Local fractional integrals involving generalized strongly m-convex mappings

In this paper, we first obtain a generalized integral identity for twice local fractional differentiable mappings on fractal sets R α ( 0 < α ≤ 1 ) of real line numbers. Then, using twice local fractional differentiable mappings that are in absolute value at certain powers generalized strongly m...

Full description

Saved in:
Bibliographic Details
Published inArabian Journal of Mathematics Vol. 8; no. 2; pp. 95 - 107
Main Authors Anastassiou, George, Kashuri, Artion, Liko, Rozana
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2019
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we first obtain a generalized integral identity for twice local fractional differentiable mappings on fractal sets R α ( 0 < α ≤ 1 ) of real line numbers. Then, using twice local fractional differentiable mappings that are in absolute value at certain powers generalized strongly m -convex, we obtain some new estimates on generalization of trapezium-like inequalities. We also discuss some new special cases which can be deduced from our main results.
AbstractList In this paper, we first obtain a generalized integral identity for twice local fractional differentiable mappings on fractal sets R α ( 0 < α ≤ 1 ) of real line numbers. Then, using twice local fractional differentiable mappings that are in absolute value at certain powers generalized strongly m -convex, we obtain some new estimates on generalization of trapezium-like inequalities. We also discuss some new special cases which can be deduced from our main results.
In this paper, we first obtain a generalized integral identity for twice local fractional differentiable mappings on fractal sets [R.sup.[alpha]] (0 < [alpha] [less than or equal to] 1) of real line numbers. Then, using twice local fractional differentiable mappings that are in absolute value at certain powers generalized strongly m-convex, we obtain some new estimates on generalization of trapezium-like inequalities. We also discuss some new special cases which can be deduced from our main results. Mathematics Subject Classification Primary 26A51; Secondary 26A33 * 26D07 * 26D10 * 26D15 [phrase omitted]
In this paper, we first obtain a generalized integral identity for twice local fractional differentiable mappings on fractal sets [R.sup.a] (0 < [alpha] [less than or equal to] 1) of real line numbers. Then, using twice local fractional differentiable mappings that are in absolute value at certain powers generalized strongly m-convex, we obtain some new estimates on generalization of trapezium-like inequalities. We also discuss some new special cases which can be deduced from our main results.
In this paper, we first obtain a generalized integral identity for twice local fractional differentiable mappings on fractal sets [R.sup.a] (0 < [alpha] [less than or equal to] 1) of real line numbers. Then, using twice local fractional differentiable mappings that are in absolute value at certain powers generalized strongly m-convex, we obtain some new estimates on generalization of trapezium-like inequalities. We also discuss some new special cases which can be deduced from our main results. Mathematics Subject Classification Primary 26A51; Secondary 26A33 * 26D07 * 26D10 * 26D15
In this paper, we first obtain a generalized integral identity for twice local fractional differentiable mappings on fractal sets \[{\mathbb {R}}^{\alpha }\, (0<\alpha \le 1)\] of real line numbers. Then, using twice local fractional differentiable mappings that are in absolute value at certain powers generalized strongly m-convex, we obtain some new estimates on generalization of trapezium-like inequalities. We also discuss some new special cases which can be deduced from our main results.
In this paper, we first obtain a generalized integral identity for twice local fractional differentiable mappings on fractal sets [R.sup.[alpha]] (0 < [alpha] [less than or equal to] 1) of real line numbers. Then, using twice local fractional differentiable mappings that are in absolute value at certain powers generalized strongly m-convex, we obtain some new estimates on generalization of trapezium-like inequalities. We also discuss some new special cases which can be deduced from our main results.
Audience Academic
Author Anastassiou, George
Kashuri, Artion
Liko, Rozana
Author_xml – sequence: 1
  givenname: George
  surname: Anastassiou
  fullname: Anastassiou, George
  email: ganastss2@gmail.com
  organization: George Anastassiou Department of Mathematical Sciences, University of Memphis
– sequence: 2
  givenname: Artion
  surname: Kashuri
  fullname: Kashuri, Artion
  organization: Department of Mathematics, Faculty of Technical Science, University Ismail Qemali
– sequence: 3
  givenname: Rozana
  surname: Liko
  fullname: Liko, Rozana
  organization: Department of Mathematics, Faculty of Technical Science, University Ismail Qemali
BookMark eNqNkU1r3DAQhkVJoWmaH9CboacenI4sy5KPIfQjdKHQJmehlcdGwSttJe2S5Nd3Foe2KbQNOmgYnmcY6X3JjkIMyNhrDmccQL3LLUAna-C6hoa3tX7Gjhvei1oKyY9-1q14wU5zvgEADlIowY_Z51V0dq7GZF3xMVDpQ8Ep2TlTtY_z3oepmjAgtfw9DlUuKYZpvqs2tYthj7fVxm63ROVX7PlIHp4-3Cfs-sP7q4tP9erLx8uL81XtJMhSo4Nm7dZd3-o111KP3SB6C07j6AaueG9RDY2VSvUoJYe2U3pte2VHHIBzJ07Ym2XuNsXvO8zF3MRdot2zaUDJviVHEXW2UJOd0fgwxkKPpDPgxtPmOHrqn3dcKS6kgicLoHQrhW5JePtIIKbgbZnsLmdz-e3r4-H_ZX-bqxbWpZhzwtE4X-whHlrIz4aDOcRultgNxW4OsRtNJv_D3Ca_senun06zOJnYMGH69Zt_l34AdK2-9g
CitedBy_id crossref_primary_10_3390_axioms9040117
crossref_primary_10_1142_S0218348X22501584
crossref_primary_10_1142_S0218348X22501171
crossref_primary_10_1002_mma_7081
crossref_primary_10_1142_S0218348X19501172
crossref_primary_10_1142_S0218348X2350069X
crossref_primary_10_1016_j_chaos_2023_113375
crossref_primary_10_1142_S0218348X19500713
crossref_primary_10_1142_S0218348X21501267
crossref_primary_10_1142_S0218348X21500110
crossref_primary_10_1142_S0218348X24500257
crossref_primary_10_18514_MMN_2024_4511
crossref_primary_10_1142_S0218348X2050111X
crossref_primary_10_1016_j_chaos_2021_110938
crossref_primary_10_1142_S0218348X20500218
crossref_primary_10_1142_S0218348X21502534
crossref_primary_10_3390_axioms13090653
crossref_primary_10_1016_j_chaos_2019_109547
crossref_primary_10_1186_s13662_020_02812_9
crossref_primary_10_1142_S0218348X21400260
crossref_primary_10_1142_S0218348X22500852
crossref_primary_10_1142_S0218348X22500840
Cites_doi 10.1007/s40096-017-0227-z
10.22436/jnsa.010.11.32
10.1007/978-3-642-17098-0
10.1016/j.aml.2008.06.003
10.1002/mma.4270
10.1186/s13660-016-1276-9
10.1007/978-0-387-98128-4
10.1007/978-1-4614-0703-4
10.1090/proc/13488
ContentType Journal Article
Copyright The Author(s) 2018
COPYRIGHT 2019 Springer
Arabian Journal of Mathematics is a copyright of Springer, (2018). All Rights Reserved. © 2018. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2018
– notice: COPYRIGHT 2019 Springer
– notice: Arabian Journal of Mathematics is a copyright of Springer, (2018). All Rights Reserved. © 2018. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
ISR
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s40065-018-0214-8
DatabaseName Springer Nature OA Free Journals
CrossRef
Gale In Context: Science
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList



Publicly Available Content Database

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2193-5351
EndPage 107
ExternalDocumentID A617713570
A607845384
10_1007_s40065_018_0214_8
GeographicLocations United States
GeographicLocations_xml – name: United States
GroupedDBID -A0
0R~
2VQ
4.4
5VS
8FE
8FG
AAFWJ
AAKKN
ABDBF
ABEEZ
ABJCF
ACACY
ACGFS
ACUHS
ACULB
ADBBV
ADINQ
AFGXO
AFKRA
AFPKN
AHBYD
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
BAPOH
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
EBS
EJD
ESX
GROUPED_DOAJ
HCIFZ
IAO
IPNFZ
ISR
ITC
J9A
KQ8
L6V
M7S
M~E
OK1
PIMPY
PROAC
PTHSS
RIG
RSV
SMT
SOJ
AAJBT
AASML
AAYXX
ABAKF
ABBRH
ABDBE
ABFSG
ACAOD
ACSTC
AEFQL
AEZWR
AFDZB
AFHIU
AHWEU
AIGIU
AIXLP
AMVHM
CITATION
PHGZM
PHGZT
ABRTQ
ABUWG
ACZOJ
AZQEC
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c505t-ec02bcb6948b1858f6d39a0c8efcd1719ae7d2a5779e55104678ba97afed011c3
IEDL.DBID C24
ISSN 2193-5343
2193-5351
IngestDate Wed Aug 13 03:26:41 EDT 2025
Sat Mar 08 18:45:34 EST 2025
Sat Mar 08 18:44:00 EST 2025
Wed Mar 05 05:04:49 EST 2025
Wed Mar 05 05:15:56 EST 2025
Tue Jul 01 03:39:50 EDT 2025
Thu Apr 24 23:02:45 EDT 2025
Fri Feb 21 02:40:29 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Primary 26A51
26D10
26D07
26D15
Secondary 26A33
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c505t-ec02bcb6948b1858f6d39a0c8efcd1719ae7d2a5779e55104678ba97afed011c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://link.springer.com/10.1007/s40065-018-0214-8
PQID 2075941047
PQPubID 2034799
PageCount 13
ParticipantIDs proquest_journals_2075941047
gale_infotracacademiconefile_A617713570
gale_infotracacademiconefile_A607845384
gale_incontextgauss_ISR_A617713570
gale_incontextgauss_ISR_A607845384
crossref_citationtrail_10_1007_s40065_018_0214_8
crossref_primary_10_1007_s40065_018_0214_8
springer_journals_10_1007_s40065_018_0214_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-06-01
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Arabian Journal of Mathematics
PublicationTitleAbbrev Arab. J. Math
PublicationYear 2019
Publisher Springer Berlin Heidelberg
Springer
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer
– name: Springer Nature B.V
References Agarwal (CR1) 2017; 40
Yang (CR25) 2012; 1
Yang, Baleanu, Yang (CR27) 2013; 2013
Mo (CR12) 2014; 2014
Sarikaya, Erden, Budak (CR17) 2015; 18
Anastassiou (CR3) 2009
Set, Tomar (CR19) 2016; 31
Anastassiou (CR4) 2011
Choi, Set, Tomar (CR7) 2017; 32
Sarikaya, Tunç, Budak (CR18) 2016; 276
Yang (CR23) 2011
Yang (CR24) 2012
Sarikaya, Budak (CR16) 2017; 145
Anastassiou (CR5) 2011
Srivastava, Choi (CR20) 2012
Lara, Merentes, Quintero, Rosales (CR10) 2015; 5
Mo, Sui (CR14) 2017; 11
Yang (CR26) 2012; 1
Mo, Sui (CR13) 2014; 2014
Lara, Merentes, Quintero (CR11) 2015; 5
Yang (CR22) 2011; 2011
Budak, Sarikaya, Yildirim (CR6) 2015; 18
Jumarie (CR9) 2009; 22
Erden, Sarikaya (CR8) 2016; 274
Tomar, Agarwal, Jleli, Samet (CR21) 2017; 10
Mo, Sui, Yu (CR15) 2014; 2014
Agarwal, Jleli, Tomar (CR2) 2017; 2017
X-J Yang (214_CR25) 2012; 1
HM Srivastava (214_CR20) 2012
MZ Sarikaya (214_CR17) 2015; 18
H-X Mo (214_CR12) 2014; 2014
E Set (214_CR19) 2016; 31
G Anastassiou (214_CR3) 2009
T Lara (214_CR10) 2015; 5
S Erden (214_CR8) 2016; 274
X-J Yang (214_CR24) 2012
M Tomar (214_CR21) 2017; 10
MZ Sarikaya (214_CR16) 2017; 145
J-S Choi (214_CR7) 2017; 32
G Anastassiou (214_CR4) 2011
G Jumarie (214_CR9) 2009; 22
Y-J Yang (214_CR27) 2013; 2013
H-X Mo (214_CR14) 2017; 11
X-J Yang (214_CR23) 2011
MZ Sarikaya (214_CR18) 2016; 276
X-J Yang (214_CR26) 2012; 1
P Agarwal (214_CR2) 2017; 2017
H-X Mo (214_CR13) 2014; 2014
P Agarwal (214_CR1) 2017; 40
H-X Mo (214_CR15) 2014; 2014
T Lara (214_CR11) 2015; 5
H Budak (214_CR6) 2015; 18
G Anastassiou (214_CR5) 2011
X-J Yang (214_CR22) 2011; 2011
References_xml – volume: 11
  start-page: 241
  year: 2017
  end-page: 246
  ident: CR14
  article-title: Hermite-Hadamard type inequalities for generalized -convex functions on real linear fractal set
  publication-title: Math. Sci. (Springer)
  doi: 10.1007/s40096-017-0227-z
– volume: 18
  start-page: 12
  year: 2015
  ident: CR17
  article-title: Some generalized Ostrowski type inequalities involving local fractional integrals and applications
  publication-title: RGMIA Res. Rep. Collect.
– volume: 18
  start-page: 13
  year: 2015
  ident: CR6
  article-title: New inequalities for local fractional integrals
  publication-title: RGMIA Res. Rep. Collect.
– volume: 1
  start-page: 12
  year: 2012
  end-page: 16
  ident: CR25
  article-title: Local fractional Fourier analysis
  publication-title: Adv. Mech. Eng. Appl.
– year: 2011
  ident: CR23
  publication-title: Local fractional functional analysis and its applications
– volume: 274
  start-page: 282
  year: 2016
  end-page: 291
  ident: CR8
  article-title: Generalized Pompeiu type inequalities for local fractional integrals and its applications
  publication-title: Appl. Math. Comput.
– volume: 2013
  start-page: 6
  year: 2013
  ident: CR27
  article-title: Analysis of fractal wave equations by local fractional Fourier series method
  publication-title: Adv. Math. Phys.
– volume: 2011
  start-page: 5
  year: 2011
  ident: CR22
  article-title: Generalized local fractional Taylor’s formula with local fractional derivative
  publication-title: Arxiv
– volume: 5
  start-page: 777
  issue: 5
  year: 2015
  end-page: 793
  ident: CR11
  article-title: On inequalities of Fejér and Hermite-Hadamard types for strongly -convex functions
  publication-title: Math. Aeterna
– volume: 10
  start-page: 5947
  year: 2017
  end-page: 5957
  ident: CR21
  article-title: Certain Ostrowski type inequalities for generalized -convex functions
  publication-title: J. Nonlinear Sci. Appl.
  doi: 10.22436/jnsa.010.11.32
– year: 2012
  ident: CR20
  publication-title: Zeta and -Zeta functions and associated series and integrals
– year: 2011
  ident: CR5
  publication-title: Intelligent Mathematics: Computational Analysis
  doi: 10.1007/978-3-642-17098-0
– volume: 31
  start-page: 383
  year: 2016
  end-page: 397
  ident: CR19
  article-title: New inequalities of Hermite-Hadamard type for generalized convex functions with applications
  publication-title: Facta Univ. Ser. Math. Inform.
– volume: 22
  start-page: 378
  year: 2009
  end-page: 385
  ident: CR9
  article-title: Table of some basic fractional calculus formulae derived from a modified Riemann-Liouville derivative for non-differentiable functions
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2008.06.003
– volume: 276
  start-page: 316
  year: 2016
  end-page: 323
  ident: CR18
  article-title: On generalized some integral inequalities for local fractional integrals
  publication-title: Appl. Math. Comput.
– volume: 5
  start-page: 521
  issue: 3
  year: 2015
  end-page: 535
  ident: CR10
  article-title: On strongly -convex functions
  publication-title: Math. Aeterna
– volume: 40
  start-page: 3882
  year: 2017
  end-page: 3891
  ident: CR1
  article-title: Some inequalities involving Hadamard type -fractional integral operators
  publication-title: Math. Methods Appl. Sci.
  doi: 10.1002/mma.4270
– volume: 2014
  start-page: 8
  year: 2014
  ident: CR12
  article-title: Generalized Hermite-Hadamard inequalities involving local fractional integral
  publication-title: Arxiv
– volume: 1
  start-page: 234
  year: 2012
  end-page: 239
  ident: CR26
  article-title: Local fractional integral equations and their applications
  publication-title: Adv. Comput. Sci. Appl.
– volume: 2017
  start-page: 10
  year: 2017
  ident: CR2
  article-title: Certain Hermite-Hadamard type inequalities via generalized -fractional integrals
  publication-title: J. Inequal. Appl.
  doi: 10.1186/s13660-016-1276-9
– volume: 145
  start-page: 1527
  year: 2017
  end-page: 1538
  ident: CR16
  article-title: Generalized Ostrowski type inequalities for local fractional integrals
  publication-title: Proc. Am. Math. Soc.
– year: 2012
  ident: CR24
  publication-title: Advanced Local Fractional Calculus and its Applications
– volume: 2014
  start-page: 8
  year: 2014
  ident: CR13
  article-title: Generalized -convex functions on fractal sets
  publication-title: Abstr. Appl. Anal.
– volume: 2014
  start-page: 7
  year: 2014
  ident: CR15
  article-title: Generalized convex functions on fractal sets and two related inequalities
  publication-title: Abstr. Appl. Anal.
– year: 2009
  ident: CR3
  publication-title: Fractional Differentiation Inequalities
  doi: 10.1007/978-0-387-98128-4
– year: 2011
  ident: CR4
  publication-title: Advances on Fractional Inequalities
  doi: 10.1007/978-1-4614-0703-4
– volume: 32
  start-page: 601
  year: 2017
  end-page: 617
  ident: CR7
  article-title: Certain generalized Ostrowski type inequalities for local fractional integrals
  publication-title: Commun. Korean Math. Soc.
– volume: 274
  start-page: 282
  year: 2016
  ident: 214_CR8
  publication-title: Appl. Math. Comput.
– volume: 1
  start-page: 12
  year: 2012
  ident: 214_CR25
  publication-title: Adv. Mech. Eng. Appl.
– volume-title: Advanced Local Fractional Calculus and its Applications
  year: 2012
  ident: 214_CR24
– volume: 276
  start-page: 316
  year: 2016
  ident: 214_CR18
  publication-title: Appl. Math. Comput.
– volume: 2013
  start-page: 6
  year: 2013
  ident: 214_CR27
  publication-title: Adv. Math. Phys.
– volume: 2014
  start-page: 8
  year: 2014
  ident: 214_CR12
  publication-title: Arxiv
– volume: 11
  start-page: 241
  year: 2017
  ident: 214_CR14
  publication-title: Math. Sci. (Springer)
  doi: 10.1007/s40096-017-0227-z
– volume: 18
  start-page: 13
  year: 2015
  ident: 214_CR6
  publication-title: RGMIA Res. Rep. Collect.
– volume: 32
  start-page: 601
  year: 2017
  ident: 214_CR7
  publication-title: Commun. Korean Math. Soc.
– volume: 5
  start-page: 521
  issue: 3
  year: 2015
  ident: 214_CR10
  publication-title: Math. Aeterna
– volume: 31
  start-page: 383
  year: 2016
  ident: 214_CR19
  publication-title: Facta Univ. Ser. Math. Inform.
– volume: 2014
  start-page: 8
  year: 2014
  ident: 214_CR13
  publication-title: Abstr. Appl. Anal.
– volume: 18
  start-page: 12
  year: 2015
  ident: 214_CR17
  publication-title: RGMIA Res. Rep. Collect.
– volume: 2011
  start-page: 5
  year: 2011
  ident: 214_CR22
  publication-title: Arxiv
– volume: 2014
  start-page: 7
  year: 2014
  ident: 214_CR15
  publication-title: Abstr. Appl. Anal.
– volume: 5
  start-page: 777
  issue: 5
  year: 2015
  ident: 214_CR11
  publication-title: Math. Aeterna
– volume-title: Advances on Fractional Inequalities
  year: 2011
  ident: 214_CR4
  doi: 10.1007/978-1-4614-0703-4
– volume: 22
  start-page: 378
  year: 2009
  ident: 214_CR9
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2008.06.003
– volume: 10
  start-page: 5947
  year: 2017
  ident: 214_CR21
  publication-title: J. Nonlinear Sci. Appl.
  doi: 10.22436/jnsa.010.11.32
– volume: 2017
  start-page: 10
  year: 2017
  ident: 214_CR2
  publication-title: J. Inequal. Appl.
  doi: 10.1186/s13660-016-1276-9
– volume-title: Zeta and $$q$$ q -Ze
  year: 2012
  ident: 214_CR20
– volume-title: Intelligent Mathematics: Computational Analysis
  year: 2011
  ident: 214_CR5
  doi: 10.1007/978-3-642-17098-0
– volume: 145
  start-page: 1527
  year: 2017
  ident: 214_CR16
  publication-title: Proc. Am. Math. Soc.
  doi: 10.1090/proc/13488
– volume: 40
  start-page: 3882
  year: 2017
  ident: 214_CR1
  publication-title: Math. Methods Appl. Sci.
  doi: 10.1002/mma.4270
– volume-title: Fractional Differentiation Inequalities
  year: 2009
  ident: 214_CR3
  doi: 10.1007/978-0-387-98128-4
– volume: 1
  start-page: 234
  year: 2012
  ident: 214_CR26
  publication-title: Adv. Comput. Sci. Appl.
– volume-title: Local fractional functional analysis and its applications
  year: 2011
  ident: 214_CR23
SSID ssj0001053731
ssib044730092
Score 2.2402546
Snippet In this paper, we first obtain a generalized integral identity for twice local fractional differentiable mappings on fractal sets R α ( 0 < α ≤ 1 ) of real...
In this paper, we first obtain a generalized integral identity for twice local fractional differentiable mappings on fractal sets [R.sup.a] (0 < [alpha] [less...
In this paper, we first obtain a generalized integral identity for twice local fractional differentiable mappings on fractal sets [R.sup.[alpha]] (0 < [alpha]...
In this paper, we first obtain a generalized integral identity for twice local fractional differentiable mappings on fractal sets \[{\mathbb {R}}^{\alpha }\,...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 95
SubjectTerms Convex sets
Identity
Integrals
Maps (Mathematics)
Mathematical research
Mathematics
Mathematics and Statistics
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1bS8MwFA5eXvRBvOK8UUQQlEC3pk3yJCoO74gX8C2kSTqEuem6gfrrPadNN6Y43wpNQ3Nycu75DiF71nCbiTCjQsfgoIDBTEWUSAr8lHHtjE41ZnRvbpPzJ3b5HD_7gFvuyyormVgIats1GCPHSEgsGQILHL29U-wahdlV30JjmsyCCBbgfM2enN3e3VccxRjCsfu8YRF1QfiSokkhnNSIxlFcr1KdeJ-OoUYG71pQhBKjYkxZ_RTZv3KnhUpqLpIFb0sGx-XmL5Ep11km8zdDINZ8hVxdo64Ksl55fwEePT5EO4cnEE0YTwhaJfb0y5ezQY6x8Vb7M3ilRUX6R_CqEcOhla-Sp-bZ4-k59f0TqAG7pk-dCRupSRPJRApqWWSJjaQOjXCZsXVel9px29Ax59KB4QSeMhepllxnzsKxN9Eamel0O26dBDZtaCYsGE8Mjjy4aJq5OIF9DEHJhtLUSFgRShkPLo49LtpqCItc0FYBbRXSVokaORh-8lYia0wavIvUV4hY0cGSmJYe5Lm6eLhXxwlYOQzkNps4qM6xGSEPa2TfD8q68IdG-2sIsE5Ewhqb7r-Rozm3KqZQXgTkasSwNXJYMcro9Z9L3Zg82SaZA5tNltVqW2Sm3xu4bbCL-umOZ_5vA30GfQ
  priority: 102
  providerName: ProQuest
Title Local fractional integrals involving generalized strongly m-convex mappings
URI https://link.springer.com/article/10.1007/s40065-018-0214-8
https://www.proquest.com/docview/2075941047
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RT9swED4NeNke0GCbVmBVhCYhDVlKGye2H9uuhW0UTTAk3izHdiqkUhApEuxhv313idMKxpj24ljKxUouPt93PvszwEdnhStkXDBpUgxQEDAzmWSKYX8qhPHW5IYyuuPj7PCMfz1Pz8M-7rJZ7d6kJKuRerHZjZO7xNBXMuL5YnIF1lIM3albD5aU45wTA3tIFVYTLcRYUp1LiMaZsDThSZPdfKrVB_7p8Sj9R7q08kKj17Ae4GPUq__3Brzws014NV5wr5Zv4NsRuaeouKm3LGA1UEJMS6zhaERTCNGkppu--OldVNJ0-GR6H12yahH6XXRpiLZhUr6Fs9Hwx-CQhSMTmEUoM2fext3c5pniMkdPLIvMJcrEVvrCuo7oKOOF65pUCOURK2FwLGRulDCFd2jpNnkHq7OrmX8Pkcu7hkuHeImjlWNUZrhPM_x1MfrVWNkWxI2itA184nSsxVQvmJAr3WrUrSbdatmCT4tHrmsyjeeEd0n7mkgqZrQKZmJuy1J_OT3RvQyBDcehmj8r1BF0_qCIW7AXhIorfENrws4D_E4iv3rQ3L8kl23uNJ1CB6svdRfxl-JEftGC_aajLG__9VO3_kt6G14ialP1erUdWJ3f3PoPiIzmeRtW5OigDWu9_uf-CK_94fH3k3ZlH1RmAyzHv4a_AZ2ZB1w
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dTxNBEJ8gPqgPRlFDFfBCMCaaTa53e7e7D4QQsba05UEh4W3d291rTEqLXInCH-Xf6Mx9tAFDfeLtkm43venM_OZj9zcAO84Kl8swZ9IkmKBgwMxknCqG-pQL463JDHV0h0dp94QfnianK_CnuQtDxyobn1g6aje1VCOnSkiiOBEL7J3_ZDQ1irqrzQiNSi36_uoXpmzFbu8A_993UdT5fPypy-qpAswi2s-Yt2GU2SxVXGYIVjJPXaxMaKXPrWuLtjJeuMgkQiiP4QTmj0JmRgmTe4fGYGPc9wE85HGsyKJk50ujv5wT-XvdpSxrPESWUo5ERL8QsyRO2k1jlW7vccJ_zOUlI-IyJm9A422A-KdTWwJg5xk8rSPXYL9Steew4idr8GQ4p30tXkB_QMgY5BfVbQl8rNkoxgU-oSOk6kUwqpiuf1x7FxRUiR-Nr4IzVp5__x2cGWKMGBUv4eRe5PoKVifTiV-HwGWR4dJhqMbRwWBCaLhPUtSaECE9VLYFYSMobWsqc5qoMdZzEuZSthplq0m2Wrbgw_wr5xWPx7LF2yR9TfwYEzqAMzKXRaF7377q_RRjKo4owZcuagsafSjCFryvF-VT_IXW1Jce8D2Jd-vGdv9budhzo1EKXTucQi_MowUfG0VZfHznq75evtlbeNQ9Hg70oHfUfwOPMVpU1Tm5DVidXVz6TYzIZtlWaQYBfL9vu_sLad5Clw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTkLwgPgUhQERAiGBLNLEie0HhAZbtdKtmgaT9uY5tlMhde1YOsH40_jruEucVgNRnvZmKY4VX-777N8BvHBWuFLGJZMmwwAFHWYm01wx5KdSGG9NYaiiuzfKdw75p6PsaA1-tXdh6FhlqxNrRe1mlnLklAnJFCdggbdlOBaxv9V_f_qNUQcpqrS27TQaFhn6i-8YvlXvBlv4r18mSX_7y8cdFjoMMIuWf868jZPCFrniskDDJcvcpcrEVvrSup7oKeOFS0wmhPLoWmAsKWRhlDCldygYNsV1r8G6wKgo7sD6h-3R_kHLzZwTFHyoWdYZH4JOqRskopZIWZZmvbbMSnf5OHkDGNlLRjBmTF4ylH-ai7_qtrU57N-GW8GPjTYbxrsDa356F27uLUBgq3sw3CU7GZVnzd0JHAZsikmFI1SLlMuIxg3u9def3kUV5eXHk4vohNWn4X9EJ4bwI8bVfTi8Eso-gM50NvUPIXJFYrh06LhxVDcYHhrusxx5KEYDHyvbhbgllLYB2Jz6a0z0ApK5pq1G2mqirZZdeL145bRB9Vg1-TlRXxNaxpT4bmzOq0oPPh_ozRw9LI42g6-c1BPUCFHEXXgVJpUz_EJrwhUI3CehcF1a7n8zl2tutEyhg_qp9FJYuvCmZZTl439u9dHqxZ7BdZQ5vTsYDR_DDXQdVXNobgM687Nz_wTds3nxNMhBBMdXLXq_ASatSCk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Local+fractional+integrals+involving+generalized+strongly+m-convex+mappings&rft.jtitle=Arabian+Journal+of+Mathematics&rft.au=Anastassiou%2C+George&rft.au=Kashuri%2C+Artion&rft.au=Liko%2C+Rozana&rft.date=2019-06-01&rft.pub=Springer&rft.issn=2193-5343&rft.volume=8&rft.issue=2&rft.spage=95&rft_id=info:doi/10.1007%2Fs40065-018-0214-8&rft.externalDBID=ISR&rft.externalDocID=A607845384
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2193-5343&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2193-5343&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2193-5343&client=summon