Spatial profiles provide sensitive MRI measures of the midbrain micro- and macrostructure

The midbrain is the rostral-most part of the brainstem. It contains numerous nuclei and white matter tracts, which are involved in motor, auditory and visual processing, and changes in their structure and function have been associated with aging, as well as neurodegenerative disorders. Current tools...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 264; p. 119660
Main Authors Berman, Shai, Drori, Elior, Mezer, Aviv A.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.12.2022
Elsevier Limited
Elsevier
Subjects
Online AccessGet full text
ISSN1053-8119
1095-9572
1095-9572
DOI10.1016/j.neuroimage.2022.119660

Cover

Abstract The midbrain is the rostral-most part of the brainstem. It contains numerous nuclei and white matter tracts, which are involved in motor, auditory and visual processing, and changes in their structure and function have been associated with aging, as well as neurodegenerative disorders. Current tools for estimating midbrain subregions and their structure with MRI require high resolution and multi-parametric quantitative MRI measures. We propose an approach that relies on morphology to calculate profiles along the midbrain and show these profiles are sensitive to the underlying macrostructure of the midbrain. First, we show that the midbrain structure can be sampled, within subject space, along three main axes of the left and right midbrain, producing profiles that are similar across subjects. We use two data sets with different field strengths, that contain R1, R2* and QSM maps and show that the profiles are highly correlated both across subjects and between datasets. Next, we compare profiles of the midbrain that sample ROIs, and show that the profiles along the first two axes sample the midbrain in a way that reliably separates the main structures, i.e., the substantia nigra, the red nucleus, and periaqueductal gray. We further show that age differences which are localized to specific nuclei, are reflected in the profiles. Finally, we generalize the same approach to calculate midbrain profiles on a third clinically relevant dataset using HCP subjects, with metrics such as the diffusion tensor and semi-quantitative data such as T1w/T2w maps. Our results suggest that midbrain profiles, both of quantitative and semi-quantitative estimates are sensitive to the underlying macrostructure of the midbrain. The midbrain profiles are calculated in native space, and rely on simple measurements. We show that it is robust and can be easily expanded to different datasets, and as such we hope that it will be of great use to the community and to the study of the midbrain in particular.
AbstractList The midbrain is the rostral-most part of the brainstem. It contains numerous nuclei and white matter tracts, which are involved in motor, auditory and visual processing, and changes in their structure and function have been associated with aging, as well as neurodegenerative disorders. Current tools for estimating midbrain subregions and their structure with MRI require high resolution and multi-parametric quantitative MRI measures. We propose an approach that relies on morphology to calculate profiles along the midbrain and show these profiles are sensitive to the underlying macrostructure of the midbrain.First, we show that the midbrain structure can be sampled, within subject space, along three main axes of the left and right midbrain, producing profiles that are similar across subjects. We use two data sets with different field strengths, that contain R1, R2* and QSM maps and show that the profiles are highly correlated both across subjects and between datasets. Next, we compare profiles of the midbrain that sample ROIs, and show that the profiles along the first two axes sample the midbrain in a way that reliably separates the main structures, i.e., the substantia nigra, the red nucleus, and periaqueductal gray. We further show that age differences which are localized to specific nuclei, are reflected in the profiles. Finally, we generalize the same approach to calculate midbrain profiles on a third clinically relevant dataset using HCP subjects, with metrics such as the diffusion tensor and semi-quantitative data such as T1w/T2w maps.Our results suggest that midbrain profiles, both of quantitative and semi-quantitative estimates are sensitive to the underlying macrostructure of the midbrain. The midbrain profiles are calculated in native space, and rely on simple measurements. We show that it is robust and can be easily expanded to different datasets, and as such we hope that it will be of great use to the community and to the study of the midbrain in particular.
The midbrain is the rostral-most part of the brainstem. It contains numerous nuclei and white matter tracts, which are involved in motor, auditory and visual processing, and changes in their structure and function have been associated with aging, as well as neurodegenerative disorders. Current tools for estimating midbrain subregions and their structure with MRI require high resolution and multi-parametric quantitative MRI measures. We propose an approach that relies on morphology to calculate profiles along the midbrain and show these profiles are sensitive to the underlying macrostructure of the midbrain. First, we show that the midbrain structure can be sampled, within subject space, along three main axes of the left and right midbrain, producing profiles that are similar across subjects. We use two data sets with different field strengths, that contain R1, R2* and QSM maps and show that the profiles are highly correlated both across subjects and between datasets. Next, we compare profiles of the midbrain that sample ROIs, and show that the profiles along the first two axes sample the midbrain in a way that reliably separates the main structures, i.e., the substantia nigra, the red nucleus, and periaqueductal gray. We further show that age differences which are localized to specific nuclei, are reflected in the profiles. Finally, we generalize the same approach to calculate midbrain profiles on a third clinically relevant dataset using HCP subjects, with metrics such as the diffusion tensor and semi-quantitative data such as T1w/T2w maps. Our results suggest that midbrain profiles, both of quantitative and semi-quantitative estimates are sensitive to the underlying macrostructure of the midbrain. The midbrain profiles are calculated in native space, and rely on simple measurements. We show that it is robust and can be easily expanded to different datasets, and as such we hope that it will be of great use to the community and to the study of the midbrain in particular.The midbrain is the rostral-most part of the brainstem. It contains numerous nuclei and white matter tracts, which are involved in motor, auditory and visual processing, and changes in their structure and function have been associated with aging, as well as neurodegenerative disorders. Current tools for estimating midbrain subregions and their structure with MRI require high resolution and multi-parametric quantitative MRI measures. We propose an approach that relies on morphology to calculate profiles along the midbrain and show these profiles are sensitive to the underlying macrostructure of the midbrain. First, we show that the midbrain structure can be sampled, within subject space, along three main axes of the left and right midbrain, producing profiles that are similar across subjects. We use two data sets with different field strengths, that contain R1, R2* and QSM maps and show that the profiles are highly correlated both across subjects and between datasets. Next, we compare profiles of the midbrain that sample ROIs, and show that the profiles along the first two axes sample the midbrain in a way that reliably separates the main structures, i.e., the substantia nigra, the red nucleus, and periaqueductal gray. We further show that age differences which are localized to specific nuclei, are reflected in the profiles. Finally, we generalize the same approach to calculate midbrain profiles on a third clinically relevant dataset using HCP subjects, with metrics such as the diffusion tensor and semi-quantitative data such as T1w/T2w maps. Our results suggest that midbrain profiles, both of quantitative and semi-quantitative estimates are sensitive to the underlying macrostructure of the midbrain. The midbrain profiles are calculated in native space, and rely on simple measurements. We show that it is robust and can be easily expanded to different datasets, and as such we hope that it will be of great use to the community and to the study of the midbrain in particular.
The midbrain is the rostral-most part of the brainstem. It contains numerous nuclei and white matter tracts, which are involved in motor, auditory and visual processing, and changes in their structure and function have been associated with aging, as well as neurodegenerative disorders. Current tools for estimating midbrain subregions and their structure with MRI require high resolution and multi-parametric quantitative MRI measures. We propose an approach that relies on morphology to calculate profiles along the midbrain and show these profiles are sensitive to the underlying macrostructure of the midbrain. First, we show that the midbrain structure can be sampled, within subject space, along three main axes of the left and right midbrain, producing profiles that are similar across subjects. We use two data sets with different field strengths, that contain R1, R2* and QSM maps and show that the profiles are highly correlated both across subjects and between datasets. Next, we compare profiles of the midbrain that sample ROIs, and show that the profiles along the first two axes sample the midbrain in a way that reliably separates the main structures, i.e., the substantia nigra, the red nucleus, and periaqueductal gray. We further show that age differences which are localized to specific nuclei, are reflected in the profiles. Finally, we generalize the same approach to calculate midbrain profiles on a third clinically relevant dataset using HCP subjects, with metrics such as the diffusion tensor and semi-quantitative data such as T1w/T2w maps. Our results suggest that midbrain profiles, both of quantitative and semi-quantitative estimates are sensitive to the underlying macrostructure of the midbrain. The midbrain profiles are calculated in native space, and rely on simple measurements. We show that it is robust and can be easily expanded to different datasets, and as such we hope that it will be of great use to the community and to the study of the midbrain in particular.
ArticleNumber 119660
Author Berman, Shai
Drori, Elior
Mezer, Aviv A.
Author_xml – sequence: 1
  givenname: Shai
  orcidid: 0000-0001-9047-9200
  surname: Berman
  fullname: Berman, Shai
  email: Sb4606@columbia.edu
  organization: The Edmond and Lily Safra Center for Brain Science, the Hebrew University of Jerusalem, Israel
– sequence: 2
  givenname: Elior
  surname: Drori
  fullname: Drori, Elior
  organization: The Edmond and Lily Safra Center for Brain Science, the Hebrew University of Jerusalem, Israel
– sequence: 3
  givenname: Aviv A.
  surname: Mezer
  fullname: Mezer, Aviv A.
  organization: The Edmond and Lily Safra Center for Brain Science, the Hebrew University of Jerusalem, Israel
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36220534$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtv1DAUhSNURB_wF1AkNmwy-JnYGwStaBmpCAm6YWXZzk3xkNiD7YzUf4_DlCLNalY-8v18dH3OeXXig4eqqjFaYYTbd5uVhzkGN-l7WBFEyApj2bboWXWGkeSN5B05WTSnjSij0-o8pQ1CSGImXlSntCWkzNhZ9eP7Vmenx3obw-BGSIvYuR7qBD657HZQf_m2rifQaY5lHIY6_4R6cr2J2vkibAxNrX1fT7rIlONsc0FfVs8HPSZ49XheVHfXn-6uPje3X2_WVx9vG8sRzw0IRDBw02KNMAfKEGbQSUQHRmUrYMA9YhKk5prithPGdJQC013HBeo6elGt97Z90Bu1jSWT-KCCdurvRYj3Ssfs7AiKkB6YMSAEt0xKLggxWJoetcQYZGjxerv3Khn8niFlNblkYRy1hzAnRTrCCMOMsoK-OUA3YY6-fLRQTJBWCLIs9_qRms0E_dN6__IvgNgDS3IpwvCEYKSWqtVG_a9aLVWrfdXl6fuDp9bl0mXwuRQzHmNwuTeA0s7OQVTJOvAWehfB5pKfO8bkw4GJHZ13Vo-_4OE4iz9Myd9v
CitedBy_id crossref_primary_10_1007_s00330_024_10886_2
Cites_doi 10.1155/2012/258524
10.1007/s00429-016-1352-4
10.7554/eLife.59430
10.2214/ajr.147.1.103
10.1016/j.neuroimage.2017.06.016
10.1016/j.neuroimage.2018.06.060
10.18632/aging.103629
10.1038/s41598-018-28852-6
10.3389/fnagi.2018.00099
10.1016/j.neuroimage.2021.118255
10.3389/fnins.2021.661504
10.1016/B978-0-12-374245-2.00010-3
10.1016/j.pneurobio.2011.09.005
10.1371/journal.pone.0049790
10.1111/j.2517-6161.1995.tb02031.x
10.1002/mrm.25210
10.1016/j.neuroimage.2012.01.021
10.1111/j.1471-4159.1958.tb12607.x
10.1016/j.neuroimage.2020.117200
10.1016/j.neubiorev.2018.12.020
10.1073/pnas.1807983116
10.1006/nimg.2002.1132
10.1016/j.neuroimage.2013.04.127
10.1152/physrev.1967.47.3.383
10.1016/j.neuron.2015.06.037
10.1007/BF02251241
10.1007/s00429-020-02153-z
10.1016/j.neuroimage.2019.116439
10.1002/mrm.21122
10.1016/S0197-4580(03)00125-8
10.3389/fninf.2011.00023
10.1038/s42254-021-00326-1
10.1016/j.neuroimage.2019.116457
10.1016/j.neuroimage.2014.02.026
10.1016/j.arr.2016.11.006
10.1016/j.neuroimage.2017.06.076
10.1038/s41467-019-11319-1
10.1016/j.neurobiolaging.2008.07.006
10.1371/journal.pone.0218089
10.1002/mrm.28377
10.1111/j.1365-2990.2012.01306.x
10.1016/j.neuroimage.2011.08.077
10.1109/TMI.2011.2182523
10.1016/j.neuroimage.2019.01.029
10.1101/2020.12.30.424856
10.1016/S0304-3940(00)01701-8
10.1002/mrm.22497
10.1016/S1361-8415(01)00036-6
10.1126/sciadv.abm1971
10.1053/j.sult.2010.03.006
10.1016/j.neuroimage.2016.06.039
10.1016/j.neurobiolaging.2012.10.025
10.1016/j.neuroimage.2019.116121
10.1002/jmri.21049
10.1523/JNEUROSCI.2180-11.2011
10.1038/nm.3390
10.1016/j.neuroimage.2014.11.017
10.1007/s00330-016-4485-1
10.1016/j.neuroimage.2015.02.065
10.1016/j.neurobiolaging.2015.08.024
10.1002/1522-2594(200101)45:1<71::AID-MRM1011>3.0.CO;2-2
10.1016/S0197-4580(01)00227-5
10.1016/j.pneurobio.2019.02.001
10.1038/nn.4393
10.1006/nimg.2000.0582
10.1073/pnas.0802127105
10.1016/j.neuroimage.2012.02.018
10.1002/mrm.1910350108
10.1038/ncomms5932
10.1016/j.neuroimage.2022.118872
10.1016/j.neuroimage.2011.01.052
10.1002/nbm.3868
10.1002/ana.410040511
10.1136/pgmj.2005.036665
ContentType Journal Article
Copyright 2022
Copyright © 2022. Published by Elsevier Inc.
Copyright Elsevier Limited Dec 1, 2022
Copyright_xml – notice: 2022
– notice: Copyright © 2022. Published by Elsevier Inc.
– notice: Copyright Elsevier Limited Dec 1, 2022
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
DOA
DOI 10.1016/j.neuroimage.2022.119660
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
DOAJ : directory of open access journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList ProQuest One Psychology
MEDLINE
MEDLINE - Academic



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ: Directory of Open Access Journal (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
ExternalDocumentID oai_doaj_org_article_22de4bbe885c4995822b19bd062bb0b3
36220534
10_1016_j_neuroimage_2022_119660
S1053811922007819
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAFWJ
AAIKJ
AAKOC
AALRI
AAOAW
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
ADVLN
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPKN
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OK1
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
Z5R
ZU3
~G-
6I.
AACTN
AADPK
AAFTH
AAIAV
AAQFI
ABLVK
ABYKQ
AFKWA
AJOXV
AMFUW
C45
HMQ
LCYCR
NCXOZ
SNS
ZA5
29N
53G
AAQXK
AAYXX
ABXDB
ACRPL
ADFGL
ADMUD
ADNMO
ADXHL
AGHFR
AGQPQ
AGRNS
AKRLJ
ALIPV
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
EJD
FEDTE
FGOYB
G-2
HDW
HEI
HMK
HMO
HVGLF
HZ~
R2-
RIG
SEW
WUQ
XPP
ZMT
0SF
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
ID FETCH-LOGICAL-c505t-e8021e5b61a015e34014e7903f43968ef1d049e9a5a31678bb733e4a77580773
IEDL.DBID AIKHN
ISSN 1053-8119
1095-9572
IngestDate Wed Aug 27 01:28:13 EDT 2025
Fri Sep 05 14:16:57 EDT 2025
Sat Sep 06 16:38:43 EDT 2025
Wed Feb 19 02:26:08 EST 2025
Thu Apr 24 22:52:50 EDT 2025
Tue Jul 01 03:02:24 EDT 2025
Fri Feb 23 02:34:59 EST 2024
Tue Aug 26 17:21:55 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2022. Published by Elsevier Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c505t-e8021e5b61a015e34014e7903f43968ef1d049e9a5a31678bb733e4a77580773
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9047-9200
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1053811922007819
PMID 36220534
PQID 2748268827
PQPubID 2031077
ParticipantIDs doaj_primary_oai_doaj_org_article_22de4bbe885c4995822b19bd062bb0b3
proquest_miscellaneous_2724241434
proquest_journals_2748268827
pubmed_primary_36220534
crossref_primary_10_1016_j_neuroimage_2022_119660
crossref_citationtrail_10_1016_j_neuroimage_2022_119660
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2022_119660
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2022_119660
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-12-01
2022-12-00
20221201
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2022
Publisher Elsevier Inc
Elsevier Limited
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
– name: Elsevier
References Basbaum, Fields (bib0006) 1978; 4
Ngeles Fernández-Gil, Palacios-Bote, Leo-Barahona, Mora-Encinas (bib0056) 2010; 31
Massion, J. (1967). The mammalian red nucleus, 47(3), 383–436. 10.1152/PHYSREV.1967.47.3.383
Visser, Keuken, Forstmann, Jenkinson (bib0080) 2016; 139
Jack, Bernstein, Fox, Thompson, Alexander, Harvey, Borowski, Britson, Whitwell, Ward, Dale, Felmlee, Gunter, Hill, Killiany, Schuff, Fox-Bosetti, Lin, Studholme, Weiner (bib0036) 2008; 27
2022.05.02.490254. 10.1101/2022.05.02.490254
Bilgic, Pfefferbaum, Rohlfing, Sullivan, Adalsteinsson (bib0012) 2012; 59
Weiskopf, Edwards, Helms, Mohammadi, Kirilina (bib0082) 2021; 3
Filo, S., Shaharabani, R., Hanin, D.B., Adam, M., Ben-David, E., Schoffman, H., Margalit, N., Habib, N., Shahar, T., & Mezer, A. (2022). Uncovering molecular iron compounds in the living human brain.
Glasser, Sotiropoulos, Wilson, Coalson, Fischl, Andersson, Xu, Jbabdi, Webster, Polimeni, van Essen, Jenkinson (bib0029) 2013; 80
Gracien, Nürnberger, Hok, Hof, Reitz, Rüb, Steinmetz, Hilker-Roggendorf, Klein, Deichmann, Baudrexel (bib0030) 2017; 27
Jenkinson, Smith (bib0038) 2001; 5
Gelman, N., Ewing, J.R., Gorell, J.M., Spickler, E.M., & Solomon, E.G. (2001).
Mezer, Yeatman, Stikov, Kay, Cho, Dougherty, Perry, Parvizi, Hua, Butts-Pauly, Wandell (bib0053) 2013
Berman, West, Does, Yeatman, Mezer (bib0011) 2018; 182
Hallgren, Sourander (bib0032) 1958; 3
Bazin, Alkemade, Mulder, Henry, Forstmann (bib0007) 2020; 9
Yendiki, Panneck, Srinivasan, Stevens, Zöllei, Augustinack, Wang, Salat, Ehrlich, Behrens, Jbabdi, Gollub, Fischl (bib0086) 2011; 5
Tabelow, Balteau, Ashburner, Callaghan, Draganski, Helms, Kherif, Leutritz, Lutti, Phillips, Reimer, Ruthotto, Seif, Weiskopf, Ziegler, Mohammadi (bib0075) 2019; 194
Yeatman, Wandell, Mezer (bib0085) 2014; 5
Iglesias, van Leemput, Bhatt, Casillas, Dutt, Schuff, Truran-Sacrey, Boxer, Fischl (bib0034) 2015; 113
Garzón, Sitnikov, Bäckman, Kalpouzos (bib0026) 2018; 170
Schneider, Ma, Wagner, Behl, Nagel, Ladd, Heiland, Bendszus, Straub (bib0065) 2021; 15
Ashburner, Friston (bib0003) 2000; 11
Barral, Gudmundson, Stikov, Etezadi-Amoli, Stoica, Nishimura (bib0005) 2010; 64
Yeatman, Dougherty, Myall, Wandell, Feldman (bib0084) 2012; 7
Faull, Subramanian, Ezra, Pattinson (bib0021) 2019; 98
Uddin, Figley, Solar, Shatil, Figley (bib0078) 2019; 9
Glasser, Essen (bib0028) 2011; 31
Oliver, Huerta (bib0058) 1992
Rabey, Hefti (bib0061) 1990; 2
Benjamini, Hochberg (bib0008) 1995; 57
Lewis, Du, Kidacki, Patel, Shaffer, Mailman, Huang (bib0046) 2013; 34
Jenkinson, Bannister, Brady, Smith (bib0037) 2002; 17
Vymazal, Brooks, Baumgarner, Tran, Katz, Bulte, Bauminger, di Chiro (bib0081) 1996; 35
222(6), 2487. 10.1007/S00429-016-1352-4
Tabelow, Balteau, Ashburner, Callaghan, Draganski, Helms, Kherif, Leutritz, Lutti, Phillips, Reimer, Ruthotto, Seif, Weiskopf, Ziegler, Mohammadi (bib0076) 2019; 194
Dreher, Meyer-Lindenberg, Kohn, Berman (bib0019) 2008; 105
Marek, Jennings, Lasch, Siderowf, Tanner, Simuni, Coffey, Kieburtz, Flagg, Chowdhury, Poewe, Mollenhauer, Sherer, Frasier, Meunier, Rudolph, Casaceli, Seibyl, Mendick, Taylor (bib0050) 2011; 95
10.1002/1522-2594(200101)45:1
Cook, Bai, Nedjati-Gilani, Seunarine, Hall, Parker, Alexander (bib0016) 2005; 52
Karsa, Punwani, Shmueli (bib0041) 2020; 84
Miller, Alfaro-Almagro, Bangerter, Thomas, Yacoub, Xu, Bartsch, Jbabdi, Sotiropoulos, Andersson, Griffanti, Douaud, Okell, Weale, Dragonu, Garratt, Hudson, Collins, Jenkinson, Smith (bib0055) 2016; 19
Priovoulos, van Boxel, Jacobs, Poser, Kamil, Verhey, Ivanov (bib0060) 2020; 225
Alkemade, Mulder, Groot, Isaacs, van Berendonk, Lute, Isherwood, Bazin, Forstmann (bib0002) 2020; 221
Schurr, Duan, Norcia, Ogawa, Yeatman, Mezer (bib0066) 2018; 181
Seiler, Schöngrundner, Stock, Nöth, Hattingen, Steinmetz, Klein, Baudrexel, Wagner, Deichmann, Gracien (bib0069) 2020; 12
Draganski, Ashburner, Hutton, Kherif, Frackowiak, Helms, Weiskopf (bib0017) 2011; 55
Cassidy, Zucca, Girgis, Baker, Weinstein, Sharp, Bellei, Valmadre, Vanegas, Kegeles, Brucato, Kang, Sulzer, Zecca, Abi-Dargham, Horga (bib0015) 2019; 116
Rohrer, Bauer, Mintorovitch, Requardt, Weinmann (bib0062) 2005
207–221. 10.1016/B978-0-12-374245-2.00010-3
Liu, Xu, Spincemaille, Avestimehr, Wang (bib0049) 2012; 31
Silva, McNaughton (bib0071) 2019; 177
Abbas, Gras, Möllenhoff, Oros-Peusquens, Shah (bib0001) 2015; 106
Miletić, S., Bazin, P.L., Isherwood, S.J.S., Keuken, M.C., Alkemade, A., & Forstmann, B.U. (2022). Charting human subcortical maturation across the adult lifespan with in vivo 7 T MRI. Neuroimage, 249, 118872. 10.1016/J.NEUROIMAGE.2022.118872
Shams, Norris, Marques (bib0070) 2019; 14
Peters (bib0059) 2006; 82
Kanaan, Kordower, Collier (bib0040) 2010; 31
Lambert, Chowdhury, Fitzgerald, Fleming, Lutti, Hutton, Draganski, Frackowiak, Ashburner (bib0044) 2013; 462
Uddin, Figley, Marrie, Figley (bib0077) 2018; 31
Rooney, Johnson, Li, Cohen, Kim, Ugurbil, Springer (bib0063) 2007; 57
Sohmiya, Tanaka, Aihara, Hirai, Okamoto (bib0072) 2001; 22
French, Muthusamy (bib0025) 2018
Isaias, Trujillo, Summers, Marotta, Mainardi, Pezzoli, Zecca, Costa (bib0035) 2016; 8
Hutchinson, Raff (bib0033) 2000; 21
Wengler, He, Abi-Dargham, Horga (bib0083) 2020; 208
2020.12.30.424856. 10.1101/2020.12.30.424856
Li, Sethi, Zhang, Miao, Yerramsetty, Palutla, Gharabaghi, Wang, He, Cheng, Yan, Haacke (bib0047) 2020; 14
Hagiwara, Hori, Kamagata, Warntjes, Matsuyoshi, Nakazawa, Ueda, Andica, Koshino, Maekawa, Irie, Takamura, Kumamaru, Abe, Aoki (bib0031) 2018; 8
Ruchalski, Hathout (bib0064) 2012; 2012
Liu, Yang, Xia, Zhu, Leak, Wei, Wang, Hu (bib0048) 2017; 34
Benson, Winawer (bib0009) 2018
Fischl (bib0024) 2012; 62
Avants, Tustison, Song (bib0004) 2009
Schurr, Zelman, Mezer (bib0068) 2020; 208
Keuken, M.C., Bazin, P.-L., Backhouse, K., Beekhuizen, S., Himmer, L., Kandola, A., Lafeber, J.J., Prochazkova, L., Trutti, A., Schäfer, A., Turner, R., & Forstmann, B.U. (2017). Effects of aging on [... formula ...], [... formula ...], and QSM MRI values in the subcortex.
Sohmiya, Tanaka, Aihara, Okamoto (bib0073) 2004; 25
van Essen, Ugurbil, Auerbach, Barch, Behrens, Bucholz, Chang, Chen, Corbetta, Curtiss, della Penna, Feinberg, Glasser, Harel, Heath, Larson-Prior, Marcus, Michalareas, Moeller, Yacoub (bib0079) 2012; 62
Drayer, Burgers, Darwin, Herfkens, Johnson (bib0018) 1986; 147
Jyothi, Vidyadhara, Mahadevan, Philip, Parmar, Manohari, Shankar, Raju, Alladi (bib0039) 2015; 36
Norden, Godbout (bib0057) 2013; 39
Schurr, Filo, Mezer (bib0067) 2019; 202
Benson, N.C., Yoon, J.M.D., Forenzo, D., Engel, S.A., Kay, K.N., & Winawer, J. (2022). Variability of the surface area of the V1, V2, and V3 maps in a large sample of human observers.
Drori, Berman, Mezer (bib0020) 2022; 8
Laumann, Gordon, Adeyemo, Snyder, Joo, Chen, Gilmore, McDermott, Nelson, Dosenbach, Schlaggar, Mumford, Poldrack, Petersen (bib0045) 2015; 87
McNaught, Jenner (bib0052) 2001; 297
Filo, Shtangel, Salamon, Kol, Weisinger, Shifman, Mezer (bib0023) 2019; 10
Stüber, Morawski, Schäfer, Labadie, Wähnert, Leuze, Streicher, Barapatre, Reimann, Geyer, Spemann, Turner (bib0074) 2014; 93
Brammerloh, Morawski, Friedrich, Reinert, Lange, Pelicon, Vavpetič, Jankuhn, Jäger, Alkemade, Balesar, Pine, Gavriilidis, Trampel, Reimer, Arendt, Weiskopf, Kirilina (bib0013) 2021; 239
Keay, K.A., & Bandler, R. (2015). Periaqueductal Gray.
Callaghan, Helms, Lutti, Mohammadi, Weiskopf (bib0014) 2015; 73
Rabey (10.1016/j.neuroimage.2022.119660_bib0061) 1990; 2
Oliver (10.1016/j.neuroimage.2022.119660_bib0058) 1992
Basbaum (10.1016/j.neuroimage.2022.119660_bib0006) 1978; 4
Callaghan (10.1016/j.neuroimage.2022.119660_bib0014) 2015; 73
Garzón (10.1016/j.neuroimage.2022.119660_bib0026) 2018; 170
Dreher (10.1016/j.neuroimage.2022.119660_bib0019) 2008; 105
Jack (10.1016/j.neuroimage.2022.119660_bib0036) 2008; 27
Visser (10.1016/j.neuroimage.2022.119660_bib0080) 2016; 139
Marek (10.1016/j.neuroimage.2022.119660_bib0050) 2011; 95
Schurr (10.1016/j.neuroimage.2022.119660_bib0068) 2020; 208
Jenkinson (10.1016/j.neuroimage.2022.119660_bib0037) 2002; 17
10.1016/j.neuroimage.2022.119660_bib0022
Glasser (10.1016/j.neuroimage.2022.119660_bib0028) 2011; 31
Vymazal (10.1016/j.neuroimage.2022.119660_bib0081) 1996; 35
Filo (10.1016/j.neuroimage.2022.119660_bib0023) 2019; 10
10.1016/j.neuroimage.2022.119660_bib0027
Liu (10.1016/j.neuroimage.2022.119660_bib0048) 2017; 34
Faull (10.1016/j.neuroimage.2022.119660_bib0021) 2019; 98
Uddin (10.1016/j.neuroimage.2022.119660_bib0077) 2018; 31
Karsa (10.1016/j.neuroimage.2022.119660_bib0041) 2020; 84
Iglesias (10.1016/j.neuroimage.2022.119660_bib0034) 2015; 113
Gracien (10.1016/j.neuroimage.2022.119660_bib0030) 2017; 27
Yeatman (10.1016/j.neuroimage.2022.119660_bib0085) 2014; 5
Jenkinson (10.1016/j.neuroimage.2022.119660_bib0038) 2001; 5
Benjamini (10.1016/j.neuroimage.2022.119660_bib0008) 1995; 57
Bilgic (10.1016/j.neuroimage.2022.119660_bib0012) 2012; 59
Barral (10.1016/j.neuroimage.2022.119660_bib0005) 2010; 64
Alkemade (10.1016/j.neuroimage.2022.119660_bib0002) 2020; 221
Hutchinson (10.1016/j.neuroimage.2022.119660_bib0033) 2000; 21
Shams (10.1016/j.neuroimage.2022.119660_bib0070) 2019; 14
Ngeles Fernández-Gil (10.1016/j.neuroimage.2022.119660_bib0056) 2010; 31
10.1016/j.neuroimage.2022.119660_bib0051
Drori (10.1016/j.neuroimage.2022.119660_bib0020) 2022; 8
Glasser (10.1016/j.neuroimage.2022.119660_bib0029) 2013; 80
10.1016/j.neuroimage.2022.119660_bib0010
10.1016/j.neuroimage.2022.119660_bib0054
Drayer (10.1016/j.neuroimage.2022.119660_bib0018) 1986; 147
Miller (10.1016/j.neuroimage.2022.119660_bib0055) 2016; 19
Sohmiya (10.1016/j.neuroimage.2022.119660_bib0073) 2004; 25
Silva (10.1016/j.neuroimage.2022.119660_bib0071) 2019; 177
Isaias (10.1016/j.neuroimage.2022.119660_bib0035) 2016; 8
Ashburner (10.1016/j.neuroimage.2022.119660_bib0003) 2000; 11
Abbas (10.1016/j.neuroimage.2022.119660_bib0001) 2015; 106
Brammerloh (10.1016/j.neuroimage.2022.119660_bib0013) 2021; 239
Draganski (10.1016/j.neuroimage.2022.119660_bib0017) 2011; 55
Hagiwara (10.1016/j.neuroimage.2022.119660_bib0031) 2018; 8
Schurr (10.1016/j.neuroimage.2022.119660_bib0066) 2018; 181
Liu (10.1016/j.neuroimage.2022.119660_bib0049) 2012; 31
Tabelow (10.1016/j.neuroimage.2022.119660_bib0076) 2019; 194
10.1016/j.neuroimage.2022.119660_bib0042
Lewis (10.1016/j.neuroimage.2022.119660_bib0046) 2013; 34
Priovoulos (10.1016/j.neuroimage.2022.119660_bib0060) 2020; 225
Weiskopf (10.1016/j.neuroimage.2022.119660_bib0082) 2021; 3
Avants (10.1016/j.neuroimage.2022.119660_bib0004) 2009
Schneider (10.1016/j.neuroimage.2022.119660_bib0065) 2021; 15
Benson (10.1016/j.neuroimage.2022.119660_bib0009) 2018
10.1016/j.neuroimage.2022.119660_bib0043
French (10.1016/j.neuroimage.2022.119660_bib0025) 2018
Cassidy (10.1016/j.neuroimage.2022.119660_bib0015) 2019; 116
van Essen (10.1016/j.neuroimage.2022.119660_bib0079) 2012; 62
Li (10.1016/j.neuroimage.2022.119660_bib0047) 2020; 14
Stüber (10.1016/j.neuroimage.2022.119660_bib0074) 2014; 93
Sohmiya (10.1016/j.neuroimage.2022.119660_bib0072) 2001; 22
Rohrer (10.1016/j.neuroimage.2022.119660_bib0062) 2005
Laumann (10.1016/j.neuroimage.2022.119660_bib0045) 2015; 87
Wengler (10.1016/j.neuroimage.2022.119660_bib0083) 2020; 208
Cook (10.1016/j.neuroimage.2022.119660_bib0016) 2005; 52
Peters (10.1016/j.neuroimage.2022.119660_bib0059) 2006; 82
Ruchalski (10.1016/j.neuroimage.2022.119660_bib0064) 2012; 2012
Uddin (10.1016/j.neuroimage.2022.119660_bib0078) 2019; 9
Jyothi (10.1016/j.neuroimage.2022.119660_bib0039) 2015; 36
Seiler (10.1016/j.neuroimage.2022.119660_bib0069) 2020; 12
Norden (10.1016/j.neuroimage.2022.119660_bib0057) 2013; 39
Berman (10.1016/j.neuroimage.2022.119660_bib0011) 2018; 182
Fischl (10.1016/j.neuroimage.2022.119660_bib0024) 2012; 62
Bazin (10.1016/j.neuroimage.2022.119660_bib0007) 2020; 9
Hallgren (10.1016/j.neuroimage.2022.119660_bib0032) 1958; 3
Kanaan (10.1016/j.neuroimage.2022.119660_bib0040) 2010; 31
Lambert (10.1016/j.neuroimage.2022.119660_bib0044) 2013; 462
McNaught (10.1016/j.neuroimage.2022.119660_bib0052) 2001; 297
Rooney (10.1016/j.neuroimage.2022.119660_bib0063) 2007; 57
Schurr (10.1016/j.neuroimage.2022.119660_bib0067) 2019; 202
Yendiki (10.1016/j.neuroimage.2022.119660_bib0086) 2011; 5
Tabelow (10.1016/j.neuroimage.2022.119660_bib0075) 2019; 194
Yeatman (10.1016/j.neuroimage.2022.119660_bib0084) 2012; 7
Mezer (10.1016/j.neuroimage.2022.119660_bib0053) 2013
References_xml – volume: 3
  start-page: 570
  year: 2021
  end-page: 588
  ident: bib0082
  article-title: Quantitative magnetic resonance imaging of brain anatomy and in vivo histology
  publication-title: Nat. Rev. Phys.
– reference: , 2022.05.02.490254. 10.1101/2022.05.02.490254
– volume: 194
  start-page: 191
  year: 2019
  end-page: 210
  ident: bib0076
  article-title: hMRI – a toolbox for quantitative MRI in neuroscience and clinical research
  publication-title: Neuroimage
– volume: 5
  start-page: 1
  year: 2014
  end-page: 12
  ident: bib0085
  article-title: Lifespan maturation and degeneration of human brain white matter
  publication-title: Nat. Commun.
– reference: Keuken, M.C., Bazin, P.-L., Backhouse, K., Beekhuizen, S., Himmer, L., Kandola, A., Lafeber, J.J., Prochazkova, L., Trutti, A., Schäfer, A., Turner, R., & Forstmann, B.U. (2017). Effects of aging on [... formula ...], [... formula ...], and QSM MRI values in the subcortex.
– volume: 462
  year: 2013
  ident: bib0044
  article-title: Characterizing aging in the human brainstem using quantitative multimodal MRI analysis
  publication-title: Front. Hum. Neurosci
– volume: 31
  start-page: 11597
  year: 2011
  end-page: 11616
  ident: bib0028
  article-title: Mapping human cortical areas in vivo based on myelin content as revealed by T1- and T2-weighted MRI
  publication-title: J. Neurosci.
– volume: 82
  start-page: 84
  year: 2006
  end-page: 88
  ident: bib0059
  article-title: Ageing and the brain
  publication-title: Postgrad. Med. J.
– volume: 9
  start-page: 1
  year: 2020
  end-page: 23
  ident: bib0007
  article-title: Multi-contrast anatomical subcortical structures parcellation
  publication-title: Elife
– volume: 27
  start-page: 1568
  year: 2017
  end-page: 1576
  ident: bib0030
  article-title: Evaluation of brain ageing: a quantitative longitudinal MRI study over 7 years
  publication-title: Eur. Radiol.
– volume: 98
  start-page: 135
  year: 2019
  end-page: 144
  ident: bib0021
  article-title: The midbrain periaqueductal gray as an integrative and interoceptive neural structure for breathing
  publication-title: Neurosci. Biobehav. Rev.
– volume: 4
  start-page: 451
  year: 1978
  end-page: 462
  ident: bib0006
  article-title: Endogenous pain control mechanisms: review and hypothesis
  publication-title: Ann. Neurol.
– reference: , 2020.12.30.424856. 10.1101/2020.12.30.424856
– volume: 31
  start-page: e3868
  year: 2018
  ident: bib0077
  article-title: Can T1w/T2w ratio be used as a myelin-specific measure in subcortical structures? Comparisons between FSE-based T1w/T2w ratios, GRASE-based T1w/T2w ratios and multi-echo GRASE-based myelin water fractions
  publication-title: NMR Biomed.
– start-page: 1
  year: 2009
  end-page: 35
  ident: bib0004
  article-title: Advanced normalization tools (ANTS)
  publication-title: Insight J.
– volume: 31
  start-page: 816
  year: 2012
  ident: bib0049
  article-title: Accuracy of the morphology enabled dipole inversion (MEDI) algorithm for quantitative susceptibility mapping in MRI
  publication-title: IEEE Trans. Med. Imaging
– volume: 202
  year: 2019
  ident: bib0067
  article-title: Tractography delineation of the vertical occipital fasciculus using quantitative T1 mapping
  publication-title: Neuroimage
– volume: 208
  year: 2020
  ident: bib0068
  article-title: Subdividing the superior longitudinal fasciculus using local quantitative MRI
  publication-title: Neuroimage
– start-page: 168
  year: 1992
  end-page: 221
  ident: bib0058
  article-title: Inferior and Superior Colliculi
– volume: 95
  start-page: 629
  year: 2011
  end-page: 635
  ident: bib0050
  article-title: The Parkinson Progression Marker Initiative (PPMI)
  publication-title: Prog. Neurobiol.
– start-page: 7
  year: 2018
  ident: bib0009
  article-title: Bayesian analysis of retinotopic maps
  publication-title: Elife
– volume: 21
  year: 2000
  ident: bib0033
  article-title: Structural changes of the substantia nigra in parkinson's disease as revealed by MR imaging
  publication-title: Am. J. Neuroradiol.
– volume: 84
  start-page: 3206
  year: 2020
  end-page: 3222
  ident: bib0041
  article-title: An optimized and highly repeatable MRI acquisition and processing pipeline for quantitative susceptibility mapping in the head-and-neck region
  publication-title: Magn. Reson. Med.
– volume: 35
  start-page: 56
  year: 1996
  end-page: 61
  ident: bib0081
  article-title: The relation between brain iron and NMR relaxation times: An in vitro study
  publication-title: Magn. Reson. Med.
– volume: 57
  start-page: 308
  year: 2007
  end-page: 318
  ident: bib0063
  article-title: Magnetic field and tissue dependencies of human brain longitudinal 1H2O relaxation in vivo
  publication-title: Magn. Reson. Med.
– reference: Gelman, N., Ewing, J.R., Gorell, J.M., Spickler, E.M., & Solomon, E.G. (2001).
– volume: 22
  start-page: 595
  year: 2001
  end-page: 601
  ident: bib0072
  article-title: Age-related structural changes in the human midbrain: an MR image study
  publication-title: Neurobiol. Aging
– volume: 11
  start-page: 805
  year: 2000
  end-page: 821
  ident: bib0003
  article-title: Voxel-Based Morphometry – the methods
  publication-title: Neuroimage
– volume: 87
  start-page: 657
  year: 2015
  ident: bib0045
  article-title: Functional system and areal organization of a highly sampled individual human brain
  publication-title: Neuron
– volume: 7
  start-page: e49790
  year: 2012
  ident: bib0084
  article-title: Tract profiles of white matter properties: automating fiber-tract quantification
  publication-title: PLoS One
– volume: 113
  start-page: 184
  year: 2015
  end-page: 195
  ident: bib0034
  article-title: Bayesian segmentation of brainstem structures in MRI
  publication-title: Neuroimage
– volume: 5
  start-page: 23
  year: 2011
  ident: bib0086
  article-title: Automated probabilistic reconstruction of white-matter pathways in health and disease using an atlas of the underlying anatomy
  publication-title: Front. Neuroinform.
– volume: 19
  start-page: 1523
  year: 2016
  end-page: 1536
  ident: bib0055
  article-title: Multimodal population brain imaging in the UK Biobank prospective epidemiological study
  publication-title: Nat. Neurosci.
– start-page: 40
  year: 2005
  ident: bib0062
  article-title: Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths
  publication-title: Invest. Radiol.
– volume: 8
  start-page: eabm1971
  year: 2022
  ident: bib0020
  article-title: Mapping microstructural gradients of the human striatum in normal aging and Parkinson's disease
  publication-title: Sci. Adv.
– volume: 62
  start-page: 774
  year: 2012
  end-page: 781
  ident: bib0024
  article-title: FreeSurfer
  publication-title: Neuroimage
– volume: 25
  start-page: 449
  year: 2004
  end-page: 453
  ident: bib0073
  article-title: Structural changes in the midbrain with aging and Parkinson's disease: an MRI study
  publication-title: Neurobiol. Aging
– reference: . 10.1002/1522-2594(200101)45:1
– volume: 34
  start-page: 64
  year: 2017
  end-page: 76
  ident: bib0048
  article-title: Aging of cerebral white matter
  publication-title: Ageing Res. Rev.
– reference: Filo, S., Shaharabani, R., Hanin, D.B., Adam, M., Ben-David, E., Schoffman, H., Margalit, N., Habib, N., Shahar, T., & Mezer, A. (2022). Uncovering molecular iron compounds in the living human brain.
– volume: 14
  year: 2020
  ident: bib0047
  article-title: Iron content in deep gray matter as a function of age using quantitative susceptibility mapping: a multicenter study
  publication-title: Front. Neurosci.
– volume: 36
  start-page: 3321
  year: 2015
  end-page: 3333
  ident: bib0039
  article-title: Aging causes morphological alterations in astrocytes and microglia in human substantia nigra pars compacta
  publication-title: Neurobiol. Aging
– volume: 139
  start-page: 324
  year: 2016
  end-page: 336
  ident: bib0080
  article-title: Automated segmentation of the substantia nigra, subthalamic nucleus and red nucleus in 7 T data at young and old age
  publication-title: Neuroimage
– reference: Miletić, S., Bazin, P.L., Isherwood, S.J.S., Keuken, M.C., Alkemade, A., & Forstmann, B.U. (2022). Charting human subcortical maturation across the adult lifespan with in vivo 7 T MRI. Neuroimage, 249, 118872. 10.1016/J.NEUROIMAGE.2022.118872
– volume: 181
  start-page: 645
  year: 2018
  end-page: 658
  ident: bib0066
  article-title: Tractography optimization using quantitative T1 mapping in the human optic radiation
  publication-title: Neuroimage
– volume: 225
  start-page: 2757
  year: 2020
  end-page: 2774
  ident: bib0060
  article-title: Unraveling the contributions to the neuromelanin-MRI contrast
  publication-title: Brain Struct. Funct.
– volume: 2
  start-page: 1
  year: 1990
  end-page: 14
  ident: bib0061
  article-title: Neuromelanin synthesis in rat and human substantia nigra
  publication-title: J. Neural Transm. Park. Dis. Dement. Sect.
– volume: 17
  start-page: 825
  year: 2002
  end-page: 841
  ident: bib0037
  article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images
  publication-title: Neuroimage
– volume: 12
  start-page: 16195
  year: 2020
  ident: bib0069
  article-title: Cortical aging – new insights with multiparametric quantitative MRI
  publication-title: Aging (Albany NY)
– volume: 55
  start-page: 1423
  year: 2011
  end-page: 1434
  ident: bib0017
  article-title: Regional specificity of MRI contrast parameter changes in normal ageing revealed by voxel-based quantification (VBQ)
  publication-title: Neuroimage
– volume: 105
  start-page: 15106
  year: 2008
  end-page: 15111
  ident: bib0019
  article-title: Age-related changes in midbrain dopaminergic regulation of the human reward system
  publication-title: Proc. Natl. Acad. Sci.
– volume: 2012
  start-page: 1
  year: 2012
  end-page: 11
  ident: bib0064
  article-title: A medley of midbrain maladies: a brief review of midbrain anatomy and syndromology for radiologists
  publication-title: Radiol. Res. Pract.
– volume: 106
  start-page: 404
  year: 2015
  end-page: 413
  ident: bib0001
  article-title: Quantitative water content mapping at clinically relevant field strengths: a comparative study at 1.5 T and 3 T
  publication-title: Neuroimage
– volume: 31
  start-page: 937
  year: 2010
  end-page: 952
  ident: bib0040
  article-title: Age-related changes in glial cells of dopamine midbrain subregions in rhesus monkeys
  publication-title: Neurobiol. Aging
– volume: 8
  start-page: 196
  year: 2016
  ident: bib0035
  article-title: Neuromelanin imaging and dopaminergic loss in parkinson's disease
  publication-title: Front. Aging Neurosci.
– volume: 221
  year: 2020
  ident: bib0002
  article-title: The Amsterdam Ultra-high field adult lifespan database (AHEAD): a freely available multimodal 7 Tesla submillimeter magnetic resonance imaging database
  publication-title: Neuroimage
– volume: 116
  start-page: 5108
  year: 2019
  end-page: 5117
  ident: bib0015
  article-title: Neuromelanin-sensitive MRI as a noninvasive proxy measure of dopamine function in the human brain
  publication-title: Proc. Natl. Acad. Sci.
– reference: Massion, J. (1967). The mammalian red nucleus, 47(3), 383–436. 10.1152/PHYSREV.1967.47.3.383
– year: 2013
  ident: bib0053
  article-title: Quantifying the local tissue volume and composition in individual brains with magnetic resonance imaging
  publication-title: Nat. Med.
– volume: 39
  start-page: 19
  year: 2013
  end-page: 34
  ident: bib0057
  article-title: Review: Microglia of the aged brain: primed to be activated and resistant to regulation
  publication-title: Neuropathol. Appl. Neurobiol.
– volume: 297
  start-page: 191
  year: 2001
  end-page: 194
  ident: bib0052
  article-title: Proteasomal function is impaired in substantia nigra in Parkinson's disease
  publication-title: Neurosci. Lett.
– reference: , 207–221. 10.1016/B978-0-12-374245-2.00010-3
– volume: 15
  start-page: 694
  year: 2021
  ident: bib0065
  article-title: Multiparametric MRI for characterization of the basal ganglia and the midbrain
  publication-title: Front. Neurosci.
– volume: 14
  year: 2019
  ident: bib0070
  article-title: A comparison of in vivo MRI based cortical myelin mapping using T1w/T2w and R1 mapping at 3T
  publication-title: PLoS One
– volume: 9
  year: 2019
  ident: bib0078
  article-title: Comparisons between multi-component myelin water fraction, T1w/T2w ratio, and diffusion tensor imaging measures in healthy human brain structures
  publication-title: Sci. Rep.
– reference: Benson, N.C., Yoon, J.M.D., Forenzo, D., Engel, S.A., Kay, K.N., & Winawer, J. (2022). Variability of the surface area of the V1, V2, and V3 maps in a large sample of human observers.
– volume: 31
  start-page: 196
  year: 2010
  end-page: 219
  ident: bib0056
  article-title: Anatomy of the brainstem: a gaze into the stem of life
  publication-title: Semin. Ultrasound, CT and MRI
– volume: 208
  year: 2020
  ident: bib0083
  article-title: Reproducibility assessment of neuromelanin-sensitive magnetic resonance imaging protocols for region-of-interest and voxelwise analyses
  publication-title: Neuroimage
– volume: 59
  start-page: 2625
  year: 2012
  end-page: 2635
  ident: bib0012
  article-title: MRI estimates of brain iron concentration in normal aging using quantitative susceptibility mapping
  publication-title: Neuroimage
– volume: 170
  start-page: 199
  year: 2018
  end-page: 209
  ident: bib0026
  article-title: Automated segmentation of midbrain structures with high iron content
  publication-title: Neuroimage
– volume: 52
  start-page: 164
  year: 2005
  ident: bib0016
  article-title: Camino: open-source diffusion-MRI reconstruction and processing
  publication-title: Inverse Prob.
– reference: , 222(6), 2487. 10.1007/S00429-016-1352-4
– volume: 34
  start-page: 1497
  year: 2013
  end-page: 1503
  ident: bib0046
  article-title: Higher iron in the red nucleus marks Parkinson's dyskinesia
  publication-title: Neurobiol. Aging
– volume: 147
  start-page: 103
  year: 1986
  end-page: 110
  ident: bib0018
  article-title: MRI of brain iron Stephen riederer1
  publication-title: AJR Am. J. Roentgenol.
– volume: 73
  start-page: 1309
  year: 2015
  end-page: 1314
  ident: bib0014
  article-title: A general linear relaxometry model of R1 using imaging data
  publication-title: Magn. Reson. Med.
– volume: 8
  start-page: 1
  year: 2018
  end-page: 12
  ident: bib0031
  article-title: Myelin measurement: comparison between simultaneous tissue relaxometry, magnetization transfer saturation index, and T1w/T2w ratio methods
  publication-title: Sci. Rep.
– volume: 5
  start-page: 143
  year: 2001
  end-page: 156
  ident: bib0038
  article-title: A global optimisation method for robust affine registration of brain images
  publication-title: Med. Image Anal.
– volume: 239
  year: 2021
  ident: bib0013
  article-title: Measuring the iron content of dopaminergic neurons in substantia nigra with MRI relaxometry
  publication-title: Neuroimage
– volume: 62
  start-page: 2222
  year: 2012
  end-page: 2231
  ident: bib0079
  article-title: The Human Connectome Project: A data acquisition perspective
  publication-title: Neuroimage
– volume: 10
  start-page: 1
  year: 2019
  end-page: 16
  ident: bib0023
  article-title: Disentangling molecular alterations from water-content changes in the aging human brain using quantitative MRI
  publication-title: Nat. Commun.
– volume: 3
  start-page: 41
  year: 1958
  end-page: 51
  ident: bib0032
  article-title: The effect of age on the non-haemin iron in the human brain
  publication-title: J. Neurochem.
– volume: 177
  start-page: 33
  year: 2019
  end-page: 72
  ident: bib0071
  article-title: Are periaqueductal gray and dorsal raphe the foundation of appetitive and aversive control? A comprehensive review
  publication-title: Prog. Neurobiol.
– reference: Keay, K.A., & Bandler, R. (2015). Periaqueductal Gray.
– start-page: 99
  year: 2018
  ident: bib0025
  article-title: A review of the pedunculopontine nucleus in parkinson's disease
  publication-title: Front. Aging Neurosci.
– volume: 80
  start-page: 105
  year: 2013
  end-page: 124
  ident: bib0029
  article-title: The minimal preprocessing pipelines for the human connectome project
  publication-title: Neuroimage
– volume: 27
  start-page: 685
  year: 2008
  end-page: 691
  ident: bib0036
  article-title: The Alzheimer's disease neuroimaging initiative (ADNI): MRI methods
  publication-title: J. Magn. Reson. Imaging
– volume: 93
  start-page: 95
  year: 2014
  end-page: 106
  ident: bib0074
  article-title: Myelin and iron concentration in the human brain: a quantitative study of MRI contrast
  publication-title: Neuroimage
– volume: 64
  start-page: 1057
  year: 2010
  end-page: 1067
  ident: bib0005
  article-title: A robust methodology for
  publication-title: Magn. Reson. Med.
– volume: 194
  start-page: 191
  year: 2019
  end-page: 210
  ident: bib0075
  article-title: hMRI – a toolbox for quantitative MRI in neuroscience and clinical research
  publication-title: Neuroimage
– volume: 182
  start-page: 304
  year: 2018
  end-page: 313
  ident: bib0011
  article-title: Evaluating g-ratio weighted changes in the corpus callosum as a function of age and sex
  publication-title: Neuroimage
– volume: 57
  start-page: 289
  year: 1995
  end-page: 300
  ident: bib0008
  article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing
  publication-title: J. R. Stat. Soc. Ser. B (Methodological)
– volume: 2012
  start-page: 1
  year: 2012
  ident: 10.1016/j.neuroimage.2022.119660_bib0064
  article-title: A medley of midbrain maladies: a brief review of midbrain anatomy and syndromology for radiologists
  publication-title: Radiol. Res. Pract.
  doi: 10.1155/2012/258524
– ident: 10.1016/j.neuroimage.2022.119660_bib0043
  doi: 10.1007/s00429-016-1352-4
– volume: 9
  start-page: 1
  year: 2020
  ident: 10.1016/j.neuroimage.2022.119660_bib0007
  article-title: Multi-contrast anatomical subcortical structures parcellation
  publication-title: Elife
  doi: 10.7554/eLife.59430
– volume: 147
  start-page: 103
  year: 1986
  ident: 10.1016/j.neuroimage.2022.119660_bib0018
  article-title: MRI of brain iron Stephen riederer1
  publication-title: AJR Am. J. Roentgenol.
  doi: 10.2214/ajr.147.1.103
– start-page: 168
  year: 1992
  ident: 10.1016/j.neuroimage.2022.119660_bib0058
– volume: 170
  start-page: 199
  year: 2018
  ident: 10.1016/j.neuroimage.2022.119660_bib0026
  article-title: Automated segmentation of midbrain structures with high iron content
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.06.016
– start-page: 40
  issue: 11
  year: 2005
  ident: 10.1016/j.neuroimage.2022.119660_bib0062
  article-title: Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths
  publication-title: Invest. Radiol.
– volume: 181
  start-page: 645
  year: 2018
  ident: 10.1016/j.neuroimage.2022.119660_bib0066
  article-title: Tractography optimization using quantitative T1 mapping in the human optic radiation
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.06.060
– volume: 12
  start-page: 16195
  issue: 16
  year: 2020
  ident: 10.1016/j.neuroimage.2022.119660_bib0069
  article-title: Cortical aging – new insights with multiparametric quantitative MRI
  publication-title: Aging (Albany NY)
  doi: 10.18632/aging.103629
– volume: 8
  start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.neuroimage.2022.119660_bib0031
  article-title: Myelin measurement: comparison between simultaneous tissue relaxometry, magnetization transfer saturation index, and T1w/T2w ratio methods
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-28852-6
– start-page: 99
  issue: APR
  year: 2018
  ident: 10.1016/j.neuroimage.2022.119660_bib0025
  article-title: A review of the pedunculopontine nucleus in parkinson's disease
  publication-title: Front. Aging Neurosci.
  doi: 10.3389/fnagi.2018.00099
– volume: 14
  year: 2020
  ident: 10.1016/j.neuroimage.2022.119660_bib0047
  article-title: Iron content in deep gray matter as a function of age using quantitative susceptibility mapping: a multicenter study
  publication-title: Front. Neurosci.
– volume: 239
  year: 2021
  ident: 10.1016/j.neuroimage.2022.119660_bib0013
  article-title: Measuring the iron content of dopaminergic neurons in substantia nigra with MRI relaxometry
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2021.118255
– volume: 15
  start-page: 694
  year: 2021
  ident: 10.1016/j.neuroimage.2022.119660_bib0065
  article-title: Multiparametric MRI for characterization of the basal ganglia and the midbrain
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2021.661504
– volume: 9
  year: 2019
  ident: 10.1016/j.neuroimage.2022.119660_bib0078
  article-title: Comparisons between multi-component myelin water fraction, T1w/T2w ratio, and diffusion tensor imaging measures in healthy human brain structures
– ident: 10.1016/j.neuroimage.2022.119660_bib0042
  doi: 10.1016/B978-0-12-374245-2.00010-3
– volume: 95
  start-page: 629
  issue: 4
  year: 2011
  ident: 10.1016/j.neuroimage.2022.119660_bib0050
  article-title: The Parkinson Progression Marker Initiative (PPMI)
  publication-title: Prog. Neurobiol.
  doi: 10.1016/j.pneurobio.2011.09.005
– volume: 7
  start-page: e49790
  issue: 11
  year: 2012
  ident: 10.1016/j.neuroimage.2022.119660_bib0084
  article-title: Tract profiles of white matter properties: automating fiber-tract quantification
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0049790
– volume: 462
  issue: AUG
  year: 2013
  ident: 10.1016/j.neuroimage.2022.119660_bib0044
  article-title: Characterizing aging in the human brainstem using quantitative multimodal MRI analysis
  publication-title: Front. Hum. Neurosci
– volume: 57
  start-page: 289
  issue: 1
  year: 1995
  ident: 10.1016/j.neuroimage.2022.119660_bib0008
  article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing
  publication-title: J. R. Stat. Soc. Ser. B (Methodological)
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– volume: 73
  start-page: 1309
  issue: 3
  year: 2015
  ident: 10.1016/j.neuroimage.2022.119660_bib0014
  article-title: A general linear relaxometry model of R1 using imaging data
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.25210
– volume: 62
  start-page: 774
  issue: 2
  year: 2012
  ident: 10.1016/j.neuroimage.2022.119660_bib0024
  article-title: FreeSurfer
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.01.021
– volume: 3
  start-page: 41
  issue: 1
  year: 1958
  ident: 10.1016/j.neuroimage.2022.119660_bib0032
  article-title: The effect of age on the non-haemin iron in the human brain
  publication-title: J. Neurochem.
  doi: 10.1111/j.1471-4159.1958.tb12607.x
– volume: 221
  year: 2020
  ident: 10.1016/j.neuroimage.2022.119660_bib0002
  article-title: The Amsterdam Ultra-high field adult lifespan database (AHEAD): a freely available multimodal 7 Tesla submillimeter magnetic resonance imaging database
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2020.117200
– volume: 98
  start-page: 135
  year: 2019
  ident: 10.1016/j.neuroimage.2022.119660_bib0021
  article-title: The midbrain periaqueductal gray as an integrative and interoceptive neural structure for breathing
  publication-title: Neurosci. Biobehav. Rev.
  doi: 10.1016/j.neubiorev.2018.12.020
– volume: 116
  start-page: 5108
  issue: 11
  year: 2019
  ident: 10.1016/j.neuroimage.2022.119660_bib0015
  article-title: Neuromelanin-sensitive MRI as a noninvasive proxy measure of dopamine function in the human brain
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1807983116
– volume: 17
  start-page: 825
  issue: 2
  year: 2002
  ident: 10.1016/j.neuroimage.2022.119660_bib0037
  article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images
  publication-title: Neuroimage
  doi: 10.1006/nimg.2002.1132
– volume: 80
  start-page: 105
  year: 2013
  ident: 10.1016/j.neuroimage.2022.119660_bib0029
  article-title: The minimal preprocessing pipelines for the human connectome project
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.04.127
– ident: 10.1016/j.neuroimage.2022.119660_bib0051
  doi: 10.1152/physrev.1967.47.3.383
– volume: 87
  start-page: 657
  issue: 3
  year: 2015
  ident: 10.1016/j.neuroimage.2022.119660_bib0045
  article-title: Functional system and areal organization of a highly sampled individual human brain
  publication-title: Neuron
  doi: 10.1016/j.neuron.2015.06.037
– volume: 2
  start-page: 1
  issue: 1
  year: 1990
  ident: 10.1016/j.neuroimage.2022.119660_bib0061
  article-title: Neuromelanin synthesis in rat and human substantia nigra
  publication-title: J. Neural Transm. Park. Dis. Dement. Sect.
  doi: 10.1007/BF02251241
– volume: 225
  start-page: 2757
  year: 2020
  ident: 10.1016/j.neuroimage.2022.119660_bib0060
  article-title: Unraveling the contributions to the neuromelanin-MRI contrast
  publication-title: Brain Struct. Funct.
  doi: 10.1007/s00429-020-02153-z
– volume: 208
  year: 2020
  ident: 10.1016/j.neuroimage.2022.119660_bib0068
  article-title: Subdividing the superior longitudinal fasciculus using local quantitative MRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.116439
– volume: 57
  start-page: 308
  issue: 2
  year: 2007
  ident: 10.1016/j.neuroimage.2022.119660_bib0063
  article-title: Magnetic field and tissue dependencies of human brain longitudinal 1H2O relaxation in vivo
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.21122
– volume: 25
  start-page: 449
  issue: 4
  year: 2004
  ident: 10.1016/j.neuroimage.2022.119660_bib0073
  article-title: Structural changes in the midbrain with aging and Parkinson's disease: an MRI study
  publication-title: Neurobiol. Aging
  doi: 10.1016/S0197-4580(03)00125-8
– volume: 5
  start-page: 23
  year: 2011
  ident: 10.1016/j.neuroimage.2022.119660_bib0086
  article-title: Automated probabilistic reconstruction of white-matter pathways in health and disease using an atlas of the underlying anatomy
  publication-title: Front. Neuroinform.
  doi: 10.3389/fninf.2011.00023
– volume: 3
  start-page: 570
  issue: 8
  year: 2021
  ident: 10.1016/j.neuroimage.2022.119660_bib0082
  article-title: Quantitative magnetic resonance imaging of brain anatomy and in vivo histology
  publication-title: Nat. Rev. Phys.
  doi: 10.1038/s42254-021-00326-1
– volume: 208
  year: 2020
  ident: 10.1016/j.neuroimage.2022.119660_bib0083
  article-title: Reproducibility assessment of neuromelanin-sensitive magnetic resonance imaging protocols for region-of-interest and voxelwise analyses
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.116457
– start-page: 1
  year: 2009
  ident: 10.1016/j.neuroimage.2022.119660_bib0004
  article-title: Advanced normalization tools (ANTS)
  publication-title: Insight J.
– volume: 93
  start-page: 95
  issue: P1
  year: 2014
  ident: 10.1016/j.neuroimage.2022.119660_bib0074
  article-title: Myelin and iron concentration in the human brain: a quantitative study of MRI contrast
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.02.026
– volume: 34
  start-page: 64
  year: 2017
  ident: 10.1016/j.neuroimage.2022.119660_bib0048
  article-title: Aging of cerebral white matter
  publication-title: Ageing Res. Rev.
  doi: 10.1016/j.arr.2016.11.006
– volume: 182
  start-page: 304
  year: 2018
  ident: 10.1016/j.neuroimage.2022.119660_bib0011
  article-title: Evaluating g-ratio weighted changes in the corpus callosum as a function of age and sex
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.06.076
– volume: 10
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.neuroimage.2022.119660_bib0023
  article-title: Disentangling molecular alterations from water-content changes in the aging human brain using quantitative MRI
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-11319-1
– volume: 31
  start-page: 937
  issue: 6
  year: 2010
  ident: 10.1016/j.neuroimage.2022.119660_bib0040
  article-title: Age-related changes in glial cells of dopamine midbrain subregions in rhesus monkeys
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2008.07.006
– ident: 10.1016/j.neuroimage.2022.119660_bib0022
– volume: 14
  issue: 7
  year: 2019
  ident: 10.1016/j.neuroimage.2022.119660_bib0070
  article-title: A comparison of in vivo MRI based cortical myelin mapping using T1w/T2w and R1 mapping at 3T
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0218089
– volume: 84
  start-page: 3206
  issue: 6
  year: 2020
  ident: 10.1016/j.neuroimage.2022.119660_bib0041
  article-title: An optimized and highly repeatable MRI acquisition and processing pipeline for quantitative susceptibility mapping in the head-and-neck region
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.28377
– volume: 39
  start-page: 19
  issue: 1
  year: 2013
  ident: 10.1016/j.neuroimage.2022.119660_bib0057
  article-title: Review: Microglia of the aged brain: primed to be activated and resistant to regulation
  publication-title: Neuropathol. Appl. Neurobiol.
  doi: 10.1111/j.1365-2990.2012.01306.x
– volume: 59
  start-page: 2625
  issue: 3
  year: 2012
  ident: 10.1016/j.neuroimage.2022.119660_bib0012
  article-title: MRI estimates of brain iron concentration in normal aging using quantitative susceptibility mapping
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.08.077
– volume: 31
  start-page: 816
  issue: 3
  year: 2012
  ident: 10.1016/j.neuroimage.2022.119660_bib0049
  article-title: Accuracy of the morphology enabled dipole inversion (MEDI) algorithm for quantitative susceptibility mapping in MRI
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2011.2182523
– volume: 194
  start-page: 191
  year: 2019
  ident: 10.1016/j.neuroimage.2022.119660_bib0075
  article-title: hMRI – a toolbox for quantitative MRI in neuroscience and clinical research
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.01.029
– ident: 10.1016/j.neuroimage.2022.119660_bib0010
  doi: 10.1101/2020.12.30.424856
– volume: 194
  start-page: 191
  year: 2019
  ident: 10.1016/j.neuroimage.2022.119660_bib0076
  article-title: hMRI – a toolbox for quantitative MRI in neuroscience and clinical research
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.01.029
– volume: 297
  start-page: 191
  issue: 3
  year: 2001
  ident: 10.1016/j.neuroimage.2022.119660_bib0052
  article-title: Proteasomal function is impaired in substantia nigra in Parkinson's disease
  publication-title: Neurosci. Lett.
  doi: 10.1016/S0304-3940(00)01701-8
– volume: 64
  start-page: 1057
  issue: 4
  year: 2010
  ident: 10.1016/j.neuroimage.2022.119660_bib0005
  article-title: A robust methodology for in vivo T1 mapping
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.22497
– volume: 5
  start-page: 143
  issue: 2
  year: 2001
  ident: 10.1016/j.neuroimage.2022.119660_bib0038
  article-title: A global optimisation method for robust affine registration of brain images
  publication-title: Med. Image Anal.
  doi: 10.1016/S1361-8415(01)00036-6
– volume: 8
  start-page: eabm1971
  issue: 28
  year: 2022
  ident: 10.1016/j.neuroimage.2022.119660_bib0020
  article-title: Mapping microstructural gradients of the human striatum in normal aging and Parkinson's disease
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abm1971
– volume: 52
  start-page: 164
  year: 2005
  ident: 10.1016/j.neuroimage.2022.119660_bib0016
  article-title: Camino: open-source diffusion-MRI reconstruction and processing
  publication-title: Inverse Prob.
– start-page: 7
  year: 2018
  ident: 10.1016/j.neuroimage.2022.119660_bib0009
  article-title: Bayesian analysis of retinotopic maps
  publication-title: Elife
– volume: 31
  start-page: 196
  issue: 3
  year: 2010
  ident: 10.1016/j.neuroimage.2022.119660_bib0056
  article-title: Anatomy of the brainstem: a gaze into the stem of life
  publication-title: Semin. Ultrasound, CT and MRI
  doi: 10.1053/j.sult.2010.03.006
– volume: 139
  start-page: 324
  year: 2016
  ident: 10.1016/j.neuroimage.2022.119660_bib0080
  article-title: Automated segmentation of the substantia nigra, subthalamic nucleus and red nucleus in 7 T data at young and old age
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.06.039
– volume: 34
  start-page: 1497
  issue: 5
  year: 2013
  ident: 10.1016/j.neuroimage.2022.119660_bib0046
  article-title: Higher iron in the red nucleus marks Parkinson's dyskinesia
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2012.10.025
– volume: 202
  year: 2019
  ident: 10.1016/j.neuroimage.2022.119660_bib0067
  article-title: Tractography delineation of the vertical occipital fasciculus using quantitative T1 mapping
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.116121
– volume: 27
  start-page: 685
  issue: 4
  year: 2008
  ident: 10.1016/j.neuroimage.2022.119660_bib0036
  article-title: The Alzheimer's disease neuroimaging initiative (ADNI): MRI methods
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.21049
– volume: 31
  start-page: 11597
  issue: 32
  year: 2011
  ident: 10.1016/j.neuroimage.2022.119660_bib0028
  article-title: Mapping human cortical areas in vivo based on myelin content as revealed by T1- and T2-weighted MRI
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2180-11.2011
– year: 2013
  ident: 10.1016/j.neuroimage.2022.119660_bib0053
  article-title: Quantifying the local tissue volume and composition in individual brains with magnetic resonance imaging
  publication-title: Nat. Med.
  doi: 10.1038/nm.3390
– volume: 106
  start-page: 404
  year: 2015
  ident: 10.1016/j.neuroimage.2022.119660_bib0001
  article-title: Quantitative water content mapping at clinically relevant field strengths: a comparative study at 1.5 T and 3 T
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.11.017
– volume: 27
  start-page: 1568
  issue: 4
  year: 2017
  ident: 10.1016/j.neuroimage.2022.119660_bib0030
  article-title: Evaluation of brain ageing: a quantitative longitudinal MRI study over 7 years
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-016-4485-1
– volume: 113
  start-page: 184
  year: 2015
  ident: 10.1016/j.neuroimage.2022.119660_bib0034
  article-title: Bayesian segmentation of brainstem structures in MRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.02.065
– volume: 36
  start-page: 3321
  issue: 12
  year: 2015
  ident: 10.1016/j.neuroimage.2022.119660_bib0039
  article-title: Aging causes morphological alterations in astrocytes and microglia in human substantia nigra pars compacta
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2015.08.024
– ident: 10.1016/j.neuroimage.2022.119660_bib0027
  doi: 10.1002/1522-2594(200101)45:1<71::AID-MRM1011>3.0.CO;2-2
– volume: 22
  start-page: 595
  issue: 4
  year: 2001
  ident: 10.1016/j.neuroimage.2022.119660_bib0072
  article-title: Age-related structural changes in the human midbrain: an MR image study
  publication-title: Neurobiol. Aging
  doi: 10.1016/S0197-4580(01)00227-5
– volume: 177
  start-page: 33
  year: 2019
  ident: 10.1016/j.neuroimage.2022.119660_bib0071
  article-title: Are periaqueductal gray and dorsal raphe the foundation of appetitive and aversive control? A comprehensive review
  publication-title: Prog. Neurobiol.
  doi: 10.1016/j.pneurobio.2019.02.001
– volume: 8
  start-page: 196
  issue: AUG
  year: 2016
  ident: 10.1016/j.neuroimage.2022.119660_bib0035
  article-title: Neuromelanin imaging and dopaminergic loss in parkinson's disease
  publication-title: Front. Aging Neurosci.
– volume: 19
  start-page: 1523
  issue: 11
  year: 2016
  ident: 10.1016/j.neuroimage.2022.119660_bib0055
  article-title: Multimodal population brain imaging in the UK Biobank prospective epidemiological study
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4393
– volume: 11
  start-page: 805
  issue: 6
  year: 2000
  ident: 10.1016/j.neuroimage.2022.119660_bib0003
  article-title: Voxel-Based Morphometry – the methods
  publication-title: Neuroimage
  doi: 10.1006/nimg.2000.0582
– volume: 105
  start-page: 15106
  issue: 39
  year: 2008
  ident: 10.1016/j.neuroimage.2022.119660_bib0019
  article-title: Age-related changes in midbrain dopaminergic regulation of the human reward system
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0802127105
– volume: 62
  start-page: 2222
  issue: 4
  year: 2012
  ident: 10.1016/j.neuroimage.2022.119660_bib0079
  article-title: The Human Connectome Project: A data acquisition perspective
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.02.018
– volume: 35
  start-page: 56
  issue: 1
  year: 1996
  ident: 10.1016/j.neuroimage.2022.119660_bib0081
  article-title: The relation between brain iron and NMR relaxation times: An in vitro study
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1910350108
– volume: 5
  start-page: 1
  issue: 1
  year: 2014
  ident: 10.1016/j.neuroimage.2022.119660_bib0085
  article-title: Lifespan maturation and degeneration of human brain white matter
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5932
– ident: 10.1016/j.neuroimage.2022.119660_bib0054
  doi: 10.1016/j.neuroimage.2022.118872
– volume: 55
  start-page: 1423
  issue: 4
  year: 2011
  ident: 10.1016/j.neuroimage.2022.119660_bib0017
  article-title: Regional specificity of MRI contrast parameter changes in normal ageing revealed by voxel-based quantification (VBQ)
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.01.052
– volume: 31
  start-page: e3868
  issue: 3
  year: 2018
  ident: 10.1016/j.neuroimage.2022.119660_bib0077
  article-title: Can T1w/T2w ratio be used as a myelin-specific measure in subcortical structures? Comparisons between FSE-based T1w/T2w ratios, GRASE-based T1w/T2w ratios and multi-echo GRASE-based myelin water fractions
  publication-title: NMR Biomed.
  doi: 10.1002/nbm.3868
– volume: 4
  start-page: 451
  issue: 5
  year: 1978
  ident: 10.1016/j.neuroimage.2022.119660_bib0006
  article-title: Endogenous pain control mechanisms: review and hypothesis
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.410040511
– volume: 21
  issue: 4
  year: 2000
  ident: 10.1016/j.neuroimage.2022.119660_bib0033
  article-title: Structural changes of the substantia nigra in parkinson's disease as revealed by MR imaging
  publication-title: Am. J. Neuroradiol.
– volume: 82
  start-page: 84
  issue: 964
  year: 2006
  ident: 10.1016/j.neuroimage.2022.119660_bib0059
  article-title: Ageing and the brain
  publication-title: Postgrad. Med. J.
  doi: 10.1136/pgmj.2005.036665
SSID ssj0009148
Score 2.4237585
Snippet The midbrain is the rostral-most part of the brainstem. It contains numerous nuclei and white matter tracts, which are involved in motor, auditory and visual...
SourceID doaj
proquest
pubmed
crossref
elsevier
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 119660
SubjectTerms Age differences
Age groups
Aging
Bias
Brain mapping
Brain stem
Datasets
Females
Humans
Information processing
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Medical imaging
Mesencephalon
Mesencephalon - diagnostic imaging
Neurodegenerative diseases
Neuroimaging
Older people
Parkinson's disease
Periaqueductal gray area
Red Nucleus
Sensorimotor integration
Sensory integration
Software
Structure-function relationships
Substantia alba
Substantia nigra
Substantia Nigra - diagnostic imaging
White Matter
Young adults
SummonAdditionalLinks – databaseName: DOAJ : directory of open access journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWqHlAviI9SAgUZqdeIxB9xIk6AqArSckCt1J4sT-xIi9gs0pb_z3PspHCo2AO31a69Go3HM2-SmTeMnYWKkHZ4XwqvXanI16XTri_brqauklKQi_3Oq6_NxZX6cq2v_xj1FWvCEj1wUtxbIXxQRKFtdQ90rhHQqO7IV40gqmji-ay6ak6mZrpdoPxct5OquSZ2yPUGdxQ5oRDwFJmW8i4YTZz9f8Wk-zDnFHvOH7GHGTTy90nYx-wgjE_Yg1V-Lf6U3cTBwjAknidw73husOO7WJ8ePRpfffvMN-mB4I5vBw7gxzdrT3FEBD5AwJK70fONi7JOrLJYeswuzz9dfrwo88yEsgeWuS1Di6AdNDW1Q6APEumTCgZaH4A8mjYMtUdOEDocSOyBb4mMlEE5g7yhMkY-Y4fjdgzPGXfBUR-kb3QvVTOYrtVm6KQ2iGZi8L5gZtad7TOfeBxr8cPOhWPf7Z3WbdS6TVovWL3s_Jk4NfbY8yEez7I-smJPX8BWbLYV-y9bKVg3H66dG0_hKvFH6z0EeLfszeAkgY49d5_OtmSzk9hZYRSSO6Q4pmBvlp9xveM7GzeG7a-4JvbvANSqgp0kG1x0AOwh4EPVi_-hm5fsKMqbKnVO2SHsLLwC3rql19PV-g0bryi5
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEBZtCqWXkKaPuE2LAr2K2npYNj2UJCSkgc2hpLA9CcmSy4asndbJ_8-MJXvpoWVvxpaMmBnNfCPNg5BPIXfgdnjPuFeWSecLZpVtWFUXrs6F4M5ivvPiqrz4IS-XapkO3IYUVjnpxFFR-77BM_LP4D0BEgY8qL_e_WbYNQpvV1MLjafk2Vi6DORZL_Wm6G4hYyqcEqyCASmSJ8Z3jfUiV2vYteAlcg66IxWq3JinsYr_X1bqXyh0tEbne2Q3wUh6HPn-kjwJ3T55vkgX5a_IT2w1DKJFU0_ugaaUOzpgxDrqOLr4_o2u4xHhQPuWAhSk65V32DQCHmCBjNrO07XFtY51ZmHoa3J9fnZ9esFSFwXWALq5Z6ECMx6UKwsLpj8IcKhk0MCHFrBIWYW28OAlhBpYhFnxlXNaiCCtBk8i11q8ITtd34UDQm2wrgnCl6oRsmx1XSnd1kJpsG-89T4jeqKdaVKFcWx0cWumULIbs6G6QaqbSPWMFPPMu1hlY4s5J8ieeTzWyR5f9H9-mbTtDOc-SOdCVakGfDsFcMgVtfN5yZ3LnchIPTHXTKmooDzhR6stFvBlnpvgSoQhW84-nGTJJLUxmI2QZ-Ro_gwbHm9xbBf6BxyDGT0Ac2VG3kYZnGkAaISDsMt3___5e_ICVxKjcg7JDkhQ-ADY6t59HDfQI79AIh0
  priority: 102
  providerName: ProQuest
Title Spatial profiles provide sensitive MRI measures of the midbrain micro- and macrostructure
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811922007819
https://dx.doi.org/10.1016/j.neuroimage.2022.119660
https://www.ncbi.nlm.nih.gov/pubmed/36220534
https://www.proquest.com/docview/2748268827
https://www.proquest.com/docview/2724241434
https://doaj.org/article/22de4bbe885c4995822b19bd062bb0b3
Volume 264
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swEBddCmMvY99z1wUN9urF1odls6e2tKQbCaPrIHsSkiUPj8UpS_u6v313luzQh0FgL3Fi68JxOt39Tr47EfLeZxbCDudS5qRJhXV5aqSp07LKbZVxzqzBeufFsph_E59WcnVAzoZaGEyrjLY_2PTeWsc7syjN2U3bzr4CMgB3AwgFt9tKbP15yHhVyAk5PLn8PF_ueu_mIlTESZ4iQUzoCWlefdvIdg2LF4JFxsCExH6VOy_VN_O_56z-BUZ7p3TxhDyOaJKeBIafkgPfPSMPF_F9-XPyHU8cBg2j8WjuLY2Vd3SLieto6uji6pKuw07hlm4aCoiQrltn8ewI-AIMptR0jq4N8tq3m4WhL8j1xfn12TyNhymkNYCc29SX4M29tEVuAAF4DnGV8AqmowFIUpS-yR0EC76CmcLi-NJaxbkXRkFAkSnFX5JJt-n8a0KNN7b23BWy5qJoVFVK1VRcKnBzrHEuIWqQna5jo3E87-KXHjLKfuqd1DVKXQepJyQfKW9Cs409aE5xesbx2C67v7H5_UNHfdGMOS-s9WUpawjxJKAim1fWZQWzNrM8IdUwuXqoSAUbCn_U7sHAx5H2nubuSX086JKO1mOrmRIQ9UHsoxLybnwM6x5f5pjOb-5wDBb2ANoVCXkVdHCUAYASBsoujv6LtTfkEf4KuTvHZAIK5t8CAru1U_Lgw58cPtVKTeNqg-vp-fLL1bTf1fgLkMszDQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3di9QwEB_OPVBfxM-zemoEfQy2SfqFiHh6x653u8ixwvkUkiaVFbc97Yn4R_k_OmnSLj4o-3JvpU3CMJnM_KaZD4BnNtbodhhDmUkVFdokVKWqokWZ6DLmnGnl8p3ni2z6Ubw_S8924PeQC-PCKged2Ctq01buH_kL9J4QCSMezF-ff6Oua5S7XR1aaHixOLa_fqLL1r2avcP9fc7Y0eHy7ZSGrgK0Qmt_QW2BZs2mOksUmkLL0cEQNke6arTNWWHrxCBqtiWS7LLEC61zzq1QOSLrOM85LnsFdoVLaJ3A7sHh4sPppspvInzuXcppkSRlCB3yAWV9gcrVGtUEuqWMobIKlTE39rBvG_CXWfwX7O3N39FNuBFwK3njBe0W7NjmNlydh5v5O_DJ9TZGWSahCXhHQo4f6VyIvFOqZH46I2v_T7IjbU0Qe5L1ymjXpQIfkEBKVGPIWjla-8K2OPQuLC-Dwfdg0rSNvQ9EWaUry02WVlxkdV4WaV6XPM3RoLLamAjygXeyCiXNXWeNr3KIXfsiN1yXjuvScz2CZJx57st6bDHnwG3PON4V5u5ftN8_y3DOJWPGCq1tUaQVOpMp4i-dlNrEGdM61jyCcthcOeS-orbGhVZbEPBynBvwkcc9W87eH2RJBj3Vyc2piuDp-Bk1jLs2Uo1tf7gxLoUIcbWIYM_L4MgDhD8MhV08-P_iT-DadDk_kSezxfFDuO6o8iFB-zBBabKPENhd6MfhOBGQl3yA_wDI6l0u
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3di9QwEB_OEw5fxG-rp0bQx3Bt0jQtIqKey63nHiInrE8haVJZcdvTnoh_mv-dkybt4oOyL_e2dJMyTObjN818ADxxqcGww1rKrNA0NzajWuiallVmqpRzZrSvd16cFEcf87dLsdyB32MtjE-rHG3iYKhtV_tv5AcYPSESRjwoD5qYFvH-cPbi7Bv1E6T8Tes4TiOIyLH79RPDt_75_BDP-iljszenr49onDBAa_T859SV6OKcMEWm0S06jsFG7iTS2KCfLkrXZBYRtKuQfF8xXhojOXe5loiyUyk5vvYSXJYcQRWqklzKTb_fLA9VeILTMsuqmEQUUsuGVpWrNRoMDFAZQ7MVe2RuPOMwQOAvB_kvADw4wtk1uBoRLHkZRO467Lj2Buwt4h39TfjkpxyjVJM4DrwnsdqP9D5Z3ptXsvgwJ-vwdbInXUMQhZL1yho_rwJ_IIGU6NaStfa0Di1ucektOL0I9t6G3bZr3V0g2mlTO24LUfO8aGRVCtlUXEh0rayxNgE58k7Vsbm5n7HxVY1ZbF_UhuvKc10FrieQTTvPQoOPLfa88sczrfctuocH3ffPKmq8Ysy63BhXlqLGsFIgEjNZZWxaMGNSwxOoxsNVYxUs2m180WoLAp5NeyNSCghoy937oyypaLF6tdGvBB5Pf6Ot8RdIunXdD7_GFxMhws4TuBNkcOIBAiGGwp7f-__LH8Eeqq16Nz85vg9XPFEhN2gfdlGY3ANEeOfm4aBLBNQF6-4fJu9f9Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatial+profiles+provide+sensitive+MRI+measures+of+the+midbrain+micro-+and+macrostructure&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Berman%2C+Shai&rft.au=Drori%2C+Elior&rft.au=Mezer%2C+Aviv+A.&rft.date=2022-12-01&rft.issn=1053-8119&rft.volume=264&rft.spage=119660&rft_id=info:doi/10.1016%2Fj.neuroimage.2022.119660&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neuroimage_2022_119660
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon