Charge Redistribution Caused by S,P Synergistically Active Ru Endows an Ultrahigh Hydrogen Evolution Activity of S‐Doped RuP Embedded in N,P,S‐Doped Carbon

Water splitting for production of hydrogen as a clean energy alternative to fossil fuel has received much attention, but it is still a tough challenge to synthesize electrocatalysts with controllable bonding and charge distribution. In this work, ultrafine S‐doped RuP nanoparticles homogeneously emb...

Full description

Saved in:
Bibliographic Details
Published inAdvanced science Vol. 7; no. 17; pp. 2001526 - n/a
Main Authors Liu, Xiaoyu, Liu, Fan, Yu, Jiayuan, Xiong, Guowei, Zhao, Lili, Sang, Yuanhua, Zuo, Shouwei, Zhang, Jing, Liu, Hong, Zhou, Weijia
Format Journal Article
LanguageEnglish
Published Weinheim John Wiley & Sons, Inc 01.09.2020
John Wiley and Sons Inc
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Water splitting for production of hydrogen as a clean energy alternative to fossil fuel has received much attention, but it is still a tough challenge to synthesize electrocatalysts with controllable bonding and charge distribution. In this work, ultrafine S‐doped RuP nanoparticles homogeneously embedded in a N, P, and S‐codoped carbon sheet (S‐RuP@NPSC) is synthesized by pyrolysis of poly(cyclotriphosphazene‐co‐4,4′‐sulfonyldiphenol) (PZS) as the source of C/N/S/P. The bondings between Ru and N, P, S in PZS are regulated to synthesize RuS2 (800 °C) and S‐RuP (900 °C) by different calcination temperatures. The S‐RuP@NPSC with low Ru loading of 0.8 wt% with abundant active catalytic sites possesses high utilization of Ru, the mass catalytic activity is 22.88 times than 20 wt% Pt/C with the overpotential of 250 mV. Density functional theory calculation confirms that the surface Ru (−0.18 eV) and P (0.05 eV) are catalytic active sites for the hydrogen evolution reaction (HER), and the according charge redistribution of Ru is regulated by S and P with reverse electronegativity and electron–donor property to induce a synergistically enhanced reactivity toward the HER. This work provides a rational method to regulate the bonding and charge distribution of Ru‐based electrocatalysts by reacting macromolecules with multielement of C/N/S/P with Ru. Synthesis of electrocatalysts with controllable bonding and charge distribution can optimize charge distribution and phase composition to induce a synergistically enhanced reactivity toward the hydrogen evolution reaction. This work provides a rational method to produce platinum‐like electrocatalysts, and according catalytic active sites are regulated by bonding C/N/S/P in the same molecular structure with Ru.
AbstractList Water splitting for production of hydrogen as a clean energy alternative to fossil fuel has received much attention, but it is still a tough challenge to synthesize electrocatalysts with controllable bonding and charge distribution. In this work, ultrafine S-doped RuP nanoparticles homogeneously embedded in a N, P, and S-codoped carbon sheet (S-RuP@NPSC) is synthesized by pyrolysis of poly(cyclotriphosphazene-co-4,4'-sulfonyldiphenol) (PZS) as the source of C/N/S/P. The bondings between Ru and N, P, S in PZS are regulated to synthesize RuS2 (800 °C) and S-RuP (900 °C) by different calcination temperatures. The S-RuP@NPSC with low Ru loading of 0.8 wt% with abundant active catalytic sites possesses high utilization of Ru, the mass catalytic activity is 22.88 times than 20 wt% Pt/C with the overpotential of 250 mV. Density functional theory calculation confirms that the surface Ru (-0.18 eV) and P (0.05 eV) are catalytic active sites for the hydrogen evolution reaction (HER), and the according charge redistribution of Ru is regulated by S and P with reverse electronegativity and electron-donor property to induce a synergistically enhanced reactivity toward the HER. This work provides a rational method to regulate the bonding and charge distribution of Ru-based electrocatalysts by reacting macromolecules with multielement of C/N/S/P with Ru.Water splitting for production of hydrogen as a clean energy alternative to fossil fuel has received much attention, but it is still a tough challenge to synthesize electrocatalysts with controllable bonding and charge distribution. In this work, ultrafine S-doped RuP nanoparticles homogeneously embedded in a N, P, and S-codoped carbon sheet (S-RuP@NPSC) is synthesized by pyrolysis of poly(cyclotriphosphazene-co-4,4'-sulfonyldiphenol) (PZS) as the source of C/N/S/P. The bondings between Ru and N, P, S in PZS are regulated to synthesize RuS2 (800 °C) and S-RuP (900 °C) by different calcination temperatures. The S-RuP@NPSC with low Ru loading of 0.8 wt% with abundant active catalytic sites possesses high utilization of Ru, the mass catalytic activity is 22.88 times than 20 wt% Pt/C with the overpotential of 250 mV. Density functional theory calculation confirms that the surface Ru (-0.18 eV) and P (0.05 eV) are catalytic active sites for the hydrogen evolution reaction (HER), and the according charge redistribution of Ru is regulated by S and P with reverse electronegativity and electron-donor property to induce a synergistically enhanced reactivity toward the HER. This work provides a rational method to regulate the bonding and charge distribution of Ru-based electrocatalysts by reacting macromolecules with multielement of C/N/S/P with Ru.
Water splitting for production of hydrogen as a clean energy alternative to fossil fuel has received much attention, but it is still a tough challenge to synthesize electrocatalysts with controllable bonding and charge distribution. In this work, ultrafine S‐doped RuP nanoparticles homogeneously embedded in a N, P, and S‐codoped carbon sheet (S‐RuP@NPSC) is synthesized by pyrolysis of poly(cyclotriphosphazene‐co‐4,4′‐sulfonyldiphenol) (PZS) as the source of C/N/S/P. The bondings between Ru and N, P, S in PZS are regulated to synthesize RuS2 (800 °C) and S‐RuP (900 °C) by different calcination temperatures. The S‐RuP@NPSC with low Ru loading of 0.8 wt% with abundant active catalytic sites possesses high utilization of Ru, the mass catalytic activity is 22.88 times than 20 wt% Pt/C with the overpotential of 250 mV. Density functional theory calculation confirms that the surface Ru (−0.18 eV) and P (0.05 eV) are catalytic active sites for the hydrogen evolution reaction (HER), and the according charge redistribution of Ru is regulated by S and P with reverse electronegativity and electron–donor property to induce a synergistically enhanced reactivity toward the HER. This work provides a rational method to regulate the bonding and charge distribution of Ru‐based electrocatalysts by reacting macromolecules with multielement of C/N/S/P with Ru.
Water splitting for production of hydrogen as a clean energy alternative to fossil fuel has received much attention, but it is still a tough challenge to synthesize electrocatalysts with controllable bonding and charge distribution. In this work, ultrafine S‐doped RuP nanoparticles homogeneously embedded in a N, P, and S‐codoped carbon sheet (S‐RuP@NPSC) is synthesized by pyrolysis of poly(cyclotriphosphazene‐ co ‐4,4′‐sulfonyldiphenol) (PZS) as the source of C/N/S/P. The bondings between Ru and N, P, S in PZS are regulated to synthesize RuS 2 (800 °C) and S‐RuP (900 °C) by different calcination temperatures. The S‐RuP@NPSC with low Ru loading of 0.8 wt% with abundant active catalytic sites possesses high utilization of Ru, the mass catalytic activity is 22.88 times than 20 wt% Pt/C with the overpotential of 250 mV. Density functional theory calculation confirms that the surface Ru (−0.18 eV) and P (0.05 eV) are catalytic active sites for the hydrogen evolution reaction (HER), and the according charge redistribution of Ru is regulated by S and P with reverse electronegativity and electron–donor property to induce a synergistically enhanced reactivity toward the HER. This work provides a rational method to regulate the bonding and charge distribution of Ru‐based electrocatalysts by reacting macromolecules with multielement of C/N/S/P with Ru.
Abstract Water splitting for production of hydrogen as a clean energy alternative to fossil fuel has received much attention, but it is still a tough challenge to synthesize electrocatalysts with controllable bonding and charge distribution. In this work, ultrafine S‐doped RuP nanoparticles homogeneously embedded in a N, P, and S‐codoped carbon sheet (S‐RuP@NPSC) is synthesized by pyrolysis of poly(cyclotriphosphazene‐co‐4,4′‐sulfonyldiphenol) (PZS) as the source of C/N/S/P. The bondings between Ru and N, P, S in PZS are regulated to synthesize RuS2 (800 °C) and S‐RuP (900 °C) by different calcination temperatures. The S‐RuP@NPSC with low Ru loading of 0.8 wt% with abundant active catalytic sites possesses high utilization of Ru, the mass catalytic activity is 22.88 times than 20 wt% Pt/C with the overpotential of 250 mV. Density functional theory calculation confirms that the surface Ru (−0.18 eV) and P (0.05 eV) are catalytic active sites for the hydrogen evolution reaction (HER), and the according charge redistribution of Ru is regulated by S and P with reverse electronegativity and electron–donor property to induce a synergistically enhanced reactivity toward the HER. This work provides a rational method to regulate the bonding and charge distribution of Ru‐based electrocatalysts by reacting macromolecules with multielement of C/N/S/P with Ru.
Water splitting for production of hydrogen as a clean energy alternative to fossil fuel has received much attention, but it is still a tough challenge to synthesize electrocatalysts with controllable bonding and charge distribution. In this work, ultrafine S‐doped RuP nanoparticles homogeneously embedded in a N, P, and S‐codoped carbon sheet (S‐RuP@NPSC) is synthesized by pyrolysis of poly(cyclotriphosphazene‐ co ‐4,4′‐sulfonyldiphenol) (PZS) as the source of C/N/S/P. The bondings between Ru and N, P, S in PZS are regulated to synthesize RuS 2 (800 °C) and S‐RuP (900 °C) by different calcination temperatures. The S‐RuP@NPSC with low Ru loading of 0.8 wt% with abundant active catalytic sites possesses high utilization of Ru, the mass catalytic activity is 22.88 times than 20 wt% Pt/C with the overpotential of 250 mV. Density functional theory calculation confirms that the surface Ru (−0.18 eV) and P (0.05 eV) are catalytic active sites for the hydrogen evolution reaction (HER), and the according charge redistribution of Ru is regulated by S and P with reverse electronegativity and electron–donor property to induce a synergistically enhanced reactivity toward the HER. This work provides a rational method to regulate the bonding and charge distribution of Ru‐based electrocatalysts by reacting macromolecules with multielement of C/N/S/P with Ru. Synthesis of electrocatalysts with controllable bonding and charge distribution can optimize charge distribution and phase composition to induce a synergistically enhanced reactivity toward the hydrogen evolution reaction. This work provides a rational method to produce platinum‐like electrocatalysts, and according catalytic active sites are regulated by bonding C/N/S/P in the same molecular structure with Ru.
Water splitting for production of hydrogen as a clean energy alternative to fossil fuel has received much attention, but it is still a tough challenge to synthesize electrocatalysts with controllable bonding and charge distribution. In this work, ultrafine S‐doped RuP nanoparticles homogeneously embedded in a N, P, and S‐codoped carbon sheet (S‐RuP@NPSC) is synthesized by pyrolysis of poly(cyclotriphosphazene‐co‐4,4′‐sulfonyldiphenol) (PZS) as the source of C/N/S/P. The bondings between Ru and N, P, S in PZS are regulated to synthesize RuS2 (800 °C) and S‐RuP (900 °C) by different calcination temperatures. The S‐RuP@NPSC with low Ru loading of 0.8 wt% with abundant active catalytic sites possesses high utilization of Ru, the mass catalytic activity is 22.88 times than 20 wt% Pt/C with the overpotential of 250 mV. Density functional theory calculation confirms that the surface Ru (−0.18 eV) and P (0.05 eV) are catalytic active sites for the hydrogen evolution reaction (HER), and the according charge redistribution of Ru is regulated by S and P with reverse electronegativity and electron–donor property to induce a synergistically enhanced reactivity toward the HER. This work provides a rational method to regulate the bonding and charge distribution of Ru‐based electrocatalysts by reacting macromolecules with multielement of C/N/S/P with Ru. Synthesis of electrocatalysts with controllable bonding and charge distribution can optimize charge distribution and phase composition to induce a synergistically enhanced reactivity toward the hydrogen evolution reaction. This work provides a rational method to produce platinum‐like electrocatalysts, and according catalytic active sites are regulated by bonding C/N/S/P in the same molecular structure with Ru.
Author Sang, Yuanhua
Liu, Xiaoyu
Zhang, Jing
Zuo, Shouwei
Zhou, Weijia
Xiong, Guowei
Zhao, Lili
Liu, Hong
Liu, Fan
Yu, Jiayuan
AuthorAffiliation 4 Beijing Synchrotron Radiation Facility Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 P. R. China
3 Guangzhou Key Laboratory for Surface Chemistry of Energy Materials School of Environment and Energy South China University of Technology Guangdong 510006 P. R. China
5 University of Chinese Academy of Sciences Beijing 100049 P. R. China
1 State Key Laboratory of Crystal Materials Shandong University Jinan 250100 P. R. China
2 Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy of Shandong Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 P. R. China
AuthorAffiliation_xml – name: 5 University of Chinese Academy of Sciences Beijing 100049 P. R. China
– name: 4 Beijing Synchrotron Radiation Facility Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 P. R. China
– name: 1 State Key Laboratory of Crystal Materials Shandong University Jinan 250100 P. R. China
– name: 2 Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy of Shandong Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 P. R. China
– name: 3 Guangzhou Key Laboratory for Surface Chemistry of Energy Materials School of Environment and Energy South China University of Technology Guangdong 510006 P. R. China
Author_xml – sequence: 1
  givenname: Xiaoyu
  surname: Liu
  fullname: Liu, Xiaoyu
  organization: Shandong University
– sequence: 2
  givenname: Fan
  surname: Liu
  fullname: Liu, Fan
  organization: University of Jinan
– sequence: 3
  givenname: Jiayuan
  surname: Yu
  fullname: Yu, Jiayuan
  organization: South China University of Technology
– sequence: 4
  givenname: Guowei
  surname: Xiong
  fullname: Xiong, Guowei
  organization: University of Jinan
– sequence: 5
  givenname: Lili
  surname: Zhao
  fullname: Zhao, Lili
  organization: University of Jinan
– sequence: 6
  givenname: Yuanhua
  surname: Sang
  fullname: Sang, Yuanhua
  organization: Shandong University
– sequence: 7
  givenname: Shouwei
  surname: Zuo
  fullname: Zuo, Shouwei
  organization: University of Chinese Academy of Sciences
– sequence: 8
  givenname: Jing
  surname: Zhang
  fullname: Zhang, Jing
  organization: Chinese Academy of Sciences
– sequence: 9
  givenname: Hong
  orcidid: 0000-0003-1640-9620
  surname: Liu
  fullname: Liu, Hong
  email: hongliu@sdu.edu.cn
  organization: University of Jinan
– sequence: 10
  givenname: Weijia
  surname: Zhou
  fullname: Zhou, Weijia
  email: ifc_zhouwj@ujn.edu.cn
  organization: University of Jinan
BookMark eNqFks1uGyEUhUdVqiZNs-0aqZsubBcYxsCmkjVxm0hRa8VNt4gBZow1BhdmHM2uj9A36Lv1SYrjKG2yyYqfc87HBe7r7Mh5Z7LsLYITBCH-IPUuTjDEEKICT19kJxhxNs4ZIUf_zY-zsxjXcG_KKUHsVXacY84LlJOT7He5kqEx4NpoG7tgq76z3oFS9tFoUA1gOVqA5eBMaJJulWzbAcxUZ3cp04O50_42AunATdsFubLNClwMOvjGODDf-faAuwvYbgC-Bss_P3-d-22iX_cLMN9URuu0sA58GS1G_9RShsq7N9nLWrbRnN2Pp9nNp_m38mJ89fXzZTm7GqsCTuGY6TpXFaSQK2jq2hSKcJVDrAsuTVIURnWBcW4oU7SGkkOJMdcSYU2rqarz0-zywNVersU22I0Mg_DSirsNHxohQ7p_a4TGMmeMV5jVjGCtOKey1grKSkGKVJFYHw-sbV9tjFbGpadpH0EfK86uRON3ghaQEkoS4P09IPgfvYmd2NioTNtKZ3wfBSaEFmSK0DRZ3z2xrn0fXHqqvQsyihjlyTU5uFTwMQZTPxSDoNi3kti3knhopRQgTwLKdnL_l6lg2z4bu7WtGZ45RMzOvy8RK2D-F6Lw4Zk
CitedBy_id crossref_primary_10_1002_ece2_4
crossref_primary_10_1016_j_apsusc_2024_159548
crossref_primary_10_1021_acs_chemrev_3c00389
crossref_primary_10_3390_catal14080491
crossref_primary_10_1016_j_colsurfa_2025_136521
crossref_primary_10_1002_chem_202101645
crossref_primary_10_1002_adma_202310699
crossref_primary_10_1016_j_jallcom_2024_176795
crossref_primary_10_1002_smtd_202301469
crossref_primary_10_1021_acsami_0c14170
crossref_primary_10_3390_nano12193328
crossref_primary_10_1016_j_cej_2023_143993
crossref_primary_10_1021_acscatal_1c01447
crossref_primary_10_1073_pnas_2300493120
crossref_primary_10_1039_D3CS01122D
crossref_primary_10_1002_smll_202208045
crossref_primary_10_1016_S1872_2067_21_63977_3
crossref_primary_10_1016_j_apcatb_2023_123004
crossref_primary_10_1016_j_jallcom_2024_173672
crossref_primary_10_1016_j_jpowsour_2021_230718
crossref_primary_10_1002_smll_202208117
crossref_primary_10_1039_D1NJ05434A
crossref_primary_10_1016_j_colsurfa_2023_131452
crossref_primary_10_1021_acscatal_2c02390
crossref_primary_10_1016_j_jcis_2024_03_019
crossref_primary_10_1039_D2CC03579K
crossref_primary_10_1002_adfm_202411111
crossref_primary_10_1016_j_nanoen_2021_105940
crossref_primary_10_1039_D4DT02220C
crossref_primary_10_1039_D1NJ04668C
crossref_primary_10_1039_D2TA09258A
crossref_primary_10_1002_ange_202300879
crossref_primary_10_1016_j_cej_2024_157518
crossref_primary_10_1016_j_enchem_2023_100108
crossref_primary_10_1016_j_nanoen_2022_107882
crossref_primary_10_1016_j_cej_2021_129128
crossref_primary_10_1016_j_mcat_2023_113216
crossref_primary_10_1021_acssuschemeng_1c06178
crossref_primary_10_1021_acsnano_2c12168
crossref_primary_10_1002_advs_202309869
crossref_primary_10_1002_advs_202414622
crossref_primary_10_1002_anie_202300879
crossref_primary_10_1002_smll_202301403
crossref_primary_10_1016_j_cej_2021_134421
crossref_primary_10_1002_adma_202312524
crossref_primary_10_1016_j_fuel_2023_127637
crossref_primary_10_1039_D1CS00323B
crossref_primary_10_1021_acsami_1c24363
crossref_primary_10_3390_catal13111404
crossref_primary_10_1016_j_psep_2023_08_066
crossref_primary_10_1007_s11581_023_05248_9
crossref_primary_10_1016_j_ijhydene_2024_11_348
crossref_primary_10_1016_j_jcis_2022_11_076
crossref_primary_10_1039_D2TA06941E
crossref_primary_10_1007_s40820_021_00679_3
crossref_primary_10_1002_aenm_202201009
crossref_primary_10_1002_smll_202106870
crossref_primary_10_1016_j_jcis_2024_06_058
crossref_primary_10_1007_s10853_022_07576_z
crossref_primary_10_1021_acsanm_4c01438
crossref_primary_10_1039_D1NA00439E
crossref_primary_10_1016_j_carbon_2023_118482
crossref_primary_10_1016_j_cej_2021_132557
crossref_primary_10_1039_D2TA03358E
crossref_primary_10_1002_smll_202006860
crossref_primary_10_1039_D1NR02019F
crossref_primary_10_1002_smll_202200242
crossref_primary_10_1016_j_surfin_2024_104544
crossref_primary_10_1021_acsaem_0c02877
crossref_primary_10_1021_acsami_2c22632
crossref_primary_10_1039_D4MH00242C
crossref_primary_10_1002_adfm_202411094
crossref_primary_10_1002_adfm_202105372
crossref_primary_10_1002_ange_202113664
crossref_primary_10_12677_japc_2024_134068
crossref_primary_10_1002_adma_202100143
crossref_primary_10_1021_jacs_1c11331
crossref_primary_10_1002_smll_202309176
crossref_primary_10_1039_D3TA03382A
crossref_primary_10_3390_catal15010098
crossref_primary_10_1039_D3EE04338J
crossref_primary_10_1039_D1NA00025J
crossref_primary_10_1039_D4NR04433A
crossref_primary_10_1016_j_cej_2022_138550
crossref_primary_10_1016_j_carbon_2025_120098
crossref_primary_10_1021_acscatal_4c04561
crossref_primary_10_1039_D2CY00055E
crossref_primary_10_1039_D2TA03465D
crossref_primary_10_1016_j_mtsust_2021_100074
crossref_primary_10_1002_anie_202113664
crossref_primary_10_1039_D4TA05277C
crossref_primary_10_1002_celc_202101246
crossref_primary_10_1002_adma_202204624
crossref_primary_10_1016_j_ijhydene_2023_03_091
crossref_primary_10_1002_celc_202001149
crossref_primary_10_1016_j_fuel_2023_130602
crossref_primary_10_1002_adfm_202307917
crossref_primary_10_1002_adfm_202401194
crossref_primary_10_1016_j_est_2023_106885
crossref_primary_10_1016_j_fuel_2024_134264
crossref_primary_10_1016_j_jallcom_2023_172020
crossref_primary_10_1016_j_cej_2023_144187
Cites_doi 10.1039/C5CS00434A
10.1038/nmat1752
10.1002/anie.201810102
10.1039/C7TA03669H
10.1002/adfm.201901154
10.1002/cssc.201801103
10.1039/C9EE00197B
10.1002/anie.201704911
10.1002/anie.201406848
10.1002/smll.201804201
10.1016/j.apcatb.2020.118880
10.1002/adma.201604563
10.1002/adma.201600398
10.1016/j.isci.2019.08.055
10.1039/c3nr00010a
10.1002/aenm.201803312
10.1002/adfm.201805298
10.1039/C8CC01166D
10.1039/C7EE03345A
10.1039/C6TA01328G
10.1002/adma.201802880
10.1021/jacs.8b09834
10.1021/ja403440e
10.1039/C7NR05085B
10.1039/C4EE00957F
10.1038/s41467-020-15069-3
10.1126/science.193.4259.1214
10.1039/C8TA10695A
10.1038/nnano.2015.48
10.1038/s41467-019-08419-3
10.1002/advs.201903674
10.1002/anie.201206720
10.1002/anie.201600455
10.1039/b9nj00774a
10.1021/nn5048553
10.1039/C9TA04120F
10.1002/chem.201901215
10.1021/acscatal.6b02479
10.1016/j.matlet.2018.04.030
10.1016/j.nanoen.2016.08.027
10.1201/b19635
10.1021/jacs.7b12615
10.1039/C8NR03554G
10.1002/cctc.201601014
10.1021/nn501434a
10.1002/aenm.201900931
10.1002/adma.201800047
10.1038/s41560-018-0209-x
10.1039/C8EE03276A
10.1039/C5CC00370A
10.1021/acsami.8b08239
10.1002/anie.201608899
10.1002/anie.201404161
10.1002/aenm.201801478
10.1002/anie.201209548
ContentType Journal Article
Copyright 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID 24P
AAYXX
CITATION
3V.
7XB
88I
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
M2O
M2P
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1002/advs.202001526
DatabaseName Wiley Online Library Open Access
CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest research library
Science Database
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Open Access Full Text
DatabaseTitle CrossRef
Publicly Available Content Database
Research Library Prep
ProQuest Science Journals (Alumni Edition)
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Publicly Available Content Database
CrossRef



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2198-3844
EndPage n/a
ExternalDocumentID oai_doaj_org_article_d2a3889b28f842dc997afdc0abc071c5
PMC7507474
10_1002_advs_202001526
ADVS1850
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 51972147; BL1W1B
– fundername: Natural Science Foundation of Shandong Province
  funderid: ZR2019YQ20; 2019JMRH0410
– fundername: Taishan Scholars Project Special Funds
  funderid: tsqn201812083
– fundername: Guangdong Natural Science Funds for Distinguished Young Scholar
  funderid: 2017B030306001
– fundername: Taishan Scholars Project Special Funds
  grantid: tsqn201812083
– fundername: Guangdong Natural Science Funds for Distinguished Young Scholar
  grantid: 2017B030306001
– fundername: ;
  grantid: 51972147; BL1W1B
– fundername: ;
  grantid: ZR2019YQ20; 2019JMRH0410
GroupedDBID 0R~
1OC
24P
53G
5VS
88I
8G5
AAFWJ
AAHHS
AAZKR
ABDBF
ABUWG
ACCFJ
ACCMX
ACGFS
ACUHS
ACXQS
ADBBV
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AFBPY
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
AZQEC
BCNDV
BENPR
BPHCQ
BRXPI
CCPQU
DWQXO
EBS
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
HCIFZ
HYE
IAO
KQ8
M2O
M2P
O9-
OK1
PIMPY
PQQKQ
PROAC
ROL
RPM
WIN
AAYXX
ADMLS
AFPKN
CITATION
EJD
IGS
ITC
PHGZM
PHGZT
3V.
7XB
8FK
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c5060-8df3cb0709c0effe5c49c302d59ae3cbc21f5223e78c7f0a90a229da12d7b6cf3
IEDL.DBID DOA
ISSN 2198-3844
IngestDate Wed Aug 27 01:21:33 EDT 2025
Thu Aug 21 14:10:51 EDT 2025
Fri Jul 11 11:43:42 EDT 2025
Fri Jul 25 03:41:54 EDT 2025
Thu Apr 24 23:06:34 EDT 2025
Tue Jul 01 03:59:23 EDT 2025
Wed Jan 22 16:32:46 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Language English
License Attribution
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5060-8df3cb0709c0effe5c49c302d59ae3cbc21f5223e78c7f0a90a229da12d7b6cf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1640-9620
OpenAccessLink https://doaj.org/article/d2a3889b28f842dc997afdc0abc071c5
PMID 32995134
PQID 2440871879
PQPubID 4365299
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_d2a3889b28f842dc997afdc0abc071c5
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7507474
proquest_miscellaneous_2447546116
proquest_journals_2440871879
crossref_primary_10_1002_advs_202001526
crossref_citationtrail_10_1002_advs_202001526
wiley_primary_10_1002_advs_202001526_ADVS1850
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-09-01
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Hoboken
PublicationTitle Advanced science
PublicationYear 2020
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
– name: Wiley
References 2017; 5
2010; 34
2019; 7
2019; 9
2018; 140
2015; 51
2019; 10
2018; 223
2019; 12
2019; 15
2015; 10
2019; 19
2006; 5
2017; 29
2020; 11
1976; 193
2019; 141
2013; 5
2017; 9
2016; 55
2012; 51
2016; 4
2016; 6
2018; 8
2018; 3
2020
2017; 56
2020; 270
2019; 25
2013; 52
2013; 135
2019; 29
2018; 30
2016; 28
2018; 11
2014; 8
2014; 7
2018; 10
2018; 54
2018; 31
2016; 8
2016; 45
2014; 53
2018; 57
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_1_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – volume: 53
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 4
  start-page: 7169
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 5
  start-page: 909
  year: 2006
  publication-title: Nat. Mater.
– volume: 8
  start-page: 3334
  year: 2016
  publication-title: ChemCatChem
– volume: 56
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 7
  start-page: 2624
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 54
  start-page: 3343
  year: 2018
  publication-title: Chem. Commun.
– volume: 11
  start-page: 800
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 141
  start-page: 4505
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 12
  start-page: 952
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 135
  start-page: 9267
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 8865
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 51
  start-page: 6738
  year: 2015
  publication-title: Chem. Commun.
– volume: 51
  year: 2012
  publication-title: Angew. Chem., Int. Ed.
– volume: 11
  start-page: 1278
  year: 2020
  publication-title: Nat. Commun.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 270
  year: 2020
  publication-title: Appl. Catal., B
– volume: 28
  start-page: 29
  year: 2016
  publication-title: Nano Energy
– volume: 34
  start-page: 599
  year: 2010
  publication-title: New J. Chem.
– volume: 193
  start-page: 1214
  year: 1976
  publication-title: Science
– volume: 9
  year: 2017
  publication-title: Nanoscale
– year: 2020
  publication-title: Adv. Sci.
– volume: 223
  start-page: 97
  year: 2018
  publication-title: Mater. Lett.
– volume: 53
  start-page: 6710
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 25
  start-page: 7826
  year: 2019
  publication-title: Chem. ‐ Eur. J.
– volume: 10
  start-page: 631
  year: 2019
  publication-title: Nat. Commun.
– volume: 52
  start-page: 3110
  year: 2013
  publication-title: Angew. Chem., Int. Ed.
– volume: 5
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 7
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 140
  start-page: 2731
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 31
  year: 2018
  publication-title: Adv. Mater.
– volume: 45
  start-page: 1529
  year: 2016
  publication-title: Chem. Soc. Rev.
– volume: 8
  start-page: 5290
  year: 2014
  publication-title: ACS Nano
– volume: 28
  start-page: 5080
  year: 2016
  publication-title: Adv. Mater.
– volume: 10
  year: 2018
  publication-title: Nanoscale
– volume: 15
  year: 2019
  publication-title: Small
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 8
  year: 2014
  publication-title: ACS Nano
– volume: 11
  start-page: 2724
  year: 2018
  publication-title: ChemSusChem
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 56
  start-page: 842
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 3
  start-page: 773
  year: 2018
  publication-title: Nat. Energy
– volume: 10
  start-page: 444
  year: 2015
  publication-title: Nat. Nanotechnol.
– volume: 19
  start-page: 1090
  year: 2019
  publication-title: iScience
– volume: 57
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 6
  start-page: 8069
  year: 2016
  publication-title: ACS Catal.
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 5
  start-page: 7913
  year: 2013
  publication-title: Nanoscale
– volume: 12
  start-page: 322
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 55
  start-page: 4016
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– ident: e_1_2_6_32_1
  doi: 10.1039/C5CS00434A
– ident: e_1_2_6_49_1
  doi: 10.1038/nmat1752
– ident: e_1_2_6_24_1
  doi: 10.1002/anie.201810102
– ident: e_1_2_6_30_1
  doi: 10.1039/C7TA03669H
– ident: e_1_2_6_40_1
  doi: 10.1002/adfm.201901154
– ident: e_1_2_6_28_1
  doi: 10.1002/cssc.201801103
– ident: e_1_2_6_23_1
  doi: 10.1039/C9EE00197B
– ident: e_1_2_6_47_1
  doi: 10.1002/anie.201704911
– ident: e_1_2_6_20_1
  doi: 10.1002/anie.201406848
– ident: e_1_2_6_8_1
  doi: 10.1002/smll.201804201
– ident: e_1_2_6_26_1
  doi: 10.1016/j.apcatb.2020.118880
– ident: e_1_2_6_10_1
  doi: 10.1002/adma.201604563
– ident: e_1_2_6_7_1
  doi: 10.1002/adma.201600398
– ident: e_1_2_6_45_1
  doi: 10.1016/j.isci.2019.08.055
– ident: e_1_2_6_36_1
  doi: 10.1039/c3nr00010a
– ident: e_1_2_6_44_1
  doi: 10.1002/aenm.201803312
– ident: e_1_2_6_43_1
  doi: 10.1002/adfm.201805298
– ident: e_1_2_6_48_1
  doi: 10.1039/C8CC01166D
– ident: e_1_2_6_13_1
  doi: 10.1039/C7EE03345A
– ident: e_1_2_6_22_1
  doi: 10.1039/C6TA01328G
– ident: e_1_2_6_11_1
  doi: 10.1002/adma.201802880
– ident: e_1_2_6_2_1
  doi: 10.1021/jacs.8b09834
– ident: e_1_2_6_15_1
  doi: 10.1021/ja403440e
– ident: e_1_2_6_34_1
  doi: 10.1039/C7NR05085B
– ident: e_1_2_6_21_1
  doi: 10.1039/C4EE00957F
– ident: e_1_2_6_27_1
  doi: 10.1038/s41467-020-15069-3
– ident: e_1_2_6_37_1
  doi: 10.1126/science.193.4259.1214
– ident: e_1_2_6_31_1
  doi: 10.1039/C8TA10695A
– ident: e_1_2_6_6_1
  doi: 10.1038/nnano.2015.48
– ident: e_1_2_6_12_1
  doi: 10.1038/s41467-019-08419-3
– ident: e_1_2_6_55_1
  doi: 10.1002/advs.201903674
– ident: e_1_2_6_54_1
  doi: 10.1002/anie.201206720
– ident: e_1_2_6_5_1
  doi: 10.1002/anie.201600455
– ident: e_1_2_6_35_1
  doi: 10.1039/b9nj00774a
– ident: e_1_2_6_19_1
  doi: 10.1021/nn5048553
– ident: e_1_2_6_52_1
  doi: 10.1039/C9TA04120F
– ident: e_1_2_6_42_1
  doi: 10.1002/chem.201901215
– ident: e_1_2_6_46_1
  doi: 10.1021/acscatal.6b02479
– ident: e_1_2_6_3_1
  doi: 10.1016/j.matlet.2018.04.030
– ident: e_1_2_6_9_1
  doi: 10.1016/j.nanoen.2016.08.027
– ident: e_1_2_6_25_1
  doi: 10.1201/b19635
– ident: e_1_2_6_16_1
  doi: 10.1021/jacs.7b12615
– ident: e_1_2_6_41_1
  doi: 10.1039/C8NR03554G
– ident: e_1_2_6_50_1
  doi: 10.1002/cctc.201601014
– ident: e_1_2_6_33_1
  doi: 10.1021/nn501434a
– ident: e_1_2_6_38_1
  doi: 10.1002/aenm.201900931
– ident: e_1_2_6_14_1
  doi: 10.1002/adma.201800047
– ident: e_1_2_6_1_1
  doi: 10.1038/s41560-018-0209-x
– ident: e_1_2_6_4_1
  doi: 10.1039/C8EE03276A
– ident: e_1_2_6_39_1
  doi: 10.1039/C5CC00370A
– ident: e_1_2_6_51_1
  doi: 10.1021/acsami.8b08239
– ident: e_1_2_6_17_1
  doi: 10.1002/anie.201608899
– ident: e_1_2_6_18_1
  doi: 10.1002/anie.201404161
– ident: e_1_2_6_29_1
  doi: 10.1002/aenm.201801478
– ident: e_1_2_6_53_1
  doi: 10.1002/anie.201209548
SSID ssj0001537418
Score 2.5095656
Snippet Water splitting for production of hydrogen as a clean energy alternative to fossil fuel has received much attention, but it is still a tough challenge to...
Abstract Water splitting for production of hydrogen as a clean energy alternative to fossil fuel has received much attention, but it is still a tough challenge...
SourceID doaj
pubmedcentral
proquest
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2001526
SubjectTerms Adsorption
bonding regulation
Carbon
charge redistribution
Crystal lattices
Hydrogen
hydrogen evolution reaction
Molecular structure
Morphology
Nanoparticles
Particle size
Pore size
ruthenium phosphide
Spheres
ternary doping
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1bb9MwFLZge-EFMS6iMJCRkACp0RInaewntJVMFRJV1VJpb5Fv2SaVpLTLUN_4CfwD_hu_hHMcN1uRgFdfEifn4s_28XcIeR1DcTSQWSBgvgsSwQeBymwZpAkrM6OUiN1B-6fxYDRPPp6lZ37Dbe3DKrc-0TlqU2vcIz9imBo5w9zY75dfA8wahaerPoXGXbIPLpjD4mv_JB9Ppje7LGmM9CxbtsaQHUlzjSzdGEqUIqPCrdnIkfbvIM0_4yRv41c3AZ0-IPc9cqTHragPyB1bPSQH3jbX9K0nkH73iPzEM_RzS6d457bLaEWHsllbQ9WGzvoTOtvgrT9H0ywXiw09do6PThuaV6b-tqayovMFDAgJjeloY1Y16BrNr72uth0Aw9O6pLNf3398qJfw9GkzofkXZcGfGXpZ0XF_0r-pHcqVqqvHZH6afx6OAp-IIdDIPxhwU8ZagXMQOsQwk1QnQschM6mQFmo0i0rAcbHNuM7KUIpQMiaMjJjJ1ECX8ROyV9WVfUooB9_KZaRSbQ0strQCPApKgTxqAL1M2SPBViCF9izlmCxjUbT8yqxAARadAHvkTdd-2fJz_LXlCcq3a4W82q6gXp0X3kwLw2TMuVCMlzxhRguRydLoUCoNWEynPXK41Y7CGzu8olPNHnnVVYOZ4tmLrGzduDZZmgyiCMaR7WjVzoB2a6rLC0f4DagOVn0J_Bunf__50AIAzQxgWPjs34N9Tu5hnzZg7pDsXa0a-wIQ1pV66c3oNxYmKW8
  priority: 102
  providerName: ProQuest
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLZgvPCCGBdRGMhISIDUaInjXPw4SqcKialqqbS3yNdtUkmmdtnUt_0E_gH_jV_COU6aLkgI8WqfOE7OxZ9v3yHkXQzFUSqzQMB4F3CRp4HKrAsSzlxmlBKx32j_epJOFvzLaXJ65xZ_ww_RLbihZ_h4jQ4u1fpwRxoqzTXSbeOZoISl98kDvF-L7PmMT3erLEmM9CyYYQ5m10Gcc75lbgzZYb-J3sjkCfx7qPPPM5N3sawfjI4fk0ctiqRHjdr3yT1bPiH7rZ-u6YeWTPrjU_IT99PPLJ3h_dsuuxUdyXptDVUbOh9O6XyDNwA9ZbNcLjf0yAdBOqvpuDTVzZrKki6W0CEkN6aTjVlVYHd0fN3abfMA4HlaOTr_dfvjc3UJrc_qKR1_VxZim6EXJT0ZToe72pFcqap8RhbH42-jSdAmZQg0chEGuXGxVhAohA7xyEmiudBxyEwipIUazSIHmC62Wa4zF0oRSsaEkREzmUq1i5-TvbIq7QtCc4izuYxUoq2BiZdWgE3BQJBTDWCYcQMSbBVS6JaxHBNnLIuGa5kVqMCiU-CAvO_kLxuujr9KfkL9dlLIse0LqtVZ0bpsYZiM81wolrucM6OFyKQzOpRKAy7TyYAcbK2jaB0fXoEZvDNM4T4gb7tqcFnch5GlrWovkyU8jSLoR9azql6H-jXlxbkn_waEBzNADv_G298_PrQAcDMHSBa-_E_5V-QhFjan6Q7I3tWqtq8Bfl2pN97DfgOE-Cxq
  priority: 102
  providerName: Wiley-Blackwell
Title Charge Redistribution Caused by S,P Synergistically Active Ru Endows an Ultrahigh Hydrogen Evolution Activity of S‐Doped RuP Embedded in N,P,S‐Doped Carbon
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202001526
https://www.proquest.com/docview/2440871879
https://www.proquest.com/docview/2447546116
https://pubmed.ncbi.nlm.nih.gov/PMC7507474
https://doaj.org/article/d2a3889b28f842dc997afdc0abc071c5
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3bbtMwGLZg3HCDGAdRGJWRkACp0RLn4Piy6zJViFVRQ6XdRT6OSSWZ2mWodzwCb8C78ST8dtLQIqHdcBXJdhIfPvv_LP_-foTehpAcJJx6DOydF7E08QTVxosjYqgSgoXuoP18lkwX0ceL-GIn1Jf1CWvlgduOO1aEh2nKBElNGhElGaPcKOlzIcE6SqdeCjZvZzPV3g8OrSzLVqXRJ8dc3Vp1butCFFslhR0r5MT69xjm3_6Ru7zVGZ6zx-hRxxjxuK3pIbqnqyfosJuTa_y-E47-8BT9tGfnlxrP7V3bPpIVnvBmrRUWG1yMclxs7G0_J8_Ml8sNHrsFD88bnFWq_rbGvMKLJVTIChnj6UatasAYzm47jLYvAHfHtcHFr-8_Tutr-Pq8yXH2VWhYxxS-qvBslI_-5E74StTVM7Q4yz5Ppl4XgMGTVnfQS5UJpYBFgUnfupfEMmIy9ImKGdeQI0lggL-FmqaSGp8znxPCFA-IoiKRJnyODqq60i8QTmFNTXkgYqkVbLKkAB4KYLD6aUC5lBkgbzsgpezUyW2QjGXZ6iqT0g5g2Q_gAL3ry1-3uhz_LHlix7cvZfW0XQKgrOxQVt6FsgE62qKj7CY5_MJG66Y2XPsAvemzYXraMxde6bpxZWgcJUEA9aB7qNqr0H5OdfXFCX0Dm4PdXgR94_B3R0NLIDIF0C__5f9o8Sv00H65dac7Qgc3q0a_Bv51I4boPonyIXowPj3_VMDzJJvl86GbgL8BKjY1YQ
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEF6V9AAXRPkRgQKLBAKkWLXXduw9INSmrlLaRlHSSL2Z_XOpFOyQNK184xF4A96Ah-JJmPFfGyTg1Kt37awzs99-4539hpBXLlx2uiKwOKx3lsfDriUDk1i-x5JAS8ndYqP9aNDtT7yPJ_7JGvlZn4XBtMoaEwug1pnCb-RbDEsjB1gb-8Psq4VVo3B3tS6hUbrFgckvIWRbvN_fBfu-ZmwvOu71raqqgKVQTM8KdeIqCZ7OlY05E77yuHJtpn0uDLQo5iRASlwThCpIbMFtwRjXwmE6kF2VuPDcW2TdcyGUaZH1nWgwHF191fFdlIOp1SFttiX0BaqCY-qSjwoO11a_okjACrP9My_zOl8uFry9e-RuxVTpdulaG2TNpPfJRoUFC_q2Eqx-94D8wD37U0NHeMa3qaBFe2K5MJrKnI47QzrO8ZRhIQstptOcbhdAS0dLGqU6u1xQkdLJFAaEAsq0n-t5Br5No4tqbpQ3QMxAs4SOf337vpvN4Omj5ZBGX6QB_NT0LKWDzrBz1doTc5mlD8nkRkz0iLTSLDWPCQ0By0PhSF8ZDcGdksB_wQlRtw2onk7axKoNEqtKFR2Lc0zjUs-ZxWjAuDFgm7xp-s9KPZC_9txB-za9UMe7uJDNT-MKFmLNhBuGXLIwCT2mFeeBSLSyhVTA_ZTfJpu1d8QVuMBPNFOhTV42zQALuNcjUpMtiz6B73UdB8YRrHjVyoBWW9Kzz4XAOLBIiDI9-G8K__vPi8ZAoMZA--wn_x7sC3K7f3x0GB_uDw6ekjt4f5mst0la5_OleQbs7lw-r6YUJZ9uehb_BgVyZ04
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3ZbtNAFB2VVEK8IMoiAgUGCQRIsWKP9weE2ixKKURRQqS-ubOWSsEOSdMqb3wCf8B_8Dl8Cfd6a4MEPPXVM7bHvsucO3PnXEJeuHDZCXhoxTDfWV4cBZYItbF8j5lQCRG7-Ub7x2EwmHrvj_yjLfKzOguDaZWVT8wdtcokrpG3GZZGDrE2dtuUaRGjbv_d_KuFFaRwp7Uqp1GoyKFeX0D4tnx70AVZv2Ss3_vUGVhlhQFLIrGeFSnjSgFaH0sb8yd86cXStZnyY66hRTLHAEBxdRjJ0Ng8tjljseIOU6EIpHHhuTfIdghRkd0g2_u94Wh8ucLju0gNUzFF2qzN1TkyhGMak49sDldmwrxgwAbK_TNH8yp2zie__h1yu0StdK9Qsx2ypdO7ZKf0C0v6uiSvfnOP_MD9-xNNx3jet66mRTt8tdSKijWdtEZ0ssYThzlFNJ_N1nQvd7p0vKK9VGUXS8pTOp3BgJBMmQ7WapGBntPeeWknxQ0QP9DM0Mmvb9-72RyePl6NaO-L0OBLFT1N6bA1al22dvhCZOl9Mr0WET0gjTRL9UNCI_DrEXeEL7WCQE8KwMKgkMjhBrBPmSaxKoEksmRIx0Ids6TgdmYJCjCpBdgkr-r-84Ib5K8991G-dS_k9M4vZIuTpHQRiWLcjaJYsMhEHlMyjkNulLS5kIADpd8ku5V2JKWjgVfUZtEkz-tmcBG478NTna3yPqHvBY4D4wg3tGpjQJst6ennnGwcECVEnB78m1z__vOhCYCpCUBA-9G_B_uM3ATrTT4cDA8fk1t4e5G3t0saZ4uVfgJA70w8LS2KkuPrNuLfiG9rgw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Charge+Redistribution+Caused+by+S%2CP+Synergistically+Active+Ru+Endows+an+Ultrahigh+Hydrogen+Evolution+Activity+of+S%E2%80%90Doped+RuP+Embedded+in+N%2CP%2CS%E2%80%90Doped+Carbon&rft.jtitle=Advanced+science&rft.au=Xiaoyu+Liu&rft.au=Fan+Liu&rft.au=Jiayuan+Yu&rft.au=Guowei+Xiong&rft.date=2020-09-01&rft.pub=Wiley&rft.eissn=2198-3844&rft.volume=7&rft.issue=17&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadvs.202001526&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_d2a3889b28f842dc997afdc0abc071c5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon