A Novel Adaptive Independent Component Analysis Method for Multi-Channel Optically Pumped Magnetometers’ Magnetocardiography Signals
With the gradual maturation of optically pumped magnetometer (OPM) technology, the use of OPMs to acquire weak magnetocardiography (MCG) signals has started to gain widespread application. Due to the complexity of magnetic environments, MCG signals are often subject to interference from various unkn...
Saved in:
Published in | Biosensors (Basel) Vol. 15; no. 4; p. 243 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
11.04.2025
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 2079-6374 2079-6374 |
DOI | 10.3390/bios15040243 |
Cover
Abstract | With the gradual maturation of optically pumped magnetometer (OPM) technology, the use of OPMs to acquire weak magnetocardiography (MCG) signals has started to gain widespread application. Due to the complexity of magnetic environments, MCG signals are often subject to interference from various unknown sources. Independent component analysis (ICA) is one of the most widely used methods for blind source separation. However, in practical applications, the numbers of retained components and filtering components are often selected manually, relying on subjective experience. This study proposes an adaptive ICA method that estimates the signal-to-noise ratio (SNR) before processing to determine the number of components and selects heartbeat-related components based on their characteristic indicators. The method was validated using phantom experiments and MCG data in a 128-channel OPM-MCG system. In the human subject experiment, the array output SNR reached 31.8 dB, and the processing time was significantly reduced to 1/38 of the original. The proposed method outperformed traditional techniques in terms of its ability to identify artifacts and efficiency in this regard, providing strong support for the broader clinical application of OPM-MCG. |
---|---|
AbstractList | With the gradual maturation of optically pumped magnetometer (OPM) technology, the use of OPMs to acquire weak magnetocardiography (MCG) signals has started to gain widespread application. Due to the complexity of magnetic environments, MCG signals are often subject to interference from various unknown sources. Independent component analysis (ICA) is one of the most widely used methods for blind source separation. However, in practical applications, the numbers of retained components and filtering components are often selected manually, relying on subjective experience. This study proposes an adaptive ICA method that estimates the signal-to-noise ratio (SNR) before processing to determine the number of components and selects heartbeat-related components based on their characteristic indicators. The method was validated using phantom experiments and MCG data in a 128-channel OPM-MCG system. In the human subject experiment, the array output SNR reached 31.8 dB, and the processing time was significantly reduced to 1/38 of the original. The proposed method outperformed traditional techniques in terms of its ability to identify artifacts and efficiency in this regard, providing strong support for the broader clinical application of OPM-MCG. With the gradual maturation of optically pumped magnetometer (OPM) technology, the use of OPMs to acquire weak magnetocardiography (MCG) signals has started to gain widespread application. Due to the complexity of magnetic environments, MCG signals are often subject to interference from various unknown sources. Independent component analysis (ICA) is one of the most widely used methods for blind source separation. However, in practical applications, the numbers of retained components and filtering components are often selected manually, relying on subjective experience. This study proposes an adaptive ICA method that estimates the signal-to-noise ratio (SNR) before processing to determine the number of components and selects heartbeat-related components based on their characteristic indicators. The method was validated using phantom experiments and MCG data in a 128-channel OPM-MCG system. In the human subject experiment, the array output SNR reached 31.8 dB, and the processing time was significantly reduced to 1/38 of the original. The proposed method outperformed traditional techniques in terms of its ability to identify artifacts and efficiency in this regard, providing strong support for the broader clinical application of OPM-MCG.With the gradual maturation of optically pumped magnetometer (OPM) technology, the use of OPMs to acquire weak magnetocardiography (MCG) signals has started to gain widespread application. Due to the complexity of magnetic environments, MCG signals are often subject to interference from various unknown sources. Independent component analysis (ICA) is one of the most widely used methods for blind source separation. However, in practical applications, the numbers of retained components and filtering components are often selected manually, relying on subjective experience. This study proposes an adaptive ICA method that estimates the signal-to-noise ratio (SNR) before processing to determine the number of components and selects heartbeat-related components based on their characteristic indicators. The method was validated using phantom experiments and MCG data in a 128-channel OPM-MCG system. In the human subject experiment, the array output SNR reached 31.8 dB, and the processing time was significantly reduced to 1/38 of the original. The proposed method outperformed traditional techniques in terms of its ability to identify artifacts and efficiency in this regard, providing strong support for the broader clinical application of OPM-MCG. |
Audience | Academic |
Author | Qi, Jiahe He, Junhuai Feng, Lishuang Liang, Shuang Jia, Yikang Jiao, Hongchen Zhao, Ting Wang, Aimin Wei, Chaoliang Cheng, Heping |
AuthorAffiliation | 4 Beijing Laboratory of Biomedical Imaging, Beijing Municipal Education Commission, Beijing 100085, China 3 PKU-Nanjing Institute of Translational Medicine, Nanjing Raygen Health, Nanjing 210031, China; zhaoting@raygenitm.com (T.Z.); chaoliangwei@126.com (C.W.) 5 National Biomedical Imaging Center, State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, College of Future Technology, Peking University, Beijing 100871, China 2 School of Electronics, Peking University, Beijing 100871, China; wangaimin@pku.edu.cn 1 School of Instrumentation Science and Optoelectronics Engineering, Beihang University, Beijing 100191, China; sliang0607@gmail.com (S.L.); qi1183663165@163.com (J.Q.); hjh2220000@gmail.com (J.H.); jyk8161082022@163.com (Y.J.) |
AuthorAffiliation_xml | – name: 2 School of Electronics, Peking University, Beijing 100871, China; wangaimin@pku.edu.cn – name: 3 PKU-Nanjing Institute of Translational Medicine, Nanjing Raygen Health, Nanjing 210031, China; zhaoting@raygenitm.com (T.Z.); chaoliangwei@126.com (C.W.) – name: 1 School of Instrumentation Science and Optoelectronics Engineering, Beihang University, Beijing 100191, China; sliang0607@gmail.com (S.L.); qi1183663165@163.com (J.Q.); hjh2220000@gmail.com (J.H.); jyk8161082022@163.com (Y.J.) – name: 4 Beijing Laboratory of Biomedical Imaging, Beijing Municipal Education Commission, Beijing 100085, China – name: 5 National Biomedical Imaging Center, State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, College of Future Technology, Peking University, Beijing 100871, China |
Author_xml | – sequence: 1 givenname: Shuang orcidid: 0009-0000-0019-0156 surname: Liang fullname: Liang, Shuang – sequence: 2 givenname: Jiahe orcidid: 0009-0006-7564-1541 surname: Qi fullname: Qi, Jiahe – sequence: 3 givenname: Junhuai orcidid: 0009-0009-7507-805X surname: He fullname: He, Junhuai – sequence: 4 givenname: Yikang orcidid: 0009-0007-2006-4836 surname: Jia fullname: Jia, Yikang – sequence: 5 givenname: Aimin orcidid: 0000-0002-5484-9494 surname: Wang fullname: Wang, Aimin – sequence: 6 givenname: Ting orcidid: 0000-0002-9861-5999 surname: Zhao fullname: Zhao, Ting – sequence: 7 givenname: Chaoliang orcidid: 0000-0003-0302-2945 surname: Wei fullname: Wei, Chaoliang – sequence: 8 givenname: Hongchen orcidid: 0009-0000-3109-0991 surname: Jiao fullname: Jiao, Hongchen – sequence: 9 givenname: Lishuang orcidid: 0000-0002-0714-0976 surname: Feng fullname: Feng, Lishuang – sequence: 10 givenname: Heping orcidid: 0000-0002-9604-6702 surname: Cheng fullname: Cheng, Heping |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40277556$$D View this record in MEDLINE/PubMed |
BookMark | eNptks1u1DAQgCNUREvpjTOKxIUDW-zYiZMTWq34WalLkYCz5diTrKvEDnay0t448Q68Hk_CbLctu4hEiq3J58-e8TxNTpx3kCTPKblkrCJvausjzQknGWePkrOMiGpWMMFPDuanyUWMNwQfwUXFxJPkFHkh8rw4S37O009-A106N2oY7QbSpTMwAH7cmC58P-CGOJs71W2jjekKxrU3aeNDupq60c4Wa-UcCq5xuVZdt00_T_0AJl2p1sHoexghxN8_ft0HtArG-jaoYb1Nv9gWzfFZ8rjBAS7uxvPk2_t3XxcfZ1fXH5aL-dVM5yQfZxoUBTCakMI0udINpxWpueLEUMaY4YIZAEoq0wjDVUNImdWCFoKUwDJRsvNkufcar27kEGyvwlZ6ZeVtwIdWqoB5dCBpZWhVFgVWjPESmtrUFRFacMpyrkuOrrd71zDVPR4KyxRUdyQ9_uPsWrZ-I2lGspxWBRpe3RmC_z5BHGVvo4auUw78FCWjFS9yLnKB6Mt_0Bs_hV3pbimsDl7oX6pVmIF1jceN9U4q5yUrSUFYtTv45X8ofA30VuN9NxbjRwteHGb6kOJ9GyHweg_o4GMM0DwglMhdo8rDRmV_AB9F25Y |
Cites_doi | 10.1016/j.medengphy.2014.06.023 10.1016/j.neuroimage.2021.118402 10.1126/sciadv.adg1746 10.1016/j.bspc.2014.12.012 10.1103/RevModPhys.65.413 10.1109/JBHI.2017.2649570 10.3390/sym10070269 10.1016/j.bspc.2024.106806 10.1109/10.841330 10.1007/s11517-006-0055-z 10.3379/msjmag.1702R001 10.1111/nyas.14890 10.1161/JAHA.119.013436 10.1038/s41598-021-84971-7 10.1016/j.tins.2022.05.008 10.1109/ICDSBA48748.2019.00062 10.1038/nature26147 10.1253/circj.CJ-09-0975 10.1016/j.hrthm.2018.10.010 10.1126/science.175.4022.664 10.1016/j.ijcard.2012.12.056 10.1109/42.712138 10.1016/j.neuroimage.2021.118834 10.1007/s13534-017-0024-5 10.1007/s00034-024-02655-9 10.1109/TBME.2018.2877649 10.1136/bmjopen-2024-086433 10.1109/TBME.2011.2160635 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2025 by the authors. 2025 |
Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2025 by the authors. 2025 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7T5 7X7 7XB 88E 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/bios15040243 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Immunology Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Health & Medical Research Collection Biological Science Collection AIDS and Cancer Research Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Immunology Abstracts ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2079-6374 |
ExternalDocumentID | oai_doaj_org_article_19d19866937348efbdb907c741354c84 PMC12025196 A838060394 40277556 10_3390_bios15040243 |
Genre | Journal Article |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GrantInformation_xml | – fundername: National Key Research and Development Program of China grantid: 2024YFF1501400, 2024YFF1501401, 2024YFF1501402 – fundername: National Key Research and Development Program of China grantid: 2024YFF1501400; 2024YFF1501401; 2024YFF1501402 |
GroupedDBID | .4S .DC 2XV 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAFWJ AAHBH AAYXX ABUWG ADBBV ADMLS AEUYN AFKRA AFPKN ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS ARCSS BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI CCPQU CITATION DIK FYUFA GROUPED_DOAJ HCIFZ HMCUK HYE IAO IHR ITC KQ8 LK8 M1P M7P MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RPM TUS UKHRP CGR CUY CVF ECM EIF M48 NPM PJZUB PPXIY PQGLB 3V. 7QL 7T5 7XB 8FK AZQEC C1K DWQXO GNUQQ H94 K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c505t-cea1eedc006df5acf4190b4a40d1333d473dee109df7d4af0082b716708e32783 |
IEDL.DBID | M48 |
ISSN | 2079-6374 |
IngestDate | Wed Aug 27 01:25:52 EDT 2025 Thu Aug 21 18:26:44 EDT 2025 Fri Sep 05 17:24:46 EDT 2025 Fri Jul 25 12:01:40 EDT 2025 Thu Jun 19 01:37:34 EDT 2025 Tue Jun 17 03:40:43 EDT 2025 Mon Jul 21 05:45:23 EDT 2025 Tue Jul 01 05:10:01 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | independent component analysis biosensors bio-signal process magnetocardiography optically pumped magnetometers |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c505t-cea1eedc006df5acf4190b4a40d1333d473dee109df7d4af0082b716708e32783 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9604-6702 0009-0007-2006-4836 0000-0002-9861-5999 0000-0002-5484-9494 0009-0000-3109-0991 0009-0009-7507-805X 0009-0000-0019-0156 0009-0006-7564-1541 0000-0002-0714-0976 0000-0003-0302-2945 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/bios15040243 |
PMID | 40277556 |
PQID | 3194505775 |
PQPubID | 2032424 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_19d19866937348efbdb907c741354c84 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12025196 proquest_miscellaneous_3194654757 proquest_journals_3194505775 gale_infotracmisc_A838060394 gale_infotracacademiconefile_A838060394 pubmed_primary_40277556 crossref_primary_10_3390_bios15040243 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-04-11 |
PublicationDateYYYYMMDD | 2025-04-11 |
PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-11 day: 11 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Biosensors (Basel) |
PublicationTitleAlternate | Biosensors (Basel) |
PublicationYear | 2025 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Xiao (ref_2) 2023; 9 Yu (ref_17) 2011; 58 ref_12 Iwai (ref_21) 2017; 41 Hari (ref_23) 1993; 65 Brookes (ref_11) 2022; 45 Yang (ref_28) 2024; 14 Strand (ref_8) 2019; 8 Rea (ref_9) 2022; 1517 Duchateau (ref_5) 2019; 16 Cohen (ref_1) 1972; 175 Seymour (ref_14) 2022; 247 Tao (ref_29) 2019; 66 Boto (ref_10) 2018; 555 Kwon (ref_7) 2010; 74 Kwong (ref_3) 2013; 167 Mariyappa (ref_24) 2014; 36 ref_25 Sarela (ref_22) 2000; 47 Treacher (ref_19) 2021; 241 DiPietroPaolo (ref_16) 2006; 44 Zhao (ref_6) 2018; 22 Iwai (ref_15) 2017; 7 Jia (ref_13) 2024; 99 ref_27 ref_26 Agren (ref_4) 1998; 17 Kesavaraja (ref_20) 2024; 43 Mariyappa (ref_18) 2015; 18 |
References_xml | – volume: 36 start-page: 1266 year: 2014 ident: ref_24 article-title: Baseline Drift Removal and Denoising of MCG Data Using EEMD: Role of Noise Amplitude and the Thresholding Effect publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2014.06.023 – volume: 241 start-page: 118402 year: 2021 ident: ref_19 article-title: MEGnet: Automatic ICA-based Artifact Removal for MEG Using Spatiotemporal Convolutional Neural publication-title: NeuroImage doi: 10.1016/j.neuroimage.2021.118402 – volume: 9 start-page: eadg1746 year: 2023 ident: ref_2 article-title: A Movable Unshielded Magnetocardiography System publication-title: Sci. Adv. doi: 10.1126/sciadv.adg1746 – volume: 18 start-page: 204 year: 2015 ident: ref_18 article-title: Denoising of Multichannel MCG Data by the Combination of EEMD and ICA and Its Effect on the Pseudo Current Density Maps publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2014.12.012 – volume: 65 start-page: 413 year: 1993 ident: ref_23 article-title: Magnetoencephalography—Theory, instrumentation, and applications to noninvasive studies of the working human brain publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.65.413 – volume: 22 start-page: 495 year: 2018 ident: ref_6 article-title: An Integrated Maximum Current Density Approach for Noninvasive Detection of Myocardial Infarction publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2017.2649570 – ident: ref_26 doi: 10.3390/sym10070269 – ident: ref_25 doi: 10.1016/j.bspc.2024.106806 – volume: 47 start-page: 589 year: 2000 ident: ref_22 article-title: Independent component approach to the analysis of EEG and MEG recordings publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/10.841330 – volume: 44 start-page: 489 year: 2006 ident: ref_16 article-title: Noise Reduction in Magnetocardiography by Singular Value Decomposition and Independent Component Analysis publication-title: Med. Biol. Eng. Comput. doi: 10.1007/s11517-006-0055-z – volume: 41 start-page: 41 year: 2017 ident: ref_21 article-title: Automatic Component Selection for Noise Reduction in Magnetocardiograph Based on Independent Component Analysis publication-title: J. Magn. Soc. Jpn. doi: 10.3379/msjmag.1702R001 – volume: 1517 start-page: 107 year: 2022 ident: ref_9 article-title: A 90-channel Triaxial Magnetoencephalography System Using Optically Pumped Magnetometers publication-title: Ann. N. Y. Acad. Sci. doi: 10.1111/nyas.14890 – volume: 8 start-page: e013436 year: 2019 ident: ref_8 article-title: Low-Cost Fetal Magnetocardiography: A Comparison of Superconducting Quantum Interference Device and Optically Pumped Magnetometers publication-title: J. Am. Heart Assoc. doi: 10.1161/JAHA.119.013436 – ident: ref_12 doi: 10.1038/s41598-021-84971-7 – volume: 99 start-page: 1 year: 2024 ident: ref_13 article-title: Hardware-Based Interference Suppression Techniques for OPM-MEG: A Review publication-title: IEEE Sens. J. – volume: 45 start-page: 621 year: 2022 ident: ref_11 article-title: Magnetoencephalography with Optically Pumped Magnetometers (OPM-MEG): The next Generation of Functional Neuroimaging publication-title: Trends Neurosci. doi: 10.1016/j.tins.2022.05.008 – ident: ref_27 doi: 10.1109/ICDSBA48748.2019.00062 – volume: 555 start-page: 657 year: 2018 ident: ref_10 article-title: Moving Magnetoencephalography towards Real-World Applications with a Wearable System publication-title: Nature doi: 10.1038/nature26147 – volume: 74 start-page: 1424 year: 2010 ident: ref_7 article-title: Non-Invasive Magnetocardiography for the Early Diagnosis of Coronary Artery Disease in Patients Presenting With Acute Chest Pain publication-title: Circ. J. doi: 10.1253/circj.CJ-09-0975 – volume: 16 start-page: 435 year: 2019 ident: ref_5 article-title: Performance and Limitations of Noninvasive Cardiac Activation Mapping publication-title: Heart Rhythm doi: 10.1016/j.hrthm.2018.10.010 – volume: 175 start-page: 664 year: 1972 ident: ref_1 article-title: Magnetoencephalography: Detection of the Brain’s Electrical Activity with a Superconducting Magnetometer publication-title: Science doi: 10.1126/science.175.4022.664 – volume: 167 start-page: 1835 year: 2013 ident: ref_3 article-title: Diagnostic Value of Magnetocardiography in Coronary Artery Disease and Cardiac Arrhythmias: A Review of Clinical Data publication-title: Int. J. Cardiol. doi: 10.1016/j.ijcard.2012.12.056 – volume: 17 start-page: 479 year: 1998 ident: ref_4 article-title: Magnetocardiographic Localization of Arrhythmia Substrates: A Methodology Study with Accessory Pathway Ablation as Reference publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.712138 – volume: 247 start-page: 118834 year: 2022 ident: ref_14 article-title: Interference Suppression Techniques for OPM-based MEG: Opportunities and Challenges publication-title: NeuroImage doi: 10.1016/j.neuroimage.2021.118834 – volume: 7 start-page: 221 year: 2017 ident: ref_15 article-title: Dimensional Contraction by Principal Component Analysis as Preprocessing for Independent Component Analysis at MCG publication-title: Biomed. Eng. Lett. doi: 10.1007/s13534-017-0024-5 – volume: 43 start-page: 4968 year: 2024 ident: ref_20 article-title: Machine Learning-Based Automated Method for Effective De-noising of Magnetocardiography Signals Using Independent Component Analysis publication-title: Circuits Syst. Signal Process. doi: 10.1007/s00034-024-02655-9 – volume: 66 start-page: 1658 year: 2019 ident: ref_29 article-title: Magnetocardiography-Based Ischemic Heart Disease Detection and Localization Using Machine Learning Methods publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2018.2877649 – volume: 14 start-page: e086433 year: 2024 ident: ref_28 article-title: Development and Validation of a Clinical Diagnostic Model for Myocardial Ischaemia in Borderline Coronary Lesions Based on Optical Pumped Magnetometer Magnetocardiography: A Prospective Observational Cohort Study publication-title: BMJ Open doi: 10.1136/bmjopen-2024-086433 – volume: 58 start-page: 2835 year: 2011 ident: ref_17 article-title: Maternal MCG Interference Cancellation Using Splined Independent Component Subtraction publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2011.2160635 |
SSID | ssj0000747937 |
Score | 2.3308384 |
Snippet | With the gradual maturation of optically pumped magnetometer (OPM) technology, the use of OPMs to acquire weak magnetocardiography (MCG) signals has started to... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 243 |
SubjectTerms | Analysis Artifact identification Bandwidths bio-signal process biosensors Decomposition Electrocardiogram Electrocardiography Heart Humans Independent component analysis Magnetic fields Magnetic resonance angiography Magnetocardiography Magnetocardiography - methods Magnetometers Magnetometry - methods Methods optically pumped magnetometers Phantoms, Imaging Principal components analysis Sensors Signal processing Signal Processing, Computer-Assisted Signal to noise ratio Statistical analysis |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQT-WA-CdQkJFAnKI6sR0nx6WiKkhbkKBSb5Z_y0olWbEpEjdOfYe-Hk_CjJNdJeLAhVsUO1bsmfHMl4y_IeRVyX0U3Jc5uLoyF66WuWWhzquA_E62cDaRuC5Pq5Mz8eFcnk9KfWFO2EAPPCzcYdF4wMVVBW6UizpE6y3gOQeOkEsYOjGBsoZNwFTagxV-MVJDpjsHXH9oV90Ggh-BDHwzH5So-v_ekCceaZ4tOXE_x3fJnTFupIvhfe-RW6G9T25P2AQfkOsFPe1-BOjkzRp3Mfp-V-O2p2j4XYtXWx4SukzVoymErTSdw83xqEELA3xcpy_clz_pJ5B28HRpLtrQd98wd2bz-9fN9oZL2awD6TX9vLpAMuaH5Oz43Zejk3wss5A7CH_63AVTgKd0YH8-SuOigCDBCiOYBwDLvVDch1CwxkflhYkYNViAWYrVgWOhjkdkr4UJPCHUGsvKEKVltRMAtIwoQqkCOOIoVBXLjLzeLrxeD2waGlAICkhPBZSRtyiVXR_kwE43QDP0qBn6X5qRkTcoU42WCoJzZjxwAK-KnFd6UfOaVYw30PNg1hMszM2bt1qhRwvfaNi6BII7JTPycteMT2LWWhu6q6EPFneWKiOPByXaTUngz3Mpq4zUM_WazXne0q6-Jv7vokRg2FRP_8cqPSP7OBz-ICuKA7LXf78KzyHO6u2LZFJ_AFG_J_U priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9QwDLZgucAB8aawoCCBOEXbNmnTntCAWC1IsyDBSnOrmtcwErTDTheJGyf-A3-PX4KdPpgKiVuVuFUT27GdOJ8BnqbCeilsytHUpVyaIuM6dgXPHeE76cToAOK6PM1PzuTbVbYaNtx2Q1rluCaGhdq2hvbIj1BUJDnTKnux_cqpahSdrg4lNC7DlQBdhvKsVmraYyFweDS_fb67wOj-SG_aHbpAknD4ZpYoAPb_uyzv2aV5zuSeETq-AdcH75EtenbfhEuuuQXX9jAFb8PPBTttvzkksvWW1jL2Zqp02zFS_7ahpxGNhC1DDWmGzisLt3E5XTho8APvtmGf-_N39h557ixb1uvGde0XyqDZ_f7xa2wwIae1h75mHzZrgmS-A2fHrz--OuFDsQVucFo7blydoL00qIXWZ7XxEl0FLWsZWwxjhZVKWOeSuLReWVl78h00BlsqLpygch134aDBAdwHpmsdp85nOi6MxHCrlolLlUNz7KXKfRrBs3Hiq22PqVFhLEIMqvYZFMFL4spEQ0jYoaE9X1eDYlVJaZOyyHPks5CF89pqjPcNOkoiQ9GTETwnnlakr8g4Uw_XDvBXCfmqWhSiiPNYlEh5OKNEPTPz7lEqqkHPd9VfqYzgydRNb1LuWuPai56GSjxnKoJ7vRBNQ5J0hJ5leQTFTLxmY573NJtPAQU8SSk8LPMH__-vh3CVCOkALEkO4aA7v3CP0I_q9OOgLH8ALtQgsw priority: 102 providerName: ProQuest |
Title | A Novel Adaptive Independent Component Analysis Method for Multi-Channel Optically Pumped Magnetometers’ Magnetocardiography Signals |
URI | https://www.ncbi.nlm.nih.gov/pubmed/40277556 https://www.proquest.com/docview/3194505775 https://www.proquest.com/docview/3194654757 https://pubmed.ncbi.nlm.nih.gov/PMC12025196 https://doaj.org/article/19d19866937348efbdb907c741354c84 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB71cYEDgvKooUSLBOJk8GPttQ8IpVWrgpRQAZFys7wPh0jFDomL2ltP_Af-Xn9JZ9Z2FKscuVneteXdmZ2Zbz37DcDrINQFD3XgoqsLXK6SyJWeSdzYEL-T9JW0JK6jcXw64Z-n0XQLumqj7QSu_gntqJ7UZHn-7vLX1Udc8B8IcSJkfy_n1QrjGk7ketuwiz4pJhg2agN9a5MF7SCJJvP9zkM9n2Sp--8a6A0P1c-e3HBHJw_hQRtHsmEj-EewZco9uL_BLvgY_gzZuPptsJPOF2TV2Kd1zduakSGoSrrqeEnYyFaTZhjGMnsu16WjByW-4MvC7nifX7EzlL7RbJTPSlNXPymXZnVz_be7oWx2a0OCzb7NZzTJT2Bycvz96NRtyy64CsOh2lUm99FzKlyPuohyVXAMGiTPuacR0Iaai1Ab43upLoTmeUFRhETYJbzEhFS44ynslDiAfWAyl15gikh6ieIIvHLum0AYdMwFF3EROPCmm_hs0bBrZIhKSEDZpoAcOCSprPsQJ7a9US1nWbvEMj_VfprEMco55IkppJaI_BWGTGGESsgdeEsyzUiXUHAqbw8g4KcSB1Y2TMLEi70wxZ4HvZ644lS_udOKrFPYDE0ZJ7AnIgderZvpScpiK0110fShYs-RcOBZo0TrIXH6mR5FsQNJT716Y-63lPMflg_cDwgopvHz_zFLL-AevY5-mPn-AezUywvzEuOuWg5gW0zFAHYPj8dnXwd292Jgl9ktTfszKg |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9AAcEG8MBRaJipNV27t-HRBKoVVCm1BBK_Xmeh8OkVo7NC6oN078B_4EP4pfwoxfxELi1lvknbW8mdl57M58A_DS4zoTXHs2mjrPFirybemYyA4M4TtJV8kKxHUyDUZH4v2xf7wGv9paGEqrbHVipah1oeiMfAtFRZAzHfpvFl9s6hpFt6ttC41aLPbM5TcM2Zavx--Qv5uet7tz-HZkN10FbIXzS1uZ1EXDoFDcdOanKhNoE6VIhaMxXuNahFwb4zqxzkIt0oyMpMSoInQiw6kvBb73GqwLqmgdwPr2zvTgY3eqQ3D0aPDrDHvOY2dLzoslOl2CkP96tq9qEfCvIVixhP0szRWzt3sbbjX-KhvWAnYH1kx-F26uoBjegx9DNi2-GiTS6YK0Jxt3vXVLRgqnyOlXi3_CJlXXaobuMqvqf20qccjxBR8W1cn66SU7QCkzmk3SWW7K4oxydpa_v_9sH6gqi7YG22af5jMCgb4PR1fCiAcwyHEBj4DJVDqeyXzpREpggJcK13ihQQcgE2GQeRZstn98sqhRPBKMfohBySqDLNgmrnQ0hL1dPSjOZ0mzlRM31m4cBQHymYvIZFLL2AkVumbcR2EXFrwiniakIZBxKm0KHfBTCWsrGUY8cgKHx0i50aPEna36w61UJI1mWSZ_94EFL7phmknZcrkpLmoaairthxY8rIWoW5KgS3vfDyyIeuLVW3N_JJ9_rnDHXY8C0jh4_P_veg7XR4eT_WR_PN17AjdoEl2_ue4GDMrzC_MUvbhSPmu2DoOTq96tfwCf6l9U |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIiE4IN4YCiwSFScrtnfttQ8IBUrUUBIqQaXcjPfhNFKxQ-OCeuPEf-Cv8HP4Jcz4EWIhcest8o5X3sx7d_YbgGcBN7ngJnDR1QWu0HHoKs_GbmQJ30n5WtUgrpNptH8k3s7C2Rb86u7CUFllZxNrQ21KTXvkAxQVQcG0DAd5WxZxuDd6ufziUgcpOmnt2mk0InJgz79h-rZ6Md5DXu8GwejNx9f7btthwNU4V-Vqm_noJDSKnsnDTOcC_aMSmfAM5m7cCMmNtb6XmFwakeXkMBVmGNKLLaceFTjvJbgsOUZVqEtyJtf7OwRMj66_qbXnPPEGalGuMPwShAHY84J1s4B_XcKGT-zXa244wNENuN5GrmzYiNpN2LLFLbi2gWd4G34M2bT8apHIZEuyo2y87rJbMTI9ZUG_OiQUNqn7VzMMnFl9E9ilyw4FTvB-We-xn5yzQ5Q3a9gkmxe2Kj9T9c7q9_ef3QNd19M2sNvsw2JOcNB34OhC2HAXtgtcwH1gKlNeYPNQebEWmOplwreBtBgK5EJGeeDAbvfHp8sGzyPFPIgYlG4yyIFXxJU1DaFw1w_K03naKnXqJ8ZP4ihCPnMR21wZlXhSY5DGQxR74cBz4mlKtgIZp7P2ygN-KqFupcOYx17k8QQpd3qUqOO6P9xJRdramFX6VyMceLoepjepbq6w5VlDQ-2lQ-nAvUaI1ksSdHwfhpEDcU-8emvujxSL4xqB3A8oNU2iB___ridwBXU0fTeeHjyEq_QOncP5_g5sV6dn9hGGc5V6XOsNg08Xrah_AKr7Yhs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Adaptive+Independent+Component+Analysis+Method+for+Multi-Channel+Optically+Pumped+Magnetometers%E2%80%99+Magnetocardiography+Signals&rft.jtitle=Biosensors+%28Basel%29&rft.au=Shuang+Liang&rft.au=Jiahe+Qi&rft.au=Junhuai+He&rft.au=Yikang+Jia&rft.date=2025-04-11&rft.pub=MDPI+AG&rft.eissn=2079-6374&rft.volume=15&rft.issue=4&rft.spage=243&rft_id=info:doi/10.3390%2Fbios15040243&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_19d19866937348efbdb907c741354c84 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-6374&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-6374&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-6374&client=summon |