High Volumetric Energy Density Sulfur Cathode with Heavy and Catalytic Metal Oxide Host for Lithium–Sulfur Battery

For high‐energy lithium–sulfur batteries, the poor volumetric energy density is a bottleneck as compared with lithium–ion batteries, due to the low density of both the sulfur active material and sulfur host. Herein, in order to enhance the volumetric energy density of sulfur cathode, a universal app...

Full description

Saved in:
Bibliographic Details
Published inAdvanced science Vol. 7; no. 12; pp. 1903693 - n/a
Main Authors Liu, Ya‐Tao, Liu, Sheng, Li, Guo‐Ran, Yan, Tian‐Ying, Gao, Xue‐Ping
Format Journal Article
LanguageEnglish
Published Weinheim John Wiley & Sons, Inc 01.06.2020
John Wiley and Sons Inc
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract For high‐energy lithium–sulfur batteries, the poor volumetric energy density is a bottleneck as compared with lithium–ion batteries, due to the low density of both the sulfur active material and sulfur host. Herein, in order to enhance the volumetric energy density of sulfur cathode, a universal approach is proposed to fabricate a compact sulfur cathode with dense materials as sulfur host, instead of the old‐fashioned lightweight carbon nanomaterials. Based on this strategy, heavy lanthanum strontium manganese oxide (La0.8Sr0.2MnO3), with a high theoretical density of up to 6.5 g cm−3, is introduced as sulfur host. Meanwhile, the La0.8Sr0.2MnO3 host also acts as an efficient electrocatalyst to accelerate the diffusion, adsorption, and redox dynamics of lithium polysulfides in the charge–discharge processes. As a result, such S/La0.8Sr0.2MnO3 cathode presents high gravimetric/volumetric capacity and outstanding cycling stability. Moreover, an ultra‐high volumetric energy density of 2727 Wh L−1‐cathode is achieved based on the densification effect with higher density (1.69 g cm−3), which is competitive to the Ni‐rich oxide cathode (1800–2160 Wh L−1) of lithium–ion batteries. The current study opens up a path for constructing high volumetric capacity sulfur cathode with heavy and catalytic host toward practical applications of lithium–sulfur batteries. Heavy metal oxides are more suitable than light carbon materials to fabricate compact cathode for lithium–sulfur batteries. Specifically, lanthanum strontium manganese oxide nanofibers, with the tap density of 2.59 g cm−3, display efficient catalytic activity toward lithium polysulfides, enhancing the volumetric energy density of sulfur cathode, which can even exceed lithium–ion batteries.
AbstractList For high‐energy lithium–sulfur batteries, the poor volumetric energy density is a bottleneck as compared with lithium–ion batteries, due to the low density of both the sulfur active material and sulfur host. Herein, in order to enhance the volumetric energy density of sulfur cathode, a universal approach is proposed to fabricate a compact sulfur cathode with dense materials as sulfur host, instead of the old‐fashioned lightweight carbon nanomaterials. Based on this strategy, heavy lanthanum strontium manganese oxide (La0.8Sr0.2MnO3), with a high theoretical density of up to 6.5 g cm−3, is introduced as sulfur host. Meanwhile, the La0.8Sr0.2MnO3 host also acts as an efficient electrocatalyst to accelerate the diffusion, adsorption, and redox dynamics of lithium polysulfides in the charge–discharge processes. As a result, such S/La0.8Sr0.2MnO3 cathode presents high gravimetric/volumetric capacity and outstanding cycling stability. Moreover, an ultra‐high volumetric energy density of 2727 Wh L−1‐cathode is achieved based on the densification effect with higher density (1.69 g cm−3), which is competitive to the Ni‐rich oxide cathode (1800–2160 Wh L−1) of lithium–ion batteries. The current study opens up a path for constructing high volumetric capacity sulfur cathode with heavy and catalytic host toward practical applications of lithium–sulfur batteries.
For high‐energy lithium–sulfur batteries, the poor volumetric energy density is a bottleneck as compared with lithium–ion batteries, due to the low density of both the sulfur active material and sulfur host. Herein, in order to enhance the volumetric energy density of sulfur cathode, a universal approach is proposed to fabricate a compact sulfur cathode with dense materials as sulfur host, instead of the old‐fashioned lightweight carbon nanomaterials. Based on this strategy, heavy lanthanum strontium manganese oxide (La 0.8 Sr 0.2 MnO 3 ), with a high theoretical density of up to 6.5 g cm −3 , is introduced as sulfur host. Meanwhile, the La 0.8 Sr 0.2 MnO 3 host also acts as an efficient electrocatalyst to accelerate the diffusion, adsorption, and redox dynamics of lithium polysulfides in the charge–discharge processes. As a result, such S/La 0.8 Sr 0.2 MnO 3 cathode presents high gravimetric/volumetric capacity and outstanding cycling stability. Moreover, an ultra‐high volumetric energy density of 2727 Wh L −1 ‐cathode is achieved based on the densification effect with higher density (1.69 g cm −3 ), which is competitive to the Ni‐rich oxide cathode (1800–2160 Wh L −1 ) of lithium–ion batteries. The current study opens up a path for constructing high volumetric capacity sulfur cathode with heavy and catalytic host toward practical applications of lithium–sulfur batteries.
Abstract For high‐energy lithium–sulfur batteries, the poor volumetric energy density is a bottleneck as compared with lithium–ion batteries, due to the low density of both the sulfur active material and sulfur host. Herein, in order to enhance the volumetric energy density of sulfur cathode, a universal approach is proposed to fabricate a compact sulfur cathode with dense materials as sulfur host, instead of the old‐fashioned lightweight carbon nanomaterials. Based on this strategy, heavy lanthanum strontium manganese oxide (La0.8Sr0.2MnO3), with a high theoretical density of up to 6.5 g cm−3, is introduced as sulfur host. Meanwhile, the La0.8Sr0.2MnO3 host also acts as an efficient electrocatalyst to accelerate the diffusion, adsorption, and redox dynamics of lithium polysulfides in the charge–discharge processes. As a result, such S/La0.8Sr0.2MnO3 cathode presents high gravimetric/volumetric capacity and outstanding cycling stability. Moreover, an ultra‐high volumetric energy density of 2727 Wh L−1‐cathode is achieved based on the densification effect with higher density (1.69 g cm−3), which is competitive to the Ni‐rich oxide cathode (1800–2160 Wh L−1) of lithium–ion batteries. The current study opens up a path for constructing high volumetric capacity sulfur cathode with heavy and catalytic host toward practical applications of lithium–sulfur batteries.
For high-energy lithium-sulfur batteries, the poor volumetric energy density is a bottleneck as compared with lithium-ion batteries, due to the low density of both the sulfur active material and sulfur host. Herein, in order to enhance the volumetric energy density of sulfur cathode, a universal approach is proposed to fabricate a compact sulfur cathode with dense materials as sulfur host, instead of the old-fashioned lightweight carbon nanomaterials. Based on this strategy, heavy lanthanum strontium manganese oxide (La0.8Sr0.2MnO3), with a high theoretical density of up to 6.5 g cm-3, is introduced as sulfur host. Meanwhile, the La0.8Sr0.2MnO3 host also acts as an efficient electrocatalyst to accelerate the diffusion, adsorption, and redox dynamics of lithium polysulfides in the charge-discharge processes. As a result, such S/La0.8Sr0.2MnO3 cathode presents high gravimetric/volumetric capacity and outstanding cycling stability. Moreover, an ultra-high volumetric energy density of 2727 Wh L-1 -cathode is achieved based on the densification effect with higher density (1.69 g cm-3), which is competitive to the Ni-rich oxide cathode (1800-2160 Wh L-1) of lithium-ion batteries. The current study opens up a path for constructing high volumetric capacity sulfur cathode with heavy and catalytic host toward practical applications of lithium-sulfur batteries.For high-energy lithium-sulfur batteries, the poor volumetric energy density is a bottleneck as compared with lithium-ion batteries, due to the low density of both the sulfur active material and sulfur host. Herein, in order to enhance the volumetric energy density of sulfur cathode, a universal approach is proposed to fabricate a compact sulfur cathode with dense materials as sulfur host, instead of the old-fashioned lightweight carbon nanomaterials. Based on this strategy, heavy lanthanum strontium manganese oxide (La0.8Sr0.2MnO3), with a high theoretical density of up to 6.5 g cm-3, is introduced as sulfur host. Meanwhile, the La0.8Sr0.2MnO3 host also acts as an efficient electrocatalyst to accelerate the diffusion, adsorption, and redox dynamics of lithium polysulfides in the charge-discharge processes. As a result, such S/La0.8Sr0.2MnO3 cathode presents high gravimetric/volumetric capacity and outstanding cycling stability. Moreover, an ultra-high volumetric energy density of 2727 Wh L-1 -cathode is achieved based on the densification effect with higher density (1.69 g cm-3), which is competitive to the Ni-rich oxide cathode (1800-2160 Wh L-1) of lithium-ion batteries. The current study opens up a path for constructing high volumetric capacity sulfur cathode with heavy and catalytic host toward practical applications of lithium-sulfur batteries.
For high‐energy lithium–sulfur batteries, the poor volumetric energy density is a bottleneck as compared with lithium–ion batteries, due to the low density of both the sulfur active material and sulfur host. Herein, in order to enhance the volumetric energy density of sulfur cathode, a universal approach is proposed to fabricate a compact sulfur cathode with dense materials as sulfur host, instead of the old‐fashioned lightweight carbon nanomaterials. Based on this strategy, heavy lanthanum strontium manganese oxide (La 0.8 Sr 0.2 MnO 3 ), with a high theoretical density of up to 6.5 g cm −3 , is introduced as sulfur host. Meanwhile, the La 0.8 Sr 0.2 MnO 3 host also acts as an efficient electrocatalyst to accelerate the diffusion, adsorption, and redox dynamics of lithium polysulfides in the charge–discharge processes. As a result, such S/La 0.8 Sr 0.2 MnO 3 cathode presents high gravimetric/volumetric capacity and outstanding cycling stability. Moreover, an ultra‐high volumetric energy density of 2727 Wh L −1 ‐cathode is achieved based on the densification effect with higher density (1.69 g cm −3 ), which is competitive to the Ni‐rich oxide cathode (1800–2160 Wh L −1 ) of lithium–ion batteries. The current study opens up a path for constructing high volumetric capacity sulfur cathode with heavy and catalytic host toward practical applications of lithium–sulfur batteries. Heavy metal oxides are more suitable than light carbon materials to fabricate compact cathode for lithium–sulfur batteries. Specifically, lanthanum strontium manganese oxide nanofibers, with the tap density of 2.59 g cm −3 , display efficient catalytic activity toward lithium polysulfides, enhancing the volumetric energy density of sulfur cathode, which can even exceed lithium–ion batteries.
For high‐energy lithium–sulfur batteries, the poor volumetric energy density is a bottleneck as compared with lithium–ion batteries, due to the low density of both the sulfur active material and sulfur host. Herein, in order to enhance the volumetric energy density of sulfur cathode, a universal approach is proposed to fabricate a compact sulfur cathode with dense materials as sulfur host, instead of the old‐fashioned lightweight carbon nanomaterials. Based on this strategy, heavy lanthanum strontium manganese oxide (La0.8Sr0.2MnO3), with a high theoretical density of up to 6.5 g cm−3, is introduced as sulfur host. Meanwhile, the La0.8Sr0.2MnO3 host also acts as an efficient electrocatalyst to accelerate the diffusion, adsorption, and redox dynamics of lithium polysulfides in the charge–discharge processes. As a result, such S/La0.8Sr0.2MnO3 cathode presents high gravimetric/volumetric capacity and outstanding cycling stability. Moreover, an ultra‐high volumetric energy density of 2727 Wh L−1‐cathode is achieved based on the densification effect with higher density (1.69 g cm−3), which is competitive to the Ni‐rich oxide cathode (1800–2160 Wh L−1) of lithium–ion batteries. The current study opens up a path for constructing high volumetric capacity sulfur cathode with heavy and catalytic host toward practical applications of lithium–sulfur batteries. Heavy metal oxides are more suitable than light carbon materials to fabricate compact cathode for lithium–sulfur batteries. Specifically, lanthanum strontium manganese oxide nanofibers, with the tap density of 2.59 g cm−3, display efficient catalytic activity toward lithium polysulfides, enhancing the volumetric energy density of sulfur cathode, which can even exceed lithium–ion batteries.
Author Li, Guo‐Ran
Yan, Tian‐Ying
Liu, Sheng
Gao, Xue‐Ping
Liu, Ya‐Tao
AuthorAffiliation 1 Institute of New Energy Material Chemistry School of Materials Science and Engineering Renewable Energy Conversion and Storage Center Nankai University Tianjin 300350 China
AuthorAffiliation_xml – name: 1 Institute of New Energy Material Chemistry School of Materials Science and Engineering Renewable Energy Conversion and Storage Center Nankai University Tianjin 300350 China
Author_xml – sequence: 1
  givenname: Ya‐Tao
  surname: Liu
  fullname: Liu, Ya‐Tao
  organization: Nankai University
– sequence: 2
  givenname: Sheng
  surname: Liu
  fullname: Liu, Sheng
  organization: Nankai University
– sequence: 3
  givenname: Guo‐Ran
  surname: Li
  fullname: Li, Guo‐Ran
  organization: Nankai University
– sequence: 4
  givenname: Tian‐Ying
  surname: Yan
  fullname: Yan, Tian‐Ying
  organization: Nankai University
– sequence: 5
  givenname: Xue‐Ping
  orcidid: 0000-0001-7305-7567
  surname: Gao
  fullname: Gao, Xue‐Ping
  email: xpgao@nankai.edu.cn
  organization: Nankai University
BookMark eNqFks9u1DAQxiNUREvplbMlLlx28b_EzgWpbAtbaVEPhV4t25nsepXExXa25MY78IY8CQm7IFoJcfJo5vd9M7bneXbU-Q6y7CXBc4IxfaOrXZxTTErMipI9yU4oKeWMSc6P_oqPs7MYtxhjkjPBiXyWHTOalwUh7CRLS7feoFvf9C2k4Cy67CCsB3QBXXRpQDd9U_cBLXTa-ArQvUsbtAS9G5DuqimtmyGNso8wRuj6qxuhpY8J1T6g1Ui7vv3x7fvB5p1OCcLwInta6ybC2eE8zT6_v_y0WM5W1x-uFuermc1xgWc1q3BuZYlLK1lFDTe1wdhwDVbmDPLaCkkl5sCMriWUtBa5tJJowIYKidlpdrX3rbzeqrvgWh0G5bVTvxI-rJUO4_QNqDwXhGlrjDCC18ANJoZIUVRQcFPQevR6u_e6600LlYUuBd08MH1Y6dxGrf1OCUYoz6dhXh8Mgv_SQ0yqddFC0-gOfB8VHb9GUCF4PqKvHqFb34dufKqJKkhR0JKPFN9TNvgYA9TKuqST81N_1yiC1bQlatoS9WdLRtn8kez3Hf4pOPS5dw0M_6HV-cXtDRECs59kY9G5
CitedBy_id crossref_primary_10_1039_D2TA06686F
crossref_primary_10_1021_acsaenm_3c00587
crossref_primary_10_1021_acs_energyfuels_1c04095
crossref_primary_10_1021_acsenergylett_2c02107
crossref_primary_10_1016_j_coco_2024_101971
crossref_primary_10_1007_s40843_020_1552_7
crossref_primary_10_3390_batteries10010039
crossref_primary_10_1016_j_est_2024_113002
crossref_primary_10_1002_adfm_202010693
crossref_primary_10_1002_smll_202005332
crossref_primary_10_1016_j_jelechem_2022_116742
crossref_primary_10_1007_s12598_024_02616_w
crossref_primary_10_1016_j_est_2023_107767
crossref_primary_10_1021_acsami_3c15300
crossref_primary_10_1007_s12613_022_2451_2
crossref_primary_10_1016_j_jechem_2023_02_009
crossref_primary_10_1039_D0NR05727D
crossref_primary_10_3390_nano12234341
crossref_primary_10_1007_s12274_021_3578_6
crossref_primary_10_1016_j_apsusc_2020_148914
crossref_primary_10_1016_j_jallcom_2023_169200
crossref_primary_10_1039_D3RA00502J
crossref_primary_10_1016_j_jechem_2022_08_027
crossref_primary_10_1002_cey2_487
crossref_primary_10_1021_acsami_1c10749
crossref_primary_10_1002_adfm_202200893
crossref_primary_10_1016_j_apsusc_2022_152613
crossref_primary_10_1021_acs_energyfuels_2c01211
crossref_primary_10_1002_aesr_202100157
crossref_primary_10_1007_s11581_022_04718_w
crossref_primary_10_1016_j_jcis_2022_10_006
crossref_primary_10_3390_molecules28052389
crossref_primary_10_1002_adma_202003955
crossref_primary_10_1002_adma_202100810
crossref_primary_10_1021_acssuschemeng_4c04531
crossref_primary_10_1002_sus2_42
crossref_primary_10_1007_s41918_024_00235_8
crossref_primary_10_1016_j_cej_2022_134797
crossref_primary_10_1016_j_apsusc_2023_158949
crossref_primary_10_1002_eem2_12358
crossref_primary_10_1021_acssuschemeng_3c04368
crossref_primary_10_1039_D2TA03421B
crossref_primary_10_1002_aenm_202300973
crossref_primary_10_1016_j_ensm_2023_102817
crossref_primary_10_3390_molecules28114286
crossref_primary_10_1016_j_jallcom_2024_178355
crossref_primary_10_1021_acsaem_3c01087
crossref_primary_10_1002_adma_202003666
crossref_primary_10_1002_advs_202303916
crossref_primary_10_1016_j_compositesb_2022_110410
crossref_primary_10_1007_s12274_023_5945_y
crossref_primary_10_1002_celc_202101564
crossref_primary_10_1016_j_cej_2024_151132
crossref_primary_10_1021_acsami_1c16191
crossref_primary_10_1039_D2MA00428C
crossref_primary_10_1002_adfm_202304965
crossref_primary_10_1016_j_nanoen_2024_109611
crossref_primary_10_1039_D1NR04506G
crossref_primary_10_1021_acsnano_0c07999
crossref_primary_10_1002_advs_202206057
crossref_primary_10_1021_acs_energyfuels_1c01102
crossref_primary_10_1002_smll_202200418
crossref_primary_10_1002_smll_202202557
crossref_primary_10_1039_D2CS00810F
crossref_primary_10_1002_cey2_152
crossref_primary_10_1007_s11431_022_2148_7
crossref_primary_10_1002_elsa_202100154
crossref_primary_10_1002_celc_202400481
crossref_primary_10_1038_s41467_025_57755_0
crossref_primary_10_1007_s11367_023_02134_4
crossref_primary_10_1002_adfm_202303503
crossref_primary_10_3390_molecules29215116
crossref_primary_10_1016_j_jechem_2020_07_020
crossref_primary_10_3390_molecules28134973
crossref_primary_10_1016_j_cej_2020_126775
crossref_primary_10_1039_D1QM00250C
crossref_primary_10_1021_acsnano_1c02047
crossref_primary_10_1002_advs_202201823
crossref_primary_10_1016_j_cej_2024_153762
crossref_primary_10_1002_cjce_24357
crossref_primary_10_1002_smtd_202301316
crossref_primary_10_1021_acsaem_3c00067
crossref_primary_10_1063_5_0110449
crossref_primary_10_1016_j_jcis_2022_07_142
crossref_primary_10_1021_acs_energyfuels_2c02981
crossref_primary_10_1002_advs_202207563
crossref_primary_10_3390_en14196006
crossref_primary_10_1007_s41918_022_00162_6
crossref_primary_10_1016_j_joule_2021_06_009
crossref_primary_10_1007_s11581_022_04461_2
crossref_primary_10_1021_acsami_3c14753
crossref_primary_10_1002_cssc_202300135
crossref_primary_10_1016_j_apsusc_2022_152805
crossref_primary_10_1016_j_jallcom_2024_175960
crossref_primary_10_1016_j_jechem_2021_09_036
crossref_primary_10_1021_acsami_1c07204
crossref_primary_10_1002_cssc_202002140
crossref_primary_10_1021_acsenergylett_3c00826
crossref_primary_10_26599_JAC_2023_9220794
crossref_primary_10_1016_j_ccr_2023_215055
crossref_primary_10_1002_adfm_202308210
crossref_primary_10_1007_s11581_022_04549_9
crossref_primary_10_1002_aenm_202100332
crossref_primary_10_1016_j_jechem_2024_03_037
crossref_primary_10_1002_adma_202414047
crossref_primary_10_1016_j_jpowsour_2021_230764
crossref_primary_10_1007_s12598_024_03180_z
crossref_primary_10_1002_celc_202300696
Cites_doi 10.1002/ange.201808311
10.1021/ac2032244
10.1002/adfm.201901051
10.1021/acs.jpcc.7b04170
10.1039/C5MH00246J
10.1016/j.nanoen.2013.12.013
10.1126/science.359.6380.1080
10.1038/srep14949
10.1002/aenm.201402263
10.1002/aenm.201702337
10.1002/adfm.201707234
10.1007/s40843-018-9292-7
10.1021/acs.nanolett.7b00417
10.1039/b925751a
10.1039/B916098A
10.1002/advs.201700270
10.1002/aenm.201401986
10.1016/j.nanoen.2014.12.029
10.1002/adfm.201401501
10.1038/ncomms9850
10.1016/j.ensm.2018.11.029
10.1002/aenm.201601630
10.1016/j.jelechem.2004.12.004
10.1016/j.nanoen.2015.01.007
10.1002/advs.201800815
10.1038/ncomms6682
10.1002/aenm.201501636
10.1038/nmat3191
10.1021/acsnano.5b06592
10.1021/acs.jpclett.5b01814
10.1038/nmat2460
10.1002/aenm.201402290
10.1002/aenm.201703438
10.1038/s41560-019-0351-0
10.1021/ja206955k
10.1038/ncomms11203
10.1021/jacs.5b04472
10.1038/natrevmats.2016.13
10.1002/aenm.201803477
10.1002/adfm.201302631
ContentType Journal Article
Copyright 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID 24P
AAYXX
CITATION
3V.
7XB
88I
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
M2O
M2P
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1002/advs.201903693
DatabaseName Wiley Online Library Open Access
CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
Research Library
Science Database
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Research Library Prep
ProQuest Science Journals (Alumni Edition)
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
CrossRef

MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2198-3844
EndPage n/a
ExternalDocumentID oai_doaj_org_article_55713acbb7b74fe4b01b1876de64b62f
PMC7312450
10_1002_advs_201903693
ADVS1770
Genre article
GrantInformation_xml – fundername: National Key Research and Development Program
  funderid: 2016YFB0100200
– fundername: National Natural Science Foundation of China
  funderid: 21935006; 21421001
– fundername: ;
  grantid: 2016YFB0100200
– fundername: ;
  grantid: 21935006; 21421001
GroupedDBID 0R~
1OC
24P
53G
5VS
88I
8G5
AAFWJ
AAHHS
AAZKR
ABDBF
ABUWG
ACCFJ
ACCMX
ACGFS
ACUHS
ACXQS
ADBBV
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AFBPY
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
AZQEC
BCNDV
BENPR
BPHCQ
BRXPI
CCPQU
DWQXO
EBS
EJD
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
HCIFZ
HYE
IAO
ITC
KQ8
M2O
M2P
O9-
OK1
PIMPY
PQQKQ
PROAC
ROL
RPM
WIN
AAYXX
ADMLS
AFPKN
CITATION
IGS
PHGZM
PHGZT
3V.
7XB
8FK
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c5060-f3d05c8909c83d2b4bfb00b4aec853e5fc782804e3baf8e92f758c81ae0b27803
IEDL.DBID BENPR
ISSN 2198-3844
IngestDate Wed Aug 27 01:31:52 EDT 2025
Thu Aug 21 18:13:48 EDT 2025
Fri Jul 11 10:49:57 EDT 2025
Fri Jul 25 08:22:39 EDT 2025
Thu Apr 24 23:07:50 EDT 2025
Tue Jul 01 03:59:23 EDT 2025
Wed Jan 22 16:33:13 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License Attribution
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5060-f3d05c8909c83d2b4bfb00b4aec853e5fc782804e3baf8e92f758c81ae0b27803
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7305-7567
OpenAccessLink https://www.proquest.com/docview/2416166294?pq-origsite=%requestingapplication%
PMID 32596113
PQID 2416166294
PQPubID 4365299
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_55713acbb7b74fe4b01b1876de64b62f
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7312450
proquest_miscellaneous_2418727745
proquest_journals_2416166294
crossref_citationtrail_10_1002_advs_201903693
crossref_primary_10_1002_advs_201903693
wiley_primary_10_1002_advs_201903693_ADVS1770
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2020
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: June 2020
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Hoboken
PublicationTitle Advanced science
PublicationYear 2020
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
– name: Wiley
References 2015; 12
2019; 4
2015; 6
2015; 5
2019; 6
2017 2015 2020; 17 5
2005; 577
2016; 10
2018 2018; 28 130
2019 2019; 9 62
2016; 6
2016; 7
2016; 1
2009 2011 2015 2014; 8 133 6 24
2018; 5
2016; 3
2018; 359
2014 2018; 4 8
2015; 137
2020
2015 2018; 12 8
2019; 29
2014 2015; 24 5
2017 2019; 7 20
2017; 121
2012 2010 2010; 11 3 20
2012; 84
e_1_2_5_27_1
e_1_2_5_28_1
e_1_2_5_25_1
e_1_2_5_26_1
e_1_2_5_23_1
e_1_2_5_24_1
e_1_2_5_21_1
e_1_2_5_22_1
e_1_2_5_29_1
e_1_2_5_20_1
e_1_2_5_15_1
e_1_2_5_13_2
e_1_2_5_14_1
e_1_2_5_9_2
e_1_2_5_16_2
e_1_2_5_17_1
e_1_2_5_6_4
e_1_2_5_8_2
e_1_2_5_9_1
e_1_2_5_16_1
e_1_2_5_6_3
e_1_2_5_7_2
e_1_2_5_8_1
e_1_2_5_11_1
e_1_2_5_6_2
e_1_2_5_7_1
e_1_2_5_10_1
e_1_2_5_6_1
e_1_2_5_12_2
e_1_2_5_13_1
e_1_2_5_3_3
e_1_2_5_5_1
e_1_2_5_12_1
e_1_2_5_2_3
e_1_2_5_3_2
e_1_2_5_4_1
e_1_2_5_2_2
e_1_2_5_3_1
e_1_2_5_2_1
e_1_2_5_1_1
e_1_2_5_19_1
e_1_2_5_18_1
References_xml – volume: 6
  start-page: 5682
  year: 2015
  publication-title: Nat. Commun.
– volume: 17 5
  start-page: 3061
  year: 2017 2015 2020
  publication-title: Nano Lett. Adv. Energy Mater.
– volume: 11 3 20
  start-page: 19 174 9821
  year: 2012 2010 2010
  publication-title: Nat. Mater. Energy Environ. Sci. J. Mater. Chem.
– volume: 121
  year: 2017
  publication-title: J. Phys. Chem. C
– volume: 5
  year: 2018
  publication-title: Adv. Sci.
– volume: 7
  year: 2016
  publication-title: Nat. Commun.
– volume: 137
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 359
  start-page: 1080
  year: 2018
  publication-title: Science
– volume: 5
  year: 2015
  publication-title: Sci. Rep.
– volume: 3
  start-page: 130
  year: 2016
  publication-title: Mater. Horiz.
– volume: 9 62
  start-page: 74
  year: 2019 2019
  publication-title: Adv. Energy Mater. Sci. China Mater.
– volume: 4
  start-page: 374
  year: 2019
  publication-title: Nat. Energy
– volume: 7 20
  start-page: 14
  year: 2017 2019
  publication-title: Adv. Energy Mater. Energy Storage Mater.
– volume: 6
  start-page: 4581
  year: 2015
  publication-title: J. Phys. Chem. Lett.
– volume: 84
  start-page: 3973
  year: 2012
  publication-title: Anal. Chem.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 6
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 10
  start-page: 1240
  year: 2016
  publication-title: ACS Nano
– volume: 5
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 12
  start-page: 240
  year: 2015
  publication-title: Nano Energy
– year: 2020
– volume: 6
  year: 2019
  publication-title: Adv. Sci.
– volume: 1
  year: 2016
  publication-title: Nat. Rev. Mater.
– volume: 24 5
  start-page: 6105
  year: 2014 2015
  publication-title: Adv. Funct. Mater. Adv. Energy Mater.
– volume: 8 133 6 24
  start-page: 500 8850 1243
  year: 2009 2011 2015 2014
  publication-title: Nat. Mater. J. Am. Chem. Soc. Nat. Commun. Adv. Funct. Mater.
– volume: 4 8
  start-page: 65
  year: 2014 2018
  publication-title: Nano Energy Adv. Energy Mater.
– volume: 12 8
  start-page: 468
  year: 2015 2018
  publication-title: Nano Energy Adv. Energy Mater.
– volume: 577
  start-page: 295
  year: 2005
  publication-title: J. Electroanal. Chem.
– volume: 28 130
  year: 2018 2018
  publication-title: Adv. Funct. Mater. Angew. Chem.
– ident: e_1_2_5_16_2
  doi: 10.1002/ange.201808311
– ident: e_1_2_5_24_1
  doi: 10.1021/ac2032244
– ident: e_1_2_5_19_1
  doi: 10.1002/adfm.201901051
– ident: e_1_2_5_27_1
  doi: 10.1021/acs.jpcc.7b04170
– ident: e_1_2_5_20_1
  doi: 10.1039/C5MH00246J
– ident: e_1_2_5_7_1
  doi: 10.1016/j.nanoen.2013.12.013
– ident: e_1_2_5_4_1
  doi: 10.1126/science.359.6380.1080
– ident: e_1_2_5_11_1
  doi: 10.1038/srep14949
– ident: e_1_2_5_12_2
  doi: 10.1002/aenm.201402263
– ident: e_1_2_5_7_2
  doi: 10.1002/aenm.201702337
– ident: e_1_2_5_16_1
  doi: 10.1002/adfm.201707234
– ident: e_1_2_5_13_2
  doi: 10.1007/s40843-018-9292-7
– ident: e_1_2_5_3_1
  doi: 10.1021/acs.nanolett.7b00417
– ident: e_1_2_5_2_3
  doi: 10.1039/b925751a
– ident: e_1_2_5_2_2
  doi: 10.1039/B916098A
– ident: e_1_2_5_22_1
  doi: 10.1002/advs.201700270
– ident: e_1_2_5_3_2
  doi: 10.1002/aenm.201401986
– ident: e_1_2_5_21_1
  doi: 10.1016/j.nanoen.2014.12.029
– ident: e_1_2_5_12_1
  doi: 10.1002/adfm.201401501
– ident: e_1_2_5_6_3
  doi: 10.1038/ncomms9850
– ident: e_1_2_5_9_2
  doi: 10.1016/j.ensm.2018.11.029
– ident: e_1_2_5_9_1
  doi: 10.1002/aenm.201601630
– ident: e_1_2_5_14_1
– ident: e_1_2_5_29_1
  doi: 10.1016/j.jelechem.2004.12.004
– ident: e_1_2_5_8_1
  doi: 10.1016/j.nanoen.2015.01.007
– ident: e_1_2_5_10_1
  doi: 10.1002/advs.201800815
– ident: e_1_2_5_25_1
  doi: 10.1038/ncomms6682
– ident: e_1_2_5_26_1
  doi: 10.1002/aenm.201501636
– ident: e_1_2_5_2_1
  doi: 10.1038/nmat3191
– ident: e_1_2_5_15_1
  doi: 10.1021/acsnano.5b06592
– ident: e_1_2_5_18_1
  doi: 10.1021/acs.jpclett.5b01814
– ident: e_1_2_5_3_3
– ident: e_1_2_5_6_1
  doi: 10.1038/nmat2460
– ident: e_1_2_5_17_1
  doi: 10.1002/aenm.201402290
– ident: e_1_2_5_8_2
  doi: 10.1002/aenm.201703438
– ident: e_1_2_5_5_1
  doi: 10.1038/s41560-019-0351-0
– ident: e_1_2_5_6_2
  doi: 10.1021/ja206955k
– ident: e_1_2_5_23_1
  doi: 10.1038/ncomms11203
– ident: e_1_2_5_28_1
  doi: 10.1021/jacs.5b04472
– ident: e_1_2_5_1_1
  doi: 10.1038/natrevmats.2016.13
– ident: e_1_2_5_13_1
  doi: 10.1002/aenm.201803477
– ident: e_1_2_5_6_4
  doi: 10.1002/adfm.201302631
SSID ssj0001537418
Score 2.5241501
Snippet For high‐energy lithium–sulfur batteries, the poor volumetric energy density is a bottleneck as compared with lithium–ion batteries, due to the low density of...
For high-energy lithium-sulfur batteries, the poor volumetric energy density is a bottleneck as compared with lithium-ion batteries, due to the low density of...
Abstract For high‐energy lithium–sulfur batteries, the poor volumetric energy density is a bottleneck as compared with lithium–ion batteries, due to the low...
SourceID doaj
pubmedcentral
proquest
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1903693
SubjectTerms Carbon
catalytic conversion
cathodes
Communication
Communications
Electrolytes
Energy
heavy metal oxides
Lithium
lithium–sulfur batteries
Mathematical functions
Metal oxides
Nanomaterials
Sulfur content
volumetric energy density
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQT1wQ5UcESuVKSMAhqmPHsXME2mqFKBxKUW-RnYzFStssapOKvfEOfUOehBknu9ogoV64RfbIvzOebxz7M2OvFIYYSpWQojrINPcCUqczm0IRhG60hUbQBefTz8XsPP94oS-2nvqiM2EDPfAwcIdaYxjlau-NN3kALC3zGZpwA0XuCxlo9UWftxVMDfeDFdGyrFkahTx0zQ2xc6P_U0WpJl4okvVPEObf5yO3cWt0PCcP2YMRMfJ3Q0t32T1oH7Hd0Sav-ZuROPrtY9bRoQ3-La43RLzPj-PFPn5Eh9S7FT_rF6G_4nTpb9kApy1YPgN3s-KubSjZLVZYCT8F_OJffs5RaLa87jgCW_4Jpef95e9ft2MxAzPn6gk7Pzn--mGWjq8qpDWRCaZBNULXthRlbVUjfe4Dmp7PHdToukGHGkGDFTko74KFUgYMKWqbORBeGivUU7bTLlt4xjhZs3AmGOlMrr1yAkKZIWhwmQ6NFwlL16Nc1SPlOL18sagGsmRZ0axUm1lJ2OuN_I-BbOOfku9p0jZSRJIdE1B1qlF1qrtUJ2F76ymvRsvFKijiKwpZ5gk72GSjzdGPFNfCso8yFnEf9jlhZqIqkwZNc9r598jebRRCKk1jE5Xqjo5WiE7OMmPE8__R4xfsvqT9griLtMd2uqseXiKo6vx-tJ8_ioYgwA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagXLiglodYKMhISMAhquNH7Bx5tFohCkilqLfITmxYaUnQblJ1b_wH_iG_hBknmzZICHGLklFe4y_zzcTzmZCnAlIMIXKfwHDgiXTMJ1alJvFZYKpSxlcMG5yP32fzU_n2TJ1d6eLv9SHGghsiI36vEeDWrQ8uRUNtdY5y2xDQRJaL6-QG9tfipD4uP15WWZRAeRZcYQ6y60QYKbfKjYwfTE8xiUxRwH_COv-cM3mVy8ZgdLRLbg0skr7s3b5Hrvn6NtkbcLqmzwcx6Rd3SIsTOejn-A1CMX56GJv96BucuN5u6Em3DN2KYiNgU3mKZVk69_Z8Q21d4W673MBF6LGHLfrhYgFG82bdUiC79B1YL7pvv378HE7Tq3Vu7pLTo8NPr-fJsNJCUqLAYBJExVRpcpaXRlTcSRcAjk5aX0I49yqUQCQMk144G4zPeYA0ozSp9cxxbZi4R3bqpvb3CUWEM6uD5lZL5YRlPuQpEAmbqlA5NiPJ9i0X5SBDjqthLIteQJkX6JVi9MqMPBvtv_cCHH-1fIVOG61QODvuaFZfigGHhVKQldvSOe20DB4GZ-pSiAiVz6TLeJiR_a3LiwHNcAnMArOM53JGnoyHAYf4c8XWvumijQEuCM88I3oyVCY3ND1SL75GRW8tgGYpfDdxUP3jQQtgLCep1uzBf9o_JDc5lgtiEWmf7LSrzj8CTtW6xxE2vwHg8xxg
  priority: 102
  providerName: Wiley-Blackwell
Title High Volumetric Energy Density Sulfur Cathode with Heavy and Catalytic Metal Oxide Host for Lithium–Sulfur Battery
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.201903693
https://www.proquest.com/docview/2416166294
https://www.proquest.com/docview/2418727745
https://pubmed.ncbi.nlm.nih.gov/PMC7312450
https://doaj.org/article/55713acbb7b74fe4b01b1876de64b62f
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1fb9MwELdY-8ILYgNEYVSehAQ8RHPsOHGe0MY6VWgdE2Vob5Gd2KNSSUb_TPSN78A35JNw57qFIAFvUXxK7Nyd7-fL-WdCngtYYgiR2wjMgUeJYTbSMlaRTR2TlVS2YrjBeXSeDi-Tt1fyKiTc5qGscjMn-om6akrMkR9yROJpyvPk9c2XCE-Nwr-r4QiNHdKFKVipDukeD84v3v_KskiB9CwbtkbGD3V1iyzdEAdFmotWNPKk_S2k-Wed5O_41Qeg0_vkXkCO9Git6l1yx9Z7ZDf45py-DATSrx6QBRZv0I9-3kECfjrwG_zoCRarL1Z0vJy65Yzi5r-mshRTsXRo9e2K6rrC23q6gpfQkYUr-u7rBISGzXxBAeDSM5CeLD__-PY9PGbN0Ll6SC5PBx_eDKNwukJUIqlg5ETFZKlylpdKVNwkxoELmkTbEkK4la4E8KBYYoXRTtmcO1halCrWlhmeKSYekU7d1PYxoejVTGcu4zpLpBGaWZfHAB50LF1lWI9Em69clIF6HE_AmBZr0mReoFaKrVZ65MVW_mZNuvFXyWNU2lYKybL9jWZ2XQTfK6SElbgujclMljgLBhmbGKJAZdPEpNz1yP5G5UXwYHjF1t565GDbDL6HP1R0bZull1GA_2DMPZK1TKXVoXZLPfnkWbwzAdBK4rfxRvWfgRaAUsZxlrEn_-7sU3KXY0bA54n2SWcxW9pnAJsWpk92eHLRJ92jk9HZuB88pe-TED8BEZQclA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9AAXRHmI0AKLBAIOVte7Xj8OCFGaKqVJQLRFvZlde5dGCnbJo5Ab_4H_wY_ilzDj2IEgAafeLHvkx87r2_HuNwAPJU4xpEysh-YgvMBw62nlx54NHVe5im3OaYNzfxB2j4NXJ-pkDb43e2FoWWUTE6tAnZcZ1ci3BSHxMBRJ8Pzsk0ddo-jvatNCY2EWB3b-Gadsk2f7u6jfR0LsdY5edr26q4CXEZme52TOVRYnPMlimQsTGIemZwJtM0xdVrkMk2bMAyuNdrFNhENIncW-ttyIKOYS73sJ1gMZctGC9Z3O4M3bX1UdJYkOpmGH5GJb5-fECo55V4aJXMl-VZOAFWT757rM3_FylfD2rsHVGqmyFwvT2oA1W1yHjToWTNiTmrD66Q2Y0mIR9q6Kc0T4zzrVhkK2S4vjp3N2OBu52ZjRZsMyt4xKv6xr9fmc6SKn03o0x4ewvsUj9vrLEIW65WTKEFCzHkoPZx9_fP1W32bBCDq_CccXMu63oFWUhb0NjKII15GLhI4CZaTm1iU-ghXtK5cb3gavGeU0q6nOqePGKF2QNIuUtJIutdKGx0v5swXJx18ld0hpSyki565OlOMPae3rqVI489eZMZGJAmfRAXzjY9bJbRiYULg2bDUqT-uIgY9Y2ncbHiwvo6_TDxxd2HJWycSIN_Gb2xCtmMrKC61eKYanFWt4JBHKKRqbyqj-86EpoqJDP4r4nX-_7H243D3q99Le_uBgE64IqkZUNaotaE3HM3sXIdvU3Kv9hMH7i3bNn2aQVhc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtQwFLXKVEJsEOUhBgoYCQQsonHsOE4WCFFmRlPaDhWlqLtgJzaMNCRlHoXs-Af-hs_hS7g3kwwECVh1FyVXefi-jp3rcwl5IGCKIURsPTAH7gWGWU9LP_Js6JjMZGQzhhucD8bh6Dh4eSJPNsj3Zi8MllU2MbEK1FmR4hp5jyMSD0MeBz1Xl0Uc9ofPTj952EEK_7Q27TRWJrJny88wfZs_3e2Drh9yPhy8eTHy6g4DXorEep4TGZNpFLM4jUTGTWAcmKEJtE0hjVnpUkigEQusMNpFNuYO4HUa-doyw1XEBNz3AtlUOCvqkM2dwfjw9a8VHimQGqZhimS8p7MzZAiHHCzCWLQyYdUwoIVy_6zR_B07V8lveIVcrlErfb4ysy2yYfOrZKuOC3P6uCavfnKNLLBwhL6tYh6S_9NBtbmQ9rFQflHSo-XULWcUNx4WmaW4DExHVp-VVOcZntbTEh5CDywc0VdfJiA0KuYLCuCa7oP0ZPnxx9dv9W1W7KDldXJ8LuN-g3TyIrc3CcWIwrRyimsVSCM0sy72AbhoX7rMsC7xmlFO0pr2HLtvTJMVYTNPUCvJWitd8mgtf7oi_Pir5A4qbS2FRN3ViWL2Pqn9PpFS-UKnxiijAmfBGXzjQwbKbBiYkLsu2W5UntTRAx6xtvUuub--DH6PP3N0botlJRMB9oRv7hLVMpXWC7Wv5JMPFYO4EgDrJI5NZVT_-dAEENKRrxS79e-XvUcugksm-7vjvdvkEseFiWq5apt0FrOlvQPobWHu1m5Cybvz9syfMlhaTA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High+Volumetric+Energy+Density+Sulfur+Cathode+with+Heavy+and+Catalytic+Metal+Oxide+Host+for+Lithium%E2%80%93Sulfur+Battery&rft.jtitle=Advanced+science&rft.au=Ya%E2%80%90Tao+Liu&rft.au=Liu%2C+Sheng&rft.au=Guo%E2%80%90Ran+Li&rft.au=Tian%E2%80%90Ying+Yan&rft.date=2020-06-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=2198-3844&rft.volume=7&rft.issue=12&rft_id=info:doi/10.1002%2Fadvs.201903693&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon