Charge Redistribution Caused by S,P Synergistically Active Ru Endows an Ultrahigh Hydrogen Evolution Activity of S‐Doped RuP Embedded in N,P,S‐Doped Carbon
Water splitting for production of hydrogen as a clean energy alternative to fossil fuel has received much attention, but it is still a tough challenge to synthesize electrocatalysts with controllable bonding and charge distribution. In this work, ultrafine S‐doped RuP nanoparticles homogeneously emb...
Saved in:
Published in | Advanced science Vol. 7; no. 17; pp. 2001526 - n/a |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
John Wiley & Sons, Inc
01.09.2020
John Wiley and Sons Inc Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Water splitting for production of hydrogen as a clean energy alternative to fossil fuel has received much attention, but it is still a tough challenge to synthesize electrocatalysts with controllable bonding and charge distribution. In this work, ultrafine S‐doped RuP nanoparticles homogeneously embedded in a N, P, and S‐codoped carbon sheet (S‐RuP@NPSC) is synthesized by pyrolysis of poly(cyclotriphosphazene‐co‐4,4′‐sulfonyldiphenol) (PZS) as the source of C/N/S/P. The bondings between Ru and N, P, S in PZS are regulated to synthesize RuS2 (800 °C) and S‐RuP (900 °C) by different calcination temperatures. The S‐RuP@NPSC with low Ru loading of 0.8 wt% with abundant active catalytic sites possesses high utilization of Ru, the mass catalytic activity is 22.88 times than 20 wt% Pt/C with the overpotential of 250 mV. Density functional theory calculation confirms that the surface Ru (−0.18 eV) and P (0.05 eV) are catalytic active sites for the hydrogen evolution reaction (HER), and the according charge redistribution of Ru is regulated by S and P with reverse electronegativity and electron–donor property to induce a synergistically enhanced reactivity toward the HER. This work provides a rational method to regulate the bonding and charge distribution of Ru‐based electrocatalysts by reacting macromolecules with multielement of C/N/S/P with Ru.
Synthesis of electrocatalysts with controllable bonding and charge distribution can optimize charge distribution and phase composition to induce a synergistically enhanced reactivity toward the hydrogen evolution reaction. This work provides a rational method to produce platinum‐like electrocatalysts, and according catalytic active sites are regulated by bonding C/N/S/P in the same molecular structure with Ru. |
---|---|
AbstractList | Water splitting for production of hydrogen as a clean energy alternative to fossil fuel has received much attention, but it is still a tough challenge to synthesize electrocatalysts with controllable bonding and charge distribution. In this work, ultrafine S-doped RuP nanoparticles homogeneously embedded in a N, P, and S-codoped carbon sheet (S-RuP@NPSC) is synthesized by pyrolysis of poly(cyclotriphosphazene-co-4,4'-sulfonyldiphenol) (PZS) as the source of C/N/S/P. The bondings between Ru and N, P, S in PZS are regulated to synthesize RuS2 (800 °C) and S-RuP (900 °C) by different calcination temperatures. The S-RuP@NPSC with low Ru loading of 0.8 wt% with abundant active catalytic sites possesses high utilization of Ru, the mass catalytic activity is 22.88 times than 20 wt% Pt/C with the overpotential of 250 mV. Density functional theory calculation confirms that the surface Ru (-0.18 eV) and P (0.05 eV) are catalytic active sites for the hydrogen evolution reaction (HER), and the according charge redistribution of Ru is regulated by S and P with reverse electronegativity and electron-donor property to induce a synergistically enhanced reactivity toward the HER. This work provides a rational method to regulate the bonding and charge distribution of Ru-based electrocatalysts by reacting macromolecules with multielement of C/N/S/P with Ru.Water splitting for production of hydrogen as a clean energy alternative to fossil fuel has received much attention, but it is still a tough challenge to synthesize electrocatalysts with controllable bonding and charge distribution. In this work, ultrafine S-doped RuP nanoparticles homogeneously embedded in a N, P, and S-codoped carbon sheet (S-RuP@NPSC) is synthesized by pyrolysis of poly(cyclotriphosphazene-co-4,4'-sulfonyldiphenol) (PZS) as the source of C/N/S/P. The bondings between Ru and N, P, S in PZS are regulated to synthesize RuS2 (800 °C) and S-RuP (900 °C) by different calcination temperatures. The S-RuP@NPSC with low Ru loading of 0.8 wt% with abundant active catalytic sites possesses high utilization of Ru, the mass catalytic activity is 22.88 times than 20 wt% Pt/C with the overpotential of 250 mV. Density functional theory calculation confirms that the surface Ru (-0.18 eV) and P (0.05 eV) are catalytic active sites for the hydrogen evolution reaction (HER), and the according charge redistribution of Ru is regulated by S and P with reverse electronegativity and electron-donor property to induce a synergistically enhanced reactivity toward the HER. This work provides a rational method to regulate the bonding and charge distribution of Ru-based electrocatalysts by reacting macromolecules with multielement of C/N/S/P with Ru. Water splitting for production of hydrogen as a clean energy alternative to fossil fuel has received much attention, but it is still a tough challenge to synthesize electrocatalysts with controllable bonding and charge distribution. In this work, ultrafine S‐doped RuP nanoparticles homogeneously embedded in a N, P, and S‐codoped carbon sheet (S‐RuP@NPSC) is synthesized by pyrolysis of poly(cyclotriphosphazene‐co‐4,4′‐sulfonyldiphenol) (PZS) as the source of C/N/S/P. The bondings between Ru and N, P, S in PZS are regulated to synthesize RuS2 (800 °C) and S‐RuP (900 °C) by different calcination temperatures. The S‐RuP@NPSC with low Ru loading of 0.8 wt% with abundant active catalytic sites possesses high utilization of Ru, the mass catalytic activity is 22.88 times than 20 wt% Pt/C with the overpotential of 250 mV. Density functional theory calculation confirms that the surface Ru (−0.18 eV) and P (0.05 eV) are catalytic active sites for the hydrogen evolution reaction (HER), and the according charge redistribution of Ru is regulated by S and P with reverse electronegativity and electron–donor property to induce a synergistically enhanced reactivity toward the HER. This work provides a rational method to regulate the bonding and charge distribution of Ru‐based electrocatalysts by reacting macromolecules with multielement of C/N/S/P with Ru. Water splitting for production of hydrogen as a clean energy alternative to fossil fuel has received much attention, but it is still a tough challenge to synthesize electrocatalysts with controllable bonding and charge distribution. In this work, ultrafine S‐doped RuP nanoparticles homogeneously embedded in a N, P, and S‐codoped carbon sheet (S‐RuP@NPSC) is synthesized by pyrolysis of poly(cyclotriphosphazene‐ co ‐4,4′‐sulfonyldiphenol) (PZS) as the source of C/N/S/P. The bondings between Ru and N, P, S in PZS are regulated to synthesize RuS 2 (800 °C) and S‐RuP (900 °C) by different calcination temperatures. The S‐RuP@NPSC with low Ru loading of 0.8 wt% with abundant active catalytic sites possesses high utilization of Ru, the mass catalytic activity is 22.88 times than 20 wt% Pt/C with the overpotential of 250 mV. Density functional theory calculation confirms that the surface Ru (−0.18 eV) and P (0.05 eV) are catalytic active sites for the hydrogen evolution reaction (HER), and the according charge redistribution of Ru is regulated by S and P with reverse electronegativity and electron–donor property to induce a synergistically enhanced reactivity toward the HER. This work provides a rational method to regulate the bonding and charge distribution of Ru‐based electrocatalysts by reacting macromolecules with multielement of C/N/S/P with Ru. Abstract Water splitting for production of hydrogen as a clean energy alternative to fossil fuel has received much attention, but it is still a tough challenge to synthesize electrocatalysts with controllable bonding and charge distribution. In this work, ultrafine S‐doped RuP nanoparticles homogeneously embedded in a N, P, and S‐codoped carbon sheet (S‐RuP@NPSC) is synthesized by pyrolysis of poly(cyclotriphosphazene‐co‐4,4′‐sulfonyldiphenol) (PZS) as the source of C/N/S/P. The bondings between Ru and N, P, S in PZS are regulated to synthesize RuS2 (800 °C) and S‐RuP (900 °C) by different calcination temperatures. The S‐RuP@NPSC with low Ru loading of 0.8 wt% with abundant active catalytic sites possesses high utilization of Ru, the mass catalytic activity is 22.88 times than 20 wt% Pt/C with the overpotential of 250 mV. Density functional theory calculation confirms that the surface Ru (−0.18 eV) and P (0.05 eV) are catalytic active sites for the hydrogen evolution reaction (HER), and the according charge redistribution of Ru is regulated by S and P with reverse electronegativity and electron–donor property to induce a synergistically enhanced reactivity toward the HER. This work provides a rational method to regulate the bonding and charge distribution of Ru‐based electrocatalysts by reacting macromolecules with multielement of C/N/S/P with Ru. Water splitting for production of hydrogen as a clean energy alternative to fossil fuel has received much attention, but it is still a tough challenge to synthesize electrocatalysts with controllable bonding and charge distribution. In this work, ultrafine S‐doped RuP nanoparticles homogeneously embedded in a N, P, and S‐codoped carbon sheet (S‐RuP@NPSC) is synthesized by pyrolysis of poly(cyclotriphosphazene‐ co ‐4,4′‐sulfonyldiphenol) (PZS) as the source of C/N/S/P. The bondings between Ru and N, P, S in PZS are regulated to synthesize RuS 2 (800 °C) and S‐RuP (900 °C) by different calcination temperatures. The S‐RuP@NPSC with low Ru loading of 0.8 wt% with abundant active catalytic sites possesses high utilization of Ru, the mass catalytic activity is 22.88 times than 20 wt% Pt/C with the overpotential of 250 mV. Density functional theory calculation confirms that the surface Ru (−0.18 eV) and P (0.05 eV) are catalytic active sites for the hydrogen evolution reaction (HER), and the according charge redistribution of Ru is regulated by S and P with reverse electronegativity and electron–donor property to induce a synergistically enhanced reactivity toward the HER. This work provides a rational method to regulate the bonding and charge distribution of Ru‐based electrocatalysts by reacting macromolecules with multielement of C/N/S/P with Ru. Synthesis of electrocatalysts with controllable bonding and charge distribution can optimize charge distribution and phase composition to induce a synergistically enhanced reactivity toward the hydrogen evolution reaction. This work provides a rational method to produce platinum‐like electrocatalysts, and according catalytic active sites are regulated by bonding C/N/S/P in the same molecular structure with Ru. Water splitting for production of hydrogen as a clean energy alternative to fossil fuel has received much attention, but it is still a tough challenge to synthesize electrocatalysts with controllable bonding and charge distribution. In this work, ultrafine S‐doped RuP nanoparticles homogeneously embedded in a N, P, and S‐codoped carbon sheet (S‐RuP@NPSC) is synthesized by pyrolysis of poly(cyclotriphosphazene‐co‐4,4′‐sulfonyldiphenol) (PZS) as the source of C/N/S/P. The bondings between Ru and N, P, S in PZS are regulated to synthesize RuS2 (800 °C) and S‐RuP (900 °C) by different calcination temperatures. The S‐RuP@NPSC with low Ru loading of 0.8 wt% with abundant active catalytic sites possesses high utilization of Ru, the mass catalytic activity is 22.88 times than 20 wt% Pt/C with the overpotential of 250 mV. Density functional theory calculation confirms that the surface Ru (−0.18 eV) and P (0.05 eV) are catalytic active sites for the hydrogen evolution reaction (HER), and the according charge redistribution of Ru is regulated by S and P with reverse electronegativity and electron–donor property to induce a synergistically enhanced reactivity toward the HER. This work provides a rational method to regulate the bonding and charge distribution of Ru‐based electrocatalysts by reacting macromolecules with multielement of C/N/S/P with Ru. Synthesis of electrocatalysts with controllable bonding and charge distribution can optimize charge distribution and phase composition to induce a synergistically enhanced reactivity toward the hydrogen evolution reaction. This work provides a rational method to produce platinum‐like electrocatalysts, and according catalytic active sites are regulated by bonding C/N/S/P in the same molecular structure with Ru. |
Author | Sang, Yuanhua Liu, Xiaoyu Zhang, Jing Zuo, Shouwei Zhou, Weijia Xiong, Guowei Zhao, Lili Liu, Hong Liu, Fan Yu, Jiayuan |
AuthorAffiliation | 4 Beijing Synchrotron Radiation Facility Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 P. R. China 3 Guangzhou Key Laboratory for Surface Chemistry of Energy Materials School of Environment and Energy South China University of Technology Guangdong 510006 P. R. China 5 University of Chinese Academy of Sciences Beijing 100049 P. R. China 1 State Key Laboratory of Crystal Materials Shandong University Jinan 250100 P. R. China 2 Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy of Shandong Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 P. R. China |
AuthorAffiliation_xml | – name: 5 University of Chinese Academy of Sciences Beijing 100049 P. R. China – name: 4 Beijing Synchrotron Radiation Facility Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 P. R. China – name: 1 State Key Laboratory of Crystal Materials Shandong University Jinan 250100 P. R. China – name: 2 Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy of Shandong Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 P. R. China – name: 3 Guangzhou Key Laboratory for Surface Chemistry of Energy Materials School of Environment and Energy South China University of Technology Guangdong 510006 P. R. China |
Author_xml | – sequence: 1 givenname: Xiaoyu surname: Liu fullname: Liu, Xiaoyu organization: Shandong University – sequence: 2 givenname: Fan surname: Liu fullname: Liu, Fan organization: University of Jinan – sequence: 3 givenname: Jiayuan surname: Yu fullname: Yu, Jiayuan organization: South China University of Technology – sequence: 4 givenname: Guowei surname: Xiong fullname: Xiong, Guowei organization: University of Jinan – sequence: 5 givenname: Lili surname: Zhao fullname: Zhao, Lili organization: University of Jinan – sequence: 6 givenname: Yuanhua surname: Sang fullname: Sang, Yuanhua organization: Shandong University – sequence: 7 givenname: Shouwei surname: Zuo fullname: Zuo, Shouwei organization: University of Chinese Academy of Sciences – sequence: 8 givenname: Jing surname: Zhang fullname: Zhang, Jing organization: Chinese Academy of Sciences – sequence: 9 givenname: Hong orcidid: 0000-0003-1640-9620 surname: Liu fullname: Liu, Hong email: hongliu@sdu.edu.cn organization: University of Jinan – sequence: 10 givenname: Weijia surname: Zhou fullname: Zhou, Weijia email: ifc_zhouwj@ujn.edu.cn organization: University of Jinan |
BookMark | eNqFks1uGyEUhUdVqiZNs-0aqZsubBcYxsCmkjVxm0hRa8VNt4gBZow1BhdmHM2uj9A36Lv1SYrjKG2yyYqfc87HBe7r7Mh5Z7LsLYITBCH-IPUuTjDEEKICT19kJxhxNs4ZIUf_zY-zsxjXcG_KKUHsVXacY84LlJOT7He5kqEx4NpoG7tgq76z3oFS9tFoUA1gOVqA5eBMaJJulWzbAcxUZ3cp04O50_42AunATdsFubLNClwMOvjGODDf-faAuwvYbgC-Bss_P3-d-22iX_cLMN9URuu0sA58GS1G_9RShsq7N9nLWrbRnN2Pp9nNp_m38mJ89fXzZTm7GqsCTuGY6TpXFaSQK2jq2hSKcJVDrAsuTVIURnWBcW4oU7SGkkOJMdcSYU2rqarz0-zywNVersU22I0Mg_DSirsNHxohQ7p_a4TGMmeMV5jVjGCtOKey1grKSkGKVJFYHw-sbV9tjFbGpadpH0EfK86uRON3ghaQEkoS4P09IPgfvYmd2NioTNtKZ3wfBSaEFmSK0DRZ3z2xrn0fXHqqvQsyihjlyTU5uFTwMQZTPxSDoNi3kti3knhopRQgTwLKdnL_l6lg2z4bu7WtGZ45RMzOvy8RK2D-F6Lw4Zk |
CitedBy_id | crossref_primary_10_1002_ece2_4 crossref_primary_10_1016_j_apsusc_2024_159548 crossref_primary_10_1021_acs_chemrev_3c00389 crossref_primary_10_3390_catal14080491 crossref_primary_10_1016_j_colsurfa_2025_136521 crossref_primary_10_1002_chem_202101645 crossref_primary_10_1002_adma_202310699 crossref_primary_10_1016_j_jallcom_2024_176795 crossref_primary_10_1002_smtd_202301469 crossref_primary_10_1021_acsami_0c14170 crossref_primary_10_3390_nano12193328 crossref_primary_10_1016_j_cej_2023_143993 crossref_primary_10_1021_acscatal_1c01447 crossref_primary_10_1073_pnas_2300493120 crossref_primary_10_1039_D3CS01122D crossref_primary_10_1002_smll_202208045 crossref_primary_10_1016_S1872_2067_21_63977_3 crossref_primary_10_1016_j_apcatb_2023_123004 crossref_primary_10_1016_j_jallcom_2024_173672 crossref_primary_10_1016_j_jpowsour_2021_230718 crossref_primary_10_1002_smll_202208117 crossref_primary_10_1039_D1NJ05434A crossref_primary_10_1016_j_colsurfa_2023_131452 crossref_primary_10_1021_acscatal_2c02390 crossref_primary_10_1016_j_jcis_2024_03_019 crossref_primary_10_1039_D2CC03579K crossref_primary_10_1002_adfm_202411111 crossref_primary_10_1016_j_nanoen_2021_105940 crossref_primary_10_1039_D4DT02220C crossref_primary_10_1039_D1NJ04668C crossref_primary_10_1039_D2TA09258A crossref_primary_10_1002_ange_202300879 crossref_primary_10_1016_j_cej_2024_157518 crossref_primary_10_1016_j_enchem_2023_100108 crossref_primary_10_1016_j_nanoen_2022_107882 crossref_primary_10_1016_j_cej_2021_129128 crossref_primary_10_1016_j_mcat_2023_113216 crossref_primary_10_1021_acssuschemeng_1c06178 crossref_primary_10_1021_acsnano_2c12168 crossref_primary_10_1002_advs_202309869 crossref_primary_10_1002_advs_202414622 crossref_primary_10_1002_anie_202300879 crossref_primary_10_1002_smll_202301403 crossref_primary_10_1016_j_cej_2021_134421 crossref_primary_10_1002_adma_202312524 crossref_primary_10_1016_j_fuel_2023_127637 crossref_primary_10_1039_D1CS00323B crossref_primary_10_1021_acsami_1c24363 crossref_primary_10_3390_catal13111404 crossref_primary_10_1016_j_psep_2023_08_066 crossref_primary_10_1007_s11581_023_05248_9 crossref_primary_10_1016_j_ijhydene_2024_11_348 crossref_primary_10_1016_j_jcis_2022_11_076 crossref_primary_10_1039_D2TA06941E crossref_primary_10_1007_s40820_021_00679_3 crossref_primary_10_1002_aenm_202201009 crossref_primary_10_1002_smll_202106870 crossref_primary_10_1016_j_jcis_2024_06_058 crossref_primary_10_1007_s10853_022_07576_z crossref_primary_10_1021_acsanm_4c01438 crossref_primary_10_1039_D1NA00439E crossref_primary_10_1016_j_carbon_2023_118482 crossref_primary_10_1016_j_cej_2021_132557 crossref_primary_10_1039_D2TA03358E crossref_primary_10_1002_smll_202006860 crossref_primary_10_1039_D1NR02019F crossref_primary_10_1002_smll_202200242 crossref_primary_10_1016_j_surfin_2024_104544 crossref_primary_10_1021_acsaem_0c02877 crossref_primary_10_1021_acsami_2c22632 crossref_primary_10_1039_D4MH00242C crossref_primary_10_1002_adfm_202411094 crossref_primary_10_1002_adfm_202105372 crossref_primary_10_1002_ange_202113664 crossref_primary_10_12677_japc_2024_134068 crossref_primary_10_1002_adma_202100143 crossref_primary_10_1021_jacs_1c11331 crossref_primary_10_1002_smll_202309176 crossref_primary_10_1039_D3TA03382A crossref_primary_10_3390_catal15010098 crossref_primary_10_1039_D3EE04338J crossref_primary_10_1039_D1NA00025J crossref_primary_10_1039_D4NR04433A crossref_primary_10_1016_j_cej_2022_138550 crossref_primary_10_1016_j_carbon_2025_120098 crossref_primary_10_1021_acscatal_4c04561 crossref_primary_10_1039_D2CY00055E crossref_primary_10_1039_D2TA03465D crossref_primary_10_1016_j_mtsust_2021_100074 crossref_primary_10_1002_anie_202113664 crossref_primary_10_1039_D4TA05277C crossref_primary_10_1002_celc_202101246 crossref_primary_10_1002_adma_202204624 crossref_primary_10_1016_j_ijhydene_2023_03_091 crossref_primary_10_1002_celc_202001149 crossref_primary_10_1016_j_fuel_2023_130602 crossref_primary_10_1002_adfm_202307917 crossref_primary_10_1002_adfm_202401194 crossref_primary_10_1016_j_est_2023_106885 crossref_primary_10_1016_j_fuel_2024_134264 crossref_primary_10_1016_j_jallcom_2023_172020 crossref_primary_10_1016_j_cej_2023_144187 |
Cites_doi | 10.1039/C5CS00434A 10.1038/nmat1752 10.1002/anie.201810102 10.1039/C7TA03669H 10.1002/adfm.201901154 10.1002/cssc.201801103 10.1039/C9EE00197B 10.1002/anie.201704911 10.1002/anie.201406848 10.1002/smll.201804201 10.1016/j.apcatb.2020.118880 10.1002/adma.201604563 10.1002/adma.201600398 10.1016/j.isci.2019.08.055 10.1039/c3nr00010a 10.1002/aenm.201803312 10.1002/adfm.201805298 10.1039/C8CC01166D 10.1039/C7EE03345A 10.1039/C6TA01328G 10.1002/adma.201802880 10.1021/jacs.8b09834 10.1021/ja403440e 10.1039/C7NR05085B 10.1039/C4EE00957F 10.1038/s41467-020-15069-3 10.1126/science.193.4259.1214 10.1039/C8TA10695A 10.1038/nnano.2015.48 10.1038/s41467-019-08419-3 10.1002/advs.201903674 10.1002/anie.201206720 10.1002/anie.201600455 10.1039/b9nj00774a 10.1021/nn5048553 10.1039/C9TA04120F 10.1002/chem.201901215 10.1021/acscatal.6b02479 10.1016/j.matlet.2018.04.030 10.1016/j.nanoen.2016.08.027 10.1201/b19635 10.1021/jacs.7b12615 10.1039/C8NR03554G 10.1002/cctc.201601014 10.1021/nn501434a 10.1002/aenm.201900931 10.1002/adma.201800047 10.1038/s41560-018-0209-x 10.1039/C8EE03276A 10.1039/C5CC00370A 10.1021/acsami.8b08239 10.1002/anie.201608899 10.1002/anie.201404161 10.1002/aenm.201801478 10.1002/anie.201209548 |
ContentType | Journal Article |
Copyright | 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | 24P AAYXX CITATION 3V. 7XB 88I 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ GUQSH HCIFZ M2O M2P MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1002/advs.202001526 |
DatabaseName | Wiley Online Library Open Access CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest research library Science Database Research Library (Corporate) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Open Access Full Text |
DatabaseTitle | CrossRef Publicly Available Content Database Research Library Prep ProQuest Science Journals (Alumni Edition) ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2198-3844 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_d2a3889b28f842dc997afdc0abc071c5 PMC7507474 10_1002_advs_202001526 ADVS1850 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 51972147; BL1W1B – fundername: Natural Science Foundation of Shandong Province funderid: ZR2019YQ20; 2019JMRH0410 – fundername: Taishan Scholars Project Special Funds funderid: tsqn201812083 – fundername: Guangdong Natural Science Funds for Distinguished Young Scholar funderid: 2017B030306001 – fundername: Taishan Scholars Project Special Funds grantid: tsqn201812083 – fundername: Guangdong Natural Science Funds for Distinguished Young Scholar grantid: 2017B030306001 – fundername: ; grantid: 51972147; BL1W1B – fundername: ; grantid: ZR2019YQ20; 2019JMRH0410 |
GroupedDBID | 0R~ 1OC 24P 53G 5VS 88I 8G5 AAFWJ AAHHS AAZKR ABDBF ABUWG ACCFJ ACCMX ACGFS ACUHS ACXQS ADBBV ADKYN ADZMN ADZOD AEEZP AEQDE AFBPY AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU AZQEC BCNDV BENPR BPHCQ BRXPI CCPQU DWQXO EBS GNUQQ GODZA GROUPED_DOAJ GUQSH HCIFZ HYE IAO KQ8 M2O M2P O9- OK1 PIMPY PQQKQ PROAC ROL RPM WIN AAYXX ADMLS AFPKN CITATION EJD IGS ITC PHGZM PHGZT 3V. 7XB 8FK AAMMB AEFGJ AGXDD AIDQK AIDYY MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c5060-8df3cb0709c0effe5c49c302d59ae3cbc21f5223e78c7f0a90a229da12d7b6cf3 |
IEDL.DBID | DOA |
ISSN | 2198-3844 |
IngestDate | Wed Aug 27 01:21:33 EDT 2025 Thu Aug 21 14:10:51 EDT 2025 Fri Jul 11 11:43:42 EDT 2025 Fri Jul 25 03:41:54 EDT 2025 Thu Apr 24 23:06:34 EDT 2025 Tue Jul 01 03:59:23 EDT 2025 Wed Jan 22 16:32:46 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Language | English |
License | Attribution This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5060-8df3cb0709c0effe5c49c302d59ae3cbc21f5223e78c7f0a90a229da12d7b6cf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-1640-9620 |
OpenAccessLink | https://doaj.org/article/d2a3889b28f842dc997afdc0abc071c5 |
PMID | 32995134 |
PQID | 2440871879 |
PQPubID | 4365299 |
PageCount | 8 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_d2a3889b28f842dc997afdc0abc071c5 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7507474 proquest_miscellaneous_2447546116 proquest_journals_2440871879 crossref_primary_10_1002_advs_202001526 crossref_citationtrail_10_1002_advs_202001526 wiley_primary_10_1002_advs_202001526_ADVS1850 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-09-01 |
PublicationDateYYYYMMDD | 2020-09-01 |
PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim – name: Hoboken |
PublicationTitle | Advanced science |
PublicationYear | 2020 |
Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc – name: Wiley |
References | 2017; 5 2010; 34 2019; 7 2019; 9 2018; 140 2015; 51 2019; 10 2018; 223 2019; 12 2019; 15 2015; 10 2019; 19 2006; 5 2017; 29 2020; 11 1976; 193 2019; 141 2013; 5 2017; 9 2016; 55 2012; 51 2016; 4 2016; 6 2018; 8 2018; 3 2020 2017; 56 2020; 270 2019; 25 2013; 52 2013; 135 2019; 29 2018; 30 2016; 28 2018; 11 2014; 8 2014; 7 2018; 10 2018; 54 2018; 31 2016; 8 2016; 45 2014; 53 2018; 57 e_1_2_6_51_1 e_1_2_6_53_1 e_1_2_6_32_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_1_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_54_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_42_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_27_1 e_1_2_6_46_1 |
References_xml | – volume: 53 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 4 start-page: 7169 year: 2016 publication-title: J. Mater. Chem. A – volume: 5 start-page: 909 year: 2006 publication-title: Nat. Mater. – volume: 8 start-page: 3334 year: 2016 publication-title: ChemCatChem – volume: 56 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 7 start-page: 2624 year: 2014 publication-title: Energy Environ. Sci. – volume: 54 start-page: 3343 year: 2018 publication-title: Chem. Commun. – volume: 11 start-page: 800 year: 2018 publication-title: Energy Environ. Sci. – volume: 141 start-page: 4505 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 12 start-page: 952 year: 2019 publication-title: Energy Environ. Sci. – volume: 135 start-page: 9267 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 8865 year: 2019 publication-title: J. Mater. Chem. A – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 51 start-page: 6738 year: 2015 publication-title: Chem. Commun. – volume: 51 year: 2012 publication-title: Angew. Chem., Int. Ed. – volume: 11 start-page: 1278 year: 2020 publication-title: Nat. Commun. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 270 year: 2020 publication-title: Appl. Catal., B – volume: 28 start-page: 29 year: 2016 publication-title: Nano Energy – volume: 34 start-page: 599 year: 2010 publication-title: New J. Chem. – volume: 193 start-page: 1214 year: 1976 publication-title: Science – volume: 9 year: 2017 publication-title: Nanoscale – year: 2020 publication-title: Adv. Sci. – volume: 223 start-page: 97 year: 2018 publication-title: Mater. Lett. – volume: 53 start-page: 6710 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 25 start-page: 7826 year: 2019 publication-title: Chem. ‐ Eur. J. – volume: 10 start-page: 631 year: 2019 publication-title: Nat. Commun. – volume: 52 start-page: 3110 year: 2013 publication-title: Angew. Chem., Int. Ed. – volume: 5 year: 2017 publication-title: J. Mater. Chem. A – volume: 7 year: 2019 publication-title: J. Mater. Chem. A – volume: 140 start-page: 2731 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 31 year: 2018 publication-title: Adv. Mater. – volume: 45 start-page: 1529 year: 2016 publication-title: Chem. Soc. Rev. – volume: 8 start-page: 5290 year: 2014 publication-title: ACS Nano – volume: 28 start-page: 5080 year: 2016 publication-title: Adv. Mater. – volume: 10 year: 2018 publication-title: Nanoscale – volume: 15 year: 2019 publication-title: Small – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 8 year: 2014 publication-title: ACS Nano – volume: 11 start-page: 2724 year: 2018 publication-title: ChemSusChem – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 56 start-page: 842 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 3 start-page: 773 year: 2018 publication-title: Nat. Energy – volume: 10 start-page: 444 year: 2015 publication-title: Nat. Nanotechnol. – volume: 19 start-page: 1090 year: 2019 publication-title: iScience – volume: 57 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 6 start-page: 8069 year: 2016 publication-title: ACS Catal. – volume: 10 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 5 start-page: 7913 year: 2013 publication-title: Nanoscale – volume: 12 start-page: 322 year: 2019 publication-title: Energy Environ. Sci. – volume: 55 start-page: 4016 year: 2016 publication-title: Angew. Chem., Int. Ed. – ident: e_1_2_6_32_1 doi: 10.1039/C5CS00434A – ident: e_1_2_6_49_1 doi: 10.1038/nmat1752 – ident: e_1_2_6_24_1 doi: 10.1002/anie.201810102 – ident: e_1_2_6_30_1 doi: 10.1039/C7TA03669H – ident: e_1_2_6_40_1 doi: 10.1002/adfm.201901154 – ident: e_1_2_6_28_1 doi: 10.1002/cssc.201801103 – ident: e_1_2_6_23_1 doi: 10.1039/C9EE00197B – ident: e_1_2_6_47_1 doi: 10.1002/anie.201704911 – ident: e_1_2_6_20_1 doi: 10.1002/anie.201406848 – ident: e_1_2_6_8_1 doi: 10.1002/smll.201804201 – ident: e_1_2_6_26_1 doi: 10.1016/j.apcatb.2020.118880 – ident: e_1_2_6_10_1 doi: 10.1002/adma.201604563 – ident: e_1_2_6_7_1 doi: 10.1002/adma.201600398 – ident: e_1_2_6_45_1 doi: 10.1016/j.isci.2019.08.055 – ident: e_1_2_6_36_1 doi: 10.1039/c3nr00010a – ident: e_1_2_6_44_1 doi: 10.1002/aenm.201803312 – ident: e_1_2_6_43_1 doi: 10.1002/adfm.201805298 – ident: e_1_2_6_48_1 doi: 10.1039/C8CC01166D – ident: e_1_2_6_13_1 doi: 10.1039/C7EE03345A – ident: e_1_2_6_22_1 doi: 10.1039/C6TA01328G – ident: e_1_2_6_11_1 doi: 10.1002/adma.201802880 – ident: e_1_2_6_2_1 doi: 10.1021/jacs.8b09834 – ident: e_1_2_6_15_1 doi: 10.1021/ja403440e – ident: e_1_2_6_34_1 doi: 10.1039/C7NR05085B – ident: e_1_2_6_21_1 doi: 10.1039/C4EE00957F – ident: e_1_2_6_27_1 doi: 10.1038/s41467-020-15069-3 – ident: e_1_2_6_37_1 doi: 10.1126/science.193.4259.1214 – ident: e_1_2_6_31_1 doi: 10.1039/C8TA10695A – ident: e_1_2_6_6_1 doi: 10.1038/nnano.2015.48 – ident: e_1_2_6_12_1 doi: 10.1038/s41467-019-08419-3 – ident: e_1_2_6_55_1 doi: 10.1002/advs.201903674 – ident: e_1_2_6_54_1 doi: 10.1002/anie.201206720 – ident: e_1_2_6_5_1 doi: 10.1002/anie.201600455 – ident: e_1_2_6_35_1 doi: 10.1039/b9nj00774a – ident: e_1_2_6_19_1 doi: 10.1021/nn5048553 – ident: e_1_2_6_52_1 doi: 10.1039/C9TA04120F – ident: e_1_2_6_42_1 doi: 10.1002/chem.201901215 – ident: e_1_2_6_46_1 doi: 10.1021/acscatal.6b02479 – ident: e_1_2_6_3_1 doi: 10.1016/j.matlet.2018.04.030 – ident: e_1_2_6_9_1 doi: 10.1016/j.nanoen.2016.08.027 – ident: e_1_2_6_25_1 doi: 10.1201/b19635 – ident: e_1_2_6_16_1 doi: 10.1021/jacs.7b12615 – ident: e_1_2_6_41_1 doi: 10.1039/C8NR03554G – ident: e_1_2_6_50_1 doi: 10.1002/cctc.201601014 – ident: e_1_2_6_33_1 doi: 10.1021/nn501434a – ident: e_1_2_6_38_1 doi: 10.1002/aenm.201900931 – ident: e_1_2_6_14_1 doi: 10.1002/adma.201800047 – ident: e_1_2_6_1_1 doi: 10.1038/s41560-018-0209-x – ident: e_1_2_6_4_1 doi: 10.1039/C8EE03276A – ident: e_1_2_6_39_1 doi: 10.1039/C5CC00370A – ident: e_1_2_6_51_1 doi: 10.1021/acsami.8b08239 – ident: e_1_2_6_17_1 doi: 10.1002/anie.201608899 – ident: e_1_2_6_18_1 doi: 10.1002/anie.201404161 – ident: e_1_2_6_29_1 doi: 10.1002/aenm.201801478 – ident: e_1_2_6_53_1 doi: 10.1002/anie.201209548 |
SSID | ssj0001537418 |
Score | 2.5095656 |
Snippet | Water splitting for production of hydrogen as a clean energy alternative to fossil fuel has received much attention, but it is still a tough challenge to... Abstract Water splitting for production of hydrogen as a clean energy alternative to fossil fuel has received much attention, but it is still a tough challenge... |
SourceID | doaj pubmedcentral proquest crossref wiley |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2001526 |
SubjectTerms | Adsorption bonding regulation Carbon charge redistribution Crystal lattices Hydrogen hydrogen evolution reaction Molecular structure Morphology Nanoparticles Particle size Pore size ruthenium phosphide Spheres ternary doping |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1bb9MwFLZge-EFMS6iMJCRkACp0RInaewntJVMFRJV1VJpb5Fv2SaVpLTLUN_4CfwD_hu_hHMcN1uRgFdfEifn4s_28XcIeR1DcTSQWSBgvgsSwQeBymwZpAkrM6OUiN1B-6fxYDRPPp6lZ37Dbe3DKrc-0TlqU2vcIz9imBo5w9zY75dfA8wahaerPoXGXbIPLpjD4mv_JB9Ppje7LGmM9CxbtsaQHUlzjSzdGEqUIqPCrdnIkfbvIM0_4yRv41c3AZ0-IPc9cqTHragPyB1bPSQH3jbX9K0nkH73iPzEM_RzS6d457bLaEWHsllbQ9WGzvoTOtvgrT9H0ywXiw09do6PThuaV6b-tqayovMFDAgJjeloY1Y16BrNr72uth0Aw9O6pLNf3398qJfw9GkzofkXZcGfGXpZ0XF_0r-pHcqVqqvHZH6afx6OAp-IIdDIPxhwU8ZagXMQOsQwk1QnQschM6mQFmo0i0rAcbHNuM7KUIpQMiaMjJjJ1ECX8ROyV9WVfUooB9_KZaRSbQ0strQCPApKgTxqAL1M2SPBViCF9izlmCxjUbT8yqxAARadAHvkTdd-2fJz_LXlCcq3a4W82q6gXp0X3kwLw2TMuVCMlzxhRguRydLoUCoNWEynPXK41Y7CGzu8olPNHnnVVYOZ4tmLrGzduDZZmgyiCMaR7WjVzoB2a6rLC0f4DagOVn0J_Bunf__50AIAzQxgWPjs34N9Tu5hnzZg7pDsXa0a-wIQ1pV66c3oNxYmKW8 priority: 102 providerName: ProQuest – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLZgvPCCGBdRGMhISIDUaInjXPw4SqcKialqqbS3yNdtUkmmdtnUt_0E_gH_jV_COU6aLkgI8WqfOE7OxZ9v3yHkXQzFUSqzQMB4F3CRp4HKrAsSzlxmlBKx32j_epJOFvzLaXJ65xZ_ww_RLbihZ_h4jQ4u1fpwRxoqzTXSbeOZoISl98kDvF-L7PmMT3erLEmM9CyYYQ5m10Gcc75lbgzZYb-J3sjkCfx7qPPPM5N3sawfjI4fk0ctiqRHjdr3yT1bPiH7rZ-u6YeWTPrjU_IT99PPLJ3h_dsuuxUdyXptDVUbOh9O6XyDNwA9ZbNcLjf0yAdBOqvpuDTVzZrKki6W0CEkN6aTjVlVYHd0fN3abfMA4HlaOTr_dfvjc3UJrc_qKR1_VxZim6EXJT0ZToe72pFcqap8RhbH42-jSdAmZQg0chEGuXGxVhAohA7xyEmiudBxyEwipIUazSIHmC62Wa4zF0oRSsaEkREzmUq1i5-TvbIq7QtCc4izuYxUoq2BiZdWgE3BQJBTDWCYcQMSbBVS6JaxHBNnLIuGa5kVqMCiU-CAvO_kLxuujr9KfkL9dlLIse0LqtVZ0bpsYZiM81wolrucM6OFyKQzOpRKAy7TyYAcbK2jaB0fXoEZvDNM4T4gb7tqcFnch5GlrWovkyU8jSLoR9azql6H-jXlxbkn_waEBzNADv_G298_PrQAcDMHSBa-_E_5V-QhFjan6Q7I3tWqtq8Bfl2pN97DfgOE-Cxq priority: 102 providerName: Wiley-Blackwell |
Title | Charge Redistribution Caused by S,P Synergistically Active Ru Endows an Ultrahigh Hydrogen Evolution Activity of S‐Doped RuP Embedded in N,P,S‐Doped Carbon |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202001526 https://www.proquest.com/docview/2440871879 https://www.proquest.com/docview/2447546116 https://pubmed.ncbi.nlm.nih.gov/PMC7507474 https://doaj.org/article/d2a3889b28f842dc997afdc0abc071c5 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3bbtMwGLZg3HCDGAdRGJWRkACp0RLn4Piy6zJViFVRQ6XdRT6OSSWZ2mWodzwCb8C78ST8dtLQIqHdcBXJdhIfPvv_LP_-foTehpAcJJx6DOydF7E08QTVxosjYqgSgoXuoP18lkwX0ceL-GIn1Jf1CWvlgduOO1aEh2nKBElNGhElGaPcKOlzIcE6SqdeCjZvZzPV3g8OrSzLVqXRJ8dc3Vp1butCFFslhR0r5MT69xjm3_6Ru7zVGZ6zx-hRxxjxuK3pIbqnqyfosJuTa_y-E47-8BT9tGfnlxrP7V3bPpIVnvBmrRUWG1yMclxs7G0_J8_Ml8sNHrsFD88bnFWq_rbGvMKLJVTIChnj6UatasAYzm47jLYvAHfHtcHFr-8_Tutr-Pq8yXH2VWhYxxS-qvBslI_-5E74StTVM7Q4yz5Ppl4XgMGTVnfQS5UJpYBFgUnfupfEMmIy9ImKGdeQI0lggL-FmqaSGp8znxPCFA-IoiKRJnyODqq60i8QTmFNTXkgYqkVbLKkAB4KYLD6aUC5lBkgbzsgpezUyW2QjGXZ6iqT0g5g2Q_gAL3ry1-3uhz_LHlix7cvZfW0XQKgrOxQVt6FsgE62qKj7CY5_MJG66Y2XPsAvemzYXraMxde6bpxZWgcJUEA9aB7qNqr0H5OdfXFCX0Dm4PdXgR94_B3R0NLIDIF0C__5f9o8Sv00H65dac7Qgc3q0a_Bv51I4boPonyIXowPj3_VMDzJJvl86GbgL8BKjY1YQ |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEF6V9AAXRPkRgQKLBAKkWLXXduw9INSmrlLaRlHSSL2Z_XOpFOyQNK184xF4A96Ah-JJmPFfGyTg1Kt37awzs99-4539hpBXLlx2uiKwOKx3lsfDriUDk1i-x5JAS8ndYqP9aNDtT7yPJ_7JGvlZn4XBtMoaEwug1pnCb-RbDEsjB1gb-8Psq4VVo3B3tS6hUbrFgckvIWRbvN_fBfu-ZmwvOu71raqqgKVQTM8KdeIqCZ7OlY05E77yuHJtpn0uDLQo5iRASlwThCpIbMFtwRjXwmE6kF2VuPDcW2TdcyGUaZH1nWgwHF191fFdlIOp1SFttiX0BaqCY-qSjwoO11a_okjACrP9My_zOl8uFry9e-RuxVTpdulaG2TNpPfJRoUFC_q2Eqx-94D8wD37U0NHeMa3qaBFe2K5MJrKnI47QzrO8ZRhIQstptOcbhdAS0dLGqU6u1xQkdLJFAaEAsq0n-t5Br5No4tqbpQ3QMxAs4SOf337vpvN4Omj5ZBGX6QB_NT0LKWDzrBz1doTc5mlD8nkRkz0iLTSLDWPCQ0By0PhSF8ZDcGdksB_wQlRtw2onk7axKoNEqtKFR2Lc0zjUs-ZxWjAuDFgm7xp-s9KPZC_9txB-za9UMe7uJDNT-MKFmLNhBuGXLIwCT2mFeeBSLSyhVTA_ZTfJpu1d8QVuMBPNFOhTV42zQALuNcjUpMtiz6B73UdB8YRrHjVyoBWW9Kzz4XAOLBIiDI9-G8K__vPi8ZAoMZA--wn_x7sC3K7f3x0GB_uDw6ekjt4f5mst0la5_OleQbs7lw-r6YUJZ9uehb_BgVyZ04 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3ZbtNAFB2VVEK8IMoiAgUGCQRIsWKP9weE2ixKKURRQqS-ubOWSsEOSdMqb3wCf8B_8Dl8Cfd6a4MEPPXVM7bHvsucO3PnXEJeuHDZCXhoxTDfWV4cBZYItbF8j5lQCRG7-Ub7x2EwmHrvj_yjLfKzOguDaZWVT8wdtcokrpG3GZZGDrE2dtuUaRGjbv_d_KuFFaRwp7Uqp1GoyKFeX0D4tnx70AVZv2Ss3_vUGVhlhQFLIrGeFSnjSgFaH0sb8yd86cXStZnyY66hRTLHAEBxdRjJ0Ng8tjljseIOU6EIpHHhuTfIdghRkd0g2_u94Wh8ucLju0gNUzFF2qzN1TkyhGMak49sDldmwrxgwAbK_TNH8yp2zie__h1yu0StdK9Qsx2ypdO7ZKf0C0v6uiSvfnOP_MD9-xNNx3jet66mRTt8tdSKijWdtEZ0ssYThzlFNJ_N1nQvd7p0vKK9VGUXS8pTOp3BgJBMmQ7WapGBntPeeWknxQ0QP9DM0Mmvb9-72RyePl6NaO-L0OBLFT1N6bA1al22dvhCZOl9Mr0WET0gjTRL9UNCI_DrEXeEL7WCQE8KwMKgkMjhBrBPmSaxKoEksmRIx0Ids6TgdmYJCjCpBdgkr-r-84Ib5K8991G-dS_k9M4vZIuTpHQRiWLcjaJYsMhEHlMyjkNulLS5kIADpd8ku5V2JKWjgVfUZtEkz-tmcBG478NTna3yPqHvBY4D4wg3tGpjQJst6ennnGwcECVEnB78m1z__vOhCYCpCUBA-9G_B_uM3ATrTT4cDA8fk1t4e5G3t0saZ4uVfgJA70w8LS2KkuPrNuLfiG9rgw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Charge+Redistribution+Caused+by+S%2CP+Synergistically+Active+Ru+Endows+an+Ultrahigh+Hydrogen+Evolution+Activity+of+S%E2%80%90Doped+RuP+Embedded+in+N%2CP%2CS%E2%80%90Doped+Carbon&rft.jtitle=Advanced+science&rft.au=Xiaoyu+Liu&rft.au=Fan+Liu&rft.au=Jiayuan+Yu&rft.au=Guowei+Xiong&rft.date=2020-09-01&rft.pub=Wiley&rft.eissn=2198-3844&rft.volume=7&rft.issue=17&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadvs.202001526&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_d2a3889b28f842dc997afdc0abc071c5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon |