Improving Dissolution Rate of Carbamazepine-Glutaric Acid Cocrystal Through Solubilization by Excess Coformer
Purpose The use of soluble cocrystals is a promising strategy for delivering poorly soluble drugs. However, precipitation of poorly soluble crystal form during dissolution hinders the successful tablet development of cocrystals. This work was aimed to understand the mechanisms for improving dissolut...
Saved in:
Published in | Pharmaceutical research Vol. 35; no. 1; pp. 4 - 7 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.01.2018
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Purpose
The use of soluble cocrystals is a promising strategy for delivering poorly soluble drugs. However, precipitation of poorly soluble crystal form during dissolution hinders the successful tablet development of cocrystals. This work was aimed to understand the mechanisms for improving dissolution performance of a soluble cocrystals by using excess coformer.
Methods
A highly soluble carbamazepine (CBZ) cocrystal with– glutaric acid (GLA) was studied. Impact of excess GLA on solubility and intrinsic dissolution rate (IDR) was assessed. Viscosity of GLA solutions was also measured. Solid form of powders and pellets was examined using powder X-ray diffractometry. IDRs of cocrystal and GLA mixtures in different ratios were measured to identify a suitable formulation for maintaining high dissolution rate of CBZ-GLA in an aqueous environment.
Results
IDR of CBZ-GLA in a pH 1.2 HCl solution was improved when GLA was present in the solution. Precipitation of CBZ·2H
2
O was eliminated when GLA concentration was ≥100 mg/mL. The improved IDR was accompanied by higher solubility of CBZ in GLA solution and increased solution viscosity. The trend in IDR profile matched well with the solubility profile normalized by solution viscosity. Mixture of cocrystal and GLA led to improved IDR in simulated intestinal fluid.
Conclusions
The excess GLA increased the aqueous solubility of CBZ·2H
2
O and, thereby, reduced the propensity to precipitation of CBZ·2H
2
O during dissolution by lowering the degree of supersaturation. This strategy allowed development of a CBZ-GLA formulation with a significantly enhanced dissolution rate than CBZ-GLA. |
---|---|
AbstractList | Purpose
The use of soluble cocrystals is a promising strategy for delivering poorly soluble drugs. However, precipitation of poorly soluble crystal form during dissolution hinders the successful tablet development of cocrystals. This work was aimed to understand the mechanisms for improving dissolution performance of a soluble cocrystals by using excess coformer.
Methods
A highly soluble carbamazepine (CBZ) cocrystal with– glutaric acid (GLA) was studied. Impact of excess GLA on solubility and intrinsic dissolution rate (IDR) was assessed. Viscosity of GLA solutions was also measured. Solid form of powders and pellets was examined using powder X-ray diffractometry. IDRs of cocrystal and GLA mixtures in different ratios were measured to identify a suitable formulation for maintaining high dissolution rate of CBZ-GLA in an aqueous environment.
Results
IDR of CBZ-GLA in a pH 1.2 HCl solution was improved when GLA was present in the solution. Precipitation of CBZ·2H
2
O was eliminated when GLA concentration was ≥100 mg/mL. The improved IDR was accompanied by higher solubility of CBZ in GLA solution and increased solution viscosity. The trend in IDR profile matched well with the solubility profile normalized by solution viscosity. Mixture of cocrystal and GLA led to improved IDR in simulated intestinal fluid.
Conclusions
The excess GLA increased the aqueous solubility of CBZ·2H
2
O and, thereby, reduced the propensity to precipitation of CBZ·2H
2
O during dissolution by lowering the degree of supersaturation. This strategy allowed development of a CBZ-GLA formulation with a significantly enhanced dissolution rate than CBZ-GLA. The use of soluble cocrystals is a promising strategy for delivering poorly soluble drugs. However, precipitation of poorly soluble crystal form during dissolution hinders the successful tablet development of cocrystals. This work was aimed to understand the mechanisms for improving dissolution performance of a soluble cocrystals by using excess coformer. A highly soluble carbamazepine (CBZ) cocrystal with- glutaric acid (GLA) was studied. Impact of excess GLA on solubility and intrinsic dissolution rate (IDR) was assessed. Viscosity of GLA solutions was also measured. Solid form of powders and pellets was examined using powder X-ray diffractometry. IDRs of cocrystal and GLA mixtures in different ratios were measured to identify a suitable formulation for maintaining high dissolution rate of CBZ-GLA in an aqueous environment. IDR of CBZ-GLA in a pH 1.2 HCl solution was improved when GLA was present in the solution. Precipitation of CBZ·2H.sub.2O was eliminated when GLA concentration was [greater than or equal to]100 mg/mL. The improved IDR was accompanied by higher solubility of CBZ in GLA solution and increased solution viscosity. The trend in IDR profile matched well with the solubility profile normalized by solution viscosity. Mixture of cocrystal and GLA led to improved IDR in simulated intestinal fluid. The excess GLA increased the aqueous solubility of CBZ·2H.sub.2O and, thereby, reduced the propensity to precipitation of CBZ·2H.sub.2O during dissolution by lowering the degree of supersaturation. This strategy allowed development of a CBZ-GLA formulation with a significantly enhanced dissolution rate than CBZ-GLA. PurposeThe use of soluble cocrystals is a promising strategy for delivering poorly soluble drugs. However, precipitation of poorly soluble crystal form during dissolution hinders the successful tablet development of cocrystals. This work was aimed to understand the mechanisms for improving dissolution performance of a soluble cocrystals by using excess coformer.MethodsA highly soluble carbamazepine (CBZ) cocrystal with– glutaric acid (GLA) was studied. Impact of excess GLA on solubility and intrinsic dissolution rate (IDR) was assessed. Viscosity of GLA solutions was also measured. Solid form of powders and pellets was examined using powder X-ray diffractometry. IDRs of cocrystal and GLA mixtures in different ratios were measured to identify a suitable formulation for maintaining high dissolution rate of CBZ-GLA in an aqueous environment.ResultsIDR of CBZ-GLA in a pH 1.2 HCl solution was improved when GLA was present in the solution. Precipitation of CBZ·2H2O was eliminated when GLA concentration was ≥100 mg/mL. The improved IDR was accompanied by higher solubility of CBZ in GLA solution and increased solution viscosity. The trend in IDR profile matched well with the solubility profile normalized by solution viscosity. Mixture of cocrystal and GLA led to improved IDR in simulated intestinal fluid.ConclusionsThe excess GLA increased the aqueous solubility of CBZ·2H2O and, thereby, reduced the propensity to precipitation of CBZ·2H2O during dissolution by lowering the degree of supersaturation. This strategy allowed development of a CBZ-GLA formulation with a significantly enhanced dissolution rate than CBZ-GLA. The use of soluble cocrystals is a promising strategy for delivering poorly soluble drugs. However, precipitation of poorly soluble crystal form during dissolution hinders the successful tablet development of cocrystals. This work was aimed to understand the mechanisms for improving dissolution performance of a soluble cocrystals by using excess coformer.PURPOSEThe use of soluble cocrystals is a promising strategy for delivering poorly soluble drugs. However, precipitation of poorly soluble crystal form during dissolution hinders the successful tablet development of cocrystals. This work was aimed to understand the mechanisms for improving dissolution performance of a soluble cocrystals by using excess coformer.A highly soluble carbamazepine (CBZ) cocrystal with- glutaric acid (GLA) was studied. Impact of excess GLA on solubility and intrinsic dissolution rate (IDR) was assessed. Viscosity of GLA solutions was also measured. Solid form of powders and pellets was examined using powder X-ray diffractometry. IDRs of cocrystal and GLA mixtures in different ratios were measured to identify a suitable formulation for maintaining high dissolution rate of CBZ-GLA in an aqueous environment.METHODSA highly soluble carbamazepine (CBZ) cocrystal with- glutaric acid (GLA) was studied. Impact of excess GLA on solubility and intrinsic dissolution rate (IDR) was assessed. Viscosity of GLA solutions was also measured. Solid form of powders and pellets was examined using powder X-ray diffractometry. IDRs of cocrystal and GLA mixtures in different ratios were measured to identify a suitable formulation for maintaining high dissolution rate of CBZ-GLA in an aqueous environment.IDR of CBZ-GLA in a pH 1.2 HCl solution was improved when GLA was present in the solution. Precipitation of CBZ·2H2O was eliminated when GLA concentration was ≥100 mg/mL. The improved IDR was accompanied by higher solubility of CBZ in GLA solution and increased solution viscosity. The trend in IDR profile matched well with the solubility profile normalized by solution viscosity. Mixture of cocrystal and GLA led to improved IDR in simulated intestinal fluid.RESULTSIDR of CBZ-GLA in a pH 1.2 HCl solution was improved when GLA was present in the solution. Precipitation of CBZ·2H2O was eliminated when GLA concentration was ≥100 mg/mL. The improved IDR was accompanied by higher solubility of CBZ in GLA solution and increased solution viscosity. The trend in IDR profile matched well with the solubility profile normalized by solution viscosity. Mixture of cocrystal and GLA led to improved IDR in simulated intestinal fluid.The excess GLA increased the aqueous solubility of CBZ·2H2O and, thereby, reduced the propensity to precipitation of CBZ·2H2O during dissolution by lowering the degree of supersaturation. This strategy allowed development of a CBZ-GLA formulation with a significantly enhanced dissolution rate than CBZ-GLA.CONCLUSIONSThe excess GLA increased the aqueous solubility of CBZ·2H2O and, thereby, reduced the propensity to precipitation of CBZ·2H2O during dissolution by lowering the degree of supersaturation. This strategy allowed development of a CBZ-GLA formulation with a significantly enhanced dissolution rate than CBZ-GLA. The use of soluble cocrystals is a promising strategy for delivering poorly soluble drugs. However, precipitation of poorly soluble crystal form during dissolution hinders the successful tablet development of cocrystals. This work was aimed to understand the mechanisms for improving dissolution performance of a soluble cocrystals by using excess coformer. A highly soluble carbamazepine (CBZ) cocrystal with- glutaric acid (GLA) was studied. Impact of excess GLA on solubility and intrinsic dissolution rate (IDR) was assessed. Viscosity of GLA solutions was also measured. Solid form of powders and pellets was examined using powder X-ray diffractometry. IDRs of cocrystal and GLA mixtures in different ratios were measured to identify a suitable formulation for maintaining high dissolution rate of CBZ-GLA in an aqueous environment. IDR of CBZ-GLA in a pH 1.2 HCl solution was improved when GLA was present in the solution. Precipitation of CBZ·2H O was eliminated when GLA concentration was ≥100 mg/mL. The improved IDR was accompanied by higher solubility of CBZ in GLA solution and increased solution viscosity. The trend in IDR profile matched well with the solubility profile normalized by solution viscosity. Mixture of cocrystal and GLA led to improved IDR in simulated intestinal fluid. The excess GLA increased the aqueous solubility of CBZ·2H O and, thereby, reduced the propensity to precipitation of CBZ·2H O during dissolution by lowering the degree of supersaturation. This strategy allowed development of a CBZ-GLA formulation with a significantly enhanced dissolution rate than CBZ-GLA. Purpose The use of soluble cocrystals is a promising strategy for delivering poorly soluble drugs. However, precipitation of poorly soluble crystal form during dissolution hinders the successful tablet development of cocrystals. This work was aimed to understand the mechanisms for improving dissolution performance of a soluble cocrystals by using excess coformer. Methods A highly soluble carbamazepine (CBZ) cocrystal with- glutaric acid (GLA) was studied. Impact of excess GLA on solubility and intrinsic dissolution rate (IDR) was assessed. Viscosity of GLA solutions was also measured. Solid form of powders and pellets was examined using powder X-ray diffractometry. IDRs of cocrystal and GLA mixtures in different ratios were measured to identify a suitable formulation for maintaining high dissolution rate of CBZ-GLA in an aqueous environment. Results IDR of CBZ-GLA in a pH 1.2 HCl solution was improved when GLA was present in the solution. Precipitation of CBZ·2H.sub.2O was eliminated when GLA concentration was [greater than or equal to]100 mg/mL. The improved IDR was accompanied by higher solubility of CBZ in GLA solution and increased solution viscosity. The trend in IDR profile matched well with the solubility profile normalized by solution viscosity. Mixture of cocrystal and GLA led to improved IDR in simulated intestinal fluid. Conclusions The excess GLA increased the aqueous solubility of CBZ·2H.sub.2O and, thereby, reduced the propensity to precipitation of CBZ·2H.sub.2O during dissolution by lowering the degree of supersaturation. This strategy allowed development of a CBZ-GLA formulation with a significantly enhanced dissolution rate than CBZ-GLA. |
ArticleNumber | 4 |
Audience | Academic |
Author | Sun, Changquan Calvin Yamashita, Hiroyuki |
Author_xml | – sequence: 1 givenname: Hiroyuki surname: Yamashita fullname: Yamashita, Hiroyuki organization: Analytical Research Laboratories, Technology, Astellas Pharma Inc., Pharmaceutical Materials Science and Engineering Laboratory Department of Pharmaceutics College of Pharmacy, University of Minnesota – sequence: 2 givenname: Changquan Calvin surname: Sun fullname: Sun, Changquan Calvin email: sunx0053@umn.edu organization: Pharmaceutical Materials Science and Engineering Laboratory Department of Pharmaceutics College of Pharmacy, University of Minnesota |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29288433$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kk9r3DAQxUVJaTZ_PkAvxdBLL041smxZx2WTpoFAoU0hNyHLo42CbW0lu-zm01e7m9A0tEUHgfR7b6SZd0QOBj8gIW-BngGl4mMEoLLMKYicFVTm61dkBqUockn57QGZUcF4XgsOh-QoxntKaQ2SvyGHTLK65kUxI_1Vvwr-pxuW2bmL0XfT6PyQfdUjZt5mCx0a3esHXLkB88t0q4Mz2dy4Nlt4EzZx1F12cxf8tLzLviV54zr3oHcmzSa7WBuMMaHWhx7DCXltdRfx9HE_Jt8_XdwsPufXXy6vFvPr3JS0HHOrKygbQwGNQKMbWreogXMOlnKQVpYcTdVKK7QGQNm2ghWtrERZMF6IqjgmH_a-6W8_Joyj6l002HV6QD9FBbJmNQdesIS-f4He-ykM6XU7CkRJ6-o3tdQdKjdYPwZttqZqnprMACrOE3X2FyqtFntn0uysS-d_CN49Fp-aHlu1Cq7XYaOe5pMAsQdM8DEGtMq4cdfd5Ow6BVRtk6D2SVApCWqbBLVOSnihfDL_n4btNTGxwxLDs178U_QL2HHE3A |
CitedBy_id | crossref_primary_10_1039_D4CE00021H crossref_primary_10_1186_s43094_020_00083_5 crossref_primary_10_1007_s11095_019_2622_7 crossref_primary_10_1002_crat_202300296 crossref_primary_10_1021_acs_molpharmaceut_2c00122 crossref_primary_10_1039_D1CE00825K crossref_primary_10_1007_s11094_022_02726_8 crossref_primary_10_3390_pharmaceutics13111772 crossref_primary_10_3390_pharmaceutics12111023 crossref_primary_10_3390_pharmaceutics13040546 crossref_primary_10_1016_j_jddst_2019_02_004 crossref_primary_10_1016_j_jmgm_2022_108243 crossref_primary_10_1021_acs_molpharmaceut_3c00237 crossref_primary_10_1021_acs_molpharmaceut_3c00334 crossref_primary_10_1016_j_molstruc_2019_05_054 crossref_primary_10_1016_j_jddst_2021_103029 crossref_primary_10_1016_j_molliq_2021_115604 crossref_primary_10_1021_acs_molpharmaceut_9b00006 crossref_primary_10_1007_s11095_020_02855_3 crossref_primary_10_1021_acs_molpharmaceut_0c00587 crossref_primary_10_1021_acs_cgd_9b00318 crossref_primary_10_3390_cryst10110996 crossref_primary_10_1021_acs_cgd_9b00932 crossref_primary_10_1016_j_molstruc_2022_134097 crossref_primary_10_1017_S0885715623000374 crossref_primary_10_1021_acs_cgd_1c00015 crossref_primary_10_1016_j_ejps_2020_105294 crossref_primary_10_1039_D2CE00597B crossref_primary_10_1016_j_addr_2018_06_009 crossref_primary_10_1016_j_ijpharm_2025_125298 crossref_primary_10_34172_apb_2021_087 crossref_primary_10_12688_f1000research_129459_1 crossref_primary_10_1007_s11095_022_03209_x crossref_primary_10_1155_2021_6685806 crossref_primary_10_1039_C9CE01092K crossref_primary_10_3390_pharmaceutics10030074 crossref_primary_10_1016_j_ijpharm_2019_118914 crossref_primary_10_1039_D0CE00106F crossref_primary_10_1016_j_ejpb_2019_01_018 crossref_primary_10_1007_s11095_018_2374_9 crossref_primary_10_2174_2210303109666190411125857 |
Cites_doi | 10.1002/jps.20495 10.1021/mp100117k 10.1021/cg0503346 10.1016/j.ijpharm.2004.01.012 10.1254/jphs.12089FP 10.1039/C4CE01713G 10.1021/acs.jpcb.5b09668 10.1517/17425247.2013.747508 10.1016/j.ejps.2005.12.010 10.1016/j.jddst.2016.03.014 10.1021/mp0700108 10.1002/ceat.201100484 10.1134/S107036321402042X 10.1016/j.tetlet.2011.11.029 10.1021/cg3011212 10.1002/jps.22546 10.1021/acs.cgd.5b01484 10.1002/jps.21280 10.1016/j.ijpharm.2011.08.032 10.3109/03639045.2015.1096281 10.1021/op400289z 10.1039/C5CC08216A 10.1016/j.ejps.2016.01.029 10.1021/je9901740 10.1016/S0378-5173(99)00315-4 10.1021/cg700843s 10.1021/acs.cgd.6b00266 10.1021/acs.cgd.6b01434 10.1021/cg5007007 10.1016/j.cocis.2016.03.005 10.1021/acs.cgd.6b00591 10.1002/jps.10496 10.1002/jps.20949 10.1021/cg801039j 10.1007/s11095-014-1296-4 10.1021/ja035776p 10.1016/j.ijpharm.2006.04.018 10.1016/j.ijpharm.2012.09.027 10.1039/C0CE00772B 10.1016/j.ejpb.2007.06.013 10.1021/ja907674c 10.1016/j.ijpharm.2010.07.055 10.1039/b715396a |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2017 COPYRIGHT 2018 Springer Pharmaceutical Research is a copyright of Springer, (2017). All Rights Reserved. |
Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2017 – notice: COPYRIGHT 2018 Springer – notice: Pharmaceutical Research is a copyright of Springer, (2017). All Rights Reserved. |
DBID | AAYXX CITATION NPM 3V. 7RV 7TK 7X7 7XB 88E 8AO 8FI 8FJ 8FK ABUWG AFKRA BENPR CCPQU FYUFA GHDGH K9. KB0 M0S M1P NAPCQ PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 |
DOI | 10.1007/s11095-017-2309-x |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Nursing & Allied Health Database Neurosciences Abstracts ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central ProQuest One Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ProQuest Health & Medical Collection Medical Database Nursing & Allied Health Premium ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Nursing & Allied Health Source ProQuest Hospital Collection Health Research Premium Collection (Alumni) Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest One Academic Middle East (New) MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1573-904X |
EndPage | 7 |
ExternalDocumentID | A724211644 29288433 10_1007_s11095_017_2309_x |
Genre | Journal Article |
GroupedDBID | --- -4W -56 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 123 199 1N0 1SB 2.D 203 28- 29O 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3SX 3V. 4.4 406 408 409 40D 40E 53G 5QI 5VS 67N 67Z 6NX 78A 7RV 7X7 88E 8AO 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIPD ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADJJI ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYPR ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFDYV AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BBWZM BDATZ BENPR BGNMA BKEYQ BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBD EBLON EBS EIOEI EJD EMOBN EN4 EPAXT ESBYG EX3 F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IAO IHE IHR IJ- IKXTQ IMOTQ INH ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KPH L7B LAK LLZTM LSO M1P M4Y MA- MK0 N2Q N9A NAPCQ NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P PF0 PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RRX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3A S3B SAP SBL SBY SCLPG SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 T16 TEORI TSG TSK TSV TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WJK WK6 WK8 WOW YCJ YLTOR Z45 Z5O Z7S Z7U Z7V Z7W Z7X Z81 Z82 Z83 Z84 Z87 Z88 Z8N Z8O Z8P Z8Q Z8R Z8V Z8W Z91 Z92 ZGI ZMTXR ZOVNA ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT NPM AEIIB PMFND 7TK 7XB 8FK ABRTQ K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 |
ID | FETCH-LOGICAL-c505t-fa615bc01ec7ecab08dea14441f0419f954ec6d9f7aa11e9dd723d96753243763 |
IEDL.DBID | U2A |
ISSN | 0724-8741 1573-904X |
IngestDate | Fri Jul 11 03:44:52 EDT 2025 Sat Aug 23 13:00:35 EDT 2025 Tue Jun 17 21:31:37 EDT 2025 Tue Jun 10 20:49:16 EDT 2025 Thu Apr 03 06:58:57 EDT 2025 Tue Jul 01 03:50:57 EDT 2025 Thu Apr 24 22:59:05 EDT 2025 Fri Feb 21 02:25:01 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | cocrystal solubilization dissolution carbamazepine |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c505t-fa615bc01ec7ecab08dea14441f0419f954ec6d9f7aa11e9dd723d96753243763 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 29288433 |
PQID | 1982175086 |
PQPubID | 37334 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_1982841432 proquest_journals_1982175086 gale_infotracmisc_A724211644 gale_infotracacademiconefile_A724211644 pubmed_primary_29288433 crossref_citationtrail_10_1007_s11095_017_2309_x crossref_primary_10_1007_s11095_017_2309_x springer_journals_10_1007_s11095_017_2309_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-01-01 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – month: 01 year: 2018 text: 2018-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States |
PublicationSubtitle | An Official Journal of the American Association of Pharmaceutical Scientists |
PublicationTitle | Pharmaceutical research |
PublicationTitleAbbrev | Pharm Res |
PublicationTitleAlternate | Pharm Res |
PublicationYear | 2018 |
Publisher | Springer US Springer Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer – name: Springer Nature B.V |
References | EvstigneevMPEustigneevVPSantiagoAAHDaviesDBEffect of a mixture of caffeine and nicotinamide on the solubility of vitamin (B-2) in aqueous solutionEur J Pharm Sci2006281–-259661:CAS:528:DC%2BD28Xit1Chtbs%3D10.1016/j.ejps.2005.12.01016483751 JainAKSolubilization of indomethacin using hydrotropes for aqueous injectionEur J Pharm Biopharm20086837017141:CAS:528:DC%2BD1cXjtVektrg%3D10.1016/j.ejpb.2007.06.01317716879 Gao Y, Gao J, Liu ZL, Kan HL, Zu H, Sun WJ, et al. Coformer selection based on degradation pathway of drugs: a case study of adefovir dipivoxil-saccharin and adefovir dipivoxil-nicotinamide cocrystals. Int J PharmInt J Pharm. 2012;438(1–-2):327–35. SunCCCocrystallization for successful drug deliveryExpert Opin Drug Deliv20131022012131:CAS:528:DC%2BC3sXht1Cktr4%3D10.1517/17425247.2013.74750823256822 TraskAVMotherwellWDSJonesWPhysical stability enhancement of theophylline via cocrystallizationInt J Pharm20063201–-21141231:CAS:528:DC%2BD28XnsFCqtLo%3D10.1016/j.ijpharm.2006.04.01816769188 DasSPaulSMechanism of hydrotropic action of hydrotrope sodium cumene sulfonate on the solubility of Di-t-Butyl-Methane: a molecular dynamics simulation studyJ Phys Chem B201612011731831:CAS:528:DC%2BC2MXitVGrsL%2FE10.1021/acs.jpcb.5b0966826684411 Childs SL, Rodriguez-Hornedo N, Reddy LS, Jayasankar A, Maheshwari C, McCausland L, et al. Screening strategies based on solubility and solution composition generate pharmaceutically acceptable cocrystals of carbamazepine. CrystEngComm. 2008;10(7):856–64. Ullah M, Hussain I, Sun CC. The development of carbamazepine-succinic acid cocrystal tablet formulations with improved in vitro and in vivo performance. Drug Dev Ind Pharm. 2016;42(6):969–76. RemenarJFPetersonMLStephensPWZhangZZimenkovYHickeyMBCelecoxib : nicotinamide dissociation: using excipients to capture the cocrystal's potentialMol Pharm2007433864001:CAS:528:DC%2BD2sXltFCju7c%3D10.1021/mp070010817497886 Bak A, Gore A, Yanez E, Stanton M, Tufekcic S, Syed R, et al. The co-crystal approach to improve the exposure of a water-insoluble compound: AMG 517 sorbic acid co-crystal characterization and pharmacokinetics. J Pharm Sci. 2008;97(9):3942–56. HawleyMMorozowichWModifying the diffusion layer of soluble salts of poorly soluble basic drugs to improve dissolution performanceMol Pharm201075144114491:CAS:528:DC%2BC3cXptlWgsb0%3D10.1021/mp100117k20731341 Abdelbary GA, Amin MM, Abdelmoteleb M. Novel mixed hydrotropic solubilization of zaleplon: formulation of oral tablets and in-vivo neuropharmacological characterization by monitoring plasma GABA level. J Drug Deliv Sci Technol. 2016;33:98–113. Chow SF, Shi LM, Ng WW, Leung KHY, Nagapudi K, Sun CC, et al. Kinetic entrapment of a hidden curcumin cocrystal with phloroglucinol. Cryst Growth Des. 2014;14(10):5079–89. AgrawalSPancholiSSJainNKAgrawalGPHydrotropic solubilization of nimesulide for parenteral administrationInt J Pharm20042741–-21491551:CAS:528:DC%2BD2cXivFGks70%3D10.1016/j.ijpharm.2004.01.01215072791 Rodriguez-HornedoNMurphyDSurfactant-facilitated crystallization of dihydrate carbamazepine during dissolution of anhydrous polymorphJ Pharm Sci20049324494601:CAS:528:DC%2BD2cXhsFansrk%3D10.1002/jps.1049614705201 Bernhardson D, Brandt TA, Hulford CA, Lehner RS, Preston BR, Price K, et al. Development of an early-phase bulk enabling route to sodium-dependent glucose cotransporter 2 inhibitor ertugliflozin. Org Process Res Dev. 2014;18(1):57–65. GoodDJRodriguez-HornedoNSolubility advantage of pharmaceutical cocrystalsCryst Growth Des200995225222641:CAS:528:DC%2BD1MXjsVKkurs%3D10.1021/cg801039j SubbaraoCVChakravarthyIPKBharadwajAVSLSPrasadKMMKFunctions of hydrotropes in solutionsChem Eng Technol20123522252371:CAS:528:DC%2BC38XhtFahur8%3D10.1002/ceat.201100484 NehmSJRodriguez-SpongBRodriguez-HornedoNPhase solubility diagrams of cocrystals are explained by solubility product and solution complexationCryst Growth Des2006625926001:CAS:528:DC%2BD2MXht1OmsbbE10.1021/cg0503346 Li JH, Wang LY, Ye YQ, Fu X, Ren QH, Zhang HL, et al. Improving the solubility of dexlansoprazole by cocrystallization with isonicotinamide. Eur J Pharm Sci. 2016;85:47–52. KobayashiYItoSItaiSYamamotoKPhysicochemical properties and bioavailability of carbamazepine polymorphs and dihydrateInt J Pharm200019321371461:CAS:528:DyaK1MXnvFSltrw%3D10.1016/S0378-5173(99)00315-410606776 WangCGPerumallaSRLuRLFangJGSunCCSweet BerberineCryst Growth Des20161629339391:CAS:528:DC%2BC2MXitVGrsL%2FI10.1021/acs.cgd.5b01484 MaheshwariRKIndurkhyaAFormulation and evaluation of aceclofenac injection made by mixed hydrotropic solubilization techniqueIran J Pharm Res2010932332421:CAS:528:DC%2BC3cXht1KmtrfO CarinoSRSperryDCHawleyMRelative bioavailability estimation of carbamazepine crystal forms using an artificial stomach-duodenum modelJ Pharm Sci20069511161251:CAS:528:DC%2BD28XlvVShtQ%3D%3D10.1002/jps.2049516315223 ChenYLiLYaoJMaYYChenJMLuTBImproving the solubility and bioavailability of apixaban via apixaban-oxalic acid cocrystalCryst Growth Des2016165292329301:CAS:528:DC%2BC28Xlt1GisrY%3D10.1021/acs.cgd.6b00266 VangalaVRChowPSTanRBHCharacterization, physicochemical and photo-stability of a co-crystal involving an antibiotic drug, nitrofurantoin, and 4-hydroxybenzoic acidCrystEngComm20111337597621:CAS:528:DC%2BC3MXitVCitb4%3D10.1039/C0CE00772B Remenar JF, Morissette SL, Peterson ML, Moulton B, MacPhee JM, Guzman HR, et al. Crystal engineering of novel cocrystals of a triazole drug with 1,4-dicarboxylic acids. J Am Chem Soc. 2003;125(28):8456–7. ZhangGGZHenryRFBorchardtTBLouXCEfficient co-crystal screening using solution-mediated phase transformationJ Pharm Sci20079659909951:CAS:528:DC%2BD2sXltVGqsrg%3D10.1002/jps.2094917455356 WangCGTongQHouXLHuSYFangJGSunCCEnhancing bioavailability of dihydromyricetin through inhibiting precipitation of soluble cocrystals by a crystallization inhibitorCryst Growth Des2016169503050391:CAS:528:DC%2BC28XhtFyitL7O10.1021/acs.cgd.6b00591 YamashitaHHirakuraYYudaMTeradaKCoformer screening using thermal analysis based on binary phase diagramsPharm Res2014318194619571:CAS:528:DC%2BC2cXisFSnsbs%3D10.1007/s11095-014-1296-424522816 Feng LL, Karpinski PH, Sutton P, Liu YG, Hook DF, Hu B, et al. LCZ696: a dual-acting sodium supramolecular complex. Tetrahedron Lett. 2012;53(3):275–6. KunzWHolmbergKZembTHydrotropesCurr Opin Colloid Interface Sci201622991071:CAS:528:DC%2BC28Xmt12qtrk%3D10.1016/j.cocis.2016.03.005 SunCCHouHImproving mechanical properties of caffeine and methyl gallate crystals by cocrystallizationCryst Growth Des200885157515791:CAS:528:DC%2BD1cXksVOku78%3D10.1021/cg700843s KawabataYWadaKNakataniMYamadaSOnoueSFormulation design for poorly water-soluble drugs based on biopharmaceutics classification system: basic approaches and practical applicationsInt J Pharm201142011101:CAS:528:DC%2BC3MXhtlWmtrfI10.1016/j.ijpharm.2011.08.03221884771 CherukuvadaSBabuNJNangiaANitrofurantoin-p-aminobenzoic acid cocrystal: hydration stability and dissolution rate studiesJ Pharm Sci20111008323332441:CAS:528:DC%2BC3MXnsVCrurs%3D10.1002/jps.2254621425165 Tahara A, Kurosaki E, Yokono M, Yamajuku D, Kihara R, Hayashizaki Y, et al. Antidiabetic effects of SGLT2-Selective inhibitor ipragliflozin in streptozotocin-nicotinamide-induced mildly diabetic mice. J Pharmacol Sci. 2012;120(1):36–44. AakeroyCBForbesSDesperJUsing cocrystals to systematically modulate aqueous solubility and melting behavior of an anticancer drugJ Am Chem Soc200913147170481:CAS:528:DC%2BD1MXhtlOksrbM10.1021/ja907674c198947183718473 PerlovichGLManinANDesign of pharmaceutical cocrystals for drug solubility improvementRuss J Gen Chem20148424074141:CAS:528:DC%2BC2cXks1Kiu7c%3D10.1134/S107036321402042X GoyalSThorsonMRZhangGGZGongYCKenisPJAMicrofluidic Approach to cocrystal screening of pharmaceutical parent compoundsCryst Growth Des20121212602360341:CAS:528:DC%2BC38XhsFGqs7rF10.1021/cg3011212 DuggiralaNKPerryMLAlmarssonOZaworotkoMJPharmaceutical cocrystals: along the path to improved medicinesChem Commun20165246406551:CAS:528:DC%2BC2MXhslKksL3O10.1039/C5CC08216A YamashitaHSunCCHarvesting potential dissolution advantages of soluble cocrystals by depressing precipitation using the common coformer effectCryst Growth Des20161612671967211:CAS:528:DC%2BC28XhslCgs7nF10.1021/acs.cgd.6b01434 KumarMDGandhiNNEffect of hydrotropes on solubility and mass transfer coefficient of methyl salicylateJ Chem Eng Data20004534194231:CAS:528:DC%2BD3cXisFansrc%3D10.1021/je9901740 Sowa M, Slepokura K, Matczak-Jon E. Improving solubility of fisetin by cocrystallization. CrystEngComm. 2014;16(46):10592–601. Kojima T, Tsutsumi S, Yamamoto K, Ikeda Y, Moriwaki T. High-throughput cocrystal slurry screening by use of in situ Raman microscopy and multi-well plate. Int J Pharm. 2010;399(1–-2):52–9. Edward JT. Citation-classic - molecular volumes and the stokes-Einstein equation. Eng Tech Appl Sci. 1986;27:14–4. Y Chen (2309_CR16) 2016; 16 H Yamashita (2309_CR27) 2016; 16 2309_CR42 2309_CR41 Y Kawabata (2309_CR17) 2011; 420 AK Jain (2309_CR38) 2008; 68 AV Trask (2309_CR10) 2006; 320 2309_CR24 CC Sun (2309_CR7) 2008; 8 2309_CR29 VR Vangala (2309_CR9) 2011; 13 GL Perlovich (2309_CR15) 2014; 84 JF Remenar (2309_CR23) 2007; 4 NK Duggirala (2309_CR6) 2016; 52 CG Wang (2309_CR25) 2016; 16 CG Wang (2309_CR30) 2016; 16 RK Maheshwari (2309_CR40) 2010; 9 CC Sun (2309_CR5) 2013; 10 2309_CR4 2309_CR31 S Das (2309_CR33) 2016; 120 2309_CR8 2309_CR14 2309_CR13 2309_CR12 H Yamashita (2309_CR19) 2014; 31 DJ Good (2309_CR32) 2009; 9 2309_CR18 CV Subbarao (2309_CR34) 2012; 35 Y Kobayashi (2309_CR43) 2000; 193 CB Aakeroy (2309_CR11) 2009; 131 MP Evstigneev (2309_CR39) 2006; 28 SJ Nehm (2309_CR26) 2006; 6 S Cherukuvada (2309_CR22) 2011; 100 GGZ Zhang (2309_CR21) 2007; 96 M Hawley (2309_CR28) 2010; 7 SR Carino (2309_CR44) 2006; 95 W Kunz (2309_CR35) 2016; 22 S Agrawal (2309_CR37) 2004; 274 MD Kumar (2309_CR36) 2000; 45 2309_CR1 2309_CR2 2309_CR3 S Goyal (2309_CR20) 2012; 12 N Rodriguez-Hornedo (2309_CR45) 2004; 93 19894718 - J Am Chem Soc. 2009 Dec 2;131(47):17048-9 17497886 - Mol Pharm. 2007 May-Jun;4(3):386-400 22989978 - Int J Pharm. 2012 Nov 15;438(1-2):327-35 16315223 - J Pharm Sci. 2006 Jan;95(1):116-25 16769188 - Int J Pharm. 2006 Aug 31;320(1-2):114-23 17455356 - J Pharm Sci. 2007 May;96(5):990-5 26836368 - Eur J Pharm Sci. 2016 Mar 31;85:47-52 20696223 - Int J Pharm. 2010 Oct 31;399(1-2):52-9 23256822 - Expert Opin Drug Deliv. 2013 Feb;10(2):201-13 26565650 - Chem Commun (Camb). 2016 Jan 14;52(4):640-55 17716879 - Eur J Pharm Biopharm. 2008 Mar;68(3):701-14 15072791 - Int J Pharm. 2004 Apr 15;274(1-2):149-55 10606776 - Int J Pharm. 2000 Jan 5;193(2):137-46 22971845 - J Pharmacol Sci. 2012;120(1):36-44 12848550 - J Am Chem Soc. 2003 Jul 16;125(28):8456-7 21425165 - J Pharm Sci. 2011 Aug;100(8):3233-44 24363732 - Iran J Pharm Res. 2010 Summer;9(3):233-42 16483751 - Eur J Pharm Sci. 2006 May;28(1-2):59-66 20731341 - Mol Pharm. 2010 Oct 4;7(5):1441-9 14705201 - J Pharm Sci. 2004 Feb;93(2):449-60 26684411 - J Phys Chem B. 2016 Jan 14;120(1):173-83 18214948 - J Pharm Sci. 2008 Sep;97(9):3942-56 21884771 - Int J Pharm. 2011 Nov 25;420(1):1-10 24522816 - Pharm Res. 2014 Aug;31(8):1946-57 26460090 - Drug Dev Ind Pharm. 2016;42(6):969-76 |
References_xml | – reference: GoodDJRodriguez-HornedoNSolubility advantage of pharmaceutical cocrystalsCryst Growth Des200995225222641:CAS:528:DC%2BD1MXjsVKkurs%3D10.1021/cg801039j – reference: ZhangGGZHenryRFBorchardtTBLouXCEfficient co-crystal screening using solution-mediated phase transformationJ Pharm Sci20079659909951:CAS:528:DC%2BD2sXltVGqsrg%3D10.1002/jps.2094917455356 – reference: Sowa M, Slepokura K, Matczak-Jon E. Improving solubility of fisetin by cocrystallization. CrystEngComm. 2014;16(46):10592–601. – reference: KumarMDGandhiNNEffect of hydrotropes on solubility and mass transfer coefficient of methyl salicylateJ Chem Eng Data20004534194231:CAS:528:DC%2BD3cXisFansrc%3D10.1021/je9901740 – reference: Tahara A, Kurosaki E, Yokono M, Yamajuku D, Kihara R, Hayashizaki Y, et al. Antidiabetic effects of SGLT2-Selective inhibitor ipragliflozin in streptozotocin-nicotinamide-induced mildly diabetic mice. J Pharmacol Sci. 2012;120(1):36–44. – reference: Chow SF, Shi LM, Ng WW, Leung KHY, Nagapudi K, Sun CC, et al. Kinetic entrapment of a hidden curcumin cocrystal with phloroglucinol. Cryst Growth Des. 2014;14(10):5079–89. – reference: KobayashiYItoSItaiSYamamotoKPhysicochemical properties and bioavailability of carbamazepine polymorphs and dihydrateInt J Pharm200019321371461:CAS:528:DyaK1MXnvFSltrw%3D10.1016/S0378-5173(99)00315-410606776 – reference: MaheshwariRKIndurkhyaAFormulation and evaluation of aceclofenac injection made by mixed hydrotropic solubilization techniqueIran J Pharm Res2010932332421:CAS:528:DC%2BC3cXht1KmtrfO – reference: KawabataYWadaKNakataniMYamadaSOnoueSFormulation design for poorly water-soluble drugs based on biopharmaceutics classification system: basic approaches and practical applicationsInt J Pharm201142011101:CAS:528:DC%2BC3MXhtlWmtrfI10.1016/j.ijpharm.2011.08.03221884771 – reference: SunCCHouHImproving mechanical properties of caffeine and methyl gallate crystals by cocrystallizationCryst Growth Des200885157515791:CAS:528:DC%2BD1cXksVOku78%3D10.1021/cg700843s – reference: HawleyMMorozowichWModifying the diffusion layer of soluble salts of poorly soluble basic drugs to improve dissolution performanceMol Pharm201075144114491:CAS:528:DC%2BC3cXptlWgsb0%3D10.1021/mp100117k20731341 – reference: JainAKSolubilization of indomethacin using hydrotropes for aqueous injectionEur J Pharm Biopharm20086837017141:CAS:528:DC%2BD1cXjtVektrg%3D10.1016/j.ejpb.2007.06.01317716879 – reference: TraskAVMotherwellWDSJonesWPhysical stability enhancement of theophylline via cocrystallizationInt J Pharm20063201–-21141231:CAS:528:DC%2BD28XnsFCqtLo%3D10.1016/j.ijpharm.2006.04.01816769188 – reference: EvstigneevMPEustigneevVPSantiagoAAHDaviesDBEffect of a mixture of caffeine and nicotinamide on the solubility of vitamin (B-2) in aqueous solutionEur J Pharm Sci2006281–-259661:CAS:528:DC%2BD28Xit1Chtbs%3D10.1016/j.ejps.2005.12.01016483751 – reference: WangCGPerumallaSRLuRLFangJGSunCCSweet BerberineCryst Growth Des20161629339391:CAS:528:DC%2BC2MXitVGrsL%2FI10.1021/acs.cgd.5b01484 – reference: Kojima T, Tsutsumi S, Yamamoto K, Ikeda Y, Moriwaki T. High-throughput cocrystal slurry screening by use of in situ Raman microscopy and multi-well plate. Int J Pharm. 2010;399(1–-2):52–9. – reference: Bak A, Gore A, Yanez E, Stanton M, Tufekcic S, Syed R, et al. The co-crystal approach to improve the exposure of a water-insoluble compound: AMG 517 sorbic acid co-crystal characterization and pharmacokinetics. J Pharm Sci. 2008;97(9):3942–56. – reference: SunCCCocrystallization for successful drug deliveryExpert Opin Drug Deliv20131022012131:CAS:528:DC%2BC3sXht1Cktr4%3D10.1517/17425247.2013.74750823256822 – reference: AakeroyCBForbesSDesperJUsing cocrystals to systematically modulate aqueous solubility and melting behavior of an anticancer drugJ Am Chem Soc200913147170481:CAS:528:DC%2BD1MXhtlOksrbM10.1021/ja907674c198947183718473 – reference: DasSPaulSMechanism of hydrotropic action of hydrotrope sodium cumene sulfonate on the solubility of Di-t-Butyl-Methane: a molecular dynamics simulation studyJ Phys Chem B201612011731831:CAS:528:DC%2BC2MXitVGrsL%2FE10.1021/acs.jpcb.5b0966826684411 – reference: DuggiralaNKPerryMLAlmarssonOZaworotkoMJPharmaceutical cocrystals: along the path to improved medicinesChem Commun20165246406551:CAS:528:DC%2BC2MXhslKksL3O10.1039/C5CC08216A – reference: WangCGTongQHouXLHuSYFangJGSunCCEnhancing bioavailability of dihydromyricetin through inhibiting precipitation of soluble cocrystals by a crystallization inhibitorCryst Growth Des2016169503050391:CAS:528:DC%2BC28XhtFyitL7O10.1021/acs.cgd.6b00591 – reference: NehmSJRodriguez-SpongBRodriguez-HornedoNPhase solubility diagrams of cocrystals are explained by solubility product and solution complexationCryst Growth Des2006625926001:CAS:528:DC%2BD2MXht1OmsbbE10.1021/cg0503346 – reference: YamashitaHSunCCHarvesting potential dissolution advantages of soluble cocrystals by depressing precipitation using the common coformer effectCryst Growth Des20161612671967211:CAS:528:DC%2BC28XhslCgs7nF10.1021/acs.cgd.6b01434 – reference: ChenYLiLYaoJMaYYChenJMLuTBImproving the solubility and bioavailability of apixaban via apixaban-oxalic acid cocrystalCryst Growth Des2016165292329301:CAS:528:DC%2BC28Xlt1GisrY%3D10.1021/acs.cgd.6b00266 – reference: Gao Y, Gao J, Liu ZL, Kan HL, Zu H, Sun WJ, et al. Coformer selection based on degradation pathway of drugs: a case study of adefovir dipivoxil-saccharin and adefovir dipivoxil-nicotinamide cocrystals. Int J PharmInt J Pharm. 2012;438(1–-2):327–35. – reference: SubbaraoCVChakravarthyIPKBharadwajAVSLSPrasadKMMKFunctions of hydrotropes in solutionsChem Eng Technol20123522252371:CAS:528:DC%2BC38XhtFahur8%3D10.1002/ceat.201100484 – reference: Edward JT. Citation-classic - molecular volumes and the stokes-Einstein equation. Eng Tech Appl Sci. 1986;27:14–4. – reference: Feng LL, Karpinski PH, Sutton P, Liu YG, Hook DF, Hu B, et al. LCZ696: a dual-acting sodium supramolecular complex. Tetrahedron Lett. 2012;53(3):275–6. – reference: AgrawalSPancholiSSJainNKAgrawalGPHydrotropic solubilization of nimesulide for parenteral administrationInt J Pharm20042741–-21491551:CAS:528:DC%2BD2cXivFGks70%3D10.1016/j.ijpharm.2004.01.01215072791 – reference: PerlovichGLManinANDesign of pharmaceutical cocrystals for drug solubility improvementRuss J Gen Chem20148424074141:CAS:528:DC%2BC2cXks1Kiu7c%3D10.1134/S107036321402042X – reference: Childs SL, Rodriguez-Hornedo N, Reddy LS, Jayasankar A, Maheshwari C, McCausland L, et al. Screening strategies based on solubility and solution composition generate pharmaceutically acceptable cocrystals of carbamazepine. CrystEngComm. 2008;10(7):856–64. – reference: KunzWHolmbergKZembTHydrotropesCurr Opin Colloid Interface Sci201622991071:CAS:528:DC%2BC28Xmt12qtrk%3D10.1016/j.cocis.2016.03.005 – reference: Abdelbary GA, Amin MM, Abdelmoteleb M. Novel mixed hydrotropic solubilization of zaleplon: formulation of oral tablets and in-vivo neuropharmacological characterization by monitoring plasma GABA level. J Drug Deliv Sci Technol. 2016;33:98–113. – reference: Li JH, Wang LY, Ye YQ, Fu X, Ren QH, Zhang HL, et al. Improving the solubility of dexlansoprazole by cocrystallization with isonicotinamide. Eur J Pharm Sci. 2016;85:47–52. – reference: Bernhardson D, Brandt TA, Hulford CA, Lehner RS, Preston BR, Price K, et al. Development of an early-phase bulk enabling route to sodium-dependent glucose cotransporter 2 inhibitor ertugliflozin. Org Process Res Dev. 2014;18(1):57–65. – reference: YamashitaHHirakuraYYudaMTeradaKCoformer screening using thermal analysis based on binary phase diagramsPharm Res2014318194619571:CAS:528:DC%2BC2cXisFSnsbs%3D10.1007/s11095-014-1296-424522816 – reference: VangalaVRChowPSTanRBHCharacterization, physicochemical and photo-stability of a co-crystal involving an antibiotic drug, nitrofurantoin, and 4-hydroxybenzoic acidCrystEngComm20111337597621:CAS:528:DC%2BC3MXitVCitb4%3D10.1039/C0CE00772B – reference: Remenar JF, Morissette SL, Peterson ML, Moulton B, MacPhee JM, Guzman HR, et al. Crystal engineering of novel cocrystals of a triazole drug with 1,4-dicarboxylic acids. J Am Chem Soc. 2003;125(28):8456–7. – reference: GoyalSThorsonMRZhangGGZGongYCKenisPJAMicrofluidic Approach to cocrystal screening of pharmaceutical parent compoundsCryst Growth Des20121212602360341:CAS:528:DC%2BC38XhsFGqs7rF10.1021/cg3011212 – reference: CarinoSRSperryDCHawleyMRelative bioavailability estimation of carbamazepine crystal forms using an artificial stomach-duodenum modelJ Pharm Sci20069511161251:CAS:528:DC%2BD28XlvVShtQ%3D%3D10.1002/jps.2049516315223 – reference: Rodriguez-HornedoNMurphyDSurfactant-facilitated crystallization of dihydrate carbamazepine during dissolution of anhydrous polymorphJ Pharm Sci20049324494601:CAS:528:DC%2BD2cXhsFansrk%3D10.1002/jps.1049614705201 – reference: RemenarJFPetersonMLStephensPWZhangZZimenkovYHickeyMBCelecoxib : nicotinamide dissociation: using excipients to capture the cocrystal's potentialMol Pharm2007433864001:CAS:528:DC%2BD2sXltFCju7c%3D10.1021/mp070010817497886 – reference: CherukuvadaSBabuNJNangiaANitrofurantoin-p-aminobenzoic acid cocrystal: hydration stability and dissolution rate studiesJ Pharm Sci20111008323332441:CAS:528:DC%2BC3MXnsVCrurs%3D10.1002/jps.2254621425165 – reference: Ullah M, Hussain I, Sun CC. The development of carbamazepine-succinic acid cocrystal tablet formulations with improved in vitro and in vivo performance. Drug Dev Ind Pharm. 2016;42(6):969–76. – volume: 95 start-page: 116 issue: 1 year: 2006 ident: 2309_CR44 publication-title: J Pharm Sci doi: 10.1002/jps.20495 – volume: 7 start-page: 1441 issue: 5 year: 2010 ident: 2309_CR28 publication-title: Mol Pharm doi: 10.1021/mp100117k – volume: 6 start-page: 592 issue: 2 year: 2006 ident: 2309_CR26 publication-title: Cryst Growth Des doi: 10.1021/cg0503346 – volume: 274 start-page: 149 issue: 1–-2 year: 2004 ident: 2309_CR37 publication-title: Int J Pharm doi: 10.1016/j.ijpharm.2004.01.012 – ident: 2309_CR42 – ident: 2309_CR2 doi: 10.1254/jphs.12089FP – ident: 2309_CR12 doi: 10.1039/C4CE01713G – volume: 120 start-page: 173 issue: 1 year: 2016 ident: 2309_CR33 publication-title: J Phys Chem B doi: 10.1021/acs.jpcb.5b09668 – volume: 10 start-page: 201 issue: 2 year: 2013 ident: 2309_CR5 publication-title: Expert Opin Drug Deliv doi: 10.1517/17425247.2013.747508 – volume: 28 start-page: 59 issue: 1–-2 year: 2006 ident: 2309_CR39 publication-title: Eur J Pharm Sci doi: 10.1016/j.ejps.2005.12.010 – ident: 2309_CR41 doi: 10.1016/j.jddst.2016.03.014 – volume: 4 start-page: 386 issue: 3 year: 2007 ident: 2309_CR23 publication-title: Mol Pharm doi: 10.1021/mp0700108 – volume: 35 start-page: 225 issue: 2 year: 2012 ident: 2309_CR34 publication-title: Chem Eng Technol doi: 10.1002/ceat.201100484 – volume: 84 start-page: 407 issue: 2 year: 2014 ident: 2309_CR15 publication-title: Russ J Gen Chem doi: 10.1134/S107036321402042X – ident: 2309_CR1 doi: 10.1016/j.tetlet.2011.11.029 – volume: 12 start-page: 6023 issue: 12 year: 2012 ident: 2309_CR20 publication-title: Cryst Growth Des doi: 10.1021/cg3011212 – volume: 100 start-page: 3233 issue: 8 year: 2011 ident: 2309_CR22 publication-title: J Pharm Sci doi: 10.1002/jps.22546 – volume: 16 start-page: 933 issue: 2 year: 2016 ident: 2309_CR30 publication-title: Cryst Growth Des doi: 10.1021/acs.cgd.5b01484 – ident: 2309_CR3 doi: 10.1002/jps.21280 – volume: 420 start-page: 1 issue: 1 year: 2011 ident: 2309_CR17 publication-title: Int J Pharm doi: 10.1016/j.ijpharm.2011.08.032 – ident: 2309_CR24 doi: 10.3109/03639045.2015.1096281 – ident: 2309_CR4 doi: 10.1021/op400289z – volume: 52 start-page: 640 issue: 4 year: 2016 ident: 2309_CR6 publication-title: Chem Commun doi: 10.1039/C5CC08216A – ident: 2309_CR14 doi: 10.1016/j.ejps.2016.01.029 – volume: 9 start-page: 233 issue: 3 year: 2010 ident: 2309_CR40 publication-title: Iran J Pharm Res – volume: 45 start-page: 419 issue: 3 year: 2000 ident: 2309_CR36 publication-title: J Chem Eng Data doi: 10.1021/je9901740 – volume: 193 start-page: 137 issue: 2 year: 2000 ident: 2309_CR43 publication-title: Int J Pharm doi: 10.1016/S0378-5173(99)00315-4 – volume: 8 start-page: 1575 issue: 5 year: 2008 ident: 2309_CR7 publication-title: Cryst Growth Des doi: 10.1021/cg700843s – volume: 16 start-page: 2923 issue: 5 year: 2016 ident: 2309_CR16 publication-title: Cryst Growth Des doi: 10.1021/acs.cgd.6b00266 – volume: 16 start-page: 6719 issue: 12 year: 2016 ident: 2309_CR27 publication-title: Cryst Growth Des doi: 10.1021/acs.cgd.6b01434 – ident: 2309_CR31 doi: 10.1021/cg5007007 – volume: 22 start-page: 99 year: 2016 ident: 2309_CR35 publication-title: Curr Opin Colloid Interface Sci doi: 10.1016/j.cocis.2016.03.005 – volume: 16 start-page: 5030 issue: 9 year: 2016 ident: 2309_CR25 publication-title: Cryst Growth Des doi: 10.1021/acs.cgd.6b00591 – volume: 93 start-page: 449 issue: 2 year: 2004 ident: 2309_CR45 publication-title: J Pharm Sci doi: 10.1002/jps.10496 – volume: 96 start-page: 990 issue: 5 year: 2007 ident: 2309_CR21 publication-title: J Pharm Sci doi: 10.1002/jps.20949 – volume: 9 start-page: 2252 issue: 5 year: 2009 ident: 2309_CR32 publication-title: Cryst Growth Des doi: 10.1021/cg801039j – volume: 31 start-page: 1946 issue: 8 year: 2014 ident: 2309_CR19 publication-title: Pharm Res doi: 10.1007/s11095-014-1296-4 – ident: 2309_CR13 doi: 10.1021/ja035776p – volume: 320 start-page: 114 issue: 1–-2 year: 2006 ident: 2309_CR10 publication-title: Int J Pharm doi: 10.1016/j.ijpharm.2006.04.018 – ident: 2309_CR8 doi: 10.1016/j.ijpharm.2012.09.027 – volume: 13 start-page: 759 issue: 3 year: 2011 ident: 2309_CR9 publication-title: CrystEngComm doi: 10.1039/C0CE00772B – volume: 68 start-page: 701 issue: 3 year: 2008 ident: 2309_CR38 publication-title: Eur J Pharm Biopharm doi: 10.1016/j.ejpb.2007.06.013 – volume: 131 start-page: 17048 issue: 47 year: 2009 ident: 2309_CR11 publication-title: J Am Chem Soc doi: 10.1021/ja907674c – ident: 2309_CR18 doi: 10.1016/j.ijpharm.2010.07.055 – ident: 2309_CR29 doi: 10.1039/b715396a – reference: 20731341 - Mol Pharm. 2010 Oct 4;7(5):1441-9 – reference: 10606776 - Int J Pharm. 2000 Jan 5;193(2):137-46 – reference: 22971845 - J Pharmacol Sci. 2012;120(1):36-44 – reference: 16483751 - Eur J Pharm Sci. 2006 May;28(1-2):59-66 – reference: 20696223 - Int J Pharm. 2010 Oct 31;399(1-2):52-9 – reference: 16769188 - Int J Pharm. 2006 Aug 31;320(1-2):114-23 – reference: 24522816 - Pharm Res. 2014 Aug;31(8):1946-57 – reference: 21884771 - Int J Pharm. 2011 Nov 25;420(1):1-10 – reference: 17455356 - J Pharm Sci. 2007 May;96(5):990-5 – reference: 26460090 - Drug Dev Ind Pharm. 2016;42(6):969-76 – reference: 19894718 - J Am Chem Soc. 2009 Dec 2;131(47):17048-9 – reference: 24363732 - Iran J Pharm Res. 2010 Summer;9(3):233-42 – reference: 26836368 - Eur J Pharm Sci. 2016 Mar 31;85:47-52 – reference: 17716879 - Eur J Pharm Biopharm. 2008 Mar;68(3):701-14 – reference: 22989978 - Int J Pharm. 2012 Nov 15;438(1-2):327-35 – reference: 18214948 - J Pharm Sci. 2008 Sep;97(9):3942-56 – reference: 17497886 - Mol Pharm. 2007 May-Jun;4(3):386-400 – reference: 26565650 - Chem Commun (Camb). 2016 Jan 14;52(4):640-55 – reference: 21425165 - J Pharm Sci. 2011 Aug;100(8):3233-44 – reference: 14705201 - J Pharm Sci. 2004 Feb;93(2):449-60 – reference: 23256822 - Expert Opin Drug Deliv. 2013 Feb;10(2):201-13 – reference: 16315223 - J Pharm Sci. 2006 Jan;95(1):116-25 – reference: 26684411 - J Phys Chem B. 2016 Jan 14;120(1):173-83 – reference: 15072791 - Int J Pharm. 2004 Apr 15;274(1-2):149-55 – reference: 12848550 - J Am Chem Soc. 2003 Jul 16;125(28):8456-7 |
SSID | ssj0008194 |
Score | 2.4334195 |
Snippet | Purpose
The use of soluble cocrystals is a promising strategy for delivering poorly soluble drugs. However, precipitation of poorly soluble crystal form during... The use of soluble cocrystals is a promising strategy for delivering poorly soluble drugs. However, precipitation of poorly soluble crystal form during... Purpose The use of soluble cocrystals is a promising strategy for delivering poorly soluble drugs. However, precipitation of poorly soluble crystal form during... PurposeThe use of soluble cocrystals is a promising strategy for delivering poorly soluble drugs. However, precipitation of poorly soluble crystal form during... |
SourceID | proquest gale pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4 |
SubjectTerms | Biochemistry Biomedical and Life Sciences Biomedical Engineering and Bioengineering Biomedicine Carbamazepine Dissolution Drug delivery Fiber optics Formulation and Manufacturing of Solid Dosage Forms Hydrochloric acid Intestine Laboratories Medical Law pH effects Pharmacology/Toxicology Pharmacy Potassium Powder Powders Research Paper Sodium Solubility Solubilization Stainless steel Viscosity |
SummonAdditionalLinks | – databaseName: ProQuest Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swED-27mUvY9_z1g0NRgdbzWxZjq2nEbJ2ZbBRRgt5E_JJgkIbZ0kKyf763fkrTWF9lmTLvjvpd98AH_JQes8xTyHIKlZe67gKXsbocrQuQYnIicI_f41OztWPaT7tDG7LLqyyPxObg9rVyDbyL6QcE3omODH6Ov8Tc9co9q52LTTuwwMuXcYhXcV0ULj4tmvKRxVSkdSrtPdqNqlzacK5yXRGS3YyrHfupdun843r6Za_tLmGjh_Dow4_inFL8Cdwz8-ewsFpW4B6cyjOtvlUy0NxIE63pak3z-BqsCGIbxcD24nfBDhFHcSEnQ9X9q-fE_aMv9MoadIoxnjhxKTGxYag5CW9omntI9iixqG1bSKnqDbiaM1JBzSVkbBfPIfz46OzyUncNVyIkYDQKg6W8E2FSeqx8GirpHTeksal0pCoVAedK48jp0NhbZp67VwhM6dJ58i4ruEoewF7s3rmX4EonQqF9prxjkpJqcuynJYRSEZPKqmNIOl_t8GuGjk3xbg02zrKTCFDFDJMIbOO4NOwZN6W4rhr8kemoWExpeei7bINaHdc8MqMC_aFk66oItjfmUnihbvDPReYTryXZsuMEbwfhnklh6zNfH3dzikVwVEZwcuWe4ZtSy3LUmVZBJ97drrx8P990-u7t_IGHhKaK1v70D7srRbX_i0hplX1rhGLfxVDEms priority: 102 providerName: ProQuest |
Title | Improving Dissolution Rate of Carbamazepine-Glutaric Acid Cocrystal Through Solubilization by Excess Coformer |
URI | https://link.springer.com/article/10.1007/s11095-017-2309-x https://www.ncbi.nlm.nih.gov/pubmed/29288433 https://www.proquest.com/docview/1982175086 https://www.proquest.com/docview/1982841432 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED-69mUvY1v34a4LGpQOthpsWY6tRydLWjoWQmkgezKyPqDQJiVJoelf3zt_pSnbYE9-0EmWfXfS73QfAjiKXWotxTw5xwtfWCn9wlnuaxNrZQLNtaZE4V-j7tlEnE_jaZ3HvWyi3RuXZLlSb5LdwoCyiXFV5eQWQOC4F5PpjkI84Vm7_OIWV9aMSrhAVRdh48r80xBbm9HzJfnJnvTMSVruPcPX8KoGjSyruPwGduzsLRyPq6rT6xN2uUmiWp6wYzbe1KNe78NNe3DAfly1ssYuEGWyuWN98jjcqAd7i4DTP8VWNJ81y_SVYf25XqwRP17jK8r7fBgdo1E8bZW9yYo1G9xTpgGSEvy1i3cwGQ4u-2d-fcuCrxH9rHynENQUOgitTqxWRZAaq9DMEqELRCidjIXVXSNdolQYWmlMwiMj0dCIqJhhN3oPu7P5zH4ElhrhEmklgRwRoiUXRTF2Q2SsLdqhyoOg-d25rkuQ000Y1_mmeDJxKEcO5cSh_N6Db22X26r-xr-IvxIPc9JNHFerOsUAZ0dVrvIsIQc4GojCg8MtStQpvd3cSEFe6_QyD2WK9hsC2q4HX9pm6klxajM7v6toUoEYlHvwoZKedtpc8jQVUeTB90acngz-t286-C_qT_ASEV1anREdwu5qcWc_I2paFR14kUyTDuxlw15vRM_T3z8H-OwNRuOLTqlDj7ZeFPk |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9AAXxBtDgUWCIkEt7PU6tg8IhTQlpW0UVanU22LvQ6rUxiFJRcyP4jcyEz_SVKK3nveRjWd25puZnRmAd6GNjaE3T9byzBUmSdzMGu4qHapUe4orRYnCR4N2_0T8OA1PN-BvnQtDzyprmbgU1DpX5CP_jMYxomeEE-2vk18udY2i6GrdQqNkiwNT_EaTbfZlfxfp-57zvd6o23errgKuQm0_d22KSjxTnm9UZFSaebE2KZoVwree8BObhMKotk5slKa-bxKtIx7oBIF1QMX72gHuewc2RYCmTAs2v_UGw-NG9qN-XRasirhAOSP8Oo66TNbzPcqGRq3AKayxWNOE1_XBFYV4LUK7VHx7D-B-hVhZp2Sxh7Bhxo9ge1iWvC522GiVwTXbYdtsuCqGXTyGi8ZrwXbPGkZnxwhxWW5Zl8IdF-kfM0G0637HUbTdFeuoM826uZoWCF7P8SeWzYQY-fDoMW-ZOsqygvUWlOaAUwl7m-kTOLkVYjyF1jgfm-fAYi1slJiEEJbw0YwMghCXISxXBo3g1AGv_txSVfXPqQ3HuVxVbiYKSaSQJArJhQMfmyWTsvjHTZM_EA0lCQbcV6VVfgOejkpsyU5E0Xe0ToUDW2sz8UKr9eGaC2QlUGZyxf4OvG2GaSU9khub_LKcEwsEwNyBZyX3NMfmCY9jEQQOfKrZ6crm__tPL24-yhu42x8dHcrD_cHBS7iHWDIuvVNb0JpPL80rxGvz7HV1SRj8vO17-Q-EF1DM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEB6VIiFeEDeGAosERYJa2Ot17H1AKEoaWgpVhFopb1t7D6lSG4ckFQk_jV_HjK80lehbn_fIxjOz883OBfA2dqm1FPPkHM99YaX0c2e5r02sMxNorjUlCv847Owdi2-jeLQBf5tcGAqrbO7E8qI2haY38k9oHCN6jqkvkKvDIob9wZfJL586SJGntWmnUbHIgV3-RvNt9nm_j7R-x_lg96i359cdBnyNmn_uuwwVeq6D0OrE6iwPUmMzNDFE6AIRSidjYXXHSJdkWRhaaUzCIyMRZEdUyK8T4b634HYSxSHJWDJqjT3StGXpqoQLvHFE2HhUy7S9MKC8aNQPnBwcizWdeFUzXFKNV3y1pQoc3Id7NXZl3YrZHsCGHT-E7WFV_Hq5w45WuVyzHbbNhquy2MtHcN6-X7D-acvy7CeCXVY41iPHx3n2x04Q9_pfcRSteM26-tSwXqGnS4SxZ_gTZVshRq95FNZbJZGyfMl2F5TwgFMJhdvpYzi-EVI8gc1xMbbPgKVGuERaSVhLhGhQRlGMyxCga4vmcOZB0HxupetK6NSQ40ytajgThRRSSBGF1MKDD-2SSVUG5LrJ74mGiq4I3FdndaYDno6KbaluQn54tFOFB1trM1G09fpwwwWqvlpmaiUIHrxph2klhcuNbXFRzUkFQmHuwdOKe9pjc8nTVESRBx8bdrq0-f_-0_Prj_Ia7qA0qu_7hwcv4C6CyrR6ptqCzfn0wr5E4DbPX5USwuDkpkXyH5dWU5w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+Dissolution+Rate+of+Carbamazepine-Glutaric+Acid+Cocrystal+Through+Solubilization+by+Excess+Coformer&rft.jtitle=Pharmaceutical+research&rft.au=Yamashita%2C+Hiroyuki&rft.au=Sun%2C+Changquan+Calvin&rft.date=2018-01-01&rft.issn=0724-8741&rft.eissn=1573-904X&rft.volume=35&rft.issue=1&rft_id=info:doi/10.1007%2Fs11095-017-2309-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11095_017_2309_x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0724-8741&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0724-8741&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0724-8741&client=summon |