High Volumetric Energy Density Sulfur Cathode with Heavy and Catalytic Metal Oxide Host for Lithium–Sulfur Battery
For high‐energy lithium–sulfur batteries, the poor volumetric energy density is a bottleneck as compared with lithium–ion batteries, due to the low density of both the sulfur active material and sulfur host. Herein, in order to enhance the volumetric energy density of sulfur cathode, a universal app...
Saved in:
Published in | Advanced science Vol. 7; no. 12; pp. 1903693 - n/a |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
John Wiley & Sons, Inc
01.06.2020
John Wiley and Sons Inc Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | For high‐energy lithium–sulfur batteries, the poor volumetric energy density is a bottleneck as compared with lithium–ion batteries, due to the low density of both the sulfur active material and sulfur host. Herein, in order to enhance the volumetric energy density of sulfur cathode, a universal approach is proposed to fabricate a compact sulfur cathode with dense materials as sulfur host, instead of the old‐fashioned lightweight carbon nanomaterials. Based on this strategy, heavy lanthanum strontium manganese oxide (La0.8Sr0.2MnO3), with a high theoretical density of up to 6.5 g cm−3, is introduced as sulfur host. Meanwhile, the La0.8Sr0.2MnO3 host also acts as an efficient electrocatalyst to accelerate the diffusion, adsorption, and redox dynamics of lithium polysulfides in the charge–discharge processes. As a result, such S/La0.8Sr0.2MnO3 cathode presents high gravimetric/volumetric capacity and outstanding cycling stability. Moreover, an ultra‐high volumetric energy density of 2727 Wh L−1‐cathode is achieved based on the densification effect with higher density (1.69 g cm−3), which is competitive to the Ni‐rich oxide cathode (1800–2160 Wh L−1) of lithium–ion batteries. The current study opens up a path for constructing high volumetric capacity sulfur cathode with heavy and catalytic host toward practical applications of lithium–sulfur batteries.
Heavy metal oxides are more suitable than light carbon materials to fabricate compact cathode for lithium–sulfur batteries. Specifically, lanthanum strontium manganese oxide nanofibers, with the tap density of 2.59 g cm−3, display efficient catalytic activity toward lithium polysulfides, enhancing the volumetric energy density of sulfur cathode, which can even exceed lithium–ion batteries. |
---|---|
AbstractList | For high‐energy lithium–sulfur batteries, the poor volumetric energy density is a bottleneck as compared with lithium–ion batteries, due to the low density of both the sulfur active material and sulfur host. Herein, in order to enhance the volumetric energy density of sulfur cathode, a universal approach is proposed to fabricate a compact sulfur cathode with dense materials as sulfur host, instead of the old‐fashioned lightweight carbon nanomaterials. Based on this strategy, heavy lanthanum strontium manganese oxide (La0.8Sr0.2MnO3), with a high theoretical density of up to 6.5 g cm−3, is introduced as sulfur host. Meanwhile, the La0.8Sr0.2MnO3 host also acts as an efficient electrocatalyst to accelerate the diffusion, adsorption, and redox dynamics of lithium polysulfides in the charge–discharge processes. As a result, such S/La0.8Sr0.2MnO3 cathode presents high gravimetric/volumetric capacity and outstanding cycling stability. Moreover, an ultra‐high volumetric energy density of 2727 Wh L−1‐cathode is achieved based on the densification effect with higher density (1.69 g cm−3), which is competitive to the Ni‐rich oxide cathode (1800–2160 Wh L−1) of lithium–ion batteries. The current study opens up a path for constructing high volumetric capacity sulfur cathode with heavy and catalytic host toward practical applications of lithium–sulfur batteries. For high‐energy lithium–sulfur batteries, the poor volumetric energy density is a bottleneck as compared with lithium–ion batteries, due to the low density of both the sulfur active material and sulfur host. Herein, in order to enhance the volumetric energy density of sulfur cathode, a universal approach is proposed to fabricate a compact sulfur cathode with dense materials as sulfur host, instead of the old‐fashioned lightweight carbon nanomaterials. Based on this strategy, heavy lanthanum strontium manganese oxide (La 0.8 Sr 0.2 MnO 3 ), with a high theoretical density of up to 6.5 g cm −3 , is introduced as sulfur host. Meanwhile, the La 0.8 Sr 0.2 MnO 3 host also acts as an efficient electrocatalyst to accelerate the diffusion, adsorption, and redox dynamics of lithium polysulfides in the charge–discharge processes. As a result, such S/La 0.8 Sr 0.2 MnO 3 cathode presents high gravimetric/volumetric capacity and outstanding cycling stability. Moreover, an ultra‐high volumetric energy density of 2727 Wh L −1 ‐cathode is achieved based on the densification effect with higher density (1.69 g cm −3 ), which is competitive to the Ni‐rich oxide cathode (1800–2160 Wh L −1 ) of lithium–ion batteries. The current study opens up a path for constructing high volumetric capacity sulfur cathode with heavy and catalytic host toward practical applications of lithium–sulfur batteries. Abstract For high‐energy lithium–sulfur batteries, the poor volumetric energy density is a bottleneck as compared with lithium–ion batteries, due to the low density of both the sulfur active material and sulfur host. Herein, in order to enhance the volumetric energy density of sulfur cathode, a universal approach is proposed to fabricate a compact sulfur cathode with dense materials as sulfur host, instead of the old‐fashioned lightweight carbon nanomaterials. Based on this strategy, heavy lanthanum strontium manganese oxide (La0.8Sr0.2MnO3), with a high theoretical density of up to 6.5 g cm−3, is introduced as sulfur host. Meanwhile, the La0.8Sr0.2MnO3 host also acts as an efficient electrocatalyst to accelerate the diffusion, adsorption, and redox dynamics of lithium polysulfides in the charge–discharge processes. As a result, such S/La0.8Sr0.2MnO3 cathode presents high gravimetric/volumetric capacity and outstanding cycling stability. Moreover, an ultra‐high volumetric energy density of 2727 Wh L−1‐cathode is achieved based on the densification effect with higher density (1.69 g cm−3), which is competitive to the Ni‐rich oxide cathode (1800–2160 Wh L−1) of lithium–ion batteries. The current study opens up a path for constructing high volumetric capacity sulfur cathode with heavy and catalytic host toward practical applications of lithium–sulfur batteries. For high-energy lithium-sulfur batteries, the poor volumetric energy density is a bottleneck as compared with lithium-ion batteries, due to the low density of both the sulfur active material and sulfur host. Herein, in order to enhance the volumetric energy density of sulfur cathode, a universal approach is proposed to fabricate a compact sulfur cathode with dense materials as sulfur host, instead of the old-fashioned lightweight carbon nanomaterials. Based on this strategy, heavy lanthanum strontium manganese oxide (La0.8Sr0.2MnO3), with a high theoretical density of up to 6.5 g cm-3, is introduced as sulfur host. Meanwhile, the La0.8Sr0.2MnO3 host also acts as an efficient electrocatalyst to accelerate the diffusion, adsorption, and redox dynamics of lithium polysulfides in the charge-discharge processes. As a result, such S/La0.8Sr0.2MnO3 cathode presents high gravimetric/volumetric capacity and outstanding cycling stability. Moreover, an ultra-high volumetric energy density of 2727 Wh L-1 -cathode is achieved based on the densification effect with higher density (1.69 g cm-3), which is competitive to the Ni-rich oxide cathode (1800-2160 Wh L-1) of lithium-ion batteries. The current study opens up a path for constructing high volumetric capacity sulfur cathode with heavy and catalytic host toward practical applications of lithium-sulfur batteries.For high-energy lithium-sulfur batteries, the poor volumetric energy density is a bottleneck as compared with lithium-ion batteries, due to the low density of both the sulfur active material and sulfur host. Herein, in order to enhance the volumetric energy density of sulfur cathode, a universal approach is proposed to fabricate a compact sulfur cathode with dense materials as sulfur host, instead of the old-fashioned lightweight carbon nanomaterials. Based on this strategy, heavy lanthanum strontium manganese oxide (La0.8Sr0.2MnO3), with a high theoretical density of up to 6.5 g cm-3, is introduced as sulfur host. Meanwhile, the La0.8Sr0.2MnO3 host also acts as an efficient electrocatalyst to accelerate the diffusion, adsorption, and redox dynamics of lithium polysulfides in the charge-discharge processes. As a result, such S/La0.8Sr0.2MnO3 cathode presents high gravimetric/volumetric capacity and outstanding cycling stability. Moreover, an ultra-high volumetric energy density of 2727 Wh L-1 -cathode is achieved based on the densification effect with higher density (1.69 g cm-3), which is competitive to the Ni-rich oxide cathode (1800-2160 Wh L-1) of lithium-ion batteries. The current study opens up a path for constructing high volumetric capacity sulfur cathode with heavy and catalytic host toward practical applications of lithium-sulfur batteries. For high‐energy lithium–sulfur batteries, the poor volumetric energy density is a bottleneck as compared with lithium–ion batteries, due to the low density of both the sulfur active material and sulfur host. Herein, in order to enhance the volumetric energy density of sulfur cathode, a universal approach is proposed to fabricate a compact sulfur cathode with dense materials as sulfur host, instead of the old‐fashioned lightweight carbon nanomaterials. Based on this strategy, heavy lanthanum strontium manganese oxide (La 0.8 Sr 0.2 MnO 3 ), with a high theoretical density of up to 6.5 g cm −3 , is introduced as sulfur host. Meanwhile, the La 0.8 Sr 0.2 MnO 3 host also acts as an efficient electrocatalyst to accelerate the diffusion, adsorption, and redox dynamics of lithium polysulfides in the charge–discharge processes. As a result, such S/La 0.8 Sr 0.2 MnO 3 cathode presents high gravimetric/volumetric capacity and outstanding cycling stability. Moreover, an ultra‐high volumetric energy density of 2727 Wh L −1 ‐cathode is achieved based on the densification effect with higher density (1.69 g cm −3 ), which is competitive to the Ni‐rich oxide cathode (1800–2160 Wh L −1 ) of lithium–ion batteries. The current study opens up a path for constructing high volumetric capacity sulfur cathode with heavy and catalytic host toward practical applications of lithium–sulfur batteries. Heavy metal oxides are more suitable than light carbon materials to fabricate compact cathode for lithium–sulfur batteries. Specifically, lanthanum strontium manganese oxide nanofibers, with the tap density of 2.59 g cm −3 , display efficient catalytic activity toward lithium polysulfides, enhancing the volumetric energy density of sulfur cathode, which can even exceed lithium–ion batteries. For high‐energy lithium–sulfur batteries, the poor volumetric energy density is a bottleneck as compared with lithium–ion batteries, due to the low density of both the sulfur active material and sulfur host. Herein, in order to enhance the volumetric energy density of sulfur cathode, a universal approach is proposed to fabricate a compact sulfur cathode with dense materials as sulfur host, instead of the old‐fashioned lightweight carbon nanomaterials. Based on this strategy, heavy lanthanum strontium manganese oxide (La0.8Sr0.2MnO3), with a high theoretical density of up to 6.5 g cm−3, is introduced as sulfur host. Meanwhile, the La0.8Sr0.2MnO3 host also acts as an efficient electrocatalyst to accelerate the diffusion, adsorption, and redox dynamics of lithium polysulfides in the charge–discharge processes. As a result, such S/La0.8Sr0.2MnO3 cathode presents high gravimetric/volumetric capacity and outstanding cycling stability. Moreover, an ultra‐high volumetric energy density of 2727 Wh L−1‐cathode is achieved based on the densification effect with higher density (1.69 g cm−3), which is competitive to the Ni‐rich oxide cathode (1800–2160 Wh L−1) of lithium–ion batteries. The current study opens up a path for constructing high volumetric capacity sulfur cathode with heavy and catalytic host toward practical applications of lithium–sulfur batteries. Heavy metal oxides are more suitable than light carbon materials to fabricate compact cathode for lithium–sulfur batteries. Specifically, lanthanum strontium manganese oxide nanofibers, with the tap density of 2.59 g cm−3, display efficient catalytic activity toward lithium polysulfides, enhancing the volumetric energy density of sulfur cathode, which can even exceed lithium–ion batteries. |
Author | Li, Guo‐Ran Yan, Tian‐Ying Liu, Sheng Gao, Xue‐Ping Liu, Ya‐Tao |
AuthorAffiliation | 1 Institute of New Energy Material Chemistry School of Materials Science and Engineering Renewable Energy Conversion and Storage Center Nankai University Tianjin 300350 China |
AuthorAffiliation_xml | – name: 1 Institute of New Energy Material Chemistry School of Materials Science and Engineering Renewable Energy Conversion and Storage Center Nankai University Tianjin 300350 China |
Author_xml | – sequence: 1 givenname: Ya‐Tao surname: Liu fullname: Liu, Ya‐Tao organization: Nankai University – sequence: 2 givenname: Sheng surname: Liu fullname: Liu, Sheng organization: Nankai University – sequence: 3 givenname: Guo‐Ran surname: Li fullname: Li, Guo‐Ran organization: Nankai University – sequence: 4 givenname: Tian‐Ying surname: Yan fullname: Yan, Tian‐Ying organization: Nankai University – sequence: 5 givenname: Xue‐Ping orcidid: 0000-0001-7305-7567 surname: Gao fullname: Gao, Xue‐Ping email: xpgao@nankai.edu.cn organization: Nankai University |
BookMark | eNqFks9u1DAQxiNUREvplbMlLlx28b_EzgWpbAtbaVEPhV4t25nsepXExXa25MY78IY8CQm7IFoJcfJo5vd9M7bneXbU-Q6y7CXBc4IxfaOrXZxTTErMipI9yU4oKeWMSc6P_oqPs7MYtxhjkjPBiXyWHTOalwUh7CRLS7feoFvf9C2k4Cy67CCsB3QBXXRpQDd9U_cBLXTa-ArQvUsbtAS9G5DuqimtmyGNso8wRuj6qxuhpY8J1T6g1Ui7vv3x7fvB5p1OCcLwInta6ybC2eE8zT6_v_y0WM5W1x-uFuermc1xgWc1q3BuZYlLK1lFDTe1wdhwDVbmDPLaCkkl5sCMriWUtBa5tJJowIYKidlpdrX3rbzeqrvgWh0G5bVTvxI-rJUO4_QNqDwXhGlrjDCC18ANJoZIUVRQcFPQevR6u_e6600LlYUuBd08MH1Y6dxGrf1OCUYoz6dhXh8Mgv_SQ0yqddFC0-gOfB8VHb9GUCF4PqKvHqFb34dufKqJKkhR0JKPFN9TNvgYA9TKuqST81N_1yiC1bQlatoS9WdLRtn8kez3Hf4pOPS5dw0M_6HV-cXtDRECs59kY9G5 |
CitedBy_id | crossref_primary_10_1039_D2TA06686F crossref_primary_10_1021_acsaenm_3c00587 crossref_primary_10_1021_acs_energyfuels_1c04095 crossref_primary_10_1021_acsenergylett_2c02107 crossref_primary_10_1016_j_coco_2024_101971 crossref_primary_10_1007_s40843_020_1552_7 crossref_primary_10_3390_batteries10010039 crossref_primary_10_1016_j_est_2024_113002 crossref_primary_10_1002_adfm_202010693 crossref_primary_10_1002_smll_202005332 crossref_primary_10_1016_j_jelechem_2022_116742 crossref_primary_10_1007_s12598_024_02616_w crossref_primary_10_1016_j_est_2023_107767 crossref_primary_10_1021_acsami_3c15300 crossref_primary_10_1007_s12613_022_2451_2 crossref_primary_10_1016_j_jechem_2023_02_009 crossref_primary_10_1039_D0NR05727D crossref_primary_10_3390_nano12234341 crossref_primary_10_1007_s12274_021_3578_6 crossref_primary_10_1016_j_apsusc_2020_148914 crossref_primary_10_1016_j_jallcom_2023_169200 crossref_primary_10_1039_D3RA00502J crossref_primary_10_1016_j_jechem_2022_08_027 crossref_primary_10_1002_cey2_487 crossref_primary_10_1021_acsami_1c10749 crossref_primary_10_1002_adfm_202200893 crossref_primary_10_1016_j_apsusc_2022_152613 crossref_primary_10_1021_acs_energyfuels_2c01211 crossref_primary_10_1002_aesr_202100157 crossref_primary_10_1007_s11581_022_04718_w crossref_primary_10_1016_j_jcis_2022_10_006 crossref_primary_10_3390_molecules28052389 crossref_primary_10_1002_adma_202003955 crossref_primary_10_1002_adma_202100810 crossref_primary_10_1021_acssuschemeng_4c04531 crossref_primary_10_1002_sus2_42 crossref_primary_10_1007_s41918_024_00235_8 crossref_primary_10_1016_j_cej_2022_134797 crossref_primary_10_1016_j_apsusc_2023_158949 crossref_primary_10_1002_eem2_12358 crossref_primary_10_1021_acssuschemeng_3c04368 crossref_primary_10_1039_D2TA03421B crossref_primary_10_1002_aenm_202300973 crossref_primary_10_1016_j_ensm_2023_102817 crossref_primary_10_3390_molecules28114286 crossref_primary_10_1016_j_jallcom_2024_178355 crossref_primary_10_1021_acsaem_3c01087 crossref_primary_10_1002_adma_202003666 crossref_primary_10_1002_advs_202303916 crossref_primary_10_1016_j_compositesb_2022_110410 crossref_primary_10_1007_s12274_023_5945_y crossref_primary_10_1002_celc_202101564 crossref_primary_10_1016_j_cej_2024_151132 crossref_primary_10_1021_acsami_1c16191 crossref_primary_10_1039_D2MA00428C crossref_primary_10_1002_adfm_202304965 crossref_primary_10_1016_j_nanoen_2024_109611 crossref_primary_10_1039_D1NR04506G crossref_primary_10_1021_acsnano_0c07999 crossref_primary_10_1002_advs_202206057 crossref_primary_10_1021_acs_energyfuels_1c01102 crossref_primary_10_1002_smll_202200418 crossref_primary_10_1002_smll_202202557 crossref_primary_10_1039_D2CS00810F crossref_primary_10_1002_cey2_152 crossref_primary_10_1007_s11431_022_2148_7 crossref_primary_10_1002_elsa_202100154 crossref_primary_10_1002_celc_202400481 crossref_primary_10_1038_s41467_025_57755_0 crossref_primary_10_1007_s11367_023_02134_4 crossref_primary_10_1002_adfm_202303503 crossref_primary_10_3390_molecules29215116 crossref_primary_10_1016_j_jechem_2020_07_020 crossref_primary_10_3390_molecules28134973 crossref_primary_10_1016_j_cej_2020_126775 crossref_primary_10_1039_D1QM00250C crossref_primary_10_1021_acsnano_1c02047 crossref_primary_10_1002_advs_202201823 crossref_primary_10_1016_j_cej_2024_153762 crossref_primary_10_1002_cjce_24357 crossref_primary_10_1002_smtd_202301316 crossref_primary_10_1021_acsaem_3c00067 crossref_primary_10_1063_5_0110449 crossref_primary_10_1016_j_jcis_2022_07_142 crossref_primary_10_1021_acs_energyfuels_2c02981 crossref_primary_10_1002_advs_202207563 crossref_primary_10_3390_en14196006 crossref_primary_10_1007_s41918_022_00162_6 crossref_primary_10_1016_j_joule_2021_06_009 crossref_primary_10_1007_s11581_022_04461_2 crossref_primary_10_1021_acsami_3c14753 crossref_primary_10_1002_cssc_202300135 crossref_primary_10_1016_j_apsusc_2022_152805 crossref_primary_10_1016_j_jallcom_2024_175960 crossref_primary_10_1016_j_jechem_2021_09_036 crossref_primary_10_1021_acsami_1c07204 crossref_primary_10_1002_cssc_202002140 crossref_primary_10_1021_acsenergylett_3c00826 crossref_primary_10_26599_JAC_2023_9220794 crossref_primary_10_1016_j_ccr_2023_215055 crossref_primary_10_1002_adfm_202308210 crossref_primary_10_1007_s11581_022_04549_9 crossref_primary_10_1002_aenm_202100332 crossref_primary_10_1016_j_jechem_2024_03_037 crossref_primary_10_1002_adma_202414047 crossref_primary_10_1016_j_jpowsour_2021_230764 crossref_primary_10_1007_s12598_024_03180_z crossref_primary_10_1002_celc_202300696 |
Cites_doi | 10.1002/ange.201808311 10.1021/ac2032244 10.1002/adfm.201901051 10.1021/acs.jpcc.7b04170 10.1039/C5MH00246J 10.1016/j.nanoen.2013.12.013 10.1126/science.359.6380.1080 10.1038/srep14949 10.1002/aenm.201402263 10.1002/aenm.201702337 10.1002/adfm.201707234 10.1007/s40843-018-9292-7 10.1021/acs.nanolett.7b00417 10.1039/b925751a 10.1039/B916098A 10.1002/advs.201700270 10.1002/aenm.201401986 10.1016/j.nanoen.2014.12.029 10.1002/adfm.201401501 10.1038/ncomms9850 10.1016/j.ensm.2018.11.029 10.1002/aenm.201601630 10.1016/j.jelechem.2004.12.004 10.1016/j.nanoen.2015.01.007 10.1002/advs.201800815 10.1038/ncomms6682 10.1002/aenm.201501636 10.1038/nmat3191 10.1021/acsnano.5b06592 10.1021/acs.jpclett.5b01814 10.1038/nmat2460 10.1002/aenm.201402290 10.1002/aenm.201703438 10.1038/s41560-019-0351-0 10.1021/ja206955k 10.1038/ncomms11203 10.1021/jacs.5b04472 10.1038/natrevmats.2016.13 10.1002/aenm.201803477 10.1002/adfm.201302631 |
ContentType | Journal Article |
Copyright | 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | 24P AAYXX CITATION 3V. 7XB 88I 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ GUQSH HCIFZ M2O M2P MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1002/advs.201903693 |
DatabaseName | Wiley Online Library Open Access CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea ProQuest Central Student ProQuest Research Library SciTech Premium Collection Research Library Science Database Research Library (Corporate) ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Research Library Prep ProQuest Science Journals (Alumni Edition) ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2198-3844 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_55713acbb7b74fe4b01b1876de64b62f PMC7312450 10_1002_advs_201903693 ADVS1770 |
Genre | article |
GrantInformation_xml | – fundername: National Key Research and Development Program funderid: 2016YFB0100200 – fundername: National Natural Science Foundation of China funderid: 21935006; 21421001 – fundername: ; grantid: 2016YFB0100200 – fundername: ; grantid: 21935006; 21421001 |
GroupedDBID | 0R~ 1OC 24P 53G 5VS 88I 8G5 AAFWJ AAHHS AAZKR ABDBF ABUWG ACCFJ ACCMX ACGFS ACUHS ACXQS ADBBV ADKYN ADZMN ADZOD AEEZP AEQDE AFBPY AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU AZQEC BCNDV BENPR BPHCQ BRXPI CCPQU DWQXO EBS EJD GNUQQ GODZA GROUPED_DOAJ GUQSH HCIFZ HYE IAO ITC KQ8 M2O M2P O9- OK1 PIMPY PQQKQ PROAC ROL RPM WIN AAYXX ADMLS AFPKN CITATION IGS PHGZM PHGZT 3V. 7XB 8FK AAMMB AEFGJ AGXDD AIDQK AIDYY MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c5060-f3d05c8909c83d2b4bfb00b4aec853e5fc782804e3baf8e92f758c81ae0b27803 |
IEDL.DBID | BENPR |
ISSN | 2198-3844 |
IngestDate | Wed Aug 27 01:31:52 EDT 2025 Thu Aug 21 18:13:48 EDT 2025 Fri Jul 11 10:49:57 EDT 2025 Fri Jul 25 08:22:39 EDT 2025 Thu Apr 24 23:07:50 EDT 2025 Tue Jul 01 03:59:23 EDT 2025 Wed Jan 22 16:33:13 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | Attribution This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5060-f3d05c8909c83d2b4bfb00b4aec853e5fc782804e3baf8e92f758c81ae0b27803 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7305-7567 |
OpenAccessLink | https://www.proquest.com/docview/2416166294?pq-origsite=%requestingapplication% |
PMID | 32596113 |
PQID | 2416166294 |
PQPubID | 4365299 |
PageCount | 9 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_55713acbb7b74fe4b01b1876de64b62f pubmedcentral_primary_oai_pubmedcentral_nih_gov_7312450 proquest_miscellaneous_2418727745 proquest_journals_2416166294 crossref_citationtrail_10_1002_advs_201903693 crossref_primary_10_1002_advs_201903693 wiley_primary_10_1002_advs_201903693_ADVS1770 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2020 |
PublicationDateYYYYMMDD | 2020-06-01 |
PublicationDate_xml | – month: 06 year: 2020 text: June 2020 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim – name: Hoboken |
PublicationTitle | Advanced science |
PublicationYear | 2020 |
Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc – name: Wiley |
References | 2015; 12 2019; 4 2015; 6 2015; 5 2019; 6 2017 2015 2020; 17 5 2005; 577 2016; 10 2018 2018; 28 130 2019 2019; 9 62 2016; 6 2016; 7 2016; 1 2009 2011 2015 2014; 8 133 6 24 2018; 5 2016; 3 2018; 359 2014 2018; 4 8 2015; 137 2020 2015 2018; 12 8 2019; 29 2014 2015; 24 5 2017 2019; 7 20 2017; 121 2012 2010 2010; 11 3 20 2012; 84 e_1_2_5_27_1 e_1_2_5_28_1 e_1_2_5_25_1 e_1_2_5_26_1 e_1_2_5_23_1 e_1_2_5_24_1 e_1_2_5_21_1 e_1_2_5_22_1 e_1_2_5_29_1 e_1_2_5_20_1 e_1_2_5_15_1 e_1_2_5_13_2 e_1_2_5_14_1 e_1_2_5_9_2 e_1_2_5_16_2 e_1_2_5_17_1 e_1_2_5_6_4 e_1_2_5_8_2 e_1_2_5_9_1 e_1_2_5_16_1 e_1_2_5_6_3 e_1_2_5_7_2 e_1_2_5_8_1 e_1_2_5_11_1 e_1_2_5_6_2 e_1_2_5_7_1 e_1_2_5_10_1 e_1_2_5_6_1 e_1_2_5_12_2 e_1_2_5_13_1 e_1_2_5_3_3 e_1_2_5_5_1 e_1_2_5_12_1 e_1_2_5_2_3 e_1_2_5_3_2 e_1_2_5_4_1 e_1_2_5_2_2 e_1_2_5_3_1 e_1_2_5_2_1 e_1_2_5_1_1 e_1_2_5_19_1 e_1_2_5_18_1 |
References_xml | – volume: 6 start-page: 5682 year: 2015 publication-title: Nat. Commun. – volume: 17 5 start-page: 3061 year: 2017 2015 2020 publication-title: Nano Lett. Adv. Energy Mater. – volume: 11 3 20 start-page: 19 174 9821 year: 2012 2010 2010 publication-title: Nat. Mater. Energy Environ. Sci. J. Mater. Chem. – volume: 121 year: 2017 publication-title: J. Phys. Chem. C – volume: 5 year: 2018 publication-title: Adv. Sci. – volume: 7 year: 2016 publication-title: Nat. Commun. – volume: 137 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 359 start-page: 1080 year: 2018 publication-title: Science – volume: 5 year: 2015 publication-title: Sci. Rep. – volume: 3 start-page: 130 year: 2016 publication-title: Mater. Horiz. – volume: 9 62 start-page: 74 year: 2019 2019 publication-title: Adv. Energy Mater. Sci. China Mater. – volume: 4 start-page: 374 year: 2019 publication-title: Nat. Energy – volume: 7 20 start-page: 14 year: 2017 2019 publication-title: Adv. Energy Mater. Energy Storage Mater. – volume: 6 start-page: 4581 year: 2015 publication-title: J. Phys. Chem. Lett. – volume: 84 start-page: 3973 year: 2012 publication-title: Anal. Chem. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 6 year: 2016 publication-title: Adv. Energy Mater. – volume: 10 start-page: 1240 year: 2016 publication-title: ACS Nano – volume: 5 year: 2015 publication-title: Adv. Energy Mater. – volume: 12 start-page: 240 year: 2015 publication-title: Nano Energy – year: 2020 – volume: 6 year: 2019 publication-title: Adv. Sci. – volume: 1 year: 2016 publication-title: Nat. Rev. Mater. – volume: 24 5 start-page: 6105 year: 2014 2015 publication-title: Adv. Funct. Mater. Adv. Energy Mater. – volume: 8 133 6 24 start-page: 500 8850 1243 year: 2009 2011 2015 2014 publication-title: Nat. Mater. J. Am. Chem. Soc. Nat. Commun. Adv. Funct. Mater. – volume: 4 8 start-page: 65 year: 2014 2018 publication-title: Nano Energy Adv. Energy Mater. – volume: 12 8 start-page: 468 year: 2015 2018 publication-title: Nano Energy Adv. Energy Mater. – volume: 577 start-page: 295 year: 2005 publication-title: J. Electroanal. Chem. – volume: 28 130 year: 2018 2018 publication-title: Adv. Funct. Mater. Angew. Chem. – ident: e_1_2_5_16_2 doi: 10.1002/ange.201808311 – ident: e_1_2_5_24_1 doi: 10.1021/ac2032244 – ident: e_1_2_5_19_1 doi: 10.1002/adfm.201901051 – ident: e_1_2_5_27_1 doi: 10.1021/acs.jpcc.7b04170 – ident: e_1_2_5_20_1 doi: 10.1039/C5MH00246J – ident: e_1_2_5_7_1 doi: 10.1016/j.nanoen.2013.12.013 – ident: e_1_2_5_4_1 doi: 10.1126/science.359.6380.1080 – ident: e_1_2_5_11_1 doi: 10.1038/srep14949 – ident: e_1_2_5_12_2 doi: 10.1002/aenm.201402263 – ident: e_1_2_5_7_2 doi: 10.1002/aenm.201702337 – ident: e_1_2_5_16_1 doi: 10.1002/adfm.201707234 – ident: e_1_2_5_13_2 doi: 10.1007/s40843-018-9292-7 – ident: e_1_2_5_3_1 doi: 10.1021/acs.nanolett.7b00417 – ident: e_1_2_5_2_3 doi: 10.1039/b925751a – ident: e_1_2_5_2_2 doi: 10.1039/B916098A – ident: e_1_2_5_22_1 doi: 10.1002/advs.201700270 – ident: e_1_2_5_3_2 doi: 10.1002/aenm.201401986 – ident: e_1_2_5_21_1 doi: 10.1016/j.nanoen.2014.12.029 – ident: e_1_2_5_12_1 doi: 10.1002/adfm.201401501 – ident: e_1_2_5_6_3 doi: 10.1038/ncomms9850 – ident: e_1_2_5_9_2 doi: 10.1016/j.ensm.2018.11.029 – ident: e_1_2_5_9_1 doi: 10.1002/aenm.201601630 – ident: e_1_2_5_14_1 – ident: e_1_2_5_29_1 doi: 10.1016/j.jelechem.2004.12.004 – ident: e_1_2_5_8_1 doi: 10.1016/j.nanoen.2015.01.007 – ident: e_1_2_5_10_1 doi: 10.1002/advs.201800815 – ident: e_1_2_5_25_1 doi: 10.1038/ncomms6682 – ident: e_1_2_5_26_1 doi: 10.1002/aenm.201501636 – ident: e_1_2_5_2_1 doi: 10.1038/nmat3191 – ident: e_1_2_5_15_1 doi: 10.1021/acsnano.5b06592 – ident: e_1_2_5_18_1 doi: 10.1021/acs.jpclett.5b01814 – ident: e_1_2_5_3_3 – ident: e_1_2_5_6_1 doi: 10.1038/nmat2460 – ident: e_1_2_5_17_1 doi: 10.1002/aenm.201402290 – ident: e_1_2_5_8_2 doi: 10.1002/aenm.201703438 – ident: e_1_2_5_5_1 doi: 10.1038/s41560-019-0351-0 – ident: e_1_2_5_6_2 doi: 10.1021/ja206955k – ident: e_1_2_5_23_1 doi: 10.1038/ncomms11203 – ident: e_1_2_5_28_1 doi: 10.1021/jacs.5b04472 – ident: e_1_2_5_1_1 doi: 10.1038/natrevmats.2016.13 – ident: e_1_2_5_13_1 doi: 10.1002/aenm.201803477 – ident: e_1_2_5_6_4 doi: 10.1002/adfm.201302631 |
SSID | ssj0001537418 |
Score | 2.5241501 |
Snippet | For high‐energy lithium–sulfur batteries, the poor volumetric energy density is a bottleneck as compared with lithium–ion batteries, due to the low density of... For high-energy lithium-sulfur batteries, the poor volumetric energy density is a bottleneck as compared with lithium-ion batteries, due to the low density of... Abstract For high‐energy lithium–sulfur batteries, the poor volumetric energy density is a bottleneck as compared with lithium–ion batteries, due to the low... |
SourceID | doaj pubmedcentral proquest crossref wiley |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1903693 |
SubjectTerms | Carbon catalytic conversion cathodes Communication Communications Electrolytes Energy heavy metal oxides Lithium lithium–sulfur batteries Mathematical functions Metal oxides Nanomaterials Sulfur content volumetric energy density |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQT1wQ5UcESuVKSMAhqmPHsXME2mqFKBxKUW-RnYzFStssapOKvfEOfUOehBknu9ogoV64RfbIvzOebxz7M2OvFIYYSpWQojrINPcCUqczm0IRhG60hUbQBefTz8XsPP94oS-2nvqiM2EDPfAwcIdaYxjlau-NN3kALC3zGZpwA0XuCxlo9UWftxVMDfeDFdGyrFkahTx0zQ2xc6P_U0WpJl4okvVPEObf5yO3cWt0PCcP2YMRMfJ3Q0t32T1oH7Hd0Sav-ZuROPrtY9bRoQ3-La43RLzPj-PFPn5Eh9S7FT_rF6G_4nTpb9kApy1YPgN3s-KubSjZLVZYCT8F_OJffs5RaLa87jgCW_4Jpef95e9ft2MxAzPn6gk7Pzn--mGWjq8qpDWRCaZBNULXthRlbVUjfe4Dmp7PHdToukGHGkGDFTko74KFUgYMKWqbORBeGivUU7bTLlt4xjhZs3AmGOlMrr1yAkKZIWhwmQ6NFwlL16Nc1SPlOL18sagGsmRZ0axUm1lJ2OuN_I-BbOOfku9p0jZSRJIdE1B1qlF1qrtUJ2F76ymvRsvFKijiKwpZ5gk72GSjzdGPFNfCso8yFnEf9jlhZqIqkwZNc9r598jebRRCKk1jE5Xqjo5WiE7OMmPE8__R4xfsvqT9griLtMd2uqseXiKo6vx-tJ8_ioYgwA priority: 102 providerName: Directory of Open Access Journals – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagXLiglodYKMhISMAhquNH7Bx5tFohCkilqLfITmxYaUnQblJ1b_wH_iG_hBknmzZICHGLklFe4y_zzcTzmZCnAlIMIXKfwHDgiXTMJ1alJvFZYKpSxlcMG5yP32fzU_n2TJ1d6eLv9SHGghsiI36vEeDWrQ8uRUNtdY5y2xDQRJaL6-QG9tfipD4uP15WWZRAeRZcYQ6y60QYKbfKjYwfTE8xiUxRwH_COv-cM3mVy8ZgdLRLbg0skr7s3b5Hrvn6NtkbcLqmzwcx6Rd3SIsTOejn-A1CMX56GJv96BucuN5u6Em3DN2KYiNgU3mKZVk69_Z8Q21d4W673MBF6LGHLfrhYgFG82bdUiC79B1YL7pvv378HE7Tq3Vu7pLTo8NPr-fJsNJCUqLAYBJExVRpcpaXRlTcSRcAjk5aX0I49yqUQCQMk144G4zPeYA0ozSp9cxxbZi4R3bqpvb3CUWEM6uD5lZL5YRlPuQpEAmbqlA5NiPJ9i0X5SBDjqthLIteQJkX6JVi9MqMPBvtv_cCHH-1fIVOG61QODvuaFZfigGHhVKQldvSOe20DB4GZ-pSiAiVz6TLeJiR_a3LiwHNcAnMArOM53JGnoyHAYf4c8XWvumijQEuCM88I3oyVCY3ND1SL75GRW8tgGYpfDdxUP3jQQtgLCep1uzBf9o_JDc5lgtiEWmf7LSrzj8CTtW6xxE2vwHg8xxg priority: 102 providerName: Wiley-Blackwell |
Title | High Volumetric Energy Density Sulfur Cathode with Heavy and Catalytic Metal Oxide Host for Lithium–Sulfur Battery |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.201903693 https://www.proquest.com/docview/2416166294 https://www.proquest.com/docview/2418727745 https://pubmed.ncbi.nlm.nih.gov/PMC7312450 https://doaj.org/article/55713acbb7b74fe4b01b1876de64b62f |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1fb9MwELdY-8ILYgNEYVSehAQ8RHPsOHGe0MY6VWgdE2Vob5Gd2KNSSUb_TPSN78A35JNw57qFIAFvUXxK7Nyd7-fL-WdCngtYYgiR2wjMgUeJYTbSMlaRTR2TlVS2YrjBeXSeDi-Tt1fyKiTc5qGscjMn-om6akrMkR9yROJpyvPk9c2XCE-Nwr-r4QiNHdKFKVipDukeD84v3v_KskiB9CwbtkbGD3V1iyzdEAdFmotWNPKk_S2k-Wed5O_41Qeg0_vkXkCO9Git6l1yx9Z7ZDf45py-DATSrx6QBRZv0I9-3kECfjrwG_zoCRarL1Z0vJy65Yzi5r-mshRTsXRo9e2K6rrC23q6gpfQkYUr-u7rBISGzXxBAeDSM5CeLD__-PY9PGbN0Ll6SC5PBx_eDKNwukJUIqlg5ETFZKlylpdKVNwkxoELmkTbEkK4la4E8KBYYoXRTtmcO1halCrWlhmeKSYekU7d1PYxoejVTGcu4zpLpBGaWZfHAB50LF1lWI9Em69clIF6HE_AmBZr0mReoFaKrVZ65MVW_mZNuvFXyWNU2lYKybL9jWZ2XQTfK6SElbgujclMljgLBhmbGKJAZdPEpNz1yP5G5UXwYHjF1t565GDbDL6HP1R0bZull1GA_2DMPZK1TKXVoXZLPfnkWbwzAdBK4rfxRvWfgRaAUsZxlrEn_-7sU3KXY0bA54n2SWcxW9pnAJsWpk92eHLRJ92jk9HZuB88pe-TED8BEZQclA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9AAXRHmI0AKLBAIOVte7Xj8OCFGaKqVJQLRFvZlde5dGCnbJo5Ab_4H_wY_ilzDj2IEgAafeLHvkx87r2_HuNwAPJU4xpEysh-YgvMBw62nlx54NHVe5im3OaYNzfxB2j4NXJ-pkDb43e2FoWWUTE6tAnZcZ1ci3BSHxMBRJ8Pzsk0ddo-jvatNCY2EWB3b-Gadsk2f7u6jfR0LsdY5edr26q4CXEZme52TOVRYnPMlimQsTGIemZwJtM0xdVrkMk2bMAyuNdrFNhENIncW-ttyIKOYS73sJ1gMZctGC9Z3O4M3bX1UdJYkOpmGH5GJb5-fECo55V4aJXMl-VZOAFWT757rM3_FylfD2rsHVGqmyFwvT2oA1W1yHjToWTNiTmrD66Q2Y0mIR9q6Kc0T4zzrVhkK2S4vjp3N2OBu52ZjRZsMyt4xKv6xr9fmc6SKn03o0x4ewvsUj9vrLEIW65WTKEFCzHkoPZx9_fP1W32bBCDq_CccXMu63oFWUhb0NjKII15GLhI4CZaTm1iU-ghXtK5cb3gavGeU0q6nOqePGKF2QNIuUtJIutdKGx0v5swXJx18ld0hpSyki565OlOMPae3rqVI489eZMZGJAmfRAXzjY9bJbRiYULg2bDUqT-uIgY9Y2ncbHiwvo6_TDxxd2HJWycSIN_Gb2xCtmMrKC61eKYanFWt4JBHKKRqbyqj-86EpoqJDP4r4nX-_7H243D3q99Le_uBgE64IqkZUNaotaE3HM3sXIdvU3Kv9hMH7i3bNn2aQVhc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtQwFLXKVEJsEOUhBgoYCQQsonHsOE4WCFFmRlPaDhWlqLtgJzaMNCRlHoXs-Af-hs_hS7g3kwwECVh1FyVXefi-jp3rcwl5IGCKIURsPTAH7gWGWU9LP_Js6JjMZGQzhhucD8bh6Dh4eSJPNsj3Zi8MllU2MbEK1FmR4hp5jyMSD0MeBz1Xl0Uc9ofPTj952EEK_7Q27TRWJrJny88wfZs_3e2Drh9yPhy8eTHy6g4DXorEep4TGZNpFLM4jUTGTWAcmKEJtE0hjVnpUkigEQusMNpFNuYO4HUa-doyw1XEBNz3AtlUOCvqkM2dwfjw9a8VHimQGqZhimS8p7MzZAiHHCzCWLQyYdUwoIVy_6zR_B07V8lveIVcrlErfb4ysy2yYfOrZKuOC3P6uCavfnKNLLBwhL6tYh6S_9NBtbmQ9rFQflHSo-XULWcUNx4WmaW4DExHVp-VVOcZntbTEh5CDywc0VdfJiA0KuYLCuCa7oP0ZPnxx9dv9W1W7KDldXJ8LuN-g3TyIrc3CcWIwrRyimsVSCM0sy72AbhoX7rMsC7xmlFO0pr2HLtvTJMVYTNPUCvJWitd8mgtf7oi_Pir5A4qbS2FRN3ViWL2Pqn9PpFS-UKnxiijAmfBGXzjQwbKbBiYkLsu2W5UntTRAx6xtvUuub--DH6PP3N0botlJRMB9oRv7hLVMpXWC7Wv5JMPFYO4EgDrJI5NZVT_-dAEENKRrxS79e-XvUcugksm-7vjvdvkEseFiWq5apt0FrOlvQPobWHu1m5Cybvz9syfMlhaTA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High+Volumetric+Energy+Density+Sulfur+Cathode+with+Heavy+and+Catalytic+Metal+Oxide+Host+for+Lithium%E2%80%93Sulfur+Battery&rft.jtitle=Advanced+science&rft.au=Ya%E2%80%90Tao+Liu&rft.au=Liu%2C+Sheng&rft.au=Guo%E2%80%90Ran+Li&rft.au=Tian%E2%80%90Ying+Yan&rft.date=2020-06-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=2198-3844&rft.volume=7&rft.issue=12&rft_id=info:doi/10.1002%2Fadvs.201903693&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon |