Operational earthquake-induced building damage assessment using CNN-based direct remote sensing change detection on superpixel level
•Superpixel-based direct change detection is capable of finding damages efficiently.•Extra feature enhancement bands accelerate the process of damage assessment.•Channel-expanded CNN model benefits simultaneous building damage analysis.•The potential of the proposed method in post-earthquake emergen...
Saved in:
Published in | International journal of applied earth observation and geoinformation Vol. 112; p. 102899 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.08.2022
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Superpixel-based direct change detection is capable of finding damages efficiently.•Extra feature enhancement bands accelerate the process of damage assessment.•Channel-expanded CNN model benefits simultaneous building damage analysis.•The potential of the proposed method in post-earthquake emergency is recognized.
Accurate and quick building damage assessment is an indispensable step after a destructive earthquake. Acquiring building damage information of the seismic area in a remotely sensed way enables a timely emergency response. Existing remote sensing building damage detection methods based on convolutional neural network (CNN) mainly need two-step processing or only use single post-event image, leading to low efficiency and inaccurate building boundary. Considering the practical needs of emergency rescue and post-disaster reconstruction, this study proposed a hierarchical building damage assessment workflow using CNN-based direct remote sensing change detection on superpixel level. First, vulnerable building areas close to the epicenter are extracted using extra feature enhancement bands (EFEBs) to narrow the extent of image processing. Then, fine scale building damage is detected in the extracted building areas based on a direct change detection method with pre-event superpixel constraint (PreSC) strategy to improve the precision and efficiency. Finally, a rapid remote sensing earthquake damage index (rRSEDI) is used to quantitatively assess the damage. Experimental results of the case study show that damaged buildings can be effectively and accurately localized and classified using the proposed workflow. Comparative experiments with single-temporal image and post-event segmentation further embody the superiority of the direct change detection. The damage assessment result matches the official report after Ludian earthquake, proving the reliability of the proposed workflow. For future natural hazard events, the workflow can contribute to formulating appropriate disaster management, prevention and mitigation policies. |
---|---|
AbstractList | •Superpixel-based direct change detection is capable of finding damages efficiently.•Extra feature enhancement bands accelerate the process of damage assessment.•Channel-expanded CNN model benefits simultaneous building damage analysis.•The potential of the proposed method in post-earthquake emergency is recognized.
Accurate and quick building damage assessment is an indispensable step after a destructive earthquake. Acquiring building damage information of the seismic area in a remotely sensed way enables a timely emergency response. Existing remote sensing building damage detection methods based on convolutional neural network (CNN) mainly need two-step processing or only use single post-event image, leading to low efficiency and inaccurate building boundary. Considering the practical needs of emergency rescue and post-disaster reconstruction, this study proposed a hierarchical building damage assessment workflow using CNN-based direct remote sensing change detection on superpixel level. First, vulnerable building areas close to the epicenter are extracted using extra feature enhancement bands (EFEBs) to narrow the extent of image processing. Then, fine scale building damage is detected in the extracted building areas based on a direct change detection method with pre-event superpixel constraint (PreSC) strategy to improve the precision and efficiency. Finally, a rapid remote sensing earthquake damage index (rRSEDI) is used to quantitatively assess the damage. Experimental results of the case study show that damaged buildings can be effectively and accurately localized and classified using the proposed workflow. Comparative experiments with single-temporal image and post-event segmentation further embody the superiority of the direct change detection. The damage assessment result matches the official report after Ludian earthquake, proving the reliability of the proposed workflow. For future natural hazard events, the workflow can contribute to formulating appropriate disaster management, prevention and mitigation policies. Accurate and quick building damage assessment is an indispensable step after a destructive earthquake. Acquiring building damage information of the seismic area in a remotely sensed way enables a timely emergency response. Existing remote sensing building damage detection methods based on convolutional neural network (CNN) mainly need two-step processing or only use single post-event image, leading to low efficiency and inaccurate building boundary. Considering the practical needs of emergency rescue and post-disaster reconstruction, this study proposed a hierarchical building damage assessment workflow using CNN-based direct remote sensing change detection on superpixel level. First, vulnerable building areas close to the epicenter are extracted using extra feature enhancement bands (EFEBs) to narrow the extent of image processing. Then, fine scale building damage is detected in the extracted building areas based on a direct change detection method with pre-event superpixel constraint (PreSC) strategy to improve the precision and efficiency. Finally, a rapid remote sensing earthquake damage index (rRSEDI) is used to quantitatively assess the damage. Experimental results of the case study show that damaged buildings can be effectively and accurately localized and classified using the proposed workflow. Comparative experiments with single-temporal image and post-event segmentation further embody the superiority of the direct change detection. The damage assessment result matches the official report after Ludian earthquake, proving the reliability of the proposed workflow. For future natural hazard events, the workflow can contribute to formulating appropriate disaster management, prevention and mitigation policies. |
ArticleNumber | 102899 |
Author | Weng, Qihao Qing, Yuanzhao Xu, Lu Wen, Qi Zeng, Beichen Chen, Yangyang Zhang, Yi Ming, Dongping |
Author_xml | – sequence: 1 givenname: Yuanzhao surname: Qing fullname: Qing, Yuanzhao organization: School of Information Engineering, China University of Geosciences (Beijing), Beijing 100083, China – sequence: 2 givenname: Dongping orcidid: 0000-0002-3422-7399 surname: Ming fullname: Ming, Dongping email: mingdp@cugb.edu.cn organization: School of Information Engineering, China University of Geosciences (Beijing), Beijing 100083, China – sequence: 3 givenname: Qi surname: Wen fullname: Wen, Qi organization: National Disaster Reduction Center, Ministry of Emergency Management, Beijing 100124, China – sequence: 4 givenname: Qihao surname: Weng fullname: Weng, Qihao organization: Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University, Hong Kong, China – sequence: 5 givenname: Lu surname: Xu fullname: Xu, Lu organization: School of Information Engineering, China University of Geosciences (Beijing), Beijing 100083, China – sequence: 6 givenname: Yangyang surname: Chen fullname: Chen, Yangyang organization: School of Information Engineering, China University of Geosciences (Beijing), Beijing 100083, China – sequence: 7 givenname: Yi surname: Zhang fullname: Zhang, Yi organization: School of Information Engineering, China University of Geosciences (Beijing), Beijing 100083, China – sequence: 8 givenname: Beichen surname: Zeng fullname: Zeng, Beichen organization: School of Information Engineering, China University of Geosciences (Beijing), Beijing 100083, China |
BookMark | eNp9UU1v1DAUjFCRaAs_gFuOXLL1Z-yIE1oBrVS1F5C4WW_tl62D42ztpCp3fjjeDVw4VLJk-72ZefbMRXUWp4hV9Z6SDSW0vRo2A-w3jDBW7kx33avqnGrFGs3aH2flLNuu0YKzN9VFzgMhVKlWn1e_7w-YYPZThFAjpPnhcYGf2PjoFouu3i0-OB_3tYMR9lhDzpjziHGul3ysb-_umh3kAnU-oZ3rhOM0Y50xnvr2AWLhOZxLs4ypy8pLGXrwzxjqgE8Y3lavewgZ3_3dL6vvXz5_2143t_dfb7afbhsriZwbZxHattN9j450O6VJb0H0UktnOZdUCsq06hAFgpCas44wi5ZqItFJIflldbPqugkGc0h-hPTLTODNqTClvSkOeBvQ9GrHrbUdOMFFK1rouUNOGKcCOdWuaH1YtQ5pelwwz2b02WIIEHFasmGKaqYIUW2BqhVq05Rzwt5YP588nxP4YCgxxwzNYEqG5pihWTMsTPof89-jX-J8XDlYnHzymEy2HmMJ85RP-ap_gf0Hqyy5BQ |
CitedBy_id | crossref_primary_10_1109_JSTARS_2024_3386830 crossref_primary_10_1109_TGRS_2024_3428551 crossref_primary_10_1080_22797254_2024_2318357 crossref_primary_10_1109_JSTARS_2024_3452948 crossref_primary_10_1080_22797254_2023_2252166 crossref_primary_10_1109_TGRS_2024_3376389 crossref_primary_10_1109_ACCESS_2024_3465027 crossref_primary_10_1109_TGRS_2024_3367970 crossref_primary_10_1109_JSTARS_2024_3522389 crossref_primary_10_1109_ACCESS_2024_3467149 crossref_primary_10_1109_JSTARS_2023_3339642 crossref_primary_10_1109_TGRS_2024_3494257 crossref_primary_10_1109_TGRS_2025_3530934 crossref_primary_10_1109_TGRS_2023_3346968 crossref_primary_10_1109_TGRS_2024_3496994 crossref_primary_10_1109_JSTARS_2024_3468949 crossref_primary_10_1111_phor_12530 crossref_primary_10_1109_TGRS_2024_3360516 crossref_primary_10_1111_tgis_70020 crossref_primary_10_1109_TGRS_2024_3384927 crossref_primary_10_1109_JSTARS_2024_3403882 crossref_primary_10_3390_buildings14082344 crossref_primary_10_1109_JSTARS_2024_3416183 crossref_primary_10_1109_TGRS_2024_3519195 crossref_primary_10_1109_TGRS_2024_3408330 crossref_primary_10_1109_JSTARS_2024_3449097 crossref_primary_10_1016_j_jag_2024_104282 crossref_primary_10_1007_s12145_024_01574_2 crossref_primary_10_1007_s40996_023_01328_y crossref_primary_10_1109_TGRS_2024_3504742 crossref_primary_10_1080_17538947_2024_2430678 crossref_primary_10_1109_JSTARS_2024_3367853 |
Cites_doi | 10.1016/j.isprsjprs.2013.06.011 10.3390/s19030542 10.1016/j.rse.2021.112636 10.1080/15481603.2021.1933367 10.1080/01431161.2019.1655175 10.1109/JSTARS.2021.3066378 10.3390/rs12101670 10.1016/j.isprsjprs.2017.03.001 10.1016/j.rse.2011.02.030 10.1109/TSMC.1973.4309314 10.1016/j.gr.2020.08.007 10.3390/rs6064870 10.1080/22797254.2018.1527662 10.1080/01431161.2018.1513666 10.3390/rs12172839 10.1007/s11263-014-0744-2 10.3390/rs12091444 10.1109/JSTARS.2015.2493342 |
ContentType | Journal Article |
Copyright | 2022 China University of Geosciences Beijing |
Copyright_xml | – notice: 2022 China University of Geosciences Beijing |
DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6 DOA |
DOI | 10.1016/j.jag.2022.102899 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences |
EISSN | 1872-826X |
ExternalDocumentID | oai_doaj_org_article_f7b3ccc9ad434646af3de302314e318d 10_1016_j_jag_2022_102899 S1569843222001017 |
GroupedDBID | 29J 4.4 5GY 6I. AAFTH AAQXK AAXUO ABFYP ABLST ABQEM ABQYD ABYKQ ACLVX ACRLP ACSBN ADBBV ADMUD AFKWA AFTJW AFXIZ AGYEJ AHEUO AIKHN AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AZFZN BKOJK BLECG EBS EJD FDB FEDTE FIRID FYGXN GROUPED_DOAJ HVGLF IMUCA KCYFY KOM M41 O-L P-8 P-9 P2P R2- RIG ROL SDF SDG SES SPC SSE SSJ T5K ~02 AAHBH AALRI AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ADNMO ADVLN AEIPS AFJKZ AGCQF AGQPQ AGRNS AIIUN AITUG ANKPU APXCP BNPGV CITATION EFJIC SSH 7S9 L.6 EFKBS |
ID | FETCH-LOGICAL-c505t-dcea6698ffed09b780fca4f585dc33515412879ee4ea45832902cec1805ed5453 |
IEDL.DBID | AIKHN |
ISSN | 1569-8432 |
IngestDate | Wed Aug 27 01:32:02 EDT 2025 Fri Jul 11 04:06:09 EDT 2025 Thu Apr 24 23:09:24 EDT 2025 Tue Jul 01 02:15:21 EDT 2025 Fri Feb 23 02:36:32 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Building damage detection and assessment Convolutional neural network Remote sensing Direct change detection Earthquake damage index |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c505t-dcea6698ffed09b780fca4f585dc33515412879ee4ea45832902cec1805ed5453 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-3422-7399 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1569843222001017 |
PQID | 2718270076 |
PQPubID | 24069 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f7b3ccc9ad434646af3de302314e318d proquest_miscellaneous_2718270076 crossref_citationtrail_10_1016_j_jag_2022_102899 crossref_primary_10_1016_j_jag_2022_102899 elsevier_sciencedirect_doi_10_1016_j_jag_2022_102899 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2022 2022-08-00 20220801 2022-08-01 |
PublicationDateYYYYMMDD | 2022-08-01 |
PublicationDate_xml | – month: 08 year: 2022 text: August 2022 |
PublicationDecade | 2020 |
PublicationTitle | International journal of applied earth observation and geoinformation |
PublicationYear | 2022 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Van den Bergh, Boix, Roig, Van Gool (b0115) 2015; 111 Abdollahi, Pradhan, Shukla, Chakraborty, Alamri (b0005) 2020; 12 Monfort, Negulescu, Belvaux (b0085) 2019; 14 Song, Tan, Wang, Zhang, Shan, Cui (b0100) 2020; 41 Grünthal, G., 1998. European Macroseismic Scale 1998 (EMS-98). European Seismological Committee. Dou, Wang, Ding, Yuan, Wang, Dong, Jin (b0035) 2012; 27 Dong, Shan (b0030) 2013; 84 Lv, Ming, Chen, Wang (b0070) 2019; 40 Chen, Weng, Tang, Liu, Zhang, Bilal (b0015) 2021; 58 Chen, Ming, Ling, Lv, Zhou (b0010) 2021; 14 Mansouri, Hamednia (b0075) 2015; 8 Wang, Dou, Ding, Li (b0125) 2015; 17 Zheng, Zhong, Wang, Ma, Zhang (b0135) 2021; 265 Cotrufo, Sandu, Giulio Tonolo, Boccardo (b0020) 2018; 51 Krizhevsky, Sutskever, Hinton (b0065) 2012; 25 Plank (b0090) 2014; 6 Syifa, Kadavi, Lee (b0105) 2019; 19 Vetrivel, Gerke, Kerle, Nex, Vosselman (b0120) 2018; 140 Shao, Tang, Liu, Shao, Sun, Qiu (b0095) 2020; 12 Dubois, Lepage (b0040) 2013 Valentijn, Margutti, van den Homberg, Laaksonen (b0110) 2020; 12 Weng (b0130) 2012; 117 Matin, Pradhan (b0080) 2021 Dikshit, Pradhan, Alamri (b0025) 2021; 100 Haralick, R.M., Shanmugam, K., Dinstein, I.H., 1973. Textural Features for Image Classification. IEEE Trans. Syst., Man, Cybernet. SMC-3, 610-621. Gupta, R., Hosfelt, R., Sajeev, S., Patel, N., Goodman, B., Doshi, J., Heim, E., Choset, H., Gaston, M., 2019. xBD: A Dataset for Assessing Building Damage from Satellite Imagery, p. arXiv:1911.09296. Kerle (b0060) 2010; 12 Matin (10.1016/j.jag.2022.102899_b0080) 2021 Monfort (10.1016/j.jag.2022.102899_b0085) 2019; 14 Dou (10.1016/j.jag.2022.102899_b0035) 2012; 27 Weng (10.1016/j.jag.2022.102899_b0130) 2012; 117 Shao (10.1016/j.jag.2022.102899_b0095) 2020; 12 10.1016/j.jag.2022.102899_b0055 10.1016/j.jag.2022.102899_b0050 Dubois (10.1016/j.jag.2022.102899_b0040) 2013 Mansouri (10.1016/j.jag.2022.102899_b0075) 2015; 8 Valentijn (10.1016/j.jag.2022.102899_b0110) 2020; 12 Chen (10.1016/j.jag.2022.102899_b0015) 2021; 58 Lv (10.1016/j.jag.2022.102899_b0070) 2019; 40 Cotrufo (10.1016/j.jag.2022.102899_b0020) 2018; 51 Syifa (10.1016/j.jag.2022.102899_b0105) 2019; 19 Dikshit (10.1016/j.jag.2022.102899_b0025) 2021; 100 Krizhevsky (10.1016/j.jag.2022.102899_b0065) 2012; 25 Dong (10.1016/j.jag.2022.102899_b0030) 2013; 84 Zheng (10.1016/j.jag.2022.102899_b0135) 2021; 265 Chen (10.1016/j.jag.2022.102899_b0010) 2021; 14 Van den Bergh (10.1016/j.jag.2022.102899_b0115) 2015; 111 10.1016/j.jag.2022.102899_b0045 Plank (10.1016/j.jag.2022.102899_b0090) 2014; 6 Abdollahi (10.1016/j.jag.2022.102899_b0005) 2020; 12 Song (10.1016/j.jag.2022.102899_b0100) 2020; 41 Wang (10.1016/j.jag.2022.102899_b0125) 2015; 17 Kerle (10.1016/j.jag.2022.102899_b0060) 2010; 12 Vetrivel (10.1016/j.jag.2022.102899_b0120) 2018; 140 |
References_xml | – start-page: 1 year: 2021 end-page: 27 ident: b0080 article-title: Challenges and limitations of earthquake-induced building damage mapping techniques using remote sensing images-A systematic review publication-title: Geocarto Int. – start-page: 695 year: 2013 end-page: 698 ident: b0040 article-title: Automated building damage classification for the case of the 2010 Haiti earthquake publication-title: 2013 IEEE International Geoscience and Remote Sensing Symposium - – volume: 12 start-page: 1444 year: 2020 ident: b0005 article-title: Deep Learning Approaches Applied to Remote Sensing Datasets for Road Extraction: A State-Of-The-Art Review publication-title: Rem. Sens. – volume: 84 start-page: 85 year: 2013 end-page: 99 ident: b0030 article-title: A comprehensive review of earthquake-induced building damage detection with remote sensing techniques publication-title: ISPRS J. Photogramm. Rem. Sens. – volume: 6 start-page: 4870 year: 2014 end-page: 4906 ident: b0090 article-title: Rapid Damage Assessment by Means of Multi-Temporal SAR — A Comprehensive Review and Outlook to Sentinel-1 publication-title: Rem. Sens. – reference: Gupta, R., Hosfelt, R., Sajeev, S., Patel, N., Goodman, B., Doshi, J., Heim, E., Choset, H., Gaston, M., 2019. xBD: A Dataset for Assessing Building Damage from Satellite Imagery, p. arXiv:1911.09296. – volume: 8 start-page: 4935 year: 2015 end-page: 4941 ident: b0075 article-title: A Soft Computing Method for Damage Mapping Using VHR Optical Satellite Imagery publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Rem. Sens. – volume: 14 start-page: 46 year: 2019 end-page: 59 ident: b0085 article-title: Remote sensing vs. field survey data in a post-earthquake context: Potentialities and limits of damaged building assessment datasets publication-title: Rem. Sens. Appl.: Soc. Environ. – reference: Haralick, R.M., Shanmugam, K., Dinstein, I.H., 1973. Textural Features for Image Classification. IEEE Trans. Syst., Man, Cybernet. SMC-3, 610-621. – volume: 12 start-page: 2839 year: 2020 ident: b0110 article-title: Multi-Hazard and Spatial Transferability of a CNN for Automated Building Damage Assessment publication-title: Rem. Sens. – volume: 12 start-page: 1670 year: 2020 ident: b0095 article-title: BDD-Net: A General Protocol for Mapping Buildings Damaged by a Wide Range of Disasters Based on Satellite Imagery publication-title: Rem. Sens. – volume: 58 start-page: 624 year: 2021 end-page: 642 ident: b0015 article-title: Automatic mapping of urban green spaces using a geospatial neural network publication-title: Gisci. Rem. Sens. – volume: 17 start-page: 1536 year: 2015 end-page: 1544 ident: b0125 article-title: Advance on the RS-based Emergency Seismic Intensity Assessment publication-title: J. Geo-Inform. Sci. – reference: Grünthal, G., 1998. European Macroseismic Scale 1998 (EMS-98). European Seismological Committee. – volume: 12 start-page: 466 year: 2010 end-page: 476 ident: b0060 article-title: Satellite-based damage mapping following the 2006 Indonesia earthquake—How accurate was it? publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 117 start-page: 34 year: 2012 end-page: 49 ident: b0130 article-title: Remote sensing of impervious surfaces in the urban areas: Requirements, methods, and trends publication-title: Rem. Sens. Environ. – volume: 25 start-page: 1097 year: 2012 end-page: 1105 ident: b0065 article-title: Imagenet classification with deep convolutional neural networks publication-title: Adv. Neural Inform. Process. Syst. – volume: 41 start-page: 1040 year: 2020 end-page: 1066 ident: b0100 article-title: Integration of super-pixel segmentation and deep-learning methods for evaluating earthquake-damaged buildings using single-phase remote sensing imagery publication-title: Int. J. Rem. Sens. – volume: 14 start-page: 3625 year: 2021 end-page: 3639 ident: b0010 article-title: Landslide Susceptibility Mapping Using Feature Fusion-Based CPCNN-ML in Lantau Island, Hong Kong publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. – volume: 140 start-page: 45 year: 2018 end-page: 59 ident: b0120 article-title: Disaster damage detection through synergistic use of deep learning and 3D point cloud features derived from very high resolution oblique aerial images, and multiple-kernel-learning publication-title: ISPRS J. Photogramm. Rem. Sens. – volume: 100 start-page: 290 year: 2021 end-page: 301 ident: b0025 article-title: Pathways and challenges of the application of artificial intelligence to geohazards modelling publication-title: Gondwana Res. – volume: 19 start-page: 542 year: 2019 ident: b0105 article-title: An Artificial Intelligence Application for Post-Earthquake Damage Mapping in Palu, Central Sulawesi, Indonesia publication-title: Sensors – volume: 51 start-page: 991 year: 2018 end-page: 1005 ident: b0020 article-title: Building damage assessment scale tailored to remote sensing vertical imagery publication-title: Eur. J. Rem. Sens. – volume: 27 start-page: 75 year: 2012 end-page: 80 ident: b0035 article-title: Quantitative Methods of Rapid Earthquake Damage Assessment Using Remote Sensing and Its Application in Yushu Earthquake publication-title: J. Catastrophol. – volume: 265 start-page: 112636 year: 2021 ident: b0135 article-title: Building damage assessment for rapid disaster response with a deep object-based semantic change detection framework: From natural disasters to man-made disasters publication-title: Rem. Sens. Environ. – volume: 40 start-page: 506 year: 2019 end-page: 531 ident: b0070 article-title: Very high resolution remote sensing image classification with SEEDS-CNN and scale effect analysis for superpixel CNN classification publication-title: Int. J. Rem. Sens. – volume: 111 start-page: 298 year: 2015 end-page: 314 ident: b0115 article-title: SEEDS: Superpixels Extracted Via Energy-Driven Sampling publication-title: Int. J. Comput. Vision – volume: 27 start-page: 75 year: 2012 ident: 10.1016/j.jag.2022.102899_b0035 article-title: Quantitative Methods of Rapid Earthquake Damage Assessment Using Remote Sensing and Its Application in Yushu Earthquake publication-title: J. Catastrophol. – volume: 84 start-page: 85 year: 2013 ident: 10.1016/j.jag.2022.102899_b0030 article-title: A comprehensive review of earthquake-induced building damage detection with remote sensing techniques publication-title: ISPRS J. Photogramm. Rem. Sens. doi: 10.1016/j.isprsjprs.2013.06.011 – volume: 14 start-page: 46 year: 2019 ident: 10.1016/j.jag.2022.102899_b0085 article-title: Remote sensing vs. field survey data in a post-earthquake context: Potentialities and limits of damaged building assessment datasets publication-title: Rem. Sens. Appl.: Soc. Environ. – start-page: 695 year: 2013 ident: 10.1016/j.jag.2022.102899_b0040 article-title: Automated building damage classification for the case of the 2010 Haiti earthquake – volume: 19 start-page: 542 year: 2019 ident: 10.1016/j.jag.2022.102899_b0105 article-title: An Artificial Intelligence Application for Post-Earthquake Damage Mapping in Palu, Central Sulawesi, Indonesia publication-title: Sensors doi: 10.3390/s19030542 – volume: 265 start-page: 112636 year: 2021 ident: 10.1016/j.jag.2022.102899_b0135 article-title: Building damage assessment for rapid disaster response with a deep object-based semantic change detection framework: From natural disasters to man-made disasters publication-title: Rem. Sens. Environ. doi: 10.1016/j.rse.2021.112636 – volume: 17 start-page: 1536 year: 2015 ident: 10.1016/j.jag.2022.102899_b0125 article-title: Advance on the RS-based Emergency Seismic Intensity Assessment publication-title: J. Geo-Inform. Sci. – volume: 58 start-page: 624 year: 2021 ident: 10.1016/j.jag.2022.102899_b0015 article-title: Automatic mapping of urban green spaces using a geospatial neural network publication-title: Gisci. Rem. Sens. doi: 10.1080/15481603.2021.1933367 – volume: 12 start-page: 466 year: 2010 ident: 10.1016/j.jag.2022.102899_b0060 article-title: Satellite-based damage mapping following the 2006 Indonesia earthquake—How accurate was it? publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 41 start-page: 1040 year: 2020 ident: 10.1016/j.jag.2022.102899_b0100 article-title: Integration of super-pixel segmentation and deep-learning methods for evaluating earthquake-damaged buildings using single-phase remote sensing imagery publication-title: Int. J. Rem. Sens. doi: 10.1080/01431161.2019.1655175 – volume: 14 start-page: 3625 year: 2021 ident: 10.1016/j.jag.2022.102899_b0010 article-title: Landslide Susceptibility Mapping Using Feature Fusion-Based CPCNN-ML in Lantau Island, Hong Kong publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2021.3066378 – volume: 12 start-page: 1670 year: 2020 ident: 10.1016/j.jag.2022.102899_b0095 article-title: BDD-Net: A General Protocol for Mapping Buildings Damaged by a Wide Range of Disasters Based on Satellite Imagery publication-title: Rem. Sens. doi: 10.3390/rs12101670 – volume: 25 start-page: 1097 year: 2012 ident: 10.1016/j.jag.2022.102899_b0065 article-title: Imagenet classification with deep convolutional neural networks publication-title: Adv. Neural Inform. Process. Syst. – volume: 140 start-page: 45 year: 2018 ident: 10.1016/j.jag.2022.102899_b0120 article-title: Disaster damage detection through synergistic use of deep learning and 3D point cloud features derived from very high resolution oblique aerial images, and multiple-kernel-learning publication-title: ISPRS J. Photogramm. Rem. Sens. doi: 10.1016/j.isprsjprs.2017.03.001 – volume: 117 start-page: 34 year: 2012 ident: 10.1016/j.jag.2022.102899_b0130 article-title: Remote sensing of impervious surfaces in the urban areas: Requirements, methods, and trends publication-title: Rem. Sens. Environ. doi: 10.1016/j.rse.2011.02.030 – start-page: 1 year: 2021 ident: 10.1016/j.jag.2022.102899_b0080 article-title: Challenges and limitations of earthquake-induced building damage mapping techniques using remote sensing images-A systematic review publication-title: Geocarto Int. – ident: 10.1016/j.jag.2022.102899_b0055 doi: 10.1109/TSMC.1973.4309314 – volume: 100 start-page: 290 year: 2021 ident: 10.1016/j.jag.2022.102899_b0025 article-title: Pathways and challenges of the application of artificial intelligence to geohazards modelling publication-title: Gondwana Res. doi: 10.1016/j.gr.2020.08.007 – ident: 10.1016/j.jag.2022.102899_b0050 – volume: 6 start-page: 4870 year: 2014 ident: 10.1016/j.jag.2022.102899_b0090 article-title: Rapid Damage Assessment by Means of Multi-Temporal SAR — A Comprehensive Review and Outlook to Sentinel-1 publication-title: Rem. Sens. doi: 10.3390/rs6064870 – volume: 51 start-page: 991 year: 2018 ident: 10.1016/j.jag.2022.102899_b0020 article-title: Building damage assessment scale tailored to remote sensing vertical imagery publication-title: Eur. J. Rem. Sens. doi: 10.1080/22797254.2018.1527662 – volume: 40 start-page: 506 year: 2019 ident: 10.1016/j.jag.2022.102899_b0070 article-title: Very high resolution remote sensing image classification with SEEDS-CNN and scale effect analysis for superpixel CNN classification publication-title: Int. J. Rem. Sens. doi: 10.1080/01431161.2018.1513666 – volume: 12 start-page: 2839 year: 2020 ident: 10.1016/j.jag.2022.102899_b0110 article-title: Multi-Hazard and Spatial Transferability of a CNN for Automated Building Damage Assessment publication-title: Rem. Sens. doi: 10.3390/rs12172839 – volume: 111 start-page: 298 year: 2015 ident: 10.1016/j.jag.2022.102899_b0115 article-title: SEEDS: Superpixels Extracted Via Energy-Driven Sampling publication-title: Int. J. Comput. Vision doi: 10.1007/s11263-014-0744-2 – volume: 12 start-page: 1444 year: 2020 ident: 10.1016/j.jag.2022.102899_b0005 article-title: Deep Learning Approaches Applied to Remote Sensing Datasets for Road Extraction: A State-Of-The-Art Review publication-title: Rem. Sens. doi: 10.3390/rs12091444 – volume: 8 start-page: 4935 year: 2015 ident: 10.1016/j.jag.2022.102899_b0075 article-title: A Soft Computing Method for Damage Mapping Using VHR Optical Satellite Imagery publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Rem. Sens. doi: 10.1109/JSTARS.2015.2493342 – ident: 10.1016/j.jag.2022.102899_b0045 |
SSID | ssj0017768 |
Score | 2.571218 |
Snippet | •Superpixel-based direct change detection is capable of finding damages efficiently.•Extra feature enhancement bands accelerate the process of damage... Accurate and quick building damage assessment is an indispensable step after a destructive earthquake. Acquiring building damage information of the seismic... |
SourceID | doaj proquest crossref elsevier |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 102899 |
SubjectTerms | Building damage detection and assessment case studies Convolutional neural network Direct change detection disaster preparedness Earthquake damage index earthquakes geophysics neural networks Remote sensing spatial data |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9wgEEZVTs2hatNE3b5EpZwqobI2NvjYRomiSt1cGik3hGHIa-Nsdr1Sf0B_eGcM3qQ5pJdKPtkYEDMwH8zwDWP702iMk9EJXVZRqDKAaIP3gqC5icEEqem-849ZfXyqvp9VZw9SfVFMWKIHTgP3Jeq29N43LqhS1ap2EeujTDdTRcd3gVZftHnjZir7D7ROl-CquhFGlcXozxwiu67cOW4Mi4JoC8xA-npvkQbi_r8M06MlerA7Ry_ZiwwY-dfU0VfsGXQ7bPsBjeAO2zu8v62GRfN0Xb1mv08WsMynfRxVur-4W7trELgPR4kG3uac2Dy4G1xXuNvQdHKKhz_nB7OZIDsXeDJ9fAkoWuArCnvH7-naMA_QDxFdHcdntcZGF5e_YM7nFJG0y06PDn8eHIucdkF4hEO9CB5cXTcmRgiyabWR0TsVcV8RfFki_lFo03QDoMCR17VoZOHBT42sICAgK_fYVnfbwRvGZTQtgqoiIrBQxIQDUsdKEsV7JVtnJkyOQ2995iSn1BhzOwafXVmUliVp2SStCfu8-WWRCDmeKvyN5LkpSFzawwvUMJs1zP5LwyZMjdpgMyxJY45VXT7V9qdRcyxOWfLDuA5u1ytbIB4gf7-u3_6P_r1jz6nZFJX4nm31yzV8QKTUtx-HSfEHp5sRyQ priority: 102 providerName: Directory of Open Access Journals |
Title | Operational earthquake-induced building damage assessment using CNN-based direct remote sensing change detection on superpixel level |
URI | https://dx.doi.org/10.1016/j.jag.2022.102899 https://www.proquest.com/docview/2718270076 https://doaj.org/article/f7b3ccc9ad434646af3de302314e318d |
Volume | 112 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdG9wIPCAYT5aMyEk9IVt3EiZ3HUW0qAwoCJu3NcvzRdZS0tKnEH7A_fHeJ07E97AEpL0mcD_nOdz_77n4m5N0oKGV4MEymWWAidZ6VzlqG0FwFpxyXWO_8ZZpPzsTpeXa-R8ZdLQymVUbb39r0xlrHK8PYm8PVfD78ATOPQgmMFDREafIB2U_Au_Ie2T_6-Gky3QUTpGwr4qA9wwe64GaT5nVpZjBLTBLkMFANA-yNe2pY_G95qTv2unFCJ0_I44ge6VH7g0_Jnq8OyKN_OAUPyOHxTekaNI1jd_OMXH1d-XVc-qOg3_XFn6355RlMykG8jpZxg2zqzG8wMtTsODspJsfP6Hg6Zej0HG37jK49yNnTDebAw_22hpg6XzfpXRWFY7OFj67mf_2CLjA96Tk5Ozn-OZ6wuAcDs4CNauasNzn0cwje8aKUigdrRIBJhrNpCmBIgIOThffCGwzBJgVPrLcjxTPvAJ2lh6RXLSv_glAeVAkIKwmAMgTS4nguQ8aR7z3jpVF9wruu1zYSlOM-GQvdZaJdapCWRmnpVlp98n73yKpl57iv8QeU564hEms3F5brmY6apYMsU2ttYZxIRS5yE0B9cWOlkcDVYtcnotMGfUtP4VXz-779ttMcDeMXgzKm8svtRicADjD4L_OX__fqV-QhnrVJia9Jr15v_RsASnU5gIEw_v752yAOiEGz4HANna4U-w |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKewAOCAoVy9NInJCs9SZO7BzLqtWWtuFAK_VmOX5styzZZTcr8QP44cwkzpZy6AEpp8R2Is945nNm5jMhH0dBKcODYTLNAhOp86xy1jKE5io45bjEeufzMp9cii9X2dUOGfe1MJhWGW1_Z9Nbax3vDONsDpez2fAb7DwKJTBS0BKlyQdkD9mpQM33Dk9OJ-U2mCBlVxEH7Rl26IObbZrXjZnCLjFJkMNAtQywt-6pZfG_46X-sdetEzp-Sp5E9EgPuw98RnZ8vU8e_8UpuE8Ojm5L16BpXLvr5-T316VfxV9_FPS7uf65Md89g005iNfRKh6QTZ35AUaGmi1nJ8Xk-CkdlyVDp-doN2d05UHOnq4xBx6edzXE1PmmTe-qKVzrDbx0Ofvl53SO6UkvyOXx0cV4wuIZDMwCNmqYs97kMM8heMeLSioerBEBNhnOpimAIQEOThbeC28wBJsUPLHejhTPvAN0lh6Q3XpR-5eE8qAqQFhJAJQhkBbHcxkyjnzvGa-MGhDeT722kaAcz8mY6z4T7UaDtDRKS3fSGpBP2y7Ljp3jvsafUZ7bhkis3d5YrKY6apYOskqttYVxIhW5yE0A9cWDlUYC_xa7ARG9Nug7egpDze5794deczSsXwzKmNovNmudADjA4L_MX_3f0O_Jw8nF-Zk-OylPX5NH-KRLUHxDdpvVxr8F0NRU7-Ki-AOW7hVg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Operational+earthquake-induced+building+damage+assessment+using+CNN-based+direct+remote+sensing+change+detection+on+superpixel+level&rft.jtitle=International+journal+of+applied+earth+observation+and+geoinformation&rft.au=Qing%2C+Yuanzhao&rft.au=Ming%2C+Dongping&rft.au=Wen%2C+Qi&rft.au=Weng%2C+Qihao&rft.date=2022-08-01&rft.pub=Elsevier+B.V&rft.issn=1569-8432&rft.eissn=1872-826X&rft.volume=112&rft_id=info:doi/10.1016%2Fj.jag.2022.102899&rft.externalDocID=S1569843222001017 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1569-8432&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1569-8432&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1569-8432&client=summon |