Improving Dissolution Rate of Carbamazepine-Glutaric Acid Cocrystal Through Solubilization by Excess Coformer

Purpose The use of soluble cocrystals is a promising strategy for delivering poorly soluble drugs. However, precipitation of poorly soluble crystal form during dissolution hinders the successful tablet development of cocrystals. This work was aimed to understand the mechanisms for improving dissolut...

Full description

Saved in:
Bibliographic Details
Published inPharmaceutical research Vol. 35; no. 1; pp. 4 - 7
Main Authors Yamashita, Hiroyuki, Sun, Changquan Calvin
Format Journal Article
LanguageEnglish
Published New York Springer US 01.01.2018
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Purpose The use of soluble cocrystals is a promising strategy for delivering poorly soluble drugs. However, precipitation of poorly soluble crystal form during dissolution hinders the successful tablet development of cocrystals. This work was aimed to understand the mechanisms for improving dissolution performance of a soluble cocrystals by using excess coformer. Methods A highly soluble carbamazepine (CBZ) cocrystal with– glutaric acid (GLA) was studied. Impact of excess GLA on solubility and intrinsic dissolution rate (IDR) was assessed. Viscosity of GLA solutions was also measured. Solid form of powders and pellets was examined using powder X-ray diffractometry. IDRs of cocrystal and GLA mixtures in different ratios were measured to identify a suitable formulation for maintaining high dissolution rate of CBZ-GLA in an aqueous environment. Results IDR of CBZ-GLA in a pH 1.2 HCl solution was improved when GLA was present in the solution. Precipitation of CBZ·2H 2 O was eliminated when GLA concentration was ≥100 mg/mL. The improved IDR was accompanied by higher solubility of CBZ in GLA solution and increased solution viscosity. The trend in IDR profile matched well with the solubility profile normalized by solution viscosity. Mixture of cocrystal and GLA led to improved IDR in simulated intestinal fluid. Conclusions The excess GLA increased the aqueous solubility of CBZ·2H 2 O and, thereby, reduced the propensity to precipitation of CBZ·2H 2 O during dissolution by lowering the degree of supersaturation. This strategy allowed development of a CBZ-GLA formulation with a significantly enhanced dissolution rate than CBZ-GLA.
AbstractList Purpose The use of soluble cocrystals is a promising strategy for delivering poorly soluble drugs. However, precipitation of poorly soluble crystal form during dissolution hinders the successful tablet development of cocrystals. This work was aimed to understand the mechanisms for improving dissolution performance of a soluble cocrystals by using excess coformer. Methods A highly soluble carbamazepine (CBZ) cocrystal with– glutaric acid (GLA) was studied. Impact of excess GLA on solubility and intrinsic dissolution rate (IDR) was assessed. Viscosity of GLA solutions was also measured. Solid form of powders and pellets was examined using powder X-ray diffractometry. IDRs of cocrystal and GLA mixtures in different ratios were measured to identify a suitable formulation for maintaining high dissolution rate of CBZ-GLA in an aqueous environment. Results IDR of CBZ-GLA in a pH 1.2 HCl solution was improved when GLA was present in the solution. Precipitation of CBZ·2H 2 O was eliminated when GLA concentration was ≥100 mg/mL. The improved IDR was accompanied by higher solubility of CBZ in GLA solution and increased solution viscosity. The trend in IDR profile matched well with the solubility profile normalized by solution viscosity. Mixture of cocrystal and GLA led to improved IDR in simulated intestinal fluid. Conclusions The excess GLA increased the aqueous solubility of CBZ·2H 2 O and, thereby, reduced the propensity to precipitation of CBZ·2H 2 O during dissolution by lowering the degree of supersaturation. This strategy allowed development of a CBZ-GLA formulation with a significantly enhanced dissolution rate than CBZ-GLA.
The use of soluble cocrystals is a promising strategy for delivering poorly soluble drugs. However, precipitation of poorly soluble crystal form during dissolution hinders the successful tablet development of cocrystals. This work was aimed to understand the mechanisms for improving dissolution performance of a soluble cocrystals by using excess coformer. A highly soluble carbamazepine (CBZ) cocrystal with- glutaric acid (GLA) was studied. Impact of excess GLA on solubility and intrinsic dissolution rate (IDR) was assessed. Viscosity of GLA solutions was also measured. Solid form of powders and pellets was examined using powder X-ray diffractometry. IDRs of cocrystal and GLA mixtures in different ratios were measured to identify a suitable formulation for maintaining high dissolution rate of CBZ-GLA in an aqueous environment. IDR of CBZ-GLA in a pH 1.2 HCl solution was improved when GLA was present in the solution. Precipitation of CBZ·2H.sub.2O was eliminated when GLA concentration was [greater than or equal to]100 mg/mL. The improved IDR was accompanied by higher solubility of CBZ in GLA solution and increased solution viscosity. The trend in IDR profile matched well with the solubility profile normalized by solution viscosity. Mixture of cocrystal and GLA led to improved IDR in simulated intestinal fluid. The excess GLA increased the aqueous solubility of CBZ·2H.sub.2O and, thereby, reduced the propensity to precipitation of CBZ·2H.sub.2O during dissolution by lowering the degree of supersaturation. This strategy allowed development of a CBZ-GLA formulation with a significantly enhanced dissolution rate than CBZ-GLA.
PurposeThe use of soluble cocrystals is a promising strategy for delivering poorly soluble drugs. However, precipitation of poorly soluble crystal form during dissolution hinders the successful tablet development of cocrystals. This work was aimed to understand the mechanisms for improving dissolution performance of a soluble cocrystals by using excess coformer.MethodsA highly soluble carbamazepine (CBZ) cocrystal with– glutaric acid (GLA) was studied. Impact of excess GLA on solubility and intrinsic dissolution rate (IDR) was assessed. Viscosity of GLA solutions was also measured. Solid form of powders and pellets was examined using powder X-ray diffractometry. IDRs of cocrystal and GLA mixtures in different ratios were measured to identify a suitable formulation for maintaining high dissolution rate of CBZ-GLA in an aqueous environment.ResultsIDR of CBZ-GLA in a pH 1.2 HCl solution was improved when GLA was present in the solution. Precipitation of CBZ·2H2O was eliminated when GLA concentration was ≥100 mg/mL. The improved IDR was accompanied by higher solubility of CBZ in GLA solution and increased solution viscosity. The trend in IDR profile matched well with the solubility profile normalized by solution viscosity. Mixture of cocrystal and GLA led to improved IDR in simulated intestinal fluid.ConclusionsThe excess GLA increased the aqueous solubility of CBZ·2H2O and, thereby, reduced the propensity to precipitation of CBZ·2H2O during dissolution by lowering the degree of supersaturation. This strategy allowed development of a CBZ-GLA formulation with a significantly enhanced dissolution rate than CBZ-GLA.
The use of soluble cocrystals is a promising strategy for delivering poorly soluble drugs. However, precipitation of poorly soluble crystal form during dissolution hinders the successful tablet development of cocrystals. This work was aimed to understand the mechanisms for improving dissolution performance of a soluble cocrystals by using excess coformer.PURPOSEThe use of soluble cocrystals is a promising strategy for delivering poorly soluble drugs. However, precipitation of poorly soluble crystal form during dissolution hinders the successful tablet development of cocrystals. This work was aimed to understand the mechanisms for improving dissolution performance of a soluble cocrystals by using excess coformer.A highly soluble carbamazepine (CBZ) cocrystal with- glutaric acid (GLA) was studied. Impact of excess GLA on solubility and intrinsic dissolution rate (IDR) was assessed. Viscosity of GLA solutions was also measured. Solid form of powders and pellets was examined using powder X-ray diffractometry. IDRs of cocrystal and GLA mixtures in different ratios were measured to identify a suitable formulation for maintaining high dissolution rate of CBZ-GLA in an aqueous environment.METHODSA highly soluble carbamazepine (CBZ) cocrystal with- glutaric acid (GLA) was studied. Impact of excess GLA on solubility and intrinsic dissolution rate (IDR) was assessed. Viscosity of GLA solutions was also measured. Solid form of powders and pellets was examined using powder X-ray diffractometry. IDRs of cocrystal and GLA mixtures in different ratios were measured to identify a suitable formulation for maintaining high dissolution rate of CBZ-GLA in an aqueous environment.IDR of CBZ-GLA in a pH 1.2 HCl solution was improved when GLA was present in the solution. Precipitation of CBZ·2H2O was eliminated when GLA concentration was ≥100 mg/mL. The improved IDR was accompanied by higher solubility of CBZ in GLA solution and increased solution viscosity. The trend in IDR profile matched well with the solubility profile normalized by solution viscosity. Mixture of cocrystal and GLA led to improved IDR in simulated intestinal fluid.RESULTSIDR of CBZ-GLA in a pH 1.2 HCl solution was improved when GLA was present in the solution. Precipitation of CBZ·2H2O was eliminated when GLA concentration was ≥100 mg/mL. The improved IDR was accompanied by higher solubility of CBZ in GLA solution and increased solution viscosity. The trend in IDR profile matched well with the solubility profile normalized by solution viscosity. Mixture of cocrystal and GLA led to improved IDR in simulated intestinal fluid.The excess GLA increased the aqueous solubility of CBZ·2H2O and, thereby, reduced the propensity to precipitation of CBZ·2H2O during dissolution by lowering the degree of supersaturation. This strategy allowed development of a CBZ-GLA formulation with a significantly enhanced dissolution rate than CBZ-GLA.CONCLUSIONSThe excess GLA increased the aqueous solubility of CBZ·2H2O and, thereby, reduced the propensity to precipitation of CBZ·2H2O during dissolution by lowering the degree of supersaturation. This strategy allowed development of a CBZ-GLA formulation with a significantly enhanced dissolution rate than CBZ-GLA.
The use of soluble cocrystals is a promising strategy for delivering poorly soluble drugs. However, precipitation of poorly soluble crystal form during dissolution hinders the successful tablet development of cocrystals. This work was aimed to understand the mechanisms for improving dissolution performance of a soluble cocrystals by using excess coformer. A highly soluble carbamazepine (CBZ) cocrystal with- glutaric acid (GLA) was studied. Impact of excess GLA on solubility and intrinsic dissolution rate (IDR) was assessed. Viscosity of GLA solutions was also measured. Solid form of powders and pellets was examined using powder X-ray diffractometry. IDRs of cocrystal and GLA mixtures in different ratios were measured to identify a suitable formulation for maintaining high dissolution rate of CBZ-GLA in an aqueous environment. IDR of CBZ-GLA in a pH 1.2 HCl solution was improved when GLA was present in the solution. Precipitation of CBZ·2H O was eliminated when GLA concentration was ≥100 mg/mL. The improved IDR was accompanied by higher solubility of CBZ in GLA solution and increased solution viscosity. The trend in IDR profile matched well with the solubility profile normalized by solution viscosity. Mixture of cocrystal and GLA led to improved IDR in simulated intestinal fluid. The excess GLA increased the aqueous solubility of CBZ·2H O and, thereby, reduced the propensity to precipitation of CBZ·2H O during dissolution by lowering the degree of supersaturation. This strategy allowed development of a CBZ-GLA formulation with a significantly enhanced dissolution rate than CBZ-GLA.
Purpose The use of soluble cocrystals is a promising strategy for delivering poorly soluble drugs. However, precipitation of poorly soluble crystal form during dissolution hinders the successful tablet development of cocrystals. This work was aimed to understand the mechanisms for improving dissolution performance of a soluble cocrystals by using excess coformer. Methods A highly soluble carbamazepine (CBZ) cocrystal with- glutaric acid (GLA) was studied. Impact of excess GLA on solubility and intrinsic dissolution rate (IDR) was assessed. Viscosity of GLA solutions was also measured. Solid form of powders and pellets was examined using powder X-ray diffractometry. IDRs of cocrystal and GLA mixtures in different ratios were measured to identify a suitable formulation for maintaining high dissolution rate of CBZ-GLA in an aqueous environment. Results IDR of CBZ-GLA in a pH 1.2 HCl solution was improved when GLA was present in the solution. Precipitation of CBZ·2H.sub.2O was eliminated when GLA concentration was [greater than or equal to]100 mg/mL. The improved IDR was accompanied by higher solubility of CBZ in GLA solution and increased solution viscosity. The trend in IDR profile matched well with the solubility profile normalized by solution viscosity. Mixture of cocrystal and GLA led to improved IDR in simulated intestinal fluid. Conclusions The excess GLA increased the aqueous solubility of CBZ·2H.sub.2O and, thereby, reduced the propensity to precipitation of CBZ·2H.sub.2O during dissolution by lowering the degree of supersaturation. This strategy allowed development of a CBZ-GLA formulation with a significantly enhanced dissolution rate than CBZ-GLA.
ArticleNumber 4
Audience Academic
Author Sun, Changquan Calvin
Yamashita, Hiroyuki
Author_xml – sequence: 1
  givenname: Hiroyuki
  surname: Yamashita
  fullname: Yamashita, Hiroyuki
  organization: Analytical Research Laboratories, Technology, Astellas Pharma Inc., Pharmaceutical Materials Science and Engineering Laboratory Department of Pharmaceutics College of Pharmacy, University of Minnesota
– sequence: 2
  givenname: Changquan Calvin
  surname: Sun
  fullname: Sun, Changquan Calvin
  email: sunx0053@umn.edu
  organization: Pharmaceutical Materials Science and Engineering Laboratory Department of Pharmaceutics College of Pharmacy, University of Minnesota
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29288433$$D View this record in MEDLINE/PubMed
BookMark eNp9kk9r3DAQxUVJaTZ_PkAvxdBLL041smxZx2WTpoFAoU0hNyHLo42CbW0lu-zm01e7m9A0tEUHgfR7b6SZd0QOBj8gIW-BngGl4mMEoLLMKYicFVTm61dkBqUockn57QGZUcF4XgsOh-QoxntKaQ2SvyGHTLK65kUxI_1Vvwr-pxuW2bmL0XfT6PyQfdUjZt5mCx0a3esHXLkB88t0q4Mz2dy4Nlt4EzZx1F12cxf8tLzLviV54zr3oHcmzSa7WBuMMaHWhx7DCXltdRfx9HE_Jt8_XdwsPufXXy6vFvPr3JS0HHOrKygbQwGNQKMbWreogXMOlnKQVpYcTdVKK7QGQNm2ghWtrERZMF6IqjgmH_a-6W8_Joyj6l002HV6QD9FBbJmNQdesIS-f4He-ykM6XU7CkRJ6-o3tdQdKjdYPwZttqZqnprMACrOE3X2FyqtFntn0uysS-d_CN49Fp-aHlu1Cq7XYaOe5pMAsQdM8DEGtMq4cdfd5Ow6BVRtk6D2SVApCWqbBLVOSnihfDL_n4btNTGxwxLDs178U_QL2HHE3A
CitedBy_id crossref_primary_10_1039_D4CE00021H
crossref_primary_10_1186_s43094_020_00083_5
crossref_primary_10_1007_s11095_019_2622_7
crossref_primary_10_1002_crat_202300296
crossref_primary_10_1021_acs_molpharmaceut_2c00122
crossref_primary_10_1039_D1CE00825K
crossref_primary_10_1007_s11094_022_02726_8
crossref_primary_10_3390_pharmaceutics13111772
crossref_primary_10_3390_pharmaceutics12111023
crossref_primary_10_3390_pharmaceutics13040546
crossref_primary_10_1016_j_jddst_2019_02_004
crossref_primary_10_1016_j_jmgm_2022_108243
crossref_primary_10_1021_acs_molpharmaceut_3c00237
crossref_primary_10_1021_acs_molpharmaceut_3c00334
crossref_primary_10_1016_j_molstruc_2019_05_054
crossref_primary_10_1016_j_jddst_2021_103029
crossref_primary_10_1016_j_molliq_2021_115604
crossref_primary_10_1021_acs_molpharmaceut_9b00006
crossref_primary_10_1007_s11095_020_02855_3
crossref_primary_10_1021_acs_molpharmaceut_0c00587
crossref_primary_10_1021_acs_cgd_9b00318
crossref_primary_10_3390_cryst10110996
crossref_primary_10_1021_acs_cgd_9b00932
crossref_primary_10_1016_j_molstruc_2022_134097
crossref_primary_10_1017_S0885715623000374
crossref_primary_10_1021_acs_cgd_1c00015
crossref_primary_10_1016_j_ejps_2020_105294
crossref_primary_10_1039_D2CE00597B
crossref_primary_10_1016_j_addr_2018_06_009
crossref_primary_10_1016_j_ijpharm_2025_125298
crossref_primary_10_34172_apb_2021_087
crossref_primary_10_12688_f1000research_129459_1
crossref_primary_10_1007_s11095_022_03209_x
crossref_primary_10_1155_2021_6685806
crossref_primary_10_1039_C9CE01092K
crossref_primary_10_3390_pharmaceutics10030074
crossref_primary_10_1016_j_ijpharm_2019_118914
crossref_primary_10_1039_D0CE00106F
crossref_primary_10_1016_j_ejpb_2019_01_018
crossref_primary_10_1007_s11095_018_2374_9
crossref_primary_10_2174_2210303109666190411125857
Cites_doi 10.1002/jps.20495
10.1021/mp100117k
10.1021/cg0503346
10.1016/j.ijpharm.2004.01.012
10.1254/jphs.12089FP
10.1039/C4CE01713G
10.1021/acs.jpcb.5b09668
10.1517/17425247.2013.747508
10.1016/j.ejps.2005.12.010
10.1016/j.jddst.2016.03.014
10.1021/mp0700108
10.1002/ceat.201100484
10.1134/S107036321402042X
10.1016/j.tetlet.2011.11.029
10.1021/cg3011212
10.1002/jps.22546
10.1021/acs.cgd.5b01484
10.1002/jps.21280
10.1016/j.ijpharm.2011.08.032
10.3109/03639045.2015.1096281
10.1021/op400289z
10.1039/C5CC08216A
10.1016/j.ejps.2016.01.029
10.1021/je9901740
10.1016/S0378-5173(99)00315-4
10.1021/cg700843s
10.1021/acs.cgd.6b00266
10.1021/acs.cgd.6b01434
10.1021/cg5007007
10.1016/j.cocis.2016.03.005
10.1021/acs.cgd.6b00591
10.1002/jps.10496
10.1002/jps.20949
10.1021/cg801039j
10.1007/s11095-014-1296-4
10.1021/ja035776p
10.1016/j.ijpharm.2006.04.018
10.1016/j.ijpharm.2012.09.027
10.1039/C0CE00772B
10.1016/j.ejpb.2007.06.013
10.1021/ja907674c
10.1016/j.ijpharm.2010.07.055
10.1039/b715396a
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2017
COPYRIGHT 2018 Springer
Pharmaceutical Research is a copyright of Springer, (2017). All Rights Reserved.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2017
– notice: COPYRIGHT 2018 Springer
– notice: Pharmaceutical Research is a copyright of Springer, (2017). All Rights Reserved.
DBID AAYXX
CITATION
NPM
3V.
7RV
7TK
7X7
7XB
88E
8AO
8FI
8FJ
8FK
ABUWG
AFKRA
BENPR
CCPQU
FYUFA
GHDGH
K9.
KB0
M0S
M1P
NAPCQ
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
DOI 10.1007/s11095-017-2309-x
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Neurosciences Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central
ProQuest One
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Health & Medical Collection
Medical Database
Nursing & Allied Health Premium
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

ProQuest One Academic Middle East (New)
MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1573-904X
EndPage 7
ExternalDocumentID A724211644
29288433
10_1007_s11095_017_2309_x
Genre Journal Article
GroupedDBID ---
-4W
-56
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
123
199
1N0
1SB
2.D
203
28-
29O
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3SX
3V.
4.4
406
408
409
40D
40E
53G
5QI
5VS
67N
67Z
6NX
78A
7RV
7X7
88E
8AO
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADJJI
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYPR
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFDYV
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGNMA
BKEYQ
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
EN4
EPAXT
ESBYG
EX3
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IAO
IHE
IHR
IJ-
IKXTQ
IMOTQ
INH
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KPH
L7B
LAK
LLZTM
LSO
M1P
M4Y
MA-
MK0
N2Q
N9A
NAPCQ
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RRX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3A
S3B
SAP
SBL
SBY
SCLPG
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WJK
WK6
WK8
WOW
YCJ
YLTOR
Z45
Z5O
Z7S
Z7U
Z7V
Z7W
Z7X
Z81
Z82
Z83
Z84
Z87
Z88
Z8N
Z8O
Z8P
Z8Q
Z8R
Z8V
Z8W
Z91
Z92
ZGI
ZMTXR
ZOVNA
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
NPM
AEIIB
PMFND
7TK
7XB
8FK
ABRTQ
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
ID FETCH-LOGICAL-c505t-fa615bc01ec7ecab08dea14441f0419f954ec6d9f7aa11e9dd723d96753243763
IEDL.DBID U2A
ISSN 0724-8741
1573-904X
IngestDate Fri Jul 11 03:44:52 EDT 2025
Sat Aug 23 13:00:35 EDT 2025
Tue Jun 17 21:31:37 EDT 2025
Tue Jun 10 20:49:16 EDT 2025
Thu Apr 03 06:58:57 EDT 2025
Tue Jul 01 03:50:57 EDT 2025
Thu Apr 24 22:59:05 EDT 2025
Fri Feb 21 02:25:01 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords cocrystal
solubilization
dissolution
carbamazepine
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c505t-fa615bc01ec7ecab08dea14441f0419f954ec6d9f7aa11e9dd723d96753243763
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 29288433
PQID 1982175086
PQPubID 37334
PageCount 7
ParticipantIDs proquest_miscellaneous_1982841432
proquest_journals_1982175086
gale_infotracmisc_A724211644
gale_infotracacademiconefile_A724211644
pubmed_primary_29288433
crossref_citationtrail_10_1007_s11095_017_2309_x
crossref_primary_10_1007_s11095_017_2309_x
springer_journals_10_1007_s11095_017_2309_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-01-01
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-01-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationSubtitle An Official Journal of the American Association of Pharmaceutical Scientists
PublicationTitle Pharmaceutical research
PublicationTitleAbbrev Pharm Res
PublicationTitleAlternate Pharm Res
PublicationYear 2018
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References EvstigneevMPEustigneevVPSantiagoAAHDaviesDBEffect of a mixture of caffeine and nicotinamide on the solubility of vitamin (B-2) in aqueous solutionEur J Pharm Sci2006281–-259661:CAS:528:DC%2BD28Xit1Chtbs%3D10.1016/j.ejps.2005.12.01016483751
JainAKSolubilization of indomethacin using hydrotropes for aqueous injectionEur J Pharm Biopharm20086837017141:CAS:528:DC%2BD1cXjtVektrg%3D10.1016/j.ejpb.2007.06.01317716879
Gao Y, Gao J, Liu ZL, Kan HL, Zu H, Sun WJ, et al. Coformer selection based on degradation pathway of drugs: a case study of adefovir dipivoxil-saccharin and adefovir dipivoxil-nicotinamide cocrystals. Int J PharmInt J Pharm. 2012;438(1–-2):327–35.
SunCCCocrystallization for successful drug deliveryExpert Opin Drug Deliv20131022012131:CAS:528:DC%2BC3sXht1Cktr4%3D10.1517/17425247.2013.74750823256822
TraskAVMotherwellWDSJonesWPhysical stability enhancement of theophylline via cocrystallizationInt J Pharm20063201–-21141231:CAS:528:DC%2BD28XnsFCqtLo%3D10.1016/j.ijpharm.2006.04.01816769188
DasSPaulSMechanism of hydrotropic action of hydrotrope sodium cumene sulfonate on the solubility of Di-t-Butyl-Methane: a molecular dynamics simulation studyJ Phys Chem B201612011731831:CAS:528:DC%2BC2MXitVGrsL%2FE10.1021/acs.jpcb.5b0966826684411
Childs SL, Rodriguez-Hornedo N, Reddy LS, Jayasankar A, Maheshwari C, McCausland L, et al. Screening strategies based on solubility and solution composition generate pharmaceutically acceptable cocrystals of carbamazepine. CrystEngComm. 2008;10(7):856–64.
Ullah M, Hussain I, Sun CC. The development of carbamazepine-succinic acid cocrystal tablet formulations with improved in vitro and in vivo performance. Drug Dev Ind Pharm. 2016;42(6):969–76.
RemenarJFPetersonMLStephensPWZhangZZimenkovYHickeyMBCelecoxib : nicotinamide dissociation: using excipients to capture the cocrystal's potentialMol Pharm2007433864001:CAS:528:DC%2BD2sXltFCju7c%3D10.1021/mp070010817497886
Bak A, Gore A, Yanez E, Stanton M, Tufekcic S, Syed R, et al. The co-crystal approach to improve the exposure of a water-insoluble compound: AMG 517 sorbic acid co-crystal characterization and pharmacokinetics. J Pharm Sci. 2008;97(9):3942–56.
HawleyMMorozowichWModifying the diffusion layer of soluble salts of poorly soluble basic drugs to improve dissolution performanceMol Pharm201075144114491:CAS:528:DC%2BC3cXptlWgsb0%3D10.1021/mp100117k20731341
Abdelbary GA, Amin MM, Abdelmoteleb M. Novel mixed hydrotropic solubilization of zaleplon: formulation of oral tablets and in-vivo neuropharmacological characterization by monitoring plasma GABA level. J Drug Deliv Sci Technol. 2016;33:98–113.
Chow SF, Shi LM, Ng WW, Leung KHY, Nagapudi K, Sun CC, et al. Kinetic entrapment of a hidden curcumin cocrystal with phloroglucinol. Cryst Growth Des. 2014;14(10):5079–89.
AgrawalSPancholiSSJainNKAgrawalGPHydrotropic solubilization of nimesulide for parenteral administrationInt J Pharm20042741–-21491551:CAS:528:DC%2BD2cXivFGks70%3D10.1016/j.ijpharm.2004.01.01215072791
Rodriguez-HornedoNMurphyDSurfactant-facilitated crystallization of dihydrate carbamazepine during dissolution of anhydrous polymorphJ Pharm Sci20049324494601:CAS:528:DC%2BD2cXhsFansrk%3D10.1002/jps.1049614705201
Bernhardson D, Brandt TA, Hulford CA, Lehner RS, Preston BR, Price K, et al. Development of an early-phase bulk enabling route to sodium-dependent glucose cotransporter 2 inhibitor ertugliflozin. Org Process Res Dev. 2014;18(1):57–65.
GoodDJRodriguez-HornedoNSolubility advantage of pharmaceutical cocrystalsCryst Growth Des200995225222641:CAS:528:DC%2BD1MXjsVKkurs%3D10.1021/cg801039j
SubbaraoCVChakravarthyIPKBharadwajAVSLSPrasadKMMKFunctions of hydrotropes in solutionsChem Eng Technol20123522252371:CAS:528:DC%2BC38XhtFahur8%3D10.1002/ceat.201100484
NehmSJRodriguez-SpongBRodriguez-HornedoNPhase solubility diagrams of cocrystals are explained by solubility product and solution complexationCryst Growth Des2006625926001:CAS:528:DC%2BD2MXht1OmsbbE10.1021/cg0503346
Li JH, Wang LY, Ye YQ, Fu X, Ren QH, Zhang HL, et al. Improving the solubility of dexlansoprazole by cocrystallization with isonicotinamide. Eur J Pharm Sci. 2016;85:47–52.
KobayashiYItoSItaiSYamamotoKPhysicochemical properties and bioavailability of carbamazepine polymorphs and dihydrateInt J Pharm200019321371461:CAS:528:DyaK1MXnvFSltrw%3D10.1016/S0378-5173(99)00315-410606776
WangCGPerumallaSRLuRLFangJGSunCCSweet BerberineCryst Growth Des20161629339391:CAS:528:DC%2BC2MXitVGrsL%2FI10.1021/acs.cgd.5b01484
MaheshwariRKIndurkhyaAFormulation and evaluation of aceclofenac injection made by mixed hydrotropic solubilization techniqueIran J Pharm Res2010932332421:CAS:528:DC%2BC3cXht1KmtrfO
CarinoSRSperryDCHawleyMRelative bioavailability estimation of carbamazepine crystal forms using an artificial stomach-duodenum modelJ Pharm Sci20069511161251:CAS:528:DC%2BD28XlvVShtQ%3D%3D10.1002/jps.2049516315223
ChenYLiLYaoJMaYYChenJMLuTBImproving the solubility and bioavailability of apixaban via apixaban-oxalic acid cocrystalCryst Growth Des2016165292329301:CAS:528:DC%2BC28Xlt1GisrY%3D10.1021/acs.cgd.6b00266
VangalaVRChowPSTanRBHCharacterization, physicochemical and photo-stability of a co-crystal involving an antibiotic drug, nitrofurantoin, and 4-hydroxybenzoic acidCrystEngComm20111337597621:CAS:528:DC%2BC3MXitVCitb4%3D10.1039/C0CE00772B
Remenar JF, Morissette SL, Peterson ML, Moulton B, MacPhee JM, Guzman HR, et al. Crystal engineering of novel cocrystals of a triazole drug with 1,4-dicarboxylic acids. J Am Chem Soc. 2003;125(28):8456–7.
ZhangGGZHenryRFBorchardtTBLouXCEfficient co-crystal screening using solution-mediated phase transformationJ Pharm Sci20079659909951:CAS:528:DC%2BD2sXltVGqsrg%3D10.1002/jps.2094917455356
WangCGTongQHouXLHuSYFangJGSunCCEnhancing bioavailability of dihydromyricetin through inhibiting precipitation of soluble cocrystals by a crystallization inhibitorCryst Growth Des2016169503050391:CAS:528:DC%2BC28XhtFyitL7O10.1021/acs.cgd.6b00591
YamashitaHHirakuraYYudaMTeradaKCoformer screening using thermal analysis based on binary phase diagramsPharm Res2014318194619571:CAS:528:DC%2BC2cXisFSnsbs%3D10.1007/s11095-014-1296-424522816
Feng LL, Karpinski PH, Sutton P, Liu YG, Hook DF, Hu B, et al. LCZ696: a dual-acting sodium supramolecular complex. Tetrahedron Lett. 2012;53(3):275–6.
KunzWHolmbergKZembTHydrotropesCurr Opin Colloid Interface Sci201622991071:CAS:528:DC%2BC28Xmt12qtrk%3D10.1016/j.cocis.2016.03.005
SunCCHouHImproving mechanical properties of caffeine and methyl gallate crystals by cocrystallizationCryst Growth Des200885157515791:CAS:528:DC%2BD1cXksVOku78%3D10.1021/cg700843s
KawabataYWadaKNakataniMYamadaSOnoueSFormulation design for poorly water-soluble drugs based on biopharmaceutics classification system: basic approaches and practical applicationsInt J Pharm201142011101:CAS:528:DC%2BC3MXhtlWmtrfI10.1016/j.ijpharm.2011.08.03221884771
CherukuvadaSBabuNJNangiaANitrofurantoin-p-aminobenzoic acid cocrystal: hydration stability and dissolution rate studiesJ Pharm Sci20111008323332441:CAS:528:DC%2BC3MXnsVCrurs%3D10.1002/jps.2254621425165
Tahara A, Kurosaki E, Yokono M, Yamajuku D, Kihara R, Hayashizaki Y, et al. Antidiabetic effects of SGLT2-Selective inhibitor ipragliflozin in streptozotocin-nicotinamide-induced mildly diabetic mice. J Pharmacol Sci. 2012;120(1):36–44.
AakeroyCBForbesSDesperJUsing cocrystals to systematically modulate aqueous solubility and melting behavior of an anticancer drugJ Am Chem Soc200913147170481:CAS:528:DC%2BD1MXhtlOksrbM10.1021/ja907674c198947183718473
PerlovichGLManinANDesign of pharmaceutical cocrystals for drug solubility improvementRuss J Gen Chem20148424074141:CAS:528:DC%2BC2cXks1Kiu7c%3D10.1134/S107036321402042X
GoyalSThorsonMRZhangGGZGongYCKenisPJAMicrofluidic Approach to cocrystal screening of pharmaceutical parent compoundsCryst Growth Des20121212602360341:CAS:528:DC%2BC38XhsFGqs7rF10.1021/cg3011212
DuggiralaNKPerryMLAlmarssonOZaworotkoMJPharmaceutical cocrystals: along the path to improved medicinesChem Commun20165246406551:CAS:528:DC%2BC2MXhslKksL3O10.1039/C5CC08216A
YamashitaHSunCCHarvesting potential dissolution advantages of soluble cocrystals by depressing precipitation using the common coformer effectCryst Growth Des20161612671967211:CAS:528:DC%2BC28XhslCgs7nF10.1021/acs.cgd.6b01434
KumarMDGandhiNNEffect of hydrotropes on solubility and mass transfer coefficient of methyl salicylateJ Chem Eng Data20004534194231:CAS:528:DC%2BD3cXisFansrc%3D10.1021/je9901740
Sowa M, Slepokura K, Matczak-Jon E. Improving solubility of fisetin by cocrystallization. CrystEngComm. 2014;16(46):10592–601.
Kojima T, Tsutsumi S, Yamamoto K, Ikeda Y, Moriwaki T. High-throughput cocrystal slurry screening by use of in situ Raman microscopy and multi-well plate. Int J Pharm. 2010;399(1–-2):52–9.
Edward JT. Citation-classic - molecular volumes and the stokes-Einstein equation. Eng Tech Appl Sci. 1986;27:14–4.
Y Chen (2309_CR16) 2016; 16
H Yamashita (2309_CR27) 2016; 16
2309_CR42
2309_CR41
Y Kawabata (2309_CR17) 2011; 420
AK Jain (2309_CR38) 2008; 68
AV Trask (2309_CR10) 2006; 320
2309_CR24
CC Sun (2309_CR7) 2008; 8
2309_CR29
VR Vangala (2309_CR9) 2011; 13
GL Perlovich (2309_CR15) 2014; 84
JF Remenar (2309_CR23) 2007; 4
NK Duggirala (2309_CR6) 2016; 52
CG Wang (2309_CR25) 2016; 16
CG Wang (2309_CR30) 2016; 16
RK Maheshwari (2309_CR40) 2010; 9
CC Sun (2309_CR5) 2013; 10
2309_CR4
2309_CR31
S Das (2309_CR33) 2016; 120
2309_CR8
2309_CR14
2309_CR13
2309_CR12
H Yamashita (2309_CR19) 2014; 31
DJ Good (2309_CR32) 2009; 9
2309_CR18
CV Subbarao (2309_CR34) 2012; 35
Y Kobayashi (2309_CR43) 2000; 193
CB Aakeroy (2309_CR11) 2009; 131
MP Evstigneev (2309_CR39) 2006; 28
SJ Nehm (2309_CR26) 2006; 6
S Cherukuvada (2309_CR22) 2011; 100
GGZ Zhang (2309_CR21) 2007; 96
M Hawley (2309_CR28) 2010; 7
SR Carino (2309_CR44) 2006; 95
W Kunz (2309_CR35) 2016; 22
S Agrawal (2309_CR37) 2004; 274
MD Kumar (2309_CR36) 2000; 45
2309_CR1
2309_CR2
2309_CR3
S Goyal (2309_CR20) 2012; 12
N Rodriguez-Hornedo (2309_CR45) 2004; 93
19894718 - J Am Chem Soc. 2009 Dec 2;131(47):17048-9
17497886 - Mol Pharm. 2007 May-Jun;4(3):386-400
22989978 - Int J Pharm. 2012 Nov 15;438(1-2):327-35
16315223 - J Pharm Sci. 2006 Jan;95(1):116-25
16769188 - Int J Pharm. 2006 Aug 31;320(1-2):114-23
17455356 - J Pharm Sci. 2007 May;96(5):990-5
26836368 - Eur J Pharm Sci. 2016 Mar 31;85:47-52
20696223 - Int J Pharm. 2010 Oct 31;399(1-2):52-9
23256822 - Expert Opin Drug Deliv. 2013 Feb;10(2):201-13
26565650 - Chem Commun (Camb). 2016 Jan 14;52(4):640-55
17716879 - Eur J Pharm Biopharm. 2008 Mar;68(3):701-14
15072791 - Int J Pharm. 2004 Apr 15;274(1-2):149-55
10606776 - Int J Pharm. 2000 Jan 5;193(2):137-46
22971845 - J Pharmacol Sci. 2012;120(1):36-44
12848550 - J Am Chem Soc. 2003 Jul 16;125(28):8456-7
21425165 - J Pharm Sci. 2011 Aug;100(8):3233-44
24363732 - Iran J Pharm Res. 2010 Summer;9(3):233-42
16483751 - Eur J Pharm Sci. 2006 May;28(1-2):59-66
20731341 - Mol Pharm. 2010 Oct 4;7(5):1441-9
14705201 - J Pharm Sci. 2004 Feb;93(2):449-60
26684411 - J Phys Chem B. 2016 Jan 14;120(1):173-83
18214948 - J Pharm Sci. 2008 Sep;97(9):3942-56
21884771 - Int J Pharm. 2011 Nov 25;420(1):1-10
24522816 - Pharm Res. 2014 Aug;31(8):1946-57
26460090 - Drug Dev Ind Pharm. 2016;42(6):969-76
References_xml – reference: GoodDJRodriguez-HornedoNSolubility advantage of pharmaceutical cocrystalsCryst Growth Des200995225222641:CAS:528:DC%2BD1MXjsVKkurs%3D10.1021/cg801039j
– reference: ZhangGGZHenryRFBorchardtTBLouXCEfficient co-crystal screening using solution-mediated phase transformationJ Pharm Sci20079659909951:CAS:528:DC%2BD2sXltVGqsrg%3D10.1002/jps.2094917455356
– reference: Sowa M, Slepokura K, Matczak-Jon E. Improving solubility of fisetin by cocrystallization. CrystEngComm. 2014;16(46):10592–601.
– reference: KumarMDGandhiNNEffect of hydrotropes on solubility and mass transfer coefficient of methyl salicylateJ Chem Eng Data20004534194231:CAS:528:DC%2BD3cXisFansrc%3D10.1021/je9901740
– reference: Tahara A, Kurosaki E, Yokono M, Yamajuku D, Kihara R, Hayashizaki Y, et al. Antidiabetic effects of SGLT2-Selective inhibitor ipragliflozin in streptozotocin-nicotinamide-induced mildly diabetic mice. J Pharmacol Sci. 2012;120(1):36–44.
– reference: Chow SF, Shi LM, Ng WW, Leung KHY, Nagapudi K, Sun CC, et al. Kinetic entrapment of a hidden curcumin cocrystal with phloroglucinol. Cryst Growth Des. 2014;14(10):5079–89.
– reference: KobayashiYItoSItaiSYamamotoKPhysicochemical properties and bioavailability of carbamazepine polymorphs and dihydrateInt J Pharm200019321371461:CAS:528:DyaK1MXnvFSltrw%3D10.1016/S0378-5173(99)00315-410606776
– reference: MaheshwariRKIndurkhyaAFormulation and evaluation of aceclofenac injection made by mixed hydrotropic solubilization techniqueIran J Pharm Res2010932332421:CAS:528:DC%2BC3cXht1KmtrfO
– reference: KawabataYWadaKNakataniMYamadaSOnoueSFormulation design for poorly water-soluble drugs based on biopharmaceutics classification system: basic approaches and practical applicationsInt J Pharm201142011101:CAS:528:DC%2BC3MXhtlWmtrfI10.1016/j.ijpharm.2011.08.03221884771
– reference: SunCCHouHImproving mechanical properties of caffeine and methyl gallate crystals by cocrystallizationCryst Growth Des200885157515791:CAS:528:DC%2BD1cXksVOku78%3D10.1021/cg700843s
– reference: HawleyMMorozowichWModifying the diffusion layer of soluble salts of poorly soluble basic drugs to improve dissolution performanceMol Pharm201075144114491:CAS:528:DC%2BC3cXptlWgsb0%3D10.1021/mp100117k20731341
– reference: JainAKSolubilization of indomethacin using hydrotropes for aqueous injectionEur J Pharm Biopharm20086837017141:CAS:528:DC%2BD1cXjtVektrg%3D10.1016/j.ejpb.2007.06.01317716879
– reference: TraskAVMotherwellWDSJonesWPhysical stability enhancement of theophylline via cocrystallizationInt J Pharm20063201–-21141231:CAS:528:DC%2BD28XnsFCqtLo%3D10.1016/j.ijpharm.2006.04.01816769188
– reference: EvstigneevMPEustigneevVPSantiagoAAHDaviesDBEffect of a mixture of caffeine and nicotinamide on the solubility of vitamin (B-2) in aqueous solutionEur J Pharm Sci2006281–-259661:CAS:528:DC%2BD28Xit1Chtbs%3D10.1016/j.ejps.2005.12.01016483751
– reference: WangCGPerumallaSRLuRLFangJGSunCCSweet BerberineCryst Growth Des20161629339391:CAS:528:DC%2BC2MXitVGrsL%2FI10.1021/acs.cgd.5b01484
– reference: Kojima T, Tsutsumi S, Yamamoto K, Ikeda Y, Moriwaki T. High-throughput cocrystal slurry screening by use of in situ Raman microscopy and multi-well plate. Int J Pharm. 2010;399(1–-2):52–9.
– reference: Bak A, Gore A, Yanez E, Stanton M, Tufekcic S, Syed R, et al. The co-crystal approach to improve the exposure of a water-insoluble compound: AMG 517 sorbic acid co-crystal characterization and pharmacokinetics. J Pharm Sci. 2008;97(9):3942–56.
– reference: SunCCCocrystallization for successful drug deliveryExpert Opin Drug Deliv20131022012131:CAS:528:DC%2BC3sXht1Cktr4%3D10.1517/17425247.2013.74750823256822
– reference: AakeroyCBForbesSDesperJUsing cocrystals to systematically modulate aqueous solubility and melting behavior of an anticancer drugJ Am Chem Soc200913147170481:CAS:528:DC%2BD1MXhtlOksrbM10.1021/ja907674c198947183718473
– reference: DasSPaulSMechanism of hydrotropic action of hydrotrope sodium cumene sulfonate on the solubility of Di-t-Butyl-Methane: a molecular dynamics simulation studyJ Phys Chem B201612011731831:CAS:528:DC%2BC2MXitVGrsL%2FE10.1021/acs.jpcb.5b0966826684411
– reference: DuggiralaNKPerryMLAlmarssonOZaworotkoMJPharmaceutical cocrystals: along the path to improved medicinesChem Commun20165246406551:CAS:528:DC%2BC2MXhslKksL3O10.1039/C5CC08216A
– reference: WangCGTongQHouXLHuSYFangJGSunCCEnhancing bioavailability of dihydromyricetin through inhibiting precipitation of soluble cocrystals by a crystallization inhibitorCryst Growth Des2016169503050391:CAS:528:DC%2BC28XhtFyitL7O10.1021/acs.cgd.6b00591
– reference: NehmSJRodriguez-SpongBRodriguez-HornedoNPhase solubility diagrams of cocrystals are explained by solubility product and solution complexationCryst Growth Des2006625926001:CAS:528:DC%2BD2MXht1OmsbbE10.1021/cg0503346
– reference: YamashitaHSunCCHarvesting potential dissolution advantages of soluble cocrystals by depressing precipitation using the common coformer effectCryst Growth Des20161612671967211:CAS:528:DC%2BC28XhslCgs7nF10.1021/acs.cgd.6b01434
– reference: ChenYLiLYaoJMaYYChenJMLuTBImproving the solubility and bioavailability of apixaban via apixaban-oxalic acid cocrystalCryst Growth Des2016165292329301:CAS:528:DC%2BC28Xlt1GisrY%3D10.1021/acs.cgd.6b00266
– reference: Gao Y, Gao J, Liu ZL, Kan HL, Zu H, Sun WJ, et al. Coformer selection based on degradation pathway of drugs: a case study of adefovir dipivoxil-saccharin and adefovir dipivoxil-nicotinamide cocrystals. Int J PharmInt J Pharm. 2012;438(1–-2):327–35.
– reference: SubbaraoCVChakravarthyIPKBharadwajAVSLSPrasadKMMKFunctions of hydrotropes in solutionsChem Eng Technol20123522252371:CAS:528:DC%2BC38XhtFahur8%3D10.1002/ceat.201100484
– reference: Edward JT. Citation-classic - molecular volumes and the stokes-Einstein equation. Eng Tech Appl Sci. 1986;27:14–4.
– reference: Feng LL, Karpinski PH, Sutton P, Liu YG, Hook DF, Hu B, et al. LCZ696: a dual-acting sodium supramolecular complex. Tetrahedron Lett. 2012;53(3):275–6.
– reference: AgrawalSPancholiSSJainNKAgrawalGPHydrotropic solubilization of nimesulide for parenteral administrationInt J Pharm20042741–-21491551:CAS:528:DC%2BD2cXivFGks70%3D10.1016/j.ijpharm.2004.01.01215072791
– reference: PerlovichGLManinANDesign of pharmaceutical cocrystals for drug solubility improvementRuss J Gen Chem20148424074141:CAS:528:DC%2BC2cXks1Kiu7c%3D10.1134/S107036321402042X
– reference: Childs SL, Rodriguez-Hornedo N, Reddy LS, Jayasankar A, Maheshwari C, McCausland L, et al. Screening strategies based on solubility and solution composition generate pharmaceutically acceptable cocrystals of carbamazepine. CrystEngComm. 2008;10(7):856–64.
– reference: KunzWHolmbergKZembTHydrotropesCurr Opin Colloid Interface Sci201622991071:CAS:528:DC%2BC28Xmt12qtrk%3D10.1016/j.cocis.2016.03.005
– reference: Abdelbary GA, Amin MM, Abdelmoteleb M. Novel mixed hydrotropic solubilization of zaleplon: formulation of oral tablets and in-vivo neuropharmacological characterization by monitoring plasma GABA level. J Drug Deliv Sci Technol. 2016;33:98–113.
– reference: Li JH, Wang LY, Ye YQ, Fu X, Ren QH, Zhang HL, et al. Improving the solubility of dexlansoprazole by cocrystallization with isonicotinamide. Eur J Pharm Sci. 2016;85:47–52.
– reference: Bernhardson D, Brandt TA, Hulford CA, Lehner RS, Preston BR, Price K, et al. Development of an early-phase bulk enabling route to sodium-dependent glucose cotransporter 2 inhibitor ertugliflozin. Org Process Res Dev. 2014;18(1):57–65.
– reference: YamashitaHHirakuraYYudaMTeradaKCoformer screening using thermal analysis based on binary phase diagramsPharm Res2014318194619571:CAS:528:DC%2BC2cXisFSnsbs%3D10.1007/s11095-014-1296-424522816
– reference: VangalaVRChowPSTanRBHCharacterization, physicochemical and photo-stability of a co-crystal involving an antibiotic drug, nitrofurantoin, and 4-hydroxybenzoic acidCrystEngComm20111337597621:CAS:528:DC%2BC3MXitVCitb4%3D10.1039/C0CE00772B
– reference: Remenar JF, Morissette SL, Peterson ML, Moulton B, MacPhee JM, Guzman HR, et al. Crystal engineering of novel cocrystals of a triazole drug with 1,4-dicarboxylic acids. J Am Chem Soc. 2003;125(28):8456–7.
– reference: GoyalSThorsonMRZhangGGZGongYCKenisPJAMicrofluidic Approach to cocrystal screening of pharmaceutical parent compoundsCryst Growth Des20121212602360341:CAS:528:DC%2BC38XhsFGqs7rF10.1021/cg3011212
– reference: CarinoSRSperryDCHawleyMRelative bioavailability estimation of carbamazepine crystal forms using an artificial stomach-duodenum modelJ Pharm Sci20069511161251:CAS:528:DC%2BD28XlvVShtQ%3D%3D10.1002/jps.2049516315223
– reference: Rodriguez-HornedoNMurphyDSurfactant-facilitated crystallization of dihydrate carbamazepine during dissolution of anhydrous polymorphJ Pharm Sci20049324494601:CAS:528:DC%2BD2cXhsFansrk%3D10.1002/jps.1049614705201
– reference: RemenarJFPetersonMLStephensPWZhangZZimenkovYHickeyMBCelecoxib : nicotinamide dissociation: using excipients to capture the cocrystal's potentialMol Pharm2007433864001:CAS:528:DC%2BD2sXltFCju7c%3D10.1021/mp070010817497886
– reference: CherukuvadaSBabuNJNangiaANitrofurantoin-p-aminobenzoic acid cocrystal: hydration stability and dissolution rate studiesJ Pharm Sci20111008323332441:CAS:528:DC%2BC3MXnsVCrurs%3D10.1002/jps.2254621425165
– reference: Ullah M, Hussain I, Sun CC. The development of carbamazepine-succinic acid cocrystal tablet formulations with improved in vitro and in vivo performance. Drug Dev Ind Pharm. 2016;42(6):969–76.
– volume: 95
  start-page: 116
  issue: 1
  year: 2006
  ident: 2309_CR44
  publication-title: J Pharm Sci
  doi: 10.1002/jps.20495
– volume: 7
  start-page: 1441
  issue: 5
  year: 2010
  ident: 2309_CR28
  publication-title: Mol Pharm
  doi: 10.1021/mp100117k
– volume: 6
  start-page: 592
  issue: 2
  year: 2006
  ident: 2309_CR26
  publication-title: Cryst Growth Des
  doi: 10.1021/cg0503346
– volume: 274
  start-page: 149
  issue: 1–-2
  year: 2004
  ident: 2309_CR37
  publication-title: Int J Pharm
  doi: 10.1016/j.ijpharm.2004.01.012
– ident: 2309_CR42
– ident: 2309_CR2
  doi: 10.1254/jphs.12089FP
– ident: 2309_CR12
  doi: 10.1039/C4CE01713G
– volume: 120
  start-page: 173
  issue: 1
  year: 2016
  ident: 2309_CR33
  publication-title: J Phys Chem B
  doi: 10.1021/acs.jpcb.5b09668
– volume: 10
  start-page: 201
  issue: 2
  year: 2013
  ident: 2309_CR5
  publication-title: Expert Opin Drug Deliv
  doi: 10.1517/17425247.2013.747508
– volume: 28
  start-page: 59
  issue: 1–-2
  year: 2006
  ident: 2309_CR39
  publication-title: Eur J Pharm Sci
  doi: 10.1016/j.ejps.2005.12.010
– ident: 2309_CR41
  doi: 10.1016/j.jddst.2016.03.014
– volume: 4
  start-page: 386
  issue: 3
  year: 2007
  ident: 2309_CR23
  publication-title: Mol Pharm
  doi: 10.1021/mp0700108
– volume: 35
  start-page: 225
  issue: 2
  year: 2012
  ident: 2309_CR34
  publication-title: Chem Eng Technol
  doi: 10.1002/ceat.201100484
– volume: 84
  start-page: 407
  issue: 2
  year: 2014
  ident: 2309_CR15
  publication-title: Russ J Gen Chem
  doi: 10.1134/S107036321402042X
– ident: 2309_CR1
  doi: 10.1016/j.tetlet.2011.11.029
– volume: 12
  start-page: 6023
  issue: 12
  year: 2012
  ident: 2309_CR20
  publication-title: Cryst Growth Des
  doi: 10.1021/cg3011212
– volume: 100
  start-page: 3233
  issue: 8
  year: 2011
  ident: 2309_CR22
  publication-title: J Pharm Sci
  doi: 10.1002/jps.22546
– volume: 16
  start-page: 933
  issue: 2
  year: 2016
  ident: 2309_CR30
  publication-title: Cryst Growth Des
  doi: 10.1021/acs.cgd.5b01484
– ident: 2309_CR3
  doi: 10.1002/jps.21280
– volume: 420
  start-page: 1
  issue: 1
  year: 2011
  ident: 2309_CR17
  publication-title: Int J Pharm
  doi: 10.1016/j.ijpharm.2011.08.032
– ident: 2309_CR24
  doi: 10.3109/03639045.2015.1096281
– ident: 2309_CR4
  doi: 10.1021/op400289z
– volume: 52
  start-page: 640
  issue: 4
  year: 2016
  ident: 2309_CR6
  publication-title: Chem Commun
  doi: 10.1039/C5CC08216A
– ident: 2309_CR14
  doi: 10.1016/j.ejps.2016.01.029
– volume: 9
  start-page: 233
  issue: 3
  year: 2010
  ident: 2309_CR40
  publication-title: Iran J Pharm Res
– volume: 45
  start-page: 419
  issue: 3
  year: 2000
  ident: 2309_CR36
  publication-title: J Chem Eng Data
  doi: 10.1021/je9901740
– volume: 193
  start-page: 137
  issue: 2
  year: 2000
  ident: 2309_CR43
  publication-title: Int J Pharm
  doi: 10.1016/S0378-5173(99)00315-4
– volume: 8
  start-page: 1575
  issue: 5
  year: 2008
  ident: 2309_CR7
  publication-title: Cryst Growth Des
  doi: 10.1021/cg700843s
– volume: 16
  start-page: 2923
  issue: 5
  year: 2016
  ident: 2309_CR16
  publication-title: Cryst Growth Des
  doi: 10.1021/acs.cgd.6b00266
– volume: 16
  start-page: 6719
  issue: 12
  year: 2016
  ident: 2309_CR27
  publication-title: Cryst Growth Des
  doi: 10.1021/acs.cgd.6b01434
– ident: 2309_CR31
  doi: 10.1021/cg5007007
– volume: 22
  start-page: 99
  year: 2016
  ident: 2309_CR35
  publication-title: Curr Opin Colloid Interface Sci
  doi: 10.1016/j.cocis.2016.03.005
– volume: 16
  start-page: 5030
  issue: 9
  year: 2016
  ident: 2309_CR25
  publication-title: Cryst Growth Des
  doi: 10.1021/acs.cgd.6b00591
– volume: 93
  start-page: 449
  issue: 2
  year: 2004
  ident: 2309_CR45
  publication-title: J Pharm Sci
  doi: 10.1002/jps.10496
– volume: 96
  start-page: 990
  issue: 5
  year: 2007
  ident: 2309_CR21
  publication-title: J Pharm Sci
  doi: 10.1002/jps.20949
– volume: 9
  start-page: 2252
  issue: 5
  year: 2009
  ident: 2309_CR32
  publication-title: Cryst Growth Des
  doi: 10.1021/cg801039j
– volume: 31
  start-page: 1946
  issue: 8
  year: 2014
  ident: 2309_CR19
  publication-title: Pharm Res
  doi: 10.1007/s11095-014-1296-4
– ident: 2309_CR13
  doi: 10.1021/ja035776p
– volume: 320
  start-page: 114
  issue: 1–-2
  year: 2006
  ident: 2309_CR10
  publication-title: Int J Pharm
  doi: 10.1016/j.ijpharm.2006.04.018
– ident: 2309_CR8
  doi: 10.1016/j.ijpharm.2012.09.027
– volume: 13
  start-page: 759
  issue: 3
  year: 2011
  ident: 2309_CR9
  publication-title: CrystEngComm
  doi: 10.1039/C0CE00772B
– volume: 68
  start-page: 701
  issue: 3
  year: 2008
  ident: 2309_CR38
  publication-title: Eur J Pharm Biopharm
  doi: 10.1016/j.ejpb.2007.06.013
– volume: 131
  start-page: 17048
  issue: 47
  year: 2009
  ident: 2309_CR11
  publication-title: J Am Chem Soc
  doi: 10.1021/ja907674c
– ident: 2309_CR18
  doi: 10.1016/j.ijpharm.2010.07.055
– ident: 2309_CR29
  doi: 10.1039/b715396a
– reference: 20731341 - Mol Pharm. 2010 Oct 4;7(5):1441-9
– reference: 10606776 - Int J Pharm. 2000 Jan 5;193(2):137-46
– reference: 22971845 - J Pharmacol Sci. 2012;120(1):36-44
– reference: 16483751 - Eur J Pharm Sci. 2006 May;28(1-2):59-66
– reference: 20696223 - Int J Pharm. 2010 Oct 31;399(1-2):52-9
– reference: 16769188 - Int J Pharm. 2006 Aug 31;320(1-2):114-23
– reference: 24522816 - Pharm Res. 2014 Aug;31(8):1946-57
– reference: 21884771 - Int J Pharm. 2011 Nov 25;420(1):1-10
– reference: 17455356 - J Pharm Sci. 2007 May;96(5):990-5
– reference: 26460090 - Drug Dev Ind Pharm. 2016;42(6):969-76
– reference: 19894718 - J Am Chem Soc. 2009 Dec 2;131(47):17048-9
– reference: 24363732 - Iran J Pharm Res. 2010 Summer;9(3):233-42
– reference: 26836368 - Eur J Pharm Sci. 2016 Mar 31;85:47-52
– reference: 17716879 - Eur J Pharm Biopharm. 2008 Mar;68(3):701-14
– reference: 22989978 - Int J Pharm. 2012 Nov 15;438(1-2):327-35
– reference: 18214948 - J Pharm Sci. 2008 Sep;97(9):3942-56
– reference: 17497886 - Mol Pharm. 2007 May-Jun;4(3):386-400
– reference: 26565650 - Chem Commun (Camb). 2016 Jan 14;52(4):640-55
– reference: 21425165 - J Pharm Sci. 2011 Aug;100(8):3233-44
– reference: 14705201 - J Pharm Sci. 2004 Feb;93(2):449-60
– reference: 23256822 - Expert Opin Drug Deliv. 2013 Feb;10(2):201-13
– reference: 16315223 - J Pharm Sci. 2006 Jan;95(1):116-25
– reference: 26684411 - J Phys Chem B. 2016 Jan 14;120(1):173-83
– reference: 15072791 - Int J Pharm. 2004 Apr 15;274(1-2):149-55
– reference: 12848550 - J Am Chem Soc. 2003 Jul 16;125(28):8456-7
SSID ssj0008194
Score 2.4334195
Snippet Purpose The use of soluble cocrystals is a promising strategy for delivering poorly soluble drugs. However, precipitation of poorly soluble crystal form during...
The use of soluble cocrystals is a promising strategy for delivering poorly soluble drugs. However, precipitation of poorly soluble crystal form during...
Purpose The use of soluble cocrystals is a promising strategy for delivering poorly soluble drugs. However, precipitation of poorly soluble crystal form during...
PurposeThe use of soluble cocrystals is a promising strategy for delivering poorly soluble drugs. However, precipitation of poorly soluble crystal form during...
SourceID proquest
gale
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4
SubjectTerms Biochemistry
Biomedical and Life Sciences
Biomedical Engineering and Bioengineering
Biomedicine
Carbamazepine
Dissolution
Drug delivery
Fiber optics
Formulation and Manufacturing of Solid Dosage Forms
Hydrochloric acid
Intestine
Laboratories
Medical Law
pH effects
Pharmacology/Toxicology
Pharmacy
Potassium
Powder
Powders
Research Paper
Sodium
Solubility
Solubilization
Stainless steel
Viscosity
SummonAdditionalLinks – databaseName: ProQuest Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swED-27mUvY9_z1g0NRgdbzWxZjq2nEbJ2ZbBRRgt5E_JJgkIbZ0kKyf763fkrTWF9lmTLvjvpd98AH_JQes8xTyHIKlZe67gKXsbocrQuQYnIicI_f41OztWPaT7tDG7LLqyyPxObg9rVyDbyL6QcE3omODH6Ov8Tc9co9q52LTTuwwMuXcYhXcV0ULj4tmvKRxVSkdSrtPdqNqlzacK5yXRGS3YyrHfupdun843r6Za_tLmGjh_Dow4_inFL8Cdwz8-ewsFpW4B6cyjOtvlUy0NxIE63pak3z-BqsCGIbxcD24nfBDhFHcSEnQ9X9q-fE_aMv9MoadIoxnjhxKTGxYag5CW9omntI9iixqG1bSKnqDbiaM1JBzSVkbBfPIfz46OzyUncNVyIkYDQKg6W8E2FSeqx8GirpHTeksal0pCoVAedK48jp0NhbZp67VwhM6dJ58i4ruEoewF7s3rmX4EonQqF9prxjkpJqcuynJYRSEZPKqmNIOl_t8GuGjk3xbg02zrKTCFDFDJMIbOO4NOwZN6W4rhr8kemoWExpeei7bINaHdc8MqMC_aFk66oItjfmUnihbvDPReYTryXZsuMEbwfhnklh6zNfH3dzikVwVEZwcuWe4ZtSy3LUmVZBJ97drrx8P990-u7t_IGHhKaK1v70D7srRbX_i0hplX1rhGLfxVDEms
  priority: 102
  providerName: ProQuest
Title Improving Dissolution Rate of Carbamazepine-Glutaric Acid Cocrystal Through Solubilization by Excess Coformer
URI https://link.springer.com/article/10.1007/s11095-017-2309-x
https://www.ncbi.nlm.nih.gov/pubmed/29288433
https://www.proquest.com/docview/1982175086
https://www.proquest.com/docview/1982841432
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED-69mUvY1v34a4LGpQOthpsWY6tRydLWjoWQmkgezKyPqDQJiVJoelf3zt_pSnbYE9-0EmWfXfS73QfAjiKXWotxTw5xwtfWCn9wlnuaxNrZQLNtaZE4V-j7tlEnE_jaZ3HvWyi3RuXZLlSb5LdwoCyiXFV5eQWQOC4F5PpjkI84Vm7_OIWV9aMSrhAVRdh48r80xBbm9HzJfnJnvTMSVruPcPX8KoGjSyruPwGduzsLRyPq6rT6xN2uUmiWp6wYzbe1KNe78NNe3DAfly1ssYuEGWyuWN98jjcqAd7i4DTP8VWNJ81y_SVYf25XqwRP17jK8r7fBgdo1E8bZW9yYo1G9xTpgGSEvy1i3cwGQ4u-2d-fcuCrxH9rHynENQUOgitTqxWRZAaq9DMEqELRCidjIXVXSNdolQYWmlMwiMj0dCIqJhhN3oPu7P5zH4ElhrhEmklgRwRoiUXRTF2Q2SsLdqhyoOg-d25rkuQ000Y1_mmeDJxKEcO5cSh_N6Db22X26r-xr-IvxIPc9JNHFerOsUAZ0dVrvIsIQc4GojCg8MtStQpvd3cSEFe6_QyD2WK9hsC2q4HX9pm6klxajM7v6toUoEYlHvwoZKedtpc8jQVUeTB90acngz-t286-C_qT_ASEV1anREdwu5qcWc_I2paFR14kUyTDuxlw15vRM_T3z8H-OwNRuOLTqlDj7ZeFPk
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9AAXxBtDgUWCIkEt7PU6tg8IhTQlpW0UVanU22LvQ6rUxiFJRcyP4jcyEz_SVKK3nveRjWd25puZnRmAd6GNjaE3T9byzBUmSdzMGu4qHapUe4orRYnCR4N2_0T8OA1PN-BvnQtDzyprmbgU1DpX5CP_jMYxomeEE-2vk18udY2i6GrdQqNkiwNT_EaTbfZlfxfp-57zvd6o23errgKuQm0_d22KSjxTnm9UZFSaebE2KZoVwree8BObhMKotk5slKa-bxKtIx7oBIF1QMX72gHuewc2RYCmTAs2v_UGw-NG9qN-XRasirhAOSP8Oo66TNbzPcqGRq3AKayxWNOE1_XBFYV4LUK7VHx7D-B-hVhZp2Sxh7Bhxo9ge1iWvC522GiVwTXbYdtsuCqGXTyGi8ZrwXbPGkZnxwhxWW5Zl8IdF-kfM0G0637HUbTdFeuoM826uZoWCF7P8SeWzYQY-fDoMW-ZOsqygvUWlOaAUwl7m-kTOLkVYjyF1jgfm-fAYi1slJiEEJbw0YwMghCXISxXBo3g1AGv_txSVfXPqQ3HuVxVbiYKSaSQJArJhQMfmyWTsvjHTZM_EA0lCQbcV6VVfgOejkpsyU5E0Xe0ToUDW2sz8UKr9eGaC2QlUGZyxf4OvG2GaSU9khub_LKcEwsEwNyBZyX3NMfmCY9jEQQOfKrZ6crm__tPL24-yhu42x8dHcrD_cHBS7iHWDIuvVNb0JpPL80rxGvz7HV1SRj8vO17-Q-EF1DM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEB6VIiFeEDeGAosERYJa2Ot17H1AKEoaWgpVhFopb1t7D6lSG4ckFQk_jV_HjK80lehbn_fIxjOz883OBfA2dqm1FPPkHM99YaX0c2e5r02sMxNorjUlCv847Owdi2-jeLQBf5tcGAqrbO7E8qI2haY38k9oHCN6jqkvkKvDIob9wZfJL586SJGntWmnUbHIgV3-RvNt9nm_j7R-x_lg96i359cdBnyNmn_uuwwVeq6D0OrE6iwPUmMzNDFE6AIRSidjYXXHSJdkWRhaaUzCIyMRZEdUyK8T4b634HYSxSHJWDJqjT3StGXpqoQLvHFE2HhUy7S9MKC8aNQPnBwcizWdeFUzXFKNV3y1pQoc3Id7NXZl3YrZHsCGHT-E7WFV_Hq5w45WuVyzHbbNhquy2MtHcN6-X7D-acvy7CeCXVY41iPHx3n2x04Q9_pfcRSteM26-tSwXqGnS4SxZ_gTZVshRq95FNZbJZGyfMl2F5TwgFMJhdvpYzi-EVI8gc1xMbbPgKVGuERaSVhLhGhQRlGMyxCga4vmcOZB0HxupetK6NSQ40ytajgThRRSSBGF1MKDD-2SSVUG5LrJ74mGiq4I3FdndaYDno6KbaluQn54tFOFB1trM1G09fpwwwWqvlpmaiUIHrxph2klhcuNbXFRzUkFQmHuwdOKe9pjc8nTVESRBx8bdrq0-f_-0_Prj_Ia7qA0qu_7hwcv4C6CyrR6ptqCzfn0wr5E4DbPX5USwuDkpkXyH5dWU5w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+Dissolution+Rate+of+Carbamazepine-Glutaric+Acid+Cocrystal+Through+Solubilization+by+Excess+Coformer&rft.jtitle=Pharmaceutical+research&rft.au=Yamashita%2C+Hiroyuki&rft.au=Sun%2C+Changquan+Calvin&rft.date=2018-01-01&rft.issn=0724-8741&rft.eissn=1573-904X&rft.volume=35&rft.issue=1&rft_id=info:doi/10.1007%2Fs11095-017-2309-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11095_017_2309_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0724-8741&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0724-8741&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0724-8741&client=summon