Operational earthquake-induced building damage assessment using CNN-based direct remote sensing change detection on superpixel level

•Superpixel-based direct change detection is capable of finding damages efficiently.•Extra feature enhancement bands accelerate the process of damage assessment.•Channel-expanded CNN model benefits simultaneous building damage analysis.•The potential of the proposed method in post-earthquake emergen...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of applied earth observation and geoinformation Vol. 112; p. 102899
Main Authors Qing, Yuanzhao, Ming, Dongping, Wen, Qi, Weng, Qihao, Xu, Lu, Chen, Yangyang, Zhang, Yi, Zeng, Beichen
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.08.2022
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Superpixel-based direct change detection is capable of finding damages efficiently.•Extra feature enhancement bands accelerate the process of damage assessment.•Channel-expanded CNN model benefits simultaneous building damage analysis.•The potential of the proposed method in post-earthquake emergency is recognized. Accurate and quick building damage assessment is an indispensable step after a destructive earthquake. Acquiring building damage information of the seismic area in a remotely sensed way enables a timely emergency response. Existing remote sensing building damage detection methods based on convolutional neural network (CNN) mainly need two-step processing or only use single post-event image, leading to low efficiency and inaccurate building boundary. Considering the practical needs of emergency rescue and post-disaster reconstruction, this study proposed a hierarchical building damage assessment workflow using CNN-based direct remote sensing change detection on superpixel level. First, vulnerable building areas close to the epicenter are extracted using extra feature enhancement bands (EFEBs) to narrow the extent of image processing. Then, fine scale building damage is detected in the extracted building areas based on a direct change detection method with pre-event superpixel constraint (PreSC) strategy to improve the precision and efficiency. Finally, a rapid remote sensing earthquake damage index (rRSEDI) is used to quantitatively assess the damage. Experimental results of the case study show that damaged buildings can be effectively and accurately localized and classified using the proposed workflow. Comparative experiments with single-temporal image and post-event segmentation further embody the superiority of the direct change detection. The damage assessment result matches the official report after Ludian earthquake, proving the reliability of the proposed workflow. For future natural hazard events, the workflow can contribute to formulating appropriate disaster management, prevention and mitigation policies.
AbstractList •Superpixel-based direct change detection is capable of finding damages efficiently.•Extra feature enhancement bands accelerate the process of damage assessment.•Channel-expanded CNN model benefits simultaneous building damage analysis.•The potential of the proposed method in post-earthquake emergency is recognized. Accurate and quick building damage assessment is an indispensable step after a destructive earthquake. Acquiring building damage information of the seismic area in a remotely sensed way enables a timely emergency response. Existing remote sensing building damage detection methods based on convolutional neural network (CNN) mainly need two-step processing or only use single post-event image, leading to low efficiency and inaccurate building boundary. Considering the practical needs of emergency rescue and post-disaster reconstruction, this study proposed a hierarchical building damage assessment workflow using CNN-based direct remote sensing change detection on superpixel level. First, vulnerable building areas close to the epicenter are extracted using extra feature enhancement bands (EFEBs) to narrow the extent of image processing. Then, fine scale building damage is detected in the extracted building areas based on a direct change detection method with pre-event superpixel constraint (PreSC) strategy to improve the precision and efficiency. Finally, a rapid remote sensing earthquake damage index (rRSEDI) is used to quantitatively assess the damage. Experimental results of the case study show that damaged buildings can be effectively and accurately localized and classified using the proposed workflow. Comparative experiments with single-temporal image and post-event segmentation further embody the superiority of the direct change detection. The damage assessment result matches the official report after Ludian earthquake, proving the reliability of the proposed workflow. For future natural hazard events, the workflow can contribute to formulating appropriate disaster management, prevention and mitigation policies.
Accurate and quick building damage assessment is an indispensable step after a destructive earthquake. Acquiring building damage information of the seismic area in a remotely sensed way enables a timely emergency response. Existing remote sensing building damage detection methods based on convolutional neural network (CNN) mainly need two-step processing or only use single post-event image, leading to low efficiency and inaccurate building boundary. Considering the practical needs of emergency rescue and post-disaster reconstruction, this study proposed a hierarchical building damage assessment workflow using CNN-based direct remote sensing change detection on superpixel level. First, vulnerable building areas close to the epicenter are extracted using extra feature enhancement bands (EFEBs) to narrow the extent of image processing. Then, fine scale building damage is detected in the extracted building areas based on a direct change detection method with pre-event superpixel constraint (PreSC) strategy to improve the precision and efficiency. Finally, a rapid remote sensing earthquake damage index (rRSEDI) is used to quantitatively assess the damage. Experimental results of the case study show that damaged buildings can be effectively and accurately localized and classified using the proposed workflow. Comparative experiments with single-temporal image and post-event segmentation further embody the superiority of the direct change detection. The damage assessment result matches the official report after Ludian earthquake, proving the reliability of the proposed workflow. For future natural hazard events, the workflow can contribute to formulating appropriate disaster management, prevention and mitigation policies.
ArticleNumber 102899
Author Weng, Qihao
Qing, Yuanzhao
Xu, Lu
Wen, Qi
Zeng, Beichen
Chen, Yangyang
Zhang, Yi
Ming, Dongping
Author_xml – sequence: 1
  givenname: Yuanzhao
  surname: Qing
  fullname: Qing, Yuanzhao
  organization: School of Information Engineering, China University of Geosciences (Beijing), Beijing 100083, China
– sequence: 2
  givenname: Dongping
  orcidid: 0000-0002-3422-7399
  surname: Ming
  fullname: Ming, Dongping
  email: mingdp@cugb.edu.cn
  organization: School of Information Engineering, China University of Geosciences (Beijing), Beijing 100083, China
– sequence: 3
  givenname: Qi
  surname: Wen
  fullname: Wen, Qi
  organization: National Disaster Reduction Center, Ministry of Emergency Management, Beijing 100124, China
– sequence: 4
  givenname: Qihao
  surname: Weng
  fullname: Weng, Qihao
  organization: Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University, Hong Kong, China
– sequence: 5
  givenname: Lu
  surname: Xu
  fullname: Xu, Lu
  organization: School of Information Engineering, China University of Geosciences (Beijing), Beijing 100083, China
– sequence: 6
  givenname: Yangyang
  surname: Chen
  fullname: Chen, Yangyang
  organization: School of Information Engineering, China University of Geosciences (Beijing), Beijing 100083, China
– sequence: 7
  givenname: Yi
  surname: Zhang
  fullname: Zhang, Yi
  organization: School of Information Engineering, China University of Geosciences (Beijing), Beijing 100083, China
– sequence: 8
  givenname: Beichen
  surname: Zeng
  fullname: Zeng, Beichen
  organization: School of Information Engineering, China University of Geosciences (Beijing), Beijing 100083, China
BookMark eNp9UU1v1DAUjFCRaAs_gFuOXLL1Z-yIE1oBrVS1F5C4WW_tl62D42ztpCp3fjjeDVw4VLJk-72ZefbMRXUWp4hV9Z6SDSW0vRo2A-w3jDBW7kx33avqnGrFGs3aH2flLNuu0YKzN9VFzgMhVKlWn1e_7w-YYPZThFAjpPnhcYGf2PjoFouu3i0-OB_3tYMR9lhDzpjziHGul3ysb-_umh3kAnU-oZ3rhOM0Y50xnvr2AWLhOZxLs4ypy8pLGXrwzxjqgE8Y3lavewgZ3_3dL6vvXz5_2143t_dfb7afbhsriZwbZxHattN9j450O6VJb0H0UktnOZdUCsq06hAFgpCas44wi5ZqItFJIflldbPqugkGc0h-hPTLTODNqTClvSkOeBvQ9GrHrbUdOMFFK1rouUNOGKcCOdWuaH1YtQ5pelwwz2b02WIIEHFasmGKaqYIUW2BqhVq05Rzwt5YP588nxP4YCgxxwzNYEqG5pihWTMsTPof89-jX-J8XDlYnHzymEy2HmMJ85RP-ap_gf0Hqyy5BQ
CitedBy_id crossref_primary_10_1109_JSTARS_2024_3386830
crossref_primary_10_1109_TGRS_2024_3428551
crossref_primary_10_1080_22797254_2024_2318357
crossref_primary_10_1109_JSTARS_2024_3452948
crossref_primary_10_1080_22797254_2023_2252166
crossref_primary_10_1109_TGRS_2024_3376389
crossref_primary_10_1109_ACCESS_2024_3465027
crossref_primary_10_1109_TGRS_2024_3367970
crossref_primary_10_1109_JSTARS_2024_3522389
crossref_primary_10_1109_ACCESS_2024_3467149
crossref_primary_10_1109_JSTARS_2023_3339642
crossref_primary_10_1109_TGRS_2024_3494257
crossref_primary_10_1109_TGRS_2025_3530934
crossref_primary_10_1109_TGRS_2023_3346968
crossref_primary_10_1109_TGRS_2024_3496994
crossref_primary_10_1109_JSTARS_2024_3468949
crossref_primary_10_1111_phor_12530
crossref_primary_10_1109_TGRS_2024_3360516
crossref_primary_10_1111_tgis_70020
crossref_primary_10_1109_TGRS_2024_3384927
crossref_primary_10_1109_JSTARS_2024_3403882
crossref_primary_10_3390_buildings14082344
crossref_primary_10_1109_JSTARS_2024_3416183
crossref_primary_10_1109_TGRS_2024_3519195
crossref_primary_10_1109_TGRS_2024_3408330
crossref_primary_10_1109_JSTARS_2024_3449097
crossref_primary_10_1016_j_jag_2024_104282
crossref_primary_10_1007_s12145_024_01574_2
crossref_primary_10_1007_s40996_023_01328_y
crossref_primary_10_1109_TGRS_2024_3504742
crossref_primary_10_1080_17538947_2024_2430678
crossref_primary_10_1109_JSTARS_2024_3367853
Cites_doi 10.1016/j.isprsjprs.2013.06.011
10.3390/s19030542
10.1016/j.rse.2021.112636
10.1080/15481603.2021.1933367
10.1080/01431161.2019.1655175
10.1109/JSTARS.2021.3066378
10.3390/rs12101670
10.1016/j.isprsjprs.2017.03.001
10.1016/j.rse.2011.02.030
10.1109/TSMC.1973.4309314
10.1016/j.gr.2020.08.007
10.3390/rs6064870
10.1080/22797254.2018.1527662
10.1080/01431161.2018.1513666
10.3390/rs12172839
10.1007/s11263-014-0744-2
10.3390/rs12091444
10.1109/JSTARS.2015.2493342
ContentType Journal Article
Copyright 2022 China University of Geosciences Beijing
Copyright_xml – notice: 2022 China University of Geosciences Beijing
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
DOA
DOI 10.1016/j.jag.2022.102899
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1872-826X
ExternalDocumentID oai_doaj_org_article_f7b3ccc9ad434646af3de302314e318d
10_1016_j_jag_2022_102899
S1569843222001017
GroupedDBID 29J
4.4
5GY
6I.
AAFTH
AAQXK
AAXUO
ABFYP
ABLST
ABQEM
ABQYD
ABYKQ
ACLVX
ACRLP
ACSBN
ADBBV
ADMUD
AFKWA
AFTJW
AFXIZ
AGYEJ
AHEUO
AIKHN
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AZFZN
BKOJK
BLECG
EBS
EJD
FDB
FEDTE
FIRID
FYGXN
GROUPED_DOAJ
HVGLF
IMUCA
KCYFY
KOM
M41
O-L
P-8
P-9
P2P
R2-
RIG
ROL
SDF
SDG
SES
SPC
SSE
SSJ
T5K
~02
AAHBH
AALRI
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ADNMO
ADVLN
AEIPS
AFJKZ
AGCQF
AGQPQ
AGRNS
AIIUN
AITUG
ANKPU
APXCP
BNPGV
CITATION
EFJIC
SSH
7S9
L.6
EFKBS
ID FETCH-LOGICAL-c505t-dcea6698ffed09b780fca4f585dc33515412879ee4ea45832902cec1805ed5453
IEDL.DBID AIKHN
ISSN 1569-8432
IngestDate Wed Aug 27 01:32:02 EDT 2025
Fri Jul 11 04:06:09 EDT 2025
Thu Apr 24 23:09:24 EDT 2025
Tue Jul 01 02:15:21 EDT 2025
Fri Feb 23 02:36:32 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Building damage detection and assessment
Convolutional neural network
Remote sensing
Direct change detection
Earthquake damage index
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c505t-dcea6698ffed09b780fca4f585dc33515412879ee4ea45832902cec1805ed5453
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-3422-7399
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1569843222001017
PQID 2718270076
PQPubID 24069
ParticipantIDs doaj_primary_oai_doaj_org_article_f7b3ccc9ad434646af3de302314e318d
proquest_miscellaneous_2718270076
crossref_citationtrail_10_1016_j_jag_2022_102899
crossref_primary_10_1016_j_jag_2022_102899
elsevier_sciencedirect_doi_10_1016_j_jag_2022_102899
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2022
2022-08-00
20220801
2022-08-01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: August 2022
PublicationDecade 2020
PublicationTitle International journal of applied earth observation and geoinformation
PublicationYear 2022
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Van den Bergh, Boix, Roig, Van Gool (b0115) 2015; 111
Abdollahi, Pradhan, Shukla, Chakraborty, Alamri (b0005) 2020; 12
Monfort, Negulescu, Belvaux (b0085) 2019; 14
Song, Tan, Wang, Zhang, Shan, Cui (b0100) 2020; 41
Grünthal, G., 1998. European Macroseismic Scale 1998 (EMS-98). European Seismological Committee.
Dou, Wang, Ding, Yuan, Wang, Dong, Jin (b0035) 2012; 27
Dong, Shan (b0030) 2013; 84
Lv, Ming, Chen, Wang (b0070) 2019; 40
Chen, Weng, Tang, Liu, Zhang, Bilal (b0015) 2021; 58
Chen, Ming, Ling, Lv, Zhou (b0010) 2021; 14
Mansouri, Hamednia (b0075) 2015; 8
Wang, Dou, Ding, Li (b0125) 2015; 17
Zheng, Zhong, Wang, Ma, Zhang (b0135) 2021; 265
Cotrufo, Sandu, Giulio Tonolo, Boccardo (b0020) 2018; 51
Krizhevsky, Sutskever, Hinton (b0065) 2012; 25
Plank (b0090) 2014; 6
Syifa, Kadavi, Lee (b0105) 2019; 19
Vetrivel, Gerke, Kerle, Nex, Vosselman (b0120) 2018; 140
Shao, Tang, Liu, Shao, Sun, Qiu (b0095) 2020; 12
Dubois, Lepage (b0040) 2013
Valentijn, Margutti, van den Homberg, Laaksonen (b0110) 2020; 12
Weng (b0130) 2012; 117
Matin, Pradhan (b0080) 2021
Dikshit, Pradhan, Alamri (b0025) 2021; 100
Haralick, R.M., Shanmugam, K., Dinstein, I.H., 1973. Textural Features for Image Classification. IEEE Trans. Syst., Man, Cybernet. SMC-3, 610-621.
Gupta, R., Hosfelt, R., Sajeev, S., Patel, N., Goodman, B., Doshi, J., Heim, E., Choset, H., Gaston, M., 2019. xBD: A Dataset for Assessing Building Damage from Satellite Imagery, p. arXiv:1911.09296.
Kerle (b0060) 2010; 12
Matin (10.1016/j.jag.2022.102899_b0080) 2021
Monfort (10.1016/j.jag.2022.102899_b0085) 2019; 14
Dou (10.1016/j.jag.2022.102899_b0035) 2012; 27
Weng (10.1016/j.jag.2022.102899_b0130) 2012; 117
Shao (10.1016/j.jag.2022.102899_b0095) 2020; 12
10.1016/j.jag.2022.102899_b0055
10.1016/j.jag.2022.102899_b0050
Dubois (10.1016/j.jag.2022.102899_b0040) 2013
Mansouri (10.1016/j.jag.2022.102899_b0075) 2015; 8
Valentijn (10.1016/j.jag.2022.102899_b0110) 2020; 12
Chen (10.1016/j.jag.2022.102899_b0015) 2021; 58
Lv (10.1016/j.jag.2022.102899_b0070) 2019; 40
Cotrufo (10.1016/j.jag.2022.102899_b0020) 2018; 51
Syifa (10.1016/j.jag.2022.102899_b0105) 2019; 19
Dikshit (10.1016/j.jag.2022.102899_b0025) 2021; 100
Krizhevsky (10.1016/j.jag.2022.102899_b0065) 2012; 25
Dong (10.1016/j.jag.2022.102899_b0030) 2013; 84
Zheng (10.1016/j.jag.2022.102899_b0135) 2021; 265
Chen (10.1016/j.jag.2022.102899_b0010) 2021; 14
Van den Bergh (10.1016/j.jag.2022.102899_b0115) 2015; 111
10.1016/j.jag.2022.102899_b0045
Plank (10.1016/j.jag.2022.102899_b0090) 2014; 6
Abdollahi (10.1016/j.jag.2022.102899_b0005) 2020; 12
Song (10.1016/j.jag.2022.102899_b0100) 2020; 41
Wang (10.1016/j.jag.2022.102899_b0125) 2015; 17
Kerle (10.1016/j.jag.2022.102899_b0060) 2010; 12
Vetrivel (10.1016/j.jag.2022.102899_b0120) 2018; 140
References_xml – start-page: 1
  year: 2021
  end-page: 27
  ident: b0080
  article-title: Challenges and limitations of earthquake-induced building damage mapping techniques using remote sensing images-A systematic review
  publication-title: Geocarto Int.
– start-page: 695
  year: 2013
  end-page: 698
  ident: b0040
  article-title: Automated building damage classification for the case of the 2010 Haiti earthquake
  publication-title: 2013 IEEE International Geoscience and Remote Sensing Symposium -
– volume: 12
  start-page: 1444
  year: 2020
  ident: b0005
  article-title: Deep Learning Approaches Applied to Remote Sensing Datasets for Road Extraction: A State-Of-The-Art Review
  publication-title: Rem. Sens.
– volume: 84
  start-page: 85
  year: 2013
  end-page: 99
  ident: b0030
  article-title: A comprehensive review of earthquake-induced building damage detection with remote sensing techniques
  publication-title: ISPRS J. Photogramm. Rem. Sens.
– volume: 6
  start-page: 4870
  year: 2014
  end-page: 4906
  ident: b0090
  article-title: Rapid Damage Assessment by Means of Multi-Temporal SAR — A Comprehensive Review and Outlook to Sentinel-1
  publication-title: Rem. Sens.
– reference: Gupta, R., Hosfelt, R., Sajeev, S., Patel, N., Goodman, B., Doshi, J., Heim, E., Choset, H., Gaston, M., 2019. xBD: A Dataset for Assessing Building Damage from Satellite Imagery, p. arXiv:1911.09296.
– volume: 8
  start-page: 4935
  year: 2015
  end-page: 4941
  ident: b0075
  article-title: A Soft Computing Method for Damage Mapping Using VHR Optical Satellite Imagery
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Rem. Sens.
– volume: 14
  start-page: 46
  year: 2019
  end-page: 59
  ident: b0085
  article-title: Remote sensing vs. field survey data in a post-earthquake context: Potentialities and limits of damaged building assessment datasets
  publication-title: Rem. Sens. Appl.: Soc. Environ.
– reference: Haralick, R.M., Shanmugam, K., Dinstein, I.H., 1973. Textural Features for Image Classification. IEEE Trans. Syst., Man, Cybernet. SMC-3, 610-621.
– volume: 12
  start-page: 2839
  year: 2020
  ident: b0110
  article-title: Multi-Hazard and Spatial Transferability of a CNN for Automated Building Damage Assessment
  publication-title: Rem. Sens.
– volume: 12
  start-page: 1670
  year: 2020
  ident: b0095
  article-title: BDD-Net: A General Protocol for Mapping Buildings Damaged by a Wide Range of Disasters Based on Satellite Imagery
  publication-title: Rem. Sens.
– volume: 58
  start-page: 624
  year: 2021
  end-page: 642
  ident: b0015
  article-title: Automatic mapping of urban green spaces using a geospatial neural network
  publication-title: Gisci. Rem. Sens.
– volume: 17
  start-page: 1536
  year: 2015
  end-page: 1544
  ident: b0125
  article-title: Advance on the RS-based Emergency Seismic Intensity Assessment
  publication-title: J. Geo-Inform. Sci.
– reference: Grünthal, G., 1998. European Macroseismic Scale 1998 (EMS-98). European Seismological Committee.
– volume: 12
  start-page: 466
  year: 2010
  end-page: 476
  ident: b0060
  article-title: Satellite-based damage mapping following the 2006 Indonesia earthquake—How accurate was it?
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 117
  start-page: 34
  year: 2012
  end-page: 49
  ident: b0130
  article-title: Remote sensing of impervious surfaces in the urban areas: Requirements, methods, and trends
  publication-title: Rem. Sens. Environ.
– volume: 25
  start-page: 1097
  year: 2012
  end-page: 1105
  ident: b0065
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Adv. Neural Inform. Process. Syst.
– volume: 41
  start-page: 1040
  year: 2020
  end-page: 1066
  ident: b0100
  article-title: Integration of super-pixel segmentation and deep-learning methods for evaluating earthquake-damaged buildings using single-phase remote sensing imagery
  publication-title: Int. J. Rem. Sens.
– volume: 14
  start-page: 3625
  year: 2021
  end-page: 3639
  ident: b0010
  article-title: Landslide Susceptibility Mapping Using Feature Fusion-Based CPCNN-ML in Lantau Island, Hong Kong
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– volume: 140
  start-page: 45
  year: 2018
  end-page: 59
  ident: b0120
  article-title: Disaster damage detection through synergistic use of deep learning and 3D point cloud features derived from very high resolution oblique aerial images, and multiple-kernel-learning
  publication-title: ISPRS J. Photogramm. Rem. Sens.
– volume: 100
  start-page: 290
  year: 2021
  end-page: 301
  ident: b0025
  article-title: Pathways and challenges of the application of artificial intelligence to geohazards modelling
  publication-title: Gondwana Res.
– volume: 19
  start-page: 542
  year: 2019
  ident: b0105
  article-title: An Artificial Intelligence Application for Post-Earthquake Damage Mapping in Palu, Central Sulawesi, Indonesia
  publication-title: Sensors
– volume: 51
  start-page: 991
  year: 2018
  end-page: 1005
  ident: b0020
  article-title: Building damage assessment scale tailored to remote sensing vertical imagery
  publication-title: Eur. J. Rem. Sens.
– volume: 27
  start-page: 75
  year: 2012
  end-page: 80
  ident: b0035
  article-title: Quantitative Methods of Rapid Earthquake Damage Assessment Using Remote Sensing and Its Application in Yushu Earthquake
  publication-title: J. Catastrophol.
– volume: 265
  start-page: 112636
  year: 2021
  ident: b0135
  article-title: Building damage assessment for rapid disaster response with a deep object-based semantic change detection framework: From natural disasters to man-made disasters
  publication-title: Rem. Sens. Environ.
– volume: 40
  start-page: 506
  year: 2019
  end-page: 531
  ident: b0070
  article-title: Very high resolution remote sensing image classification with SEEDS-CNN and scale effect analysis for superpixel CNN classification
  publication-title: Int. J. Rem. Sens.
– volume: 111
  start-page: 298
  year: 2015
  end-page: 314
  ident: b0115
  article-title: SEEDS: Superpixels Extracted Via Energy-Driven Sampling
  publication-title: Int. J. Comput. Vision
– volume: 27
  start-page: 75
  year: 2012
  ident: 10.1016/j.jag.2022.102899_b0035
  article-title: Quantitative Methods of Rapid Earthquake Damage Assessment Using Remote Sensing and Its Application in Yushu Earthquake
  publication-title: J. Catastrophol.
– volume: 84
  start-page: 85
  year: 2013
  ident: 10.1016/j.jag.2022.102899_b0030
  article-title: A comprehensive review of earthquake-induced building damage detection with remote sensing techniques
  publication-title: ISPRS J. Photogramm. Rem. Sens.
  doi: 10.1016/j.isprsjprs.2013.06.011
– volume: 14
  start-page: 46
  year: 2019
  ident: 10.1016/j.jag.2022.102899_b0085
  article-title: Remote sensing vs. field survey data in a post-earthquake context: Potentialities and limits of damaged building assessment datasets
  publication-title: Rem. Sens. Appl.: Soc. Environ.
– start-page: 695
  year: 2013
  ident: 10.1016/j.jag.2022.102899_b0040
  article-title: Automated building damage classification for the case of the 2010 Haiti earthquake
– volume: 19
  start-page: 542
  year: 2019
  ident: 10.1016/j.jag.2022.102899_b0105
  article-title: An Artificial Intelligence Application for Post-Earthquake Damage Mapping in Palu, Central Sulawesi, Indonesia
  publication-title: Sensors
  doi: 10.3390/s19030542
– volume: 265
  start-page: 112636
  year: 2021
  ident: 10.1016/j.jag.2022.102899_b0135
  article-title: Building damage assessment for rapid disaster response with a deep object-based semantic change detection framework: From natural disasters to man-made disasters
  publication-title: Rem. Sens. Environ.
  doi: 10.1016/j.rse.2021.112636
– volume: 17
  start-page: 1536
  year: 2015
  ident: 10.1016/j.jag.2022.102899_b0125
  article-title: Advance on the RS-based Emergency Seismic Intensity Assessment
  publication-title: J. Geo-Inform. Sci.
– volume: 58
  start-page: 624
  year: 2021
  ident: 10.1016/j.jag.2022.102899_b0015
  article-title: Automatic mapping of urban green spaces using a geospatial neural network
  publication-title: Gisci. Rem. Sens.
  doi: 10.1080/15481603.2021.1933367
– volume: 12
  start-page: 466
  year: 2010
  ident: 10.1016/j.jag.2022.102899_b0060
  article-title: Satellite-based damage mapping following the 2006 Indonesia earthquake—How accurate was it?
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 41
  start-page: 1040
  year: 2020
  ident: 10.1016/j.jag.2022.102899_b0100
  article-title: Integration of super-pixel segmentation and deep-learning methods for evaluating earthquake-damaged buildings using single-phase remote sensing imagery
  publication-title: Int. J. Rem. Sens.
  doi: 10.1080/01431161.2019.1655175
– volume: 14
  start-page: 3625
  year: 2021
  ident: 10.1016/j.jag.2022.102899_b0010
  article-title: Landslide Susceptibility Mapping Using Feature Fusion-Based CPCNN-ML in Lantau Island, Hong Kong
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2021.3066378
– volume: 12
  start-page: 1670
  year: 2020
  ident: 10.1016/j.jag.2022.102899_b0095
  article-title: BDD-Net: A General Protocol for Mapping Buildings Damaged by a Wide Range of Disasters Based on Satellite Imagery
  publication-title: Rem. Sens.
  doi: 10.3390/rs12101670
– volume: 25
  start-page: 1097
  year: 2012
  ident: 10.1016/j.jag.2022.102899_b0065
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Adv. Neural Inform. Process. Syst.
– volume: 140
  start-page: 45
  year: 2018
  ident: 10.1016/j.jag.2022.102899_b0120
  article-title: Disaster damage detection through synergistic use of deep learning and 3D point cloud features derived from very high resolution oblique aerial images, and multiple-kernel-learning
  publication-title: ISPRS J. Photogramm. Rem. Sens.
  doi: 10.1016/j.isprsjprs.2017.03.001
– volume: 117
  start-page: 34
  year: 2012
  ident: 10.1016/j.jag.2022.102899_b0130
  article-title: Remote sensing of impervious surfaces in the urban areas: Requirements, methods, and trends
  publication-title: Rem. Sens. Environ.
  doi: 10.1016/j.rse.2011.02.030
– start-page: 1
  year: 2021
  ident: 10.1016/j.jag.2022.102899_b0080
  article-title: Challenges and limitations of earthquake-induced building damage mapping techniques using remote sensing images-A systematic review
  publication-title: Geocarto Int.
– ident: 10.1016/j.jag.2022.102899_b0055
  doi: 10.1109/TSMC.1973.4309314
– volume: 100
  start-page: 290
  year: 2021
  ident: 10.1016/j.jag.2022.102899_b0025
  article-title: Pathways and challenges of the application of artificial intelligence to geohazards modelling
  publication-title: Gondwana Res.
  doi: 10.1016/j.gr.2020.08.007
– ident: 10.1016/j.jag.2022.102899_b0050
– volume: 6
  start-page: 4870
  year: 2014
  ident: 10.1016/j.jag.2022.102899_b0090
  article-title: Rapid Damage Assessment by Means of Multi-Temporal SAR — A Comprehensive Review and Outlook to Sentinel-1
  publication-title: Rem. Sens.
  doi: 10.3390/rs6064870
– volume: 51
  start-page: 991
  year: 2018
  ident: 10.1016/j.jag.2022.102899_b0020
  article-title: Building damage assessment scale tailored to remote sensing vertical imagery
  publication-title: Eur. J. Rem. Sens.
  doi: 10.1080/22797254.2018.1527662
– volume: 40
  start-page: 506
  year: 2019
  ident: 10.1016/j.jag.2022.102899_b0070
  article-title: Very high resolution remote sensing image classification with SEEDS-CNN and scale effect analysis for superpixel CNN classification
  publication-title: Int. J. Rem. Sens.
  doi: 10.1080/01431161.2018.1513666
– volume: 12
  start-page: 2839
  year: 2020
  ident: 10.1016/j.jag.2022.102899_b0110
  article-title: Multi-Hazard and Spatial Transferability of a CNN for Automated Building Damage Assessment
  publication-title: Rem. Sens.
  doi: 10.3390/rs12172839
– volume: 111
  start-page: 298
  year: 2015
  ident: 10.1016/j.jag.2022.102899_b0115
  article-title: SEEDS: Superpixels Extracted Via Energy-Driven Sampling
  publication-title: Int. J. Comput. Vision
  doi: 10.1007/s11263-014-0744-2
– volume: 12
  start-page: 1444
  year: 2020
  ident: 10.1016/j.jag.2022.102899_b0005
  article-title: Deep Learning Approaches Applied to Remote Sensing Datasets for Road Extraction: A State-Of-The-Art Review
  publication-title: Rem. Sens.
  doi: 10.3390/rs12091444
– volume: 8
  start-page: 4935
  year: 2015
  ident: 10.1016/j.jag.2022.102899_b0075
  article-title: A Soft Computing Method for Damage Mapping Using VHR Optical Satellite Imagery
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Rem. Sens.
  doi: 10.1109/JSTARS.2015.2493342
– ident: 10.1016/j.jag.2022.102899_b0045
SSID ssj0017768
Score 2.571218
Snippet •Superpixel-based direct change detection is capable of finding damages efficiently.•Extra feature enhancement bands accelerate the process of damage...
Accurate and quick building damage assessment is an indispensable step after a destructive earthquake. Acquiring building damage information of the seismic...
SourceID doaj
proquest
crossref
elsevier
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 102899
SubjectTerms Building damage detection and assessment
case studies
Convolutional neural network
Direct change detection
disaster preparedness
Earthquake damage index
earthquakes
geophysics
neural networks
Remote sensing
spatial data
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9wgEEZVTs2hatNE3b5EpZwqobI2NvjYRomiSt1cGik3hGHIa-Nsdr1Sf0B_eGcM3qQ5pJdKPtkYEDMwH8zwDWP702iMk9EJXVZRqDKAaIP3gqC5icEEqem-849ZfXyqvp9VZw9SfVFMWKIHTgP3Jeq29N43LqhS1ap2EeujTDdTRcd3gVZftHnjZir7D7ROl-CquhFGlcXozxwiu67cOW4Mi4JoC8xA-npvkQbi_r8M06MlerA7Ry_ZiwwY-dfU0VfsGXQ7bPsBjeAO2zu8v62GRfN0Xb1mv08WsMynfRxVur-4W7trELgPR4kG3uac2Dy4G1xXuNvQdHKKhz_nB7OZIDsXeDJ9fAkoWuArCnvH7-naMA_QDxFdHcdntcZGF5e_YM7nFJG0y06PDn8eHIucdkF4hEO9CB5cXTcmRgiyabWR0TsVcV8RfFki_lFo03QDoMCR17VoZOHBT42sICAgK_fYVnfbwRvGZTQtgqoiIrBQxIQDUsdKEsV7JVtnJkyOQ2995iSn1BhzOwafXVmUliVp2SStCfu8-WWRCDmeKvyN5LkpSFzawwvUMJs1zP5LwyZMjdpgMyxJY45VXT7V9qdRcyxOWfLDuA5u1ytbIB4gf7-u3_6P_r1jz6nZFJX4nm31yzV8QKTUtx-HSfEHp5sRyQ
  priority: 102
  providerName: Directory of Open Access Journals
Title Operational earthquake-induced building damage assessment using CNN-based direct remote sensing change detection on superpixel level
URI https://dx.doi.org/10.1016/j.jag.2022.102899
https://www.proquest.com/docview/2718270076
https://doaj.org/article/f7b3ccc9ad434646af3de302314e318d
Volume 112
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdG9wIPCAYT5aMyEk9IVt3EiZ3HUW0qAwoCJu3NcvzRdZS0tKnEH7A_fHeJ07E97AEpL0mcD_nOdz_77n4m5N0oKGV4MEymWWAidZ6VzlqG0FwFpxyXWO_8ZZpPzsTpeXa-R8ZdLQymVUbb39r0xlrHK8PYm8PVfD78ATOPQgmMFDREafIB2U_Au_Ie2T_6-Gky3QUTpGwr4qA9wwe64GaT5nVpZjBLTBLkMFANA-yNe2pY_G95qTv2unFCJ0_I44ge6VH7g0_Jnq8OyKN_OAUPyOHxTekaNI1jd_OMXH1d-XVc-qOg3_XFn6355RlMykG8jpZxg2zqzG8wMtTsODspJsfP6Hg6Zej0HG37jK49yNnTDebAw_22hpg6XzfpXRWFY7OFj67mf_2CLjA96Tk5Ozn-OZ6wuAcDs4CNauasNzn0cwje8aKUigdrRIBJhrNpCmBIgIOThffCGwzBJgVPrLcjxTPvAJ2lh6RXLSv_glAeVAkIKwmAMgTS4nguQ8aR7z3jpVF9wruu1zYSlOM-GQvdZaJdapCWRmnpVlp98n73yKpl57iv8QeU564hEms3F5brmY6apYMsU2ttYZxIRS5yE0B9cWOlkcDVYtcnotMGfUtP4VXz-779ttMcDeMXgzKm8svtRicADjD4L_OX__fqV-QhnrVJia9Jr15v_RsASnU5gIEw_v752yAOiEGz4HANna4U-w
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKewAOCAoVy9NInJCs9SZO7BzLqtWWtuFAK_VmOX5styzZZTcr8QP44cwkzpZy6AEpp8R2Is945nNm5jMhH0dBKcODYTLNAhOp86xy1jKE5io45bjEeufzMp9cii9X2dUOGfe1MJhWGW1_Z9Nbax3vDONsDpez2fAb7DwKJTBS0BKlyQdkD9mpQM33Dk9OJ-U2mCBlVxEH7Rl26IObbZrXjZnCLjFJkMNAtQywt-6pZfG_46X-sdetEzp-Sp5E9EgPuw98RnZ8vU8e_8UpuE8Ojm5L16BpXLvr5-T316VfxV9_FPS7uf65Md89g005iNfRKh6QTZ35AUaGmi1nJ8Xk-CkdlyVDp-doN2d05UHOnq4xBx6edzXE1PmmTe-qKVzrDbx0Ofvl53SO6UkvyOXx0cV4wuIZDMwCNmqYs97kMM8heMeLSioerBEBNhnOpimAIQEOThbeC28wBJsUPLHejhTPvAN0lh6Q3XpR-5eE8qAqQFhJAJQhkBbHcxkyjnzvGa-MGhDeT722kaAcz8mY6z4T7UaDtDRKS3fSGpBP2y7Ljp3jvsafUZ7bhkis3d5YrKY6apYOskqttYVxIhW5yE0A9cWDlUYC_xa7ARG9Nug7egpDze5794deczSsXwzKmNovNmudADjA4L_MX_3f0O_Jw8nF-Zk-OylPX5NH-KRLUHxDdpvVxr8F0NRU7-Ki-AOW7hVg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Operational+earthquake-induced+building+damage+assessment+using+CNN-based+direct+remote+sensing+change+detection+on+superpixel+level&rft.jtitle=International+journal+of+applied+earth+observation+and+geoinformation&rft.au=Qing%2C+Yuanzhao&rft.au=Ming%2C+Dongping&rft.au=Wen%2C+Qi&rft.au=Weng%2C+Qihao&rft.date=2022-08-01&rft.pub=Elsevier+B.V&rft.issn=1569-8432&rft.eissn=1872-826X&rft.volume=112&rft_id=info:doi/10.1016%2Fj.jag.2022.102899&rft.externalDocID=S1569843222001017
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1569-8432&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1569-8432&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1569-8432&client=summon