Reproducibility of Single-Subject Functional Connectivity Measurements

Measurements of resting-state functional connectivity have increasingly been used for characterization of neuropathologic and neurodevelopmental populations. We collected data to characterize how much imaging time is necessary to obtain reproducible quantitative functional connectivity measurements...

Full description

Saved in:
Bibliographic Details
Published inAmerican journal of neuroradiology : AJNR Vol. 32; no. 3; pp. 548 - 555
Main Authors Anderson, J.S., Ferguson, M.A., Lopez-Larson, M., Yurgelun-Todd, D.
Format Journal Article
LanguageEnglish
Published Oak Brook, IL American Society of Neuroradiology 01.03.2011
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Measurements of resting-state functional connectivity have increasingly been used for characterization of neuropathologic and neurodevelopmental populations. We collected data to characterize how much imaging time is necessary to obtain reproducible quantitative functional connectivity measurements needed for a reliable single-subject diagnostic test. We obtained 100 five-minute BOLD scans on a single subject, divided into 10 sessions of 10 scans each, with the subject at rest or while watching video clips of cartoons. These data were compared with resting-state BOLD scans from 36 healthy control subjects by evaluating the correlation between each pair of 64 small spheric regions of interest obtained from a published functional brain parcellation. Single-subject and group data converged to reliable estimates of individual and population connectivity values proportional to 1 / sqrt(n). Dramatic improvements in reliability were seen by using ≤25 minutes of imaging time, with smaller improvements for additional time. Functional connectivity "fingerprints" for the individual and population began diverging at approximately 15 minutes of imaging time, with increasing reliability even at 4 hours of imaging time. Twenty-five minutes of BOLD imaging time was required before any individual connections could reliably discriminate an individual from a group of healthy control subjects. A classifier discriminating scans during which our subject was resting or watching cartoons was 95% accurate at 10 minutes and 100% accurate at 15 minutes of imaging time. An individual subject and control population converged to reliable different functional connectivity profiles that were task-modulated and could be discriminated with sufficient imaging time.
AbstractList Measurements of resting-state functional connectivity have increasingly been used for characterization of neuropathologic and neurodevelopmental populations. We collected data to characterize how much imaging time is necessary to obtain reproducible quantitative functional connectivity measurements needed for a reliable single-subject diagnostic test.BACKGROUND AND PURPOSEMeasurements of resting-state functional connectivity have increasingly been used for characterization of neuropathologic and neurodevelopmental populations. We collected data to characterize how much imaging time is necessary to obtain reproducible quantitative functional connectivity measurements needed for a reliable single-subject diagnostic test.We obtained 100 five-minute BOLD scans on a single subject, divided into 10 sessions of 10 scans each, with the subject at rest or while watching video clips of cartoons. These data were compared with resting-state BOLD scans from 36 healthy control subjects by evaluating the correlation between each pair of 64 small spheric regions of interest obtained from a published functional brain parcellation.MATERIALS AND METHODSWe obtained 100 five-minute BOLD scans on a single subject, divided into 10 sessions of 10 scans each, with the subject at rest or while watching video clips of cartoons. These data were compared with resting-state BOLD scans from 36 healthy control subjects by evaluating the correlation between each pair of 64 small spheric regions of interest obtained from a published functional brain parcellation.Single-subject and group data converged to reliable estimates of individual and population connectivity values proportional to 1 / sqrt(n). Dramatic improvements in reliability were seen by using ≤25 minutes of imaging time, with smaller improvements for additional time. Functional connectivity "fingerprints" for the individual and population began diverging at approximately 15 minutes of imaging time, with increasing reliability even at 4 hours of imaging time. Twenty-five minutes of BOLD imaging time was required before any individual connections could reliably discriminate an individual from a group of healthy control subjects. A classifier discriminating scans during which our subject was resting or watching cartoons was 95% accurate at 10 minutes and 100% accurate at 15 minutes of imaging time.RESULTSSingle-subject and group data converged to reliable estimates of individual and population connectivity values proportional to 1 / sqrt(n). Dramatic improvements in reliability were seen by using ≤25 minutes of imaging time, with smaller improvements for additional time. Functional connectivity "fingerprints" for the individual and population began diverging at approximately 15 minutes of imaging time, with increasing reliability even at 4 hours of imaging time. Twenty-five minutes of BOLD imaging time was required before any individual connections could reliably discriminate an individual from a group of healthy control subjects. A classifier discriminating scans during which our subject was resting or watching cartoons was 95% accurate at 10 minutes and 100% accurate at 15 minutes of imaging time.An individual subject and control population converged to reliable different functional connectivity profiles that were task-modulated and could be discriminated with sufficient imaging time.CONCLUSIONSAn individual subject and control population converged to reliable different functional connectivity profiles that were task-modulated and could be discriminated with sufficient imaging time.
BACKGROUND AND PURPOSE: Measurements of resting-state functional connectivity have increasingly been used for characterization of neuropathologic and neurodevelopmental populations. We collected data to characterize how much imaging time is necessary to obtain reproducible quantitative functional connectivity measurements needed for a reliable single-subject diagnostic test. MATERIALS AND METHODS: We obtained 100 five-minute BOLD scans on a single subject, divided into 10 sessions of 10 scans each, with the subject at rest or while watching video clips of cartoons. These data were compared with resting-state BOLD scans from 36 healthy control subjects by evaluating the correlation between each pair of 64 small spheric regions of interest obtained from a published functional brain parcellation. RESULTS: Single-subject and group data converged to reliable estimates of individual and population connectivity values proportional to 1 / sqrt(n). Dramatic improvements in reliability were seen by using less than or equal to 25 minutes of imaging time, with smaller improvements for additional time. Functional connectivity "fingerprints" for the individual and population began diverging at approximately 15 minutes of imaging time, with increasing reliability even at 4 hours of imaging time. Twenty-five minutes of BOLD imaging time was required before any individual connections could reliably discriminate an individual from a group of healthy control subjects. A classifier discriminating scans during which our subject was resting or watching cartoons was 95% accurate at 10 minutes and 100% accurate at 15 minutes of imaging time. CONCLUSIONS: An individual subject and control population converged to reliable different functional connectivity profiles that were task-modulated and could be discriminated with sufficient imaging time.
Measurements of resting-state functional connectivity have increasingly been used for characterization of neuropathologic and neurodevelopmental populations. We collected data to characterize how much imaging time is necessary to obtain reproducible quantitative functional connectivity measurements needed for a reliable single-subject diagnostic test. We obtained 100 five-minute BOLD scans on a single subject, divided into 10 sessions of 10 scans each, with the subject at rest or while watching video clips of cartoons. These data were compared with resting-state BOLD scans from 36 healthy control subjects by evaluating the correlation between each pair of 64 small spheric regions of interest obtained from a published functional brain parcellation. Single-subject and group data converged to reliable estimates of individual and population connectivity values proportional to 1 / sqrt(n). Dramatic improvements in reliability were seen by using ≤25 minutes of imaging time, with smaller improvements for additional time. Functional connectivity "fingerprints" for the individual and population began diverging at approximately 15 minutes of imaging time, with increasing reliability even at 4 hours of imaging time. Twenty-five minutes of BOLD imaging time was required before any individual connections could reliably discriminate an individual from a group of healthy control subjects. A classifier discriminating scans during which our subject was resting or watching cartoons was 95% accurate at 10 minutes and 100% accurate at 15 minutes of imaging time. An individual subject and control population converged to reliable different functional connectivity profiles that were task-modulated and could be discriminated with sufficient imaging time.
Author Anderson, J.S.
Ferguson, M.A.
Lopez-Larson, M.
Yurgelun-Todd, D.
Author_xml – sequence: 1
  givenname: J.S.
  surname: Anderson
  fullname: Anderson, J.S.
– sequence: 2
  givenname: M.A.
  surname: Ferguson
  fullname: Ferguson, M.A.
– sequence: 3
  givenname: M.
  surname: Lopez-Larson
  fullname: Lopez-Larson, M.
– sequence: 4
  givenname: D.
  surname: Yurgelun-Todd
  fullname: Yurgelun-Todd, D.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23982038$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/21273356$$D View this record in MEDLINE/PubMed
BookMark eNqFkW9LHDEQxoNY9LS-8QOUe1MEYTXJbLKbNwU5erZgEbSFvgvZbKI5csk12RX89s3qaf9QKAQmZH7zzGSeA7QbYjAIHRN8BqSpz9UqpLMLCoB30IwI4JVg4vsummEiWMUJbvfRQc4rjDETDd1D-5TQBoDxGVremE2K_ahd57wbHufRzm9duPOmuh27ldHDfDkGPbgYlJ8vYgjlyT1M5Bej8pjM2oQhv0VvrPLZHG3jIfq2_Ph18am6ur78vLi4qjTDbKg0GCqs6IH1pGst0Z02DSM9NU05QoNm0FOo25ozwTnHqm6sBWrLjdashUP04Vl3M3Zr0-vSOykvN8mtVXqUUTn5Zya4e3kXHyRQzHArisDJViDFH6PJg1y7rI33Kpg4ZilwQxiveftfsmUNFRQwK-S734d6neZlywV4vwVU1srbpIJ2-RcHoqUYppb4mdMp5pyMldoNatp9-YvzkmA5GS4nw-WT4aXk9K-SF9V_wD8BDf2tFw
CODEN AAJNDL
CitedBy_id crossref_primary_10_1016_j_neuroimage_2017_01_059
crossref_primary_10_1002_jmri_23670
crossref_primary_10_1016_j_neuroimage_2013_12_022
crossref_primary_10_1016_j_brs_2018_10_004
crossref_primary_10_1016_j_pscychresns_2018_06_004
crossref_primary_10_1162_jocn_a_01286
crossref_primary_10_1016_j_nicl_2021_102664
crossref_primary_10_1007_s11682_019_00191_8
crossref_primary_10_1016_j_conb_2018_12_010
crossref_primary_10_1016_j_dcn_2022_101183
crossref_primary_10_1016_j_neuroimage_2017_07_005
crossref_primary_10_1016_j_neuroimage_2017_12_026
crossref_primary_10_1002_hbm_24336
crossref_primary_10_1002_hbm_24974
crossref_primary_10_1162_imag_a_00366
crossref_primary_10_1093_cercor_bhad300
crossref_primary_10_1038_s41597_020_00680_2
crossref_primary_10_1002_hbm_24572
crossref_primary_10_1016_j_neuroimage_2016_08_032
crossref_primary_10_1117_1_NPh_6_3_035002
crossref_primary_10_1111_desc_12407
crossref_primary_10_3389_fnins_2022_1000863
crossref_primary_10_1016_j_jad_2017_06_055
crossref_primary_10_1016_j_neuroimage_2022_119476
crossref_primary_10_3174_ajnr_A3713
crossref_primary_10_3389_fnins_2014_00411
crossref_primary_10_1371_journal_pone_0288654
crossref_primary_10_1038_s41380_024_02512_w
crossref_primary_10_3174_ajnr_A3711
crossref_primary_10_1016_j_nicl_2013_05_006
crossref_primary_10_3389_fnins_2014_00138
crossref_primary_10_1016_j_neuron_2017_07_011
crossref_primary_10_3389_fnins_2015_00048
crossref_primary_10_1002_jmri_28836
crossref_primary_10_1371_journal_pone_0123850
crossref_primary_10_3390_life13102075
crossref_primary_10_1038_s41380_023_02035_w
crossref_primary_10_1016_j_neuroimage_2020_116521
crossref_primary_10_1093_cercor_bhw227
crossref_primary_10_1016_j_neuroimage_2023_120238
crossref_primary_10_1002_hbm_23516
crossref_primary_10_1016_j_neuroimage_2021_118164
crossref_primary_10_1016_j_nic_2014_08_001
crossref_primary_10_1093_cercor_bhac189
crossref_primary_10_1093_cercor_bhx230
crossref_primary_10_1002_jmri_24786
crossref_primary_10_1016_j_neuroimage_2022_119663
crossref_primary_10_1038_s41467_022_32381_2
crossref_primary_10_1016_j_schres_2019_10_023
crossref_primary_10_1162_netn_a_00148
crossref_primary_10_1089_brain_2013_0169
crossref_primary_10_1016_j_cobeha_2021_02_023
crossref_primary_10_1371_journal_pone_0157292
crossref_primary_10_1016_j_bpsc_2019_05_018
crossref_primary_10_1007_s11065_014_9252_y
crossref_primary_10_1016_j_neuroimage_2018_09_033
crossref_primary_10_1002_wcs_1460
crossref_primary_10_1109_TKDE_2019_2911681
crossref_primary_10_1016_j_neuroimage_2015_07_069
crossref_primary_10_1111_insr_12591
crossref_primary_10_1016_j_yebeh_2012_09_020
crossref_primary_10_1093_cercor_bhu239
crossref_primary_10_1016_j_bpsgos_2024_100417
crossref_primary_10_1016_j_neuroimage_2021_118137
crossref_primary_10_1016_j_neuroimage_2021_118013
crossref_primary_10_1002_hbm_25843
crossref_primary_10_3389_fneur_2024_1487796
crossref_primary_10_1016_j_neubiorev_2014_05_009
crossref_primary_10_1360_TB_2024_0204
crossref_primary_10_2967_jnumed_115_165464
crossref_primary_10_1016_j_neuroimage_2017_06_006
crossref_primary_10_1016_j_neuroimage_2016_05_025
crossref_primary_10_1093_cercor_bhy270
crossref_primary_10_2139_ssrn_4131065
crossref_primary_10_1007_s12021_019_09445_8
crossref_primary_10_3389_fpsyt_2017_00294
crossref_primary_10_1016_j_bpsc_2019_07_007
crossref_primary_10_1093_cercor_bhy032
crossref_primary_10_1371_journal_pone_0084279
crossref_primary_10_1016_j_neuroimage_2021_118823
crossref_primary_10_1093_brain_awr263
crossref_primary_10_1002_hbm_22568
crossref_primary_10_1016_j_neuroimage_2019_116157
crossref_primary_10_3389_fnetp_2024_1342161
crossref_primary_10_3389_fnins_2020_00598
crossref_primary_10_1371_journal_pone_0106768
crossref_primary_10_1016_j_dcn_2019_100676
crossref_primary_10_1016_j_acra_2013_12_003
crossref_primary_10_1111_1753_0407_70029
crossref_primary_10_1093_schbul_sby039
crossref_primary_10_1007_s10548_014_0364_8
crossref_primary_10_1016_j_dcn_2015_12_005
crossref_primary_10_1111_jcpp_13250
crossref_primary_10_1177_0271678X17709198
crossref_primary_10_1007_s00702_016_1673_8
crossref_primary_10_1162_imag_a_00169
crossref_primary_10_1093_scan_nsz074
crossref_primary_10_1016_j_bandl_2021_105047
crossref_primary_10_1016_j_dcn_2020_100855
crossref_primary_10_1016_j_neuroimage_2018_01_029
crossref_primary_10_1038_s41398_020_01170_0
crossref_primary_10_1016_j_bspc_2019_101612
crossref_primary_10_1016_j_neuroimage_2011_10_062
crossref_primary_10_1016_j_pscychresns_2023_111660
crossref_primary_10_1002_brb3_3643
crossref_primary_10_1016_j_jneumeth_2016_11_014
crossref_primary_10_1016_j_neuroimage_2014_09_038
crossref_primary_10_3389_fnins_2022_937172
crossref_primary_10_1162_netn_a_00234
crossref_primary_10_1371_journal_pone_0039731
crossref_primary_10_3390_diagnostics12051277
crossref_primary_10_1152_jn_00427_2023
crossref_primary_10_1038_s41398_025_03249_y
crossref_primary_10_1089_brain_2011_0007
crossref_primary_10_1259_bjr_20180910
crossref_primary_10_1038_s41598_023_33441_3
crossref_primary_10_1159_000529055
crossref_primary_10_1002_hbm_24527
crossref_primary_10_1093_cercor_bhy123
crossref_primary_10_3174_ajnr_A2638
crossref_primary_10_1002_hbm_24840
crossref_primary_10_1148_radiol_13121573
crossref_primary_10_1371_journal_pone_0140134
crossref_primary_10_1016_j_neuroimage_2022_119589
crossref_primary_10_1038_s41467_023_39142_9
crossref_primary_10_1007_s10802_023_01143_z
crossref_primary_10_1016_j_neuroimage_2022_119229
crossref_primary_10_7554_eLife_80935
crossref_primary_10_1016_j_neuroimage_2013_05_099
crossref_primary_10_1016_j_neuroimage_2014_11_037
crossref_primary_10_1016_j_neuroimage_2020_117489
crossref_primary_10_1523_JNEUROSCI_0626_16_2016
crossref_primary_10_1002_hbm_23347
crossref_primary_10_1016_j_neuron_2015_06_037
crossref_primary_10_3389_fnins_2017_00546
crossref_primary_10_31083_j_jin2306111
crossref_primary_10_1002_brb3_456
crossref_primary_10_1038_s41598_022_18543_8
crossref_primary_10_1016_j_neuroimage_2012_03_078
crossref_primary_10_1111_psyp_14159
crossref_primary_10_1186_s13229_020_0316_y
crossref_primary_10_1016_j_biopsych_2019_10_026
crossref_primary_10_1016_j_cccb_2023_100175
crossref_primary_10_1186_s11689_015_9112_y
crossref_primary_10_1093_cercor_bhv239
crossref_primary_10_1016_j_brainres_2022_148081
crossref_primary_10_1002_hbm_70125
crossref_primary_10_1016_j_neuroimage_2016_10_020
crossref_primary_10_1016_j_neuroimage_2019_01_068
crossref_primary_10_1111_ejn_16390
crossref_primary_10_3390_e21090882
Cites_doi 10.1523/JNEUROSCI.4544-08.2008
10.1016/j.neuron.2007.08.023
10.1073/pnas.0308627101
10.1176/appi.ajp.2009.08121894
10.1016/j.neuroimage.2007.08.008
10.1093/cercor/bhn256
10.1002/1522-2594(200007)44:1<162::AID-MRM23>3.0.CO;2-E
10.1093/cercor/bhp270
10.1016/S1053-8119(03)00169-1
10.1152/jn.00783.2009
10.1016/j.biopsych.2006.08.004
10.1097/01.wnr.0000239956.45448.4c
10.1016/j.neuroimage.2010.01.002
10.1006/cbmr.1996.0014
10.1002/hbm.20576
10.1002/hbm.20428
10.1016/j.neuron.2007.10.038
10.1093/cercor/bhl006
10.1016/j.neuroimage.2007.11.001
10.1097/01.wnr.0000198434.06518.b8
10.1016/S0006-3223(02)01316-1
10.1002/mrm.1910340409
10.1016/j.neuron.2009.03.024
10.1016/j.brainres.2008.08.028
10.1002/hbm.20813
10.1093/brain/awm334
10.1093/schbul/sbm052
10.1073/pnas.0711791105
10.1001/archgenpsychiatry.2009.152
10.1371/journal.pone.0005743
10.1002/hbm.20537
10.1523/JNEUROSCI.3408-06.2006
10.1038/nrn2201
10.1093/brain/awh199
10.1073/pnas.0911855107
10.1016/j.neuropsychologia.2006.06.017
10.1148/radiol.2241011005
10.1002/hbm.21079
10.1073/pnas.0601417103
10.1080/17470910802198510
10.1016/j.neuroimage.2007.10.052
10.1002/hbm.20463
10.1093/brain/awn223
10.1006/nimg.2001.0978
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright © American Society of Neuroradiology 2011
Copyright_xml – notice: 2015 INIST-CNRS
– notice: Copyright © American Society of Neuroradiology 2011
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TK
5PM
DOI 10.3174/ajnr.A2330
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Neurosciences Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Neurosciences Abstracts
DatabaseTitleList MEDLINE - Academic
Neurosciences Abstracts
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1936-959X
EndPage 555
ExternalDocumentID PMC3205089
21273356
23982038
10_3174_ajnr_A2330
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: K23 MH087831
– fundername: NIMH NIH HHS
  grantid: K08 MH092697
– fundername: NIDA NIH HHS
  grantid: R01 DA020269
GroupedDBID ---
.55
.GJ
23M
2WC
53G
5GY
5RE
5VS
6J9
AAEJM
AAYXX
ACGFO
ACIWK
ACPRK
ADBBV
AENEX
AFFNX
AFHIN
AFRAH
AJJEV
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BTFSW
C1A
CITATION
CS3
E3Z
EBS
EJD
EMOBN
F5P
F9R
GX1
H13
INIJC
KQ8
MV1
N9A
OK1
P2P
P6G
R0Z
RHI
RPM
TNE
TR2
UDS
W8F
WOQ
WOW
X7M
ZCG
ZGI
ZXP
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TK
5PM
ID FETCH-LOGICAL-c505t-c3e29f9d35d1b8f1cbce751d2e72e79c3c53d234846596660a47ff32f60a24583
ISSN 0195-6108
1936-959X
IngestDate Thu Aug 21 13:54:44 EDT 2025
Fri Jul 11 08:27:11 EDT 2025
Fri Jul 11 04:02:32 EDT 2025
Sat May 31 02:13:04 EDT 2025
Mon Jul 21 09:16:18 EDT 2025
Thu Apr 24 23:10:10 EDT 2025
Tue Jul 01 02:18:22 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Human
Nervous system diseases
Radiodiagnosis
Reproducibility
Language English
License CC BY 4.0
Indicates open access to non-subscribers at www.ajnr.org
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c505t-c3e29f9d35d1b8f1cbce751d2e72e79c3c53d234846596660a47ff32f60a24583
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink https://www.ajnr.org/content/ajnr/32/3/548.full.pdf
PMID 21273356
PQID 857292305
PQPubID 23479
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3205089
proquest_miscellaneous_907156468
proquest_miscellaneous_857292305
pubmed_primary_21273356
pascalfrancis_primary_23982038
crossref_citationtrail_10_3174_ajnr_A2330
crossref_primary_10_3174_ajnr_A2330
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-03-01
PublicationDateYYYYMMDD 2011-03-01
PublicationDate_xml – month: 03
  year: 2011
  text: 2011-03-01
  day: 01
PublicationDecade 2010
PublicationPlace Oak Brook, IL
PublicationPlace_xml – name: Oak Brook, IL
– name: United States
PublicationTitle American journal of neuroradiology : AJNR
PublicationTitleAlternate AJNR Am J Neuroradiol
PublicationYear 2011
Publisher American Society of Neuroradiology
Publisher_xml – name: American Society of Neuroradiology
References Cordes (2018042009501056000_32.3.548.31) 2001; 22
2018042009501056000_32.3.548.25
2018042009501056000_32.3.548.26
2018042009501056000_32.3.548.27
2018042009501056000_32.3.548.28
2018042009501056000_32.3.548.29
2018042009501056000_32.3.548.40
2018042009501056000_32.3.548.41
2018042009501056000_32.3.548.20
2018042009501056000_32.3.548.42
2018042009501056000_32.3.548.21
2018042009501056000_32.3.548.43
2018042009501056000_32.3.548.22
2018042009501056000_32.3.548.44
2018042009501056000_32.3.548.23
2018042009501056000_32.3.548.45
2018042009501056000_32.3.548.24
2018042009501056000_32.3.548.9
2018042009501056000_32.3.548.5
2018042009501056000_32.3.548.6
2018042009501056000_32.3.548.7
2018042009501056000_32.3.548.8
2018042009501056000_32.3.548.1
2018042009501056000_32.3.548.14
2018042009501056000_32.3.548.36
2018042009501056000_32.3.548.2
2018042009501056000_32.3.548.15
2018042009501056000_32.3.548.37
2018042009501056000_32.3.548.3
2018042009501056000_32.3.548.16
2018042009501056000_32.3.548.38
2018042009501056000_32.3.548.4
2018042009501056000_32.3.548.17
2018042009501056000_32.3.548.39
2018042009501056000_32.3.548.18
2018042009501056000_32.3.548.19
2018042009501056000_32.3.548.30
2018042009501056000_32.3.548.10
2018042009501056000_32.3.548.32
2018042009501056000_32.3.548.11
2018042009501056000_32.3.548.33
2018042009501056000_32.3.548.12
2018042009501056000_32.3.548.34
2018042009501056000_32.3.548.13
2018042009501056000_32.3.548.35
References_xml – ident: 2018042009501056000_32.3.548.35
  doi: 10.1523/JNEUROSCI.4544-08.2008
– ident: 2018042009501056000_32.3.548.41
  doi: 10.1016/j.neuron.2007.08.023
– ident: 2018042009501056000_32.3.548.5
  doi: 10.1073/pnas.0308627101
– ident: 2018042009501056000_32.3.548.15
  doi: 10.1176/appi.ajp.2009.08121894
– ident: 2018042009501056000_32.3.548.39
  doi: 10.1016/j.neuroimage.2007.08.008
– ident: 2018042009501056000_32.3.548.27
  doi: 10.1093/cercor/bhn256
– ident: 2018042009501056000_32.3.548.29
  doi: 10.1002/1522-2594(200007)44:1<162::AID-MRM23>3.0.CO;2-E
– ident: 2018042009501056000_32.3.548.43
  doi: 10.1093/cercor/bhp270
– ident: 2018042009501056000_32.3.548.34
  doi: 10.1016/S1053-8119(03)00169-1
– ident: 2018042009501056000_32.3.548.4
  doi: 10.1152/jn.00783.2009
– ident: 2018042009501056000_32.3.548.12
  doi: 10.1016/j.biopsych.2006.08.004
– ident: 2018042009501056000_32.3.548.8
  doi: 10.1097/01.wnr.0000239956.45448.4c
– ident: 2018042009501056000_32.3.548.42
  doi: 10.1016/j.neuroimage.2010.01.002
– ident: 2018042009501056000_32.3.548.30
  doi: 10.1006/cbmr.1996.0014
– ident: 2018042009501056000_32.3.548.23
  doi: 10.1002/hbm.20576
– ident: 2018042009501056000_32.3.548.44
  doi: 10.1002/hbm.20428
– ident: 2018042009501056000_32.3.548.6
  doi: 10.1016/j.neuron.2007.10.038
– ident: 2018042009501056000_32.3.548.9
  doi: 10.1093/cercor/bhl006
– ident: 2018042009501056000_32.3.548.18
  doi: 10.1016/j.neuroimage.2007.11.001
– ident: 2018042009501056000_32.3.548.20
  doi: 10.1097/01.wnr.0000198434.06518.b8
– ident: 2018042009501056000_32.3.548.19
  doi: 10.1016/S0006-3223(02)01316-1
– ident: 2018042009501056000_32.3.548.1
  doi: 10.1002/mrm.1910340409
– ident: 2018042009501056000_32.3.548.7
  doi: 10.1016/j.neuron.2009.03.024
– ident: 2018042009501056000_32.3.548.26
  doi: 10.1016/j.brainres.2008.08.028
– ident: 2018042009501056000_32.3.548.32
  doi: 10.1002/hbm.20813
– ident: 2018042009501056000_32.3.548.14
  doi: 10.1093/brain/awm334
– volume: 22
  start-page: 1326
  year: 2001
  ident: 2018042009501056000_32.3.548.31
  article-title: Frequencies contributing to functional connectivity in the cerebral cortex in “resting-state” data
  publication-title: AJNR Am J Neuroradiol
– ident: 2018042009501056000_32.3.548.17
  doi: 10.1093/schbul/sbm052
– ident: 2018042009501056000_32.3.548.38
  doi: 10.1073/pnas.0711791105
– ident: 2018042009501056000_32.3.548.22
  doi: 10.1001/archgenpsychiatry.2009.152
– ident: 2018042009501056000_32.3.548.40
  doi: 10.1371/journal.pone.0005743
– ident: 2018042009501056000_32.3.548.45
  doi: 10.1002/hbm.20537
– ident: 2018042009501056000_32.3.548.37
  doi: 10.1523/JNEUROSCI.3408-06.2006
– ident: 2018042009501056000_32.3.548.2
  doi: 10.1038/nrn2201
– ident: 2018042009501056000_32.3.548.10
  doi: 10.1093/brain/awh199
– ident: 2018042009501056000_32.3.548.3
  doi: 10.1073/pnas.0911855107
– ident: 2018042009501056000_32.3.548.36
  doi: 10.1016/j.neuropsychologia.2006.06.017
– ident: 2018042009501056000_32.3.548.24
  doi: 10.1148/radiol.2241011005
– ident: 2018042009501056000_32.3.548.28
  doi: 10.1002/hbm.21079
– ident: 2018042009501056000_32.3.548.25
  doi: 10.1073/pnas.0601417103
– ident: 2018042009501056000_32.3.548.11
  doi: 10.1080/17470910802198510
– ident: 2018042009501056000_32.3.548.13
  doi: 10.1016/j.neuroimage.2007.10.052
– ident: 2018042009501056000_32.3.548.21
  doi: 10.1002/hbm.20463
– ident: 2018042009501056000_32.3.548.16
  doi: 10.1093/brain/awn223
– ident: 2018042009501056000_32.3.548.33
  doi: 10.1006/nimg.2001.0978
SSID ssj0005972
Score 2.4249701
Snippet Measurements of resting-state functional connectivity have increasingly been used for characterization of neuropathologic and neurodevelopmental populations....
BACKGROUND AND PURPOSE: Measurements of resting-state functional connectivity have increasingly been used for characterization of neuropathologic and...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 548
SubjectTerms Adult
Biological and medical sciences
Brain - physiology
Electrodiagnosis. Electric activity recording
Evoked Potentials, Visual - physiology
Functional
Humans
Investigative techniques, diagnostic techniques (general aspects)
Magnetic Resonance Imaging - methods
Male
Medical sciences
Middle Aged
Nerve Net - physiology
Nervous system
Radiodiagnosis. Nmr imagery. Nmr spectrometry
Reproducibility of Results
Sensitivity and Specificity
Visual Perception - physiology
Young Adult
Title Reproducibility of Single-Subject Functional Connectivity Measurements
URI https://www.ncbi.nlm.nih.gov/pubmed/21273356
https://www.proquest.com/docview/857292305
https://www.proquest.com/docview/907156468
https://pubmed.ncbi.nlm.nih.gov/PMC3205089
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9QwFA7jCiKIeF3Hy1LQF5GObdL08ji4M7uMc9F1CqsvJW0SVJbOMpcXf4S_2ZM0bdphxAsMpaSZNOSc5lzzHYRe0SgXQeQFLmdMugGXXEHeclfQPOGS5dLXUEqzeXieBpNLetnr_WxlLe22-aD4cfBcyf9QFdqAruqU7D9QthkUGuAe6AtXoDBc_4rGoD1rwNYqw1XHyj-BKLoSLuwHysHyZgxiy3j7dEpLYYpFzKxrcNPWT5sATgtRQkNerhk3cE3alTiZNxGioT6msNDpApOBdaWORxdnqWmfDazPdLr4MPriTof1fxrXz-f04mw0TefucnF6apORufWxkk56Rz3VOvFU-T46U207NBMK5qsXt3dk6_G0BrveXmmFymkkNa0AfveFAGhEgZJw38v1gGFiwj4dpO09CdjkJSowROyR-Aa6icHsUPvm-48WfR6ML1zXt1RzruBu1fve2rd1FJw712wD35qsiqQcsmL2k3Fb2s3yHrprzBJnWPHYfdQT5QN0a2YSLx6i8R6rOSvpdFnNsazmtFnNabPaI5SOR8t3564pweEWoBpv3YIInMiEE8r9PJZ-kRcioj7HIoJfUpCCEo5JAFosBcM59FgQSUmwhDusQvKP0VG5KsUT5IggZkmYUymEqncuGYybC0rjPAk56PF99Lpet6ww-PSqTMpVBnaqWuNMrXE2VGvcRy-bvtcVKsvBXied5W-61mTuI6emRwa7qgqVsVKsdpsspmB0gnVOf98lAeWchkEIoxxXFLTj-2AUEBr2UdShbdNBYbp3n5Tfvmpsd4I9MJmSp3-a-jN02355z9HRdr0TL0A93uYnmmd_Adn4v8M
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reproducibility+of+Single-Subject+Functional+Connectivity+Measurements&rft.jtitle=American+journal+of+neuroradiology+%3A+AJNR&rft.au=ANDERSON%2C+J.+S&rft.au=FERGUSON%2C+M.+A&rft.au=LOPEZ-LARSON%2C+M&rft.au=YURGELUN-TODD%2C+D&rft.date=2011-03-01&rft.pub=American+Society+of+Neuroradiology&rft.issn=0195-6108&rft.volume=32&rft.issue=3&rft.spage=548&rft.epage=555&rft_id=info:doi/10.3174%2Fajnr.a2330&rft.externalDBID=n%2Fa&rft.externalDocID=23982038
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0195-6108&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0195-6108&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0195-6108&client=summon