Local fractional integrals involving generalized strongly m-convex mappings
In this paper, we first obtain a generalized integral identity for twice local fractional differentiable mappings on fractal sets R α ( 0 < α ≤ 1 ) of real line numbers. Then, using twice local fractional differentiable mappings that are in absolute value at certain powers generalized strongly m...
Saved in:
Published in | Arabian Journal of Mathematics Vol. 8; no. 2; pp. 95 - 107 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.06.2019
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, we first obtain a generalized integral identity for twice local fractional differentiable mappings on fractal sets
R
α
(
0
<
α
≤
1
)
of real line numbers. Then, using twice local fractional differentiable mappings that are in absolute value at certain powers generalized strongly
m
-convex, we obtain some new estimates on generalization of trapezium-like inequalities. We also discuss some new special cases which can be deduced from our main results. |
---|---|
AbstractList | In this paper, we first obtain a generalized integral identity for twice local fractional differentiable mappings on fractal sets
R
α
(
0
<
α
≤
1
)
of real line numbers. Then, using twice local fractional differentiable mappings that are in absolute value at certain powers generalized strongly
m
-convex, we obtain some new estimates on generalization of trapezium-like inequalities. We also discuss some new special cases which can be deduced from our main results. In this paper, we first obtain a generalized integral identity for twice local fractional differentiable mappings on fractal sets [R.sup.[alpha]] (0 < [alpha] [less than or equal to] 1) of real line numbers. Then, using twice local fractional differentiable mappings that are in absolute value at certain powers generalized strongly m-convex, we obtain some new estimates on generalization of trapezium-like inequalities. We also discuss some new special cases which can be deduced from our main results. Mathematics Subject Classification Primary 26A51; Secondary 26A33 * 26D07 * 26D10 * 26D15 [phrase omitted] In this paper, we first obtain a generalized integral identity for twice local fractional differentiable mappings on fractal sets [R.sup.a] (0 < [alpha] [less than or equal to] 1) of real line numbers. Then, using twice local fractional differentiable mappings that are in absolute value at certain powers generalized strongly m-convex, we obtain some new estimates on generalization of trapezium-like inequalities. We also discuss some new special cases which can be deduced from our main results. In this paper, we first obtain a generalized integral identity for twice local fractional differentiable mappings on fractal sets [R.sup.a] (0 < [alpha] [less than or equal to] 1) of real line numbers. Then, using twice local fractional differentiable mappings that are in absolute value at certain powers generalized strongly m-convex, we obtain some new estimates on generalization of trapezium-like inequalities. We also discuss some new special cases which can be deduced from our main results. Mathematics Subject Classification Primary 26A51; Secondary 26A33 * 26D07 * 26D10 * 26D15 In this paper, we first obtain a generalized integral identity for twice local fractional differentiable mappings on fractal sets \[{\mathbb {R}}^{\alpha }\, (0<\alpha \le 1)\] of real line numbers. Then, using twice local fractional differentiable mappings that are in absolute value at certain powers generalized strongly m-convex, we obtain some new estimates on generalization of trapezium-like inequalities. We also discuss some new special cases which can be deduced from our main results. In this paper, we first obtain a generalized integral identity for twice local fractional differentiable mappings on fractal sets [R.sup.[alpha]] (0 < [alpha] [less than or equal to] 1) of real line numbers. Then, using twice local fractional differentiable mappings that are in absolute value at certain powers generalized strongly m-convex, we obtain some new estimates on generalization of trapezium-like inequalities. We also discuss some new special cases which can be deduced from our main results. |
Audience | Academic |
Author | Anastassiou, George Kashuri, Artion Liko, Rozana |
Author_xml | – sequence: 1 givenname: George surname: Anastassiou fullname: Anastassiou, George email: ganastss2@gmail.com organization: George Anastassiou Department of Mathematical Sciences, University of Memphis – sequence: 2 givenname: Artion surname: Kashuri fullname: Kashuri, Artion organization: Department of Mathematics, Faculty of Technical Science, University Ismail Qemali – sequence: 3 givenname: Rozana surname: Liko fullname: Liko, Rozana organization: Department of Mathematics, Faculty of Technical Science, University Ismail Qemali |
BookMark | eNqNkU1r3DAQhkVJoWmaH9CboacenI4sy5KPIfQjdKHQJmehlcdGwSttJe2S5Nd3Foe2KbQNOmgYnmcY6X3JjkIMyNhrDmccQL3LLUAna-C6hoa3tX7Gjhvei1oKyY9-1q14wU5zvgEADlIowY_Z51V0dq7GZF3xMVDpQ8Ep2TlTtY_z3oepmjAgtfw9DlUuKYZpvqs2tYthj7fVxm63ROVX7PlIHp4-3Cfs-sP7q4tP9erLx8uL81XtJMhSo4Nm7dZd3-o111KP3SB6C07j6AaueG9RDY2VSvUoJYe2U3pte2VHHIBzJ07Ym2XuNsXvO8zF3MRdot2zaUDJviVHEXW2UJOd0fgwxkKPpDPgxtPmOHrqn3dcKS6kgicLoHQrhW5JePtIIKbgbZnsLmdz-e3r4-H_ZX-bqxbWpZhzwtE4X-whHlrIz4aDOcRultgNxW4OsRtNJv_D3Ca_senun06zOJnYMGH69Zt_l34AdK2-9g |
CitedBy_id | crossref_primary_10_3390_axioms9040117 crossref_primary_10_1142_S0218348X22501584 crossref_primary_10_1142_S0218348X22501171 crossref_primary_10_1002_mma_7081 crossref_primary_10_1142_S0218348X19501172 crossref_primary_10_1142_S0218348X2350069X crossref_primary_10_1016_j_chaos_2023_113375 crossref_primary_10_1142_S0218348X19500713 crossref_primary_10_1142_S0218348X21501267 crossref_primary_10_1142_S0218348X21500110 crossref_primary_10_1142_S0218348X24500257 crossref_primary_10_18514_MMN_2024_4511 crossref_primary_10_1142_S0218348X2050111X crossref_primary_10_1016_j_chaos_2021_110938 crossref_primary_10_1142_S0218348X20500218 crossref_primary_10_1142_S0218348X21502534 crossref_primary_10_3390_axioms13090653 crossref_primary_10_1016_j_chaos_2019_109547 crossref_primary_10_1186_s13662_020_02812_9 crossref_primary_10_1142_S0218348X21400260 crossref_primary_10_1142_S0218348X22500852 crossref_primary_10_1142_S0218348X22500840 |
Cites_doi | 10.1007/s40096-017-0227-z 10.22436/jnsa.010.11.32 10.1007/978-3-642-17098-0 10.1016/j.aml.2008.06.003 10.1002/mma.4270 10.1186/s13660-016-1276-9 10.1007/978-0-387-98128-4 10.1007/978-1-4614-0703-4 10.1090/proc/13488 |
ContentType | Journal Article |
Copyright | The Author(s) 2018 COPYRIGHT 2019 Springer Arabian Journal of Mathematics is a copyright of Springer, (2018). All Rights Reserved. © 2018. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2018 – notice: COPYRIGHT 2019 Springer – notice: Arabian Journal of Mathematics is a copyright of Springer, (2018). All Rights Reserved. © 2018. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION ISR 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
DOI | 10.1007/s40065-018-0214-8 |
DatabaseName | Springer Nature OA Free Journals CrossRef Gale In Context: Science ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central Korea SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
DatabaseTitle | CrossRef Publicly Available Content Database Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2193-5351 |
EndPage | 107 |
ExternalDocumentID | A617713570 A607845384 10_1007_s40065_018_0214_8 |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GroupedDBID | -A0 0R~ 2VQ 4.4 5VS 8FE 8FG AAFWJ AAKKN ABDBF ABEEZ ABJCF ACACY ACGFS ACUHS ACULB ADBBV ADINQ AFGXO AFKRA AFPKN AHBYD AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP BAPOH BCNDV BENPR BGLVJ C24 C6C CCPQU EBS EJD ESX GROUPED_DOAJ HCIFZ IAO IPNFZ ISR ITC J9A KQ8 L6V M7S M~E OK1 PIMPY PROAC PTHSS RIG RSV SMT SOJ AAJBT AASML AAYXX ABAKF ABBRH ABDBE ABFSG ACAOD ACSTC AEFQL AEZWR AFDZB AFHIU AHWEU AIGIU AIXLP AMVHM CITATION PHGZM PHGZT ABRTQ ABUWG ACZOJ AZQEC DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c505t-ec02bcb6948b1858f6d39a0c8efcd1719ae7d2a5779e55104678ba97afed011c3 |
IEDL.DBID | C24 |
ISSN | 2193-5343 2193-5351 |
IngestDate | Wed Aug 13 03:26:41 EDT 2025 Sat Mar 08 18:45:34 EST 2025 Sat Mar 08 18:44:00 EST 2025 Wed Mar 05 05:04:49 EST 2025 Wed Mar 05 05:15:56 EST 2025 Tue Jul 01 03:39:50 EDT 2025 Thu Apr 24 23:02:45 EDT 2025 Fri Feb 21 02:40:29 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Primary 26A51 26D10 26D07 26D15 Secondary 26A33 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c505t-ec02bcb6948b1858f6d39a0c8efcd1719ae7d2a5779e55104678ba97afed011c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://link.springer.com/10.1007/s40065-018-0214-8 |
PQID | 2075941047 |
PQPubID | 2034799 |
PageCount | 13 |
ParticipantIDs | proquest_journals_2075941047 gale_infotracacademiconefile_A617713570 gale_infotracacademiconefile_A607845384 gale_incontextgauss_ISR_A617713570 gale_incontextgauss_ISR_A607845384 crossref_citationtrail_10_1007_s40065_018_0214_8 crossref_primary_10_1007_s40065_018_0214_8 springer_journals_10_1007_s40065_018_0214_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-06-01 |
PublicationDateYYYYMMDD | 2019-06-01 |
PublicationDate_xml | – month: 06 year: 2019 text: 2019-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | Arabian Journal of Mathematics |
PublicationTitleAbbrev | Arab. J. Math |
PublicationYear | 2019 |
Publisher | Springer Berlin Heidelberg Springer Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer – name: Springer Nature B.V |
References | Agarwal (CR1) 2017; 40 Yang (CR25) 2012; 1 Yang, Baleanu, Yang (CR27) 2013; 2013 Mo (CR12) 2014; 2014 Sarikaya, Erden, Budak (CR17) 2015; 18 Anastassiou (CR3) 2009 Set, Tomar (CR19) 2016; 31 Anastassiou (CR4) 2011 Choi, Set, Tomar (CR7) 2017; 32 Sarikaya, Tunç, Budak (CR18) 2016; 276 Yang (CR23) 2011 Yang (CR24) 2012 Sarikaya, Budak (CR16) 2017; 145 Anastassiou (CR5) 2011 Srivastava, Choi (CR20) 2012 Lara, Merentes, Quintero, Rosales (CR10) 2015; 5 Mo, Sui (CR14) 2017; 11 Yang (CR26) 2012; 1 Mo, Sui (CR13) 2014; 2014 Lara, Merentes, Quintero (CR11) 2015; 5 Yang (CR22) 2011; 2011 Budak, Sarikaya, Yildirim (CR6) 2015; 18 Jumarie (CR9) 2009; 22 Erden, Sarikaya (CR8) 2016; 274 Tomar, Agarwal, Jleli, Samet (CR21) 2017; 10 Mo, Sui, Yu (CR15) 2014; 2014 Agarwal, Jleli, Tomar (CR2) 2017; 2017 X-J Yang (214_CR25) 2012; 1 HM Srivastava (214_CR20) 2012 MZ Sarikaya (214_CR17) 2015; 18 H-X Mo (214_CR12) 2014; 2014 E Set (214_CR19) 2016; 31 G Anastassiou (214_CR3) 2009 T Lara (214_CR10) 2015; 5 S Erden (214_CR8) 2016; 274 X-J Yang (214_CR24) 2012 M Tomar (214_CR21) 2017; 10 MZ Sarikaya (214_CR16) 2017; 145 J-S Choi (214_CR7) 2017; 32 G Anastassiou (214_CR4) 2011 G Jumarie (214_CR9) 2009; 22 Y-J Yang (214_CR27) 2013; 2013 H-X Mo (214_CR14) 2017; 11 X-J Yang (214_CR23) 2011 MZ Sarikaya (214_CR18) 2016; 276 X-J Yang (214_CR26) 2012; 1 P Agarwal (214_CR2) 2017; 2017 H-X Mo (214_CR13) 2014; 2014 P Agarwal (214_CR1) 2017; 40 H-X Mo (214_CR15) 2014; 2014 T Lara (214_CR11) 2015; 5 H Budak (214_CR6) 2015; 18 G Anastassiou (214_CR5) 2011 X-J Yang (214_CR22) 2011; 2011 |
References_xml | – volume: 11 start-page: 241 year: 2017 end-page: 246 ident: CR14 article-title: Hermite-Hadamard type inequalities for generalized -convex functions on real linear fractal set publication-title: Math. Sci. (Springer) doi: 10.1007/s40096-017-0227-z – volume: 18 start-page: 12 year: 2015 ident: CR17 article-title: Some generalized Ostrowski type inequalities involving local fractional integrals and applications publication-title: RGMIA Res. Rep. Collect. – volume: 18 start-page: 13 year: 2015 ident: CR6 article-title: New inequalities for local fractional integrals publication-title: RGMIA Res. Rep. Collect. – volume: 1 start-page: 12 year: 2012 end-page: 16 ident: CR25 article-title: Local fractional Fourier analysis publication-title: Adv. Mech. Eng. Appl. – year: 2011 ident: CR23 publication-title: Local fractional functional analysis and its applications – volume: 274 start-page: 282 year: 2016 end-page: 291 ident: CR8 article-title: Generalized Pompeiu type inequalities for local fractional integrals and its applications publication-title: Appl. Math. Comput. – volume: 2013 start-page: 6 year: 2013 ident: CR27 article-title: Analysis of fractal wave equations by local fractional Fourier series method publication-title: Adv. Math. Phys. – volume: 2011 start-page: 5 year: 2011 ident: CR22 article-title: Generalized local fractional Taylor’s formula with local fractional derivative publication-title: Arxiv – volume: 5 start-page: 777 issue: 5 year: 2015 end-page: 793 ident: CR11 article-title: On inequalities of Fejér and Hermite-Hadamard types for strongly -convex functions publication-title: Math. Aeterna – volume: 10 start-page: 5947 year: 2017 end-page: 5957 ident: CR21 article-title: Certain Ostrowski type inequalities for generalized -convex functions publication-title: J. Nonlinear Sci. Appl. doi: 10.22436/jnsa.010.11.32 – year: 2012 ident: CR20 publication-title: Zeta and -Zeta functions and associated series and integrals – year: 2011 ident: CR5 publication-title: Intelligent Mathematics: Computational Analysis doi: 10.1007/978-3-642-17098-0 – volume: 31 start-page: 383 year: 2016 end-page: 397 ident: CR19 article-title: New inequalities of Hermite-Hadamard type for generalized convex functions with applications publication-title: Facta Univ. Ser. Math. Inform. – volume: 22 start-page: 378 year: 2009 end-page: 385 ident: CR9 article-title: Table of some basic fractional calculus formulae derived from a modified Riemann-Liouville derivative for non-differentiable functions publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2008.06.003 – volume: 276 start-page: 316 year: 2016 end-page: 323 ident: CR18 article-title: On generalized some integral inequalities for local fractional integrals publication-title: Appl. Math. Comput. – volume: 5 start-page: 521 issue: 3 year: 2015 end-page: 535 ident: CR10 article-title: On strongly -convex functions publication-title: Math. Aeterna – volume: 40 start-page: 3882 year: 2017 end-page: 3891 ident: CR1 article-title: Some inequalities involving Hadamard type -fractional integral operators publication-title: Math. Methods Appl. Sci. doi: 10.1002/mma.4270 – volume: 2014 start-page: 8 year: 2014 ident: CR12 article-title: Generalized Hermite-Hadamard inequalities involving local fractional integral publication-title: Arxiv – volume: 1 start-page: 234 year: 2012 end-page: 239 ident: CR26 article-title: Local fractional integral equations and their applications publication-title: Adv. Comput. Sci. Appl. – volume: 2017 start-page: 10 year: 2017 ident: CR2 article-title: Certain Hermite-Hadamard type inequalities via generalized -fractional integrals publication-title: J. Inequal. Appl. doi: 10.1186/s13660-016-1276-9 – volume: 145 start-page: 1527 year: 2017 end-page: 1538 ident: CR16 article-title: Generalized Ostrowski type inequalities for local fractional integrals publication-title: Proc. Am. Math. Soc. – year: 2012 ident: CR24 publication-title: Advanced Local Fractional Calculus and its Applications – volume: 2014 start-page: 8 year: 2014 ident: CR13 article-title: Generalized -convex functions on fractal sets publication-title: Abstr. Appl. Anal. – volume: 2014 start-page: 7 year: 2014 ident: CR15 article-title: Generalized convex functions on fractal sets and two related inequalities publication-title: Abstr. Appl. Anal. – year: 2009 ident: CR3 publication-title: Fractional Differentiation Inequalities doi: 10.1007/978-0-387-98128-4 – year: 2011 ident: CR4 publication-title: Advances on Fractional Inequalities doi: 10.1007/978-1-4614-0703-4 – volume: 32 start-page: 601 year: 2017 end-page: 617 ident: CR7 article-title: Certain generalized Ostrowski type inequalities for local fractional integrals publication-title: Commun. Korean Math. Soc. – volume: 274 start-page: 282 year: 2016 ident: 214_CR8 publication-title: Appl. Math. Comput. – volume: 1 start-page: 12 year: 2012 ident: 214_CR25 publication-title: Adv. Mech. Eng. Appl. – volume-title: Advanced Local Fractional Calculus and its Applications year: 2012 ident: 214_CR24 – volume: 276 start-page: 316 year: 2016 ident: 214_CR18 publication-title: Appl. Math. Comput. – volume: 2013 start-page: 6 year: 2013 ident: 214_CR27 publication-title: Adv. Math. Phys. – volume: 2014 start-page: 8 year: 2014 ident: 214_CR12 publication-title: Arxiv – volume: 11 start-page: 241 year: 2017 ident: 214_CR14 publication-title: Math. Sci. (Springer) doi: 10.1007/s40096-017-0227-z – volume: 18 start-page: 13 year: 2015 ident: 214_CR6 publication-title: RGMIA Res. Rep. Collect. – volume: 32 start-page: 601 year: 2017 ident: 214_CR7 publication-title: Commun. Korean Math. Soc. – volume: 5 start-page: 521 issue: 3 year: 2015 ident: 214_CR10 publication-title: Math. Aeterna – volume: 31 start-page: 383 year: 2016 ident: 214_CR19 publication-title: Facta Univ. Ser. Math. Inform. – volume: 2014 start-page: 8 year: 2014 ident: 214_CR13 publication-title: Abstr. Appl. Anal. – volume: 18 start-page: 12 year: 2015 ident: 214_CR17 publication-title: RGMIA Res. Rep. Collect. – volume: 2011 start-page: 5 year: 2011 ident: 214_CR22 publication-title: Arxiv – volume: 2014 start-page: 7 year: 2014 ident: 214_CR15 publication-title: Abstr. Appl. Anal. – volume: 5 start-page: 777 issue: 5 year: 2015 ident: 214_CR11 publication-title: Math. Aeterna – volume-title: Advances on Fractional Inequalities year: 2011 ident: 214_CR4 doi: 10.1007/978-1-4614-0703-4 – volume: 22 start-page: 378 year: 2009 ident: 214_CR9 publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2008.06.003 – volume: 10 start-page: 5947 year: 2017 ident: 214_CR21 publication-title: J. Nonlinear Sci. Appl. doi: 10.22436/jnsa.010.11.32 – volume: 2017 start-page: 10 year: 2017 ident: 214_CR2 publication-title: J. Inequal. Appl. doi: 10.1186/s13660-016-1276-9 – volume-title: Zeta and $$q$$ q -Ze year: 2012 ident: 214_CR20 – volume-title: Intelligent Mathematics: Computational Analysis year: 2011 ident: 214_CR5 doi: 10.1007/978-3-642-17098-0 – volume: 145 start-page: 1527 year: 2017 ident: 214_CR16 publication-title: Proc. Am. Math. Soc. doi: 10.1090/proc/13488 – volume: 40 start-page: 3882 year: 2017 ident: 214_CR1 publication-title: Math. Methods Appl. Sci. doi: 10.1002/mma.4270 – volume-title: Fractional Differentiation Inequalities year: 2009 ident: 214_CR3 doi: 10.1007/978-0-387-98128-4 – volume: 1 start-page: 234 year: 2012 ident: 214_CR26 publication-title: Adv. Comput. Sci. Appl. – volume-title: Local fractional functional analysis and its applications year: 2011 ident: 214_CR23 |
SSID | ssj0001053731 ssib044730092 |
Score | 2.2402546 |
Snippet | In this paper, we first obtain a generalized integral identity for twice local fractional differentiable mappings on fractal sets
R
α
(
0
<
α
≤
1
)
of real... In this paper, we first obtain a generalized integral identity for twice local fractional differentiable mappings on fractal sets [R.sup.a] (0 < [alpha] [less... In this paper, we first obtain a generalized integral identity for twice local fractional differentiable mappings on fractal sets [R.sup.[alpha]] (0 < [alpha]... In this paper, we first obtain a generalized integral identity for twice local fractional differentiable mappings on fractal sets \[{\mathbb {R}}^{\alpha }\,... |
SourceID | proquest gale crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 95 |
SubjectTerms | Convex sets Identity Integrals Maps (Mathematics) Mathematical research Mathematics Mathematics and Statistics |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1bS8MwFA5eXvRBvOK8UUQQlEC3pk3yJCoO74gX8C2kSTqEuem6gfrrPadNN6Y43wpNQ3Nycu75DiF71nCbiTCjQsfgoIDBTEWUSAr8lHHtjE41ZnRvbpPzJ3b5HD_7gFvuyyormVgIats1GCPHSEgsGQILHL29U-wahdlV30JjmsyCCBbgfM2enN3e3VccxRjCsfu8YRF1QfiSokkhnNSIxlFcr1KdeJ-OoUYG71pQhBKjYkxZ_RTZv3KnhUpqLpIFb0sGx-XmL5Ep11km8zdDINZ8hVxdo64Ksl55fwEePT5EO4cnEE0YTwhaJfb0y5ezQY6x8Vb7M3ilRUX6R_CqEcOhla-Sp-bZ4-k59f0TqAG7pk-dCRupSRPJRApqWWSJjaQOjXCZsXVel9px29Ax59KB4QSeMhepllxnzsKxN9Eamel0O26dBDZtaCYsGE8Mjjy4aJq5OIF9DEHJhtLUSFgRShkPLo49LtpqCItc0FYBbRXSVokaORh-8lYia0wavIvUV4hY0cGSmJYe5Lm6eLhXxwlYOQzkNps4qM6xGSEPa2TfD8q68IdG-2sIsE5Ewhqb7r-Rozm3KqZQXgTkasSwNXJYMcro9Z9L3Zg82SaZA5tNltVqW2Sm3xu4bbCL-umOZ_5vA30GfQ priority: 102 providerName: ProQuest |
Title | Local fractional integrals involving generalized strongly m-convex mappings |
URI | https://link.springer.com/article/10.1007/s40065-018-0214-8 https://www.proquest.com/docview/2075941047 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RT9swED4NeNke0GCbVmBVhCYhDVlKGye2H9uuhW0UTTAk3izHdiqkUhApEuxhv313idMKxpj24ljKxUouPt93PvszwEdnhStkXDBpUgxQEDAzmWSKYX8qhPHW5IYyuuPj7PCMfz1Pz8M-7rJZ7d6kJKuRerHZjZO7xNBXMuL5YnIF1lIM3albD5aU45wTA3tIFVYTLcRYUp1LiMaZsDThSZPdfKrVB_7p8Sj9R7q08kKj17Ae4GPUq__3Brzws014NV5wr5Zv4NsRuaeouKm3LGA1UEJMS6zhaERTCNGkppu--OldVNJ0-GR6H12yahH6XXRpiLZhUr6Fs9Hwx-CQhSMTmEUoM2fext3c5pniMkdPLIvMJcrEVvrCuo7oKOOF65pUCOURK2FwLGRulDCFd2jpNnkHq7OrmX8Pkcu7hkuHeImjlWNUZrhPM_x1MfrVWNkWxI2itA184nSsxVQvmJAr3WrUrSbdatmCT4tHrmsyjeeEd0n7mkgqZrQKZmJuy1J_OT3RvQyBDcehmj8r1BF0_qCIW7AXhIorfENrws4D_E4iv3rQ3L8kl23uNJ1CB6svdRfxl-JEftGC_aajLG__9VO3_kt6G14ialP1erUdWJ3f3PoPiIzmeRtW5OigDWu9_uf-CK_94fH3k3ZlH1RmAyzHv4a_AZ2ZB1w |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dTxNBEJ8gPqgPRlFDFfBCMCaaTa53e7e7D4QQsba05UEh4W3d291rTEqLXInCH-Xf6Mx9tAFDfeLtkm43venM_OZj9zcAO84Kl8swZ9IkmKBgwMxknCqG-pQL463JDHV0h0dp94QfnianK_CnuQtDxyobn1g6aje1VCOnSkiiOBEL7J3_ZDQ1irqrzQiNSi36_uoXpmzFbu8A_993UdT5fPypy-qpAswi2s-Yt2GU2SxVXGYIVjJPXaxMaKXPrWuLtjJeuMgkQiiP4QTmj0JmRgmTe4fGYGPc9wE85HGsyKJk50ujv5wT-XvdpSxrPESWUo5ERL8QsyRO2k1jlW7vccJ_zOUlI-IyJm9A422A-KdTWwJg5xk8rSPXYL9Steew4idr8GQ4p30tXkB_QMgY5BfVbQl8rNkoxgU-oSOk6kUwqpiuf1x7FxRUiR-Nr4IzVp5__x2cGWKMGBUv4eRe5PoKVifTiV-HwGWR4dJhqMbRwWBCaLhPUtSaECE9VLYFYSMobWsqc5qoMdZzEuZSthplq0m2Wrbgw_wr5xWPx7LF2yR9TfwYEzqAMzKXRaF7377q_RRjKo4owZcuagsafSjCFryvF-VT_IXW1Jce8D2Jd-vGdv9budhzo1EKXTucQi_MowUfG0VZfHznq75evtlbeNQ9Hg70oHfUfwOPMVpU1Tm5DVidXVz6TYzIZtlWaQYBfL9vu_sLad5Clw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTkLwgPgUhQERAiGBLNLEie0HhAZbtdKtmgaT9uY5tlMhde1YOsH40_jruEucVgNRnvZmKY4VX-777N8BvHBWuFLGJZMmwwAFHWYm01wx5KdSGG9NYaiiuzfKdw75p6PsaA1-tXdh6FhlqxNrRe1mlnLklAnJFCdggbdlOBaxv9V_f_qNUQcpqrS27TQaFhn6i-8YvlXvBlv4r18mSX_7y8cdFjoMMIuWf868jZPCFrniskDDJcvcpcrEVvrSup7oKeOFS0wmhPLoWmAsKWRhlDCldygYNsV1r8G6wKgo7sD6h-3R_kHLzZwTFHyoWdYZH4JOqRskopZIWZZmvbbMSnf5OHkDGNlLRjBmTF4ylH-ai7_qtrU57N-GW8GPjTYbxrsDa356F27uLUBgq3sw3CU7GZVnzd0JHAZsikmFI1SLlMuIxg3u9def3kUV5eXHk4vohNWn4X9EJ4bwI8bVfTi8Eso-gM50NvUPIXJFYrh06LhxVDcYHhrusxx5KEYDHyvbhbgllLYB2Jz6a0z0ApK5pq1G2mqirZZdeL145bRB9Vg1-TlRXxNaxpT4bmzOq0oPPh_ozRw9LI42g6-c1BPUCFHEXXgVJpUz_EJrwhUI3CehcF1a7n8zl2tutEyhg_qp9FJYuvCmZZTl439u9dHqxZ7BdZQ5vTsYDR_DDXQdVXNobgM687Nz_wTds3nxNMhBBMdXLXq_ASatSCk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Local+fractional+integrals+involving+generalized+strongly+m-convex+mappings&rft.jtitle=Arabian+Journal+of+Mathematics&rft.au=Anastassiou%2C+George&rft.au=Kashuri%2C+Artion&rft.au=Liko%2C+Rozana&rft.date=2019-06-01&rft.pub=Springer&rft.issn=2193-5343&rft.volume=8&rft.issue=2&rft.spage=95&rft_id=info:doi/10.1007%2Fs40065-018-0214-8&rft.externalDBID=ISR&rft.externalDocID=A607845384 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2193-5343&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2193-5343&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2193-5343&client=summon |