Plant roots sense soil compaction through restricted ethylene diffusion
It's tough to drive a spade through compacted soil, and plant roots seem to have the same problem when growing in compacted ground. Pandey et al. found that the problem is not, however, one of physical resistance but rather inhibition of growth through a signaling pathway. The volatile plant ho...
Saved in:
Published in | Science (American Association for the Advancement of Science) Vol. 371; no. 6526; pp. 276 - 280 |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
The American Association for the Advancement of Science
15.01.2021
American Association for the Advancement of Science (AAAS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | It's tough to drive a spade through compacted soil, and plant roots seem to have the same problem when growing in compacted ground. Pandey
et al.
found that the problem is not, however, one of physical resistance but rather inhibition of growth through a signaling pathway. The volatile plant hormone ethylene will diffuse through aerated soil, but compacted soil reduces such diffusion, increasing the concentration of ethylene near root tissues. The cellular signaling cascades triggered by too much ethylene stop root growth. Therefore, gaseous diffusion serves as a readout of soil compaction for plant roots growing in search of productive nutrition.
Science
, this issue p.
276
Compacted soil restrains diffusion of the volatile plant hormone ethylene, increasing its signal strength and restricting root growth.
Soil compaction represents a major challenge for modern agriculture. Compaction is intuitively thought to reduce root growth by limiting the ability of roots to penetrate harder soils. We report that root growth in compacted soil is instead actively suppressed by the volatile hormone ethylene. We found that mutant
Arabidopsis
and rice roots that were insensitive to ethylene penetrated compacted soil more effectively than did wild-type roots. Our results indicate that soil compaction lowers gas diffusion through a reduction in air-filled pores, thereby causing ethylene to accumulate in root tissues and trigger hormone responses that restrict growth. We propose that ethylene acts as an early warning signal for roots to avoid compacted soils, which would be relevant to research into the breeding of crops resilient to soil compaction. |
---|---|
AbstractList | Soil compaction represents a major challenge for modern agriculture. Compaction is intuitively thought to reduce root growth by limiting the ability of roots to penetrate harder soils. We report that root growth in compacted soil is instead actively suppressed by the volatile hormone ethylene. We found that mutant Arabidopsis and rice roots that were insensitive to ethylene penetrated compacted soil more effectively than did wild-type roots. Our results indicate that soil compaction lowers gas diffusion through a reduction in air-filled pores, thereby causing ethylene to accumulate in root tissues and trigger hormone responses that restrict growth. We propose that ethylene acts as an early warning signal for roots to avoid compacted soils, which would be relevant to research into the breeding of crops resilient to soil compaction. Ethylene aplenty signals soil compactionIt's tough to drive a spade through compacted soil, and plant roots seem to have the same problem when growing in compacted ground. Pandey et al. found that the problem is not, however, one of physical resistance but rather inhibition of growth through a signaling pathway. The volatile plant hormone ethylene will diffuse through aerated soil, but compacted soil reduces such diffusion, increasing the concentration of ethylene near root tissues. The cellular signaling cascades triggered by too much ethylene stop root growth. Therefore, gaseous diffusion serves as a readout of soil compaction for plant roots growing in search of productive nutrition.Science, this issue p. 276Soil compaction represents a major challenge for modern agriculture. Compaction is intuitively thought to reduce root growth by limiting the ability of roots to penetrate harder soils. We report that root growth in compacted soil is instead actively suppressed by the volatile hormone ethylene. We found that mutant Arabidopsis and rice roots that were insensitive to ethylene penetrated compacted soil more effectively than did wild-type roots. Our results indicate that soil compaction lowers gas diffusion through a reduction in air-filled pores, thereby causing ethylene to accumulate in root tissues and trigger hormone responses that restrict growth. We propose that ethylene acts as an early warning signal for roots to avoid compacted soils, which would be relevant to research into the breeding of crops resilient to soil compaction. Soil compaction represents a major challenge for modern agriculture. Compaction is intuitively thought to reduce root growth by limiting the ability of roots to penetrate harder soils. We report that root growth in compacted soil is instead actively suppressed by the volatile hormone ethylene. We found that mutant Arabidopsis and rice roots that were insensitive to ethylene penetrated compacted soil more effectively than did wild-type roots. Our results indicate that soil compaction lowers gas diffusion through a reduction in air-filled pores, thereby causing ethylene to accumulate in root tissues and trigger hormone responses that restrict growth. We propose that ethylene acts as an early warning signal for roots to avoid compacted soils, which would be relevant to research into the breeding of crops resilient to soil compaction.Soil compaction represents a major challenge for modern agriculture. Compaction is intuitively thought to reduce root growth by limiting the ability of roots to penetrate harder soils. We report that root growth in compacted soil is instead actively suppressed by the volatile hormone ethylene. We found that mutant Arabidopsis and rice roots that were insensitive to ethylene penetrated compacted soil more effectively than did wild-type roots. Our results indicate that soil compaction lowers gas diffusion through a reduction in air-filled pores, thereby causing ethylene to accumulate in root tissues and trigger hormone responses that restrict growth. We propose that ethylene acts as an early warning signal for roots to avoid compacted soils, which would be relevant to research into the breeding of crops resilient to soil compaction. Soil compaction represents a major challenge for modern agriculture. Compaction is intuitively thought to reduce root growth by limiting the ability of roots to penetrate harder soils. We report that root growth in compacted soil is instead actively suppressed by the volatile hormone ethylene. We found that mutant and rice roots that were insensitive to ethylene penetrated compacted soil more effectively than did wild-type roots. Our results indicate that soil compaction lowers gas diffusion through a reduction in air-filled pores, thereby causing ethylene to accumulate in root tissues and trigger hormone responses that restrict growth. We propose that ethylene acts as an early warning signal for roots to avoid compacted soils, which would be relevant to research into the breeding of crops resilient to soil compaction. It's tough to drive a spade through compacted soil, and plant roots seem to have the same problem when growing in compacted ground. Pandey et al. found that the problem is not, however, one of physical resistance but rather inhibition of growth through a signaling pathway. The volatile plant hormone ethylene will diffuse through aerated soil, but compacted soil reduces such diffusion, increasing the concentration of ethylene near root tissues. The cellular signaling cascades triggered by too much ethylene stop root growth. Therefore, gaseous diffusion serves as a readout of soil compaction for plant roots growing in search of productive nutrition. Science , this issue p. 276 Compacted soil restrains diffusion of the volatile plant hormone ethylene, increasing its signal strength and restricting root growth. Soil compaction represents a major challenge for modern agriculture. Compaction is intuitively thought to reduce root growth by limiting the ability of roots to penetrate harder soils. We report that root growth in compacted soil is instead actively suppressed by the volatile hormone ethylene. We found that mutant Arabidopsis and rice roots that were insensitive to ethylene penetrated compacted soil more effectively than did wild-type roots. Our results indicate that soil compaction lowers gas diffusion through a reduction in air-filled pores, thereby causing ethylene to accumulate in root tissues and trigger hormone responses that restrict growth. We propose that ethylene acts as an early warning signal for roots to avoid compacted soils, which would be relevant to research into the breeding of crops resilient to soil compaction. |
Author | Pandey, Bipin K. Ljung, Karin Hartman, Sjon Sturrock, Craig J. Jose, Lottie Mooney, Sacha J. Martin, Olivier C. Karady, Michal Brown, Kathleen M. Zhang, Dabing Bennett, Malcolm J. Huang, Guoqiang Voesenek, Laurentius A. C. J. Whalley, William R. Lynch, Jonathan P. Bhosale, Rahul |
Author_xml | – sequence: 1 givenname: Bipin K. orcidid: 0000-0002-9614-1347 surname: Pandey fullname: Pandey, Bipin K. organization: School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK – sequence: 2 givenname: Guoqiang orcidid: 0000-0002-6103-5704 surname: Huang fullname: Huang, Guoqiang organization: Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China – sequence: 3 givenname: Rahul orcidid: 0000-0001-6515-4922 surname: Bhosale fullname: Bhosale, Rahul organization: School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK – sequence: 4 givenname: Sjon orcidid: 0000-0002-6709-6436 surname: Hartman fullname: Hartman, Sjon organization: Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, Netherlands., School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK – sequence: 5 givenname: Craig J. orcidid: 0000-0002-5333-8502 surname: Sturrock fullname: Sturrock, Craig J. organization: School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK – sequence: 6 givenname: Lottie surname: Jose fullname: Jose, Lottie organization: School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK – sequence: 7 givenname: Olivier C. orcidid: 0000-0002-5295-5963 surname: Martin fullname: Martin, Olivier C. organization: Universities of Paris-Saclay, Paris and Evry, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Bât. 630, 91192 Gif-sur-Yvette, France – sequence: 8 givenname: Michal orcidid: 0000-0002-5603-706X surname: Karady fullname: Karady, Michal organization: Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences and Faculty of Science of Palacký University, CZ-78371 Olomouc, Czech Republic – sequence: 9 givenname: Laurentius A. C. J. surname: Voesenek fullname: Voesenek, Laurentius A. C. J. organization: Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, Netherlands – sequence: 10 givenname: Karin orcidid: 0000-0003-2901-189X surname: Ljung fullname: Ljung, Karin organization: Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden – sequence: 11 givenname: Jonathan P. orcidid: 0000-0002-7265-9790 surname: Lynch fullname: Lynch, Jonathan P. organization: Department of Plant Science, Pennsylvania State University, University Park, PA 16802, USA – sequence: 12 givenname: Kathleen M. orcidid: 0000-0002-4960-5292 surname: Brown fullname: Brown, Kathleen M. organization: Department of Plant Science, Pennsylvania State University, University Park, PA 16802, USA – sequence: 13 givenname: William R. surname: Whalley fullname: Whalley, William R. organization: Rothamsted Research, West Common, Harpenden AL5 2JQ, UK – sequence: 14 givenname: Sacha J. orcidid: 0000-0002-9314-8113 surname: Mooney fullname: Mooney, Sacha J. organization: School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK – sequence: 15 givenname: Dabing orcidid: 0000-0002-1764-2929 surname: Zhang fullname: Zhang, Dabing organization: Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China., School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Waite Campus, Glen Osmond, South Australia 5064, Australia – sequence: 16 givenname: Malcolm J. orcidid: 0000-0003-0475-390X surname: Bennett fullname: Bennett, Malcolm J. organization: School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33446554$$D View this record in MEDLINE/PubMed https://hal.inrae.fr/hal-03334388$$DView record in HAL https://res.slu.se/id/publ/111288$$DView record from Swedish Publication Index |
BookMark | eNp1kc9rFDEUx4NU7LZ69iYDXvQw22TzYybHUrQVFvSg55BJXtyU2cmal1H635tx14IFTw9ePt9veN_vBTmb0gSEvGZ0zdhGXaGLMDlY2yFwyvgzsmJUy1ZvKD8jK0q5anvayXNygXhPaX3T_AU551wIJaVYkdsvo51Kk1Mq2CBMCA2mODYu7Q_WlZimpuxymr_vmgxYcnQFfANl9zDCBI2PIcxYqZfkebAjwqvTvCTfPn74enPXbj_ffrq53rZOUllaL7znUoH3PYROaeBi0LYP0IEOwXZe2I6FjXaWOUslaNYNQYESQWk_KM0vyfroi7_gMA_mkOPe5geTbDQ4zoPNyzAIhtWA-r4K3h8FOzv-Q99db82yo7ymwfv-J6vsuyN7yOnHXM81-4gOxhoRpBnNRnS91ErLxfbtE_Q-zXmqp_-hqBa0WwzfnKh52IN__P9v_hW4OgIuJ8QM4RFh1CwNm1PD5tRwVcgnCheLXYoq2cbxv7rfSyaudw |
CitedBy_id | crossref_primary_10_1111_nph_18552 crossref_primary_10_1080_21645698_2024_2377408 crossref_primary_10_1093_jxb_erad389 crossref_primary_10_1016_j_scitotenv_2021_150344 crossref_primary_10_1093_jxb_erab403 crossref_primary_10_1111_nph_18678 crossref_primary_10_1111_nph_17861 crossref_primary_10_1016_j_still_2024_106400 crossref_primary_10_1093_jxb_erab480 crossref_primary_10_3390_agronomy14091971 crossref_primary_10_1016_j_eti_2022_102886 crossref_primary_10_1111_pbi_13825 crossref_primary_10_1007_s00425_023_04294_x crossref_primary_10_1016_j_tplants_2022_05_007 crossref_primary_10_1111_jipb_13492 crossref_primary_10_1016_j_tplants_2024_05_008 crossref_primary_10_1016_j_copbio_2022_102682 crossref_primary_10_1007_s11104_023_06333_8 crossref_primary_10_36783_18069657rbcs20230046 crossref_primary_10_1093_plphys_kiac586 crossref_primary_10_1111_nph_17901 crossref_primary_10_3389_fpls_2023_1302046 crossref_primary_10_1111_pce_14270 crossref_primary_10_3390_ijms241512345 crossref_primary_10_1016_j_cub_2022_08_069 crossref_primary_10_1016_j_rhisph_2023_100838 crossref_primary_10_3389_fpls_2024_1501533 crossref_primary_10_1093_jxb_erab231 crossref_primary_10_1111_tpj_15560 crossref_primary_10_1093_plphys_kiae596 crossref_primary_10_1007_s00374_023_01763_z crossref_primary_10_1111_ppl_14094 crossref_primary_10_1093_plcell_koae083 crossref_primary_10_1111_ejss_13160 crossref_primary_10_3390_plants13070953 crossref_primary_10_1146_annurev_arplant_070722_015329 crossref_primary_10_3390_f14040692 crossref_primary_10_3389_fpls_2024_1468242 crossref_primary_10_1007_s11056_024_10058_6 crossref_primary_10_1007_s11104_021_05084_8 crossref_primary_10_1016_j_soilbio_2023_109074 crossref_primary_10_1111_nph_18824 crossref_primary_10_3389_fpls_2022_1080014 crossref_primary_10_1016_j_xplc_2024_101013 crossref_primary_10_1093_plphys_kiab525 crossref_primary_10_1094_PHYTOFR_08_24_0088_A crossref_primary_10_1038_s41477_021_01066_x crossref_primary_10_1093_jxb_erac238 crossref_primary_10_1016_j_still_2024_106380 crossref_primary_10_1007_s11104_022_05862_y crossref_primary_10_1093_jxb_erae490 crossref_primary_10_1007_s11104_024_06490_4 crossref_primary_10_1093_plcell_koae055 crossref_primary_10_1093_jxb_eraf063 crossref_primary_10_1016_j_cub_2024_03_064 crossref_primary_10_1038_s41598_023_34025_x crossref_primary_10_1007_s42729_024_01942_3 crossref_primary_10_1016_j_jenvman_2021_114017 crossref_primary_10_1094_PHYTO_01_21_0035_RVW crossref_primary_10_1111_pce_15462 crossref_primary_10_1111_pce_14492 crossref_primary_10_1016_j_jplph_2024_154190 crossref_primary_10_1016_j_plantsci_2025_112461 crossref_primary_10_1111_jipb_13671 crossref_primary_10_1088_1755_1315_1225_1_012105 crossref_primary_10_1093_jxb_erac188 crossref_primary_10_1093_plphys_kiae453 crossref_primary_10_3390_life12081285 crossref_primary_10_1016_j_futures_2024_103429 crossref_primary_10_1186_s12870_021_02995_7 crossref_primary_10_1093_aobpla_plab020 crossref_primary_10_3390_plants13243525 crossref_primary_10_1016_j_devcel_2024_01_028 crossref_primary_10_1073_pnas_2303919120 crossref_primary_10_3390_plants13030432 crossref_primary_10_1016_j_plaphy_2022_04_024 crossref_primary_10_1016_j_aac_2024_10_001 crossref_primary_10_1016_j_pedsph_2023_04_001 crossref_primary_10_1038_s43016_024_01001_1 crossref_primary_10_1111_pce_14269 crossref_primary_10_1371_journal_pone_0317149 crossref_primary_10_3390_plants10071303 crossref_primary_10_1007_s11104_024_06573_2 crossref_primary_10_17660_th2022_020 crossref_primary_10_1093_jxb_erac508 crossref_primary_10_3390_stresses4010003 crossref_primary_10_1007_s00425_025_04624_1 crossref_primary_10_21769_BioProtoc_4252 crossref_primary_10_1002_fes3_435 crossref_primary_10_1007_s13205_024_04083_7 crossref_primary_10_1016_j_still_2021_105198 crossref_primary_10_1080_03650340_2022_2037126 crossref_primary_10_1111_pce_14900 crossref_primary_10_1126_science_add3771 crossref_primary_10_1038_s41580_022_00479_6 crossref_primary_10_1016_j_eja_2024_127393 crossref_primary_10_1016_j_tplants_2024_04_010 crossref_primary_10_3389_fpls_2022_948742 crossref_primary_10_1007_s00299_024_03217_8 crossref_primary_10_1007_s11104_021_05010_y crossref_primary_10_1016_j_scib_2023_12_051 crossref_primary_10_1093_plcell_koac008 crossref_primary_10_1016_j_copbio_2024_103172 crossref_primary_10_3389_fpls_2021_772567 crossref_primary_10_1016_j_tree_2023_09_002 crossref_primary_10_1007_s11104_023_06046_y crossref_primary_10_1093_jxb_erad332 crossref_primary_10_1007_s11104_023_06464_y crossref_primary_10_1002_jpln_202100385 crossref_primary_10_1111_nph_18467 crossref_primary_10_1007_s42994_024_00189_x crossref_primary_10_1007_s11104_022_05434_0 crossref_primary_10_1093_jxb_erae260 crossref_primary_10_1016_j_agee_2025_109564 crossref_primary_10_1016_j_still_2023_105983 crossref_primary_10_1093_jxb_erab274 crossref_primary_10_1093_pnasnexus_pgad216 crossref_primary_10_1016_j_still_2022_105520 crossref_primary_10_1093_jxb_erae384 crossref_primary_10_1093_plcell_koac020 crossref_primary_10_1016_j_scitotenv_2022_160121 crossref_primary_10_1186_s12915_025_02157_3 crossref_primary_10_1007_s00709_021_01697_z crossref_primary_10_1111_pce_14247 crossref_primary_10_1073_pnas_2201072119 crossref_primary_10_1126_science_ads5999 crossref_primary_10_1016_j_tplants_2022_04_001 crossref_primary_10_1093_aob_mcae201 crossref_primary_10_1093_aobpla_plac050 crossref_primary_10_1186_s12870_025_06223_4 crossref_primary_10_3389_fpls_2023_1233553 crossref_primary_10_1002_jpln_202200003 crossref_primary_10_1111_jipb_13441 crossref_primary_10_1111_nph_17419 crossref_primary_10_1007_s11104_022_05650_8 crossref_primary_10_1111_ppl_70000 crossref_primary_10_1093_plphys_kiab392 crossref_primary_10_1007_s11104_022_05508_z crossref_primary_10_1111_nph_18733 crossref_primary_10_1016_j_envexpbot_2021_104608 crossref_primary_10_1111_1751_7915_13771 crossref_primary_10_3389_fpls_2021_697988 crossref_primary_10_1111_gcb_15718 crossref_primary_10_1093_jmicro_dfad026 crossref_primary_10_1016_j_still_2021_105215 crossref_primary_10_1111_pce_14213 crossref_primary_10_1111_pce_14455 crossref_primary_10_1016_j_foreco_2021_119538 crossref_primary_10_1093_plcell_koae091 crossref_primary_10_1093_plphys_kiac245 crossref_primary_10_1111_pce_14175 crossref_primary_10_1021_acsabm_4c00416 crossref_primary_10_1017_S0014479725000018 crossref_primary_10_1016_j_pbi_2023_102456 crossref_primary_10_1016_j_tplants_2024_01_003 crossref_primary_10_3390_plants13050626 crossref_primary_10_1007_s00425_021_03792_0 crossref_primary_10_1111_nph_18600 crossref_primary_10_3390_genes12020236 crossref_primary_10_1016_j_tplants_2021_03_011 crossref_primary_10_1111_tpj_16039 crossref_primary_10_3390_agriculture14101721 crossref_primary_10_3390_ijms221910892 crossref_primary_10_1093_jxb_erad353 crossref_primary_10_1126_sciadv_abn5057 crossref_primary_10_1016_j_plantsci_2023_111767 crossref_primary_10_3390_plants11233200 crossref_primary_10_1007_s12355_022_01136_0 crossref_primary_10_1016_j_tplants_2024_10_014 crossref_primary_10_3389_fpls_2022_1068961 crossref_primary_10_3389_fpls_2022_778738 crossref_primary_10_1111_ejss_13219 crossref_primary_10_1007_s00425_023_04262_5 |
Cites_doi | 10.1105/tpc.110.076588 10.1093/jxb/erz383 10.1097/01.ss.0000196771.53574.79 10.1104/pp.121.4.1227 10.1126/science.284.5423.2148 10.1016/0167-1987(82)90030-7 10.1111/pce.13459 10.1038/srep04586 10.1002/2014WR016020 10.1038/s41467-019-12045-4 10.1006/anbo.1998.0793 10.1093/jexbot/52.364.2127 10.1016/0167-1987(95)00479-C 10.1093/mp/sst087 10.1016/j.still.2004.08.009 10.1093/jxb/ert124 10.1016/j.geoderma.2020.114276 10.1038/s41586-019-1203-6 10.1038/s41467-018-04710-x |
ContentType | Journal Article |
Copyright | Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. – notice: Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works – notice: Distributed under a Creative Commons Attribution 4.0 International License |
CorporateAuthor | Sveriges lantbruksuniversitet |
CorporateAuthor_xml | – name: Sveriges lantbruksuniversitet |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 1XC ADTPV AOWAS |
DOI | 10.1126/science.abf3013 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) SwePub SwePub Articles |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Entomology Abstracts Animal Behavior Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology |
EISSN | 1095-9203 |
EndPage | 280 |
ExternalDocumentID | oai_slubar_slu_se_111288 oai_HAL_hal_03334388v1 33446554 10_1126_science_abf3013 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/G023972/1 |
GroupedDBID | --- --Z -DZ -ET -~X .-4 ..I .55 .DC 08G 0R~ 0WA 123 18M 2FS 2KS 2WC 2XV 34G 36B 39C 3R3 53G 5RE 66. 6OB 6TJ 7X2 7~K 85S 8F7 AABCJ AACGO AAIKC AAMNW AANCE AAWTO AAYXX ABCQX ABDBF ABDEX ABDQB ABEFU ABIVO ABJNI ABOCM ABPLY ABPPZ ABQIJ ABTLG ABWJO ABZEH ACBEA ACBEC ACGFO ACGFS ACGOD ACIWK ACMJI ACNCT ACPRK ACQOY ACUHS ADDRP ADUKH ADXHL AEGBM AENEX AETEA AFBNE AFFNX AFHKK AFQFN AFRAH AGFXO AGNAY AGSOS AHMBA AIDAL AIDUJ AJGZS ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI ASPBG AVWKF BKF BLC C45 CITATION CS3 DB2 DU5 EBS EMOBN F5P FA8 FEDTE HZ~ I.T IAO IEA IGS IH2 IHR INH INR IOF IOV IPO IPY ISE JCF JLS JSG JST K-O KCC L7B LSO LU7 M0P MQT MVM N9A NEJ NHB O9- OCB OFXIZ OGEVE OMK OVD P-O P2P PQQKQ PZZ RHI RXW SC5 SJN TAE TEORI TN5 TWZ UBW UCV UHB UKR UMD UNMZH UQL USG VVN WH7 WI4 X7M XJF XZL Y6R YK4 YKV YNT YOJ YR2 YR5 YRY YSQ YV5 YWH YYP YZZ ZCA ZE2 ~02 ~G0 ~KM ~ZZ CGR CUY CVF ECM EIF NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 1XC GX1 UMC .GJ .GO .HR 0-V 186 3EH 4.4 41~ 42X 4R4 692 79B 7X7 7XC 88E 88I 8AF 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8GL 8WZ 97F A6W AADHG AAFWJ AAJYS AAKAS AAYJJ ABBHK ABDPE ABJCF ABPMR ABUWG ABXSQ ACHIC ACQAM ACTDY ADBBV ADMHC ADQXQ ADTPV ADULT ADZCM AEUPB AEUYN AEXZC AFCHL AFFDN AFKRA AFQQW AJUXI AOWAS AQVQM ARALO ARAPS ATCPS AZQEC BBNVY BBWZM BCU BEC BENPR BGLVJ BHPHI BKNYI BKSAR BPHCQ BVXVI C2- C51 CCPQU CJNVE D0S D1I D1J D1K DCCCD DWQXO D~A EAU EGS EJD EWM EX3 FYUFA GICCO GNUQQ GUQSH HCIFZ HGD HMCUK HQ3 HTVGU HVGLF IAG IBG IEP IER IPC IPSME ISN ITC J5H J9C JAAYA JBMMH JENOY JHFFW JKQEH JLXEF JPM K6- K9- KB. KQ8 L6V LK5 LK8 LPU M0K M0R M1P M2O M2P M2Q M7P M7R M7S N4W OK1 P62 PATMY PCBAR PDBOC PHGZM PHGZT PJZUB PPXIY PQEDU PQGLB PROAC PSQYO PTHSS PV9 PYCSY QJJ QS- R05 RNS RZL SA0 SJFOW SKT UBY UHU UKHRP VOH WOQ WOW X7L XIH XKJ XOL YJ6 YXB YYQ ZCG ZGI ZVL ZVM ZXP ZY4 ~H1 |
ID | FETCH-LOGICAL-c505t-d4dd356edd8ef769e34b9a8fe7e9ffa7d4a71f29ca1ca05e917bf6e64f69db693 |
ISSN | 0036-8075 1095-9203 |
IngestDate | Thu Aug 21 06:24:08 EDT 2025 Fri May 09 12:20:19 EDT 2025 Tue Aug 05 10:22:38 EDT 2025 Fri Jul 25 19:15:56 EDT 2025 Mon Jul 21 05:35:22 EDT 2025 Tue Jul 01 01:35:24 EDT 2025 Thu Apr 24 22:55:40 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6526 |
Language | English |
License | Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c505t-d4dd356edd8ef769e34b9a8fe7e9ffa7d4a71f29ca1ca05e917bf6e64f69db693 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9314-8113 0000-0002-5295-5963 0000-0001-6515-4922 0000-0002-4960-5292 0000-0002-5333-8502 0000-0002-5603-706X 0000-0002-7265-9790 0000-0002-6103-5704 0000-0002-6709-6436 0000-0002-1764-2929 0000-0003-2901-189X 0000-0002-9614-1347 0000-0003-0475-390X |
OpenAccessLink | https://nottingham-repository.worktribe.com/output/5234573 |
PMID | 33446554 |
PQID | 2478094071 |
PQPubID | 1256 |
PageCount | 5 |
ParticipantIDs | swepub_primary_oai_slubar_slu_se_111288 hal_primary_oai_HAL_hal_03334388v1 proquest_miscellaneous_2478596958 proquest_journals_2478094071 pubmed_primary_33446554 crossref_primary_10_1126_science_abf3013 crossref_citationtrail_10_1126_science_abf3013 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-15 |
PublicationDateYYYYMMDD | 2021-01-15 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Science (American Association for the Advancement of Science) |
PublicationTitleAlternate | Science |
PublicationYear | 2021 |
Publisher | The American Association for the Advancement of Science American Association for the Advancement of Science (AAAS) |
Publisher_xml | – name: The American Association for the Advancement of Science – name: American Association for the Advancement of Science (AAAS) |
References | e_1_3_2_15_2 e_1_3_2_8_2 e_1_3_2_16_2 e_1_3_2_7_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_18_2 e_1_3_2_19_2 e_1_3_2_20_2 e_1_3_2_10_2 e_1_3_2_21_2 e_1_3_2_5_2 e_1_3_2_11_2 e_1_3_2_12_2 e_1_3_2_3_2 Mangalassery S. (e_1_3_2_4_2) 2014; 4 e_1_3_2_13_2 e_1_3_2_2_2 e_1_3_2_14_2 Potocka I. (e_1_3_2_9_2) 2018; 122 35979143 - Fac Rev. 2022 Jul 25;11:20. doi: 10.12703/r-01-0000014. |
References_xml | – ident: e_1_3_2_10_2 doi: 10.1105/tpc.110.076588 – ident: e_1_3_2_2_2 doi: 10.1093/jxb/erz383 – ident: e_1_3_2_7_2 doi: 10.1097/01.ss.0000196771.53574.79 – ident: e_1_3_2_8_2 doi: 10.1104/pp.121.4.1227 – ident: e_1_3_2_14_2 doi: 10.1126/science.284.5423.2148 – ident: e_1_3_2_3_2 doi: 10.1016/0167-1987(82)90030-7 – ident: e_1_3_2_18_2 doi: 10.1111/pce.13459 – volume: 4 start-page: 1 year: 2014 ident: e_1_3_2_4_2 publication-title: Sci. Rep. doi: 10.1038/srep04586 – ident: e_1_3_2_20_2 doi: 10.1002/2014WR016020 – volume: 122 start-page: 711 year: 2018 ident: e_1_3_2_9_2 article-title: Morphological responses of plant roots to mechanical stress publication-title: Ann. Bot. – ident: e_1_3_2_12_2 doi: 10.1038/s41467-019-12045-4 – ident: e_1_3_2_16_2 doi: 10.1006/anbo.1998.0793 – ident: e_1_3_2_15_2 doi: 10.1093/jexbot/52.364.2127 – ident: e_1_3_2_6_2 doi: 10.1016/0167-1987(95)00479-C – ident: e_1_3_2_13_2 doi: 10.1093/mp/sst087 – ident: e_1_3_2_5_2 doi: 10.1016/j.still.2004.08.009 – ident: e_1_3_2_17_2 doi: 10.1093/jxb/ert124 – ident: e_1_3_2_19_2 doi: 10.1016/j.geoderma.2020.114276 – ident: e_1_3_2_11_2 doi: 10.1038/s41586-019-1203-6 – ident: e_1_3_2_21_2 doi: 10.1038/s41467-018-04710-x – reference: 35979143 - Fac Rev. 2022 Jul 25;11:20. doi: 10.12703/r-01-0000014. |
SSID | ssj0009593 |
Score | 2.6755502 |
Snippet | It's tough to drive a spade through compacted soil, and plant roots seem to have the same problem when growing in compacted ground. Pandey
et al.
found that... Soil compaction represents a major challenge for modern agriculture. Compaction is intuitively thought to reduce root growth by limiting the ability of roots... Ethylene aplenty signals soil compactionIt's tough to drive a spade through compacted soil, and plant roots seem to have the same problem when growing in... |
SourceID | swepub hal proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 276 |
SubjectTerms | Aeration Agricultural Science Arabidopsis - genetics Arabidopsis - growth & development Arabidopsis - metabolism Arabidopsis Proteins - genetics Arabidopsis Proteins - metabolism Bioaccumulation Biotechnology Compacted soils Crop resilience Diffusion Ethylene Ethylenes - metabolism Gaseous diffusion Jordbruksvetenskap Life Sciences Markvetenskap Nutrition Plant breeding Plant growth Plant Growth Regulators - metabolism Plant hormones Plant roots Plant Roots - growth & development Plant Roots - metabolism Plant tissues Receptors, Cell Surface - genetics Receptors, Cell Surface - metabolism Roots Signal transduction Signaling Soil Soil aeration Soil compaction Soil Science |
Title | Plant roots sense soil compaction through restricted ethylene diffusion |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33446554 https://www.proquest.com/docview/2478094071 https://www.proquest.com/docview/2478596958 https://hal.inrae.fr/hal-03334388 https://res.slu.se/id/publ/111288 |
Volume | 371 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1db9MwFIYttgmJm4mNr46BDEJiqEqVxI5jX3bAqNDgapN2F9mxrYGqFC0pEvx6jmPno2ygwU1aJU7i-HFOzkns8yL0SpK4lIrxiHGlIkpFHMmS0Ihzrbi2xCRtJqZPn9ninH68yC4GCc52dkmjZuXPG-eV_A9VWAdc3SzZfyDbHxRWwH_gC0sgDMtbMXaKQ80UfN-mntYQj5ppvfqy9OPKvQR4J8PjFDjA4jn30gAaeNSYVhtlXXdcgoPa3evgePYfc0YI-1GJcz92oBtKEHYbvVc4_dqZEYjGq_HLhdS9WYj89MpgD2Mn5ZjGZGwwiRdNuW58R3KRZiaVBeNBhufMRkbrerlW8sr9FLVxYUjK-RbaScHZB2u1Mz9-d3zyt-TJfcVCuqbRRKjuzBuextalG-d6PYj4LUNs61Wc3Ue7IRzAc892D90x1T666wVCf-yjvdCuNT4K-cHfPEAfWuy4xY5b7NhhxwN2HLDjATvusOMe-0N0fvL-7O0iCnoYUQl-ahNpqjXJmNGaG5szYQhVQnJrciOslbmmMk9sKkqZlDLODETiyjLDqGVCKybII7RdrSrzBGHiNKbzRFsoTkmqRQmGnFDGZZ6LRPIJmnVtV5QhWbzTLFkWbdCYsiI0dhEae4KO-h2--Twpfy76EmD0pVxvWMxPC7cuJoRQqNv3ZIIOO1ZFuOPqIqU5d_kec9j8ot8M9tB95JKVWa19mUwwkcE1PPaM-1PBwV26QDpBrz30jUrc1CUPbl3yKbo33ECHaLu5Wptn4K826nnozr8A_w-cIQ |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Plant+roots+sense+soil+compaction+through+restricted+ethylene+diffusion&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Ljung%2C+Karin&rft.date=2021-01-15&rft.issn=1095-9203&rft.volume=371&rft_id=info:doi/10.1126%2Fscience.abf3013&rft.externalDocID=oai_slubar_slu_se_111288 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon |