A Novel Adaptive Independent Component Analysis Method for Multi-Channel Optically Pumped Magnetometers’ Magnetocardiography Signals

With the gradual maturation of optically pumped magnetometer (OPM) technology, the use of OPMs to acquire weak magnetocardiography (MCG) signals has started to gain widespread application. Due to the complexity of magnetic environments, MCG signals are often subject to interference from various unkn...

Full description

Saved in:
Bibliographic Details
Published inBiosensors (Basel) Vol. 15; no. 4; p. 243
Main Authors Liang, Shuang, Qi, Jiahe, He, Junhuai, Jia, Yikang, Wang, Aimin, Zhao, Ting, Wei, Chaoliang, Jiao, Hongchen, Feng, Lishuang, Cheng, Heping
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 11.04.2025
MDPI
Subjects
Online AccessGet full text
ISSN2079-6374
2079-6374
DOI10.3390/bios15040243

Cover

Abstract With the gradual maturation of optically pumped magnetometer (OPM) technology, the use of OPMs to acquire weak magnetocardiography (MCG) signals has started to gain widespread application. Due to the complexity of magnetic environments, MCG signals are often subject to interference from various unknown sources. Independent component analysis (ICA) is one of the most widely used methods for blind source separation. However, in practical applications, the numbers of retained components and filtering components are often selected manually, relying on subjective experience. This study proposes an adaptive ICA method that estimates the signal-to-noise ratio (SNR) before processing to determine the number of components and selects heartbeat-related components based on their characteristic indicators. The method was validated using phantom experiments and MCG data in a 128-channel OPM-MCG system. In the human subject experiment, the array output SNR reached 31.8 dB, and the processing time was significantly reduced to 1/38 of the original. The proposed method outperformed traditional techniques in terms of its ability to identify artifacts and efficiency in this regard, providing strong support for the broader clinical application of OPM-MCG.
AbstractList With the gradual maturation of optically pumped magnetometer (OPM) technology, the use of OPMs to acquire weak magnetocardiography (MCG) signals has started to gain widespread application. Due to the complexity of magnetic environments, MCG signals are often subject to interference from various unknown sources. Independent component analysis (ICA) is one of the most widely used methods for blind source separation. However, in practical applications, the numbers of retained components and filtering components are often selected manually, relying on subjective experience. This study proposes an adaptive ICA method that estimates the signal-to-noise ratio (SNR) before processing to determine the number of components and selects heartbeat-related components based on their characteristic indicators. The method was validated using phantom experiments and MCG data in a 128-channel OPM-MCG system. In the human subject experiment, the array output SNR reached 31.8 dB, and the processing time was significantly reduced to 1/38 of the original. The proposed method outperformed traditional techniques in terms of its ability to identify artifacts and efficiency in this regard, providing strong support for the broader clinical application of OPM-MCG.
With the gradual maturation of optically pumped magnetometer (OPM) technology, the use of OPMs to acquire weak magnetocardiography (MCG) signals has started to gain widespread application. Due to the complexity of magnetic environments, MCG signals are often subject to interference from various unknown sources. Independent component analysis (ICA) is one of the most widely used methods for blind source separation. However, in practical applications, the numbers of retained components and filtering components are often selected manually, relying on subjective experience. This study proposes an adaptive ICA method that estimates the signal-to-noise ratio (SNR) before processing to determine the number of components and selects heartbeat-related components based on their characteristic indicators. The method was validated using phantom experiments and MCG data in a 128-channel OPM-MCG system. In the human subject experiment, the array output SNR reached 31.8 dB, and the processing time was significantly reduced to 1/38 of the original. The proposed method outperformed traditional techniques in terms of its ability to identify artifacts and efficiency in this regard, providing strong support for the broader clinical application of OPM-MCG.With the gradual maturation of optically pumped magnetometer (OPM) technology, the use of OPMs to acquire weak magnetocardiography (MCG) signals has started to gain widespread application. Due to the complexity of magnetic environments, MCG signals are often subject to interference from various unknown sources. Independent component analysis (ICA) is one of the most widely used methods for blind source separation. However, in practical applications, the numbers of retained components and filtering components are often selected manually, relying on subjective experience. This study proposes an adaptive ICA method that estimates the signal-to-noise ratio (SNR) before processing to determine the number of components and selects heartbeat-related components based on their characteristic indicators. The method was validated using phantom experiments and MCG data in a 128-channel OPM-MCG system. In the human subject experiment, the array output SNR reached 31.8 dB, and the processing time was significantly reduced to 1/38 of the original. The proposed method outperformed traditional techniques in terms of its ability to identify artifacts and efficiency in this regard, providing strong support for the broader clinical application of OPM-MCG.
Audience Academic
Author Qi, Jiahe
He, Junhuai
Feng, Lishuang
Liang, Shuang
Jia, Yikang
Jiao, Hongchen
Zhao, Ting
Wang, Aimin
Wei, Chaoliang
Cheng, Heping
AuthorAffiliation 4 Beijing Laboratory of Biomedical Imaging, Beijing Municipal Education Commission, Beijing 100085, China
3 PKU-Nanjing Institute of Translational Medicine, Nanjing Raygen Health, Nanjing 210031, China; zhaoting@raygenitm.com (T.Z.); chaoliangwei@126.com (C.W.)
5 National Biomedical Imaging Center, State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, College of Future Technology, Peking University, Beijing 100871, China
2 School of Electronics, Peking University, Beijing 100871, China; wangaimin@pku.edu.cn
1 School of Instrumentation Science and Optoelectronics Engineering, Beihang University, Beijing 100191, China; sliang0607@gmail.com (S.L.); qi1183663165@163.com (J.Q.); hjh2220000@gmail.com (J.H.); jyk8161082022@163.com (Y.J.)
AuthorAffiliation_xml – name: 2 School of Electronics, Peking University, Beijing 100871, China; wangaimin@pku.edu.cn
– name: 3 PKU-Nanjing Institute of Translational Medicine, Nanjing Raygen Health, Nanjing 210031, China; zhaoting@raygenitm.com (T.Z.); chaoliangwei@126.com (C.W.)
– name: 1 School of Instrumentation Science and Optoelectronics Engineering, Beihang University, Beijing 100191, China; sliang0607@gmail.com (S.L.); qi1183663165@163.com (J.Q.); hjh2220000@gmail.com (J.H.); jyk8161082022@163.com (Y.J.)
– name: 4 Beijing Laboratory of Biomedical Imaging, Beijing Municipal Education Commission, Beijing 100085, China
– name: 5 National Biomedical Imaging Center, State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, College of Future Technology, Peking University, Beijing 100871, China
Author_xml – sequence: 1
  givenname: Shuang
  orcidid: 0009-0000-0019-0156
  surname: Liang
  fullname: Liang, Shuang
– sequence: 2
  givenname: Jiahe
  orcidid: 0009-0006-7564-1541
  surname: Qi
  fullname: Qi, Jiahe
– sequence: 3
  givenname: Junhuai
  orcidid: 0009-0009-7507-805X
  surname: He
  fullname: He, Junhuai
– sequence: 4
  givenname: Yikang
  orcidid: 0009-0007-2006-4836
  surname: Jia
  fullname: Jia, Yikang
– sequence: 5
  givenname: Aimin
  orcidid: 0000-0002-5484-9494
  surname: Wang
  fullname: Wang, Aimin
– sequence: 6
  givenname: Ting
  orcidid: 0000-0002-9861-5999
  surname: Zhao
  fullname: Zhao, Ting
– sequence: 7
  givenname: Chaoliang
  orcidid: 0000-0003-0302-2945
  surname: Wei
  fullname: Wei, Chaoliang
– sequence: 8
  givenname: Hongchen
  orcidid: 0009-0000-3109-0991
  surname: Jiao
  fullname: Jiao, Hongchen
– sequence: 9
  givenname: Lishuang
  orcidid: 0000-0002-0714-0976
  surname: Feng
  fullname: Feng, Lishuang
– sequence: 10
  givenname: Heping
  orcidid: 0000-0002-9604-6702
  surname: Cheng
  fullname: Cheng, Heping
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40277556$$D View this record in MEDLINE/PubMed
BookMark eNptks1u1DAQgCNUREvpjTOKxIUDW-zYiZMTWq34WalLkYCz5diTrKvEDnay0t448Q68Hk_CbLctu4hEiq3J58-e8TxNTpx3kCTPKblkrCJvausjzQknGWePkrOMiGpWMMFPDuanyUWMNwQfwUXFxJPkFHkh8rw4S37O009-A106N2oY7QbSpTMwAH7cmC58P-CGOJs71W2jjekKxrU3aeNDupq60c4Wa-UcCq5xuVZdt00_T_0AJl2p1sHoexghxN8_ft0HtArG-jaoYb1Nv9gWzfFZ8rjBAS7uxvPk2_t3XxcfZ1fXH5aL-dVM5yQfZxoUBTCakMI0udINpxWpueLEUMaY4YIZAEoq0wjDVUNImdWCFoKUwDJRsvNkufcar27kEGyvwlZ6ZeVtwIdWqoB5dCBpZWhVFgVWjPESmtrUFRFacMpyrkuOrrd71zDVPR4KyxRUdyQ9_uPsWrZ-I2lGspxWBRpe3RmC_z5BHGVvo4auUw78FCWjFS9yLnKB6Mt_0Bs_hV3pbimsDl7oX6pVmIF1jceN9U4q5yUrSUFYtTv45X8ofA30VuN9NxbjRwteHGb6kOJ9GyHweg_o4GMM0DwglMhdo8rDRmV_AB9F25Y
Cites_doi 10.1016/j.medengphy.2014.06.023
10.1016/j.neuroimage.2021.118402
10.1126/sciadv.adg1746
10.1016/j.bspc.2014.12.012
10.1103/RevModPhys.65.413
10.1109/JBHI.2017.2649570
10.3390/sym10070269
10.1016/j.bspc.2024.106806
10.1109/10.841330
10.1007/s11517-006-0055-z
10.3379/msjmag.1702R001
10.1111/nyas.14890
10.1161/JAHA.119.013436
10.1038/s41598-021-84971-7
10.1016/j.tins.2022.05.008
10.1109/ICDSBA48748.2019.00062
10.1038/nature26147
10.1253/circj.CJ-09-0975
10.1016/j.hrthm.2018.10.010
10.1126/science.175.4022.664
10.1016/j.ijcard.2012.12.056
10.1109/42.712138
10.1016/j.neuroimage.2021.118834
10.1007/s13534-017-0024-5
10.1007/s00034-024-02655-9
10.1109/TBME.2018.2877649
10.1136/bmjopen-2024-086433
10.1109/TBME.2011.2160635
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 by the authors. 2025
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 by the authors. 2025
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7T5
7X7
7XB
88E
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/bios15040243
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Immunology Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Health & Medical Research Collection
Biological Science Collection
AIDS and Cancer Research Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Immunology Abstracts
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Publicly Available Content Database

CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2079-6374
ExternalDocumentID oai_doaj_org_article_19d19866937348efbdb907c741354c84
PMC12025196
A838060394
40277556
10_3390_bios15040243
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: National Key Research and Development Program of China
  grantid: 2024YFF1501400, 2024YFF1501401, 2024YFF1501402
– fundername: National Key Research and Development Program of China
  grantid: 2024YFF1501400; 2024YFF1501401; 2024YFF1501402
GroupedDBID .4S
.DC
2XV
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAHBH
AAYXX
ABUWG
ADBBV
ADMLS
AEUYN
AFKRA
AFPKN
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARCSS
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
CCPQU
CITATION
DIK
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HYE
IAO
IHR
ITC
KQ8
LK8
M1P
M7P
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RPM
TUS
UKHRP
CGR
CUY
CVF
ECM
EIF
M48
NPM
PJZUB
PPXIY
PQGLB
3V.
7QL
7T5
7XB
8FK
AZQEC
C1K
DWQXO
GNUQQ
H94
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c505t-cea1eedc006df5acf4190b4a40d1333d473dee109df7d4af0082b716708e32783
IEDL.DBID M48
ISSN 2079-6374
IngestDate Wed Aug 27 01:25:52 EDT 2025
Thu Aug 21 18:26:44 EDT 2025
Fri Sep 05 17:24:46 EDT 2025
Fri Jul 25 12:01:40 EDT 2025
Thu Jun 19 01:37:34 EDT 2025
Tue Jun 17 03:40:43 EDT 2025
Mon Jul 21 05:45:23 EDT 2025
Tue Jul 01 05:10:01 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords independent component analysis
biosensors
bio-signal process
magnetocardiography
optically pumped magnetometers
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c505t-cea1eedc006df5acf4190b4a40d1333d473dee109df7d4af0082b716708e32783
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9604-6702
0009-0007-2006-4836
0000-0002-9861-5999
0000-0002-5484-9494
0009-0000-3109-0991
0009-0009-7507-805X
0009-0000-0019-0156
0009-0006-7564-1541
0000-0002-0714-0976
0000-0003-0302-2945
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/bios15040243
PMID 40277556
PQID 3194505775
PQPubID 2032424
ParticipantIDs doaj_primary_oai_doaj_org_article_19d19866937348efbdb907c741354c84
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12025196
proquest_miscellaneous_3194654757
proquest_journals_3194505775
gale_infotracmisc_A838060394
gale_infotracacademiconefile_A838060394
pubmed_primary_40277556
crossref_primary_10_3390_bios15040243
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-04-11
PublicationDateYYYYMMDD 2025-04-11
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-11
  day: 11
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Biosensors (Basel)
PublicationTitleAlternate Biosensors (Basel)
PublicationYear 2025
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Xiao (ref_2) 2023; 9
Yu (ref_17) 2011; 58
ref_12
Iwai (ref_21) 2017; 41
Hari (ref_23) 1993; 65
Brookes (ref_11) 2022; 45
Yang (ref_28) 2024; 14
Strand (ref_8) 2019; 8
Rea (ref_9) 2022; 1517
Duchateau (ref_5) 2019; 16
Cohen (ref_1) 1972; 175
Seymour (ref_14) 2022; 247
Tao (ref_29) 2019; 66
Boto (ref_10) 2018; 555
Kwon (ref_7) 2010; 74
Kwong (ref_3) 2013; 167
Mariyappa (ref_24) 2014; 36
ref_25
Sarela (ref_22) 2000; 47
Treacher (ref_19) 2021; 241
DiPietroPaolo (ref_16) 2006; 44
Zhao (ref_6) 2018; 22
Iwai (ref_15) 2017; 7
Jia (ref_13) 2024; 99
ref_27
ref_26
Agren (ref_4) 1998; 17
Kesavaraja (ref_20) 2024; 43
Mariyappa (ref_18) 2015; 18
References_xml – volume: 36
  start-page: 1266
  year: 2014
  ident: ref_24
  article-title: Baseline Drift Removal and Denoising of MCG Data Using EEMD: Role of Noise Amplitude and the Thresholding Effect
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2014.06.023
– volume: 241
  start-page: 118402
  year: 2021
  ident: ref_19
  article-title: MEGnet: Automatic ICA-based Artifact Removal for MEG Using Spatiotemporal Convolutional Neural
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2021.118402
– volume: 9
  start-page: eadg1746
  year: 2023
  ident: ref_2
  article-title: A Movable Unshielded Magnetocardiography System
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.adg1746
– volume: 18
  start-page: 204
  year: 2015
  ident: ref_18
  article-title: Denoising of Multichannel MCG Data by the Combination of EEMD and ICA and Its Effect on the Pseudo Current Density Maps
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2014.12.012
– volume: 65
  start-page: 413
  year: 1993
  ident: ref_23
  article-title: Magnetoencephalography—Theory, instrumentation, and applications to noninvasive studies of the working human brain
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.65.413
– volume: 22
  start-page: 495
  year: 2018
  ident: ref_6
  article-title: An Integrated Maximum Current Density Approach for Noninvasive Detection of Myocardial Infarction
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2017.2649570
– ident: ref_26
  doi: 10.3390/sym10070269
– ident: ref_25
  doi: 10.1016/j.bspc.2024.106806
– volume: 47
  start-page: 589
  year: 2000
  ident: ref_22
  article-title: Independent component approach to the analysis of EEG and MEG recordings
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.841330
– volume: 44
  start-page: 489
  year: 2006
  ident: ref_16
  article-title: Noise Reduction in Magnetocardiography by Singular Value Decomposition and Independent Component Analysis
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-006-0055-z
– volume: 41
  start-page: 41
  year: 2017
  ident: ref_21
  article-title: Automatic Component Selection for Noise Reduction in Magnetocardiograph Based on Independent Component Analysis
  publication-title: J. Magn. Soc. Jpn.
  doi: 10.3379/msjmag.1702R001
– volume: 1517
  start-page: 107
  year: 2022
  ident: ref_9
  article-title: A 90-channel Triaxial Magnetoencephalography System Using Optically Pumped Magnetometers
  publication-title: Ann. N. Y. Acad. Sci.
  doi: 10.1111/nyas.14890
– volume: 8
  start-page: e013436
  year: 2019
  ident: ref_8
  article-title: Low-Cost Fetal Magnetocardiography: A Comparison of Superconducting Quantum Interference Device and Optically Pumped Magnetometers
  publication-title: J. Am. Heart Assoc.
  doi: 10.1161/JAHA.119.013436
– ident: ref_12
  doi: 10.1038/s41598-021-84971-7
– volume: 99
  start-page: 1
  year: 2024
  ident: ref_13
  article-title: Hardware-Based Interference Suppression Techniques for OPM-MEG: A Review
  publication-title: IEEE Sens. J.
– volume: 45
  start-page: 621
  year: 2022
  ident: ref_11
  article-title: Magnetoencephalography with Optically Pumped Magnetometers (OPM-MEG): The next Generation of Functional Neuroimaging
  publication-title: Trends Neurosci.
  doi: 10.1016/j.tins.2022.05.008
– ident: ref_27
  doi: 10.1109/ICDSBA48748.2019.00062
– volume: 555
  start-page: 657
  year: 2018
  ident: ref_10
  article-title: Moving Magnetoencephalography towards Real-World Applications with a Wearable System
  publication-title: Nature
  doi: 10.1038/nature26147
– volume: 74
  start-page: 1424
  year: 2010
  ident: ref_7
  article-title: Non-Invasive Magnetocardiography for the Early Diagnosis of Coronary Artery Disease in Patients Presenting With Acute Chest Pain
  publication-title: Circ. J.
  doi: 10.1253/circj.CJ-09-0975
– volume: 16
  start-page: 435
  year: 2019
  ident: ref_5
  article-title: Performance and Limitations of Noninvasive Cardiac Activation Mapping
  publication-title: Heart Rhythm
  doi: 10.1016/j.hrthm.2018.10.010
– volume: 175
  start-page: 664
  year: 1972
  ident: ref_1
  article-title: Magnetoencephalography: Detection of the Brain’s Electrical Activity with a Superconducting Magnetometer
  publication-title: Science
  doi: 10.1126/science.175.4022.664
– volume: 167
  start-page: 1835
  year: 2013
  ident: ref_3
  article-title: Diagnostic Value of Magnetocardiography in Coronary Artery Disease and Cardiac Arrhythmias: A Review of Clinical Data
  publication-title: Int. J. Cardiol.
  doi: 10.1016/j.ijcard.2012.12.056
– volume: 17
  start-page: 479
  year: 1998
  ident: ref_4
  article-title: Magnetocardiographic Localization of Arrhythmia Substrates: A Methodology Study with Accessory Pathway Ablation as Reference
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.712138
– volume: 247
  start-page: 118834
  year: 2022
  ident: ref_14
  article-title: Interference Suppression Techniques for OPM-based MEG: Opportunities and Challenges
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2021.118834
– volume: 7
  start-page: 221
  year: 2017
  ident: ref_15
  article-title: Dimensional Contraction by Principal Component Analysis as Preprocessing for Independent Component Analysis at MCG
  publication-title: Biomed. Eng. Lett.
  doi: 10.1007/s13534-017-0024-5
– volume: 43
  start-page: 4968
  year: 2024
  ident: ref_20
  article-title: Machine Learning-Based Automated Method for Effective De-noising of Magnetocardiography Signals Using Independent Component Analysis
  publication-title: Circuits Syst. Signal Process.
  doi: 10.1007/s00034-024-02655-9
– volume: 66
  start-page: 1658
  year: 2019
  ident: ref_29
  article-title: Magnetocardiography-Based Ischemic Heart Disease Detection and Localization Using Machine Learning Methods
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2018.2877649
– volume: 14
  start-page: e086433
  year: 2024
  ident: ref_28
  article-title: Development and Validation of a Clinical Diagnostic Model for Myocardial Ischaemia in Borderline Coronary Lesions Based on Optical Pumped Magnetometer Magnetocardiography: A Prospective Observational Cohort Study
  publication-title: BMJ Open
  doi: 10.1136/bmjopen-2024-086433
– volume: 58
  start-page: 2835
  year: 2011
  ident: ref_17
  article-title: Maternal MCG Interference Cancellation Using Splined Independent Component Subtraction
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2011.2160635
SSID ssj0000747937
Score 2.3308384
Snippet With the gradual maturation of optically pumped magnetometer (OPM) technology, the use of OPMs to acquire weak magnetocardiography (MCG) signals has started to...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 243
SubjectTerms Analysis
Artifact identification
Bandwidths
bio-signal process
biosensors
Decomposition
Electrocardiogram
Electrocardiography
Heart
Humans
Independent component analysis
Magnetic fields
Magnetic resonance angiography
Magnetocardiography
Magnetocardiography - methods
Magnetometers
Magnetometry - methods
Methods
optically pumped magnetometers
Phantoms, Imaging
Principal components analysis
Sensors
Signal processing
Signal Processing, Computer-Assisted
Signal to noise ratio
Statistical analysis
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQT-WA-CdQkJFAnKI6sR0nx6WiKkhbkKBSb5Z_y0olWbEpEjdOfYe-Hk_CjJNdJeLAhVsUO1bsmfHMl4y_IeRVyX0U3Jc5uLoyF66WuWWhzquA_E62cDaRuC5Pq5Mz8eFcnk9KfWFO2EAPPCzcYdF4wMVVBW6UizpE6y3gOQeOkEsYOjGBsoZNwFTagxV-MVJDpjsHXH9oV90Ggh-BDHwzH5So-v_ekCceaZ4tOXE_x3fJnTFupIvhfe-RW6G9T25P2AQfkOsFPe1-BOjkzRp3Mfp-V-O2p2j4XYtXWx4SukzVoymErTSdw83xqEELA3xcpy_clz_pJ5B28HRpLtrQd98wd2bz-9fN9oZL2awD6TX9vLpAMuaH5Oz43Zejk3wss5A7CH_63AVTgKd0YH8-SuOigCDBCiOYBwDLvVDch1CwxkflhYkYNViAWYrVgWOhjkdkr4UJPCHUGsvKEKVltRMAtIwoQqkCOOIoVBXLjLzeLrxeD2waGlAICkhPBZSRtyiVXR_kwE43QDP0qBn6X5qRkTcoU42WCoJzZjxwAK-KnFd6UfOaVYw30PNg1hMszM2bt1qhRwvfaNi6BII7JTPycteMT2LWWhu6q6EPFneWKiOPByXaTUngz3Mpq4zUM_WazXne0q6-Jv7vokRg2FRP_8cqPSP7OBz-ICuKA7LXf78KzyHO6u2LZFJ_AFG_J_U
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9QwDLZgucAB8aawoCCBOEXbNmnTntCAWC1IsyDBSnOrmtcwErTDTheJGyf-A3-PX4KdPpgKiVuVuFUT27GdOJ8BnqbCeilsytHUpVyaIuM6dgXPHeE76cToAOK6PM1PzuTbVbYaNtx2Q1rluCaGhdq2hvbIj1BUJDnTKnux_cqpahSdrg4lNC7DlQBdhvKsVmraYyFweDS_fb67wOj-SG_aHbpAknD4ZpYoAPb_uyzv2aV5zuSeETq-AdcH75EtenbfhEuuuQXX9jAFb8PPBTttvzkksvWW1jL2Zqp02zFS_7ahpxGNhC1DDWmGzisLt3E5XTho8APvtmGf-_N39h557ixb1uvGde0XyqDZ_f7xa2wwIae1h75mHzZrgmS-A2fHrz--OuFDsQVucFo7blydoL00qIXWZ7XxEl0FLWsZWwxjhZVKWOeSuLReWVl78h00BlsqLpygch134aDBAdwHpmsdp85nOi6MxHCrlolLlUNz7KXKfRrBs3Hiq22PqVFhLEIMqvYZFMFL4spEQ0jYoaE9X1eDYlVJaZOyyHPks5CF89pqjPcNOkoiQ9GTETwnnlakr8g4Uw_XDvBXCfmqWhSiiPNYlEh5OKNEPTPz7lEqqkHPd9VfqYzgydRNb1LuWuPai56GSjxnKoJ7vRBNQ5J0hJ5leQTFTLxmY573NJtPAQU8SSk8LPMH__-vh3CVCOkALEkO4aA7v3CP0I_q9OOgLH8ALtQgsw
  priority: 102
  providerName: ProQuest
Title A Novel Adaptive Independent Component Analysis Method for Multi-Channel Optically Pumped Magnetometers’ Magnetocardiography Signals
URI https://www.ncbi.nlm.nih.gov/pubmed/40277556
https://www.proquest.com/docview/3194505775
https://www.proquest.com/docview/3194654757
https://pubmed.ncbi.nlm.nih.gov/PMC12025196
https://doaj.org/article/19d19866937348efbdb907c741354c84
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB71cYEDgvKooUSLBOJk8GPttQ8IpVWrgpRQAZFys7wPh0jFDomL2ltP_Af-Xn9JZ9Z2FKscuVneteXdmZ2Zbz37DcDrINQFD3XgoqsLXK6SyJWeSdzYEL-T9JW0JK6jcXw64Z-n0XQLumqj7QSu_gntqJ7UZHn-7vLX1Udc8B8IcSJkfy_n1QrjGk7ketuwiz4pJhg2agN9a5MF7SCJJvP9zkM9n2Sp--8a6A0P1c-e3HBHJw_hQRtHsmEj-EewZco9uL_BLvgY_gzZuPptsJPOF2TV2Kd1zduakSGoSrrqeEnYyFaTZhjGMnsu16WjByW-4MvC7nifX7EzlL7RbJTPSlNXPymXZnVz_be7oWx2a0OCzb7NZzTJT2Bycvz96NRtyy64CsOh2lUm99FzKlyPuohyVXAMGiTPuacR0Iaai1Ab43upLoTmeUFRhETYJbzEhFS44ynslDiAfWAyl15gikh6ieIIvHLum0AYdMwFF3EROPCmm_hs0bBrZIhKSEDZpoAcOCSprPsQJ7a9US1nWbvEMj_VfprEMco55IkppJaI_BWGTGGESsgdeEsyzUiXUHAqbw8g4KcSB1Y2TMLEi70wxZ4HvZ644lS_udOKrFPYDE0ZJ7AnIgderZvpScpiK0110fShYs-RcOBZo0TrIXH6mR5FsQNJT716Y-63lPMflg_cDwgopvHz_zFLL-AevY5-mPn-AezUywvzEuOuWg5gW0zFAHYPj8dnXwd292Jgl9ktTfszKg
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9AAcEG8MBRaJipNV27t-HRBKoVVCm1BBK_Xmeh8OkVo7NC6oN078B_4EP4pfwoxfxELi1lvknbW8mdl57M58A_DS4zoTXHs2mjrPFirybemYyA4M4TtJV8kKxHUyDUZH4v2xf7wGv9paGEqrbHVipah1oeiMfAtFRZAzHfpvFl9s6hpFt6ttC41aLPbM5TcM2Zavx--Qv5uet7tz-HZkN10FbIXzS1uZ1EXDoFDcdOanKhNoE6VIhaMxXuNahFwb4zqxzkIt0oyMpMSoInQiw6kvBb73GqwLqmgdwPr2zvTgY3eqQ3D0aPDrDHvOY2dLzoslOl2CkP96tq9qEfCvIVixhP0szRWzt3sbbjX-KhvWAnYH1kx-F26uoBjegx9DNi2-GiTS6YK0Jxt3vXVLRgqnyOlXi3_CJlXXaobuMqvqf20qccjxBR8W1cn66SU7QCkzmk3SWW7K4oxydpa_v_9sH6gqi7YG22af5jMCgb4PR1fCiAcwyHEBj4DJVDqeyXzpREpggJcK13ihQQcgE2GQeRZstn98sqhRPBKMfohBySqDLNgmrnQ0hL1dPSjOZ0mzlRM31m4cBQHymYvIZFLL2AkVumbcR2EXFrwiniakIZBxKm0KHfBTCWsrGUY8cgKHx0i50aPEna36w61UJI1mWSZ_94EFL7phmknZcrkpLmoaairthxY8rIWoW5KgS3vfDyyIeuLVW3N_JJ9_rnDHXY8C0jh4_P_veg7XR4eT_WR_PN17AjdoEl2_ue4GDMrzC_MUvbhSPmu2DoOTq96tfwCf6l9U
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIiE4IN4YCiwSFScrtnfttQ8IBUrUUBIqQaXcjPfhNFKxQ-OCeuPEf-Cv8HP4Jcz4EWIhcest8o5X3sx7d_YbgGcBN7ngJnDR1QWu0HHoKs_GbmQJ30n5WtUgrpNptH8k3s7C2Rb86u7CUFllZxNrQ21KTXvkAxQVQcG0DAd5WxZxuDd6ufziUgcpOmnt2mk0InJgz79h-rZ6Md5DXu8GwejNx9f7btthwNU4V-Vqm_noJDSKnsnDTOcC_aMSmfAM5m7cCMmNtb6XmFwakeXkMBVmGNKLLaceFTjvJbgsOUZVqEtyJtf7OwRMj66_qbXnPPEGalGuMPwShAHY84J1s4B_XcKGT-zXa244wNENuN5GrmzYiNpN2LLFLbi2gWd4G34M2bT8apHIZEuyo2y87rJbMTI9ZUG_OiQUNqn7VzMMnFl9E9ilyw4FTvB-We-xn5yzQ5Q3a9gkmxe2Kj9T9c7q9_ef3QNd19M2sNvsw2JOcNB34OhC2HAXtgtcwH1gKlNeYPNQebEWmOplwreBtBgK5EJGeeDAbvfHp8sGzyPFPIgYlG4yyIFXxJU1DaFw1w_K03naKnXqJ8ZP4ihCPnMR21wZlXhSY5DGQxR74cBz4mlKtgIZp7P2ygN-KqFupcOYx17k8QQpd3qUqOO6P9xJRdramFX6VyMceLoepjepbq6w5VlDQ-2lQ-nAvUaI1ksSdHwfhpEDcU-8emvujxSL4xqB3A8oNU2iB___ridwBXU0fTeeHjyEq_QOncP5_g5sV6dn9hGGc5V6XOsNg08Xrah_AKr7Yhs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Adaptive+Independent+Component+Analysis+Method+for+Multi-Channel+Optically+Pumped+Magnetometers%E2%80%99+Magnetocardiography+Signals&rft.jtitle=Biosensors+%28Basel%29&rft.au=Shuang+Liang&rft.au=Jiahe+Qi&rft.au=Junhuai+He&rft.au=Yikang+Jia&rft.date=2025-04-11&rft.pub=MDPI+AG&rft.eissn=2079-6374&rft.volume=15&rft.issue=4&rft.spage=243&rft_id=info:doi/10.3390%2Fbios15040243&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_19d19866937348efbdb907c741354c84
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-6374&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-6374&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-6374&client=summon