An injectable and active hydrogel induces mutually enhanced mild magnetic hyperthermia and ferroptosis

Magnetic hyperthermia therapy (MHT) is a promising new modality to deal with solid tumors, yet the low magnetic-heat conversion efficacy, magnetic resonance imaging (MRI) artifacts, easy leakage of magnetic nanoparticles, and thermal resistance are the main obstacles to expand its clinical applicati...

Full description

Saved in:
Bibliographic Details
Published inBiomaterials Vol. 298; p. 122139
Main Authors Chen, Xiaobin, Wang, Hancheng, Shi, Jiayue, Chen, Zhiyong, Wang, Yaoben, Gu, Siyi, Fu, Ye, Huang, Jiale, Ding, Jiandong, Yu, Lin
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Ltd 01.07.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Magnetic hyperthermia therapy (MHT) is a promising new modality to deal with solid tumors, yet the low magnetic-heat conversion efficacy, magnetic resonance imaging (MRI) artifacts, easy leakage of magnetic nanoparticles, and thermal resistance are the main obstacles to expand its clinical applications. Herein, a synergistic strategy based on a novel injectable magnetic and ferroptotic hydrogel is proposed to overcome these bottlenecks and boost the antitumor efficacy of MHT. The injectable hydrogel (AAGel) exhibiting a sol-gel transition upon heating is made of arachidonic acid (AA)-modified amphiphilic copolymers. Ferrimagnetic Zn0.4Fe2.6O4 nanocubes with high-efficiency hysteresis loss mechanism are synthesized and co-loaded into AAGel with RSL3, a potent ferroptotic inducer. This system maintains the temperature-responsive sol-gel transition, and provides the capacity of multiple MHT and achieves accurate heating after a single injection owing to the firm anchoring and uniform dispersion of nanocubes in the gel matrix. The high magnetic-heat conversion efficacy of nanocubes coupled with the application of echo limiting effect avoids the MRI artifacts during MHT. Besides the function of magnetic heating, Zn0.4Fe2.6O4 nanocubes combined with multiple MHT can sustain supply of redox-active iron to generate reactive oxygen species and lipid peroxides and accelerate the release of RLS3 from AAGel, thus enhancing the antitumor efficacy of ferroptosis. In turn, the reinforced ferroptosis can alleviate the MHT-triggered thermal resistance of tumors by impairment of the protective heat shock protein 70. The synergy strategy achieves the complete elimination of CT-26 tumors in mice without causing local tumor recurrence and other severe side effects.
AbstractList Magnetic hyperthermia therapy (MHT) is a promising new modality to deal with solid tumors, yet the low magnetic-heat conversion efficacy, magnetic resonance imaging (MRI) artifacts, easy leakage of magnetic nanoparticles, and thermal resistance are the main obstacles to expand its clinical applications. Herein, a synergistic strategy based on a novel injectable magnetic and ferroptotic hydrogel is proposed to overcome these bottlenecks and boost the antitumor efficacy of MHT. The injectable hydrogel (AAGel) exhibiting a sol-gel transition upon heating is made of arachidonic acid (AA)-modified amphiphilic copolymers. Ferrimagnetic Zn0.4Fe2.6O4 nanocubes with high-efficiency hysteresis loss mechanism are synthesized and co-loaded into AAGel with RSL3, a potent ferroptotic inducer. This system maintains the temperature-responsive sol-gel transition, and provides the capacity of multiple MHT and achieves accurate heating after a single injection owing to the firm anchoring and uniform dispersion of nanocubes in the gel matrix. The high magnetic-heat conversion efficacy of nanocubes coupled with the application of echo limiting effect avoids the MRI artifacts during MHT. Besides the function of magnetic heating, Zn0.4Fe2.6O4 nanocubes combined with multiple MHT can sustain supply of redox-active iron to generate reactive oxygen species and lipid peroxides and accelerate the release of RLS3 from AAGel, thus enhancing the antitumor efficacy of ferroptosis. In turn, the reinforced ferroptosis can alleviate the MHT-triggered thermal resistance of tumors by impairment of the protective heat shock protein 70. The synergy strategy achieves the complete elimination of CT-26 tumors in mice without causing local tumor recurrence and other severe side effects.Magnetic hyperthermia therapy (MHT) is a promising new modality to deal with solid tumors, yet the low magnetic-heat conversion efficacy, magnetic resonance imaging (MRI) artifacts, easy leakage of magnetic nanoparticles, and thermal resistance are the main obstacles to expand its clinical applications. Herein, a synergistic strategy based on a novel injectable magnetic and ferroptotic hydrogel is proposed to overcome these bottlenecks and boost the antitumor efficacy of MHT. The injectable hydrogel (AAGel) exhibiting a sol-gel transition upon heating is made of arachidonic acid (AA)-modified amphiphilic copolymers. Ferrimagnetic Zn0.4Fe2.6O4 nanocubes with high-efficiency hysteresis loss mechanism are synthesized and co-loaded into AAGel with RSL3, a potent ferroptotic inducer. This system maintains the temperature-responsive sol-gel transition, and provides the capacity of multiple MHT and achieves accurate heating after a single injection owing to the firm anchoring and uniform dispersion of nanocubes in the gel matrix. The high magnetic-heat conversion efficacy of nanocubes coupled with the application of echo limiting effect avoids the MRI artifacts during MHT. Besides the function of magnetic heating, Zn0.4Fe2.6O4 nanocubes combined with multiple MHT can sustain supply of redox-active iron to generate reactive oxygen species and lipid peroxides and accelerate the release of RLS3 from AAGel, thus enhancing the antitumor efficacy of ferroptosis. In turn, the reinforced ferroptosis can alleviate the MHT-triggered thermal resistance of tumors by impairment of the protective heat shock protein 70. The synergy strategy achieves the complete elimination of CT-26 tumors in mice without causing local tumor recurrence and other severe side effects.
Magnetic hyperthermia therapy (MHT) is a promising new modality to deal with solid tumors, yet the low magnetic-heat conversion efficacy, magnetic resonance imaging (MRI) artifacts, easy leakage of magnetic nanoparticles, and thermal resistance are the main obstacles to expand its clinical applications. Herein, a synergistic strategy based on a novel injectable magnetic and ferroptotic hydrogel is proposed to overcome these bottlenecks and boost the antitumor efficacy of MHT. The injectable hydrogel (AAGel) exhibiting a sol-gel transition upon heating is made of arachidonic acid (AA)-modified amphiphilic copolymers. Ferrimagnetic Zn0.4Fe2.6O4 nanocubes with high-efficiency hysteresis loss mechanism are synthesized and co-loaded into AAGel with RSL3, a potent ferroptotic inducer. This system maintains the temperature-responsive sol-gel transition, and provides the capacity of multiple MHT and achieves accurate heating after a single injection owing to the firm anchoring and uniform dispersion of nanocubes in the gel matrix. The high magnetic-heat conversion efficacy of nanocubes coupled with the application of echo limiting effect avoids the MRI artifacts during MHT. Besides the function of magnetic heating, Zn0.4Fe2.6O4 nanocubes combined with multiple MHT can sustain supply of redox-active iron to generate reactive oxygen species and lipid peroxides and accelerate the release of RLS3 from AAGel, thus enhancing the antitumor efficacy of ferroptosis. In turn, the reinforced ferroptosis can alleviate the MHT-triggered thermal resistance of tumors by impairment of the protective heat shock protein 70. The synergy strategy achieves the complete elimination of CT-26 tumors in mice without causing local tumor recurrence and other severe side effects.
Magnetic hyperthermia therapy (MHT) is a promising new modality to deal with solid tumors, yet the low magnetic-heat conversion efficacy, magnetic resonance imaging (MRI) artifacts, easy leakage of magnetic nanoparticles, and thermal resistance are the main obstacles to expand its clinical applications. Herein, a synergistic strategy based on a novel injectable magnetic and ferroptotic hydrogel is proposed to overcome these bottlenecks and boost the antitumor efficacy of MHT. The injectable hydrogel (AAGel) exhibiting a sol-gel transition upon heating is made of arachidonic acid (AA)-modified amphiphilic copolymers. Ferrimagnetic Zn Fe O nanocubes with high-efficiency hysteresis loss mechanism are synthesized and co-loaded into AAGel with RSL3, a potent ferroptotic inducer. This system maintains the temperature-responsive sol-gel transition, and provides the capacity of multiple MHT and achieves accurate heating after a single injection owing to the firm anchoring and uniform dispersion of nanocubes in the gel matrix. The high magnetic-heat conversion efficacy of nanocubes coupled with the application of echo limiting effect avoids the MRI artifacts during MHT. Besides the function of magnetic heating, Zn Fe O nanocubes combined with multiple MHT can sustain supply of redox-active iron to generate reactive oxygen species and lipid peroxides and accelerate the release of RLS3 from AAGel, thus enhancing the antitumor efficacy of ferroptosis. In turn, the reinforced ferroptosis can alleviate the MHT-triggered thermal resistance of tumors by impairment of the protective heat shock protein 70. The synergy strategy achieves the complete elimination of CT-26 tumors in mice without causing local tumor recurrence and other severe side effects.
ArticleNumber 122139
Author Gu, Siyi
Ding, Jiandong
Chen, Xiaobin
Fu, Ye
Chen, Zhiyong
Wang, Yaoben
Huang, Jiale
Shi, Jiayue
Yu, Lin
Wang, Hancheng
Author_xml – sequence: 1
  givenname: Xiaobin
  surname: Chen
  fullname: Chen, Xiaobin
– sequence: 2
  givenname: Hancheng
  surname: Wang
  fullname: Wang, Hancheng
– sequence: 3
  givenname: Jiayue
  surname: Shi
  fullname: Shi, Jiayue
– sequence: 4
  givenname: Zhiyong
  surname: Chen
  fullname: Chen, Zhiyong
– sequence: 5
  givenname: Yaoben
  surname: Wang
  fullname: Wang, Yaoben
– sequence: 6
  givenname: Siyi
  surname: Gu
  fullname: Gu, Siyi
– sequence: 7
  givenname: Ye
  surname: Fu
  fullname: Fu, Ye
– sequence: 8
  givenname: Jiale
  surname: Huang
  fullname: Huang, Jiale
– sequence: 9
  givenname: Jiandong
  orcidid: 0000-0001-7527-5760
  surname: Ding
  fullname: Ding, Jiandong
– sequence: 10
  givenname: Lin
  orcidid: 0000-0001-7660-3367
  surname: Yu
  fullname: Yu, Lin
  email: yu_lin@fudan.edu.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37148756$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtvEzEUhS1URNPCX0AjVmwS_IgzHlaUUh5SJTawtm48d5obPHawPZXy73GaglBXkaxrWfecT9Y5F-wsxICMvRF8IbhYvdsu1hRHKJgIfF5ILtVCSClU94zNhGnNXHdcn7EZF0s571ZCnrOLnLe8vvlSvmDnqhVL0-rVjA1XoaGwRVdg7bGB0DfgCt1js9n3Kd6hr-t-cpibcSoTeL9vMGwgOOybkXwdcBewkKuGHaaywTQSPIAGTCnuSsyUX7LnQ_0rvnq8L9nPzzc_rr_Ob79_-XZ9dTt3musyd9Ip3UuphOGDMka7FsDIYdkqrSWA7pQRmhvFhWwVbwFxZXoOroNWuXWrLtnbI3eX4u8Jc7EjZYfeQ8A4ZSuN4J2sR1bp60fptB6xt7tEI6S9_ZtNFbw_ClyKOScc_kkEt4ci7Nb-X4Q9FGGPRVTzhydmRwUKxVASkD8N8emIwBrYPWGy2REegqdU-7J9pNMwH59gnKdADvwv3J8K-QNebMT8
CitedBy_id crossref_primary_10_31857_S0023291223600554
crossref_primary_10_1016_j_apmt_2024_102086
crossref_primary_10_1039_D3BM01352A
crossref_primary_10_1016_j_eurpolymj_2024_113158
crossref_primary_10_59717_j_xinn_mater_2024_100051
crossref_primary_10_1016_j_cej_2024_154180
crossref_primary_10_1016_j_biomaterials_2025_123180
crossref_primary_10_1016_j_cej_2024_157451
crossref_primary_10_1021_acs_biomac_3c01285
crossref_primary_10_1007_s00339_024_07452_4
crossref_primary_10_1016_j_mtbio_2024_101276
crossref_primary_10_1016_j_cej_2024_157730
crossref_primary_10_1016_j_compositesb_2023_111162
crossref_primary_10_1186_s12951_024_02306_w
crossref_primary_10_1016_j_bcp_2023_115933
crossref_primary_10_3389_fonc_2023_1178681
crossref_primary_10_1016_j_eurpolymj_2023_112214
crossref_primary_10_1021_acsami_3c07846
crossref_primary_10_1016_j_cej_2023_147437
crossref_primary_10_1093_rb_rbae137
crossref_primary_10_1016_j_ccr_2024_215696
crossref_primary_10_1016_j_cej_2024_150780
crossref_primary_10_3390_gels11030218
crossref_primary_10_1002_adma_202402806
crossref_primary_10_1002_ange_202414879
crossref_primary_10_1002_jbm_a_37754
crossref_primary_10_1088_1361_6463_acff06
crossref_primary_10_1016_j_mtbio_2024_101348
crossref_primary_10_1016_j_bioactmat_2023_09_015
crossref_primary_10_1016_j_biomaterials_2024_122954
crossref_primary_10_1002_advs_202306178
crossref_primary_10_1016_j_cej_2025_160231
crossref_primary_10_1016_j_mattod_2024_05_005
crossref_primary_10_1021_acsami_4c18486
crossref_primary_10_1016_j_carbpol_2024_123034
crossref_primary_10_1248_cpb_c23_00864
crossref_primary_10_3390_gels11010067
crossref_primary_10_1016_j_eurpolymj_2023_112526
crossref_primary_10_1002_smtd_202301121
crossref_primary_10_3390_jcs8120486
crossref_primary_10_1080_10717544_2024_2446552
crossref_primary_10_3389_fphar_2024_1416382
crossref_primary_10_1016_j_ccr_2024_216207
crossref_primary_10_1039_D3BM01832F
crossref_primary_10_1039_D4TB00771A
crossref_primary_10_1134_S1061933X23600756
crossref_primary_10_34133_research_0397
crossref_primary_10_1007_s40843_024_3095_8
crossref_primary_10_1002_anie_202414879
crossref_primary_10_1021_acsami_3c18306
crossref_primary_10_1016_j_bioadv_2024_214046
crossref_primary_10_1002_advs_202402208
crossref_primary_10_1016_j_bioactmat_2024_05_032
Cites_doi 10.1016/j.cell.2013.12.010
10.1039/C8NR04995E
10.1021/nl3010308
10.1016/j.biomaterials.2022.121561
10.1093/rb/rbab064
10.1016/j.biomaterials.2022.121799
10.1021/nn204591r
10.1021/nl301499u
10.1016/j.biomaterials.2019.119486
10.1016/j.addr.2011.03.008
10.1126/sciadv.abj0364
10.1021/acsami.9b10182
10.1093/rb/rbab023
10.1002/anie.201805664
10.1016/j.cell.2010.01.009
10.1007/s11060-010-0389-0
10.1038/nchembio.1712
10.1016/j.biomaterials.2022.121502
10.1016/j.biomaterials.2022.121668
10.1002/smll.202102046
10.1021/acsnano.0c00910
10.1021/acsami.9b20496
10.1016/j.biomaterials.2022.121832
10.1039/C8BM01470A
10.3389/fchem.2020.00680
10.7150/thno.40805
10.1126/sciadv.aax1346
10.1080/10715760400010470
10.1016/j.cej.2020.125320
10.1021/acsami.9b04186
10.1016/j.biomaterials.2021.121320
10.1021/acsnano.8b05860
10.1021/acsnano.9b06134
10.1002/anie.202101924
10.1038/nrc3672
10.1016/j.bioactmat.2021.05.028
10.1021/acsami.9b10954
10.1016/S0304-8853(03)00426-8
10.1016/j.actbio.2021.04.009
10.1016/j.biomaterials.2018.02.041
10.1016/j.biomaterials.2016.08.015
10.1038/s41467-020-17380-5
10.1038/nchembio.2238
10.1016/j.biomaterials.2022.121530
10.1002/smtd.202000310
10.1038/s41571-020-00462-0
10.1021/acs.macromol.1c00959
10.1002/stem.5530030203
10.1002/adma.201804567
10.1016/j.biomaterials.2021.121100
10.1146/annurev-cancerbio-030518-055844
10.1016/j.cell.2017.09.044
10.1126/sciadv.abg7291
10.1016/j.biomaterials.2017.06.030
10.1038/s41467-020-19061-9
10.1042/bj20020639
10.1039/C7NR02858J
10.1038/srep40075
10.1016/j.biomaterials.2022.121815
10.1016/j.yexmp.2006.06.007
10.1016/j.biomaterials.2015.11.037
10.1002/adfm.201504215
10.1080/02656736.2018.1430867
10.1039/D0TB01175D
10.1016/j.biomaterials.2017.03.049
10.1021/nn300291r
10.1093/rb/rbab062
10.1038/nchembio.1416
10.7150/thno.34157
10.1080/02656730601175479
10.1016/j.biomaterials.2019.02.023
10.7150/thno.10823
10.3109/02656739609027678
10.1039/C4NR03482A
10.1021/acsami.7b05740
10.1111/imr.12533
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright © 2023 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2023 Elsevier Ltd
– notice: Copyright © 2023 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.biomaterials.2023.122139
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1878-5905
ExternalDocumentID 37148756
10_1016_j_biomaterials_2023_122139
S0142961223001473
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABXZ
AAEDT
AAEDW
AAEPC
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABGSF
ABJNI
ABMAC
ABNUV
ABUDA
ABWVN
ABXDB
ABXRA
ACDAQ
ACGFS
ACIUM
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEWK
ADEZE
ADMUD
ADNMO
ADTZH
ADUVX
AEBSH
AECPX
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AEZYN
AFFNX
AFJKZ
AFPUW
AFRHN
AFRZQ
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJUYK
AKBMS
AKRWK
AKURH
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMK
HMO
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OB-
OM.
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RNS
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SSG
SSM
SST
SSU
SSZ
T5K
TN5
VH1
WH7
WUQ
XPP
XUV
Z5R
ZMT
~G-
AACTN
AAIAV
AAYOK
ABYKQ
AFCTW
AFKWA
AJBFU
AJOXV
AMFUW
DOVZS
EFLBG
RIG
AAYXX
AGRNS
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7X8
ID FETCH-LOGICAL-c505t-c2c35d223180f3885c7aa82f473552aa5938150830127307aee68d0ac9a73cb73
IEDL.DBID .~1
ISSN 0142-9612
1878-5905
IngestDate Fri Jul 11 15:30:36 EDT 2025
Wed Feb 19 02:24:09 EST 2025
Thu Apr 24 23:06:01 EDT 2025
Tue Jul 01 01:19:50 EDT 2025
Fri Feb 23 02:36:22 EST 2024
Tue Aug 26 17:20:51 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Hysteresis loss
Ferroptosis
Magnetic hyperthermia therapy (MHT)
Theranostics
Thermosensitive hydrogel
Multiple hyperthermia
Language English
License Copyright © 2023 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c505t-c2c35d223180f3885c7aa82f473552aa5938150830127307aee68d0ac9a73cb73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-7660-3367
0000-0001-7527-5760
PMID 37148756
PQID 2810920922
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2810920922
pubmed_primary_37148756
crossref_primary_10_1016_j_biomaterials_2023_122139
crossref_citationtrail_10_1016_j_biomaterials_2023_122139
elsevier_sciencedirect_doi_10_1016_j_biomaterials_2023_122139
elsevier_clinicalkey_doi_10_1016_j_biomaterials_2023_122139
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2023
2023-07-00
20230701
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: July 2023
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biomaterials
PublicationTitleAlternate Biomaterials
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Seo, Kwon, Kim, Hong, Kim, Song, Kim, Song (bib26) 2022; 7
Maier-Hauff, Ulrich, Nestler, Niehoff, Wust, Thiesen, Orawa, Budach, Jordan (bib12) 2011; 103
Gao, Deng, Liu, Fan, Wang, Wu, Ding, Kong, Wang, Peer, Zhao (bib49) 2019; 223
Chang, Hou, Wang, Yang, Wang, Li, Liu, Peng, Li, Lin (bib38) 2021; 60
Jiang, Wang, Zheng, Chen, Liu, Xie, Cai, Zhang, Li (bib37) 2022; 285
Dixon (bib43) 2017; 277
Hervault, Thanh (bib18) 2014; 6
Pardo, Yanez, Pineiro, Iglesias-Rey, Al-Modlej, Barbosa, Rivas, Taboada (bib56) 2020; 12
Jordan, Wust, Scholz, Tesche, Fahling, Mitrovics, Vogl, CervosNavarro, Felix (bib14) 1996; 12
Zhang, Song (bib6) 2016; 106
Tang, Liu, He, Bu (bib62) 2019; 58
Lei, Tang (bib27) 2019; 7
Zhao, Xie, Van Herck, Nassiri, Gao, Guo, Tang (bib72) 2021; 7
Hayashi, Sakamoto, Yogo (bib15) 2016; 26
Kagan, Mao, Qu, Angeli, Doll, St Croix, Dar, Liu, Tyurin, Ritov, Kapralov, Amoscato, Jiang, Anthonymuthu, Mohammadyani, Yang, Proneth, Klein-Seetharaman, Watkins, Bahar, Greenberger, Mallampalli, Stockwell, Tyurina, Conrad, Bayir (bib42) 2017; 13
An, Zhu, Liu, Deng, Meng, Liu, Wu, Fan, Wang, Zhao (bib50) 2019; 11
Yang, Chen, Wang, Xu, Yu, Ding (bib52) 2020; 396
Zhou, Yang, Gao, Chen (bib75) 2019; 31
Yang, Fu, Cai, Liu, Xia, Gong, Song, Ai (bib76) 2021; 8
Xue, Li, Zhao, Zhou, Hu, Cai, Zhao, Yu, Luo (bib36) 2020; 6
Li, Liang, He, Li, Huang, Wang, Shen, Shu, Wu, Zhang (bib10) 2022; 290
Noh, Na, Jang, Lee, Lee, Moon, Lim, Shin, Cheon (bib19) 2012; 12
Kim, Chen, Omary, Larson (bib73) 2015; 5
Kumar, Mohammad (bib1) 2011; 63
Yu, Liang, Zheng, Exner, Kolios, Xu, Guo, Cai, Wang, Ran (bib4) 2019; 9
Wang, Yang, Chen, Wang, Wang, Wang, Chen, Cao, Yu, Ding (bib53) 2022; 32
Choi, Kim (bib33) 2021; 1
Liu, Zhang, Wang, Zhu, Li, Ma, Zhang, Chen, Tiwari, Shi, Zhang, Fan, Zhao, Liang (bib78) 2020; 10
Chu, Dupuy (bib3) 2014; 14
Liu, Liu, Zhang, Yu, Gao, Li, Wang, Feng, Zhang (bib61) 2018; 12
Lee, Choi, Lee, Park, Moon, Choi, Hyeon (bib79) 2012; 12
Chen, Yin, Zhou, Zhang, Song, Song, Hu, Gu (bib66) 2012; 6
Sutrisno, Hu, Hou, Cai, Li, Luo (bib41) 2020; 8
He, Zhou, Zhang, Du, Liu, Ji, Yang, Zhai (bib45) 2022; 290
Zhang, Song (bib20) 2017; 132
Chafe, Vizeacoumar, Venkateswaran, Nemirovsky, Awrey, Brown, McDonald, Carta, Metcalfe, Karasinska (bib64) 2021; 7
Johnson, Whitehead, Nicola (bib71) 1985; 3
Wang, Song, Wang, Xie, Zhang, Jiang, Liu, Hou, Zhong, Xu, Ran, Guo (bib46) 2021; 277
Poselt, Kloust, Tromsdorf, Janschel, Hahn, Masslo, Weller (bib24) 2012; 6
Yang, Fu, Liu, Cai, Xia, Song, Gong, Lu, Ai (bib68) 2021; 8
Chen, Kang, Kroemer, Tang (bib48) 2021; 18
Venkataraman, Wagner, Jiang, Wang, Schafer, Ritchie, Patrick, Oberley, Buettner (bib60) 2004; 38
Jiang, Fu, Guo, Hu, Shi (bib2) 2022; 289
Johannsen, Gneveckow, Taymoorian, Thiesen, Waldofner, Scholz, Jung, Jordan, Wust, Loening (bib13) 2007; 23
Weinberg, Chandel (bib40) 2015; 11
Yu, Choi, Li, Kim (bib32) 2020; 11
Chen, Zhang, Wu, Wu, Tang, Cui, Cao, Liu, Peng, Yu, Ding (bib57) 2020; 4
Ma, Wu, Zhou, Sun, Zhang, Gu (bib22) 2004; 268
Yang, SriRamaratnam, Welsch, Shimada, Skouta, Viswanathan, Cheah, Clemons, Shamji, Clish, Brown, Girotti, Cornish, Schreiber, Stockwell (bib47) 2014; 156
Ji, Shao, Li, Ullah, Luo, Xu, Ma, He, Lei, Li (bib28) 2022; 285
Zhou, Yan, Wang, Zhang, Cheng (bib9) 2019; 203
Mahmoudi, Bouras, Bozec, Ivkov, Hadjipanayis (bib11) 2018; 34
Woo, Yim, Shin, Kang, Yu, Rhee (bib39) 2010; 140
Li, Wang, Dai, Hu, Ding, Feng, Huang, Wang, Bai, Chen (bib35) 2022; 287
Zhang, Wang, Chu, Zhou, Chen, Pang, Lin, Lin, Guo, Ren, Lv, Shi, Zheng, Yan, Chen, Liu (bib23) 2020; 11
Zhang, Kim, Song (bib25) 2019; 11
Wei, Zhou, Sun, Lin, Yang, Ren, Chen, Gao (bib58) 2018; 10
Wu, Dai, Tang, Ma, Song, Zhang, Li, Lui, Gong, Wu (bib74) 2021; 8
Zhou, Yan, Hu, Zou, Li, Ma, Zhang, Cheng (bib7) 2017; 141
Skitzki, Repasky, Evans (bib17) 2009; 10
duPre, Hunter (bib70) 2007; 82
Shi, Yu, Ding (bib54) 2021; 128
Dixon, Stockwell (bib59) 2019; 3
Dixon, Stockwell (bib63) 2014; 10
Wang, Zhang, Wang, Wang, Xiao, Zhang, Cheng (bib8) 2016; 81
Wu, Liu, Song, Ma, Gu, Zhang (bib21) 2019; 13
Tang, Lu, He, Chen, Fu, Han, Luo, Yin, Qin, Lyu (bib29) 2022; 280
Ying, Zhang, Gao, Cai, Wang, Wu, Chen, Meng, Zheng, Hu (bib30) 2020; 14
Wu, Chen, Gu, Cui, Yang, Yu, Ding (bib55) 2021; 54
Gournaris, Park, Cho, Bentrem, Larson, Kim (bib5) 2019; 11
Wang, Xu, Li, Rong, Zhu (bib69) 2016
Mansur, Mansur, Leonel, Carvalho, Lage, Carvalho, Krambrock, Lobato (bib77) 2020; 8
Volatron, Kolosnjaj-Tabi, Javed, Vuong, Gossuin, Neveu, Luciani, Hémadi, Carn, Alloyeau (bib67) 2017; 7
Liu, Chen, Li, Guo, Xie, Yu, Xu, Ding, Li, Ding (bib51) 2017; 9
Wu, Song, Chen, Huang, Wu, Zang, An, Lyu, Ma, Chen, Gu, Zhang (bib16) 2017; 9
Zhang, Ma, Li, Wu, Zhang, Zhang, Zhao, Han (bib34) 2022; 284
Wenzel, Tyurina, Zhao, Croix, Dar, Mao, Tyurin, Anthonymuthu, Kapralov, Amoscato, Mikulska-Ruminska, Shrivastava, Kenny, Yang, Rosenbaum, Sparvero, Emlet, Wen, Minami, Qu, Watkins, Holman, VanDemark, Kellum, Bahar, Bayir, Kagan (bib80) 2017; 171
Sheng, Liu, Deng, Zhang, Li, Xu, Hao, Li, Ran, Chen, Wang (bib31) 2018; 165
Li, Xu, He, Lu, Mao, Gao, Liu, Wu, Zhang, Xiang, Luo, Cai (bib44) 2021; 17
Lehnen-Beyel, De Groot, Rauen (bib65) 2002; 368
Wu (10.1016/j.biomaterials.2023.122139_bib55) 2021; 54
Chafe (10.1016/j.biomaterials.2023.122139_bib64) 2021; 7
Hayashi (10.1016/j.biomaterials.2023.122139_bib15) 2016; 26
Chen (10.1016/j.biomaterials.2023.122139_bib48) 2021; 18
Woo (10.1016/j.biomaterials.2023.122139_bib39) 2010; 140
Chang (10.1016/j.biomaterials.2023.122139_bib38) 2021; 60
Li (10.1016/j.biomaterials.2023.122139_bib44) 2021; 17
Hervault (10.1016/j.biomaterials.2023.122139_bib18) 2014; 6
Liu (10.1016/j.biomaterials.2023.122139_bib61) 2018; 12
Wang (10.1016/j.biomaterials.2023.122139_bib46) 2021; 277
Weinberg (10.1016/j.biomaterials.2023.122139_bib40) 2015; 11
Johnson (10.1016/j.biomaterials.2023.122139_bib71) 1985; 3
Wu (10.1016/j.biomaterials.2023.122139_bib74) 2021; 8
Zhang (10.1016/j.biomaterials.2023.122139_bib20) 2017; 132
Li (10.1016/j.biomaterials.2023.122139_bib35) 2022; 287
Xue (10.1016/j.biomaterials.2023.122139_bib36) 2020; 6
Zhao (10.1016/j.biomaterials.2023.122139_bib72) 2021; 7
Liu (10.1016/j.biomaterials.2023.122139_bib51) 2017; 9
Wang (10.1016/j.biomaterials.2023.122139_bib53) 2022; 32
Zhang (10.1016/j.biomaterials.2023.122139_bib25) 2019; 11
Choi (10.1016/j.biomaterials.2023.122139_bib33) 2021; 1
Dixon (10.1016/j.biomaterials.2023.122139_bib63) 2014; 10
Wei (10.1016/j.biomaterials.2023.122139_bib58) 2018; 10
Kumar (10.1016/j.biomaterials.2023.122139_bib1) 2011; 63
Lehnen-Beyel (10.1016/j.biomaterials.2023.122139_bib65) 2002; 368
Zhou (10.1016/j.biomaterials.2023.122139_bib9) 2019; 203
Maier-Hauff (10.1016/j.biomaterials.2023.122139_bib12) 2011; 103
Skitzki (10.1016/j.biomaterials.2023.122139_bib17) 2009; 10
Ying (10.1016/j.biomaterials.2023.122139_bib30) 2020; 14
Yang (10.1016/j.biomaterials.2023.122139_bib47) 2014; 156
An (10.1016/j.biomaterials.2023.122139_bib50) 2019; 11
Mahmoudi (10.1016/j.biomaterials.2023.122139_bib11) 2018; 34
Lee (10.1016/j.biomaterials.2023.122139_bib79) 2012; 12
Yang (10.1016/j.biomaterials.2023.122139_bib52) 2020; 396
Wang (10.1016/j.biomaterials.2023.122139_bib69) 2016
Zhou (10.1016/j.biomaterials.2023.122139_bib7) 2017; 141
Zhou (10.1016/j.biomaterials.2023.122139_bib75) 2019; 31
Chu (10.1016/j.biomaterials.2023.122139_bib3) 2014; 14
Shi (10.1016/j.biomaterials.2023.122139_bib54) 2021; 128
Yang (10.1016/j.biomaterials.2023.122139_bib68) 2021; 8
Seo (10.1016/j.biomaterials.2023.122139_bib26) 2022; 7
He (10.1016/j.biomaterials.2023.122139_bib45) 2022; 290
Johannsen (10.1016/j.biomaterials.2023.122139_bib13) 2007; 23
Gao (10.1016/j.biomaterials.2023.122139_bib49) 2019; 223
Jordan (10.1016/j.biomaterials.2023.122139_bib14) 1996; 12
Venkataraman (10.1016/j.biomaterials.2023.122139_bib60) 2004; 38
Wu (10.1016/j.biomaterials.2023.122139_bib21) 2019; 13
Tang (10.1016/j.biomaterials.2023.122139_bib29) 2022; 280
Chen (10.1016/j.biomaterials.2023.122139_bib66) 2012; 6
Sheng (10.1016/j.biomaterials.2023.122139_bib31) 2018; 165
Wenzel (10.1016/j.biomaterials.2023.122139_bib80) 2017; 171
Yu (10.1016/j.biomaterials.2023.122139_bib4) 2019; 9
Jiang (10.1016/j.biomaterials.2023.122139_bib37) 2022; 285
Kagan (10.1016/j.biomaterials.2023.122139_bib42) 2017; 13
Mansur (10.1016/j.biomaterials.2023.122139_bib77) 2020; 8
Pardo (10.1016/j.biomaterials.2023.122139_bib56) 2020; 12
Li (10.1016/j.biomaterials.2023.122139_bib10) 2022; 290
Lei (10.1016/j.biomaterials.2023.122139_bib27) 2019; 7
Zhang (10.1016/j.biomaterials.2023.122139_bib6) 2016; 106
Gournaris (10.1016/j.biomaterials.2023.122139_bib5) 2019; 11
Zhang (10.1016/j.biomaterials.2023.122139_bib23) 2020; 11
Tang (10.1016/j.biomaterials.2023.122139_bib62) 2019; 58
Yang (10.1016/j.biomaterials.2023.122139_bib76) 2021; 8
Wang (10.1016/j.biomaterials.2023.122139_bib8) 2016; 81
Poselt (10.1016/j.biomaterials.2023.122139_bib24) 2012; 6
Ji (10.1016/j.biomaterials.2023.122139_bib28) 2022; 285
Yu (10.1016/j.biomaterials.2023.122139_bib32) 2020; 11
Ma (10.1016/j.biomaterials.2023.122139_bib22) 2004; 268
Dixon (10.1016/j.biomaterials.2023.122139_bib43) 2017; 277
Zhang (10.1016/j.biomaterials.2023.122139_bib34) 2022; 284
Dixon (10.1016/j.biomaterials.2023.122139_bib59) 2019; 3
duPre (10.1016/j.biomaterials.2023.122139_bib70) 2007; 82
Noh (10.1016/j.biomaterials.2023.122139_bib19) 2012; 12
Sutrisno (10.1016/j.biomaterials.2023.122139_bib41) 2020; 8
Volatron (10.1016/j.biomaterials.2023.122139_bib67) 2017; 7
Chen (10.1016/j.biomaterials.2023.122139_bib57) 2020; 4
Jiang (10.1016/j.biomaterials.2023.122139_bib2) 2022; 289
Wu (10.1016/j.biomaterials.2023.122139_bib16) 2017; 9
Kim (10.1016/j.biomaterials.2023.122139_bib73) 2015; 5
Liu (10.1016/j.biomaterials.2023.122139_bib78) 2020; 10
References_xml – volume: 171
  start-page: 628
  year: 2017
  end-page: 641
  ident: bib80
  article-title: PEBP1 wardens ferroptosis by enabling lipoxygenase generation of lipid death signals
  publication-title: Cell
– volume: 31
  year: 2019
  ident: bib75
  article-title: Structure-relaxivity relationships of magnetic nanoparticles for magnetic resonance imaging
  publication-title: Adv. Mater.
– volume: 290
  year: 2022
  ident: bib45
  article-title: Oxygen-boosted biomimetic nanoplatform for synergetic phototherapy/ferroptosis activation and reversal of immune-suppressed tumor microenvironment
  publication-title: Biomaterials
– volume: 26
  start-page: 1708
  year: 2016
  end-page: 1718
  ident: bib15
  article-title: Smart ferrofluid with quick gel transformation in tumors for MRI-guided local magnetic thermochemotherapy
  publication-title: Adv. Funct. Mater.
– volume: 128
  start-page: 42
  year: 2021
  end-page: 59
  ident: bib54
  article-title: PEG-based thermosensitive and biodegradable hydrogels
  publication-title: Acta Biomater.
– volume: 14
  start-page: 199
  year: 2014
  end-page: 208
  ident: bib3
  article-title: Thermal ablation of tumours: biological mechanisms and advances in therapy
  publication-title: Nat. Rev. Cancer
– volume: 1
  year: 2021
  ident: bib33
  article-title: Multifunctional nanocarriers‐mediated synergistic combination of immune checkpoint inhibitor cancer immunotherapy and interventional oncology therapy
  publication-title: Adv. Nanobimed. Res.
– volume: 290
  year: 2022
  ident: bib10
  article-title: Multifunctional light-activatable nanocomplex conducting temperate-heat photothermal therapy to avert excessive inflammation and trigger augmented immunotherapy
  publication-title: Biomaterials
– volume: 12
  start-page: 12181
  year: 2018
  end-page: 12192
  ident: bib61
  article-title: Ferrous-supply-regeneration nanoengineering for cancer-cell-specific ferroptosis in combination with imaging-guided photodynamic therapy
  publication-title: ACS Nano
– volume: 6
  start-page: 11553
  year: 2014
  end-page: 11573
  ident: bib18
  article-title: Magnetic nanoparticle-based therapeutic agents for thermo-chemotherapy treatment of cancer
  publication-title: Nanoscale
– volume: 6
  start-page: 1619
  year: 2012
  end-page: 1624
  ident: bib24
  article-title: Relaxivity optimization of a PEGylated iron-oxide-based negative magnetic resonance contrast agent for T-2-weighted spin-echo imaging
  publication-title: ACS Nano
– volume: 5
  start-page: 477
  year: 2015
  end-page: 488
  ident: bib73
  article-title: MRI visible drug eluting magnetic microspheres for transcatheter intra-arterial delivery to liver tumors
  publication-title: Theranostics
– volume: 7
  year: 2021
  ident: bib72
  article-title: Switchable immune modulator for tumor-specific activation of anticancer immunity
  publication-title: Sci. Adv.
– volume: 10
  start-page: 3793
  year: 2020
  end-page: 3815
  ident: bib78
  article-title: Comprehensive understanding of magnetic hyperthermia for improving antitumor therapeutic efficacy
  publication-title: Theranostics
– volume: 141
  start-page: 116
  year: 2017
  end-page: 124
  ident: bib7
  article-title: Autophagy inhibition enabled efficient photothermal therapy at a mild temperature
  publication-title: Biomaterials
– volume: 156
  start-page: 317
  year: 2014
  end-page: 331
  ident: bib47
  article-title: Regulation of ferroptotic cancer cell death by GPX4
  publication-title: Cell
– volume: 6
  year: 2020
  ident: bib36
  article-title: Tumor microenvironment-activatable Fe-doxorubicin preloaded amorphous CaCO3 nanoformulation triggers ferroptosis in target tumor cells
  publication-title: Sci. Adv.
– volume: 7
  year: 2021
  ident: bib64
  article-title: Genome-wide synthetic lethal screen unveils novel CAIX-NFS1/xCT axis as a targetable vulnerability in hypoxic solid tumors
  publication-title: Sci. Adv.
– volume: 8
  start-page: 680
  year: 2020
  ident: bib41
  article-title: Progress of iron-based nanozymes for antitumor therapy
  publication-title: Front. Chem.
– volume: 368
  start-page: 517
  year: 2002
  end-page: 526
  ident: bib65
  article-title: Enhancement of iron toxicity in L929 cells by D-glucose: accelerated (re-)reduction
  publication-title: Biochem. J.
– volume: 14
  start-page: 9662
  year: 2020
  end-page: 9674
  ident: bib30
  article-title: Hollow magnetic nanocatalysts drive starvation–chemodynamic–hyperthermia synergistic therapy for tumor
  publication-title: ACS Nano
– volume: 4
  year: 2020
  ident: bib57
  article-title: Visualizing the in vivo evolution of an injectable and thermosensitive hydrogel using tri-modal bioimaging
  publication-title: Small Methods
– volume: 106
  start-page: 13
  year: 2016
  end-page: 23
  ident: bib6
  article-title: Thermosensitive/superparamagnetic iron oxide nanoparticle-loaded nanocapsule hydrogels for multiple cancer hyperthermia
  publication-title: Biomaterials
– volume: 6
  start-page: 4001
  year: 2012
  end-page: 4012
  ident: bib66
  article-title: Dual enzyme-like activities of iron oxide nanoparticles and their implication for diminishing cytotoxicity
  publication-title: ACS Nano
– volume: 287
  year: 2022
  ident: bib35
  article-title: Engineering dual catalytic nanomedicine for autophagy-augmented and ferroptosis-involved cancer nanotherapy
  publication-title: Biomaterials
– volume: 223
  year: 2019
  ident: bib49
  article-title: Triggered ferroptotic polymer micelles for reversing multidrug resistance to chemotherapy
  publication-title: Biomaterials
– volume: 23
  start-page: 315
  year: 2007
  end-page: 323
  ident: bib13
  article-title: Morbidity and quality of life during thermotherapy using magnetic nanoparticles in locally recurrent prostate cancer: results of a prospective phase I trial
  publication-title: Int. J. Hyperther.
– start-page: 97
  year: 2016
  end-page: 106
  ident: bib69
  article-title: Evaluation of zinc-doped magnetite nanoparticle toxicity in the liver and kidney of mice after sub-chronic intragastric administration
  publication-title: Toxicol. Res.
– volume: 18
  start-page: 280
  year: 2021
  end-page: 296
  ident: bib48
  article-title: Broadening horizons: the role of ferroptosis in cancer
  publication-title: Nat. Rev. Clin. Oncol.
– volume: 38
  start-page: 1119
  year: 2004
  end-page: 1132
  ident: bib60
  article-title: Overexpression of manganese superoxide dismutase promotes the survival of prostate cancer cells exposed to hyperthermia
  publication-title: Free Radic. Res.
– volume: 9
  start-page: 4192
  year: 2019
  ident: bib4
  article-title: PMMA-Fe3O4 for internal mechanical support and magnetic thermal ablation of bone tumors
  publication-title: Theranostics
– volume: 32
  start-page: 202206554
  year: 2022
  ident: bib53
  article-title: Sustained release of nitric oxide and cascade generation of reactive nitrogen/oxygen species via an injectable hydrogel for tumor synergistic therapy
  publication-title: Adv. Funct. Mater.
– volume: 60
  start-page: 12971
  year: 2021
  end-page: 12979
  ident: bib38
  article-title: Single-atom Pd nanozyme for ferroptosis-boosted mild-temperature photothermal therapy
  publication-title: Angew. Chem., Int. Ed. Engl.
– volume: 8
  year: 2021
  ident: bib74
  article-title: Advances in magnetic resonance imaging contrast agents for glioblastoma-targeting theranostics
  publication-title: Regen. Biomater.
– volume: 396
  year: 2020
  ident: bib52
  article-title: Sustained release of lipophilic gemcitabine from an injectable polymeric hydrogel for synergistically enhancing tumor chemoradiotherapy
  publication-title: Chem. Eng. J.
– volume: 132
  start-page: 16
  year: 2017
  end-page: 27
  ident: bib20
  article-title: Multiple hyperthermia-mediated release of TRAIL/SPION nanocomplex from thermosensitive polymeric hydrogels for combination cancer therapy
  publication-title: Biomaterials
– volume: 289
  year: 2022
  ident: bib2
  article-title: Evoking tumor associated macrophages by mitochondria-targeted magnetothermal immunogenic cell death for cancer immunotherapy
  publication-title: Biomaterials
– volume: 9
  start-page: 23428
  year: 2017
  end-page: 23440
  ident: bib51
  article-title: Calcitonin-loaded thermosensitive hydrogel for long-term antiosteopenia therapy
  publication-title: ACS Appl. Mater. Interfaces
– volume: 11
  start-page: 5421
  year: 2020
  ident: bib23
  article-title: Genetically engineered magnetic nanocages for cancer magneto-catalytic theranostics
  publication-title: Nat. Commun.
– volume: 58
  start-page: 946
  year: 2019
  end-page: 956
  ident: bib62
  article-title: Chemodynamic therapy: tumour microenvironment‐mediated Fenton and Fenton‐like reactions
  publication-title: Angew. Chem. Int. Ed.
– volume: 8
  start-page: 7166
  year: 2020
  end-page: 7188
  ident: bib77
  article-title: Supramolecular magnetonanohybrids for multimodal targeted therapy of triple-negative breast cancer cells
  publication-title: J. Mater. Chem. B
– volume: 165
  start-page: 1
  year: 2018
  end-page: 13
  ident: bib31
  article-title: Perfluorooctyl bromide & indocyanine green co-loaded nanoliposomes for enhanced multimodal imaging-guided phototherapy
  publication-title: Biomaterials
– volume: 10
  start-page: 550
  year: 2009
  end-page: 558
  ident: bib17
  article-title: Hyperthermia as an immunotherapy strategy for cancer
  publication-title: Curr. Opin. Invest. Drugs
– volume: 8
  year: 2021
  ident: bib68
  article-title: Tetraphenylethylene-conjugated polycation covered iron oxide nanoparticles for magnetic resonance/optical dual-mode imaging
  publication-title: Regen. Biomater.
– volume: 203
  start-page: 63
  year: 2019
  end-page: 72
  ident: bib9
  article-title: Melanin-like nanoparticles decorated with an autophagy-inducing peptide for efficient targeted photothermal therapy
  publication-title: Biomaterials
– volume: 103
  start-page: 317
  year: 2011
  end-page: 324
  ident: bib12
  article-title: Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme
  publication-title: J. Neuro Oncol.
– volume: 63
  start-page: 789
  year: 2011
  end-page: 808
  ident: bib1
  article-title: Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery
  publication-title: Adv. Drug Deliv. Rev.
– volume: 7
  start-page: 733
  year: 2019
  end-page: 749
  ident: bib27
  article-title: Surgery-free injectable macroscale biomaterials for local cancer immunotherapy
  publication-title: Biomater. Sci.
– volume: 54
  start-page: 7421
  year: 2021
  end-page: 7433
  ident: bib55
  article-title: Decisive influence of hydrophobic side chains of polyesters on thermoinduced gelation of triblock copolymer aqueous solutions
  publication-title: Macromolecules
– volume: 12
  start-page: 9017
  year: 2020
  end-page: 9031
  ident: bib56
  article-title: Cubic anisotropic Co- and Zn-substituted ferrite nanoparticles as multimodal magnetic agents
  publication-title: ACS Appl. Mater. Interfaces
– volume: 82
  start-page: 12
  year: 2007
  end-page: 24
  ident: bib70
  article-title: Murine mammary carcinoma 4T1 induces a leukemoid reaction with splenomegaly: association with tumor-derived growth factors
  publication-title: Exp. Mol. Pathol.
– volume: 280
  year: 2022
  ident: bib29
  article-title: Exosomes-loaded thermosensitive hydrogels for corneal epithelium and stroma regeneration
  publication-title: Biomaterials
– volume: 277
  start-page: 150
  year: 2017
  end-page: 157
  ident: bib43
  article-title: Ferroptosis: bug or feature?
  publication-title: Immunol. Rev.
– volume: 140
  start-page: 517
  year: 2010
  end-page: 528
  ident: bib39
  article-title: Inactivation of peroxiredoxin I by phosphorylation allows localized H2O2 accumulation for cell signaling
  publication-title: Cell
– volume: 10
  start-page: 9
  year: 2014
  end-page: 17
  ident: bib63
  article-title: The role of iron and reactive oxygen species in cell death
  publication-title: Nat. Chem. Biol.
– volume: 8
  year: 2021
  ident: bib76
  article-title: Integration of PEG-conjugated gadolinium complex and superparamagnetic iron oxide nanoparticles as T-1-T-2 dual-mode magnetic resonance imaging probes
  publication-title: Regen. Biomater.
– volume: 3
  start-page: 91
  year: 1985
  end-page: 105
  ident: bib71
  article-title: Effects of a murine mammary tumor on in vivo and in vitro hemopoiesis
  publication-title: Int. J. Cell Clon.
– volume: 17
  year: 2021
  ident: bib44
  article-title: Functionalized tumor-targeting nanosheets exhibiting Fe(II) overloading and GSH consumption for ferroptosis activation in liver tumor
  publication-title: Small
– volume: 34
  start-page: 1316
  year: 2018
  end-page: 1328
  ident: bib11
  article-title: Magnetic hyperthermia therapy for the treatment of glioblastoma: a review of the therapy's history, efficacy and application in humans
  publication-title: Int. J. Hyperther.
– volume: 11
  start-page: 34634
  year: 2019
  end-page: 34644
  ident: bib25
  article-title: Injectable and quadruple-functional hydrogel as an alternative to intravenous delivery for enhanced tumor targeting
  publication-title: ACS Appl. Mater. Interfaces
– volume: 268
  start-page: 33
  year: 2004
  end-page: 39
  ident: bib22
  article-title: Size dependence of specific power absorption of Fe3O4 particles in AC magnetic field
  publication-title: J. Magn. Magn Mater.
– volume: 13
  start-page: 81
  year: 2017
  end-page: 90
  ident: bib42
  article-title: Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis
  publication-title: Nat. Chem. Biol.
– volume: 285
  year: 2022
  ident: bib37
  article-title: Nano-enabled photosynthesis in tumours to activate lipid peroxidation for overcoming cancer resistances
  publication-title: Biomaterials
– volume: 11
  start-page: 3637
  year: 2020
  ident: bib32
  article-title: Magnetic field boosted ferroptosis-like cell death and responsive MRI using hybrid vesicles for cancer immunotherapy
  publication-title: Nat. Commun.
– volume: 285
  year: 2022
  ident: bib28
  article-title: Injectable immunomodulation-based porous chitosan microspheres/HPCH hydrogel composites as a controlled drug delivery system for osteochondral regeneration
  publication-title: Biomaterials
– volume: 3
  start-page: 35
  year: 2019
  end-page: 54
  ident: bib59
  article-title: The hallmarks of ferroptosis
  publication-title: Annu. Rev. Cell Biol.
– volume: 11
  start-page: 29655
  year: 2019
  end-page: 29666
  ident: bib50
  article-title: Boosting the ferroptotic antitumor efficacy via site-specific amplification of tailored lipid peroxidation
  publication-title: ACS Appl. Mater. Interfaces
– volume: 11
  start-page: 21353
  year: 2019
  end-page: 21359
  ident: bib5
  article-title: Near-infrared fluorescent endoscopic image-guided photothermal ablation therapy of colorectal cancer using dual-modal gold nanorods targeting tumor-infiltrating innate immune cells in a transgenic TS4 CRE/APC (loxDelta468) mouse model
  publication-title: ACS Appl. Mater. Interfaces
– volume: 81
  start-page: 114
  year: 2016
  end-page: 124
  ident: bib8
  article-title: Multi-responsive photothermal-chemotherapy with drug-loaded melanin-like nanoparticles for synergetic tumor ablation
  publication-title: Biomaterials
– volume: 12
  start-page: 705
  year: 1996
  end-page: 722
  ident: bib14
  article-title: Cellular uptake of magnetic fluid particles and their effects on human adenocarcinoma cells exposed to AC magnetic fields in vitro
  publication-title: Int. J. Hyperther.
– volume: 10
  start-page: 18398
  year: 2018
  end-page: 18406
  ident: bib58
  article-title: Iron-oxide-based twin nanoplates with strong T-2 relaxation shortening for contrast-enhanced magnetic resonance imaging
  publication-title: Nanoscale
– volume: 277
  year: 2021
  ident: bib46
  article-title: Tumor-self-targeted "thermoferroptosis-sensitization" magnetic nanodroplets for multimodal imaging-guided tumor-specific therapy
  publication-title: Biomaterials
– volume: 12
  start-page: 3716
  year: 2012
  end-page: 3721
  ident: bib19
  article-title: Nanoscale magnetism control via surface and exchange anisotropy for optimized ferrimagnetic hysteresis
  publication-title: Nano Lett.
– volume: 7
  start-page: 14
  year: 2022
  end-page: 25
  ident: bib26
  article-title: Injectable polymeric nanoparticle hydrogel system for long-term anti-inflammatory effect to treat osteoarthritis
  publication-title: Bioact. Mater.
– volume: 284
  year: 2022
  ident: bib34
  article-title: Disruption of dual homeostasis by a metal-organic framework nanoreactor for ferroptosis-based immunotherapy of tumor
  publication-title: Biomaterials
– volume: 7
  year: 2017
  ident: bib67
  article-title: Physiological remediation of cobalt ferrite nanoparticles by ferritin
  publication-title: Sci. Rep.
– volume: 12
  start-page: 3127
  year: 2012
  end-page: 3131
  ident: bib79
  article-title: Water-dispersible ferrimagnetic iron oxide nanocubes with extremely high r(2) relaxivity for highly sensitive in vivo MRI of tumors
  publication-title: Nano Lett.
– volume: 11
  start-page: 9
  year: 2015
  end-page: 15
  ident: bib40
  article-title: Targeting mitochondria metabolism for cancer therapy
  publication-title: Nat. Chem. Biol.
– volume: 13
  start-page: 14013
  year: 2019
  end-page: 14023
  ident: bib21
  article-title: Enhanced tumor synergistic therapy by injectable magnetic hydrogel mediated generation of hyperthermia and highly toxic reactive oxygen species
  publication-title: ACS Nano
– volume: 9
  start-page: 16175
  year: 2017
  end-page: 16182
  ident: bib16
  article-title: Injectable thermosensitive magnetic nanoemulsion hydrogel for multimodal-imaging-guided accurate thermoablative cancer therapy
  publication-title: Nanoscale
– volume: 156
  start-page: 317
  issue: 1–2
  year: 2014
  ident: 10.1016/j.biomaterials.2023.122139_bib47
  article-title: Regulation of ferroptotic cancer cell death by GPX4
  publication-title: Cell
  doi: 10.1016/j.cell.2013.12.010
– volume: 10
  start-page: 18398
  issue: 38
  year: 2018
  ident: 10.1016/j.biomaterials.2023.122139_bib58
  article-title: Iron-oxide-based twin nanoplates with strong T-2 relaxation shortening for contrast-enhanced magnetic resonance imaging
  publication-title: Nanoscale
  doi: 10.1039/C8NR04995E
– volume: 12
  start-page: 3127
  issue: 6
  year: 2012
  ident: 10.1016/j.biomaterials.2023.122139_bib79
  article-title: Water-dispersible ferrimagnetic iron oxide nanocubes with extremely high r(2) relaxivity for highly sensitive in vivo MRI of tumors
  publication-title: Nano Lett.
  doi: 10.1021/nl3010308
– volume: 285
  year: 2022
  ident: 10.1016/j.biomaterials.2023.122139_bib37
  article-title: Nano-enabled photosynthesis in tumours to activate lipid peroxidation for overcoming cancer resistances
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2022.121561
– volume: 8
  issue: 6
  year: 2021
  ident: 10.1016/j.biomaterials.2023.122139_bib76
  article-title: Integration of PEG-conjugated gadolinium complex and superparamagnetic iron oxide nanoparticles as T-1-T-2 dual-mode magnetic resonance imaging probes
  publication-title: Regen. Biomater.
  doi: 10.1093/rb/rbab064
– volume: 289
  year: 2022
  ident: 10.1016/j.biomaterials.2023.122139_bib2
  article-title: Evoking tumor associated macrophages by mitochondria-targeted magnetothermal immunogenic cell death for cancer immunotherapy
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2022.121799
– volume: 6
  start-page: 1619
  issue: 2
  year: 2012
  ident: 10.1016/j.biomaterials.2023.122139_bib24
  article-title: Relaxivity optimization of a PEGylated iron-oxide-based negative magnetic resonance contrast agent for T-2-weighted spin-echo imaging
  publication-title: ACS Nano
  doi: 10.1021/nn204591r
– volume: 12
  start-page: 3716
  issue: 7
  year: 2012
  ident: 10.1016/j.biomaterials.2023.122139_bib19
  article-title: Nanoscale magnetism control via surface and exchange anisotropy for optimized ferrimagnetic hysteresis
  publication-title: Nano Lett.
  doi: 10.1021/nl301499u
– volume: 223
  year: 2019
  ident: 10.1016/j.biomaterials.2023.122139_bib49
  article-title: Triggered ferroptotic polymer micelles for reversing multidrug resistance to chemotherapy
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2019.119486
– volume: 63
  start-page: 789
  issue: 9
  year: 2011
  ident: 10.1016/j.biomaterials.2023.122139_bib1
  article-title: Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2011.03.008
– volume: 7
  issue: 35
  year: 2021
  ident: 10.1016/j.biomaterials.2023.122139_bib64
  article-title: Genome-wide synthetic lethal screen unveils novel CAIX-NFS1/xCT axis as a targetable vulnerability in hypoxic solid tumors
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abj0364
– volume: 11
  start-page: 34634
  issue: 38
  year: 2019
  ident: 10.1016/j.biomaterials.2023.122139_bib25
  article-title: Injectable and quadruple-functional hydrogel as an alternative to intravenous delivery for enhanced tumor targeting
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b10182
– volume: 8
  issue: 3
  year: 2021
  ident: 10.1016/j.biomaterials.2023.122139_bib68
  article-title: Tetraphenylethylene-conjugated polycation covered iron oxide nanoparticles for magnetic resonance/optical dual-mode imaging
  publication-title: Regen. Biomater.
  doi: 10.1093/rb/rbab023
– volume: 58
  start-page: 946
  issue: 4
  year: 2019
  ident: 10.1016/j.biomaterials.2023.122139_bib62
  article-title: Chemodynamic therapy: tumour microenvironment‐mediated Fenton and Fenton‐like reactions
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201805664
– volume: 140
  start-page: 517
  issue: 4
  year: 2010
  ident: 10.1016/j.biomaterials.2023.122139_bib39
  article-title: Inactivation of peroxiredoxin I by phosphorylation allows localized H2O2 accumulation for cell signaling
  publication-title: Cell
  doi: 10.1016/j.cell.2010.01.009
– volume: 103
  start-page: 317
  issue: 2
  year: 2011
  ident: 10.1016/j.biomaterials.2023.122139_bib12
  article-title: Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme
  publication-title: J. Neuro Oncol.
  doi: 10.1007/s11060-010-0389-0
– volume: 11
  start-page: 9
  issue: 1
  year: 2015
  ident: 10.1016/j.biomaterials.2023.122139_bib40
  article-title: Targeting mitochondria metabolism for cancer therapy
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.1712
– volume: 284
  year: 2022
  ident: 10.1016/j.biomaterials.2023.122139_bib34
  article-title: Disruption of dual homeostasis by a metal-organic framework nanoreactor for ferroptosis-based immunotherapy of tumor
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2022.121502
– volume: 287
  year: 2022
  ident: 10.1016/j.biomaterials.2023.122139_bib35
  article-title: Engineering dual catalytic nanomedicine for autophagy-augmented and ferroptosis-involved cancer nanotherapy
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2022.121668
– volume: 17
  issue: 40
  year: 2021
  ident: 10.1016/j.biomaterials.2023.122139_bib44
  article-title: Functionalized tumor-targeting nanosheets exhibiting Fe(II) overloading and GSH consumption for ferroptosis activation in liver tumor
  publication-title: Small
  doi: 10.1002/smll.202102046
– volume: 14
  start-page: 9662
  issue: 8
  year: 2020
  ident: 10.1016/j.biomaterials.2023.122139_bib30
  article-title: Hollow magnetic nanocatalysts drive starvation–chemodynamic–hyperthermia synergistic therapy for tumor
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c00910
– volume: 12
  start-page: 9017
  issue: 8
  year: 2020
  ident: 10.1016/j.biomaterials.2023.122139_bib56
  article-title: Cubic anisotropic Co- and Zn-substituted ferrite nanoparticles as multimodal magnetic agents
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b20496
– volume: 290
  year: 2022
  ident: 10.1016/j.biomaterials.2023.122139_bib45
  article-title: Oxygen-boosted biomimetic nanoplatform for synergetic phototherapy/ferroptosis activation and reversal of immune-suppressed tumor microenvironment
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2022.121832
– volume: 7
  start-page: 733
  issue: 3
  year: 2019
  ident: 10.1016/j.biomaterials.2023.122139_bib27
  article-title: Surgery-free injectable macroscale biomaterials for local cancer immunotherapy
  publication-title: Biomater. Sci.
  doi: 10.1039/C8BM01470A
– volume: 8
  start-page: 680
  year: 2020
  ident: 10.1016/j.biomaterials.2023.122139_bib41
  article-title: Progress of iron-based nanozymes for antitumor therapy
  publication-title: Front. Chem.
  doi: 10.3389/fchem.2020.00680
– volume: 10
  start-page: 3793
  issue: 8
  year: 2020
  ident: 10.1016/j.biomaterials.2023.122139_bib78
  article-title: Comprehensive understanding of magnetic hyperthermia for improving antitumor therapeutic efficacy
  publication-title: Theranostics
  doi: 10.7150/thno.40805
– volume: 6
  issue: 18
  year: 2020
  ident: 10.1016/j.biomaterials.2023.122139_bib36
  article-title: Tumor microenvironment-activatable Fe-doxorubicin preloaded amorphous CaCO3 nanoformulation triggers ferroptosis in target tumor cells
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aax1346
– volume: 38
  start-page: 1119
  issue: 10
  year: 2004
  ident: 10.1016/j.biomaterials.2023.122139_bib60
  article-title: Overexpression of manganese superoxide dismutase promotes the survival of prostate cancer cells exposed to hyperthermia
  publication-title: Free Radic. Res.
  doi: 10.1080/10715760400010470
– volume: 396
  year: 2020
  ident: 10.1016/j.biomaterials.2023.122139_bib52
  article-title: Sustained release of lipophilic gemcitabine from an injectable polymeric hydrogel for synergistically enhancing tumor chemoradiotherapy
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.125320
– volume: 11
  start-page: 21353
  issue: 24
  year: 2019
  ident: 10.1016/j.biomaterials.2023.122139_bib5
  article-title: Near-infrared fluorescent endoscopic image-guided photothermal ablation therapy of colorectal cancer using dual-modal gold nanorods targeting tumor-infiltrating innate immune cells in a transgenic TS4 CRE/APC (loxDelta468) mouse model
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b04186
– volume: 280
  year: 2022
  ident: 10.1016/j.biomaterials.2023.122139_bib29
  article-title: Exosomes-loaded thermosensitive hydrogels for corneal epithelium and stroma regeneration
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2021.121320
– volume: 12
  start-page: 12181
  issue: 12
  year: 2018
  ident: 10.1016/j.biomaterials.2023.122139_bib61
  article-title: Ferrous-supply-regeneration nanoengineering for cancer-cell-specific ferroptosis in combination with imaging-guided photodynamic therapy
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b05860
– volume: 13
  start-page: 14013
  issue: 12
  year: 2019
  ident: 10.1016/j.biomaterials.2023.122139_bib21
  article-title: Enhanced tumor synergistic therapy by injectable magnetic hydrogel mediated generation of hyperthermia and highly toxic reactive oxygen species
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b06134
– volume: 60
  start-page: 12971
  issue: 23
  year: 2021
  ident: 10.1016/j.biomaterials.2023.122139_bib38
  article-title: Single-atom Pd nanozyme for ferroptosis-boosted mild-temperature photothermal therapy
  publication-title: Angew. Chem., Int. Ed. Engl.
  doi: 10.1002/anie.202101924
– volume: 14
  start-page: 199
  issue: 3
  year: 2014
  ident: 10.1016/j.biomaterials.2023.122139_bib3
  article-title: Thermal ablation of tumours: biological mechanisms and advances in therapy
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc3672
– volume: 7
  start-page: 14
  year: 2022
  ident: 10.1016/j.biomaterials.2023.122139_bib26
  article-title: Injectable polymeric nanoparticle hydrogel system for long-term anti-inflammatory effect to treat osteoarthritis
  publication-title: Bioact. Mater.
  doi: 10.1016/j.bioactmat.2021.05.028
– volume: 11
  start-page: 29655
  issue: 33
  year: 2019
  ident: 10.1016/j.biomaterials.2023.122139_bib50
  article-title: Boosting the ferroptotic antitumor efficacy via site-specific amplification of tailored lipid peroxidation
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b10954
– volume: 268
  start-page: 33
  issue: 1–2
  year: 2004
  ident: 10.1016/j.biomaterials.2023.122139_bib22
  article-title: Size dependence of specific power absorption of Fe3O4 particles in AC magnetic field
  publication-title: J. Magn. Magn Mater.
  doi: 10.1016/S0304-8853(03)00426-8
– volume: 128
  start-page: 42
  year: 2021
  ident: 10.1016/j.biomaterials.2023.122139_bib54
  article-title: PEG-based thermosensitive and biodegradable hydrogels
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2021.04.009
– volume: 165
  start-page: 1
  year: 2018
  ident: 10.1016/j.biomaterials.2023.122139_bib31
  article-title: Perfluorooctyl bromide & indocyanine green co-loaded nanoliposomes for enhanced multimodal imaging-guided phototherapy
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2018.02.041
– volume: 106
  start-page: 13
  year: 2016
  ident: 10.1016/j.biomaterials.2023.122139_bib6
  article-title: Thermosensitive/superparamagnetic iron oxide nanoparticle-loaded nanocapsule hydrogels for multiple cancer hyperthermia
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2016.08.015
– volume: 11
  start-page: 3637
  issue: 1
  year: 2020
  ident: 10.1016/j.biomaterials.2023.122139_bib32
  article-title: Magnetic field boosted ferroptosis-like cell death and responsive MRI using hybrid vesicles for cancer immunotherapy
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17380-5
– volume: 13
  start-page: 81
  issue: 1
  year: 2017
  ident: 10.1016/j.biomaterials.2023.122139_bib42
  article-title: Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.2238
– volume: 285
  year: 2022
  ident: 10.1016/j.biomaterials.2023.122139_bib28
  article-title: Injectable immunomodulation-based porous chitosan microspheres/HPCH hydrogel composites as a controlled drug delivery system for osteochondral regeneration
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2022.121530
– volume: 4
  issue: 9
  year: 2020
  ident: 10.1016/j.biomaterials.2023.122139_bib57
  article-title: Visualizing the in vivo evolution of an injectable and thermosensitive hydrogel using tri-modal bioimaging
  publication-title: Small Methods
  doi: 10.1002/smtd.202000310
– volume: 18
  start-page: 280
  issue: 5
  year: 2021
  ident: 10.1016/j.biomaterials.2023.122139_bib48
  article-title: Broadening horizons: the role of ferroptosis in cancer
  publication-title: Nat. Rev. Clin. Oncol.
  doi: 10.1038/s41571-020-00462-0
– volume: 54
  start-page: 7421
  issue: 16
  year: 2021
  ident: 10.1016/j.biomaterials.2023.122139_bib55
  article-title: Decisive influence of hydrophobic side chains of polyesters on thermoinduced gelation of triblock copolymer aqueous solutions
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.1c00959
– volume: 3
  start-page: 91
  issue: 2
  year: 1985
  ident: 10.1016/j.biomaterials.2023.122139_bib71
  article-title: Effects of a murine mammary tumor on in vivo and in vitro hemopoiesis
  publication-title: Int. J. Cell Clon.
  doi: 10.1002/stem.5530030203
– volume: 31
  issue: 8
  year: 2019
  ident: 10.1016/j.biomaterials.2023.122139_bib75
  article-title: Structure-relaxivity relationships of magnetic nanoparticles for magnetic resonance imaging
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201804567
– volume: 1
  issue: 10
  year: 2021
  ident: 10.1016/j.biomaterials.2023.122139_bib33
  article-title: Multifunctional nanocarriers‐mediated synergistic combination of immune checkpoint inhibitor cancer immunotherapy and interventional oncology therapy
  publication-title: Adv. Nanobimed. Res.
– volume: 277
  year: 2021
  ident: 10.1016/j.biomaterials.2023.122139_bib46
  article-title: Tumor-self-targeted "thermoferroptosis-sensitization" magnetic nanodroplets for multimodal imaging-guided tumor-specific therapy
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2021.121100
– volume: 3
  start-page: 35
  year: 2019
  ident: 10.1016/j.biomaterials.2023.122139_bib59
  article-title: The hallmarks of ferroptosis
  publication-title: Annu. Rev. Cell Biol.
  doi: 10.1146/annurev-cancerbio-030518-055844
– volume: 32
  start-page: 202206554
  year: 2022
  ident: 10.1016/j.biomaterials.2023.122139_bib53
  article-title: Sustained release of nitric oxide and cascade generation of reactive nitrogen/oxygen species via an injectable hydrogel for tumor synergistic therapy
  publication-title: Adv. Funct. Mater.
– volume: 171
  start-page: 628
  issue: 3
  year: 2017
  ident: 10.1016/j.biomaterials.2023.122139_bib80
  article-title: PEBP1 wardens ferroptosis by enabling lipoxygenase generation of lipid death signals
  publication-title: Cell
  doi: 10.1016/j.cell.2017.09.044
– volume: 7
  issue: 37
  year: 2021
  ident: 10.1016/j.biomaterials.2023.122139_bib72
  article-title: Switchable immune modulator for tumor-specific activation of anticancer immunity
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abg7291
– volume: 141
  start-page: 116
  year: 2017
  ident: 10.1016/j.biomaterials.2023.122139_bib7
  article-title: Autophagy inhibition enabled efficient photothermal therapy at a mild temperature
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2017.06.030
– volume: 11
  start-page: 5421
  issue: 1
  year: 2020
  ident: 10.1016/j.biomaterials.2023.122139_bib23
  article-title: Genetically engineered magnetic nanocages for cancer magneto-catalytic theranostics
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-19061-9
– volume: 368
  start-page: 517
  year: 2002
  ident: 10.1016/j.biomaterials.2023.122139_bib65
  article-title: Enhancement of iron toxicity in L929 cells by D-glucose: accelerated (re-)reduction
  publication-title: Biochem. J.
  doi: 10.1042/bj20020639
– volume: 9
  start-page: 16175
  issue: 42
  year: 2017
  ident: 10.1016/j.biomaterials.2023.122139_bib16
  article-title: Injectable thermosensitive magnetic nanoemulsion hydrogel for multimodal-imaging-guided accurate thermoablative cancer therapy
  publication-title: Nanoscale
  doi: 10.1039/C7NR02858J
– volume: 7
  year: 2017
  ident: 10.1016/j.biomaterials.2023.122139_bib67
  article-title: Physiological remediation of cobalt ferrite nanoparticles by ferritin
  publication-title: Sci. Rep.
  doi: 10.1038/srep40075
– volume: 290
  year: 2022
  ident: 10.1016/j.biomaterials.2023.122139_bib10
  article-title: Multifunctional light-activatable nanocomplex conducting temperate-heat photothermal therapy to avert excessive inflammation and trigger augmented immunotherapy
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2022.121815
– start-page: 97
  year: 2016
  ident: 10.1016/j.biomaterials.2023.122139_bib69
  article-title: Evaluation of zinc-doped magnetite nanoparticle toxicity in the liver and kidney of mice after sub-chronic intragastric administration
  publication-title: Toxicol. Res.
– volume: 82
  start-page: 12
  issue: 1
  year: 2007
  ident: 10.1016/j.biomaterials.2023.122139_bib70
  article-title: Murine mammary carcinoma 4T1 induces a leukemoid reaction with splenomegaly: association with tumor-derived growth factors
  publication-title: Exp. Mol. Pathol.
  doi: 10.1016/j.yexmp.2006.06.007
– volume: 81
  start-page: 114
  year: 2016
  ident: 10.1016/j.biomaterials.2023.122139_bib8
  article-title: Multi-responsive photothermal-chemotherapy with drug-loaded melanin-like nanoparticles for synergetic tumor ablation
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2015.11.037
– volume: 26
  start-page: 1708
  issue: 11
  year: 2016
  ident: 10.1016/j.biomaterials.2023.122139_bib15
  article-title: Smart ferrofluid with quick gel transformation in tumors for MRI-guided local magnetic thermochemotherapy
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201504215
– volume: 10
  start-page: 550
  issue: 6
  year: 2009
  ident: 10.1016/j.biomaterials.2023.122139_bib17
  article-title: Hyperthermia as an immunotherapy strategy for cancer
  publication-title: Curr. Opin. Invest. Drugs
– volume: 34
  start-page: 1316
  issue: 8
  year: 2018
  ident: 10.1016/j.biomaterials.2023.122139_bib11
  article-title: Magnetic hyperthermia therapy for the treatment of glioblastoma: a review of the therapy's history, efficacy and application in humans
  publication-title: Int. J. Hyperther.
  doi: 10.1080/02656736.2018.1430867
– volume: 8
  start-page: 7166
  issue: 32
  year: 2020
  ident: 10.1016/j.biomaterials.2023.122139_bib77
  article-title: Supramolecular magnetonanohybrids for multimodal targeted therapy of triple-negative breast cancer cells
  publication-title: J. Mater. Chem. B
  doi: 10.1039/D0TB01175D
– volume: 132
  start-page: 16
  year: 2017
  ident: 10.1016/j.biomaterials.2023.122139_bib20
  article-title: Multiple hyperthermia-mediated release of TRAIL/SPION nanocomplex from thermosensitive polymeric hydrogels for combination cancer therapy
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2017.03.049
– volume: 6
  start-page: 4001
  issue: 5
  year: 2012
  ident: 10.1016/j.biomaterials.2023.122139_bib66
  article-title: Dual enzyme-like activities of iron oxide nanoparticles and their implication for diminishing cytotoxicity
  publication-title: ACS Nano
  doi: 10.1021/nn300291r
– volume: 8
  issue: 6
  year: 2021
  ident: 10.1016/j.biomaterials.2023.122139_bib74
  article-title: Advances in magnetic resonance imaging contrast agents for glioblastoma-targeting theranostics
  publication-title: Regen. Biomater.
  doi: 10.1093/rb/rbab062
– volume: 10
  start-page: 9
  issue: 1
  year: 2014
  ident: 10.1016/j.biomaterials.2023.122139_bib63
  article-title: The role of iron and reactive oxygen species in cell death
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.1416
– volume: 9
  start-page: 4192
  issue: 14
  year: 2019
  ident: 10.1016/j.biomaterials.2023.122139_bib4
  article-title: PMMA-Fe3O4 for internal mechanical support and magnetic thermal ablation of bone tumors
  publication-title: Theranostics
  doi: 10.7150/thno.34157
– volume: 23
  start-page: 315
  issue: 3
  year: 2007
  ident: 10.1016/j.biomaterials.2023.122139_bib13
  article-title: Morbidity and quality of life during thermotherapy using magnetic nanoparticles in locally recurrent prostate cancer: results of a prospective phase I trial
  publication-title: Int. J. Hyperther.
  doi: 10.1080/02656730601175479
– volume: 203
  start-page: 63
  year: 2019
  ident: 10.1016/j.biomaterials.2023.122139_bib9
  article-title: Melanin-like nanoparticles decorated with an autophagy-inducing peptide for efficient targeted photothermal therapy
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2019.02.023
– volume: 5
  start-page: 477
  issue: 5
  year: 2015
  ident: 10.1016/j.biomaterials.2023.122139_bib73
  article-title: MRI visible drug eluting magnetic microspheres for transcatheter intra-arterial delivery to liver tumors
  publication-title: Theranostics
  doi: 10.7150/thno.10823
– volume: 12
  start-page: 705
  issue: 6
  year: 1996
  ident: 10.1016/j.biomaterials.2023.122139_bib14
  article-title: Cellular uptake of magnetic fluid particles and their effects on human adenocarcinoma cells exposed to AC magnetic fields in vitro
  publication-title: Int. J. Hyperther.
  doi: 10.3109/02656739609027678
– volume: 6
  start-page: 11553
  issue: 20
  year: 2014
  ident: 10.1016/j.biomaterials.2023.122139_bib18
  article-title: Magnetic nanoparticle-based therapeutic agents for thermo-chemotherapy treatment of cancer
  publication-title: Nanoscale
  doi: 10.1039/C4NR03482A
– volume: 9
  start-page: 23428
  issue: 28
  year: 2017
  ident: 10.1016/j.biomaterials.2023.122139_bib51
  article-title: Calcitonin-loaded thermosensitive hydrogel for long-term antiosteopenia therapy
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b05740
– volume: 277
  start-page: 150
  issue: 1
  year: 2017
  ident: 10.1016/j.biomaterials.2023.122139_bib43
  article-title: Ferroptosis: bug or feature?
  publication-title: Immunol. Rev.
  doi: 10.1111/imr.12533
SSID ssj0014042
Score 2.610317
Snippet Magnetic hyperthermia therapy (MHT) is a promising new modality to deal with solid tumors, yet the low magnetic-heat conversion efficacy, magnetic resonance...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 122139
SubjectTerms Animals
Cell Line, Tumor
Ferroptosis
Hydrogels
Hyperthermia, Induced - methods
Hysteresis loss
Magnetic hyperthermia therapy (MHT)
Mice
Multiple hyperthermia
Nanoparticles
Neoplasms - therapy
Theranostics
Thermosensitive hydrogel
Title An injectable and active hydrogel induces mutually enhanced mild magnetic hyperthermia and ferroptosis
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0142961223001473
https://dx.doi.org/10.1016/j.biomaterials.2023.122139
https://www.ncbi.nlm.nih.gov/pubmed/37148756
https://www.proquest.com/docview/2810920922
Volume 298
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED9KB2V7GFv3lX0UDfbqxJHl2GLsIZSVtKN9WqFv5izJrUciB8d56Mv-9t35I3SwQaBgjD90sq2T7s7S3e8AviRWORJzJpgWqQkYsCvAPDRBrmNJNIiF5amBy6vZ4lpd3MQ3B3A6xMKwW2Uv-zuZ3krr_sqkb83Juiwn7JYkNSloMqLpMGHET6US7uXj3zs3D0aPkZ0bowy49AA82vp4cYg7Nh2rx5xIfEzVTTlx-L-V1P-M0FYZnb2A570VKebdi76EA-eP4dkDbMFjOLrsV81fQTH3ovQ84cJxUgK9FdiKOXF3b-vq1i3ptiUeb8Rqy_Eky3vh_F3rGyBW5ZJ2eOs52pEI1q5mm3FVYltR4eq6WjfVpty8huuz7z9PF0GfXyEwZPc0gZEmii213zQNiyhNY5MgprLgbMSxRIw1qXOGi-flaZIF6NwstSEajUlk8iR6A4e-8u4dCEvFpdSpUaiVynNti7hQzia8qqdUOAI9NGhmevBxzoGxzAYvs1_ZQ2ZkzIysY8YIoh3tuoPg2Ivq68C3bAgyJbGYkabYi_rbjvqv7rg3_eehq2Q0XnkRBr2rtlQonYZa0iZH8LbrQ7uvYvRE-n-cvX_k0z_AUz7rvIo_wmFTb90nsp2a_KQdHCfwZH7-Y3H1B8FYG3E
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1da9sw8Og62MfD2LqvbN2mwfboxJHl2KL0oXQr6dr0qYW-ebIktx6JHByHkZf9qf3B3vkjdLBBYBSMMZZOlnWnu5N0HwCfIiMssjntDbNYexSwy1Opr71UhhxhlMoMbQ1MzkbjC_HtMrzcgt-dLwyZVba8v-HpNbdu3wza0RzM83xAZklcooBGJRofoy6D9Yld_cR122L_-Asi-TPnR1_PD8dem1rA0yjyK09zHYQGQYexnwVxHOpIqZhnlIg35EqFEiUZRUqnk1mcBsraUWx8paWKAp1GAbZ7D-4LZBeUNqH_a21XQuFqeGM3yT3qXhfptDYqI596VTW01afM5X3s_5Aylf9dKv5L662l39FTeNKqreygGZlnsGXdDjy-FcxwBx5M2mP655AdOJY72uEhxyymnGGq5qvsemXK4spOsdggUS3YbEkOLNMVs-66NkZgs3yKN3XlyL0SAea2JCV1lqu6ocyWZTGvikW-eAEXdzLqL2HbFc6-BmawOucy1kJJIdJUmizMhDURHSMK4fdAdgOa6DbaOSXdmCadWduP5DYyEkJG0iCjB8Eadt7E_NgIaq_DW9J5tSIfTlA0bQS9v4b-g_43hv_YkUqCDIJOfZSzxRIrxUNfcrx4D141NLT-KwrXiAvW0Zv__PoHeDg-n5wmp8dnJ2_hEZU0Js27sF2VS_sOFbcqfV9PFAbf73pm3gD80lTb
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+injectable+and+active+hydrogel+induces+mutually+enhanced+mild+magnetic+hyperthermia+and+ferroptosis&rft.jtitle=Biomaterials&rft.au=Chen%2C+Xiaobin&rft.au=Wang%2C+Hancheng&rft.au=Shi%2C+Jiayue&rft.au=Chen%2C+Zhiyong&rft.date=2023-07-01&rft.issn=0142-9612&rft.volume=298&rft.spage=122139&rft_id=info:doi/10.1016%2Fj.biomaterials.2023.122139&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_biomaterials_2023_122139
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-9612&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-9612&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-9612&client=summon