Tissue-engineered endothelial cell layers on surface-modified Ti for inhibiting in vitro platelet adhesion

A tissue-engineered endothelial layer was prepared by culturing endothelial cells on a fibroblast growth factor-2 (FGF-2)-l-ascorbic acid phosphate magnesium salt n-hydrate (AsMg)-apatite (Ap) coated titanium plate. The FGF-2-AsMg-Ap coated Ti plate was prepared by immersing a Ti plate in supersatur...

Full description

Saved in:
Bibliographic Details
Published inScience and technology of advanced materials Vol. 14; no. 3; pp. 35002 - 35009
Main Authors Wang, Xiupeng, He, Fupo, Li, Xia, Ito, Atsuo, Sogo, Yu, Maruyama, Osamu, Kosaka, Ryo, Ye, Jiandong
Format Journal Article
LanguageEnglish
Published United States Taylor & Francis 01.06.2013
IOP Publishing
Taylor & Francis Ltd
Taylor & Francis Group
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A tissue-engineered endothelial layer was prepared by culturing endothelial cells on a fibroblast growth factor-2 (FGF-2)-l-ascorbic acid phosphate magnesium salt n-hydrate (AsMg)-apatite (Ap) coated titanium plate. The FGF-2-AsMg-Ap coated Ti plate was prepared by immersing a Ti plate in supersaturated calcium phosphate solutions supplemented with FGF-2 and AsMg. The FGF-2-AsMg-Ap layer on the Ti plate accelerated proliferation of human umbilical vein endothelial cells (HUVECs), and showed slightly higher, but not statistically significant, nitric oxide release from HUVECs than on as-prepared Ti. The endothelial layer maintained proper function of the endothelial cells and markedly inhibited in vitro platelet adhesion. The tissue-engineered endothelial layer formed on the FGF-2-AsMg-Ap layer is promising for ameliorating platelet activation and thrombus formation on cardiovascular implants.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1468-6996
1878-5514
DOI:10.1088/1468-6996/14/3/035002