Plant roots sense soil compaction through restricted ethylene diffusion

It's tough to drive a spade through compacted soil, and plant roots seem to have the same problem when growing in compacted ground. Pandey et al. found that the problem is not, however, one of physical resistance but rather inhibition of growth through a signaling pathway. The volatile plant ho...

Full description

Saved in:
Bibliographic Details
Published inScience (American Association for the Advancement of Science) Vol. 371; no. 6526; pp. 276 - 280
Main Authors Pandey, Bipin K., Huang, Guoqiang, Bhosale, Rahul, Hartman, Sjon, Sturrock, Craig J., Jose, Lottie, Martin, Olivier C., Karady, Michal, Voesenek, Laurentius A. C. J., Ljung, Karin, Lynch, Jonathan P., Brown, Kathleen M., Whalley, William R., Mooney, Sacha J., Zhang, Dabing, Bennett, Malcolm J.
Format Journal Article
LanguageEnglish
Published United States The American Association for the Advancement of Science 15.01.2021
American Association for the Advancement of Science (AAAS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract It's tough to drive a spade through compacted soil, and plant roots seem to have the same problem when growing in compacted ground. Pandey et al. found that the problem is not, however, one of physical resistance but rather inhibition of growth through a signaling pathway. The volatile plant hormone ethylene will diffuse through aerated soil, but compacted soil reduces such diffusion, increasing the concentration of ethylene near root tissues. The cellular signaling cascades triggered by too much ethylene stop root growth. Therefore, gaseous diffusion serves as a readout of soil compaction for plant roots growing in search of productive nutrition. Science , this issue p. 276 Compacted soil restrains diffusion of the volatile plant hormone ethylene, increasing its signal strength and restricting root growth. Soil compaction represents a major challenge for modern agriculture. Compaction is intuitively thought to reduce root growth by limiting the ability of roots to penetrate harder soils. We report that root growth in compacted soil is instead actively suppressed by the volatile hormone ethylene. We found that mutant Arabidopsis and rice roots that were insensitive to ethylene penetrated compacted soil more effectively than did wild-type roots. Our results indicate that soil compaction lowers gas diffusion through a reduction in air-filled pores, thereby causing ethylene to accumulate in root tissues and trigger hormone responses that restrict growth. We propose that ethylene acts as an early warning signal for roots to avoid compacted soils, which would be relevant to research into the breeding of crops resilient to soil compaction.
AbstractList Soil compaction represents a major challenge for modern agriculture. Compaction is intuitively thought to reduce root growth by limiting the ability of roots to penetrate harder soils. We report that root growth in compacted soil is instead actively suppressed by the volatile hormone ethylene. We found that mutant Arabidopsis and rice roots that were insensitive to ethylene penetrated compacted soil more effectively than did wild-type roots. Our results indicate that soil compaction lowers gas diffusion through a reduction in air-filled pores, thereby causing ethylene to accumulate in root tissues and trigger hormone responses that restrict growth. We propose that ethylene acts as an early warning signal for roots to avoid compacted soils, which would be relevant to research into the breeding of crops resilient to soil compaction.
Ethylene aplenty signals soil compactionIt's tough to drive a spade through compacted soil, and plant roots seem to have the same problem when growing in compacted ground. Pandey et al. found that the problem is not, however, one of physical resistance but rather inhibition of growth through a signaling pathway. The volatile plant hormone ethylene will diffuse through aerated soil, but compacted soil reduces such diffusion, increasing the concentration of ethylene near root tissues. The cellular signaling cascades triggered by too much ethylene stop root growth. Therefore, gaseous diffusion serves as a readout of soil compaction for plant roots growing in search of productive nutrition.Science, this issue p. 276Soil compaction represents a major challenge for modern agriculture. Compaction is intuitively thought to reduce root growth by limiting the ability of roots to penetrate harder soils. We report that root growth in compacted soil is instead actively suppressed by the volatile hormone ethylene. We found that mutant Arabidopsis and rice roots that were insensitive to ethylene penetrated compacted soil more effectively than did wild-type roots. Our results indicate that soil compaction lowers gas diffusion through a reduction in air-filled pores, thereby causing ethylene to accumulate in root tissues and trigger hormone responses that restrict growth. We propose that ethylene acts as an early warning signal for roots to avoid compacted soils, which would be relevant to research into the breeding of crops resilient to soil compaction.
Soil compaction represents a major challenge for modern agriculture. Compaction is intuitively thought to reduce root growth by limiting the ability of roots to penetrate harder soils. We report that root growth in compacted soil is instead actively suppressed by the volatile hormone ethylene. We found that mutant Arabidopsis and rice roots that were insensitive to ethylene penetrated compacted soil more effectively than did wild-type roots. Our results indicate that soil compaction lowers gas diffusion through a reduction in air-filled pores, thereby causing ethylene to accumulate in root tissues and trigger hormone responses that restrict growth. We propose that ethylene acts as an early warning signal for roots to avoid compacted soils, which would be relevant to research into the breeding of crops resilient to soil compaction.Soil compaction represents a major challenge for modern agriculture. Compaction is intuitively thought to reduce root growth by limiting the ability of roots to penetrate harder soils. We report that root growth in compacted soil is instead actively suppressed by the volatile hormone ethylene. We found that mutant Arabidopsis and rice roots that were insensitive to ethylene penetrated compacted soil more effectively than did wild-type roots. Our results indicate that soil compaction lowers gas diffusion through a reduction in air-filled pores, thereby causing ethylene to accumulate in root tissues and trigger hormone responses that restrict growth. We propose that ethylene acts as an early warning signal for roots to avoid compacted soils, which would be relevant to research into the breeding of crops resilient to soil compaction.
Soil compaction represents a major challenge for modern agriculture. Compaction is intuitively thought to reduce root growth by limiting the ability of roots to penetrate harder soils. We report that root growth in compacted soil is instead actively suppressed by the volatile hormone ethylene. We found that mutant and rice roots that were insensitive to ethylene penetrated compacted soil more effectively than did wild-type roots. Our results indicate that soil compaction lowers gas diffusion through a reduction in air-filled pores, thereby causing ethylene to accumulate in root tissues and trigger hormone responses that restrict growth. We propose that ethylene acts as an early warning signal for roots to avoid compacted soils, which would be relevant to research into the breeding of crops resilient to soil compaction.
It's tough to drive a spade through compacted soil, and plant roots seem to have the same problem when growing in compacted ground. Pandey et al. found that the problem is not, however, one of physical resistance but rather inhibition of growth through a signaling pathway. The volatile plant hormone ethylene will diffuse through aerated soil, but compacted soil reduces such diffusion, increasing the concentration of ethylene near root tissues. The cellular signaling cascades triggered by too much ethylene stop root growth. Therefore, gaseous diffusion serves as a readout of soil compaction for plant roots growing in search of productive nutrition. Science , this issue p. 276 Compacted soil restrains diffusion of the volatile plant hormone ethylene, increasing its signal strength and restricting root growth. Soil compaction represents a major challenge for modern agriculture. Compaction is intuitively thought to reduce root growth by limiting the ability of roots to penetrate harder soils. We report that root growth in compacted soil is instead actively suppressed by the volatile hormone ethylene. We found that mutant Arabidopsis and rice roots that were insensitive to ethylene penetrated compacted soil more effectively than did wild-type roots. Our results indicate that soil compaction lowers gas diffusion through a reduction in air-filled pores, thereby causing ethylene to accumulate in root tissues and trigger hormone responses that restrict growth. We propose that ethylene acts as an early warning signal for roots to avoid compacted soils, which would be relevant to research into the breeding of crops resilient to soil compaction.
Author Pandey, Bipin K.
Ljung, Karin
Hartman, Sjon
Sturrock, Craig J.
Jose, Lottie
Mooney, Sacha J.
Martin, Olivier C.
Karady, Michal
Brown, Kathleen M.
Zhang, Dabing
Bennett, Malcolm J.
Huang, Guoqiang
Voesenek, Laurentius A. C. J.
Whalley, William R.
Lynch, Jonathan P.
Bhosale, Rahul
Author_xml – sequence: 1
  givenname: Bipin K.
  orcidid: 0000-0002-9614-1347
  surname: Pandey
  fullname: Pandey, Bipin K.
  organization: School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK
– sequence: 2
  givenname: Guoqiang
  orcidid: 0000-0002-6103-5704
  surname: Huang
  fullname: Huang, Guoqiang
  organization: Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
– sequence: 3
  givenname: Rahul
  orcidid: 0000-0001-6515-4922
  surname: Bhosale
  fullname: Bhosale, Rahul
  organization: School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK
– sequence: 4
  givenname: Sjon
  orcidid: 0000-0002-6709-6436
  surname: Hartman
  fullname: Hartman, Sjon
  organization: Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, Netherlands., School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
– sequence: 5
  givenname: Craig J.
  orcidid: 0000-0002-5333-8502
  surname: Sturrock
  fullname: Sturrock, Craig J.
  organization: School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK
– sequence: 6
  givenname: Lottie
  surname: Jose
  fullname: Jose, Lottie
  organization: School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK
– sequence: 7
  givenname: Olivier C.
  orcidid: 0000-0002-5295-5963
  surname: Martin
  fullname: Martin, Olivier C.
  organization: Universities of Paris-Saclay, Paris and Evry, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Bât. 630, 91192 Gif-sur-Yvette, France
– sequence: 8
  givenname: Michal
  orcidid: 0000-0002-5603-706X
  surname: Karady
  fullname: Karady, Michal
  organization: Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences and Faculty of Science of Palacký University, CZ-78371 Olomouc, Czech Republic
– sequence: 9
  givenname: Laurentius A. C. J.
  surname: Voesenek
  fullname: Voesenek, Laurentius A. C. J.
  organization: Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, Netherlands
– sequence: 10
  givenname: Karin
  orcidid: 0000-0003-2901-189X
  surname: Ljung
  fullname: Ljung, Karin
  organization: Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
– sequence: 11
  givenname: Jonathan P.
  orcidid: 0000-0002-7265-9790
  surname: Lynch
  fullname: Lynch, Jonathan P.
  organization: Department of Plant Science, Pennsylvania State University, University Park, PA 16802, USA
– sequence: 12
  givenname: Kathleen M.
  orcidid: 0000-0002-4960-5292
  surname: Brown
  fullname: Brown, Kathleen M.
  organization: Department of Plant Science, Pennsylvania State University, University Park, PA 16802, USA
– sequence: 13
  givenname: William R.
  surname: Whalley
  fullname: Whalley, William R.
  organization: Rothamsted Research, West Common, Harpenden AL5 2JQ, UK
– sequence: 14
  givenname: Sacha J.
  orcidid: 0000-0002-9314-8113
  surname: Mooney
  fullname: Mooney, Sacha J.
  organization: School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK
– sequence: 15
  givenname: Dabing
  orcidid: 0000-0002-1764-2929
  surname: Zhang
  fullname: Zhang, Dabing
  organization: Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China., School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Waite Campus, Glen Osmond, South Australia 5064, Australia
– sequence: 16
  givenname: Malcolm J.
  orcidid: 0000-0003-0475-390X
  surname: Bennett
  fullname: Bennett, Malcolm J.
  organization: School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33446554$$D View this record in MEDLINE/PubMed
https://hal.inrae.fr/hal-03334388$$DView record in HAL
https://res.slu.se/id/publ/111288$$DView record from Swedish Publication Index
BookMark eNp1kc9rFDEUx4NU7LZ69iYDXvQw22TzYybHUrQVFvSg55BJXtyU2cmal1H635tx14IFTw9ePt9veN_vBTmb0gSEvGZ0zdhGXaGLMDlY2yFwyvgzsmJUy1ZvKD8jK0q5anvayXNygXhPaX3T_AU551wIJaVYkdsvo51Kk1Mq2CBMCA2mODYu7Q_WlZimpuxymr_vmgxYcnQFfANl9zDCBI2PIcxYqZfkebAjwqvTvCTfPn74enPXbj_ffrq53rZOUllaL7znUoH3PYROaeBi0LYP0IEOwXZe2I6FjXaWOUslaNYNQYESQWk_KM0vyfroi7_gMA_mkOPe5geTbDQ4zoPNyzAIhtWA-r4K3h8FOzv-Q99db82yo7ymwfv-J6vsuyN7yOnHXM81-4gOxhoRpBnNRnS91ErLxfbtE_Q-zXmqp_-hqBa0WwzfnKh52IN__P9v_hW4OgIuJ8QM4RFh1CwNm1PD5tRwVcgnCheLXYoq2cbxv7rfSyaudw
CitedBy_id crossref_primary_10_1111_nph_18552
crossref_primary_10_1080_21645698_2024_2377408
crossref_primary_10_1093_jxb_erad389
crossref_primary_10_1016_j_scitotenv_2021_150344
crossref_primary_10_1093_jxb_erab403
crossref_primary_10_1111_nph_18678
crossref_primary_10_1111_nph_17861
crossref_primary_10_1016_j_still_2024_106400
crossref_primary_10_1093_jxb_erab480
crossref_primary_10_3390_agronomy14091971
crossref_primary_10_1016_j_eti_2022_102886
crossref_primary_10_1111_pbi_13825
crossref_primary_10_1007_s00425_023_04294_x
crossref_primary_10_1016_j_tplants_2022_05_007
crossref_primary_10_1111_jipb_13492
crossref_primary_10_1016_j_tplants_2024_05_008
crossref_primary_10_1016_j_copbio_2022_102682
crossref_primary_10_1007_s11104_023_06333_8
crossref_primary_10_36783_18069657rbcs20230046
crossref_primary_10_1093_plphys_kiac586
crossref_primary_10_1111_nph_17901
crossref_primary_10_3389_fpls_2023_1302046
crossref_primary_10_1111_pce_14270
crossref_primary_10_3390_ijms241512345
crossref_primary_10_1016_j_cub_2022_08_069
crossref_primary_10_1016_j_rhisph_2023_100838
crossref_primary_10_3389_fpls_2024_1501533
crossref_primary_10_1093_jxb_erab231
crossref_primary_10_1111_tpj_15560
crossref_primary_10_1093_plphys_kiae596
crossref_primary_10_1007_s00374_023_01763_z
crossref_primary_10_1111_ppl_14094
crossref_primary_10_1093_plcell_koae083
crossref_primary_10_1111_ejss_13160
crossref_primary_10_3390_plants13070953
crossref_primary_10_1146_annurev_arplant_070722_015329
crossref_primary_10_3390_f14040692
crossref_primary_10_3389_fpls_2024_1468242
crossref_primary_10_1007_s11056_024_10058_6
crossref_primary_10_1007_s11104_021_05084_8
crossref_primary_10_1016_j_soilbio_2023_109074
crossref_primary_10_1111_nph_18824
crossref_primary_10_3389_fpls_2022_1080014
crossref_primary_10_1016_j_xplc_2024_101013
crossref_primary_10_1093_plphys_kiab525
crossref_primary_10_1094_PHYTOFR_08_24_0088_A
crossref_primary_10_1038_s41477_021_01066_x
crossref_primary_10_1093_jxb_erac238
crossref_primary_10_1016_j_still_2024_106380
crossref_primary_10_1007_s11104_022_05862_y
crossref_primary_10_1093_jxb_erae490
crossref_primary_10_1007_s11104_024_06490_4
crossref_primary_10_1093_plcell_koae055
crossref_primary_10_1093_jxb_eraf063
crossref_primary_10_1016_j_cub_2024_03_064
crossref_primary_10_1038_s41598_023_34025_x
crossref_primary_10_1007_s42729_024_01942_3
crossref_primary_10_1016_j_jenvman_2021_114017
crossref_primary_10_1094_PHYTO_01_21_0035_RVW
crossref_primary_10_1111_pce_15462
crossref_primary_10_1111_pce_14492
crossref_primary_10_1016_j_jplph_2024_154190
crossref_primary_10_1016_j_plantsci_2025_112461
crossref_primary_10_1111_jipb_13671
crossref_primary_10_1088_1755_1315_1225_1_012105
crossref_primary_10_1093_jxb_erac188
crossref_primary_10_1093_plphys_kiae453
crossref_primary_10_3390_life12081285
crossref_primary_10_1016_j_futures_2024_103429
crossref_primary_10_1186_s12870_021_02995_7
crossref_primary_10_1093_aobpla_plab020
crossref_primary_10_3390_plants13243525
crossref_primary_10_1016_j_devcel_2024_01_028
crossref_primary_10_1073_pnas_2303919120
crossref_primary_10_3390_plants13030432
crossref_primary_10_1016_j_plaphy_2022_04_024
crossref_primary_10_1016_j_aac_2024_10_001
crossref_primary_10_1016_j_pedsph_2023_04_001
crossref_primary_10_1038_s43016_024_01001_1
crossref_primary_10_1111_pce_14269
crossref_primary_10_1371_journal_pone_0317149
crossref_primary_10_3390_plants10071303
crossref_primary_10_1007_s11104_024_06573_2
crossref_primary_10_17660_th2022_020
crossref_primary_10_1093_jxb_erac508
crossref_primary_10_3390_stresses4010003
crossref_primary_10_1007_s00425_025_04624_1
crossref_primary_10_21769_BioProtoc_4252
crossref_primary_10_1002_fes3_435
crossref_primary_10_1007_s13205_024_04083_7
crossref_primary_10_1016_j_still_2021_105198
crossref_primary_10_1080_03650340_2022_2037126
crossref_primary_10_1111_pce_14900
crossref_primary_10_1126_science_add3771
crossref_primary_10_1038_s41580_022_00479_6
crossref_primary_10_1016_j_eja_2024_127393
crossref_primary_10_1016_j_tplants_2024_04_010
crossref_primary_10_3389_fpls_2022_948742
crossref_primary_10_1007_s00299_024_03217_8
crossref_primary_10_1007_s11104_021_05010_y
crossref_primary_10_1016_j_scib_2023_12_051
crossref_primary_10_1093_plcell_koac008
crossref_primary_10_1016_j_copbio_2024_103172
crossref_primary_10_3389_fpls_2021_772567
crossref_primary_10_1016_j_tree_2023_09_002
crossref_primary_10_1007_s11104_023_06046_y
crossref_primary_10_1093_jxb_erad332
crossref_primary_10_1007_s11104_023_06464_y
crossref_primary_10_1002_jpln_202100385
crossref_primary_10_1111_nph_18467
crossref_primary_10_1007_s42994_024_00189_x
crossref_primary_10_1007_s11104_022_05434_0
crossref_primary_10_1093_jxb_erae260
crossref_primary_10_1016_j_agee_2025_109564
crossref_primary_10_1016_j_still_2023_105983
crossref_primary_10_1093_jxb_erab274
crossref_primary_10_1093_pnasnexus_pgad216
crossref_primary_10_1016_j_still_2022_105520
crossref_primary_10_1093_jxb_erae384
crossref_primary_10_1093_plcell_koac020
crossref_primary_10_1016_j_scitotenv_2022_160121
crossref_primary_10_1186_s12915_025_02157_3
crossref_primary_10_1007_s00709_021_01697_z
crossref_primary_10_1111_pce_14247
crossref_primary_10_1073_pnas_2201072119
crossref_primary_10_1126_science_ads5999
crossref_primary_10_1016_j_tplants_2022_04_001
crossref_primary_10_1093_aob_mcae201
crossref_primary_10_1093_aobpla_plac050
crossref_primary_10_1186_s12870_025_06223_4
crossref_primary_10_3389_fpls_2023_1233553
crossref_primary_10_1002_jpln_202200003
crossref_primary_10_1111_jipb_13441
crossref_primary_10_1111_nph_17419
crossref_primary_10_1007_s11104_022_05650_8
crossref_primary_10_1111_ppl_70000
crossref_primary_10_1093_plphys_kiab392
crossref_primary_10_1007_s11104_022_05508_z
crossref_primary_10_1111_nph_18733
crossref_primary_10_1016_j_envexpbot_2021_104608
crossref_primary_10_1111_1751_7915_13771
crossref_primary_10_3389_fpls_2021_697988
crossref_primary_10_1111_gcb_15718
crossref_primary_10_1093_jmicro_dfad026
crossref_primary_10_1016_j_still_2021_105215
crossref_primary_10_1111_pce_14213
crossref_primary_10_1111_pce_14455
crossref_primary_10_1016_j_foreco_2021_119538
crossref_primary_10_1093_plcell_koae091
crossref_primary_10_1093_plphys_kiac245
crossref_primary_10_1111_pce_14175
crossref_primary_10_1021_acsabm_4c00416
crossref_primary_10_1017_S0014479725000018
crossref_primary_10_1016_j_pbi_2023_102456
crossref_primary_10_1016_j_tplants_2024_01_003
crossref_primary_10_3390_plants13050626
crossref_primary_10_1007_s00425_021_03792_0
crossref_primary_10_1111_nph_18600
crossref_primary_10_3390_genes12020236
crossref_primary_10_1016_j_tplants_2021_03_011
crossref_primary_10_1111_tpj_16039
crossref_primary_10_3390_agriculture14101721
crossref_primary_10_3390_ijms221910892
crossref_primary_10_1093_jxb_erad353
crossref_primary_10_1126_sciadv_abn5057
crossref_primary_10_1016_j_plantsci_2023_111767
crossref_primary_10_3390_plants11233200
crossref_primary_10_1007_s12355_022_01136_0
crossref_primary_10_1016_j_tplants_2024_10_014
crossref_primary_10_3389_fpls_2022_1068961
crossref_primary_10_3389_fpls_2022_778738
crossref_primary_10_1111_ejss_13219
crossref_primary_10_1007_s00425_023_04262_5
Cites_doi 10.1105/tpc.110.076588
10.1093/jxb/erz383
10.1097/01.ss.0000196771.53574.79
10.1104/pp.121.4.1227
10.1126/science.284.5423.2148
10.1016/0167-1987(82)90030-7
10.1111/pce.13459
10.1038/srep04586
10.1002/2014WR016020
10.1038/s41467-019-12045-4
10.1006/anbo.1998.0793
10.1093/jexbot/52.364.2127
10.1016/0167-1987(95)00479-C
10.1093/mp/sst087
10.1016/j.still.2004.08.009
10.1093/jxb/ert124
10.1016/j.geoderma.2020.114276
10.1038/s41586-019-1203-6
10.1038/s41467-018-04710-x
ContentType Journal Article
Copyright Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
– notice: Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
– notice: Distributed under a Creative Commons Attribution 4.0 International License
CorporateAuthor Sveriges lantbruksuniversitet
CorporateAuthor_xml – name: Sveriges lantbruksuniversitet
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
1XC
ADTPV
AOWAS
DOI 10.1126/science.abf3013
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
SwePub
SwePub Articles
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Entomology Abstracts
Animal Behavior Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList
Materials Research Database

MEDLINE - Academic
MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1095-9203
EndPage 280
ExternalDocumentID oai_slubar_slu_se_111288
oai_HAL_hal_03334388v1
33446554
10_1126_science_abf3013
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/G023972/1
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
..I
.55
.DC
08G
0R~
0WA
123
18M
2FS
2KS
2WC
2XV
34G
36B
39C
3R3
53G
5RE
66.
6OB
6TJ
7X2
7~K
85S
8F7
AABCJ
AACGO
AAIKC
AAMNW
AANCE
AAWTO
AAYXX
ABCQX
ABDBF
ABDEX
ABDQB
ABEFU
ABIVO
ABJNI
ABOCM
ABPLY
ABPPZ
ABQIJ
ABTLG
ABWJO
ABZEH
ACBEA
ACBEC
ACGFO
ACGFS
ACGOD
ACIWK
ACMJI
ACNCT
ACPRK
ACQOY
ACUHS
ADDRP
ADUKH
ADXHL
AEGBM
AENEX
AETEA
AFBNE
AFFNX
AFHKK
AFQFN
AFRAH
AGFXO
AGNAY
AGSOS
AHMBA
AIDAL
AIDUJ
AJGZS
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ASPBG
AVWKF
BKF
BLC
C45
CITATION
CS3
DB2
DU5
EBS
EMOBN
F5P
FA8
FEDTE
HZ~
I.T
IAO
IEA
IGS
IH2
IHR
INH
INR
IOF
IOV
IPO
IPY
ISE
JCF
JLS
JSG
JST
K-O
KCC
L7B
LSO
LU7
M0P
MQT
MVM
N9A
NEJ
NHB
O9-
OCB
OFXIZ
OGEVE
OMK
OVD
P-O
P2P
PQQKQ
PZZ
RHI
RXW
SC5
SJN
TAE
TEORI
TN5
TWZ
UBW
UCV
UHB
UKR
UMD
UNMZH
UQL
USG
VVN
WH7
WI4
X7M
XJF
XZL
Y6R
YK4
YKV
YNT
YOJ
YR2
YR5
YRY
YSQ
YV5
YWH
YYP
YZZ
ZCA
ZE2
~02
~G0
~KM
~ZZ
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
1XC
GX1
UMC
.GJ
.GO
.HR
0-V
186
3EH
4.4
41~
42X
4R4
692
79B
7X7
7XC
88E
88I
8AF
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8GL
8WZ
97F
A6W
AADHG
AAFWJ
AAJYS
AAKAS
AAYJJ
ABBHK
ABDPE
ABJCF
ABPMR
ABUWG
ABXSQ
ACHIC
ACQAM
ACTDY
ADBBV
ADMHC
ADQXQ
ADTPV
ADULT
ADZCM
AEUPB
AEUYN
AEXZC
AFCHL
AFFDN
AFKRA
AFQQW
AJUXI
AOWAS
AQVQM
ARALO
ARAPS
ATCPS
AZQEC
BBNVY
BBWZM
BCU
BEC
BENPR
BGLVJ
BHPHI
BKNYI
BKSAR
BPHCQ
BVXVI
C2-
C51
CCPQU
CJNVE
D0S
D1I
D1J
D1K
DCCCD
DWQXO
D~A
EAU
EGS
EJD
EWM
EX3
FYUFA
GICCO
GNUQQ
GUQSH
HCIFZ
HGD
HMCUK
HQ3
HTVGU
HVGLF
IAG
IBG
IEP
IER
IPC
IPSME
ISN
ITC
J5H
J9C
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLXEF
JPM
K6-
K9-
KB.
KQ8
L6V
LK5
LK8
LPU
M0K
M0R
M1P
M2O
M2P
M2Q
M7P
M7R
M7S
N4W
OK1
P62
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PJZUB
PPXIY
PQEDU
PQGLB
PROAC
PSQYO
PTHSS
PV9
PYCSY
QJJ
QS-
R05
RNS
RZL
SA0
SJFOW
SKT
UBY
UHU
UKHRP
VOH
WOQ
WOW
X7L
XIH
XKJ
XOL
YJ6
YXB
YYQ
ZCG
ZGI
ZVL
ZVM
ZXP
ZY4
~H1
ID FETCH-LOGICAL-c505t-d4dd356edd8ef769e34b9a8fe7e9ffa7d4a71f29ca1ca05e917bf6e64f69db693
ISSN 0036-8075
1095-9203
IngestDate Thu Aug 21 06:24:08 EDT 2025
Fri May 09 12:20:19 EDT 2025
Tue Aug 05 10:22:38 EDT 2025
Fri Jul 25 19:15:56 EDT 2025
Mon Jul 21 05:35:22 EDT 2025
Tue Jul 01 01:35:24 EDT 2025
Thu Apr 24 22:55:40 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6526
Language English
License Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c505t-d4dd356edd8ef769e34b9a8fe7e9ffa7d4a71f29ca1ca05e917bf6e64f69db693
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9314-8113
0000-0002-5295-5963
0000-0001-6515-4922
0000-0002-4960-5292
0000-0002-5333-8502
0000-0002-5603-706X
0000-0002-7265-9790
0000-0002-6103-5704
0000-0002-6709-6436
0000-0002-1764-2929
0000-0003-2901-189X
0000-0002-9614-1347
0000-0003-0475-390X
OpenAccessLink https://nottingham-repository.worktribe.com/output/5234573
PMID 33446554
PQID 2478094071
PQPubID 1256
PageCount 5
ParticipantIDs swepub_primary_oai_slubar_slu_se_111288
hal_primary_oai_HAL_hal_03334388v1
proquest_miscellaneous_2478596958
proquest_journals_2478094071
pubmed_primary_33446554
crossref_primary_10_1126_science_abf3013
crossref_citationtrail_10_1126_science_abf3013
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-15
PublicationDateYYYYMMDD 2021-01-15
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-15
  day: 15
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Science (American Association for the Advancement of Science)
PublicationTitleAlternate Science
PublicationYear 2021
Publisher The American Association for the Advancement of Science
American Association for the Advancement of Science (AAAS)
Publisher_xml – name: The American Association for the Advancement of Science
– name: American Association for the Advancement of Science (AAAS)
References e_1_3_2_15_2
e_1_3_2_8_2
e_1_3_2_16_2
e_1_3_2_7_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_18_2
e_1_3_2_19_2
e_1_3_2_20_2
e_1_3_2_10_2
e_1_3_2_21_2
e_1_3_2_5_2
e_1_3_2_11_2
e_1_3_2_12_2
e_1_3_2_3_2
Mangalassery S. (e_1_3_2_4_2) 2014; 4
e_1_3_2_13_2
e_1_3_2_2_2
e_1_3_2_14_2
Potocka I. (e_1_3_2_9_2) 2018; 122
35979143 - Fac Rev. 2022 Jul 25;11:20. doi: 10.12703/r-01-0000014.
References_xml – ident: e_1_3_2_10_2
  doi: 10.1105/tpc.110.076588
– ident: e_1_3_2_2_2
  doi: 10.1093/jxb/erz383
– ident: e_1_3_2_7_2
  doi: 10.1097/01.ss.0000196771.53574.79
– ident: e_1_3_2_8_2
  doi: 10.1104/pp.121.4.1227
– ident: e_1_3_2_14_2
  doi: 10.1126/science.284.5423.2148
– ident: e_1_3_2_3_2
  doi: 10.1016/0167-1987(82)90030-7
– ident: e_1_3_2_18_2
  doi: 10.1111/pce.13459
– volume: 4
  start-page: 1
  year: 2014
  ident: e_1_3_2_4_2
  publication-title: Sci. Rep.
  doi: 10.1038/srep04586
– ident: e_1_3_2_20_2
  doi: 10.1002/2014WR016020
– volume: 122
  start-page: 711
  year: 2018
  ident: e_1_3_2_9_2
  article-title: Morphological responses of plant roots to mechanical stress
  publication-title: Ann. Bot.
– ident: e_1_3_2_12_2
  doi: 10.1038/s41467-019-12045-4
– ident: e_1_3_2_16_2
  doi: 10.1006/anbo.1998.0793
– ident: e_1_3_2_15_2
  doi: 10.1093/jexbot/52.364.2127
– ident: e_1_3_2_6_2
  doi: 10.1016/0167-1987(95)00479-C
– ident: e_1_3_2_13_2
  doi: 10.1093/mp/sst087
– ident: e_1_3_2_5_2
  doi: 10.1016/j.still.2004.08.009
– ident: e_1_3_2_17_2
  doi: 10.1093/jxb/ert124
– ident: e_1_3_2_19_2
  doi: 10.1016/j.geoderma.2020.114276
– ident: e_1_3_2_11_2
  doi: 10.1038/s41586-019-1203-6
– ident: e_1_3_2_21_2
  doi: 10.1038/s41467-018-04710-x
– reference: 35979143 - Fac Rev. 2022 Jul 25;11:20. doi: 10.12703/r-01-0000014.
SSID ssj0009593
Score 2.6755502
Snippet It's tough to drive a spade through compacted soil, and plant roots seem to have the same problem when growing in compacted ground. Pandey et al. found that...
Soil compaction represents a major challenge for modern agriculture. Compaction is intuitively thought to reduce root growth by limiting the ability of roots...
Ethylene aplenty signals soil compactionIt's tough to drive a spade through compacted soil, and plant roots seem to have the same problem when growing in...
SourceID swepub
hal
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 276
SubjectTerms Aeration
Agricultural Science
Arabidopsis - genetics
Arabidopsis - growth & development
Arabidopsis - metabolism
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
Bioaccumulation
Biotechnology
Compacted soils
Crop resilience
Diffusion
Ethylene
Ethylenes - metabolism
Gaseous diffusion
Jordbruksvetenskap
Life Sciences
Markvetenskap
Nutrition
Plant breeding
Plant growth
Plant Growth Regulators - metabolism
Plant hormones
Plant roots
Plant Roots - growth & development
Plant Roots - metabolism
Plant tissues
Receptors, Cell Surface - genetics
Receptors, Cell Surface - metabolism
Roots
Signal transduction
Signaling
Soil
Soil aeration
Soil compaction
Soil Science
Title Plant roots sense soil compaction through restricted ethylene diffusion
URI https://www.ncbi.nlm.nih.gov/pubmed/33446554
https://www.proquest.com/docview/2478094071
https://www.proquest.com/docview/2478596958
https://hal.inrae.fr/hal-03334388
https://res.slu.se/id/publ/111288
Volume 371
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1db9MwFIYttgmJm4mNr46BDEJiqEqVxI5jX3bAqNDgapN2F9mxrYGqFC0pEvx6jmPno2ygwU1aJU7i-HFOzkns8yL0SpK4lIrxiHGlIkpFHMmS0Ihzrbi2xCRtJqZPn9ninH68yC4GCc52dkmjZuXPG-eV_A9VWAdc3SzZfyDbHxRWwH_gC0sgDMtbMXaKQ80UfN-mntYQj5ppvfqy9OPKvQR4J8PjFDjA4jn30gAaeNSYVhtlXXdcgoPa3evgePYfc0YI-1GJcz92oBtKEHYbvVc4_dqZEYjGq_HLhdS9WYj89MpgD2Mn5ZjGZGwwiRdNuW58R3KRZiaVBeNBhufMRkbrerlW8sr9FLVxYUjK-RbaScHZB2u1Mz9-d3zyt-TJfcVCuqbRRKjuzBuextalG-d6PYj4LUNs61Wc3Ue7IRzAc892D90x1T666wVCf-yjvdCuNT4K-cHfPEAfWuy4xY5b7NhhxwN2HLDjATvusOMe-0N0fvL-7O0iCnoYUQl-ahNpqjXJmNGaG5szYQhVQnJrciOslbmmMk9sKkqZlDLODETiyjLDqGVCKybII7RdrSrzBGHiNKbzRFsoTkmqRQmGnFDGZZ6LRPIJmnVtV5QhWbzTLFkWbdCYsiI0dhEae4KO-h2--Twpfy76EmD0pVxvWMxPC7cuJoRQqNv3ZIIOO1ZFuOPqIqU5d_kec9j8ot8M9tB95JKVWa19mUwwkcE1PPaM-1PBwV26QDpBrz30jUrc1CUPbl3yKbo33ECHaLu5Wptn4K826nnozr8A_w-cIQ
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Plant+roots+sense+soil+compaction+through+restricted+ethylene+diffusion&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Ljung%2C+Karin&rft.date=2021-01-15&rft.issn=1095-9203&rft.volume=371&rft_id=info:doi/10.1126%2Fscience.abf3013&rft.externalDocID=oai_slubar_slu_se_111288
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon