Spatial profiles provide sensitive MRI measures of the midbrain micro- and macrostructure
The midbrain is the rostral-most part of the brainstem. It contains numerous nuclei and white matter tracts, which are involved in motor, auditory and visual processing, and changes in their structure and function have been associated with aging, as well as neurodegenerative disorders. Current tools...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 264; p. 119660 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.12.2022
Elsevier Limited Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 1053-8119 1095-9572 1095-9572 |
DOI | 10.1016/j.neuroimage.2022.119660 |
Cover
Abstract | The midbrain is the rostral-most part of the brainstem. It contains numerous nuclei and white matter tracts, which are involved in motor, auditory and visual processing, and changes in their structure and function have been associated with aging, as well as neurodegenerative disorders. Current tools for estimating midbrain subregions and their structure with MRI require high resolution and multi-parametric quantitative MRI measures. We propose an approach that relies on morphology to calculate profiles along the midbrain and show these profiles are sensitive to the underlying macrostructure of the midbrain.
First, we show that the midbrain structure can be sampled, within subject space, along three main axes of the left and right midbrain, producing profiles that are similar across subjects. We use two data sets with different field strengths, that contain R1, R2* and QSM maps and show that the profiles are highly correlated both across subjects and between datasets. Next, we compare profiles of the midbrain that sample ROIs, and show that the profiles along the first two axes sample the midbrain in a way that reliably separates the main structures, i.e., the substantia nigra, the red nucleus, and periaqueductal gray. We further show that age differences which are localized to specific nuclei, are reflected in the profiles. Finally, we generalize the same approach to calculate midbrain profiles on a third clinically relevant dataset using HCP subjects, with metrics such as the diffusion tensor and semi-quantitative data such as T1w/T2w maps.
Our results suggest that midbrain profiles, both of quantitative and semi-quantitative estimates are sensitive to the underlying macrostructure of the midbrain. The midbrain profiles are calculated in native space, and rely on simple measurements. We show that it is robust and can be easily expanded to different datasets, and as such we hope that it will be of great use to the community and to the study of the midbrain in particular. |
---|---|
AbstractList | The midbrain is the rostral-most part of the brainstem. It contains numerous nuclei and white matter tracts, which are involved in motor, auditory and visual processing, and changes in their structure and function have been associated with aging, as well as neurodegenerative disorders. Current tools for estimating midbrain subregions and their structure with MRI require high resolution and multi-parametric quantitative MRI measures. We propose an approach that relies on morphology to calculate profiles along the midbrain and show these profiles are sensitive to the underlying macrostructure of the midbrain.First, we show that the midbrain structure can be sampled, within subject space, along three main axes of the left and right midbrain, producing profiles that are similar across subjects. We use two data sets with different field strengths, that contain R1, R2* and QSM maps and show that the profiles are highly correlated both across subjects and between datasets. Next, we compare profiles of the midbrain that sample ROIs, and show that the profiles along the first two axes sample the midbrain in a way that reliably separates the main structures, i.e., the substantia nigra, the red nucleus, and periaqueductal gray. We further show that age differences which are localized to specific nuclei, are reflected in the profiles. Finally, we generalize the same approach to calculate midbrain profiles on a third clinically relevant dataset using HCP subjects, with metrics such as the diffusion tensor and semi-quantitative data such as T1w/T2w maps.Our results suggest that midbrain profiles, both of quantitative and semi-quantitative estimates are sensitive to the underlying macrostructure of the midbrain. The midbrain profiles are calculated in native space, and rely on simple measurements. We show that it is robust and can be easily expanded to different datasets, and as such we hope that it will be of great use to the community and to the study of the midbrain in particular. The midbrain is the rostral-most part of the brainstem. It contains numerous nuclei and white matter tracts, which are involved in motor, auditory and visual processing, and changes in their structure and function have been associated with aging, as well as neurodegenerative disorders. Current tools for estimating midbrain subregions and their structure with MRI require high resolution and multi-parametric quantitative MRI measures. We propose an approach that relies on morphology to calculate profiles along the midbrain and show these profiles are sensitive to the underlying macrostructure of the midbrain. First, we show that the midbrain structure can be sampled, within subject space, along three main axes of the left and right midbrain, producing profiles that are similar across subjects. We use two data sets with different field strengths, that contain R1, R2* and QSM maps and show that the profiles are highly correlated both across subjects and between datasets. Next, we compare profiles of the midbrain that sample ROIs, and show that the profiles along the first two axes sample the midbrain in a way that reliably separates the main structures, i.e., the substantia nigra, the red nucleus, and periaqueductal gray. We further show that age differences which are localized to specific nuclei, are reflected in the profiles. Finally, we generalize the same approach to calculate midbrain profiles on a third clinically relevant dataset using HCP subjects, with metrics such as the diffusion tensor and semi-quantitative data such as T1w/T2w maps. Our results suggest that midbrain profiles, both of quantitative and semi-quantitative estimates are sensitive to the underlying macrostructure of the midbrain. The midbrain profiles are calculated in native space, and rely on simple measurements. We show that it is robust and can be easily expanded to different datasets, and as such we hope that it will be of great use to the community and to the study of the midbrain in particular.The midbrain is the rostral-most part of the brainstem. It contains numerous nuclei and white matter tracts, which are involved in motor, auditory and visual processing, and changes in their structure and function have been associated with aging, as well as neurodegenerative disorders. Current tools for estimating midbrain subregions and their structure with MRI require high resolution and multi-parametric quantitative MRI measures. We propose an approach that relies on morphology to calculate profiles along the midbrain and show these profiles are sensitive to the underlying macrostructure of the midbrain. First, we show that the midbrain structure can be sampled, within subject space, along three main axes of the left and right midbrain, producing profiles that are similar across subjects. We use two data sets with different field strengths, that contain R1, R2* and QSM maps and show that the profiles are highly correlated both across subjects and between datasets. Next, we compare profiles of the midbrain that sample ROIs, and show that the profiles along the first two axes sample the midbrain in a way that reliably separates the main structures, i.e., the substantia nigra, the red nucleus, and periaqueductal gray. We further show that age differences which are localized to specific nuclei, are reflected in the profiles. Finally, we generalize the same approach to calculate midbrain profiles on a third clinically relevant dataset using HCP subjects, with metrics such as the diffusion tensor and semi-quantitative data such as T1w/T2w maps. Our results suggest that midbrain profiles, both of quantitative and semi-quantitative estimates are sensitive to the underlying macrostructure of the midbrain. The midbrain profiles are calculated in native space, and rely on simple measurements. We show that it is robust and can be easily expanded to different datasets, and as such we hope that it will be of great use to the community and to the study of the midbrain in particular. The midbrain is the rostral-most part of the brainstem. It contains numerous nuclei and white matter tracts, which are involved in motor, auditory and visual processing, and changes in their structure and function have been associated with aging, as well as neurodegenerative disorders. Current tools for estimating midbrain subregions and their structure with MRI require high resolution and multi-parametric quantitative MRI measures. We propose an approach that relies on morphology to calculate profiles along the midbrain and show these profiles are sensitive to the underlying macrostructure of the midbrain. First, we show that the midbrain structure can be sampled, within subject space, along three main axes of the left and right midbrain, producing profiles that are similar across subjects. We use two data sets with different field strengths, that contain R1, R2* and QSM maps and show that the profiles are highly correlated both across subjects and between datasets. Next, we compare profiles of the midbrain that sample ROIs, and show that the profiles along the first two axes sample the midbrain in a way that reliably separates the main structures, i.e., the substantia nigra, the red nucleus, and periaqueductal gray. We further show that age differences which are localized to specific nuclei, are reflected in the profiles. Finally, we generalize the same approach to calculate midbrain profiles on a third clinically relevant dataset using HCP subjects, with metrics such as the diffusion tensor and semi-quantitative data such as T1w/T2w maps. Our results suggest that midbrain profiles, both of quantitative and semi-quantitative estimates are sensitive to the underlying macrostructure of the midbrain. The midbrain profiles are calculated in native space, and rely on simple measurements. We show that it is robust and can be easily expanded to different datasets, and as such we hope that it will be of great use to the community and to the study of the midbrain in particular. |
ArticleNumber | 119660 |
Author | Berman, Shai Drori, Elior Mezer, Aviv A. |
Author_xml | – sequence: 1 givenname: Shai orcidid: 0000-0001-9047-9200 surname: Berman fullname: Berman, Shai email: Sb4606@columbia.edu organization: The Edmond and Lily Safra Center for Brain Science, the Hebrew University of Jerusalem, Israel – sequence: 2 givenname: Elior surname: Drori fullname: Drori, Elior organization: The Edmond and Lily Safra Center for Brain Science, the Hebrew University of Jerusalem, Israel – sequence: 3 givenname: Aviv A. surname: Mezer fullname: Mezer, Aviv A. organization: The Edmond and Lily Safra Center for Brain Science, the Hebrew University of Jerusalem, Israel |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36220534$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUtv1DAUhSNURB_wF1AkNmwy-JnYGwStaBmpCAm6YWXZzk3xkNiD7YzUf4_DlCLNalY-8v18dH3OeXXig4eqqjFaYYTbd5uVhzkGN-l7WBFEyApj2bboWXWGkeSN5B05WTSnjSij0-o8pQ1CSGImXlSntCWkzNhZ9eP7Vmenx3obw-BGSIvYuR7qBD657HZQf_m2rifQaY5lHIY6_4R6cr2J2vkibAxNrX1fT7rIlONsc0FfVs8HPSZ49XheVHfXn-6uPje3X2_WVx9vG8sRzw0IRDBw02KNMAfKEGbQSUQHRmUrYMA9YhKk5prithPGdJQC013HBeo6elGt97Z90Bu1jSWT-KCCdurvRYj3Ssfs7AiKkB6YMSAEt0xKLggxWJoetcQYZGjxerv3Khn8niFlNblkYRy1hzAnRTrCCMOMsoK-OUA3YY6-fLRQTJBWCLIs9_qRms0E_dN6__IvgNgDS3IpwvCEYKSWqtVG_a9aLVWrfdXl6fuDp9bl0mXwuRQzHmNwuTeA0s7OQVTJOvAWehfB5pKfO8bkw4GJHZ13Vo-_4OE4iz9Myd9v |
CitedBy_id | crossref_primary_10_1007_s00330_024_10886_2 |
Cites_doi | 10.1155/2012/258524 10.1007/s00429-016-1352-4 10.7554/eLife.59430 10.2214/ajr.147.1.103 10.1016/j.neuroimage.2017.06.016 10.1016/j.neuroimage.2018.06.060 10.18632/aging.103629 10.1038/s41598-018-28852-6 10.3389/fnagi.2018.00099 10.1016/j.neuroimage.2021.118255 10.3389/fnins.2021.661504 10.1016/B978-0-12-374245-2.00010-3 10.1016/j.pneurobio.2011.09.005 10.1371/journal.pone.0049790 10.1111/j.2517-6161.1995.tb02031.x 10.1002/mrm.25210 10.1016/j.neuroimage.2012.01.021 10.1111/j.1471-4159.1958.tb12607.x 10.1016/j.neuroimage.2020.117200 10.1016/j.neubiorev.2018.12.020 10.1073/pnas.1807983116 10.1006/nimg.2002.1132 10.1016/j.neuroimage.2013.04.127 10.1152/physrev.1967.47.3.383 10.1016/j.neuron.2015.06.037 10.1007/BF02251241 10.1007/s00429-020-02153-z 10.1016/j.neuroimage.2019.116439 10.1002/mrm.21122 10.1016/S0197-4580(03)00125-8 10.3389/fninf.2011.00023 10.1038/s42254-021-00326-1 10.1016/j.neuroimage.2019.116457 10.1016/j.neuroimage.2014.02.026 10.1016/j.arr.2016.11.006 10.1016/j.neuroimage.2017.06.076 10.1038/s41467-019-11319-1 10.1016/j.neurobiolaging.2008.07.006 10.1371/journal.pone.0218089 10.1002/mrm.28377 10.1111/j.1365-2990.2012.01306.x 10.1016/j.neuroimage.2011.08.077 10.1109/TMI.2011.2182523 10.1016/j.neuroimage.2019.01.029 10.1101/2020.12.30.424856 10.1016/S0304-3940(00)01701-8 10.1002/mrm.22497 10.1016/S1361-8415(01)00036-6 10.1126/sciadv.abm1971 10.1053/j.sult.2010.03.006 10.1016/j.neuroimage.2016.06.039 10.1016/j.neurobiolaging.2012.10.025 10.1016/j.neuroimage.2019.116121 10.1002/jmri.21049 10.1523/JNEUROSCI.2180-11.2011 10.1038/nm.3390 10.1016/j.neuroimage.2014.11.017 10.1007/s00330-016-4485-1 10.1016/j.neuroimage.2015.02.065 10.1016/j.neurobiolaging.2015.08.024 10.1002/1522-2594(200101)45:1<71::AID-MRM1011>3.0.CO;2-2 10.1016/S0197-4580(01)00227-5 10.1016/j.pneurobio.2019.02.001 10.1038/nn.4393 10.1006/nimg.2000.0582 10.1073/pnas.0802127105 10.1016/j.neuroimage.2012.02.018 10.1002/mrm.1910350108 10.1038/ncomms5932 10.1016/j.neuroimage.2022.118872 10.1016/j.neuroimage.2011.01.052 10.1002/nbm.3868 10.1002/ana.410040511 10.1136/pgmj.2005.036665 |
ContentType | Journal Article |
Copyright | 2022 Copyright © 2022. Published by Elsevier Inc. Copyright Elsevier Limited Dec 1, 2022 |
Copyright_xml | – notice: 2022 – notice: Copyright © 2022. Published by Elsevier Inc. – notice: Copyright Elsevier Limited Dec 1, 2022 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 DOA |
DOI | 10.1016/j.neuroimage.2022.119660 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic DOAJ : directory of open access journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest One Psychology MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ: Directory of Open Access Journal (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1095-9572 |
ExternalDocumentID | oai_doaj_org_article_22de4bbe885c4995822b19bd062bb0b3 36220534 10_1016_j_neuroimage_2022_119660 S1053811922007819 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAFWJ AAIKJ AAKOC AALRI AAOAW AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADFRT ADVLN AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPKN AFPUW AFRHN AFTJW AFXIZ AGCQF AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HMCUK IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OK1 OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 Z5R ZU3 ~G- 6I. AACTN AADPK AAFTH AAIAV AAQFI ABLVK ABYKQ AFKWA AJOXV AMFUW C45 HMQ LCYCR NCXOZ SNS ZA5 29N 53G AAQXK AAYXX ABXDB ACRPL ADFGL ADMUD ADNMO ADXHL AGHFR AGQPQ AGRNS AKRLJ ALIPV ASPBG AVWKF AZFZN CAG CITATION COF EJD FEDTE FGOYB G-2 HDW HEI HMK HMO HVGLF HZ~ R2- RIG SEW WUQ XPP ZMT 0SF CGR CUY CVF ECM EIF NPM 3V. 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 |
ID | FETCH-LOGICAL-c505t-e8021e5b61a015e34014e7903f43968ef1d049e9a5a31678bb733e4a77580773 |
IEDL.DBID | AIKHN |
ISSN | 1053-8119 1095-9572 |
IngestDate | Wed Aug 27 01:28:13 EDT 2025 Fri Sep 05 14:16:57 EDT 2025 Sat Sep 06 16:38:43 EDT 2025 Wed Feb 19 02:26:08 EST 2025 Thu Apr 24 22:52:50 EDT 2025 Tue Jul 01 03:02:24 EDT 2025 Fri Feb 23 02:34:59 EST 2024 Tue Aug 26 17:21:55 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2022. Published by Elsevier Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c505t-e8021e5b61a015e34014e7903f43968ef1d049e9a5a31678bb733e4a77580773 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9047-9200 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1053811922007819 |
PMID | 36220534 |
PQID | 2748268827 |
PQPubID | 2031077 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_22de4bbe885c4995822b19bd062bb0b3 proquest_miscellaneous_2724241434 proquest_journals_2748268827 pubmed_primary_36220534 crossref_primary_10_1016_j_neuroimage_2022_119660 crossref_citationtrail_10_1016_j_neuroimage_2022_119660 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2022_119660 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2022_119660 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-12-01 2022-12-00 20221201 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Amsterdam |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2022 |
Publisher | Elsevier Inc Elsevier Limited Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited – name: Elsevier |
References | Basbaum, Fields (bib0006) 1978; 4 Ngeles Fernández-Gil, Palacios-Bote, Leo-Barahona, Mora-Encinas (bib0056) 2010; 31 Massion, J. (1967). The mammalian red nucleus, 47(3), 383–436. 10.1152/PHYSREV.1967.47.3.383 Visser, Keuken, Forstmann, Jenkinson (bib0080) 2016; 139 Jack, Bernstein, Fox, Thompson, Alexander, Harvey, Borowski, Britson, Whitwell, Ward, Dale, Felmlee, Gunter, Hill, Killiany, Schuff, Fox-Bosetti, Lin, Studholme, Weiner (bib0036) 2008; 27 2022.05.02.490254. 10.1101/2022.05.02.490254 Bilgic, Pfefferbaum, Rohlfing, Sullivan, Adalsteinsson (bib0012) 2012; 59 Weiskopf, Edwards, Helms, Mohammadi, Kirilina (bib0082) 2021; 3 Filo, S., Shaharabani, R., Hanin, D.B., Adam, M., Ben-David, E., Schoffman, H., Margalit, N., Habib, N., Shahar, T., & Mezer, A. (2022). Uncovering molecular iron compounds in the living human brain. Glasser, Sotiropoulos, Wilson, Coalson, Fischl, Andersson, Xu, Jbabdi, Webster, Polimeni, van Essen, Jenkinson (bib0029) 2013; 80 Gracien, Nürnberger, Hok, Hof, Reitz, Rüb, Steinmetz, Hilker-Roggendorf, Klein, Deichmann, Baudrexel (bib0030) 2017; 27 Jenkinson, Smith (bib0038) 2001; 5 Gelman, N., Ewing, J.R., Gorell, J.M., Spickler, E.M., & Solomon, E.G. (2001). Mezer, Yeatman, Stikov, Kay, Cho, Dougherty, Perry, Parvizi, Hua, Butts-Pauly, Wandell (bib0053) 2013 Berman, West, Does, Yeatman, Mezer (bib0011) 2018; 182 Hallgren, Sourander (bib0032) 1958; 3 Bazin, Alkemade, Mulder, Henry, Forstmann (bib0007) 2020; 9 Yendiki, Panneck, Srinivasan, Stevens, Zöllei, Augustinack, Wang, Salat, Ehrlich, Behrens, Jbabdi, Gollub, Fischl (bib0086) 2011; 5 Tabelow, Balteau, Ashburner, Callaghan, Draganski, Helms, Kherif, Leutritz, Lutti, Phillips, Reimer, Ruthotto, Seif, Weiskopf, Ziegler, Mohammadi (bib0075) 2019; 194 Yeatman, Wandell, Mezer (bib0085) 2014; 5 Iglesias, van Leemput, Bhatt, Casillas, Dutt, Schuff, Truran-Sacrey, Boxer, Fischl (bib0034) 2015; 113 Garzón, Sitnikov, Bäckman, Kalpouzos (bib0026) 2018; 170 Schneider, Ma, Wagner, Behl, Nagel, Ladd, Heiland, Bendszus, Straub (bib0065) 2021; 15 Ashburner, Friston (bib0003) 2000; 11 Barral, Gudmundson, Stikov, Etezadi-Amoli, Stoica, Nishimura (bib0005) 2010; 64 Yeatman, Dougherty, Myall, Wandell, Feldman (bib0084) 2012; 7 Faull, Subramanian, Ezra, Pattinson (bib0021) 2019; 98 Uddin, Figley, Solar, Shatil, Figley (bib0078) 2019; 9 Glasser, Essen (bib0028) 2011; 31 Oliver, Huerta (bib0058) 1992 Rabey, Hefti (bib0061) 1990; 2 Benjamini, Hochberg (bib0008) 1995; 57 Lewis, Du, Kidacki, Patel, Shaffer, Mailman, Huang (bib0046) 2013; 34 Jenkinson, Bannister, Brady, Smith (bib0037) 2002; 17 Vymazal, Brooks, Baumgarner, Tran, Katz, Bulte, Bauminger, di Chiro (bib0081) 1996; 35 222(6), 2487. 10.1007/S00429-016-1352-4 Tabelow, Balteau, Ashburner, Callaghan, Draganski, Helms, Kherif, Leutritz, Lutti, Phillips, Reimer, Ruthotto, Seif, Weiskopf, Ziegler, Mohammadi (bib0076) 2019; 194 Dreher, Meyer-Lindenberg, Kohn, Berman (bib0019) 2008; 105 Marek, Jennings, Lasch, Siderowf, Tanner, Simuni, Coffey, Kieburtz, Flagg, Chowdhury, Poewe, Mollenhauer, Sherer, Frasier, Meunier, Rudolph, Casaceli, Seibyl, Mendick, Taylor (bib0050) 2011; 95 10.1002/1522-2594(200101)45:1 Cook, Bai, Nedjati-Gilani, Seunarine, Hall, Parker, Alexander (bib0016) 2005; 52 Karsa, Punwani, Shmueli (bib0041) 2020; 84 Miller, Alfaro-Almagro, Bangerter, Thomas, Yacoub, Xu, Bartsch, Jbabdi, Sotiropoulos, Andersson, Griffanti, Douaud, Okell, Weale, Dragonu, Garratt, Hudson, Collins, Jenkinson, Smith (bib0055) 2016; 19 Priovoulos, van Boxel, Jacobs, Poser, Kamil, Verhey, Ivanov (bib0060) 2020; 225 Alkemade, Mulder, Groot, Isaacs, van Berendonk, Lute, Isherwood, Bazin, Forstmann (bib0002) 2020; 221 Schurr, Duan, Norcia, Ogawa, Yeatman, Mezer (bib0066) 2018; 181 Seiler, Schöngrundner, Stock, Nöth, Hattingen, Steinmetz, Klein, Baudrexel, Wagner, Deichmann, Gracien (bib0069) 2020; 12 Draganski, Ashburner, Hutton, Kherif, Frackowiak, Helms, Weiskopf (bib0017) 2011; 55 Cassidy, Zucca, Girgis, Baker, Weinstein, Sharp, Bellei, Valmadre, Vanegas, Kegeles, Brucato, Kang, Sulzer, Zecca, Abi-Dargham, Horga (bib0015) 2019; 116 Rohrer, Bauer, Mintorovitch, Requardt, Weinmann (bib0062) 2005 207–221. 10.1016/B978-0-12-374245-2.00010-3 Liu, Xu, Spincemaille, Avestimehr, Wang (bib0049) 2012; 31 Silva, McNaughton (bib0071) 2019; 177 Abbas, Gras, Möllenhoff, Oros-Peusquens, Shah (bib0001) 2015; 106 Miletić, S., Bazin, P.L., Isherwood, S.J.S., Keuken, M.C., Alkemade, A., & Forstmann, B.U. (2022). Charting human subcortical maturation across the adult lifespan with in vivo 7 T MRI. Neuroimage, 249, 118872. 10.1016/J.NEUROIMAGE.2022.118872 Shams, Norris, Marques (bib0070) 2019; 14 Peters (bib0059) 2006; 82 Kanaan, Kordower, Collier (bib0040) 2010; 31 Lambert, Chowdhury, Fitzgerald, Fleming, Lutti, Hutton, Draganski, Frackowiak, Ashburner (bib0044) 2013; 462 Uddin, Figley, Marrie, Figley (bib0077) 2018; 31 Rooney, Johnson, Li, Cohen, Kim, Ugurbil, Springer (bib0063) 2007; 57 Sohmiya, Tanaka, Aihara, Hirai, Okamoto (bib0072) 2001; 22 French, Muthusamy (bib0025) 2018 Isaias, Trujillo, Summers, Marotta, Mainardi, Pezzoli, Zecca, Costa (bib0035) 2016; 8 Hutchinson, Raff (bib0033) 2000; 21 Wengler, He, Abi-Dargham, Horga (bib0083) 2020; 208 2020.12.30.424856. 10.1101/2020.12.30.424856 Li, Sethi, Zhang, Miao, Yerramsetty, Palutla, Gharabaghi, Wang, He, Cheng, Yan, Haacke (bib0047) 2020; 14 Hagiwara, Hori, Kamagata, Warntjes, Matsuyoshi, Nakazawa, Ueda, Andica, Koshino, Maekawa, Irie, Takamura, Kumamaru, Abe, Aoki (bib0031) 2018; 8 Ruchalski, Hathout (bib0064) 2012; 2012 Liu, Yang, Xia, Zhu, Leak, Wei, Wang, Hu (bib0048) 2017; 34 Benson, Winawer (bib0009) 2018 Fischl (bib0024) 2012; 62 Avants, Tustison, Song (bib0004) 2009 Schurr, Zelman, Mezer (bib0068) 2020; 208 Keuken, M.C., Bazin, P.-L., Backhouse, K., Beekhuizen, S., Himmer, L., Kandola, A., Lafeber, J.J., Prochazkova, L., Trutti, A., Schäfer, A., Turner, R., & Forstmann, B.U. (2017). Effects of aging on [... formula ...], [... formula ...], and QSM MRI values in the subcortex. Sohmiya, Tanaka, Aihara, Okamoto (bib0073) 2004; 25 van Essen, Ugurbil, Auerbach, Barch, Behrens, Bucholz, Chang, Chen, Corbetta, Curtiss, della Penna, Feinberg, Glasser, Harel, Heath, Larson-Prior, Marcus, Michalareas, Moeller, Yacoub (bib0079) 2012; 62 Drayer, Burgers, Darwin, Herfkens, Johnson (bib0018) 1986; 147 Jyothi, Vidyadhara, Mahadevan, Philip, Parmar, Manohari, Shankar, Raju, Alladi (bib0039) 2015; 36 Norden, Godbout (bib0057) 2013; 39 Schurr, Filo, Mezer (bib0067) 2019; 202 Benson, N.C., Yoon, J.M.D., Forenzo, D., Engel, S.A., Kay, K.N., & Winawer, J. (2022). Variability of the surface area of the V1, V2, and V3 maps in a large sample of human observers. Drori, Berman, Mezer (bib0020) 2022; 8 Laumann, Gordon, Adeyemo, Snyder, Joo, Chen, Gilmore, McDermott, Nelson, Dosenbach, Schlaggar, Mumford, Poldrack, Petersen (bib0045) 2015; 87 McNaught, Jenner (bib0052) 2001; 297 Filo, Shtangel, Salamon, Kol, Weisinger, Shifman, Mezer (bib0023) 2019; 10 Stüber, Morawski, Schäfer, Labadie, Wähnert, Leuze, Streicher, Barapatre, Reimann, Geyer, Spemann, Turner (bib0074) 2014; 93 Brammerloh, Morawski, Friedrich, Reinert, Lange, Pelicon, Vavpetič, Jankuhn, Jäger, Alkemade, Balesar, Pine, Gavriilidis, Trampel, Reimer, Arendt, Weiskopf, Kirilina (bib0013) 2021; 239 Keay, K.A., & Bandler, R. (2015). Periaqueductal Gray. Callaghan, Helms, Lutti, Mohammadi, Weiskopf (bib0014) 2015; 73 Rabey (10.1016/j.neuroimage.2022.119660_bib0061) 1990; 2 Oliver (10.1016/j.neuroimage.2022.119660_bib0058) 1992 Basbaum (10.1016/j.neuroimage.2022.119660_bib0006) 1978; 4 Callaghan (10.1016/j.neuroimage.2022.119660_bib0014) 2015; 73 Garzón (10.1016/j.neuroimage.2022.119660_bib0026) 2018; 170 Dreher (10.1016/j.neuroimage.2022.119660_bib0019) 2008; 105 Jack (10.1016/j.neuroimage.2022.119660_bib0036) 2008; 27 Visser (10.1016/j.neuroimage.2022.119660_bib0080) 2016; 139 Marek (10.1016/j.neuroimage.2022.119660_bib0050) 2011; 95 Schurr (10.1016/j.neuroimage.2022.119660_bib0068) 2020; 208 Jenkinson (10.1016/j.neuroimage.2022.119660_bib0037) 2002; 17 10.1016/j.neuroimage.2022.119660_bib0022 Glasser (10.1016/j.neuroimage.2022.119660_bib0028) 2011; 31 Vymazal (10.1016/j.neuroimage.2022.119660_bib0081) 1996; 35 Filo (10.1016/j.neuroimage.2022.119660_bib0023) 2019; 10 10.1016/j.neuroimage.2022.119660_bib0027 Liu (10.1016/j.neuroimage.2022.119660_bib0048) 2017; 34 Faull (10.1016/j.neuroimage.2022.119660_bib0021) 2019; 98 Uddin (10.1016/j.neuroimage.2022.119660_bib0077) 2018; 31 Karsa (10.1016/j.neuroimage.2022.119660_bib0041) 2020; 84 Iglesias (10.1016/j.neuroimage.2022.119660_bib0034) 2015; 113 Gracien (10.1016/j.neuroimage.2022.119660_bib0030) 2017; 27 Yeatman (10.1016/j.neuroimage.2022.119660_bib0085) 2014; 5 Jenkinson (10.1016/j.neuroimage.2022.119660_bib0038) 2001; 5 Benjamini (10.1016/j.neuroimage.2022.119660_bib0008) 1995; 57 Bilgic (10.1016/j.neuroimage.2022.119660_bib0012) 2012; 59 Barral (10.1016/j.neuroimage.2022.119660_bib0005) 2010; 64 Alkemade (10.1016/j.neuroimage.2022.119660_bib0002) 2020; 221 Hutchinson (10.1016/j.neuroimage.2022.119660_bib0033) 2000; 21 Shams (10.1016/j.neuroimage.2022.119660_bib0070) 2019; 14 Ngeles Fernández-Gil (10.1016/j.neuroimage.2022.119660_bib0056) 2010; 31 10.1016/j.neuroimage.2022.119660_bib0051 Drori (10.1016/j.neuroimage.2022.119660_bib0020) 2022; 8 Glasser (10.1016/j.neuroimage.2022.119660_bib0029) 2013; 80 10.1016/j.neuroimage.2022.119660_bib0010 10.1016/j.neuroimage.2022.119660_bib0054 Drayer (10.1016/j.neuroimage.2022.119660_bib0018) 1986; 147 Miller (10.1016/j.neuroimage.2022.119660_bib0055) 2016; 19 Sohmiya (10.1016/j.neuroimage.2022.119660_bib0073) 2004; 25 Silva (10.1016/j.neuroimage.2022.119660_bib0071) 2019; 177 Isaias (10.1016/j.neuroimage.2022.119660_bib0035) 2016; 8 Ashburner (10.1016/j.neuroimage.2022.119660_bib0003) 2000; 11 Abbas (10.1016/j.neuroimage.2022.119660_bib0001) 2015; 106 Brammerloh (10.1016/j.neuroimage.2022.119660_bib0013) 2021; 239 Draganski (10.1016/j.neuroimage.2022.119660_bib0017) 2011; 55 Hagiwara (10.1016/j.neuroimage.2022.119660_bib0031) 2018; 8 Schurr (10.1016/j.neuroimage.2022.119660_bib0066) 2018; 181 Liu (10.1016/j.neuroimage.2022.119660_bib0049) 2012; 31 Tabelow (10.1016/j.neuroimage.2022.119660_bib0076) 2019; 194 10.1016/j.neuroimage.2022.119660_bib0042 Lewis (10.1016/j.neuroimage.2022.119660_bib0046) 2013; 34 Priovoulos (10.1016/j.neuroimage.2022.119660_bib0060) 2020; 225 Weiskopf (10.1016/j.neuroimage.2022.119660_bib0082) 2021; 3 Avants (10.1016/j.neuroimage.2022.119660_bib0004) 2009 Schneider (10.1016/j.neuroimage.2022.119660_bib0065) 2021; 15 Benson (10.1016/j.neuroimage.2022.119660_bib0009) 2018 10.1016/j.neuroimage.2022.119660_bib0043 French (10.1016/j.neuroimage.2022.119660_bib0025) 2018 Cassidy (10.1016/j.neuroimage.2022.119660_bib0015) 2019; 116 van Essen (10.1016/j.neuroimage.2022.119660_bib0079) 2012; 62 Li (10.1016/j.neuroimage.2022.119660_bib0047) 2020; 14 Stüber (10.1016/j.neuroimage.2022.119660_bib0074) 2014; 93 Sohmiya (10.1016/j.neuroimage.2022.119660_bib0072) 2001; 22 Rohrer (10.1016/j.neuroimage.2022.119660_bib0062) 2005 Laumann (10.1016/j.neuroimage.2022.119660_bib0045) 2015; 87 Wengler (10.1016/j.neuroimage.2022.119660_bib0083) 2020; 208 Cook (10.1016/j.neuroimage.2022.119660_bib0016) 2005; 52 Peters (10.1016/j.neuroimage.2022.119660_bib0059) 2006; 82 Ruchalski (10.1016/j.neuroimage.2022.119660_bib0064) 2012; 2012 Uddin (10.1016/j.neuroimage.2022.119660_bib0078) 2019; 9 Jyothi (10.1016/j.neuroimage.2022.119660_bib0039) 2015; 36 Seiler (10.1016/j.neuroimage.2022.119660_bib0069) 2020; 12 Norden (10.1016/j.neuroimage.2022.119660_bib0057) 2013; 39 Berman (10.1016/j.neuroimage.2022.119660_bib0011) 2018; 182 Fischl (10.1016/j.neuroimage.2022.119660_bib0024) 2012; 62 Bazin (10.1016/j.neuroimage.2022.119660_bib0007) 2020; 9 Hallgren (10.1016/j.neuroimage.2022.119660_bib0032) 1958; 3 Kanaan (10.1016/j.neuroimage.2022.119660_bib0040) 2010; 31 Lambert (10.1016/j.neuroimage.2022.119660_bib0044) 2013; 462 McNaught (10.1016/j.neuroimage.2022.119660_bib0052) 2001; 297 Rooney (10.1016/j.neuroimage.2022.119660_bib0063) 2007; 57 Schurr (10.1016/j.neuroimage.2022.119660_bib0067) 2019; 202 Yendiki (10.1016/j.neuroimage.2022.119660_bib0086) 2011; 5 Tabelow (10.1016/j.neuroimage.2022.119660_bib0075) 2019; 194 Yeatman (10.1016/j.neuroimage.2022.119660_bib0084) 2012; 7 Mezer (10.1016/j.neuroimage.2022.119660_bib0053) 2013 |
References_xml | – volume: 3 start-page: 570 year: 2021 end-page: 588 ident: bib0082 article-title: Quantitative magnetic resonance imaging of brain anatomy and in vivo histology publication-title: Nat. Rev. Phys. – reference: , 2022.05.02.490254. 10.1101/2022.05.02.490254 – volume: 194 start-page: 191 year: 2019 end-page: 210 ident: bib0076 article-title: hMRI – a toolbox for quantitative MRI in neuroscience and clinical research publication-title: Neuroimage – volume: 5 start-page: 1 year: 2014 end-page: 12 ident: bib0085 article-title: Lifespan maturation and degeneration of human brain white matter publication-title: Nat. Commun. – reference: Keuken, M.C., Bazin, P.-L., Backhouse, K., Beekhuizen, S., Himmer, L., Kandola, A., Lafeber, J.J., Prochazkova, L., Trutti, A., Schäfer, A., Turner, R., & Forstmann, B.U. (2017). Effects of aging on [... formula ...], [... formula ...], and QSM MRI values in the subcortex. – volume: 462 year: 2013 ident: bib0044 article-title: Characterizing aging in the human brainstem using quantitative multimodal MRI analysis publication-title: Front. Hum. Neurosci – volume: 31 start-page: 11597 year: 2011 end-page: 11616 ident: bib0028 article-title: Mapping human cortical areas in vivo based on myelin content as revealed by T1- and T2-weighted MRI publication-title: J. Neurosci. – volume: 82 start-page: 84 year: 2006 end-page: 88 ident: bib0059 article-title: Ageing and the brain publication-title: Postgrad. Med. J. – volume: 9 start-page: 1 year: 2020 end-page: 23 ident: bib0007 article-title: Multi-contrast anatomical subcortical structures parcellation publication-title: Elife – volume: 27 start-page: 1568 year: 2017 end-page: 1576 ident: bib0030 article-title: Evaluation of brain ageing: a quantitative longitudinal MRI study over 7 years publication-title: Eur. Radiol. – volume: 98 start-page: 135 year: 2019 end-page: 144 ident: bib0021 article-title: The midbrain periaqueductal gray as an integrative and interoceptive neural structure for breathing publication-title: Neurosci. Biobehav. Rev. – volume: 4 start-page: 451 year: 1978 end-page: 462 ident: bib0006 article-title: Endogenous pain control mechanisms: review and hypothesis publication-title: Ann. Neurol. – reference: , 2020.12.30.424856. 10.1101/2020.12.30.424856 – volume: 31 start-page: e3868 year: 2018 ident: bib0077 article-title: Can T1w/T2w ratio be used as a myelin-specific measure in subcortical structures? Comparisons between FSE-based T1w/T2w ratios, GRASE-based T1w/T2w ratios and multi-echo GRASE-based myelin water fractions publication-title: NMR Biomed. – start-page: 1 year: 2009 end-page: 35 ident: bib0004 article-title: Advanced normalization tools (ANTS) publication-title: Insight J. – volume: 31 start-page: 816 year: 2012 ident: bib0049 article-title: Accuracy of the morphology enabled dipole inversion (MEDI) algorithm for quantitative susceptibility mapping in MRI publication-title: IEEE Trans. Med. Imaging – volume: 202 year: 2019 ident: bib0067 article-title: Tractography delineation of the vertical occipital fasciculus using quantitative T1 mapping publication-title: Neuroimage – volume: 208 year: 2020 ident: bib0068 article-title: Subdividing the superior longitudinal fasciculus using local quantitative MRI publication-title: Neuroimage – start-page: 168 year: 1992 end-page: 221 ident: bib0058 article-title: Inferior and Superior Colliculi – volume: 95 start-page: 629 year: 2011 end-page: 635 ident: bib0050 article-title: The Parkinson Progression Marker Initiative (PPMI) publication-title: Prog. Neurobiol. – start-page: 7 year: 2018 ident: bib0009 article-title: Bayesian analysis of retinotopic maps publication-title: Elife – volume: 21 year: 2000 ident: bib0033 article-title: Structural changes of the substantia nigra in parkinson's disease as revealed by MR imaging publication-title: Am. J. Neuroradiol. – volume: 84 start-page: 3206 year: 2020 end-page: 3222 ident: bib0041 article-title: An optimized and highly repeatable MRI acquisition and processing pipeline for quantitative susceptibility mapping in the head-and-neck region publication-title: Magn. Reson. Med. – volume: 35 start-page: 56 year: 1996 end-page: 61 ident: bib0081 article-title: The relation between brain iron and NMR relaxation times: An in vitro study publication-title: Magn. Reson. Med. – volume: 57 start-page: 308 year: 2007 end-page: 318 ident: bib0063 article-title: Magnetic field and tissue dependencies of human brain longitudinal 1H2O relaxation in vivo publication-title: Magn. Reson. Med. – reference: Gelman, N., Ewing, J.R., Gorell, J.M., Spickler, E.M., & Solomon, E.G. (2001). – volume: 22 start-page: 595 year: 2001 end-page: 601 ident: bib0072 article-title: Age-related structural changes in the human midbrain: an MR image study publication-title: Neurobiol. Aging – volume: 11 start-page: 805 year: 2000 end-page: 821 ident: bib0003 article-title: Voxel-Based Morphometry – the methods publication-title: Neuroimage – volume: 87 start-page: 657 year: 2015 ident: bib0045 article-title: Functional system and areal organization of a highly sampled individual human brain publication-title: Neuron – volume: 7 start-page: e49790 year: 2012 ident: bib0084 article-title: Tract profiles of white matter properties: automating fiber-tract quantification publication-title: PLoS One – volume: 113 start-page: 184 year: 2015 end-page: 195 ident: bib0034 article-title: Bayesian segmentation of brainstem structures in MRI publication-title: Neuroimage – volume: 5 start-page: 23 year: 2011 ident: bib0086 article-title: Automated probabilistic reconstruction of white-matter pathways in health and disease using an atlas of the underlying anatomy publication-title: Front. Neuroinform. – volume: 19 start-page: 1523 year: 2016 end-page: 1536 ident: bib0055 article-title: Multimodal population brain imaging in the UK Biobank prospective epidemiological study publication-title: Nat. Neurosci. – start-page: 40 year: 2005 ident: bib0062 article-title: Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths publication-title: Invest. Radiol. – volume: 8 start-page: eabm1971 year: 2022 ident: bib0020 article-title: Mapping microstructural gradients of the human striatum in normal aging and Parkinson's disease publication-title: Sci. Adv. – volume: 62 start-page: 774 year: 2012 end-page: 781 ident: bib0024 article-title: FreeSurfer publication-title: Neuroimage – volume: 25 start-page: 449 year: 2004 end-page: 453 ident: bib0073 article-title: Structural changes in the midbrain with aging and Parkinson's disease: an MRI study publication-title: Neurobiol. Aging – reference: . 10.1002/1522-2594(200101)45:1 – volume: 34 start-page: 64 year: 2017 end-page: 76 ident: bib0048 article-title: Aging of cerebral white matter publication-title: Ageing Res. Rev. – reference: Filo, S., Shaharabani, R., Hanin, D.B., Adam, M., Ben-David, E., Schoffman, H., Margalit, N., Habib, N., Shahar, T., & Mezer, A. (2022). Uncovering molecular iron compounds in the living human brain. – volume: 14 year: 2020 ident: bib0047 article-title: Iron content in deep gray matter as a function of age using quantitative susceptibility mapping: a multicenter study publication-title: Front. Neurosci. – volume: 36 start-page: 3321 year: 2015 end-page: 3333 ident: bib0039 article-title: Aging causes morphological alterations in astrocytes and microglia in human substantia nigra pars compacta publication-title: Neurobiol. Aging – volume: 139 start-page: 324 year: 2016 end-page: 336 ident: bib0080 article-title: Automated segmentation of the substantia nigra, subthalamic nucleus and red nucleus in 7 T data at young and old age publication-title: Neuroimage – reference: Miletić, S., Bazin, P.L., Isherwood, S.J.S., Keuken, M.C., Alkemade, A., & Forstmann, B.U. (2022). Charting human subcortical maturation across the adult lifespan with in vivo 7 T MRI. Neuroimage, 249, 118872. 10.1016/J.NEUROIMAGE.2022.118872 – volume: 181 start-page: 645 year: 2018 end-page: 658 ident: bib0066 article-title: Tractography optimization using quantitative T1 mapping in the human optic radiation publication-title: Neuroimage – volume: 225 start-page: 2757 year: 2020 end-page: 2774 ident: bib0060 article-title: Unraveling the contributions to the neuromelanin-MRI contrast publication-title: Brain Struct. Funct. – volume: 2 start-page: 1 year: 1990 end-page: 14 ident: bib0061 article-title: Neuromelanin synthesis in rat and human substantia nigra publication-title: J. Neural Transm. Park. Dis. Dement. Sect. – volume: 17 start-page: 825 year: 2002 end-page: 841 ident: bib0037 article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images publication-title: Neuroimage – volume: 12 start-page: 16195 year: 2020 ident: bib0069 article-title: Cortical aging – new insights with multiparametric quantitative MRI publication-title: Aging (Albany NY) – volume: 55 start-page: 1423 year: 2011 end-page: 1434 ident: bib0017 article-title: Regional specificity of MRI contrast parameter changes in normal ageing revealed by voxel-based quantification (VBQ) publication-title: Neuroimage – volume: 105 start-page: 15106 year: 2008 end-page: 15111 ident: bib0019 article-title: Age-related changes in midbrain dopaminergic regulation of the human reward system publication-title: Proc. Natl. Acad. Sci. – volume: 2012 start-page: 1 year: 2012 end-page: 11 ident: bib0064 article-title: A medley of midbrain maladies: a brief review of midbrain anatomy and syndromology for radiologists publication-title: Radiol. Res. Pract. – volume: 106 start-page: 404 year: 2015 end-page: 413 ident: bib0001 article-title: Quantitative water content mapping at clinically relevant field strengths: a comparative study at 1.5 T and 3 T publication-title: Neuroimage – volume: 31 start-page: 937 year: 2010 end-page: 952 ident: bib0040 article-title: Age-related changes in glial cells of dopamine midbrain subregions in rhesus monkeys publication-title: Neurobiol. Aging – volume: 8 start-page: 196 year: 2016 ident: bib0035 article-title: Neuromelanin imaging and dopaminergic loss in parkinson's disease publication-title: Front. Aging Neurosci. – volume: 221 year: 2020 ident: bib0002 article-title: The Amsterdam Ultra-high field adult lifespan database (AHEAD): a freely available multimodal 7 Tesla submillimeter magnetic resonance imaging database publication-title: Neuroimage – volume: 116 start-page: 5108 year: 2019 end-page: 5117 ident: bib0015 article-title: Neuromelanin-sensitive MRI as a noninvasive proxy measure of dopamine function in the human brain publication-title: Proc. Natl. Acad. Sci. – reference: Massion, J. (1967). The mammalian red nucleus, 47(3), 383–436. 10.1152/PHYSREV.1967.47.3.383 – year: 2013 ident: bib0053 article-title: Quantifying the local tissue volume and composition in individual brains with magnetic resonance imaging publication-title: Nat. Med. – volume: 39 start-page: 19 year: 2013 end-page: 34 ident: bib0057 article-title: Review: Microglia of the aged brain: primed to be activated and resistant to regulation publication-title: Neuropathol. Appl. Neurobiol. – volume: 297 start-page: 191 year: 2001 end-page: 194 ident: bib0052 article-title: Proteasomal function is impaired in substantia nigra in Parkinson's disease publication-title: Neurosci. Lett. – reference: , 207–221. 10.1016/B978-0-12-374245-2.00010-3 – volume: 15 start-page: 694 year: 2021 ident: bib0065 article-title: Multiparametric MRI for characterization of the basal ganglia and the midbrain publication-title: Front. Neurosci. – volume: 14 year: 2019 ident: bib0070 article-title: A comparison of in vivo MRI based cortical myelin mapping using T1w/T2w and R1 mapping at 3T publication-title: PLoS One – volume: 9 year: 2019 ident: bib0078 article-title: Comparisons between multi-component myelin water fraction, T1w/T2w ratio, and diffusion tensor imaging measures in healthy human brain structures publication-title: Sci. Rep. – reference: Benson, N.C., Yoon, J.M.D., Forenzo, D., Engel, S.A., Kay, K.N., & Winawer, J. (2022). Variability of the surface area of the V1, V2, and V3 maps in a large sample of human observers. – volume: 31 start-page: 196 year: 2010 end-page: 219 ident: bib0056 article-title: Anatomy of the brainstem: a gaze into the stem of life publication-title: Semin. Ultrasound, CT and MRI – volume: 208 year: 2020 ident: bib0083 article-title: Reproducibility assessment of neuromelanin-sensitive magnetic resonance imaging protocols for region-of-interest and voxelwise analyses publication-title: Neuroimage – volume: 59 start-page: 2625 year: 2012 end-page: 2635 ident: bib0012 article-title: MRI estimates of brain iron concentration in normal aging using quantitative susceptibility mapping publication-title: Neuroimage – volume: 170 start-page: 199 year: 2018 end-page: 209 ident: bib0026 article-title: Automated segmentation of midbrain structures with high iron content publication-title: Neuroimage – volume: 52 start-page: 164 year: 2005 ident: bib0016 article-title: Camino: open-source diffusion-MRI reconstruction and processing publication-title: Inverse Prob. – reference: , 222(6), 2487. 10.1007/S00429-016-1352-4 – volume: 34 start-page: 1497 year: 2013 end-page: 1503 ident: bib0046 article-title: Higher iron in the red nucleus marks Parkinson's dyskinesia publication-title: Neurobiol. Aging – volume: 147 start-page: 103 year: 1986 end-page: 110 ident: bib0018 article-title: MRI of brain iron Stephen riederer1 publication-title: AJR Am. J. Roentgenol. – volume: 73 start-page: 1309 year: 2015 end-page: 1314 ident: bib0014 article-title: A general linear relaxometry model of R1 using imaging data publication-title: Magn. Reson. Med. – volume: 8 start-page: 1 year: 2018 end-page: 12 ident: bib0031 article-title: Myelin measurement: comparison between simultaneous tissue relaxometry, magnetization transfer saturation index, and T1w/T2w ratio methods publication-title: Sci. Rep. – volume: 5 start-page: 143 year: 2001 end-page: 156 ident: bib0038 article-title: A global optimisation method for robust affine registration of brain images publication-title: Med. Image Anal. – volume: 239 year: 2021 ident: bib0013 article-title: Measuring the iron content of dopaminergic neurons in substantia nigra with MRI relaxometry publication-title: Neuroimage – volume: 62 start-page: 2222 year: 2012 end-page: 2231 ident: bib0079 article-title: The Human Connectome Project: A data acquisition perspective publication-title: Neuroimage – volume: 10 start-page: 1 year: 2019 end-page: 16 ident: bib0023 article-title: Disentangling molecular alterations from water-content changes in the aging human brain using quantitative MRI publication-title: Nat. Commun. – volume: 3 start-page: 41 year: 1958 end-page: 51 ident: bib0032 article-title: The effect of age on the non-haemin iron in the human brain publication-title: J. Neurochem. – volume: 177 start-page: 33 year: 2019 end-page: 72 ident: bib0071 article-title: Are periaqueductal gray and dorsal raphe the foundation of appetitive and aversive control? A comprehensive review publication-title: Prog. Neurobiol. – reference: Keay, K.A., & Bandler, R. (2015). Periaqueductal Gray. – start-page: 99 year: 2018 ident: bib0025 article-title: A review of the pedunculopontine nucleus in parkinson's disease publication-title: Front. Aging Neurosci. – volume: 80 start-page: 105 year: 2013 end-page: 124 ident: bib0029 article-title: The minimal preprocessing pipelines for the human connectome project publication-title: Neuroimage – volume: 27 start-page: 685 year: 2008 end-page: 691 ident: bib0036 article-title: The Alzheimer's disease neuroimaging initiative (ADNI): MRI methods publication-title: J. Magn. Reson. Imaging – volume: 93 start-page: 95 year: 2014 end-page: 106 ident: bib0074 article-title: Myelin and iron concentration in the human brain: a quantitative study of MRI contrast publication-title: Neuroimage – volume: 64 start-page: 1057 year: 2010 end-page: 1067 ident: bib0005 article-title: A robust methodology for publication-title: Magn. Reson. Med. – volume: 194 start-page: 191 year: 2019 end-page: 210 ident: bib0075 article-title: hMRI – a toolbox for quantitative MRI in neuroscience and clinical research publication-title: Neuroimage – volume: 182 start-page: 304 year: 2018 end-page: 313 ident: bib0011 article-title: Evaluating g-ratio weighted changes in the corpus callosum as a function of age and sex publication-title: Neuroimage – volume: 57 start-page: 289 year: 1995 end-page: 300 ident: bib0008 article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing publication-title: J. R. Stat. Soc. Ser. B (Methodological) – volume: 2012 start-page: 1 year: 2012 ident: 10.1016/j.neuroimage.2022.119660_bib0064 article-title: A medley of midbrain maladies: a brief review of midbrain anatomy and syndromology for radiologists publication-title: Radiol. Res. Pract. doi: 10.1155/2012/258524 – ident: 10.1016/j.neuroimage.2022.119660_bib0043 doi: 10.1007/s00429-016-1352-4 – volume: 9 start-page: 1 year: 2020 ident: 10.1016/j.neuroimage.2022.119660_bib0007 article-title: Multi-contrast anatomical subcortical structures parcellation publication-title: Elife doi: 10.7554/eLife.59430 – volume: 147 start-page: 103 year: 1986 ident: 10.1016/j.neuroimage.2022.119660_bib0018 article-title: MRI of brain iron Stephen riederer1 publication-title: AJR Am. J. Roentgenol. doi: 10.2214/ajr.147.1.103 – start-page: 168 year: 1992 ident: 10.1016/j.neuroimage.2022.119660_bib0058 – volume: 170 start-page: 199 year: 2018 ident: 10.1016/j.neuroimage.2022.119660_bib0026 article-title: Automated segmentation of midbrain structures with high iron content publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.06.016 – start-page: 40 issue: 11 year: 2005 ident: 10.1016/j.neuroimage.2022.119660_bib0062 article-title: Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths publication-title: Invest. Radiol. – volume: 181 start-page: 645 year: 2018 ident: 10.1016/j.neuroimage.2022.119660_bib0066 article-title: Tractography optimization using quantitative T1 mapping in the human optic radiation publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.06.060 – volume: 12 start-page: 16195 issue: 16 year: 2020 ident: 10.1016/j.neuroimage.2022.119660_bib0069 article-title: Cortical aging – new insights with multiparametric quantitative MRI publication-title: Aging (Albany NY) doi: 10.18632/aging.103629 – volume: 8 start-page: 1 issue: 1 year: 2018 ident: 10.1016/j.neuroimage.2022.119660_bib0031 article-title: Myelin measurement: comparison between simultaneous tissue relaxometry, magnetization transfer saturation index, and T1w/T2w ratio methods publication-title: Sci. Rep. doi: 10.1038/s41598-018-28852-6 – start-page: 99 issue: APR year: 2018 ident: 10.1016/j.neuroimage.2022.119660_bib0025 article-title: A review of the pedunculopontine nucleus in parkinson's disease publication-title: Front. Aging Neurosci. doi: 10.3389/fnagi.2018.00099 – volume: 14 year: 2020 ident: 10.1016/j.neuroimage.2022.119660_bib0047 article-title: Iron content in deep gray matter as a function of age using quantitative susceptibility mapping: a multicenter study publication-title: Front. Neurosci. – volume: 239 year: 2021 ident: 10.1016/j.neuroimage.2022.119660_bib0013 article-title: Measuring the iron content of dopaminergic neurons in substantia nigra with MRI relaxometry publication-title: Neuroimage doi: 10.1016/j.neuroimage.2021.118255 – volume: 15 start-page: 694 year: 2021 ident: 10.1016/j.neuroimage.2022.119660_bib0065 article-title: Multiparametric MRI for characterization of the basal ganglia and the midbrain publication-title: Front. Neurosci. doi: 10.3389/fnins.2021.661504 – volume: 9 year: 2019 ident: 10.1016/j.neuroimage.2022.119660_bib0078 article-title: Comparisons between multi-component myelin water fraction, T1w/T2w ratio, and diffusion tensor imaging measures in healthy human brain structures – ident: 10.1016/j.neuroimage.2022.119660_bib0042 doi: 10.1016/B978-0-12-374245-2.00010-3 – volume: 95 start-page: 629 issue: 4 year: 2011 ident: 10.1016/j.neuroimage.2022.119660_bib0050 article-title: The Parkinson Progression Marker Initiative (PPMI) publication-title: Prog. Neurobiol. doi: 10.1016/j.pneurobio.2011.09.005 – volume: 7 start-page: e49790 issue: 11 year: 2012 ident: 10.1016/j.neuroimage.2022.119660_bib0084 article-title: Tract profiles of white matter properties: automating fiber-tract quantification publication-title: PLoS One doi: 10.1371/journal.pone.0049790 – volume: 462 issue: AUG year: 2013 ident: 10.1016/j.neuroimage.2022.119660_bib0044 article-title: Characterizing aging in the human brainstem using quantitative multimodal MRI analysis publication-title: Front. Hum. Neurosci – volume: 57 start-page: 289 issue: 1 year: 1995 ident: 10.1016/j.neuroimage.2022.119660_bib0008 article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing publication-title: J. R. Stat. Soc. Ser. B (Methodological) doi: 10.1111/j.2517-6161.1995.tb02031.x – volume: 73 start-page: 1309 issue: 3 year: 2015 ident: 10.1016/j.neuroimage.2022.119660_bib0014 article-title: A general linear relaxometry model of R1 using imaging data publication-title: Magn. Reson. Med. doi: 10.1002/mrm.25210 – volume: 62 start-page: 774 issue: 2 year: 2012 ident: 10.1016/j.neuroimage.2022.119660_bib0024 article-title: FreeSurfer publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.01.021 – volume: 3 start-page: 41 issue: 1 year: 1958 ident: 10.1016/j.neuroimage.2022.119660_bib0032 article-title: The effect of age on the non-haemin iron in the human brain publication-title: J. Neurochem. doi: 10.1111/j.1471-4159.1958.tb12607.x – volume: 221 year: 2020 ident: 10.1016/j.neuroimage.2022.119660_bib0002 article-title: The Amsterdam Ultra-high field adult lifespan database (AHEAD): a freely available multimodal 7 Tesla submillimeter magnetic resonance imaging database publication-title: Neuroimage doi: 10.1016/j.neuroimage.2020.117200 – volume: 98 start-page: 135 year: 2019 ident: 10.1016/j.neuroimage.2022.119660_bib0021 article-title: The midbrain periaqueductal gray as an integrative and interoceptive neural structure for breathing publication-title: Neurosci. Biobehav. Rev. doi: 10.1016/j.neubiorev.2018.12.020 – volume: 116 start-page: 5108 issue: 11 year: 2019 ident: 10.1016/j.neuroimage.2022.119660_bib0015 article-title: Neuromelanin-sensitive MRI as a noninvasive proxy measure of dopamine function in the human brain publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1807983116 – volume: 17 start-page: 825 issue: 2 year: 2002 ident: 10.1016/j.neuroimage.2022.119660_bib0037 article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images publication-title: Neuroimage doi: 10.1006/nimg.2002.1132 – volume: 80 start-page: 105 year: 2013 ident: 10.1016/j.neuroimage.2022.119660_bib0029 article-title: The minimal preprocessing pipelines for the human connectome project publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.04.127 – ident: 10.1016/j.neuroimage.2022.119660_bib0051 doi: 10.1152/physrev.1967.47.3.383 – volume: 87 start-page: 657 issue: 3 year: 2015 ident: 10.1016/j.neuroimage.2022.119660_bib0045 article-title: Functional system and areal organization of a highly sampled individual human brain publication-title: Neuron doi: 10.1016/j.neuron.2015.06.037 – volume: 2 start-page: 1 issue: 1 year: 1990 ident: 10.1016/j.neuroimage.2022.119660_bib0061 article-title: Neuromelanin synthesis in rat and human substantia nigra publication-title: J. Neural Transm. Park. Dis. Dement. Sect. doi: 10.1007/BF02251241 – volume: 225 start-page: 2757 year: 2020 ident: 10.1016/j.neuroimage.2022.119660_bib0060 article-title: Unraveling the contributions to the neuromelanin-MRI contrast publication-title: Brain Struct. Funct. doi: 10.1007/s00429-020-02153-z – volume: 208 year: 2020 ident: 10.1016/j.neuroimage.2022.119660_bib0068 article-title: Subdividing the superior longitudinal fasciculus using local quantitative MRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2019.116439 – volume: 57 start-page: 308 issue: 2 year: 2007 ident: 10.1016/j.neuroimage.2022.119660_bib0063 article-title: Magnetic field and tissue dependencies of human brain longitudinal 1H2O relaxation in vivo publication-title: Magn. Reson. Med. doi: 10.1002/mrm.21122 – volume: 25 start-page: 449 issue: 4 year: 2004 ident: 10.1016/j.neuroimage.2022.119660_bib0073 article-title: Structural changes in the midbrain with aging and Parkinson's disease: an MRI study publication-title: Neurobiol. Aging doi: 10.1016/S0197-4580(03)00125-8 – volume: 5 start-page: 23 year: 2011 ident: 10.1016/j.neuroimage.2022.119660_bib0086 article-title: Automated probabilistic reconstruction of white-matter pathways in health and disease using an atlas of the underlying anatomy publication-title: Front. Neuroinform. doi: 10.3389/fninf.2011.00023 – volume: 3 start-page: 570 issue: 8 year: 2021 ident: 10.1016/j.neuroimage.2022.119660_bib0082 article-title: Quantitative magnetic resonance imaging of brain anatomy and in vivo histology publication-title: Nat. Rev. Phys. doi: 10.1038/s42254-021-00326-1 – volume: 208 year: 2020 ident: 10.1016/j.neuroimage.2022.119660_bib0083 article-title: Reproducibility assessment of neuromelanin-sensitive magnetic resonance imaging protocols for region-of-interest and voxelwise analyses publication-title: Neuroimage doi: 10.1016/j.neuroimage.2019.116457 – start-page: 1 year: 2009 ident: 10.1016/j.neuroimage.2022.119660_bib0004 article-title: Advanced normalization tools (ANTS) publication-title: Insight J. – volume: 93 start-page: 95 issue: P1 year: 2014 ident: 10.1016/j.neuroimage.2022.119660_bib0074 article-title: Myelin and iron concentration in the human brain: a quantitative study of MRI contrast publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.02.026 – volume: 34 start-page: 64 year: 2017 ident: 10.1016/j.neuroimage.2022.119660_bib0048 article-title: Aging of cerebral white matter publication-title: Ageing Res. Rev. doi: 10.1016/j.arr.2016.11.006 – volume: 182 start-page: 304 year: 2018 ident: 10.1016/j.neuroimage.2022.119660_bib0011 article-title: Evaluating g-ratio weighted changes in the corpus callosum as a function of age and sex publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.06.076 – volume: 10 start-page: 1 issue: 1 year: 2019 ident: 10.1016/j.neuroimage.2022.119660_bib0023 article-title: Disentangling molecular alterations from water-content changes in the aging human brain using quantitative MRI publication-title: Nat. Commun. doi: 10.1038/s41467-019-11319-1 – volume: 31 start-page: 937 issue: 6 year: 2010 ident: 10.1016/j.neuroimage.2022.119660_bib0040 article-title: Age-related changes in glial cells of dopamine midbrain subregions in rhesus monkeys publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2008.07.006 – ident: 10.1016/j.neuroimage.2022.119660_bib0022 – volume: 14 issue: 7 year: 2019 ident: 10.1016/j.neuroimage.2022.119660_bib0070 article-title: A comparison of in vivo MRI based cortical myelin mapping using T1w/T2w and R1 mapping at 3T publication-title: PLoS One doi: 10.1371/journal.pone.0218089 – volume: 84 start-page: 3206 issue: 6 year: 2020 ident: 10.1016/j.neuroimage.2022.119660_bib0041 article-title: An optimized and highly repeatable MRI acquisition and processing pipeline for quantitative susceptibility mapping in the head-and-neck region publication-title: Magn. Reson. Med. doi: 10.1002/mrm.28377 – volume: 39 start-page: 19 issue: 1 year: 2013 ident: 10.1016/j.neuroimage.2022.119660_bib0057 article-title: Review: Microglia of the aged brain: primed to be activated and resistant to regulation publication-title: Neuropathol. Appl. Neurobiol. doi: 10.1111/j.1365-2990.2012.01306.x – volume: 59 start-page: 2625 issue: 3 year: 2012 ident: 10.1016/j.neuroimage.2022.119660_bib0012 article-title: MRI estimates of brain iron concentration in normal aging using quantitative susceptibility mapping publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.08.077 – volume: 31 start-page: 816 issue: 3 year: 2012 ident: 10.1016/j.neuroimage.2022.119660_bib0049 article-title: Accuracy of the morphology enabled dipole inversion (MEDI) algorithm for quantitative susceptibility mapping in MRI publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2011.2182523 – volume: 194 start-page: 191 year: 2019 ident: 10.1016/j.neuroimage.2022.119660_bib0075 article-title: hMRI – a toolbox for quantitative MRI in neuroscience and clinical research publication-title: Neuroimage doi: 10.1016/j.neuroimage.2019.01.029 – ident: 10.1016/j.neuroimage.2022.119660_bib0010 doi: 10.1101/2020.12.30.424856 – volume: 194 start-page: 191 year: 2019 ident: 10.1016/j.neuroimage.2022.119660_bib0076 article-title: hMRI – a toolbox for quantitative MRI in neuroscience and clinical research publication-title: Neuroimage doi: 10.1016/j.neuroimage.2019.01.029 – volume: 297 start-page: 191 issue: 3 year: 2001 ident: 10.1016/j.neuroimage.2022.119660_bib0052 article-title: Proteasomal function is impaired in substantia nigra in Parkinson's disease publication-title: Neurosci. Lett. doi: 10.1016/S0304-3940(00)01701-8 – volume: 64 start-page: 1057 issue: 4 year: 2010 ident: 10.1016/j.neuroimage.2022.119660_bib0005 article-title: A robust methodology for in vivo T1 mapping publication-title: Magn. Reson. Med. doi: 10.1002/mrm.22497 – volume: 5 start-page: 143 issue: 2 year: 2001 ident: 10.1016/j.neuroimage.2022.119660_bib0038 article-title: A global optimisation method for robust affine registration of brain images publication-title: Med. Image Anal. doi: 10.1016/S1361-8415(01)00036-6 – volume: 8 start-page: eabm1971 issue: 28 year: 2022 ident: 10.1016/j.neuroimage.2022.119660_bib0020 article-title: Mapping microstructural gradients of the human striatum in normal aging and Parkinson's disease publication-title: Sci. Adv. doi: 10.1126/sciadv.abm1971 – volume: 52 start-page: 164 year: 2005 ident: 10.1016/j.neuroimage.2022.119660_bib0016 article-title: Camino: open-source diffusion-MRI reconstruction and processing publication-title: Inverse Prob. – start-page: 7 year: 2018 ident: 10.1016/j.neuroimage.2022.119660_bib0009 article-title: Bayesian analysis of retinotopic maps publication-title: Elife – volume: 31 start-page: 196 issue: 3 year: 2010 ident: 10.1016/j.neuroimage.2022.119660_bib0056 article-title: Anatomy of the brainstem: a gaze into the stem of life publication-title: Semin. Ultrasound, CT and MRI doi: 10.1053/j.sult.2010.03.006 – volume: 139 start-page: 324 year: 2016 ident: 10.1016/j.neuroimage.2022.119660_bib0080 article-title: Automated segmentation of the substantia nigra, subthalamic nucleus and red nucleus in 7 T data at young and old age publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.06.039 – volume: 34 start-page: 1497 issue: 5 year: 2013 ident: 10.1016/j.neuroimage.2022.119660_bib0046 article-title: Higher iron in the red nucleus marks Parkinson's dyskinesia publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2012.10.025 – volume: 202 year: 2019 ident: 10.1016/j.neuroimage.2022.119660_bib0067 article-title: Tractography delineation of the vertical occipital fasciculus using quantitative T1 mapping publication-title: Neuroimage doi: 10.1016/j.neuroimage.2019.116121 – volume: 27 start-page: 685 issue: 4 year: 2008 ident: 10.1016/j.neuroimage.2022.119660_bib0036 article-title: The Alzheimer's disease neuroimaging initiative (ADNI): MRI methods publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.21049 – volume: 31 start-page: 11597 issue: 32 year: 2011 ident: 10.1016/j.neuroimage.2022.119660_bib0028 article-title: Mapping human cortical areas in vivo based on myelin content as revealed by T1- and T2-weighted MRI publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2180-11.2011 – year: 2013 ident: 10.1016/j.neuroimage.2022.119660_bib0053 article-title: Quantifying the local tissue volume and composition in individual brains with magnetic resonance imaging publication-title: Nat. Med. doi: 10.1038/nm.3390 – volume: 106 start-page: 404 year: 2015 ident: 10.1016/j.neuroimage.2022.119660_bib0001 article-title: Quantitative water content mapping at clinically relevant field strengths: a comparative study at 1.5 T and 3 T publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.11.017 – volume: 27 start-page: 1568 issue: 4 year: 2017 ident: 10.1016/j.neuroimage.2022.119660_bib0030 article-title: Evaluation of brain ageing: a quantitative longitudinal MRI study over 7 years publication-title: Eur. Radiol. doi: 10.1007/s00330-016-4485-1 – volume: 113 start-page: 184 year: 2015 ident: 10.1016/j.neuroimage.2022.119660_bib0034 article-title: Bayesian segmentation of brainstem structures in MRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.02.065 – volume: 36 start-page: 3321 issue: 12 year: 2015 ident: 10.1016/j.neuroimage.2022.119660_bib0039 article-title: Aging causes morphological alterations in astrocytes and microglia in human substantia nigra pars compacta publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2015.08.024 – ident: 10.1016/j.neuroimage.2022.119660_bib0027 doi: 10.1002/1522-2594(200101)45:1<71::AID-MRM1011>3.0.CO;2-2 – volume: 22 start-page: 595 issue: 4 year: 2001 ident: 10.1016/j.neuroimage.2022.119660_bib0072 article-title: Age-related structural changes in the human midbrain: an MR image study publication-title: Neurobiol. Aging doi: 10.1016/S0197-4580(01)00227-5 – volume: 177 start-page: 33 year: 2019 ident: 10.1016/j.neuroimage.2022.119660_bib0071 article-title: Are periaqueductal gray and dorsal raphe the foundation of appetitive and aversive control? A comprehensive review publication-title: Prog. Neurobiol. doi: 10.1016/j.pneurobio.2019.02.001 – volume: 8 start-page: 196 issue: AUG year: 2016 ident: 10.1016/j.neuroimage.2022.119660_bib0035 article-title: Neuromelanin imaging and dopaminergic loss in parkinson's disease publication-title: Front. Aging Neurosci. – volume: 19 start-page: 1523 issue: 11 year: 2016 ident: 10.1016/j.neuroimage.2022.119660_bib0055 article-title: Multimodal population brain imaging in the UK Biobank prospective epidemiological study publication-title: Nat. Neurosci. doi: 10.1038/nn.4393 – volume: 11 start-page: 805 issue: 6 year: 2000 ident: 10.1016/j.neuroimage.2022.119660_bib0003 article-title: Voxel-Based Morphometry – the methods publication-title: Neuroimage doi: 10.1006/nimg.2000.0582 – volume: 105 start-page: 15106 issue: 39 year: 2008 ident: 10.1016/j.neuroimage.2022.119660_bib0019 article-title: Age-related changes in midbrain dopaminergic regulation of the human reward system publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0802127105 – volume: 62 start-page: 2222 issue: 4 year: 2012 ident: 10.1016/j.neuroimage.2022.119660_bib0079 article-title: The Human Connectome Project: A data acquisition perspective publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.02.018 – volume: 35 start-page: 56 issue: 1 year: 1996 ident: 10.1016/j.neuroimage.2022.119660_bib0081 article-title: The relation between brain iron and NMR relaxation times: An in vitro study publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1910350108 – volume: 5 start-page: 1 issue: 1 year: 2014 ident: 10.1016/j.neuroimage.2022.119660_bib0085 article-title: Lifespan maturation and degeneration of human brain white matter publication-title: Nat. Commun. doi: 10.1038/ncomms5932 – ident: 10.1016/j.neuroimage.2022.119660_bib0054 doi: 10.1016/j.neuroimage.2022.118872 – volume: 55 start-page: 1423 issue: 4 year: 2011 ident: 10.1016/j.neuroimage.2022.119660_bib0017 article-title: Regional specificity of MRI contrast parameter changes in normal ageing revealed by voxel-based quantification (VBQ) publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.01.052 – volume: 31 start-page: e3868 issue: 3 year: 2018 ident: 10.1016/j.neuroimage.2022.119660_bib0077 article-title: Can T1w/T2w ratio be used as a myelin-specific measure in subcortical structures? Comparisons between FSE-based T1w/T2w ratios, GRASE-based T1w/T2w ratios and multi-echo GRASE-based myelin water fractions publication-title: NMR Biomed. doi: 10.1002/nbm.3868 – volume: 4 start-page: 451 issue: 5 year: 1978 ident: 10.1016/j.neuroimage.2022.119660_bib0006 article-title: Endogenous pain control mechanisms: review and hypothesis publication-title: Ann. Neurol. doi: 10.1002/ana.410040511 – volume: 21 issue: 4 year: 2000 ident: 10.1016/j.neuroimage.2022.119660_bib0033 article-title: Structural changes of the substantia nigra in parkinson's disease as revealed by MR imaging publication-title: Am. J. Neuroradiol. – volume: 82 start-page: 84 issue: 964 year: 2006 ident: 10.1016/j.neuroimage.2022.119660_bib0059 article-title: Ageing and the brain publication-title: Postgrad. Med. J. doi: 10.1136/pgmj.2005.036665 |
SSID | ssj0009148 |
Score | 2.4237585 |
Snippet | The midbrain is the rostral-most part of the brainstem. It contains numerous nuclei and white matter tracts, which are involved in motor, auditory and visual... |
SourceID | doaj proquest pubmed crossref elsevier |
SourceType | Open Website Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 119660 |
SubjectTerms | Age differences Age groups Aging Bias Brain mapping Brain stem Datasets Females Humans Information processing Magnetic resonance imaging Magnetic Resonance Imaging - methods Medical imaging Mesencephalon Mesencephalon - diagnostic imaging Neurodegenerative diseases Neuroimaging Older people Parkinson's disease Periaqueductal gray area Red Nucleus Sensorimotor integration Sensory integration Software Structure-function relationships Substantia alba Substantia nigra Substantia Nigra - diagnostic imaging White Matter Young adults |
SummonAdditionalLinks | – databaseName: DOAJ : directory of open access journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWqHlAviI9SAgUZqdeIxB9xIk6AqArSckCt1J4sT-xIi9gs0pb_z3PspHCo2AO31a69Go3HM2-SmTeMnYWKkHZ4XwqvXanI16XTri_brqauklKQi_3Oq6_NxZX6cq2v_xj1FWvCEj1wUtxbIXxQRKFtdQ90rhHQqO7IV40gqmji-ay6ak6mZrpdoPxct5OquSZ2yPUGdxQ5oRDwFJmW8i4YTZz9f8Wk-zDnFHvOH7GHGTTy90nYx-wgjE_Yg1V-Lf6U3cTBwjAknidw73husOO7WJ8ePRpfffvMN-mB4I5vBw7gxzdrT3FEBD5AwJK70fONi7JOrLJYeswuzz9dfrwo88yEsgeWuS1Di6AdNDW1Q6APEumTCgZaH4A8mjYMtUdOEDocSOyBb4mMlEE5g7yhMkY-Y4fjdgzPGXfBUR-kb3QvVTOYrtVm6KQ2iGZi8L5gZtad7TOfeBxr8cPOhWPf7Z3WbdS6TVovWL3s_Jk4NfbY8yEez7I-smJPX8BWbLYV-y9bKVg3H66dG0_hKvFH6z0EeLfszeAkgY49d5_OtmSzk9hZYRSSO6Q4pmBvlp9xveM7GzeG7a-4JvbvANSqgp0kG1x0AOwh4EPVi_-hm5fsKMqbKnVO2SHsLLwC3rql19PV-g0bryi5 priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEBZtCqWXkKaPuE2LAr2K2npYNj2UJCSkgc2hpLA9CcmSy4asndbJ_8-MJXvpoWVvxpaMmBnNfCPNg5BPIXfgdnjPuFeWSecLZpVtWFUXrs6F4M5ivvPiqrz4IS-XapkO3IYUVjnpxFFR-77BM_LP4D0BEgY8qL_e_WbYNQpvV1MLjafk2Vi6DORZL_Wm6G4hYyqcEqyCASmSJ8Z3jfUiV2vYteAlcg66IxWq3JinsYr_X1bqXyh0tEbne2Q3wUh6HPn-kjwJ3T55vkgX5a_IT2w1DKJFU0_ugaaUOzpgxDrqOLr4_o2u4xHhQPuWAhSk65V32DQCHmCBjNrO07XFtY51ZmHoa3J9fnZ9esFSFwXWALq5Z6ECMx6UKwsLpj8IcKhk0MCHFrBIWYW28OAlhBpYhFnxlXNaiCCtBk8i11q8ITtd34UDQm2wrgnCl6oRsmx1XSnd1kJpsG-89T4jeqKdaVKFcWx0cWumULIbs6G6QaqbSPWMFPPMu1hlY4s5J8ieeTzWyR5f9H9-mbTtDOc-SOdCVakGfDsFcMgVtfN5yZ3LnchIPTHXTKmooDzhR6stFvBlnpvgSoQhW84-nGTJJLUxmI2QZ-Ro_gwbHm9xbBf6BxyDGT0Ac2VG3kYZnGkAaISDsMt3___5e_ICVxKjcg7JDkhQ-ADY6t59HDfQI79AIh0 priority: 102 providerName: ProQuest |
Title | Spatial profiles provide sensitive MRI measures of the midbrain micro- and macrostructure |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811922007819 https://dx.doi.org/10.1016/j.neuroimage.2022.119660 https://www.ncbi.nlm.nih.gov/pubmed/36220534 https://www.proquest.com/docview/2748268827 https://www.proquest.com/docview/2724241434 https://doaj.org/article/22de4bbe885c4995822b19bd062bb0b3 |
Volume | 264 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swEBddCmMvY99z1wUN9urF1odls6e2tKQbCaPrIHsSkiUPj8UpS_u6v313luzQh0FgL3Fi68JxOt39Tr47EfLeZxbCDudS5qRJhXV5aqSp07LKbZVxzqzBeufFsph_E59WcnVAzoZaGEyrjLY_2PTeWsc7syjN2U3bzr4CMgB3AwgFt9tKbP15yHhVyAk5PLn8PF_ueu_mIlTESZ4iQUzoCWlefdvIdg2LF4JFxsCExH6VOy_VN_O_56z-BUZ7p3TxhDyOaJKeBIafkgPfPSMPF_F9-XPyHU8cBg2j8WjuLY2Vd3SLieto6uji6pKuw07hlm4aCoiQrltn8ewI-AIMptR0jq4N8tq3m4WhL8j1xfn12TyNhymkNYCc29SX4M29tEVuAAF4DnGV8AqmowFIUpS-yR0EC76CmcLi-NJaxbkXRkFAkSnFX5JJt-n8a0KNN7b23BWy5qJoVFVK1VRcKnBzrHEuIWqQna5jo3E87-KXHjLKfuqd1DVKXQepJyQfKW9Cs409aE5xesbx2C67v7H5_UNHfdGMOS-s9WUpawjxJKAim1fWZQWzNrM8IdUwuXqoSAUbCn_U7sHAx5H2nubuSX086JKO1mOrmRIQ9UHsoxLybnwM6x5f5pjOb-5wDBb2ANoVCXkVdHCUAYASBsoujv6LtTfkEf4KuTvHZAIK5t8CAru1U_Lgw58cPtVKTeNqg-vp-fLL1bTf1fgLkMszDQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3di9QwEB_OPVBfxM-zemoEfQy2SfqFiHh6x653u8ixwvkUkiaVFbc97Yn4R_k_OmnSLj4o-3JvpU3CMJnM_KaZD4BnNtbodhhDmUkVFdokVKWqokWZ6DLmnGnl8p3ni2z6Ubw_S8924PeQC-PCKged2Ctq01buH_kL9J4QCSMezF-ff6Oua5S7XR1aaHixOLa_fqLL1r2avcP9fc7Y0eHy7ZSGrgK0Qmt_QW2BZs2mOksUmkLL0cEQNke6arTNWWHrxCBqtiWS7LLEC61zzq1QOSLrOM85LnsFdoVLaJ3A7sHh4sPppspvInzuXcppkSRlCB3yAWV9gcrVGtUEuqWMobIKlTE39rBvG_CXWfwX7O3N39FNuBFwK3njBe0W7NjmNlydh5v5O_DJ9TZGWSahCXhHQo4f6VyIvFOqZH46I2v_T7IjbU0Qe5L1ymjXpQIfkEBKVGPIWjla-8K2OPQuLC-Dwfdg0rSNvQ9EWaUry02WVlxkdV4WaV6XPM3RoLLamAjygXeyCiXNXWeNr3KIXfsiN1yXjuvScz2CZJx57st6bDHnwG3PON4V5u5ftN8_y3DOJWPGCq1tUaQVOpMp4i-dlNrEGdM61jyCcthcOeS-orbGhVZbEPBynBvwkcc9W87eH2RJBj3Vyc2piuDp-Bk1jLs2Uo1tf7gxLoUIcbWIYM_L4MgDhD8MhV08-P_iT-DadDk_kSezxfFDuO6o8iFB-zBBabKPENhd6MfhOBGQl3yA_wDI6l0u |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3di9QwEB_OEw5fxG-rp0bQx3Bt0jQtIqKey63nHiInrE8haVJZcdvTnoh_mv-dkybt4oOyL_e2dJMyTObjN818ADxxqcGww1rKrNA0NzajWuiallVmqpRzZrSvd16cFEcf87dLsdyB32MtjE-rHG3iYKhtV_tv5AcYPSESRjwoD5qYFvH-cPbi7Bv1E6T8Tes4TiOIyLH79RPDt_75_BDP-iljszenr49onDBAa_T859SV6OKcMEWm0S06jsFG7iTS2KCfLkrXZBYRtKuQfF8xXhojOXe5loiyUyk5vvYSXJYcQRWqklzKTb_fLA9VeILTMsuqmEQUUsuGVpWrNRoMDFAZQ7MVe2RuPOMwQOAvB_kvADw4wtk1uBoRLHkZRO467Lj2Buwt4h39TfjkpxyjVJM4DrwnsdqP9D5Z3ptXsvgwJ-vwdbInXUMQhZL1yho_rwJ_IIGU6NaStfa0Di1ucektOL0I9t6G3bZr3V0g2mlTO24LUfO8aGRVCtlUXEh0rayxNgE58k7Vsbm5n7HxVY1ZbF_UhuvKc10FrieQTTvPQoOPLfa88sczrfctuocH3ffPKmq8Ysy63BhXlqLGsFIgEjNZZWxaMGNSwxOoxsNVYxUs2m180WoLAp5NeyNSCghoy937oyypaLF6tdGvBB5Pf6Ot8RdIunXdD7_GFxMhws4TuBNkcOIBAiGGwp7f-__LH8Eeqq16Nz85vg9XPFEhN2gfdlGY3ANEeOfm4aBLBNQF6-4fJu9f9Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatial+profiles+provide+sensitive+MRI+measures+of+the+midbrain+micro-+and+macrostructure&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Berman%2C+Shai&rft.au=Drori%2C+Elior&rft.au=Mezer%2C+Aviv+A.&rft.date=2022-12-01&rft.issn=1053-8119&rft.volume=264&rft.spage=119660&rft_id=info:doi/10.1016%2Fj.neuroimage.2022.119660&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neuroimage_2022_119660 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |