719ULgFKxU31E4s5L_jJjM53PJxyun_6j_DNyK-36fWBq0i7ZalZteA6oq3F73cq6BNMhJwY
link.rule.ids 315,786,790,1382,27955,27956,46327,46751
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB1Beygc-ChfgVKChOCUNontODmihbIs25VgW9GbZTsOUltlq00iIU78BH4jv4SZZJOyCIEQt6wyltbjmfhN8vwG4JmLuXRhHgWSWSxQEsMCLahq1TaUhbM8Leig8OEsGR_zyYno2YR0FqbThxheuFFmtM9rSnB6Ib1_qRp6WlWkQRjR99xUXoVNzHlBufnqw6AgFdE5T6q5cOMOMoTHvW5jGO-vj1_blzbJxZ-JJ6krdFXR9bj4HQhdx7TtpnRwE0w_nY6LcrbX1GbPfvlF6fG_5nsLbqwgq_-yi7HbcMWV27A16jvFbcP1n0QN78CMqCPfv37DOn4V1v4FUWdy51euUxrHSPeJcP_JL3W5QNvpyNe135zXS42_SELZbwm6zdLdheOD10ejcbDq2hBYgeAgMAUiKi5IFaiIc2Gslo5lRqfOGZNk0uAOaE0UZjnjdEBFMsNyg0DJ5LyInWX3YKNclO4B-ImUNjRhjIM1L0KW2UJybbNEmASRUOTBi37N1EUnzqE6GeZYkbfU4C0PnrdLOpjp5RlR2qRQH2dv1EnGJnPxnqvMg921NR8GxJKwZ4YGO30QqFW6V1g_kb6vRKjmwdPhNq4CfX3RpVs0aINAWeIDT4Z_sOEYsGkoUrS53wXY5R9Ap1Kzeg-CNkz-MmM1mc9HDK8f_qP9E9gaHx1O1fTt7N0juBa37T-IqbQDG_WycY8RhNVmt02zHzcqKyY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5BK_Fz4KdAGyglSAhOaZPYiZMj2rKUpayApereLNtxkNoqu9okEuqpj8Az8iTMJJu0ixAIcUuUsRSPx5lv4plvAF7YkAvrZ4EnmMEAJdbMUxFFrcr4IreGJzkVCn8YxwdHfDSNpleq-Ft-iP6HG-2M5ntNG3ye5XuXpKEnZUkUhAEd5ybiOqzzmIUUfu1_7gmkAirzpJAL_baXIjruaBv9cG91_IpbWicNf6M0SVWipvK2xcXvMOgqpG180vAuqG42bSrK6W5d6V1z_gvR4_9M9x7cWQJW93VrYffhmi024Oag6xO3AbevUBo-gDEljvy4-I5R_NKo3TklzmTWLW3LM4527lK6_Ve3UMUMZQ8Hrqrc-qxaKLwjAmW3Sc-tF_YhHA3ffBkceMueDZ6JEBp4Okc8xSPiBMrDLNJGCctSrRJrtY5TodH_GR34acY4lacIplmmESbpjOehNewRrBWzwm6BGwthfO2HOFjx3GepyQVXJo0jHSMOChx41S2ZnLfUHLIlYQ4laUv22nLgZbOivZhanFJCm4jk8fitnKZsNIk-cZk6sLOy5P2AUBDyTFFgu7MBudzsJUZPxO4rEKg58Lx_jKtAZy-qsLMaZRAmC_zcCf8PMhztNfGjBGU2W_u6fAFUKrWqd8BrrOQvM5ajyWTA8PrxP8o_gxsf94fy8N34_RO4FTa9PyhNaRvWqkVtnyICq_ROs8l-AphiKdU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-resolution+peptide+separations+using+nano-LC+at+ultra-high+pressure&rft.jtitle=Journal+of+separation+science&rft.au=NOVAKOVA%2C+Lucie&rft.au=VAAST%2C+Axel&rft.au=STASSEN%2C+Catherine&rft.au=BROECKHOVEN%2C+Ken&rft.date=2013-04-01&rft.pub=Wiley&rft.issn=1615-9306&rft.eissn=1615-9314&rft.volume=36&rft.issue=7&rft.spage=1192&rft.epage=1199&rft_id=info:doi/10.1002%2Fjssc.201201087&rft.externalDBID=n%2Fa&rft.externalDocID=27232499
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1615-9306&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1615-9306&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1615-9306&client=summon