An injectable and active hydrogel induces mutually enhanced mild magnetic hyperthermia and ferroptosis
Magnetic hyperthermia therapy (MHT) is a promising new modality to deal with solid tumors, yet the low magnetic-heat conversion efficacy, magnetic resonance imaging (MRI) artifacts, easy leakage of magnetic nanoparticles, and thermal resistance are the main obstacles to expand its clinical applicati...
Saved in:
Published in | Biomaterials Vol. 298; p. 122139 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Ltd
01.07.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Magnetic hyperthermia therapy (MHT) is a promising new modality to deal with solid tumors, yet the low magnetic-heat conversion efficacy, magnetic resonance imaging (MRI) artifacts, easy leakage of magnetic nanoparticles, and thermal resistance are the main obstacles to expand its clinical applications. Herein, a synergistic strategy based on a novel injectable magnetic and ferroptotic hydrogel is proposed to overcome these bottlenecks and boost the antitumor efficacy of MHT. The injectable hydrogel (AAGel) exhibiting a sol-gel transition upon heating is made of arachidonic acid (AA)-modified amphiphilic copolymers. Ferrimagnetic Zn0.4Fe2.6O4 nanocubes with high-efficiency hysteresis loss mechanism are synthesized and co-loaded into AAGel with RSL3, a potent ferroptotic inducer. This system maintains the temperature-responsive sol-gel transition, and provides the capacity of multiple MHT and achieves accurate heating after a single injection owing to the firm anchoring and uniform dispersion of nanocubes in the gel matrix. The high magnetic-heat conversion efficacy of nanocubes coupled with the application of echo limiting effect avoids the MRI artifacts during MHT. Besides the function of magnetic heating, Zn0.4Fe2.6O4 nanocubes combined with multiple MHT can sustain supply of redox-active iron to generate reactive oxygen species and lipid peroxides and accelerate the release of RLS3 from AAGel, thus enhancing the antitumor efficacy of ferroptosis. In turn, the reinforced ferroptosis can alleviate the MHT-triggered thermal resistance of tumors by impairment of the protective heat shock protein 70. The synergy strategy achieves the complete elimination of CT-26 tumors in mice without causing local tumor recurrence and other severe side effects. |
---|---|
AbstractList | Magnetic hyperthermia therapy (MHT) is a promising new modality to deal with solid tumors, yet the low magnetic-heat conversion efficacy, magnetic resonance imaging (MRI) artifacts, easy leakage of magnetic nanoparticles, and thermal resistance are the main obstacles to expand its clinical applications. Herein, a synergistic strategy based on a novel injectable magnetic and ferroptotic hydrogel is proposed to overcome these bottlenecks and boost the antitumor efficacy of MHT. The injectable hydrogel (AAGel) exhibiting a sol-gel transition upon heating is made of arachidonic acid (AA)-modified amphiphilic copolymers. Ferrimagnetic Zn0.4Fe2.6O4 nanocubes with high-efficiency hysteresis loss mechanism are synthesized and co-loaded into AAGel with RSL3, a potent ferroptotic inducer. This system maintains the temperature-responsive sol-gel transition, and provides the capacity of multiple MHT and achieves accurate heating after a single injection owing to the firm anchoring and uniform dispersion of nanocubes in the gel matrix. The high magnetic-heat conversion efficacy of nanocubes coupled with the application of echo limiting effect avoids the MRI artifacts during MHT. Besides the function of magnetic heating, Zn0.4Fe2.6O4 nanocubes combined with multiple MHT can sustain supply of redox-active iron to generate reactive oxygen species and lipid peroxides and accelerate the release of RLS3 from AAGel, thus enhancing the antitumor efficacy of ferroptosis. In turn, the reinforced ferroptosis can alleviate the MHT-triggered thermal resistance of tumors by impairment of the protective heat shock protein 70. The synergy strategy achieves the complete elimination of CT-26 tumors in mice without causing local tumor recurrence and other severe side effects.Magnetic hyperthermia therapy (MHT) is a promising new modality to deal with solid tumors, yet the low magnetic-heat conversion efficacy, magnetic resonance imaging (MRI) artifacts, easy leakage of magnetic nanoparticles, and thermal resistance are the main obstacles to expand its clinical applications. Herein, a synergistic strategy based on a novel injectable magnetic and ferroptotic hydrogel is proposed to overcome these bottlenecks and boost the antitumor efficacy of MHT. The injectable hydrogel (AAGel) exhibiting a sol-gel transition upon heating is made of arachidonic acid (AA)-modified amphiphilic copolymers. Ferrimagnetic Zn0.4Fe2.6O4 nanocubes with high-efficiency hysteresis loss mechanism are synthesized and co-loaded into AAGel with RSL3, a potent ferroptotic inducer. This system maintains the temperature-responsive sol-gel transition, and provides the capacity of multiple MHT and achieves accurate heating after a single injection owing to the firm anchoring and uniform dispersion of nanocubes in the gel matrix. The high magnetic-heat conversion efficacy of nanocubes coupled with the application of echo limiting effect avoids the MRI artifacts during MHT. Besides the function of magnetic heating, Zn0.4Fe2.6O4 nanocubes combined with multiple MHT can sustain supply of redox-active iron to generate reactive oxygen species and lipid peroxides and accelerate the release of RLS3 from AAGel, thus enhancing the antitumor efficacy of ferroptosis. In turn, the reinforced ferroptosis can alleviate the MHT-triggered thermal resistance of tumors by impairment of the protective heat shock protein 70. The synergy strategy achieves the complete elimination of CT-26 tumors in mice without causing local tumor recurrence and other severe side effects. Magnetic hyperthermia therapy (MHT) is a promising new modality to deal with solid tumors, yet the low magnetic-heat conversion efficacy, magnetic resonance imaging (MRI) artifacts, easy leakage of magnetic nanoparticles, and thermal resistance are the main obstacles to expand its clinical applications. Herein, a synergistic strategy based on a novel injectable magnetic and ferroptotic hydrogel is proposed to overcome these bottlenecks and boost the antitumor efficacy of MHT. The injectable hydrogel (AAGel) exhibiting a sol-gel transition upon heating is made of arachidonic acid (AA)-modified amphiphilic copolymers. Ferrimagnetic Zn0.4Fe2.6O4 nanocubes with high-efficiency hysteresis loss mechanism are synthesized and co-loaded into AAGel with RSL3, a potent ferroptotic inducer. This system maintains the temperature-responsive sol-gel transition, and provides the capacity of multiple MHT and achieves accurate heating after a single injection owing to the firm anchoring and uniform dispersion of nanocubes in the gel matrix. The high magnetic-heat conversion efficacy of nanocubes coupled with the application of echo limiting effect avoids the MRI artifacts during MHT. Besides the function of magnetic heating, Zn0.4Fe2.6O4 nanocubes combined with multiple MHT can sustain supply of redox-active iron to generate reactive oxygen species and lipid peroxides and accelerate the release of RLS3 from AAGel, thus enhancing the antitumor efficacy of ferroptosis. In turn, the reinforced ferroptosis can alleviate the MHT-triggered thermal resistance of tumors by impairment of the protective heat shock protein 70. The synergy strategy achieves the complete elimination of CT-26 tumors in mice without causing local tumor recurrence and other severe side effects. Magnetic hyperthermia therapy (MHT) is a promising new modality to deal with solid tumors, yet the low magnetic-heat conversion efficacy, magnetic resonance imaging (MRI) artifacts, easy leakage of magnetic nanoparticles, and thermal resistance are the main obstacles to expand its clinical applications. Herein, a synergistic strategy based on a novel injectable magnetic and ferroptotic hydrogel is proposed to overcome these bottlenecks and boost the antitumor efficacy of MHT. The injectable hydrogel (AAGel) exhibiting a sol-gel transition upon heating is made of arachidonic acid (AA)-modified amphiphilic copolymers. Ferrimagnetic Zn Fe O nanocubes with high-efficiency hysteresis loss mechanism are synthesized and co-loaded into AAGel with RSL3, a potent ferroptotic inducer. This system maintains the temperature-responsive sol-gel transition, and provides the capacity of multiple MHT and achieves accurate heating after a single injection owing to the firm anchoring and uniform dispersion of nanocubes in the gel matrix. The high magnetic-heat conversion efficacy of nanocubes coupled with the application of echo limiting effect avoids the MRI artifacts during MHT. Besides the function of magnetic heating, Zn Fe O nanocubes combined with multiple MHT can sustain supply of redox-active iron to generate reactive oxygen species and lipid peroxides and accelerate the release of RLS3 from AAGel, thus enhancing the antitumor efficacy of ferroptosis. In turn, the reinforced ferroptosis can alleviate the MHT-triggered thermal resistance of tumors by impairment of the protective heat shock protein 70. The synergy strategy achieves the complete elimination of CT-26 tumors in mice without causing local tumor recurrence and other severe side effects. |
ArticleNumber | 122139 |
Author | Gu, Siyi Ding, Jiandong Chen, Xiaobin Fu, Ye Chen, Zhiyong Wang, Yaoben Huang, Jiale Shi, Jiayue Yu, Lin Wang, Hancheng |
Author_xml | – sequence: 1 givenname: Xiaobin surname: Chen fullname: Chen, Xiaobin – sequence: 2 givenname: Hancheng surname: Wang fullname: Wang, Hancheng – sequence: 3 givenname: Jiayue surname: Shi fullname: Shi, Jiayue – sequence: 4 givenname: Zhiyong surname: Chen fullname: Chen, Zhiyong – sequence: 5 givenname: Yaoben surname: Wang fullname: Wang, Yaoben – sequence: 6 givenname: Siyi surname: Gu fullname: Gu, Siyi – sequence: 7 givenname: Ye surname: Fu fullname: Fu, Ye – sequence: 8 givenname: Jiale surname: Huang fullname: Huang, Jiale – sequence: 9 givenname: Jiandong orcidid: 0000-0001-7527-5760 surname: Ding fullname: Ding, Jiandong – sequence: 10 givenname: Lin orcidid: 0000-0001-7660-3367 surname: Yu fullname: Yu, Lin email: yu_lin@fudan.edu.cn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37148756$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUtvEzEUhS1URNPCX0AjVmwS_IgzHlaUUh5SJTawtm48d5obPHawPZXy73GaglBXkaxrWfecT9Y5F-wsxICMvRF8IbhYvdsu1hRHKJgIfF5ILtVCSClU94zNhGnNXHdcn7EZF0s571ZCnrOLnLe8vvlSvmDnqhVL0-rVjA1XoaGwRVdg7bGB0DfgCt1js9n3Kd6hr-t-cpibcSoTeL9vMGwgOOybkXwdcBewkKuGHaaywTQSPIAGTCnuSsyUX7LnQ_0rvnq8L9nPzzc_rr_Ob79_-XZ9dTt3musyd9Ip3UuphOGDMka7FsDIYdkqrSWA7pQRmhvFhWwVbwFxZXoOroNWuXWrLtnbI3eX4u8Jc7EjZYfeQ8A4ZSuN4J2sR1bp60fptB6xt7tEI6S9_ZtNFbw_ClyKOScc_kkEt4ci7Nb-X4Q9FGGPRVTzhydmRwUKxVASkD8N8emIwBrYPWGy2REegqdU-7J9pNMwH59gnKdADvwv3J8K-QNebMT8 |
CitedBy_id | crossref_primary_10_31857_S0023291223600554 crossref_primary_10_1016_j_apmt_2024_102086 crossref_primary_10_1039_D3BM01352A crossref_primary_10_1016_j_eurpolymj_2024_113158 crossref_primary_10_59717_j_xinn_mater_2024_100051 crossref_primary_10_1016_j_cej_2024_154180 crossref_primary_10_1016_j_biomaterials_2025_123180 crossref_primary_10_1016_j_cej_2024_157451 crossref_primary_10_1021_acs_biomac_3c01285 crossref_primary_10_1007_s00339_024_07452_4 crossref_primary_10_1016_j_mtbio_2024_101276 crossref_primary_10_1016_j_cej_2024_157730 crossref_primary_10_1016_j_compositesb_2023_111162 crossref_primary_10_1186_s12951_024_02306_w crossref_primary_10_1016_j_bcp_2023_115933 crossref_primary_10_3389_fonc_2023_1178681 crossref_primary_10_1016_j_eurpolymj_2023_112214 crossref_primary_10_1021_acsami_3c07846 crossref_primary_10_1016_j_cej_2023_147437 crossref_primary_10_1093_rb_rbae137 crossref_primary_10_1016_j_ccr_2024_215696 crossref_primary_10_1016_j_cej_2024_150780 crossref_primary_10_3390_gels11030218 crossref_primary_10_1002_adma_202402806 crossref_primary_10_1002_ange_202414879 crossref_primary_10_1002_jbm_a_37754 crossref_primary_10_1088_1361_6463_acff06 crossref_primary_10_1016_j_mtbio_2024_101348 crossref_primary_10_1016_j_bioactmat_2023_09_015 crossref_primary_10_1016_j_biomaterials_2024_122954 crossref_primary_10_1002_advs_202306178 crossref_primary_10_1016_j_cej_2025_160231 crossref_primary_10_1016_j_mattod_2024_05_005 crossref_primary_10_1021_acsami_4c18486 crossref_primary_10_1016_j_carbpol_2024_123034 crossref_primary_10_1248_cpb_c23_00864 crossref_primary_10_3390_gels11010067 crossref_primary_10_1016_j_eurpolymj_2023_112526 crossref_primary_10_1002_smtd_202301121 crossref_primary_10_3390_jcs8120486 crossref_primary_10_1080_10717544_2024_2446552 crossref_primary_10_3389_fphar_2024_1416382 crossref_primary_10_1016_j_ccr_2024_216207 crossref_primary_10_1039_D3BM01832F crossref_primary_10_1039_D4TB00771A crossref_primary_10_1134_S1061933X23600756 crossref_primary_10_34133_research_0397 crossref_primary_10_1007_s40843_024_3095_8 crossref_primary_10_1002_anie_202414879 crossref_primary_10_1021_acsami_3c18306 crossref_primary_10_1016_j_bioadv_2024_214046 crossref_primary_10_1002_advs_202402208 crossref_primary_10_1016_j_bioactmat_2024_05_032 |
Cites_doi | 10.1016/j.cell.2013.12.010 10.1039/C8NR04995E 10.1021/nl3010308 10.1016/j.biomaterials.2022.121561 10.1093/rb/rbab064 10.1016/j.biomaterials.2022.121799 10.1021/nn204591r 10.1021/nl301499u 10.1016/j.biomaterials.2019.119486 10.1016/j.addr.2011.03.008 10.1126/sciadv.abj0364 10.1021/acsami.9b10182 10.1093/rb/rbab023 10.1002/anie.201805664 10.1016/j.cell.2010.01.009 10.1007/s11060-010-0389-0 10.1038/nchembio.1712 10.1016/j.biomaterials.2022.121502 10.1016/j.biomaterials.2022.121668 10.1002/smll.202102046 10.1021/acsnano.0c00910 10.1021/acsami.9b20496 10.1016/j.biomaterials.2022.121832 10.1039/C8BM01470A 10.3389/fchem.2020.00680 10.7150/thno.40805 10.1126/sciadv.aax1346 10.1080/10715760400010470 10.1016/j.cej.2020.125320 10.1021/acsami.9b04186 10.1016/j.biomaterials.2021.121320 10.1021/acsnano.8b05860 10.1021/acsnano.9b06134 10.1002/anie.202101924 10.1038/nrc3672 10.1016/j.bioactmat.2021.05.028 10.1021/acsami.9b10954 10.1016/S0304-8853(03)00426-8 10.1016/j.actbio.2021.04.009 10.1016/j.biomaterials.2018.02.041 10.1016/j.biomaterials.2016.08.015 10.1038/s41467-020-17380-5 10.1038/nchembio.2238 10.1016/j.biomaterials.2022.121530 10.1002/smtd.202000310 10.1038/s41571-020-00462-0 10.1021/acs.macromol.1c00959 10.1002/stem.5530030203 10.1002/adma.201804567 10.1016/j.biomaterials.2021.121100 10.1146/annurev-cancerbio-030518-055844 10.1016/j.cell.2017.09.044 10.1126/sciadv.abg7291 10.1016/j.biomaterials.2017.06.030 10.1038/s41467-020-19061-9 10.1042/bj20020639 10.1039/C7NR02858J 10.1038/srep40075 10.1016/j.biomaterials.2022.121815 10.1016/j.yexmp.2006.06.007 10.1016/j.biomaterials.2015.11.037 10.1002/adfm.201504215 10.1080/02656736.2018.1430867 10.1039/D0TB01175D 10.1016/j.biomaterials.2017.03.049 10.1021/nn300291r 10.1093/rb/rbab062 10.1038/nchembio.1416 10.7150/thno.34157 10.1080/02656730601175479 10.1016/j.biomaterials.2019.02.023 10.7150/thno.10823 10.3109/02656739609027678 10.1039/C4NR03482A 10.1021/acsami.7b05740 10.1111/imr.12533 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Ltd Copyright © 2023 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2023 Elsevier Ltd – notice: Copyright © 2023 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.biomaterials.2023.122139 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1878-5905 |
ExternalDocumentID | 37148756 10_1016_j_biomaterials_2023_122139 S0142961223001473 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABXZ AAEDT AAEDW AAEPC AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABFNM ABGSF ABJNI ABMAC ABNUV ABUDA ABWVN ABXDB ABXRA ACDAQ ACGFS ACIUM ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEWK ADEZE ADMUD ADNMO ADTZH ADUVX AEBSH AECPX AEHWI AEIPS AEKER AENEX AEUPX AEVXI AEZYN AFFNX AFJKZ AFPUW AFRHN AFRZQ AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRDE AGUBO AGYEJ AHHHB AHJVU AHPOS AI. AIEXJ AIGII AIIUN AIKHN AITUG AJUYK AKBMS AKRWK AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMK HMO HVGLF HZ~ IHE J1W JJJVA KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OB- OM. OZT P-8 P-9 P2P PC. Q38 R2- RNS ROL RPZ SAE SCC SDF SDG SDP SES SEW SMS SPC SPCBC SSG SSM SST SSU SSZ T5K TN5 VH1 WH7 WUQ XPP XUV Z5R ZMT ~G- AACTN AAIAV AAYOK ABYKQ AFCTW AFKWA AJBFU AJOXV AMFUW DOVZS EFLBG RIG AAYXX AGRNS BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM PKN 7X8 |
ID | FETCH-LOGICAL-c505t-c2c35d223180f3885c7aa82f473552aa5938150830127307aee68d0ac9a73cb73 |
IEDL.DBID | .~1 |
ISSN | 0142-9612 1878-5905 |
IngestDate | Fri Jul 11 15:30:36 EDT 2025 Wed Feb 19 02:24:09 EST 2025 Thu Apr 24 23:06:01 EDT 2025 Tue Jul 01 01:19:50 EDT 2025 Fri Feb 23 02:36:22 EST 2024 Tue Aug 26 17:20:51 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Hysteresis loss Ferroptosis Magnetic hyperthermia therapy (MHT) Theranostics Thermosensitive hydrogel Multiple hyperthermia |
Language | English |
License | Copyright © 2023 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c505t-c2c35d223180f3885c7aa82f473552aa5938150830127307aee68d0ac9a73cb73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-7660-3367 0000-0001-7527-5760 |
PMID | 37148756 |
PQID | 2810920922 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2810920922 pubmed_primary_37148756 crossref_primary_10_1016_j_biomaterials_2023_122139 crossref_citationtrail_10_1016_j_biomaterials_2023_122139 elsevier_sciencedirect_doi_10_1016_j_biomaterials_2023_122139 elsevier_clinicalkey_doi_10_1016_j_biomaterials_2023_122139 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2023 2023-07-00 20230701 |
PublicationDateYYYYMMDD | 2023-07-01 |
PublicationDate_xml | – month: 07 year: 2023 text: July 2023 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biomaterials |
PublicationTitleAlternate | Biomaterials |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Seo, Kwon, Kim, Hong, Kim, Song, Kim, Song (bib26) 2022; 7 Maier-Hauff, Ulrich, Nestler, Niehoff, Wust, Thiesen, Orawa, Budach, Jordan (bib12) 2011; 103 Gao, Deng, Liu, Fan, Wang, Wu, Ding, Kong, Wang, Peer, Zhao (bib49) 2019; 223 Chang, Hou, Wang, Yang, Wang, Li, Liu, Peng, Li, Lin (bib38) 2021; 60 Jiang, Wang, Zheng, Chen, Liu, Xie, Cai, Zhang, Li (bib37) 2022; 285 Dixon (bib43) 2017; 277 Hervault, Thanh (bib18) 2014; 6 Pardo, Yanez, Pineiro, Iglesias-Rey, Al-Modlej, Barbosa, Rivas, Taboada (bib56) 2020; 12 Jordan, Wust, Scholz, Tesche, Fahling, Mitrovics, Vogl, CervosNavarro, Felix (bib14) 1996; 12 Zhang, Song (bib6) 2016; 106 Tang, Liu, He, Bu (bib62) 2019; 58 Lei, Tang (bib27) 2019; 7 Zhao, Xie, Van Herck, Nassiri, Gao, Guo, Tang (bib72) 2021; 7 Hayashi, Sakamoto, Yogo (bib15) 2016; 26 Kagan, Mao, Qu, Angeli, Doll, St Croix, Dar, Liu, Tyurin, Ritov, Kapralov, Amoscato, Jiang, Anthonymuthu, Mohammadyani, Yang, Proneth, Klein-Seetharaman, Watkins, Bahar, Greenberger, Mallampalli, Stockwell, Tyurina, Conrad, Bayir (bib42) 2017; 13 An, Zhu, Liu, Deng, Meng, Liu, Wu, Fan, Wang, Zhao (bib50) 2019; 11 Yang, Chen, Wang, Xu, Yu, Ding (bib52) 2020; 396 Zhou, Yang, Gao, Chen (bib75) 2019; 31 Yang, Fu, Cai, Liu, Xia, Gong, Song, Ai (bib76) 2021; 8 Xue, Li, Zhao, Zhou, Hu, Cai, Zhao, Yu, Luo (bib36) 2020; 6 Li, Liang, He, Li, Huang, Wang, Shen, Shu, Wu, Zhang (bib10) 2022; 290 Noh, Na, Jang, Lee, Lee, Moon, Lim, Shin, Cheon (bib19) 2012; 12 Kim, Chen, Omary, Larson (bib73) 2015; 5 Kumar, Mohammad (bib1) 2011; 63 Yu, Liang, Zheng, Exner, Kolios, Xu, Guo, Cai, Wang, Ran (bib4) 2019; 9 Wang, Yang, Chen, Wang, Wang, Wang, Chen, Cao, Yu, Ding (bib53) 2022; 32 Choi, Kim (bib33) 2021; 1 Liu, Zhang, Wang, Zhu, Li, Ma, Zhang, Chen, Tiwari, Shi, Zhang, Fan, Zhao, Liang (bib78) 2020; 10 Chu, Dupuy (bib3) 2014; 14 Liu, Liu, Zhang, Yu, Gao, Li, Wang, Feng, Zhang (bib61) 2018; 12 Lee, Choi, Lee, Park, Moon, Choi, Hyeon (bib79) 2012; 12 Chen, Yin, Zhou, Zhang, Song, Song, Hu, Gu (bib66) 2012; 6 Sutrisno, Hu, Hou, Cai, Li, Luo (bib41) 2020; 8 He, Zhou, Zhang, Du, Liu, Ji, Yang, Zhai (bib45) 2022; 290 Zhang, Song (bib20) 2017; 132 Chafe, Vizeacoumar, Venkateswaran, Nemirovsky, Awrey, Brown, McDonald, Carta, Metcalfe, Karasinska (bib64) 2021; 7 Johnson, Whitehead, Nicola (bib71) 1985; 3 Wang, Song, Wang, Xie, Zhang, Jiang, Liu, Hou, Zhong, Xu, Ran, Guo (bib46) 2021; 277 Poselt, Kloust, Tromsdorf, Janschel, Hahn, Masslo, Weller (bib24) 2012; 6 Yang, Fu, Liu, Cai, Xia, Song, Gong, Lu, Ai (bib68) 2021; 8 Chen, Kang, Kroemer, Tang (bib48) 2021; 18 Venkataraman, Wagner, Jiang, Wang, Schafer, Ritchie, Patrick, Oberley, Buettner (bib60) 2004; 38 Jiang, Fu, Guo, Hu, Shi (bib2) 2022; 289 Johannsen, Gneveckow, Taymoorian, Thiesen, Waldofner, Scholz, Jung, Jordan, Wust, Loening (bib13) 2007; 23 Weinberg, Chandel (bib40) 2015; 11 Yu, Choi, Li, Kim (bib32) 2020; 11 Chen, Zhang, Wu, Wu, Tang, Cui, Cao, Liu, Peng, Yu, Ding (bib57) 2020; 4 Ma, Wu, Zhou, Sun, Zhang, Gu (bib22) 2004; 268 Yang, SriRamaratnam, Welsch, Shimada, Skouta, Viswanathan, Cheah, Clemons, Shamji, Clish, Brown, Girotti, Cornish, Schreiber, Stockwell (bib47) 2014; 156 Ji, Shao, Li, Ullah, Luo, Xu, Ma, He, Lei, Li (bib28) 2022; 285 Zhou, Yan, Wang, Zhang, Cheng (bib9) 2019; 203 Mahmoudi, Bouras, Bozec, Ivkov, Hadjipanayis (bib11) 2018; 34 Woo, Yim, Shin, Kang, Yu, Rhee (bib39) 2010; 140 Li, Wang, Dai, Hu, Ding, Feng, Huang, Wang, Bai, Chen (bib35) 2022; 287 Zhang, Wang, Chu, Zhou, Chen, Pang, Lin, Lin, Guo, Ren, Lv, Shi, Zheng, Yan, Chen, Liu (bib23) 2020; 11 Zhang, Kim, Song (bib25) 2019; 11 Wei, Zhou, Sun, Lin, Yang, Ren, Chen, Gao (bib58) 2018; 10 Wu, Dai, Tang, Ma, Song, Zhang, Li, Lui, Gong, Wu (bib74) 2021; 8 Zhou, Yan, Hu, Zou, Li, Ma, Zhang, Cheng (bib7) 2017; 141 Skitzki, Repasky, Evans (bib17) 2009; 10 duPre, Hunter (bib70) 2007; 82 Shi, Yu, Ding (bib54) 2021; 128 Dixon, Stockwell (bib59) 2019; 3 Dixon, Stockwell (bib63) 2014; 10 Wang, Zhang, Wang, Wang, Xiao, Zhang, Cheng (bib8) 2016; 81 Wu, Liu, Song, Ma, Gu, Zhang (bib21) 2019; 13 Tang, Lu, He, Chen, Fu, Han, Luo, Yin, Qin, Lyu (bib29) 2022; 280 Ying, Zhang, Gao, Cai, Wang, Wu, Chen, Meng, Zheng, Hu (bib30) 2020; 14 Wu, Chen, Gu, Cui, Yang, Yu, Ding (bib55) 2021; 54 Gournaris, Park, Cho, Bentrem, Larson, Kim (bib5) 2019; 11 Wang, Xu, Li, Rong, Zhu (bib69) 2016 Mansur, Mansur, Leonel, Carvalho, Lage, Carvalho, Krambrock, Lobato (bib77) 2020; 8 Volatron, Kolosnjaj-Tabi, Javed, Vuong, Gossuin, Neveu, Luciani, Hémadi, Carn, Alloyeau (bib67) 2017; 7 Liu, Chen, Li, Guo, Xie, Yu, Xu, Ding, Li, Ding (bib51) 2017; 9 Wu, Song, Chen, Huang, Wu, Zang, An, Lyu, Ma, Chen, Gu, Zhang (bib16) 2017; 9 Zhang, Ma, Li, Wu, Zhang, Zhang, Zhao, Han (bib34) 2022; 284 Wenzel, Tyurina, Zhao, Croix, Dar, Mao, Tyurin, Anthonymuthu, Kapralov, Amoscato, Mikulska-Ruminska, Shrivastava, Kenny, Yang, Rosenbaum, Sparvero, Emlet, Wen, Minami, Qu, Watkins, Holman, VanDemark, Kellum, Bahar, Bayir, Kagan (bib80) 2017; 171 Sheng, Liu, Deng, Zhang, Li, Xu, Hao, Li, Ran, Chen, Wang (bib31) 2018; 165 Li, Xu, He, Lu, Mao, Gao, Liu, Wu, Zhang, Xiang, Luo, Cai (bib44) 2021; 17 Lehnen-Beyel, De Groot, Rauen (bib65) 2002; 368 Wu (10.1016/j.biomaterials.2023.122139_bib55) 2021; 54 Chafe (10.1016/j.biomaterials.2023.122139_bib64) 2021; 7 Hayashi (10.1016/j.biomaterials.2023.122139_bib15) 2016; 26 Chen (10.1016/j.biomaterials.2023.122139_bib48) 2021; 18 Woo (10.1016/j.biomaterials.2023.122139_bib39) 2010; 140 Chang (10.1016/j.biomaterials.2023.122139_bib38) 2021; 60 Li (10.1016/j.biomaterials.2023.122139_bib44) 2021; 17 Hervault (10.1016/j.biomaterials.2023.122139_bib18) 2014; 6 Liu (10.1016/j.biomaterials.2023.122139_bib61) 2018; 12 Wang (10.1016/j.biomaterials.2023.122139_bib46) 2021; 277 Weinberg (10.1016/j.biomaterials.2023.122139_bib40) 2015; 11 Johnson (10.1016/j.biomaterials.2023.122139_bib71) 1985; 3 Wu (10.1016/j.biomaterials.2023.122139_bib74) 2021; 8 Zhang (10.1016/j.biomaterials.2023.122139_bib20) 2017; 132 Li (10.1016/j.biomaterials.2023.122139_bib35) 2022; 287 Xue (10.1016/j.biomaterials.2023.122139_bib36) 2020; 6 Zhao (10.1016/j.biomaterials.2023.122139_bib72) 2021; 7 Liu (10.1016/j.biomaterials.2023.122139_bib51) 2017; 9 Wang (10.1016/j.biomaterials.2023.122139_bib53) 2022; 32 Zhang (10.1016/j.biomaterials.2023.122139_bib25) 2019; 11 Choi (10.1016/j.biomaterials.2023.122139_bib33) 2021; 1 Dixon (10.1016/j.biomaterials.2023.122139_bib63) 2014; 10 Wei (10.1016/j.biomaterials.2023.122139_bib58) 2018; 10 Kumar (10.1016/j.biomaterials.2023.122139_bib1) 2011; 63 Lehnen-Beyel (10.1016/j.biomaterials.2023.122139_bib65) 2002; 368 Zhou (10.1016/j.biomaterials.2023.122139_bib9) 2019; 203 Maier-Hauff (10.1016/j.biomaterials.2023.122139_bib12) 2011; 103 Skitzki (10.1016/j.biomaterials.2023.122139_bib17) 2009; 10 Ying (10.1016/j.biomaterials.2023.122139_bib30) 2020; 14 Yang (10.1016/j.biomaterials.2023.122139_bib47) 2014; 156 An (10.1016/j.biomaterials.2023.122139_bib50) 2019; 11 Mahmoudi (10.1016/j.biomaterials.2023.122139_bib11) 2018; 34 Lee (10.1016/j.biomaterials.2023.122139_bib79) 2012; 12 Yang (10.1016/j.biomaterials.2023.122139_bib52) 2020; 396 Wang (10.1016/j.biomaterials.2023.122139_bib69) 2016 Zhou (10.1016/j.biomaterials.2023.122139_bib7) 2017; 141 Zhou (10.1016/j.biomaterials.2023.122139_bib75) 2019; 31 Chu (10.1016/j.biomaterials.2023.122139_bib3) 2014; 14 Shi (10.1016/j.biomaterials.2023.122139_bib54) 2021; 128 Yang (10.1016/j.biomaterials.2023.122139_bib68) 2021; 8 Seo (10.1016/j.biomaterials.2023.122139_bib26) 2022; 7 He (10.1016/j.biomaterials.2023.122139_bib45) 2022; 290 Johannsen (10.1016/j.biomaterials.2023.122139_bib13) 2007; 23 Gao (10.1016/j.biomaterials.2023.122139_bib49) 2019; 223 Jordan (10.1016/j.biomaterials.2023.122139_bib14) 1996; 12 Venkataraman (10.1016/j.biomaterials.2023.122139_bib60) 2004; 38 Wu (10.1016/j.biomaterials.2023.122139_bib21) 2019; 13 Tang (10.1016/j.biomaterials.2023.122139_bib29) 2022; 280 Chen (10.1016/j.biomaterials.2023.122139_bib66) 2012; 6 Sheng (10.1016/j.biomaterials.2023.122139_bib31) 2018; 165 Wenzel (10.1016/j.biomaterials.2023.122139_bib80) 2017; 171 Yu (10.1016/j.biomaterials.2023.122139_bib4) 2019; 9 Jiang (10.1016/j.biomaterials.2023.122139_bib37) 2022; 285 Kagan (10.1016/j.biomaterials.2023.122139_bib42) 2017; 13 Mansur (10.1016/j.biomaterials.2023.122139_bib77) 2020; 8 Pardo (10.1016/j.biomaterials.2023.122139_bib56) 2020; 12 Li (10.1016/j.biomaterials.2023.122139_bib10) 2022; 290 Lei (10.1016/j.biomaterials.2023.122139_bib27) 2019; 7 Zhang (10.1016/j.biomaterials.2023.122139_bib6) 2016; 106 Gournaris (10.1016/j.biomaterials.2023.122139_bib5) 2019; 11 Zhang (10.1016/j.biomaterials.2023.122139_bib23) 2020; 11 Tang (10.1016/j.biomaterials.2023.122139_bib62) 2019; 58 Yang (10.1016/j.biomaterials.2023.122139_bib76) 2021; 8 Wang (10.1016/j.biomaterials.2023.122139_bib8) 2016; 81 Poselt (10.1016/j.biomaterials.2023.122139_bib24) 2012; 6 Ji (10.1016/j.biomaterials.2023.122139_bib28) 2022; 285 Yu (10.1016/j.biomaterials.2023.122139_bib32) 2020; 11 Ma (10.1016/j.biomaterials.2023.122139_bib22) 2004; 268 Dixon (10.1016/j.biomaterials.2023.122139_bib43) 2017; 277 Zhang (10.1016/j.biomaterials.2023.122139_bib34) 2022; 284 Dixon (10.1016/j.biomaterials.2023.122139_bib59) 2019; 3 duPre (10.1016/j.biomaterials.2023.122139_bib70) 2007; 82 Noh (10.1016/j.biomaterials.2023.122139_bib19) 2012; 12 Sutrisno (10.1016/j.biomaterials.2023.122139_bib41) 2020; 8 Volatron (10.1016/j.biomaterials.2023.122139_bib67) 2017; 7 Chen (10.1016/j.biomaterials.2023.122139_bib57) 2020; 4 Jiang (10.1016/j.biomaterials.2023.122139_bib2) 2022; 289 Wu (10.1016/j.biomaterials.2023.122139_bib16) 2017; 9 Kim (10.1016/j.biomaterials.2023.122139_bib73) 2015; 5 Liu (10.1016/j.biomaterials.2023.122139_bib78) 2020; 10 |
References_xml | – volume: 171 start-page: 628 year: 2017 end-page: 641 ident: bib80 article-title: PEBP1 wardens ferroptosis by enabling lipoxygenase generation of lipid death signals publication-title: Cell – volume: 31 year: 2019 ident: bib75 article-title: Structure-relaxivity relationships of magnetic nanoparticles for magnetic resonance imaging publication-title: Adv. Mater. – volume: 290 year: 2022 ident: bib45 article-title: Oxygen-boosted biomimetic nanoplatform for synergetic phototherapy/ferroptosis activation and reversal of immune-suppressed tumor microenvironment publication-title: Biomaterials – volume: 26 start-page: 1708 year: 2016 end-page: 1718 ident: bib15 article-title: Smart ferrofluid with quick gel transformation in tumors for MRI-guided local magnetic thermochemotherapy publication-title: Adv. Funct. Mater. – volume: 128 start-page: 42 year: 2021 end-page: 59 ident: bib54 article-title: PEG-based thermosensitive and biodegradable hydrogels publication-title: Acta Biomater. – volume: 14 start-page: 199 year: 2014 end-page: 208 ident: bib3 article-title: Thermal ablation of tumours: biological mechanisms and advances in therapy publication-title: Nat. Rev. Cancer – volume: 1 year: 2021 ident: bib33 article-title: Multifunctional nanocarriers‐mediated synergistic combination of immune checkpoint inhibitor cancer immunotherapy and interventional oncology therapy publication-title: Adv. Nanobimed. Res. – volume: 290 year: 2022 ident: bib10 article-title: Multifunctional light-activatable nanocomplex conducting temperate-heat photothermal therapy to avert excessive inflammation and trigger augmented immunotherapy publication-title: Biomaterials – volume: 12 start-page: 12181 year: 2018 end-page: 12192 ident: bib61 article-title: Ferrous-supply-regeneration nanoengineering for cancer-cell-specific ferroptosis in combination with imaging-guided photodynamic therapy publication-title: ACS Nano – volume: 6 start-page: 11553 year: 2014 end-page: 11573 ident: bib18 article-title: Magnetic nanoparticle-based therapeutic agents for thermo-chemotherapy treatment of cancer publication-title: Nanoscale – volume: 6 start-page: 1619 year: 2012 end-page: 1624 ident: bib24 article-title: Relaxivity optimization of a PEGylated iron-oxide-based negative magnetic resonance contrast agent for T-2-weighted spin-echo imaging publication-title: ACS Nano – volume: 5 start-page: 477 year: 2015 end-page: 488 ident: bib73 article-title: MRI visible drug eluting magnetic microspheres for transcatheter intra-arterial delivery to liver tumors publication-title: Theranostics – volume: 7 year: 2021 ident: bib72 article-title: Switchable immune modulator for tumor-specific activation of anticancer immunity publication-title: Sci. Adv. – volume: 10 start-page: 3793 year: 2020 end-page: 3815 ident: bib78 article-title: Comprehensive understanding of magnetic hyperthermia for improving antitumor therapeutic efficacy publication-title: Theranostics – volume: 141 start-page: 116 year: 2017 end-page: 124 ident: bib7 article-title: Autophagy inhibition enabled efficient photothermal therapy at a mild temperature publication-title: Biomaterials – volume: 156 start-page: 317 year: 2014 end-page: 331 ident: bib47 article-title: Regulation of ferroptotic cancer cell death by GPX4 publication-title: Cell – volume: 6 year: 2020 ident: bib36 article-title: Tumor microenvironment-activatable Fe-doxorubicin preloaded amorphous CaCO3 nanoformulation triggers ferroptosis in target tumor cells publication-title: Sci. Adv. – volume: 7 year: 2021 ident: bib64 article-title: Genome-wide synthetic lethal screen unveils novel CAIX-NFS1/xCT axis as a targetable vulnerability in hypoxic solid tumors publication-title: Sci. Adv. – volume: 8 start-page: 680 year: 2020 ident: bib41 article-title: Progress of iron-based nanozymes for antitumor therapy publication-title: Front. Chem. – volume: 368 start-page: 517 year: 2002 end-page: 526 ident: bib65 article-title: Enhancement of iron toxicity in L929 cells by D-glucose: accelerated (re-)reduction publication-title: Biochem. J. – volume: 14 start-page: 9662 year: 2020 end-page: 9674 ident: bib30 article-title: Hollow magnetic nanocatalysts drive starvation–chemodynamic–hyperthermia synergistic therapy for tumor publication-title: ACS Nano – volume: 4 year: 2020 ident: bib57 article-title: Visualizing the in vivo evolution of an injectable and thermosensitive hydrogel using tri-modal bioimaging publication-title: Small Methods – volume: 106 start-page: 13 year: 2016 end-page: 23 ident: bib6 article-title: Thermosensitive/superparamagnetic iron oxide nanoparticle-loaded nanocapsule hydrogels for multiple cancer hyperthermia publication-title: Biomaterials – volume: 6 start-page: 4001 year: 2012 end-page: 4012 ident: bib66 article-title: Dual enzyme-like activities of iron oxide nanoparticles and their implication for diminishing cytotoxicity publication-title: ACS Nano – volume: 287 year: 2022 ident: bib35 article-title: Engineering dual catalytic nanomedicine for autophagy-augmented and ferroptosis-involved cancer nanotherapy publication-title: Biomaterials – volume: 223 year: 2019 ident: bib49 article-title: Triggered ferroptotic polymer micelles for reversing multidrug resistance to chemotherapy publication-title: Biomaterials – volume: 23 start-page: 315 year: 2007 end-page: 323 ident: bib13 article-title: Morbidity and quality of life during thermotherapy using magnetic nanoparticles in locally recurrent prostate cancer: results of a prospective phase I trial publication-title: Int. J. Hyperther. – start-page: 97 year: 2016 end-page: 106 ident: bib69 article-title: Evaluation of zinc-doped magnetite nanoparticle toxicity in the liver and kidney of mice after sub-chronic intragastric administration publication-title: Toxicol. Res. – volume: 18 start-page: 280 year: 2021 end-page: 296 ident: bib48 article-title: Broadening horizons: the role of ferroptosis in cancer publication-title: Nat. Rev. Clin. Oncol. – volume: 38 start-page: 1119 year: 2004 end-page: 1132 ident: bib60 article-title: Overexpression of manganese superoxide dismutase promotes the survival of prostate cancer cells exposed to hyperthermia publication-title: Free Radic. Res. – volume: 9 start-page: 4192 year: 2019 ident: bib4 article-title: PMMA-Fe3O4 for internal mechanical support and magnetic thermal ablation of bone tumors publication-title: Theranostics – volume: 32 start-page: 202206554 year: 2022 ident: bib53 article-title: Sustained release of nitric oxide and cascade generation of reactive nitrogen/oxygen species via an injectable hydrogel for tumor synergistic therapy publication-title: Adv. Funct. Mater. – volume: 60 start-page: 12971 year: 2021 end-page: 12979 ident: bib38 article-title: Single-atom Pd nanozyme for ferroptosis-boosted mild-temperature photothermal therapy publication-title: Angew. Chem., Int. Ed. Engl. – volume: 8 year: 2021 ident: bib74 article-title: Advances in magnetic resonance imaging contrast agents for glioblastoma-targeting theranostics publication-title: Regen. Biomater. – volume: 396 year: 2020 ident: bib52 article-title: Sustained release of lipophilic gemcitabine from an injectable polymeric hydrogel for synergistically enhancing tumor chemoradiotherapy publication-title: Chem. Eng. J. – volume: 132 start-page: 16 year: 2017 end-page: 27 ident: bib20 article-title: Multiple hyperthermia-mediated release of TRAIL/SPION nanocomplex from thermosensitive polymeric hydrogels for combination cancer therapy publication-title: Biomaterials – volume: 289 year: 2022 ident: bib2 article-title: Evoking tumor associated macrophages by mitochondria-targeted magnetothermal immunogenic cell death for cancer immunotherapy publication-title: Biomaterials – volume: 9 start-page: 23428 year: 2017 end-page: 23440 ident: bib51 article-title: Calcitonin-loaded thermosensitive hydrogel for long-term antiosteopenia therapy publication-title: ACS Appl. Mater. Interfaces – volume: 11 start-page: 5421 year: 2020 ident: bib23 article-title: Genetically engineered magnetic nanocages for cancer magneto-catalytic theranostics publication-title: Nat. Commun. – volume: 58 start-page: 946 year: 2019 end-page: 956 ident: bib62 article-title: Chemodynamic therapy: tumour microenvironment‐mediated Fenton and Fenton‐like reactions publication-title: Angew. Chem. Int. Ed. – volume: 8 start-page: 7166 year: 2020 end-page: 7188 ident: bib77 article-title: Supramolecular magnetonanohybrids for multimodal targeted therapy of triple-negative breast cancer cells publication-title: J. Mater. Chem. B – volume: 165 start-page: 1 year: 2018 end-page: 13 ident: bib31 article-title: Perfluorooctyl bromide & indocyanine green co-loaded nanoliposomes for enhanced multimodal imaging-guided phototherapy publication-title: Biomaterials – volume: 10 start-page: 550 year: 2009 end-page: 558 ident: bib17 article-title: Hyperthermia as an immunotherapy strategy for cancer publication-title: Curr. Opin. Invest. Drugs – volume: 8 year: 2021 ident: bib68 article-title: Tetraphenylethylene-conjugated polycation covered iron oxide nanoparticles for magnetic resonance/optical dual-mode imaging publication-title: Regen. Biomater. – volume: 203 start-page: 63 year: 2019 end-page: 72 ident: bib9 article-title: Melanin-like nanoparticles decorated with an autophagy-inducing peptide for efficient targeted photothermal therapy publication-title: Biomaterials – volume: 103 start-page: 317 year: 2011 end-page: 324 ident: bib12 article-title: Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme publication-title: J. Neuro Oncol. – volume: 63 start-page: 789 year: 2011 end-page: 808 ident: bib1 article-title: Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery publication-title: Adv. Drug Deliv. Rev. – volume: 7 start-page: 733 year: 2019 end-page: 749 ident: bib27 article-title: Surgery-free injectable macroscale biomaterials for local cancer immunotherapy publication-title: Biomater. Sci. – volume: 54 start-page: 7421 year: 2021 end-page: 7433 ident: bib55 article-title: Decisive influence of hydrophobic side chains of polyesters on thermoinduced gelation of triblock copolymer aqueous solutions publication-title: Macromolecules – volume: 12 start-page: 9017 year: 2020 end-page: 9031 ident: bib56 article-title: Cubic anisotropic Co- and Zn-substituted ferrite nanoparticles as multimodal magnetic agents publication-title: ACS Appl. Mater. Interfaces – volume: 82 start-page: 12 year: 2007 end-page: 24 ident: bib70 article-title: Murine mammary carcinoma 4T1 induces a leukemoid reaction with splenomegaly: association with tumor-derived growth factors publication-title: Exp. Mol. Pathol. – volume: 280 year: 2022 ident: bib29 article-title: Exosomes-loaded thermosensitive hydrogels for corneal epithelium and stroma regeneration publication-title: Biomaterials – volume: 277 start-page: 150 year: 2017 end-page: 157 ident: bib43 article-title: Ferroptosis: bug or feature? publication-title: Immunol. Rev. – volume: 140 start-page: 517 year: 2010 end-page: 528 ident: bib39 article-title: Inactivation of peroxiredoxin I by phosphorylation allows localized H2O2 accumulation for cell signaling publication-title: Cell – volume: 10 start-page: 9 year: 2014 end-page: 17 ident: bib63 article-title: The role of iron and reactive oxygen species in cell death publication-title: Nat. Chem. Biol. – volume: 8 year: 2021 ident: bib76 article-title: Integration of PEG-conjugated gadolinium complex and superparamagnetic iron oxide nanoparticles as T-1-T-2 dual-mode magnetic resonance imaging probes publication-title: Regen. Biomater. – volume: 3 start-page: 91 year: 1985 end-page: 105 ident: bib71 article-title: Effects of a murine mammary tumor on in vivo and in vitro hemopoiesis publication-title: Int. J. Cell Clon. – volume: 17 year: 2021 ident: bib44 article-title: Functionalized tumor-targeting nanosheets exhibiting Fe(II) overloading and GSH consumption for ferroptosis activation in liver tumor publication-title: Small – volume: 34 start-page: 1316 year: 2018 end-page: 1328 ident: bib11 article-title: Magnetic hyperthermia therapy for the treatment of glioblastoma: a review of the therapy's history, efficacy and application in humans publication-title: Int. J. Hyperther. – volume: 11 start-page: 34634 year: 2019 end-page: 34644 ident: bib25 article-title: Injectable and quadruple-functional hydrogel as an alternative to intravenous delivery for enhanced tumor targeting publication-title: ACS Appl. Mater. Interfaces – volume: 268 start-page: 33 year: 2004 end-page: 39 ident: bib22 article-title: Size dependence of specific power absorption of Fe3O4 particles in AC magnetic field publication-title: J. Magn. Magn Mater. – volume: 13 start-page: 81 year: 2017 end-page: 90 ident: bib42 article-title: Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis publication-title: Nat. Chem. Biol. – volume: 285 year: 2022 ident: bib37 article-title: Nano-enabled photosynthesis in tumours to activate lipid peroxidation for overcoming cancer resistances publication-title: Biomaterials – volume: 11 start-page: 3637 year: 2020 ident: bib32 article-title: Magnetic field boosted ferroptosis-like cell death and responsive MRI using hybrid vesicles for cancer immunotherapy publication-title: Nat. Commun. – volume: 285 year: 2022 ident: bib28 article-title: Injectable immunomodulation-based porous chitosan microspheres/HPCH hydrogel composites as a controlled drug delivery system for osteochondral regeneration publication-title: Biomaterials – volume: 3 start-page: 35 year: 2019 end-page: 54 ident: bib59 article-title: The hallmarks of ferroptosis publication-title: Annu. Rev. Cell Biol. – volume: 11 start-page: 29655 year: 2019 end-page: 29666 ident: bib50 article-title: Boosting the ferroptotic antitumor efficacy via site-specific amplification of tailored lipid peroxidation publication-title: ACS Appl. Mater. Interfaces – volume: 11 start-page: 21353 year: 2019 end-page: 21359 ident: bib5 article-title: Near-infrared fluorescent endoscopic image-guided photothermal ablation therapy of colorectal cancer using dual-modal gold nanorods targeting tumor-infiltrating innate immune cells in a transgenic TS4 CRE/APC (loxDelta468) mouse model publication-title: ACS Appl. Mater. Interfaces – volume: 81 start-page: 114 year: 2016 end-page: 124 ident: bib8 article-title: Multi-responsive photothermal-chemotherapy with drug-loaded melanin-like nanoparticles for synergetic tumor ablation publication-title: Biomaterials – volume: 12 start-page: 705 year: 1996 end-page: 722 ident: bib14 article-title: Cellular uptake of magnetic fluid particles and their effects on human adenocarcinoma cells exposed to AC magnetic fields in vitro publication-title: Int. J. Hyperther. – volume: 10 start-page: 18398 year: 2018 end-page: 18406 ident: bib58 article-title: Iron-oxide-based twin nanoplates with strong T-2 relaxation shortening for contrast-enhanced magnetic resonance imaging publication-title: Nanoscale – volume: 277 year: 2021 ident: bib46 article-title: Tumor-self-targeted "thermoferroptosis-sensitization" magnetic nanodroplets for multimodal imaging-guided tumor-specific therapy publication-title: Biomaterials – volume: 12 start-page: 3716 year: 2012 end-page: 3721 ident: bib19 article-title: Nanoscale magnetism control via surface and exchange anisotropy for optimized ferrimagnetic hysteresis publication-title: Nano Lett. – volume: 7 start-page: 14 year: 2022 end-page: 25 ident: bib26 article-title: Injectable polymeric nanoparticle hydrogel system for long-term anti-inflammatory effect to treat osteoarthritis publication-title: Bioact. Mater. – volume: 284 year: 2022 ident: bib34 article-title: Disruption of dual homeostasis by a metal-organic framework nanoreactor for ferroptosis-based immunotherapy of tumor publication-title: Biomaterials – volume: 7 year: 2017 ident: bib67 article-title: Physiological remediation of cobalt ferrite nanoparticles by ferritin publication-title: Sci. Rep. – volume: 12 start-page: 3127 year: 2012 end-page: 3131 ident: bib79 article-title: Water-dispersible ferrimagnetic iron oxide nanocubes with extremely high r(2) relaxivity for highly sensitive in vivo MRI of tumors publication-title: Nano Lett. – volume: 11 start-page: 9 year: 2015 end-page: 15 ident: bib40 article-title: Targeting mitochondria metabolism for cancer therapy publication-title: Nat. Chem. Biol. – volume: 13 start-page: 14013 year: 2019 end-page: 14023 ident: bib21 article-title: Enhanced tumor synergistic therapy by injectable magnetic hydrogel mediated generation of hyperthermia and highly toxic reactive oxygen species publication-title: ACS Nano – volume: 9 start-page: 16175 year: 2017 end-page: 16182 ident: bib16 article-title: Injectable thermosensitive magnetic nanoemulsion hydrogel for multimodal-imaging-guided accurate thermoablative cancer therapy publication-title: Nanoscale – volume: 156 start-page: 317 issue: 1–2 year: 2014 ident: 10.1016/j.biomaterials.2023.122139_bib47 article-title: Regulation of ferroptotic cancer cell death by GPX4 publication-title: Cell doi: 10.1016/j.cell.2013.12.010 – volume: 10 start-page: 18398 issue: 38 year: 2018 ident: 10.1016/j.biomaterials.2023.122139_bib58 article-title: Iron-oxide-based twin nanoplates with strong T-2 relaxation shortening for contrast-enhanced magnetic resonance imaging publication-title: Nanoscale doi: 10.1039/C8NR04995E – volume: 12 start-page: 3127 issue: 6 year: 2012 ident: 10.1016/j.biomaterials.2023.122139_bib79 article-title: Water-dispersible ferrimagnetic iron oxide nanocubes with extremely high r(2) relaxivity for highly sensitive in vivo MRI of tumors publication-title: Nano Lett. doi: 10.1021/nl3010308 – volume: 285 year: 2022 ident: 10.1016/j.biomaterials.2023.122139_bib37 article-title: Nano-enabled photosynthesis in tumours to activate lipid peroxidation for overcoming cancer resistances publication-title: Biomaterials doi: 10.1016/j.biomaterials.2022.121561 – volume: 8 issue: 6 year: 2021 ident: 10.1016/j.biomaterials.2023.122139_bib76 article-title: Integration of PEG-conjugated gadolinium complex and superparamagnetic iron oxide nanoparticles as T-1-T-2 dual-mode magnetic resonance imaging probes publication-title: Regen. Biomater. doi: 10.1093/rb/rbab064 – volume: 289 year: 2022 ident: 10.1016/j.biomaterials.2023.122139_bib2 article-title: Evoking tumor associated macrophages by mitochondria-targeted magnetothermal immunogenic cell death for cancer immunotherapy publication-title: Biomaterials doi: 10.1016/j.biomaterials.2022.121799 – volume: 6 start-page: 1619 issue: 2 year: 2012 ident: 10.1016/j.biomaterials.2023.122139_bib24 article-title: Relaxivity optimization of a PEGylated iron-oxide-based negative magnetic resonance contrast agent for T-2-weighted spin-echo imaging publication-title: ACS Nano doi: 10.1021/nn204591r – volume: 12 start-page: 3716 issue: 7 year: 2012 ident: 10.1016/j.biomaterials.2023.122139_bib19 article-title: Nanoscale magnetism control via surface and exchange anisotropy for optimized ferrimagnetic hysteresis publication-title: Nano Lett. doi: 10.1021/nl301499u – volume: 223 year: 2019 ident: 10.1016/j.biomaterials.2023.122139_bib49 article-title: Triggered ferroptotic polymer micelles for reversing multidrug resistance to chemotherapy publication-title: Biomaterials doi: 10.1016/j.biomaterials.2019.119486 – volume: 63 start-page: 789 issue: 9 year: 2011 ident: 10.1016/j.biomaterials.2023.122139_bib1 article-title: Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2011.03.008 – volume: 7 issue: 35 year: 2021 ident: 10.1016/j.biomaterials.2023.122139_bib64 article-title: Genome-wide synthetic lethal screen unveils novel CAIX-NFS1/xCT axis as a targetable vulnerability in hypoxic solid tumors publication-title: Sci. Adv. doi: 10.1126/sciadv.abj0364 – volume: 11 start-page: 34634 issue: 38 year: 2019 ident: 10.1016/j.biomaterials.2023.122139_bib25 article-title: Injectable and quadruple-functional hydrogel as an alternative to intravenous delivery for enhanced tumor targeting publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b10182 – volume: 8 issue: 3 year: 2021 ident: 10.1016/j.biomaterials.2023.122139_bib68 article-title: Tetraphenylethylene-conjugated polycation covered iron oxide nanoparticles for magnetic resonance/optical dual-mode imaging publication-title: Regen. Biomater. doi: 10.1093/rb/rbab023 – volume: 58 start-page: 946 issue: 4 year: 2019 ident: 10.1016/j.biomaterials.2023.122139_bib62 article-title: Chemodynamic therapy: tumour microenvironment‐mediated Fenton and Fenton‐like reactions publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201805664 – volume: 140 start-page: 517 issue: 4 year: 2010 ident: 10.1016/j.biomaterials.2023.122139_bib39 article-title: Inactivation of peroxiredoxin I by phosphorylation allows localized H2O2 accumulation for cell signaling publication-title: Cell doi: 10.1016/j.cell.2010.01.009 – volume: 103 start-page: 317 issue: 2 year: 2011 ident: 10.1016/j.biomaterials.2023.122139_bib12 article-title: Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme publication-title: J. Neuro Oncol. doi: 10.1007/s11060-010-0389-0 – volume: 11 start-page: 9 issue: 1 year: 2015 ident: 10.1016/j.biomaterials.2023.122139_bib40 article-title: Targeting mitochondria metabolism for cancer therapy publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.1712 – volume: 284 year: 2022 ident: 10.1016/j.biomaterials.2023.122139_bib34 article-title: Disruption of dual homeostasis by a metal-organic framework nanoreactor for ferroptosis-based immunotherapy of tumor publication-title: Biomaterials doi: 10.1016/j.biomaterials.2022.121502 – volume: 287 year: 2022 ident: 10.1016/j.biomaterials.2023.122139_bib35 article-title: Engineering dual catalytic nanomedicine for autophagy-augmented and ferroptosis-involved cancer nanotherapy publication-title: Biomaterials doi: 10.1016/j.biomaterials.2022.121668 – volume: 17 issue: 40 year: 2021 ident: 10.1016/j.biomaterials.2023.122139_bib44 article-title: Functionalized tumor-targeting nanosheets exhibiting Fe(II) overloading and GSH consumption for ferroptosis activation in liver tumor publication-title: Small doi: 10.1002/smll.202102046 – volume: 14 start-page: 9662 issue: 8 year: 2020 ident: 10.1016/j.biomaterials.2023.122139_bib30 article-title: Hollow magnetic nanocatalysts drive starvation–chemodynamic–hyperthermia synergistic therapy for tumor publication-title: ACS Nano doi: 10.1021/acsnano.0c00910 – volume: 12 start-page: 9017 issue: 8 year: 2020 ident: 10.1016/j.biomaterials.2023.122139_bib56 article-title: Cubic anisotropic Co- and Zn-substituted ferrite nanoparticles as multimodal magnetic agents publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b20496 – volume: 290 year: 2022 ident: 10.1016/j.biomaterials.2023.122139_bib45 article-title: Oxygen-boosted biomimetic nanoplatform for synergetic phototherapy/ferroptosis activation and reversal of immune-suppressed tumor microenvironment publication-title: Biomaterials doi: 10.1016/j.biomaterials.2022.121832 – volume: 7 start-page: 733 issue: 3 year: 2019 ident: 10.1016/j.biomaterials.2023.122139_bib27 article-title: Surgery-free injectable macroscale biomaterials for local cancer immunotherapy publication-title: Biomater. Sci. doi: 10.1039/C8BM01470A – volume: 8 start-page: 680 year: 2020 ident: 10.1016/j.biomaterials.2023.122139_bib41 article-title: Progress of iron-based nanozymes for antitumor therapy publication-title: Front. Chem. doi: 10.3389/fchem.2020.00680 – volume: 10 start-page: 3793 issue: 8 year: 2020 ident: 10.1016/j.biomaterials.2023.122139_bib78 article-title: Comprehensive understanding of magnetic hyperthermia for improving antitumor therapeutic efficacy publication-title: Theranostics doi: 10.7150/thno.40805 – volume: 6 issue: 18 year: 2020 ident: 10.1016/j.biomaterials.2023.122139_bib36 article-title: Tumor microenvironment-activatable Fe-doxorubicin preloaded amorphous CaCO3 nanoformulation triggers ferroptosis in target tumor cells publication-title: Sci. Adv. doi: 10.1126/sciadv.aax1346 – volume: 38 start-page: 1119 issue: 10 year: 2004 ident: 10.1016/j.biomaterials.2023.122139_bib60 article-title: Overexpression of manganese superoxide dismutase promotes the survival of prostate cancer cells exposed to hyperthermia publication-title: Free Radic. Res. doi: 10.1080/10715760400010470 – volume: 396 year: 2020 ident: 10.1016/j.biomaterials.2023.122139_bib52 article-title: Sustained release of lipophilic gemcitabine from an injectable polymeric hydrogel for synergistically enhancing tumor chemoradiotherapy publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.125320 – volume: 11 start-page: 21353 issue: 24 year: 2019 ident: 10.1016/j.biomaterials.2023.122139_bib5 article-title: Near-infrared fluorescent endoscopic image-guided photothermal ablation therapy of colorectal cancer using dual-modal gold nanorods targeting tumor-infiltrating innate immune cells in a transgenic TS4 CRE/APC (loxDelta468) mouse model publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b04186 – volume: 280 year: 2022 ident: 10.1016/j.biomaterials.2023.122139_bib29 article-title: Exosomes-loaded thermosensitive hydrogels for corneal epithelium and stroma regeneration publication-title: Biomaterials doi: 10.1016/j.biomaterials.2021.121320 – volume: 12 start-page: 12181 issue: 12 year: 2018 ident: 10.1016/j.biomaterials.2023.122139_bib61 article-title: Ferrous-supply-regeneration nanoengineering for cancer-cell-specific ferroptosis in combination with imaging-guided photodynamic therapy publication-title: ACS Nano doi: 10.1021/acsnano.8b05860 – volume: 13 start-page: 14013 issue: 12 year: 2019 ident: 10.1016/j.biomaterials.2023.122139_bib21 article-title: Enhanced tumor synergistic therapy by injectable magnetic hydrogel mediated generation of hyperthermia and highly toxic reactive oxygen species publication-title: ACS Nano doi: 10.1021/acsnano.9b06134 – volume: 60 start-page: 12971 issue: 23 year: 2021 ident: 10.1016/j.biomaterials.2023.122139_bib38 article-title: Single-atom Pd nanozyme for ferroptosis-boosted mild-temperature photothermal therapy publication-title: Angew. Chem., Int. Ed. Engl. doi: 10.1002/anie.202101924 – volume: 14 start-page: 199 issue: 3 year: 2014 ident: 10.1016/j.biomaterials.2023.122139_bib3 article-title: Thermal ablation of tumours: biological mechanisms and advances in therapy publication-title: Nat. Rev. Cancer doi: 10.1038/nrc3672 – volume: 7 start-page: 14 year: 2022 ident: 10.1016/j.biomaterials.2023.122139_bib26 article-title: Injectable polymeric nanoparticle hydrogel system for long-term anti-inflammatory effect to treat osteoarthritis publication-title: Bioact. Mater. doi: 10.1016/j.bioactmat.2021.05.028 – volume: 11 start-page: 29655 issue: 33 year: 2019 ident: 10.1016/j.biomaterials.2023.122139_bib50 article-title: Boosting the ferroptotic antitumor efficacy via site-specific amplification of tailored lipid peroxidation publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b10954 – volume: 268 start-page: 33 issue: 1–2 year: 2004 ident: 10.1016/j.biomaterials.2023.122139_bib22 article-title: Size dependence of specific power absorption of Fe3O4 particles in AC magnetic field publication-title: J. Magn. Magn Mater. doi: 10.1016/S0304-8853(03)00426-8 – volume: 128 start-page: 42 year: 2021 ident: 10.1016/j.biomaterials.2023.122139_bib54 article-title: PEG-based thermosensitive and biodegradable hydrogels publication-title: Acta Biomater. doi: 10.1016/j.actbio.2021.04.009 – volume: 165 start-page: 1 year: 2018 ident: 10.1016/j.biomaterials.2023.122139_bib31 article-title: Perfluorooctyl bromide & indocyanine green co-loaded nanoliposomes for enhanced multimodal imaging-guided phototherapy publication-title: Biomaterials doi: 10.1016/j.biomaterials.2018.02.041 – volume: 106 start-page: 13 year: 2016 ident: 10.1016/j.biomaterials.2023.122139_bib6 article-title: Thermosensitive/superparamagnetic iron oxide nanoparticle-loaded nanocapsule hydrogels for multiple cancer hyperthermia publication-title: Biomaterials doi: 10.1016/j.biomaterials.2016.08.015 – volume: 11 start-page: 3637 issue: 1 year: 2020 ident: 10.1016/j.biomaterials.2023.122139_bib32 article-title: Magnetic field boosted ferroptosis-like cell death and responsive MRI using hybrid vesicles for cancer immunotherapy publication-title: Nat. Commun. doi: 10.1038/s41467-020-17380-5 – volume: 13 start-page: 81 issue: 1 year: 2017 ident: 10.1016/j.biomaterials.2023.122139_bib42 article-title: Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.2238 – volume: 285 year: 2022 ident: 10.1016/j.biomaterials.2023.122139_bib28 article-title: Injectable immunomodulation-based porous chitosan microspheres/HPCH hydrogel composites as a controlled drug delivery system for osteochondral regeneration publication-title: Biomaterials doi: 10.1016/j.biomaterials.2022.121530 – volume: 4 issue: 9 year: 2020 ident: 10.1016/j.biomaterials.2023.122139_bib57 article-title: Visualizing the in vivo evolution of an injectable and thermosensitive hydrogel using tri-modal bioimaging publication-title: Small Methods doi: 10.1002/smtd.202000310 – volume: 18 start-page: 280 issue: 5 year: 2021 ident: 10.1016/j.biomaterials.2023.122139_bib48 article-title: Broadening horizons: the role of ferroptosis in cancer publication-title: Nat. Rev. Clin. Oncol. doi: 10.1038/s41571-020-00462-0 – volume: 54 start-page: 7421 issue: 16 year: 2021 ident: 10.1016/j.biomaterials.2023.122139_bib55 article-title: Decisive influence of hydrophobic side chains of polyesters on thermoinduced gelation of triblock copolymer aqueous solutions publication-title: Macromolecules doi: 10.1021/acs.macromol.1c00959 – volume: 3 start-page: 91 issue: 2 year: 1985 ident: 10.1016/j.biomaterials.2023.122139_bib71 article-title: Effects of a murine mammary tumor on in vivo and in vitro hemopoiesis publication-title: Int. J. Cell Clon. doi: 10.1002/stem.5530030203 – volume: 31 issue: 8 year: 2019 ident: 10.1016/j.biomaterials.2023.122139_bib75 article-title: Structure-relaxivity relationships of magnetic nanoparticles for magnetic resonance imaging publication-title: Adv. Mater. doi: 10.1002/adma.201804567 – volume: 1 issue: 10 year: 2021 ident: 10.1016/j.biomaterials.2023.122139_bib33 article-title: Multifunctional nanocarriers‐mediated synergistic combination of immune checkpoint inhibitor cancer immunotherapy and interventional oncology therapy publication-title: Adv. Nanobimed. Res. – volume: 277 year: 2021 ident: 10.1016/j.biomaterials.2023.122139_bib46 article-title: Tumor-self-targeted "thermoferroptosis-sensitization" magnetic nanodroplets for multimodal imaging-guided tumor-specific therapy publication-title: Biomaterials doi: 10.1016/j.biomaterials.2021.121100 – volume: 3 start-page: 35 year: 2019 ident: 10.1016/j.biomaterials.2023.122139_bib59 article-title: The hallmarks of ferroptosis publication-title: Annu. Rev. Cell Biol. doi: 10.1146/annurev-cancerbio-030518-055844 – volume: 32 start-page: 202206554 year: 2022 ident: 10.1016/j.biomaterials.2023.122139_bib53 article-title: Sustained release of nitric oxide and cascade generation of reactive nitrogen/oxygen species via an injectable hydrogel for tumor synergistic therapy publication-title: Adv. Funct. Mater. – volume: 171 start-page: 628 issue: 3 year: 2017 ident: 10.1016/j.biomaterials.2023.122139_bib80 article-title: PEBP1 wardens ferroptosis by enabling lipoxygenase generation of lipid death signals publication-title: Cell doi: 10.1016/j.cell.2017.09.044 – volume: 7 issue: 37 year: 2021 ident: 10.1016/j.biomaterials.2023.122139_bib72 article-title: Switchable immune modulator for tumor-specific activation of anticancer immunity publication-title: Sci. Adv. doi: 10.1126/sciadv.abg7291 – volume: 141 start-page: 116 year: 2017 ident: 10.1016/j.biomaterials.2023.122139_bib7 article-title: Autophagy inhibition enabled efficient photothermal therapy at a mild temperature publication-title: Biomaterials doi: 10.1016/j.biomaterials.2017.06.030 – volume: 11 start-page: 5421 issue: 1 year: 2020 ident: 10.1016/j.biomaterials.2023.122139_bib23 article-title: Genetically engineered magnetic nanocages for cancer magneto-catalytic theranostics publication-title: Nat. Commun. doi: 10.1038/s41467-020-19061-9 – volume: 368 start-page: 517 year: 2002 ident: 10.1016/j.biomaterials.2023.122139_bib65 article-title: Enhancement of iron toxicity in L929 cells by D-glucose: accelerated (re-)reduction publication-title: Biochem. J. doi: 10.1042/bj20020639 – volume: 9 start-page: 16175 issue: 42 year: 2017 ident: 10.1016/j.biomaterials.2023.122139_bib16 article-title: Injectable thermosensitive magnetic nanoemulsion hydrogel for multimodal-imaging-guided accurate thermoablative cancer therapy publication-title: Nanoscale doi: 10.1039/C7NR02858J – volume: 7 year: 2017 ident: 10.1016/j.biomaterials.2023.122139_bib67 article-title: Physiological remediation of cobalt ferrite nanoparticles by ferritin publication-title: Sci. Rep. doi: 10.1038/srep40075 – volume: 290 year: 2022 ident: 10.1016/j.biomaterials.2023.122139_bib10 article-title: Multifunctional light-activatable nanocomplex conducting temperate-heat photothermal therapy to avert excessive inflammation and trigger augmented immunotherapy publication-title: Biomaterials doi: 10.1016/j.biomaterials.2022.121815 – start-page: 97 year: 2016 ident: 10.1016/j.biomaterials.2023.122139_bib69 article-title: Evaluation of zinc-doped magnetite nanoparticle toxicity in the liver and kidney of mice after sub-chronic intragastric administration publication-title: Toxicol. Res. – volume: 82 start-page: 12 issue: 1 year: 2007 ident: 10.1016/j.biomaterials.2023.122139_bib70 article-title: Murine mammary carcinoma 4T1 induces a leukemoid reaction with splenomegaly: association with tumor-derived growth factors publication-title: Exp. Mol. Pathol. doi: 10.1016/j.yexmp.2006.06.007 – volume: 81 start-page: 114 year: 2016 ident: 10.1016/j.biomaterials.2023.122139_bib8 article-title: Multi-responsive photothermal-chemotherapy with drug-loaded melanin-like nanoparticles for synergetic tumor ablation publication-title: Biomaterials doi: 10.1016/j.biomaterials.2015.11.037 – volume: 26 start-page: 1708 issue: 11 year: 2016 ident: 10.1016/j.biomaterials.2023.122139_bib15 article-title: Smart ferrofluid with quick gel transformation in tumors for MRI-guided local magnetic thermochemotherapy publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201504215 – volume: 10 start-page: 550 issue: 6 year: 2009 ident: 10.1016/j.biomaterials.2023.122139_bib17 article-title: Hyperthermia as an immunotherapy strategy for cancer publication-title: Curr. Opin. Invest. Drugs – volume: 34 start-page: 1316 issue: 8 year: 2018 ident: 10.1016/j.biomaterials.2023.122139_bib11 article-title: Magnetic hyperthermia therapy for the treatment of glioblastoma: a review of the therapy's history, efficacy and application in humans publication-title: Int. J. Hyperther. doi: 10.1080/02656736.2018.1430867 – volume: 8 start-page: 7166 issue: 32 year: 2020 ident: 10.1016/j.biomaterials.2023.122139_bib77 article-title: Supramolecular magnetonanohybrids for multimodal targeted therapy of triple-negative breast cancer cells publication-title: J. Mater. Chem. B doi: 10.1039/D0TB01175D – volume: 132 start-page: 16 year: 2017 ident: 10.1016/j.biomaterials.2023.122139_bib20 article-title: Multiple hyperthermia-mediated release of TRAIL/SPION nanocomplex from thermosensitive polymeric hydrogels for combination cancer therapy publication-title: Biomaterials doi: 10.1016/j.biomaterials.2017.03.049 – volume: 6 start-page: 4001 issue: 5 year: 2012 ident: 10.1016/j.biomaterials.2023.122139_bib66 article-title: Dual enzyme-like activities of iron oxide nanoparticles and their implication for diminishing cytotoxicity publication-title: ACS Nano doi: 10.1021/nn300291r – volume: 8 issue: 6 year: 2021 ident: 10.1016/j.biomaterials.2023.122139_bib74 article-title: Advances in magnetic resonance imaging contrast agents for glioblastoma-targeting theranostics publication-title: Regen. Biomater. doi: 10.1093/rb/rbab062 – volume: 10 start-page: 9 issue: 1 year: 2014 ident: 10.1016/j.biomaterials.2023.122139_bib63 article-title: The role of iron and reactive oxygen species in cell death publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.1416 – volume: 9 start-page: 4192 issue: 14 year: 2019 ident: 10.1016/j.biomaterials.2023.122139_bib4 article-title: PMMA-Fe3O4 for internal mechanical support and magnetic thermal ablation of bone tumors publication-title: Theranostics doi: 10.7150/thno.34157 – volume: 23 start-page: 315 issue: 3 year: 2007 ident: 10.1016/j.biomaterials.2023.122139_bib13 article-title: Morbidity and quality of life during thermotherapy using magnetic nanoparticles in locally recurrent prostate cancer: results of a prospective phase I trial publication-title: Int. J. Hyperther. doi: 10.1080/02656730601175479 – volume: 203 start-page: 63 year: 2019 ident: 10.1016/j.biomaterials.2023.122139_bib9 article-title: Melanin-like nanoparticles decorated with an autophagy-inducing peptide for efficient targeted photothermal therapy publication-title: Biomaterials doi: 10.1016/j.biomaterials.2019.02.023 – volume: 5 start-page: 477 issue: 5 year: 2015 ident: 10.1016/j.biomaterials.2023.122139_bib73 article-title: MRI visible drug eluting magnetic microspheres for transcatheter intra-arterial delivery to liver tumors publication-title: Theranostics doi: 10.7150/thno.10823 – volume: 12 start-page: 705 issue: 6 year: 1996 ident: 10.1016/j.biomaterials.2023.122139_bib14 article-title: Cellular uptake of magnetic fluid particles and their effects on human adenocarcinoma cells exposed to AC magnetic fields in vitro publication-title: Int. J. Hyperther. doi: 10.3109/02656739609027678 – volume: 6 start-page: 11553 issue: 20 year: 2014 ident: 10.1016/j.biomaterials.2023.122139_bib18 article-title: Magnetic nanoparticle-based therapeutic agents for thermo-chemotherapy treatment of cancer publication-title: Nanoscale doi: 10.1039/C4NR03482A – volume: 9 start-page: 23428 issue: 28 year: 2017 ident: 10.1016/j.biomaterials.2023.122139_bib51 article-title: Calcitonin-loaded thermosensitive hydrogel for long-term antiosteopenia therapy publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b05740 – volume: 277 start-page: 150 issue: 1 year: 2017 ident: 10.1016/j.biomaterials.2023.122139_bib43 article-title: Ferroptosis: bug or feature? publication-title: Immunol. Rev. doi: 10.1111/imr.12533 |
SSID | ssj0014042 |
Score | 2.610317 |
Snippet | Magnetic hyperthermia therapy (MHT) is a promising new modality to deal with solid tumors, yet the low magnetic-heat conversion efficacy, magnetic resonance... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 122139 |
SubjectTerms | Animals Cell Line, Tumor Ferroptosis Hydrogels Hyperthermia, Induced - methods Hysteresis loss Magnetic hyperthermia therapy (MHT) Mice Multiple hyperthermia Nanoparticles Neoplasms - therapy Theranostics Thermosensitive hydrogel |
Title | An injectable and active hydrogel induces mutually enhanced mild magnetic hyperthermia and ferroptosis |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0142961223001473 https://dx.doi.org/10.1016/j.biomaterials.2023.122139 https://www.ncbi.nlm.nih.gov/pubmed/37148756 https://www.proquest.com/docview/2810920922 |
Volume | 298 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED9KB2V7GFv3lX0UDfbqxJHl2GLsIZSVtKN9WqFv5izJrUciB8d56Mv-9t35I3SwQaBgjD90sq2T7s7S3e8AviRWORJzJpgWqQkYsCvAPDRBrmNJNIiF5amBy6vZ4lpd3MQ3B3A6xMKwW2Uv-zuZ3krr_sqkb83Juiwn7JYkNSloMqLpMGHET6US7uXj3zs3D0aPkZ0bowy49AA82vp4cYg7Nh2rx5xIfEzVTTlx-L-V1P-M0FYZnb2A570VKebdi76EA-eP4dkDbMFjOLrsV81fQTH3ovQ84cJxUgK9FdiKOXF3b-vq1i3ptiUeb8Rqy_Eky3vh_F3rGyBW5ZJ2eOs52pEI1q5mm3FVYltR4eq6WjfVpty8huuz7z9PF0GfXyEwZPc0gZEmii213zQNiyhNY5MgprLgbMSxRIw1qXOGi-flaZIF6NwstSEajUlk8iR6A4e-8u4dCEvFpdSpUaiVynNti7hQzia8qqdUOAI9NGhmevBxzoGxzAYvs1_ZQ2ZkzIysY8YIoh3tuoPg2Ivq68C3bAgyJbGYkabYi_rbjvqv7rg3_eehq2Q0XnkRBr2rtlQonYZa0iZH8LbrQ7uvYvRE-n-cvX_k0z_AUz7rvIo_wmFTb90nsp2a_KQdHCfwZH7-Y3H1B8FYG3E |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1da9sw8Og62MfD2LqvbN2mwfboxJHl2KL0oXQr6dr0qYW-ebIktx6JHByHkZf9qf3B3vkjdLBBYBSMMZZOlnWnu5N0HwCfIiMssjntDbNYexSwy1Opr71UhhxhlMoMbQ1MzkbjC_HtMrzcgt-dLwyZVba8v-HpNbdu3wza0RzM83xAZklcooBGJRofoy6D9Yld_cR122L_-Asi-TPnR1_PD8dem1rA0yjyK09zHYQGQYexnwVxHOpIqZhnlIg35EqFEiUZRUqnk1mcBsraUWx8paWKAp1GAbZ7D-4LZBeUNqH_a21XQuFqeGM3yT3qXhfptDYqI596VTW01afM5X3s_5Aylf9dKv5L662l39FTeNKqreygGZlnsGXdDjy-FcxwBx5M2mP655AdOJY72uEhxyymnGGq5qvsemXK4spOsdggUS3YbEkOLNMVs-66NkZgs3yKN3XlyL0SAea2JCV1lqu6ocyWZTGvikW-eAEXdzLqL2HbFc6-BmawOucy1kJJIdJUmizMhDURHSMK4fdAdgOa6DbaOSXdmCadWduP5DYyEkJG0iCjB8Eadt7E_NgIaq_DW9J5tSIfTlA0bQS9v4b-g_43hv_YkUqCDIJOfZSzxRIrxUNfcrx4D141NLT-KwrXiAvW0Zv__PoHeDg-n5wmp8dnJ2_hEZU0Js27sF2VS_sOFbcqfV9PFAbf73pm3gD80lTb |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+injectable+and+active+hydrogel+induces+mutually+enhanced+mild+magnetic+hyperthermia+and+ferroptosis&rft.jtitle=Biomaterials&rft.au=Chen%2C+Xiaobin&rft.au=Wang%2C+Hancheng&rft.au=Shi%2C+Jiayue&rft.au=Chen%2C+Zhiyong&rft.date=2023-07-01&rft.issn=0142-9612&rft.volume=298&rft.spage=122139&rft_id=info:doi/10.1016%2Fj.biomaterials.2023.122139&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_biomaterials_2023_122139 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-9612&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-9612&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-9612&client=summon |