Reproducibility of Single-Subject Functional Connectivity Measurements
Measurements of resting-state functional connectivity have increasingly been used for characterization of neuropathologic and neurodevelopmental populations. We collected data to characterize how much imaging time is necessary to obtain reproducible quantitative functional connectivity measurements...
Saved in:
Published in | American journal of neuroradiology : AJNR Vol. 32; no. 3; pp. 548 - 555 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Oak Brook, IL
American Society of Neuroradiology
01.03.2011
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Measurements of resting-state functional connectivity have increasingly been used for characterization of neuropathologic and neurodevelopmental populations. We collected data to characterize how much imaging time is necessary to obtain reproducible quantitative functional connectivity measurements needed for a reliable single-subject diagnostic test.
We obtained 100 five-minute BOLD scans on a single subject, divided into 10 sessions of 10 scans each, with the subject at rest or while watching video clips of cartoons. These data were compared with resting-state BOLD scans from 36 healthy control subjects by evaluating the correlation between each pair of 64 small spheric regions of interest obtained from a published functional brain parcellation.
Single-subject and group data converged to reliable estimates of individual and population connectivity values proportional to 1 / sqrt(n). Dramatic improvements in reliability were seen by using ≤25 minutes of imaging time, with smaller improvements for additional time. Functional connectivity "fingerprints" for the individual and population began diverging at approximately 15 minutes of imaging time, with increasing reliability even at 4 hours of imaging time. Twenty-five minutes of BOLD imaging time was required before any individual connections could reliably discriminate an individual from a group of healthy control subjects. A classifier discriminating scans during which our subject was resting or watching cartoons was 95% accurate at 10 minutes and 100% accurate at 15 minutes of imaging time.
An individual subject and control population converged to reliable different functional connectivity profiles that were task-modulated and could be discriminated with sufficient imaging time. |
---|---|
AbstractList | Measurements of resting-state functional connectivity have increasingly been used for characterization of neuropathologic and neurodevelopmental populations. We collected data to characterize how much imaging time is necessary to obtain reproducible quantitative functional connectivity measurements needed for a reliable single-subject diagnostic test.BACKGROUND AND PURPOSEMeasurements of resting-state functional connectivity have increasingly been used for characterization of neuropathologic and neurodevelopmental populations. We collected data to characterize how much imaging time is necessary to obtain reproducible quantitative functional connectivity measurements needed for a reliable single-subject diagnostic test.We obtained 100 five-minute BOLD scans on a single subject, divided into 10 sessions of 10 scans each, with the subject at rest or while watching video clips of cartoons. These data were compared with resting-state BOLD scans from 36 healthy control subjects by evaluating the correlation between each pair of 64 small spheric regions of interest obtained from a published functional brain parcellation.MATERIALS AND METHODSWe obtained 100 five-minute BOLD scans on a single subject, divided into 10 sessions of 10 scans each, with the subject at rest or while watching video clips of cartoons. These data were compared with resting-state BOLD scans from 36 healthy control subjects by evaluating the correlation between each pair of 64 small spheric regions of interest obtained from a published functional brain parcellation.Single-subject and group data converged to reliable estimates of individual and population connectivity values proportional to 1 / sqrt(n). Dramatic improvements in reliability were seen by using ≤25 minutes of imaging time, with smaller improvements for additional time. Functional connectivity "fingerprints" for the individual and population began diverging at approximately 15 minutes of imaging time, with increasing reliability even at 4 hours of imaging time. Twenty-five minutes of BOLD imaging time was required before any individual connections could reliably discriminate an individual from a group of healthy control subjects. A classifier discriminating scans during which our subject was resting or watching cartoons was 95% accurate at 10 minutes and 100% accurate at 15 minutes of imaging time.RESULTSSingle-subject and group data converged to reliable estimates of individual and population connectivity values proportional to 1 / sqrt(n). Dramatic improvements in reliability were seen by using ≤25 minutes of imaging time, with smaller improvements for additional time. Functional connectivity "fingerprints" for the individual and population began diverging at approximately 15 minutes of imaging time, with increasing reliability even at 4 hours of imaging time. Twenty-five minutes of BOLD imaging time was required before any individual connections could reliably discriminate an individual from a group of healthy control subjects. A classifier discriminating scans during which our subject was resting or watching cartoons was 95% accurate at 10 minutes and 100% accurate at 15 minutes of imaging time.An individual subject and control population converged to reliable different functional connectivity profiles that were task-modulated and could be discriminated with sufficient imaging time.CONCLUSIONSAn individual subject and control population converged to reliable different functional connectivity profiles that were task-modulated and could be discriminated with sufficient imaging time. BACKGROUND AND PURPOSE: Measurements of resting-state functional connectivity have increasingly been used for characterization of neuropathologic and neurodevelopmental populations. We collected data to characterize how much imaging time is necessary to obtain reproducible quantitative functional connectivity measurements needed for a reliable single-subject diagnostic test. MATERIALS AND METHODS: We obtained 100 five-minute BOLD scans on a single subject, divided into 10 sessions of 10 scans each, with the subject at rest or while watching video clips of cartoons. These data were compared with resting-state BOLD scans from 36 healthy control subjects by evaluating the correlation between each pair of 64 small spheric regions of interest obtained from a published functional brain parcellation. RESULTS: Single-subject and group data converged to reliable estimates of individual and population connectivity values proportional to 1 / sqrt(n). Dramatic improvements in reliability were seen by using less than or equal to 25 minutes of imaging time, with smaller improvements for additional time. Functional connectivity "fingerprints" for the individual and population began diverging at approximately 15 minutes of imaging time, with increasing reliability even at 4 hours of imaging time. Twenty-five minutes of BOLD imaging time was required before any individual connections could reliably discriminate an individual from a group of healthy control subjects. A classifier discriminating scans during which our subject was resting or watching cartoons was 95% accurate at 10 minutes and 100% accurate at 15 minutes of imaging time. CONCLUSIONS: An individual subject and control population converged to reliable different functional connectivity profiles that were task-modulated and could be discriminated with sufficient imaging time. Measurements of resting-state functional connectivity have increasingly been used for characterization of neuropathologic and neurodevelopmental populations. We collected data to characterize how much imaging time is necessary to obtain reproducible quantitative functional connectivity measurements needed for a reliable single-subject diagnostic test. We obtained 100 five-minute BOLD scans on a single subject, divided into 10 sessions of 10 scans each, with the subject at rest or while watching video clips of cartoons. These data were compared with resting-state BOLD scans from 36 healthy control subjects by evaluating the correlation between each pair of 64 small spheric regions of interest obtained from a published functional brain parcellation. Single-subject and group data converged to reliable estimates of individual and population connectivity values proportional to 1 / sqrt(n). Dramatic improvements in reliability were seen by using ≤25 minutes of imaging time, with smaller improvements for additional time. Functional connectivity "fingerprints" for the individual and population began diverging at approximately 15 minutes of imaging time, with increasing reliability even at 4 hours of imaging time. Twenty-five minutes of BOLD imaging time was required before any individual connections could reliably discriminate an individual from a group of healthy control subjects. A classifier discriminating scans during which our subject was resting or watching cartoons was 95% accurate at 10 minutes and 100% accurate at 15 minutes of imaging time. An individual subject and control population converged to reliable different functional connectivity profiles that were task-modulated and could be discriminated with sufficient imaging time. |
Author | Anderson, J.S. Ferguson, M.A. Lopez-Larson, M. Yurgelun-Todd, D. |
Author_xml | – sequence: 1 givenname: J.S. surname: Anderson fullname: Anderson, J.S. – sequence: 2 givenname: M.A. surname: Ferguson fullname: Ferguson, M.A. – sequence: 3 givenname: M. surname: Lopez-Larson fullname: Lopez-Larson, M. – sequence: 4 givenname: D. surname: Yurgelun-Todd fullname: Yurgelun-Todd, D. |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23982038$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/21273356$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkW9LHDEQxoNY9LS-8QOUe1MEYTXJbLKbNwU5erZgEbSFvgvZbKI5csk12RX89s3qaf9QKAQmZH7zzGSeA7QbYjAIHRN8BqSpz9UqpLMLCoB30IwI4JVg4vsummEiWMUJbvfRQc4rjDETDd1D-5TQBoDxGVremE2K_ahd57wbHufRzm9duPOmuh27ldHDfDkGPbgYlJ8vYgjlyT1M5Bej8pjM2oQhv0VvrPLZHG3jIfq2_Ph18am6ur78vLi4qjTDbKg0GCqs6IH1pGst0Z02DSM9NU05QoNm0FOo25ozwTnHqm6sBWrLjdashUP04Vl3M3Zr0-vSOykvN8mtVXqUUTn5Zya4e3kXHyRQzHArisDJViDFH6PJg1y7rI33Kpg4ZilwQxiveftfsmUNFRQwK-S734d6neZlywV4vwVU1srbpIJ2-RcHoqUYppb4mdMp5pyMldoNatp9-YvzkmA5GS4nw-WT4aXk9K-SF9V_wD8BDf2tFw |
CODEN | AAJNDL |
CitedBy_id | crossref_primary_10_1016_j_neuroimage_2017_01_059 crossref_primary_10_1002_jmri_23670 crossref_primary_10_1016_j_neuroimage_2013_12_022 crossref_primary_10_1016_j_brs_2018_10_004 crossref_primary_10_1016_j_pscychresns_2018_06_004 crossref_primary_10_1162_jocn_a_01286 crossref_primary_10_1016_j_nicl_2021_102664 crossref_primary_10_1007_s11682_019_00191_8 crossref_primary_10_1016_j_conb_2018_12_010 crossref_primary_10_1016_j_dcn_2022_101183 crossref_primary_10_1016_j_neuroimage_2017_07_005 crossref_primary_10_1016_j_neuroimage_2017_12_026 crossref_primary_10_1002_hbm_24336 crossref_primary_10_1002_hbm_24974 crossref_primary_10_1162_imag_a_00366 crossref_primary_10_1093_cercor_bhad300 crossref_primary_10_1038_s41597_020_00680_2 crossref_primary_10_1002_hbm_24572 crossref_primary_10_1016_j_neuroimage_2016_08_032 crossref_primary_10_1117_1_NPh_6_3_035002 crossref_primary_10_1111_desc_12407 crossref_primary_10_3389_fnins_2022_1000863 crossref_primary_10_1016_j_jad_2017_06_055 crossref_primary_10_1016_j_neuroimage_2022_119476 crossref_primary_10_3174_ajnr_A3713 crossref_primary_10_3389_fnins_2014_00411 crossref_primary_10_1371_journal_pone_0288654 crossref_primary_10_1038_s41380_024_02512_w crossref_primary_10_3174_ajnr_A3711 crossref_primary_10_1016_j_nicl_2013_05_006 crossref_primary_10_3389_fnins_2014_00138 crossref_primary_10_1016_j_neuron_2017_07_011 crossref_primary_10_3389_fnins_2015_00048 crossref_primary_10_1002_jmri_28836 crossref_primary_10_1371_journal_pone_0123850 crossref_primary_10_3390_life13102075 crossref_primary_10_1038_s41380_023_02035_w crossref_primary_10_1016_j_neuroimage_2020_116521 crossref_primary_10_1093_cercor_bhw227 crossref_primary_10_1016_j_neuroimage_2023_120238 crossref_primary_10_1002_hbm_23516 crossref_primary_10_1016_j_neuroimage_2021_118164 crossref_primary_10_1016_j_nic_2014_08_001 crossref_primary_10_1093_cercor_bhac189 crossref_primary_10_1093_cercor_bhx230 crossref_primary_10_1002_jmri_24786 crossref_primary_10_1016_j_neuroimage_2022_119663 crossref_primary_10_1038_s41467_022_32381_2 crossref_primary_10_1016_j_schres_2019_10_023 crossref_primary_10_1162_netn_a_00148 crossref_primary_10_1089_brain_2013_0169 crossref_primary_10_1016_j_cobeha_2021_02_023 crossref_primary_10_1371_journal_pone_0157292 crossref_primary_10_1016_j_bpsc_2019_05_018 crossref_primary_10_1007_s11065_014_9252_y crossref_primary_10_1016_j_neuroimage_2018_09_033 crossref_primary_10_1002_wcs_1460 crossref_primary_10_1109_TKDE_2019_2911681 crossref_primary_10_1016_j_neuroimage_2015_07_069 crossref_primary_10_1111_insr_12591 crossref_primary_10_1016_j_yebeh_2012_09_020 crossref_primary_10_1093_cercor_bhu239 crossref_primary_10_1016_j_bpsgos_2024_100417 crossref_primary_10_1016_j_neuroimage_2021_118137 crossref_primary_10_1016_j_neuroimage_2021_118013 crossref_primary_10_1002_hbm_25843 crossref_primary_10_3389_fneur_2024_1487796 crossref_primary_10_1016_j_neubiorev_2014_05_009 crossref_primary_10_1360_TB_2024_0204 crossref_primary_10_2967_jnumed_115_165464 crossref_primary_10_1016_j_neuroimage_2017_06_006 crossref_primary_10_1016_j_neuroimage_2016_05_025 crossref_primary_10_1093_cercor_bhy270 crossref_primary_10_2139_ssrn_4131065 crossref_primary_10_1007_s12021_019_09445_8 crossref_primary_10_3389_fpsyt_2017_00294 crossref_primary_10_1016_j_bpsc_2019_07_007 crossref_primary_10_1093_cercor_bhy032 crossref_primary_10_1371_journal_pone_0084279 crossref_primary_10_1016_j_neuroimage_2021_118823 crossref_primary_10_1093_brain_awr263 crossref_primary_10_1002_hbm_22568 crossref_primary_10_1016_j_neuroimage_2019_116157 crossref_primary_10_3389_fnetp_2024_1342161 crossref_primary_10_3389_fnins_2020_00598 crossref_primary_10_1371_journal_pone_0106768 crossref_primary_10_1016_j_dcn_2019_100676 crossref_primary_10_1016_j_acra_2013_12_003 crossref_primary_10_1111_1753_0407_70029 crossref_primary_10_1093_schbul_sby039 crossref_primary_10_1007_s10548_014_0364_8 crossref_primary_10_1016_j_dcn_2015_12_005 crossref_primary_10_1111_jcpp_13250 crossref_primary_10_1177_0271678X17709198 crossref_primary_10_1007_s00702_016_1673_8 crossref_primary_10_1162_imag_a_00169 crossref_primary_10_1093_scan_nsz074 crossref_primary_10_1016_j_bandl_2021_105047 crossref_primary_10_1016_j_dcn_2020_100855 crossref_primary_10_1016_j_neuroimage_2018_01_029 crossref_primary_10_1038_s41398_020_01170_0 crossref_primary_10_1016_j_bspc_2019_101612 crossref_primary_10_1016_j_neuroimage_2011_10_062 crossref_primary_10_1016_j_pscychresns_2023_111660 crossref_primary_10_1002_brb3_3643 crossref_primary_10_1016_j_jneumeth_2016_11_014 crossref_primary_10_1016_j_neuroimage_2014_09_038 crossref_primary_10_3389_fnins_2022_937172 crossref_primary_10_1162_netn_a_00234 crossref_primary_10_1371_journal_pone_0039731 crossref_primary_10_3390_diagnostics12051277 crossref_primary_10_1152_jn_00427_2023 crossref_primary_10_1038_s41398_025_03249_y crossref_primary_10_1089_brain_2011_0007 crossref_primary_10_1259_bjr_20180910 crossref_primary_10_1038_s41598_023_33441_3 crossref_primary_10_1159_000529055 crossref_primary_10_1002_hbm_24527 crossref_primary_10_1093_cercor_bhy123 crossref_primary_10_3174_ajnr_A2638 crossref_primary_10_1002_hbm_24840 crossref_primary_10_1148_radiol_13121573 crossref_primary_10_1371_journal_pone_0140134 crossref_primary_10_1016_j_neuroimage_2022_119589 crossref_primary_10_1038_s41467_023_39142_9 crossref_primary_10_1007_s10802_023_01143_z crossref_primary_10_1016_j_neuroimage_2022_119229 crossref_primary_10_7554_eLife_80935 crossref_primary_10_1016_j_neuroimage_2013_05_099 crossref_primary_10_1016_j_neuroimage_2014_11_037 crossref_primary_10_1016_j_neuroimage_2020_117489 crossref_primary_10_1523_JNEUROSCI_0626_16_2016 crossref_primary_10_1002_hbm_23347 crossref_primary_10_1016_j_neuron_2015_06_037 crossref_primary_10_3389_fnins_2017_00546 crossref_primary_10_31083_j_jin2306111 crossref_primary_10_1002_brb3_456 crossref_primary_10_1038_s41598_022_18543_8 crossref_primary_10_1016_j_neuroimage_2012_03_078 crossref_primary_10_1111_psyp_14159 crossref_primary_10_1186_s13229_020_0316_y crossref_primary_10_1016_j_biopsych_2019_10_026 crossref_primary_10_1016_j_cccb_2023_100175 crossref_primary_10_1186_s11689_015_9112_y crossref_primary_10_1093_cercor_bhv239 crossref_primary_10_1016_j_brainres_2022_148081 crossref_primary_10_1002_hbm_70125 crossref_primary_10_1016_j_neuroimage_2016_10_020 crossref_primary_10_1016_j_neuroimage_2019_01_068 crossref_primary_10_1111_ejn_16390 crossref_primary_10_3390_e21090882 |
Cites_doi | 10.1523/JNEUROSCI.4544-08.2008 10.1016/j.neuron.2007.08.023 10.1073/pnas.0308627101 10.1176/appi.ajp.2009.08121894 10.1016/j.neuroimage.2007.08.008 10.1093/cercor/bhn256 10.1002/1522-2594(200007)44:1<162::AID-MRM23>3.0.CO;2-E 10.1093/cercor/bhp270 10.1016/S1053-8119(03)00169-1 10.1152/jn.00783.2009 10.1016/j.biopsych.2006.08.004 10.1097/01.wnr.0000239956.45448.4c 10.1016/j.neuroimage.2010.01.002 10.1006/cbmr.1996.0014 10.1002/hbm.20576 10.1002/hbm.20428 10.1016/j.neuron.2007.10.038 10.1093/cercor/bhl006 10.1016/j.neuroimage.2007.11.001 10.1097/01.wnr.0000198434.06518.b8 10.1016/S0006-3223(02)01316-1 10.1002/mrm.1910340409 10.1016/j.neuron.2009.03.024 10.1016/j.brainres.2008.08.028 10.1002/hbm.20813 10.1093/brain/awm334 10.1093/schbul/sbm052 10.1073/pnas.0711791105 10.1001/archgenpsychiatry.2009.152 10.1371/journal.pone.0005743 10.1002/hbm.20537 10.1523/JNEUROSCI.3408-06.2006 10.1038/nrn2201 10.1093/brain/awh199 10.1073/pnas.0911855107 10.1016/j.neuropsychologia.2006.06.017 10.1148/radiol.2241011005 10.1002/hbm.21079 10.1073/pnas.0601417103 10.1080/17470910802198510 10.1016/j.neuroimage.2007.10.052 10.1002/hbm.20463 10.1093/brain/awn223 10.1006/nimg.2001.0978 |
ContentType | Journal Article |
Copyright | 2015 INIST-CNRS Copyright © American Society of Neuroradiology 2011 |
Copyright_xml | – notice: 2015 INIST-CNRS – notice: Copyright © American Society of Neuroradiology 2011 |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 7TK 5PM |
DOI | 10.3174/ajnr.A2330 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Neurosciences Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Neurosciences Abstracts |
DatabaseTitleList | MEDLINE - Academic Neurosciences Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1936-959X |
EndPage | 555 |
ExternalDocumentID | PMC3205089 21273356 23982038 10_3174_ajnr_A2330 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIMH NIH HHS grantid: K23 MH087831 – fundername: NIMH NIH HHS grantid: K08 MH092697 – fundername: NIDA NIH HHS grantid: R01 DA020269 |
GroupedDBID | --- .55 .GJ 23M 2WC 53G 5GY 5RE 5VS 6J9 AAEJM AAYXX ACGFO ACIWK ACPRK ADBBV AENEX AFFNX AFHIN AFRAH AJJEV ALMA_UNASSIGNED_HOLDINGS BAWUL BTFSW C1A CITATION CS3 E3Z EBS EJD EMOBN F5P F9R GX1 H13 INIJC KQ8 MV1 N9A OK1 P2P P6G R0Z RHI RPM TNE TR2 UDS W8F WOQ WOW X7M ZCG ZGI ZXP IQODW CGR CUY CVF ECM EIF NPM 7X8 7TK 5PM |
ID | FETCH-LOGICAL-c505t-c3e29f9d35d1b8f1cbce751d2e72e79c3c53d234846596660a47ff32f60a24583 |
ISSN | 0195-6108 1936-959X |
IngestDate | Thu Aug 21 13:54:44 EDT 2025 Fri Jul 11 08:27:11 EDT 2025 Fri Jul 11 04:02:32 EDT 2025 Sat May 31 02:13:04 EDT 2025 Mon Jul 21 09:16:18 EDT 2025 Thu Apr 24 23:10:10 EDT 2025 Tue Jul 01 02:18:22 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Human Nervous system diseases Radiodiagnosis Reproducibility |
Language | English |
License | CC BY 4.0 Indicates open access to non-subscribers at www.ajnr.org |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c505t-c3e29f9d35d1b8f1cbce751d2e72e79c3c53d234846596660a47ff32f60a24583 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
OpenAccessLink | https://www.ajnr.org/content/ajnr/32/3/548.full.pdf |
PMID | 21273356 |
PQID | 857292305 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3205089 proquest_miscellaneous_907156468 proquest_miscellaneous_857292305 pubmed_primary_21273356 pascalfrancis_primary_23982038 crossref_citationtrail_10_3174_ajnr_A2330 crossref_primary_10_3174_ajnr_A2330 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-03-01 |
PublicationDateYYYYMMDD | 2011-03-01 |
PublicationDate_xml | – month: 03 year: 2011 text: 2011-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Oak Brook, IL |
PublicationPlace_xml | – name: Oak Brook, IL – name: United States |
PublicationTitle | American journal of neuroradiology : AJNR |
PublicationTitleAlternate | AJNR Am J Neuroradiol |
PublicationYear | 2011 |
Publisher | American Society of Neuroradiology |
Publisher_xml | – name: American Society of Neuroradiology |
References | Cordes (2018042009501056000_32.3.548.31) 2001; 22 2018042009501056000_32.3.548.25 2018042009501056000_32.3.548.26 2018042009501056000_32.3.548.27 2018042009501056000_32.3.548.28 2018042009501056000_32.3.548.29 2018042009501056000_32.3.548.40 2018042009501056000_32.3.548.41 2018042009501056000_32.3.548.20 2018042009501056000_32.3.548.42 2018042009501056000_32.3.548.21 2018042009501056000_32.3.548.43 2018042009501056000_32.3.548.22 2018042009501056000_32.3.548.44 2018042009501056000_32.3.548.23 2018042009501056000_32.3.548.45 2018042009501056000_32.3.548.24 2018042009501056000_32.3.548.9 2018042009501056000_32.3.548.5 2018042009501056000_32.3.548.6 2018042009501056000_32.3.548.7 2018042009501056000_32.3.548.8 2018042009501056000_32.3.548.1 2018042009501056000_32.3.548.14 2018042009501056000_32.3.548.36 2018042009501056000_32.3.548.2 2018042009501056000_32.3.548.15 2018042009501056000_32.3.548.37 2018042009501056000_32.3.548.3 2018042009501056000_32.3.548.16 2018042009501056000_32.3.548.38 2018042009501056000_32.3.548.4 2018042009501056000_32.3.548.17 2018042009501056000_32.3.548.39 2018042009501056000_32.3.548.18 2018042009501056000_32.3.548.19 2018042009501056000_32.3.548.30 2018042009501056000_32.3.548.10 2018042009501056000_32.3.548.32 2018042009501056000_32.3.548.11 2018042009501056000_32.3.548.33 2018042009501056000_32.3.548.12 2018042009501056000_32.3.548.34 2018042009501056000_32.3.548.13 2018042009501056000_32.3.548.35 |
References_xml | – ident: 2018042009501056000_32.3.548.35 doi: 10.1523/JNEUROSCI.4544-08.2008 – ident: 2018042009501056000_32.3.548.41 doi: 10.1016/j.neuron.2007.08.023 – ident: 2018042009501056000_32.3.548.5 doi: 10.1073/pnas.0308627101 – ident: 2018042009501056000_32.3.548.15 doi: 10.1176/appi.ajp.2009.08121894 – ident: 2018042009501056000_32.3.548.39 doi: 10.1016/j.neuroimage.2007.08.008 – ident: 2018042009501056000_32.3.548.27 doi: 10.1093/cercor/bhn256 – ident: 2018042009501056000_32.3.548.29 doi: 10.1002/1522-2594(200007)44:1<162::AID-MRM23>3.0.CO;2-E – ident: 2018042009501056000_32.3.548.43 doi: 10.1093/cercor/bhp270 – ident: 2018042009501056000_32.3.548.34 doi: 10.1016/S1053-8119(03)00169-1 – ident: 2018042009501056000_32.3.548.4 doi: 10.1152/jn.00783.2009 – ident: 2018042009501056000_32.3.548.12 doi: 10.1016/j.biopsych.2006.08.004 – ident: 2018042009501056000_32.3.548.8 doi: 10.1097/01.wnr.0000239956.45448.4c – ident: 2018042009501056000_32.3.548.42 doi: 10.1016/j.neuroimage.2010.01.002 – ident: 2018042009501056000_32.3.548.30 doi: 10.1006/cbmr.1996.0014 – ident: 2018042009501056000_32.3.548.23 doi: 10.1002/hbm.20576 – ident: 2018042009501056000_32.3.548.44 doi: 10.1002/hbm.20428 – ident: 2018042009501056000_32.3.548.6 doi: 10.1016/j.neuron.2007.10.038 – ident: 2018042009501056000_32.3.548.9 doi: 10.1093/cercor/bhl006 – ident: 2018042009501056000_32.3.548.18 doi: 10.1016/j.neuroimage.2007.11.001 – ident: 2018042009501056000_32.3.548.20 doi: 10.1097/01.wnr.0000198434.06518.b8 – ident: 2018042009501056000_32.3.548.19 doi: 10.1016/S0006-3223(02)01316-1 – ident: 2018042009501056000_32.3.548.1 doi: 10.1002/mrm.1910340409 – ident: 2018042009501056000_32.3.548.7 doi: 10.1016/j.neuron.2009.03.024 – ident: 2018042009501056000_32.3.548.26 doi: 10.1016/j.brainres.2008.08.028 – ident: 2018042009501056000_32.3.548.32 doi: 10.1002/hbm.20813 – ident: 2018042009501056000_32.3.548.14 doi: 10.1093/brain/awm334 – volume: 22 start-page: 1326 year: 2001 ident: 2018042009501056000_32.3.548.31 article-title: Frequencies contributing to functional connectivity in the cerebral cortex in “resting-state” data publication-title: AJNR Am J Neuroradiol – ident: 2018042009501056000_32.3.548.17 doi: 10.1093/schbul/sbm052 – ident: 2018042009501056000_32.3.548.38 doi: 10.1073/pnas.0711791105 – ident: 2018042009501056000_32.3.548.22 doi: 10.1001/archgenpsychiatry.2009.152 – ident: 2018042009501056000_32.3.548.40 doi: 10.1371/journal.pone.0005743 – ident: 2018042009501056000_32.3.548.45 doi: 10.1002/hbm.20537 – ident: 2018042009501056000_32.3.548.37 doi: 10.1523/JNEUROSCI.3408-06.2006 – ident: 2018042009501056000_32.3.548.2 doi: 10.1038/nrn2201 – ident: 2018042009501056000_32.3.548.10 doi: 10.1093/brain/awh199 – ident: 2018042009501056000_32.3.548.3 doi: 10.1073/pnas.0911855107 – ident: 2018042009501056000_32.3.548.36 doi: 10.1016/j.neuropsychologia.2006.06.017 – ident: 2018042009501056000_32.3.548.24 doi: 10.1148/radiol.2241011005 – ident: 2018042009501056000_32.3.548.28 doi: 10.1002/hbm.21079 – ident: 2018042009501056000_32.3.548.25 doi: 10.1073/pnas.0601417103 – ident: 2018042009501056000_32.3.548.11 doi: 10.1080/17470910802198510 – ident: 2018042009501056000_32.3.548.13 doi: 10.1016/j.neuroimage.2007.10.052 – ident: 2018042009501056000_32.3.548.21 doi: 10.1002/hbm.20463 – ident: 2018042009501056000_32.3.548.16 doi: 10.1093/brain/awn223 – ident: 2018042009501056000_32.3.548.33 doi: 10.1006/nimg.2001.0978 |
SSID | ssj0005972 |
Score | 2.4249701 |
Snippet | Measurements of resting-state functional connectivity have increasingly been used for characterization of neuropathologic and neurodevelopmental populations.... BACKGROUND AND PURPOSE: Measurements of resting-state functional connectivity have increasingly been used for characterization of neuropathologic and... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 548 |
SubjectTerms | Adult Biological and medical sciences Brain - physiology Electrodiagnosis. Electric activity recording Evoked Potentials, Visual - physiology Functional Humans Investigative techniques, diagnostic techniques (general aspects) Magnetic Resonance Imaging - methods Male Medical sciences Middle Aged Nerve Net - physiology Nervous system Radiodiagnosis. Nmr imagery. Nmr spectrometry Reproducibility of Results Sensitivity and Specificity Visual Perception - physiology Young Adult |
Title | Reproducibility of Single-Subject Functional Connectivity Measurements |
URI | https://www.ncbi.nlm.nih.gov/pubmed/21273356 https://www.proquest.com/docview/857292305 https://www.proquest.com/docview/907156468 https://pubmed.ncbi.nlm.nih.gov/PMC3205089 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9QwFA7jCiKIeF3Hy1LQF5GObdL08ji4M7uMc9F1CqsvJW0SVJbOMpcXf4S_2ZM0bdphxAsMpaSZNOSc5lzzHYRe0SgXQeQFLmdMugGXXEHeclfQPOGS5dLXUEqzeXieBpNLetnr_WxlLe22-aD4cfBcyf9QFdqAruqU7D9QthkUGuAe6AtXoDBc_4rGoD1rwNYqw1XHyj-BKLoSLuwHysHyZgxiy3j7dEpLYYpFzKxrcNPWT5sATgtRQkNerhk3cE3alTiZNxGioT6msNDpApOBdaWORxdnqWmfDazPdLr4MPriTof1fxrXz-f04mw0TefucnF6apORufWxkk56Rz3VOvFU-T46U207NBMK5qsXt3dk6_G0BrveXmmFymkkNa0AfveFAGhEgZJw38v1gGFiwj4dpO09CdjkJSowROyR-Aa6icHsUPvm-48WfR6ML1zXt1RzruBu1fve2rd1FJw712wD35qsiqQcsmL2k3Fb2s3yHrprzBJnWPHYfdQT5QN0a2YSLx6i8R6rOSvpdFnNsazmtFnNabPaI5SOR8t3564pweEWoBpv3YIInMiEE8r9PJZ-kRcioj7HIoJfUpCCEo5JAFosBcM59FgQSUmwhDusQvKP0VG5KsUT5IggZkmYUymEqncuGYybC0rjPAk56PF99Lpet6ww-PSqTMpVBnaqWuNMrXE2VGvcRy-bvtcVKsvBXied5W-61mTuI6emRwa7qgqVsVKsdpsspmB0gnVOf98lAeWchkEIoxxXFLTj-2AUEBr2UdShbdNBYbp3n5Tfvmpsd4I9MJmSp3-a-jN02355z9HRdr0TL0A93uYnmmd_Adn4v8M |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reproducibility+of+Single-Subject+Functional+Connectivity+Measurements&rft.jtitle=American+journal+of+neuroradiology+%3A+AJNR&rft.au=ANDERSON%2C+J.+S&rft.au=FERGUSON%2C+M.+A&rft.au=LOPEZ-LARSON%2C+M&rft.au=YURGELUN-TODD%2C+D&rft.date=2011-03-01&rft.pub=American+Society+of+Neuroradiology&rft.issn=0195-6108&rft.volume=32&rft.issue=3&rft.spage=548&rft.epage=555&rft_id=info:doi/10.3174%2Fajnr.a2330&rft.externalDBID=n%2Fa&rft.externalDocID=23982038 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0195-6108&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0195-6108&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0195-6108&client=summon |