Characterization of super liquid-repellent surfaces
Characterization of the wetting properties is a prerequisite for a fundamental understanding and the targeted development of superhydrophobic and superamphiphobic layers. To fabricate super liquid-repellent layers, two requirements need to be met: The surfaces have to be of low energy and their nano...
Saved in:
Published in | Current opinion in colloid & interface science Vol. 19; no. 4; pp. 343 - 354 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.08.2014
|
Subjects | |
Online Access | Get full text |
ISSN | 1359-0294 1879-0399 |
DOI | 10.1016/j.cocis.2014.04.009 |
Cover
Loading…
Abstract | Characterization of the wetting properties is a prerequisite for a fundamental understanding and the targeted development of superhydrophobic and superamphiphobic layers. To fabricate super liquid-repellent layers, two requirements need to be met: The surfaces have to be of low energy and their nano- and microstructure needs to be designed in a way that leads to the entrapment of air. The challenge is to design and produce suitable nano- and microstructures to control wetting. Here we describe important methods to quantify wetting properties of super liquid-repellent layers. These properties include the apparent advancing and receding contact angles, the roll-off angle, tensile and lateral adhesion, the impalement pressure, and the observation of drop impact. The most important one is the apparent receding contact angle because it also limits lateral adhesion. The link of these properties to the nano- and microscopic structure of the layer is discussed. Limits, problems, and future challenges are pointed out.
[Display omitted]
•High apparent receding contact angle and high impalement pressure best characterize a super liquid-repellent surface.•The receding and advancing edges of drops progress in fundamentally different ways.•Tensile adhesion measurements are a sensitive way of characterizing super liquid-repellency.•The impalement pressure is determined mainly by the substrate morphology. |
---|---|
AbstractList | Characterization of the wetting properties is a prerequisite for a fundamental understanding and the targeted development of superhydrophobic and superamphiphobic layers. To fabricate super liquid-repellent layers, two requirements need to be met: The surfaces have to be of low energy and their nano- and microstructure needs to be designed in a way that leads to the entrapment of air. The challenge is to design and produce suitable nano- and microstructures to control wetting. Here we describe important methods to quantify wetting properties of super liquid-repellent layers. These properties include the apparent advancing and receding contact angles, the roll-off angle, tensile and lateral adhesion, the impalement pressure, and the observation of drop impact. The most important one is the apparent receding contact angle because it also limits lateral adhesion. The link of these properties to the nano- and microscopic structure of the layer is discussed. Limits, problems, and future challenges are pointed out Characterization of the wetting properties is a prerequisite for a fundamental understanding and the targeted development of superhydrophobic and superamphiphobic layers. To fabricate super liquid-repellent layers, two requirements need to be met: The surfaces have to be of low energy and their nano- and microstructure needs to be designed in a way that leads to the entrapment of air. The challenge is to design and produce suitable nano- and microstructures to control wetting. Here we describe important methods to quantify wetting properties of super liquid-repellent layers. These properties include the apparent advancing and receding contact angles, the roll-off angle, tensile and lateral adhesion, the impalement pressure, and the observation of drop impact. The most important one is the apparent receding contact angle because it also limits lateral adhesion. The link of these properties to the nano- and microscopic structure of the layer is discussed. Limits, problems, and future challenges are pointed out. [Display omitted] •High apparent receding contact angle and high impalement pressure best characterize a super liquid-repellent surface.•The receding and advancing edges of drops progress in fundamentally different ways.•Tensile adhesion measurements are a sensitive way of characterizing super liquid-repellency.•The impalement pressure is determined mainly by the substrate morphology. Characterization of the wetting properties is a prerequisite for a fundamental understanding and the targeted development of superhydrophobic and superamphiphobic layers. To fabricate super liquid-repellent layers, two requirements need to be met: The surfaces have to be of low energy and their nano- and microstructure needs to be designed in a way that leads to the entrapment of air. The challenge is to design and produce suitable nano- and microstructures to control wetting. Here we describe important methods to quantify wetting properties of super liquid-repellent layers. These properties include the apparent advancing and receding contact angles, the roll-off angle, tensile and lateral adhesion, the impalement pressure, and the observation of drop impact. The most important one is the apparent receding contact angle because it also limits lateral adhesion. The link of these properties to the nano- and microscopic structure of the layer is discussed. Limits, problems, and future challenges are pointed out. |
Author | Semprebon, Ciro Butt, Hans-Jürgen Brinkmann, Martin Vollmer, Doris Roisman, Ilia V. Papadopoulos, Periklis |
Author_xml | – sequence: 1 givenname: Hans-Jürgen orcidid: 0000-0001-5391-2618 surname: Butt fullname: Butt, Hans-Jürgen organization: Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany – sequence: 2 givenname: Ilia V. surname: Roisman fullname: Roisman, Ilia V. organization: Center of Smart Interfaces, Technical University Darmstadt, Alarich-Weiss-Straße 10, 64287 Darmstadt, Germany – sequence: 3 givenname: Martin surname: Brinkmann fullname: Brinkmann, Martin organization: Max Planck Institute for Dynamics and Self-Organization, Am Faßberg 17, 37077 Göttingen, Germany – sequence: 4 givenname: Periklis surname: Papadopoulos fullname: Papadopoulos, Periklis organization: Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany – sequence: 5 givenname: Doris surname: Vollmer fullname: Vollmer, Doris organization: Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany – sequence: 6 givenname: Ciro surname: Semprebon fullname: Semprebon, Ciro organization: Max Planck Institute for Dynamics and Self-Organization, Am Faßberg 17, 37077 Göttingen, Germany |
BookMark | eNqFkE9Lw0AQxRepYFv9BF569JI4m81usgcPUvwHBS96XjaTCW5Jk3Y3EfTTu209ebAwMMPwfsO8N2OTru-IsWsOKQeubtcp9uhCmgHPU4gF-oxNeVnoBITWkzgLGedM5xdsFsIaAHiWySkTyw_rLQ7k3bcdXN8t-mYRxi35Ret2o6sTT1tqW-qGuPaNRQqX7LyxbaCr3z5n748Pb8vnZPX69LK8XyUoQQ5JVTcFgUbKaqWqUlJR1xlWFRdcKJRNJqDRhSpUhQ1wrssKqK5KBIsFL6UVc3ZzvLv1_W6kMJiNCxifsR31YzAZl0JFHzI_KeVK6TIXhRZRqo9S9H0InhqDbjhYH7x1reFg9pmatTlkavaZGogFOrLiD7v1bmP91wnq7khRDOvTkTcBHXVItfOEg6l79y__A417k74 |
CitedBy_id | crossref_primary_10_3390_ma15144747 crossref_primary_10_1021_acs_langmuir_0c02643 crossref_primary_10_3390_polym14010122 crossref_primary_10_1002_anie_202115238 crossref_primary_10_1016_j_colsurfa_2016_08_030 crossref_primary_10_31083_j_fbl2705144 crossref_primary_10_1016_j_colsurfa_2016_04_017 crossref_primary_10_3390_coatings9090541 crossref_primary_10_1021_acs_jpclett_1c00760 crossref_primary_10_1016_j_colsurfa_2016_06_024 crossref_primary_10_1126_science_aaf2073 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124370 crossref_primary_10_1038_s41557_023_01346_3 crossref_primary_10_1002_adma_201405855 crossref_primary_10_1103_PhysRevLett_126_234503 crossref_primary_10_1021_acs_chemmater_6b03537 crossref_primary_10_1021_acs_langmuir_5b01174 crossref_primary_10_1016_j_jcis_2023_05_161 crossref_primary_10_1038_s41598_017_15287_8 crossref_primary_10_1039_D0CS00751J crossref_primary_10_1134_S1061933X22040081 crossref_primary_10_1038_s41598_020_64345_1 crossref_primary_10_3390_ijms22073341 crossref_primary_10_1016_j_jcis_2018_10_046 crossref_primary_10_1016_j_porgcoat_2023_107875 crossref_primary_10_1021_acsami_6b01926 crossref_primary_10_1021_acs_langmuir_3c03967 crossref_primary_10_1063_5_0207533 crossref_primary_10_1016_j_porgcoat_2019_03_042 crossref_primary_10_1039_C8NR06119J crossref_primary_10_1002_admi_202001205 crossref_primary_10_1021_acs_langmuir_9b03953 crossref_primary_10_1016_j_cis_2017_09_003 crossref_primary_10_1016_j_jiec_2020_12_017 crossref_primary_10_1002_adma_202402893 crossref_primary_10_1016_j_jcis_2018_08_059 crossref_primary_10_1039_C9SM01221D crossref_primary_10_4028_www_scientific_net_AMM_815_116 crossref_primary_10_1038_s41467_017_01510_7 crossref_primary_10_1016_j_cocis_2019_11_012 crossref_primary_10_1021_acs_langmuir_1c03134 crossref_primary_10_1063_5_0064040 crossref_primary_10_3762_bjnano_8_84 crossref_primary_10_1016_j_colsurfa_2020_125524 crossref_primary_10_1016_j_memsci_2017_03_033 crossref_primary_10_1021_acs_langmuir_2c02095 crossref_primary_10_1021_acs_langmuir_5b01157 crossref_primary_10_1016_j_surfcoat_2019_05_077 crossref_primary_10_1021_acsami_0c00636 crossref_primary_10_1038_s44172_025_00386_6 crossref_primary_10_1002_pssa_201700895 crossref_primary_10_1021_acssuschemeng_3c07635 crossref_primary_10_1016_j_precisioneng_2018_01_004 crossref_primary_10_1016_j_cej_2019_05_077 crossref_primary_10_1088_1361_665X_ad1c3a crossref_primary_10_1002_adma_202105130 crossref_primary_10_1021_acs_langmuir_9b00152 crossref_primary_10_1039_C8SM01333K crossref_primary_10_1088_1748_3190_11_2_025002 crossref_primary_10_3390_ma9050373 crossref_primary_10_1021_acs_langmuir_8b03276 crossref_primary_10_1016_j_apsusc_2016_04_101 crossref_primary_10_1021_ie503798k crossref_primary_10_1002_admi_201701052 crossref_primary_10_1002_admi_201900839 crossref_primary_10_1016_j_cej_2022_136985 crossref_primary_10_1021_acs_langmuir_3c01841 crossref_primary_10_1080_01932691_2015_1101610 crossref_primary_10_1021_acs_langmuir_5b00193 crossref_primary_10_1021_acs_langmuir_4c00618 crossref_primary_10_1088_1361_6439_ad208a crossref_primary_10_1016_j_cej_2025_159306 crossref_primary_10_1063_5_0070828 crossref_primary_10_1016_j_jcis_2022_10_091 crossref_primary_10_3390_biomimetics7040196 crossref_primary_10_1038_s41586_020_2331_8 crossref_primary_10_1002_pi_6098 crossref_primary_10_1002_pssa_202200417 crossref_primary_10_1016_j_ceramint_2021_01_009 crossref_primary_10_2174_1872212115666210929115445 crossref_primary_10_1016_j_apsusc_2020_148611 crossref_primary_10_1134_S2075113320020203 crossref_primary_10_1021_acs_chemmater_6b02765 crossref_primary_10_1073_pnas_1614667114 crossref_primary_10_1016_j_clay_2024_107626 crossref_primary_10_1002_dro2_9 crossref_primary_10_1039_D3SM01178J crossref_primary_10_1115_1_4032596 crossref_primary_10_3390_polym12010023 crossref_primary_10_1016_j_eurpolymj_2020_110087 crossref_primary_10_1038_s42005_024_01582_0 crossref_primary_10_1007_s00348_018_2514_3 crossref_primary_10_1016_j_jcis_2022_09_140 crossref_primary_10_3390_polym12071528 crossref_primary_10_1016_j_colsurfa_2019_124175 crossref_primary_10_1002_adma_201602714 crossref_primary_10_1039_D4SM00601A crossref_primary_10_1016_j_colsurfa_2016_08_061 crossref_primary_10_1016_j_colsurfa_2023_132993 crossref_primary_10_1039_C5NR07678A crossref_primary_10_1038_s41467_018_05895_x crossref_primary_10_1002_ange_202115238 crossref_primary_10_1002_admi_201700381 crossref_primary_10_1080_09506608_2023_2193784 crossref_primary_10_1021_acs_nanolett_8b00164 crossref_primary_10_1103_PhysRevFluids_10_013602 crossref_primary_10_1002_admi_201800167 crossref_primary_10_1021_acs_langmuir_0c03365 crossref_primary_10_1016_j_jmrt_2021_02_068 crossref_primary_10_1039_C5RA20782G crossref_primary_10_1016_j_cis_2021_102470 crossref_primary_10_1063_5_0169631 crossref_primary_10_1016_j_cis_2022_102692 crossref_primary_10_1126_science_aav5388 crossref_primary_10_1038_s42005_023_01268_z crossref_primary_10_1021_acs_biomac_8b01176 crossref_primary_10_1021_la503601u crossref_primary_10_1007_s40516_020_00130_2 crossref_primary_10_1016_j_coco_2021_100740 crossref_primary_10_1002_smll_202203820 crossref_primary_10_1021_acs_langmuir_8b03088 crossref_primary_10_1016_j_colsurfa_2022_129899 crossref_primary_10_1063_5_0243873 crossref_primary_10_1103_PhysRevLett_125_184502 crossref_primary_10_1103_PhysRevApplied_20_064004 crossref_primary_10_1016_j_apsusc_2016_12_098 crossref_primary_10_1021_acs_langmuir_0c02147 crossref_primary_10_1002_smll_202405335 crossref_primary_10_1021_acs_jpclett_4c02834 crossref_primary_10_1002_app_53629 crossref_primary_10_1080_02670844_2019_1609205 crossref_primary_10_1002_admi_202400680 crossref_primary_10_1038_s41467_022_32409_7 crossref_primary_10_1021_acsami_6b08607 crossref_primary_10_1002_admi_202300507 crossref_primary_10_1016_j_foodchem_2025_143793 crossref_primary_10_1103_PhysRevE_93_022804 crossref_primary_10_1007_s00396_017_4188_4 crossref_primary_10_1038_527041a crossref_primary_10_1021_acsnano_9b08211 crossref_primary_10_1002_smll_201700860 crossref_primary_10_1016_j_ijheatmasstransfer_2021_122169 crossref_primary_10_1038_s43246_020_00065_3 crossref_primary_10_1039_C7NR05188C crossref_primary_10_1063_1_5020085 crossref_primary_10_1002_dro2_55 crossref_primary_10_1007_s00226_022_01420_y crossref_primary_10_3390_coatings11121508 crossref_primary_10_1007_s00396_015_3823_1 crossref_primary_10_1021_acsanm_3c02575 crossref_primary_10_1039_C5CS00438A crossref_primary_10_1016_j_cis_2022_102797 crossref_primary_10_1103_PhysRevE_95_063104 crossref_primary_10_1039_D1CS00258A crossref_primary_10_1039_D4SM01509F crossref_primary_10_3390_coatings11030369 crossref_primary_10_1016_j_matlet_2016_08_078 crossref_primary_10_1038_srep21400 crossref_primary_10_1007_s10570_021_04088_y crossref_primary_10_1016_j_scitotenv_2022_161195 crossref_primary_10_1021_acs_langmuir_9b02368 crossref_primary_10_1038_s41598_018_33542_4 crossref_primary_10_1073_pnas_1916772116 |
Cites_doi | 10.1007/s00396-011-2570-1 10.1103/PhysRevLett.112.016101 10.1016/0095-8522(62)90011-9 10.1007/s004250050096 10.1016/0095-8522(60)90044-1 10.1021/la020088p 10.1021/la062634a 10.1063/1.3244597 10.1021/la000598o 10.1103/PhysRevLett.109.166101 10.1557/mrs.2013.103 10.1146/annurev-fluid-121108-145558 10.1021/la102566c 10.1021/la970645l 10.1126/science.1207115 10.1039/tf9444000546 10.1021/la062301d 10.1680/si.13.00010 10.1021/la204424n 10.1039/c2sm06744g 10.1209/0295-5075/81/36003 10.1073/pnas.1218673110 10.1021/la025769z 10.1021/la103097y 10.1209/epl/i2005-10523-2 10.1364/AO.37.006892 10.1039/b501657f 10.1006/jcis.1995.1130 10.1098/rspa.1942.0031 10.1021/la100031d 10.1063/1.4757122 10.1016/0021-9797(80)90124-1 10.1038/417811a 10.1103/RevModPhys.57.827 10.1126/science.1148326 10.1016/0021-9797(82)90115-1 10.1016/j.cis.2008.10.002 10.1063/1.3129282 10.1038/ncomms3512 10.1017/S0022112004000904 10.1039/c3sm51959g 10.1021/la402409f 10.1146/annurev.fluid.38.050304.092144 10.1002/adma.201200184 10.1364/OL.25.000478 10.1021/la060323u 10.1103/PhysRevLett.96.146106 10.1021/jp8066876 10.1021/la3041067 10.1021/la302856b 10.1021/la401120j 10.1073/pnas.0804872105 10.1017/jfm.2013.284 10.1021/la804099z 10.1021/la9047424 10.1039/B917861A 10.1017/S0022112085000842 10.1039/b925970h 10.1021/la8014578 10.1039/B811945G 10.1021/ja310517s 10.1039/c2sm25156f 10.1021/la400009m 10.1615/AtomizSpr.2012005704 10.1016/j.cocis.2006.06.002 10.1021/la990074s 10.1021/la062596v 10.1209/epl/i2005-10522-3 10.1016/j.jcis.2007.05.059 10.1209/0295-5075/81/26006 10.1140/epje/i2007-10235-y 10.1021/am200741f 10.1006/jcis.1998.5813 10.1063/1.3129283 10.1039/c1sm05801k 10.1021/la8003504 10.1209/epl/i1999-00548-y 10.1038/ncomms2482 10.1021/la052540l 10.2109/jcersj2.119.711 10.1103/PhysRevLett.105.166104 10.1002/adma.201100410 10.1021/la4022678 10.1021/am302541f 10.1021/la950418o 10.1021/la0518795 10.1021/la304179b 10.1021/cm201797e 10.1021/la304641q 10.1021/la102330e 10.1039/c1sm05832k 10.1016/j.colsurfa.2007.09.032 10.1209/epl/i2000-00418-8 10.1021/la300379u 10.1016/j.jcis.2009.07.027 10.1039/c2sm25746g 10.1017/S0022112098003747 10.1021/jp2032466 10.1021/la802897g 10.1021/la0474565 10.1002/ppap.201100124 10.1021/nl8037272 10.1038/nmat924 10.1103/PhysRevE.69.016301 10.1016/0021-9797(82)90175-8 10.1021/la103539m 10.1039/b807857b 10.1016/j.jcis.2006.02.018 10.1039/C2SM27016A 10.1021/la00009a049 10.1039/c2sm26399h 10.1063/1.4705296 10.1016/j.cocis.2011.06.009 |
ContentType | Journal Article |
Copyright | 2014 Elsevier Ltd |
Copyright_xml | – notice: 2014 Elsevier Ltd |
DBID | AAYXX CITATION 7U5 8FD L7M 7S9 L.6 |
DOI | 10.1016/j.cocis.2014.04.009 |
DatabaseName | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Solid State and Superconductivity Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Technology Research Database AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1879-0399 |
EndPage | 354 |
ExternalDocumentID | 10_1016_j_cocis_2014_04_009 S1359029414000478 |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AAXUO ABJNI ABMAC ABNEU ABNUV ABXDB ABXRA ABYKQ ACDAQ ACFVG ACGFS ACNNM ACRLP ADBBV ADECG ADEWK ADEZE ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHPOS AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCB SCC SDF SDG SDP SES SEW SPC SPCBC SPD SSG SSK SSM SSQ SSZ T5K XPP ZMT ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7U5 8FD L7M 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c505t-bdf7e09ce2d66b85e7dd2cbb13136c5f230f97676bcf01198b0edb8c0ac7185a3 |
IEDL.DBID | .~1 |
ISSN | 1359-0294 |
IngestDate | Sun Aug 24 03:06:44 EDT 2025 Fri Jul 11 09:51:10 EDT 2025 Thu Apr 24 23:00:17 EDT 2025 Tue Jul 01 00:47:24 EDT 2025 Fri Feb 23 02:33:40 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Nanostructure Superhydrophobicity Superomniphobicity Superoleophobicity |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c505t-bdf7e09ce2d66b85e7dd2cbb13136c5f230f97676bcf01198b0edb8c0ac7185a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-5391-2618 |
PQID | 1669843793 |
PQPubID | 23500 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2153601254 proquest_miscellaneous_1669843793 crossref_citationtrail_10_1016_j_cocis_2014_04_009 crossref_primary_10_1016_j_cocis_2014_04_009 elsevier_sciencedirect_doi_10_1016_j_cocis_2014_04_009 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-08-01 |
PublicationDateYYYYMMDD | 2014-08-01 |
PublicationDate_xml | – month: 08 year: 2014 text: 2014-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Current opinion in colloid & interface science |
PublicationYear | 2014 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | de Gennes (bb0180) 1985; 57 Duvivier, Rioboo, Voue, De Coninck (bb0540) 2012; 22 Joly, Biben (bb0090) 2009; 5 Cassie, Baxter (bb0240) 1944; 40 Checco, Ocko, Tasinkevych, Dietrich (bb0460) 2012; 109 Extrand, Kumagai (bb0410) 1995; 170 Busse, Sandham, McHale, Newton (bb0110) 2013; 727 Semprebon, Herminghaus, Brinkmann (bb0295) 2012; 8 Li (bb0605) 2013 Churaev, Starov, Derjaguin (bb0175) 1982; 89 Deng, Schellenberger, Papadopoulos, Vollmer, Butt (bb0555) 2013; 29 Pan, Kota, Mabry, Tuteja (bb0550) 2013; 135 Xu, Mondal, Lyons (bb0130) 2011; 3 Poetes, Holtzmann, Franze, Steiner (bb0480) 2010; 105 Callies, Quéré (bb0225) 2005; 1 Wiegand, Neumaier, Sackmann (bb0215) 1998; 37 Öner, McCarthy (bb0255) 2000; 16 Paxson, Varanasi (bb0280) 2013; 4 Starov, Velarde, Radke (bb0230) 2007 Quéré, Azzopardi, Delattre (bb0380) 1998; 14 Antonini, Carmona, Pierce, Marengo, Amirfazil (bb0395) 2009; 25 Jin, Tian, Ikkala, Ras (bb0150) 2013; 5 Lafuma, Quéré (bb0435) 2003; 2 Reyssat, Pépin, Marty, Chen, Quéré (bb0585) 2006; 74 Sahu, Sinha-Ray, Yarin, Pourdeyhimi (bb0600) 2012; 8 Frenkel (bb0370) 1948; 18 Tsai, van der Veen, van de Raa, Lohse (bb0535) 2010; 26 Cheng, Lai, Du, Zhu, Zhang, Sun (bb0325) 2012; 8 Macdougall, Ockrent (bb0360) 1942; 180 Nosonovsky (bb0085) 2007; 23 Wolfram, Faust (bb0415) 1978 Xiong, Liu, Hong, Duncan (bb0070) 2011; 23 Kota, Kwon, Choi, Mabry, Tuteja (bb0160) 2012; 1038 Barthlott, Neinhuis (bb0010) 1997; 202 Herminghaus (bb0030) 2000; 52 Furmidge (bb0335) 1962; 17 Samuel, Zhao, Law (bb0305) 2011; 115 Reyssat, Quéré (bb0300) 2009; 113 Mognetti, Yeomans (bb0290) 2010; 26 Patankar (bb0545) 2010; 26 Drelich (bb0190) 2013; 4 Roisman, Berberovic, Tropea (bb0595) 2009; 21 Ye, Deng, Ally, Papadopoulos, Schellenberger, Vollmer (bb0330) 2014; 112 McHale, Newton, Shirtcliffe (bb0100) 2010; 6 Butt, Semprebon, Papadopoulos, Vollmer, Brinkmann, Ciccotti (bb0235) 2013; 9 Krasovitski, Marmur (bb0420) 2005; 21 Steele, Bayer, Loth (bb0065) 2009; 9 Zhou, Wang, Niu, Gestos, Wang, Lin (bb0140) 2012; 24 Kawasaki (bb0365) 1960; 15 Bico, Marzolin, Quéré (bb0245) 1999; 47 Wayner (bb0170) 1982; 88 Watanabe, Udagawa, Udagawa (bb0095) 1999; 381 Marengo, Antonini, Roisman, Tropea (bb0505) 2011; 16 Bartolo, Bouamrirene, Verneuil, Guguin, Silberzan, Moulinet (bb0510) 2006; 74 Clanet, Béguin, Richard, Quéré (bb0565) 2004; 517 Sakai, Song, Yoshida, Suzuki, Kameshima, Nakajima (bb0385) 2006; 22 Bormashenko, Musin, Whyman, Zinigrad (bb0475) 2012; 28 Tsai, Hendrix, Dijkstra, Shui, Lohse (bb0570) 2011; 7 Nguyen, Brunet, Coffinier, Boukherroub (bb0530) 2010; 26 Park, Chhatre, Srinivasan, Cohen, McKinley (bb0115) 2013; 29 Susarrey-Arce, Marin, Nair, Lefferts, Gardeniers, Lohse (bb0055) 2012; 8 Dufour, Harnois, Thomy, Boukherroub, Senez (bb0045) 2011; 7 Kleingartner, Srinivasan, Mabry, Cohen, McKinley (bb0185) 2013; 29 Gnanappa, Papageorgiou, Gogolides, Tserepi, Papathanasiou, Boudouvis (bb0495) 2012; 9 Shibuichi, Yamamoto, Onda, Tsujii (bb0060) 1998; 208 Biance, Clanet, Quéré (bb0490) 2004; 69 Tuteja, Choi, Mabry, McKinley, Cohen (bb0040) 2008; 105 Miljkovic, Wang (bb0120) 2013; 38 Tuteja, Choi, Ma, Mabry, Mazzella, Rutledge (bb0035) 2007; 318 Deng, Mammen, Butt, Vollmer (bb0075) 2012; 335 Rothstein (bb0105) 2010; 42 Hensel, Helbig, Aland, Braun, Voigt, Neinhuis (bb0455) 2013; 29 Dorrer, Rühe (bb0285) 2007; 23 Papadopoulos, Deng, Mammen, Drotlef, Battagliarin, Li (bb0205) 2012; 28 Yoshimitsu, Nakajima, Watanabe, Hashimoto (bb0260) 2002; 18 Groten, Rühe (bb0145) 2013; 29 Korhonen, Huhtamaki, Ikkala, Ras (bb0200) 2013; 29 Gao, McCarthy (bb0270) 2007; 23 Kwak, Lee, Senthil, Yong (bb0520) 2009; 95 Onda, Shibuichi, Satoh, Tsujii (bb0015) 1996; 12 Dussan (bb0375) 1985; 151 Baret, Brinkmann (bb0345) 2006; 96 Reyssat, Yeomans, Quéré (bb0440) 2008; 81 Brown, Orr, Scriven (bb0405) 1980; 73 ElSherbini, Jacobi (bb0390) 2006; 299 Lembach, Tan, Roisman, Gambaryan-Roisman, Zhang, Tropea (bb0590) 2010; 26 Im, Im, Lee, Yoon, Choi (bb0050) 2010; 6 Deng, Mammen, Zhao, Lellig, Müllen, Li (bb0135) 2011; 23 Pilat, Papadopoulos, Schäffel, Vollmer, Berger, Butt (bb0310) 2012; 28 Dettre, Johnson (bb0005) 1967; 25 Moulinet, Bartolo (bb0485) 2007; 24 Roisman (bb0580) 2009; 21 Pierce, Carmona, Amirfazli (bb0425) 2008; 323 Antonini, Amirfazli, Marengo (bb0575) 2012; 24 Fischer, Ovryn (bb0220) 2000; 25 Choi, Tuteja, Mabry, Cohen, McKinley (bb0275) 2009; 339 Jung, Bhushan (bb0525) 2008; 24 Zhang, Wang, Zhao, Xu, Gao, Zheng (bb0315) 2008; 4 Extrand, Moon (bb0195) 2010; 26 Ensikat, Mayser, Barthlott (bb0320) 2012; 28 Dorrer, Rühe (bb0250) 2009; 5 Yoshida (bb0080) 2012; 290 Yarin (bb0500) 2006; 38 Extrand (bb0400) 2006; 22 Butt, Kappl (bb0350) 2009; 146 Extrand (bb0265) 2002; 18 Paven, Papadopoulos, Schöttler, Deng, Mailänder, Vollmer (bb0125) 2013; 4 Lobaton, Salamon (bb0465) 2007; 314 Rioboo, Voué, Vaillant, De Coninck (bb0515) 2008; 24 Semprebon, Brinkmann (bb0430) 2014; 10 Nakajima (bb0355) 2011; 119 Kusumaatmaja, Blow, Dupuis, Yeomans (bb0470) 2008; 81 Barthlott (bb0165) 1992 McHale, Aqil, Shirtcliffe, Newton, Erbil (bb0445) 2005; 21 Richard, Clanet, Quéré (bb0560) 2002; 417 Chen, Fadeev, Hsieh (bb0020) 1999; 15 Schrader (bb0340) 1995; 11 Kwon, Lee (bb0450) 2012; 100 Ma, Hill (bb0025) 2006; 11 Gao, McCarthy (bb0155) 2008; 24 Papadopoulos, Mammen, Deng, Vollmer, Butt (bb0210) 2013; 110 Butt (10.1016/j.cocis.2014.04.009_bb0350) 2009; 146 Chen (10.1016/j.cocis.2014.04.009_bb0020) 1999; 15 Dussan (10.1016/j.cocis.2014.04.009_bb0375) 1985; 151 Dorrer (10.1016/j.cocis.2014.04.009_bb0250) 2009; 5 Tuteja (10.1016/j.cocis.2014.04.009_bb0035) 2007; 318 Antonini (10.1016/j.cocis.2014.04.009_bb0575) 2012; 24 Barthlott (10.1016/j.cocis.2014.04.009_bb0165) 1992 Watanabe (10.1016/j.cocis.2014.04.009_bb0095) 1999; 381 McHale (10.1016/j.cocis.2014.04.009_bb0100) 2010; 6 Checco (10.1016/j.cocis.2014.04.009_bb0460) 2012; 109 Choi (10.1016/j.cocis.2014.04.009_bb0275) 2009; 339 Extrand (10.1016/j.cocis.2014.04.009_bb0410) 1995; 170 Park (10.1016/j.cocis.2014.04.009_bb0115) 2013; 29 Schrader (10.1016/j.cocis.2014.04.009_bb0340) 1995; 11 Mognetti (10.1016/j.cocis.2014.04.009_bb0290) 2010; 26 Lafuma (10.1016/j.cocis.2014.04.009_bb0435) 2003; 2 Sakai (10.1016/j.cocis.2014.04.009_bb0385) 2006; 22 Patankar (10.1016/j.cocis.2014.04.009_bb0545) 2010; 26 Xiong (10.1016/j.cocis.2014.04.009_bb0070) 2011; 23 Ye (10.1016/j.cocis.2014.04.009_bb0330) 2014; 112 Yoshida (10.1016/j.cocis.2014.04.009_bb0080) 2012; 290 Rioboo (10.1016/j.cocis.2014.04.009_bb0515) 2008; 24 Marengo (10.1016/j.cocis.2014.04.009_bb0505) 2011; 16 Pan (10.1016/j.cocis.2014.04.009_bb0550) 2013; 135 Fischer (10.1016/j.cocis.2014.04.009_bb0220) 2000; 25 Xu (10.1016/j.cocis.2014.04.009_bb0130) 2011; 3 Samuel (10.1016/j.cocis.2014.04.009_bb0305) 2011; 115 Extrand (10.1016/j.cocis.2014.04.009_bb0265) 2002; 18 Extrand (10.1016/j.cocis.2014.04.009_bb0195) 2010; 26 Pilat (10.1016/j.cocis.2014.04.009_bb0310) 2012; 28 Cheng (10.1016/j.cocis.2014.04.009_bb0325) 2012; 8 Korhonen (10.1016/j.cocis.2014.04.009_bb0200) 2013; 29 Ma (10.1016/j.cocis.2014.04.009_bb0025) 2006; 11 Papadopoulos (10.1016/j.cocis.2014.04.009_bb0205) 2012; 28 Deng (10.1016/j.cocis.2014.04.009_bb0135) 2011; 23 Moulinet (10.1016/j.cocis.2014.04.009_bb0485) 2007; 24 Deng (10.1016/j.cocis.2014.04.009_bb0075) 2012; 335 Bormashenko (10.1016/j.cocis.2014.04.009_bb0475) 2012; 28 Krasovitski (10.1016/j.cocis.2014.04.009_bb0420) 2005; 21 Duvivier (10.1016/j.cocis.2014.04.009_bb0540) 2012; 22 Furmidge (10.1016/j.cocis.2014.04.009_bb0335) 1962; 17 Quéré (10.1016/j.cocis.2014.04.009_bb0380) 1998; 14 Reyssat (10.1016/j.cocis.2014.04.009_bb0585) 2006; 74 de Gennes (10.1016/j.cocis.2014.04.009_bb0180) 1985; 57 Wiegand (10.1016/j.cocis.2014.04.009_bb0215) 1998; 37 Clanet (10.1016/j.cocis.2014.04.009_bb0565) 2004; 517 Barthlott (10.1016/j.cocis.2014.04.009_bb0010) 1997; 202 Callies (10.1016/j.cocis.2014.04.009_bb0225) 2005; 1 Kusumaatmaja (10.1016/j.cocis.2014.04.009_bb0470) 2008; 81 Churaev (10.1016/j.cocis.2014.04.009_bb0175) 1982; 89 Shibuichi (10.1016/j.cocis.2014.04.009_bb0060) 1998; 208 Brown (10.1016/j.cocis.2014.04.009_bb0405) 1980; 73 Jung (10.1016/j.cocis.2014.04.009_bb0525) 2008; 24 Sahu (10.1016/j.cocis.2014.04.009_bb0600) 2012; 8 Kota (10.1016/j.cocis.2014.04.009_bb0160) 2012; 1038 Papadopoulos (10.1016/j.cocis.2014.04.009_bb0210) 2013; 110 Kwon (10.1016/j.cocis.2014.04.009_bb0450) 2012; 100 Extrand (10.1016/j.cocis.2014.04.009_bb0400) 2006; 22 Jin (10.1016/j.cocis.2014.04.009_bb0150) 2013; 5 Gao (10.1016/j.cocis.2014.04.009_bb0270) 2007; 23 Dettre (10.1016/j.cocis.2014.04.009_bb0005) 1967; 25 Susarrey-Arce (10.1016/j.cocis.2014.04.009_bb0055) 2012; 8 Semprebon (10.1016/j.cocis.2014.04.009_bb0295) 2012; 8 Steele (10.1016/j.cocis.2014.04.009_bb0065) 2009; 9 Busse (10.1016/j.cocis.2014.04.009_bb0110) 2013; 727 Ensikat (10.1016/j.cocis.2014.04.009_bb0320) 2012; 28 Wolfram (10.1016/j.cocis.2014.04.009_bb0415) 1978 Poetes (10.1016/j.cocis.2014.04.009_bb0480) 2010; 105 Richard (10.1016/j.cocis.2014.04.009_bb0560) 2002; 417 Yarin (10.1016/j.cocis.2014.04.009_bb0500) 2006; 38 Deng (10.1016/j.cocis.2014.04.009_bb0555) 2013; 29 Joly (10.1016/j.cocis.2014.04.009_bb0090) 2009; 5 Nakajima (10.1016/j.cocis.2014.04.009_bb0355) 2011; 119 Reyssat (10.1016/j.cocis.2014.04.009_bb0300) 2009; 113 Antonini (10.1016/j.cocis.2014.04.009_bb0395) 2009; 25 Miljkovic (10.1016/j.cocis.2014.04.009_bb0120) 2013; 38 Dorrer (10.1016/j.cocis.2014.04.009_bb0285) 2007; 23 Kwak (10.1016/j.cocis.2014.04.009_bb0520) 2009; 95 Pierce (10.1016/j.cocis.2014.04.009_bb0425) 2008; 323 Zhang (10.1016/j.cocis.2014.04.009_bb0315) 2008; 4 Nosonovsky (10.1016/j.cocis.2014.04.009_bb0085) 2007; 23 Macdougall (10.1016/j.cocis.2014.04.009_bb0360) 1942; 180 Bico (10.1016/j.cocis.2014.04.009_bb0245) 1999; 47 Paven (10.1016/j.cocis.2014.04.009_bb0125) 2013; 4 Starov (10.1016/j.cocis.2014.04.009_bb0230) 2007 Onda (10.1016/j.cocis.2014.04.009_bb0015) 1996; 12 Gnanappa (10.1016/j.cocis.2014.04.009_bb0495) 2012; 9 Kleingartner (10.1016/j.cocis.2014.04.009_bb0185) 2013; 29 Nguyen (10.1016/j.cocis.2014.04.009_bb0530) 2010; 26 Zhou (10.1016/j.cocis.2014.04.009_bb0140) 2012; 24 Butt (10.1016/j.cocis.2014.04.009_bb0235) 2013; 9 Roisman (10.1016/j.cocis.2014.04.009_bb0595) 2009; 21 Yoshimitsu (10.1016/j.cocis.2014.04.009_bb0260) 2002; 18 Bartolo (10.1016/j.cocis.2014.04.009_bb0510) 2006; 74 ElSherbini (10.1016/j.cocis.2014.04.009_bb0390) 2006; 299 Hensel (10.1016/j.cocis.2014.04.009_bb0455) 2013; 29 Frenkel (10.1016/j.cocis.2014.04.009_bb0370) 1948; 18 Reyssat (10.1016/j.cocis.2014.04.009_bb0440) 2008; 81 Lembach (10.1016/j.cocis.2014.04.009_bb0590) 2010; 26 Semprebon (10.1016/j.cocis.2014.04.009_bb0430) 2014; 10 Tsai (10.1016/j.cocis.2014.04.009_bb0535) 2010; 26 Baret (10.1016/j.cocis.2014.04.009_bb0345) 2006; 96 Drelich (10.1016/j.cocis.2014.04.009_bb0190) 2013; 4 Tsai (10.1016/j.cocis.2014.04.009_bb0570) 2011; 7 Lobaton (10.1016/j.cocis.2014.04.009_bb0465) 2007; 314 Herminghaus (10.1016/j.cocis.2014.04.009_bb0030) 2000; 52 Öner (10.1016/j.cocis.2014.04.009_bb0255) 2000; 16 Roisman (10.1016/j.cocis.2014.04.009_bb0580) 2009; 21 Li (10.1016/j.cocis.2014.04.009_bb0605) 2013 Tuteja (10.1016/j.cocis.2014.04.009_bb0040) 2008; 105 McHale (10.1016/j.cocis.2014.04.009_bb0445) 2005; 21 Groten (10.1016/j.cocis.2014.04.009_bb0145) 2013; 29 Dufour (10.1016/j.cocis.2014.04.009_bb0045) 2011; 7 Wayner (10.1016/j.cocis.2014.04.009_bb0170) 1982; 88 Im (10.1016/j.cocis.2014.04.009_bb0050) 2010; 6 Cassie (10.1016/j.cocis.2014.04.009_bb0240) 1944; 40 Biance (10.1016/j.cocis.2014.04.009_bb0490) 2004; 69 Kawasaki (10.1016/j.cocis.2014.04.009_bb0365) 1960; 15 Gao (10.1016/j.cocis.2014.04.009_bb0155) 2008; 24 Paxson (10.1016/j.cocis.2014.04.009_bb0280) 2013; 4 Rothstein (10.1016/j.cocis.2014.04.009_bb0105) 2010; 42 |
References_xml | – volume: 15 start-page: 3395 year: 1999 end-page: 3399 ident: bb0020 article-title: Ultrahydrophobic and ultralyophobic surfaces: some comments and examples publication-title: Langmuir – volume: 24 start-page: 14074 year: 2008 end-page: 14077 ident: bb0515 article-title: Drop impact on porous superhydrophobic polymer surfaces publication-title: Langmuir – volume: 12 start-page: 2125 year: 1996 end-page: 2127 ident: bb0015 article-title: Super-water-repellent fractal surfaces publication-title: Langmuir – volume: 23 start-page: 4357 year: 2011 end-page: 4366 ident: bb0070 article-title: Superamphiphobic diblock copolymer coatings publication-title: Chem Mater – volume: 5 start-page: 2549 year: 2009 end-page: 2557 ident: bb0090 article-title: Wetting and friction on superoleophobic surfaces publication-title: Soft Matter – volume: 25 start-page: 144 year: 1967 end-page: 163 ident: bb0005 article-title: Contact angle hysteresis — porous surfaces publication-title: SCI Monogr – start-page: 117 year: 1992 end-page: 120 ident: bb0165 article-title: Die Selbstreinigungsfähigkeit pflanzlicher Oberflächen durch Epicuticularwachse publication-title: Verantwortung für die Zukunft – volume: 318 start-page: 1618 year: 2007 end-page: 1622 ident: bb0035 article-title: Designing superoleophobic surfaces publication-title: Science – volume: 81 start-page: 26006 year: 2008 ident: bb0440 article-title: Impalement of fakir drops publication-title: Europhys Lett – volume: 9 start-page: 501 year: 2009 end-page: 505 ident: bb0065 article-title: Inherently superoleophobic nanocomposite coatings by spray atomization publication-title: Nano Lett – volume: 290 start-page: 525 year: 2012 end-page: 530 ident: bb0080 article-title: Preparation of micro- and nanospheres with superamphiphobic surfaces by dispersion polymerization publication-title: Colloid Polym Sci – volume: 16 start-page: 292 year: 2011 end-page: 302 ident: bb0505 article-title: Drop collisions with simple and complex surfaces publication-title: Curr Opin Colloid Interface Sci – volume: 26 start-page: 18162 year: 2010 end-page: 18168 ident: bb0290 article-title: Modeling receding contact lines on superhydrophobic surfaces publication-title: Langmuir – volume: 4 start-page: 1492 year: 2013 end-page: 1496 ident: bb0280 article-title: Self-similarity of contact line depinning from textured surfaces publication-title: Nat Commun – volume: 8 start-page: 3957 year: 2012 end-page: 3970 ident: bb0600 article-title: Drop impacts on electrospun nanofiber membranes publication-title: Soft Matter – volume: 25 start-page: 478 year: 2000 end-page: 480 ident: bb0220 article-title: Interfacial shape and contact-angle measurement of transparent samples with confocal interference microscopy publication-title: Opt Lett – volume: 25 start-page: 6143 year: 2009 end-page: 6154 ident: bb0395 article-title: General methodology for evaluating the adhesion force of drops and bubbles on solid surfaces publication-title: Langmuir – volume: 2 start-page: 457 year: 2003 end-page: 460 ident: bb0435 article-title: Superhydrophobic states publication-title: Nat Mater – volume: 727 start-page: 488 year: 2013 end-page: 508 ident: bb0110 article-title: Change in drag, apparent slip and optimum air layer thickness for laminar flow over an idealised superhydrophobic surface publication-title: J Fluid Mech – volume: 89 start-page: 16 year: 1982 end-page: 24 ident: bb0175 article-title: The shape of the transition zone between a thin film and bulk liquid and the line tension publication-title: J Colloid Interface Sci – volume: 28 start-page: 16812 year: 2012 end-page: 16820 ident: bb0310 article-title: Dynamic measurement of the force required to move a liquid drop on a solid surface publication-title: Langmuir – volume: 28 start-page: 14338 year: 2012 end-page: 14346 ident: bb0320 article-title: Superhydrophobic and adhesive properties of surfaces: testing the quality by an elaborated scanning electron microscopy method publication-title: Langmuir – volume: 26 start-page: 9516 year: 2010 end-page: 9523 ident: bb0590 article-title: Drop impact, spreading, splashing, and penetration into electrospun nanofiber mats publication-title: Langmuir – volume: 6 start-page: 1401 year: 2010 end-page: 1404 ident: bb0050 article-title: A robust superhydrophobic and superoleophobic surface with inverse-trapezoidal microstructures on a large transparent flexible substrate publication-title: Soft Matter – volume: 151 start-page: 1 year: 1985 end-page: 20 ident: bb0375 article-title: On the ability of drops or bubbles to stick to non-horizontal surfaces of solids. 2. Small drops or bubbles having contact angles of arbitrary size publication-title: J Fluid Mech – volume: 22 start-page: 4906 year: 2006 end-page: 4909 ident: bb0385 article-title: Direct observation of internal fluidity in a water droplet during sliding on hydrophobic surfaces publication-title: Langmuir – volume: 4 start-page: 2232 year: 2008 end-page: 2237 ident: bb0315 article-title: How does the leaf margin make the lotus surface dry as the lotus leaf floats on water publication-title: Soft Matter – volume: 15 start-page: 402 year: 1960 end-page: 407 ident: bb0365 article-title: Study of wettability of polymers by sliding of a water drop publication-title: J Colloid Sci – volume: 208 start-page: 287 year: 1998 end-page: 294 ident: bb0060 article-title: Super water- and oil-repellent surfaces resulting from fractal structure publication-title: J Colloid Interface Sci – volume: 9 start-page: 304 year: 2012 end-page: 315 ident: bb0495 article-title: Hierarchical, plasma nanotextured, robust superamphiphobic polymeric surfaces structurally stabilized through a wetting–drying cycle publication-title: Plasma Process Polym – volume: 24 start-page: 102104 year: 2012 ident: bb0575 article-title: Drop impact and wettability: from hydrophilic to superhydrophobic surfaces publication-title: Phys Fluids – volume: 18 start-page: 659 year: 1948 end-page: 669 ident: bb0370 article-title: On the behavior of liquid drops on a solid surface. 1. The sliding of drops on an inclined surface publication-title: J Exp Theoret Phys (USSR) – volume: 22 start-page: 1711 year: 2006 end-page: 1714 ident: bb0400 article-title: Designing for optimum liquid repellency publication-title: Langmuir – year: 2013 ident: bb0605 article-title: Drop impact on dry surfaces with phase change publication-title: Mechanical Engineering – volume: 95 start-page: 153101 year: 2009 ident: bb0520 article-title: Impact dynamics of water droplets on chemically modified WO publication-title: Appl Phys Lett – volume: 7 start-page: 11325 year: 2011 end-page: 11333 ident: bb0570 article-title: Microscopic structure influencing macroscopic splash at high Weber number publication-title: Soft Matter – volume: 29 start-page: 3765 year: 2013 end-page: 3772 ident: bb0145 article-title: Surfaces with combined microscale and nanoscale structures: a route to mechanically stable superhydrophobic surfaces? publication-title: Langmuir – volume: 26 start-page: 16090 year: 2010 end-page: 16095 ident: bb0535 article-title: How micropatterns and air pressure affect splashing on surfaces publication-title: Langmuir – volume: 105 start-page: 18200 year: 2008 end-page: 18205 ident: bb0040 article-title: Robust omniphobic surfaces publication-title: Proc Natl Acad Sci U S A – volume: 417 start-page: 811-811 year: 2002 ident: bb0560 article-title: Surface phenomena — contact time of a bouncing drop publication-title: Nature – volume: 74 start-page: 306 year: 2006 end-page: 312 ident: bb0585 article-title: Bouncing transitions on microtextured materials publication-title: Europhys Lett – volume: 146 start-page: 48 year: 2009 end-page: 60 ident: bb0350 article-title: Normal capillary forces publication-title: Adv Colloid Interface Sci – volume: 335 start-page: 67 year: 2012 end-page: 70 ident: bb0075 article-title: Candle soot as a template for a transparent robust superamphiphobic coating publication-title: Science – volume: 113 start-page: 3906 year: 2009 end-page: 3909 ident: bb0300 article-title: Contact angle hysteresis generated by strong dilute defects publication-title: J Phys Chem B – year: 2007 ident: bb0230 article-title: Wetting and spreading dynamics – volume: 73 start-page: 76 year: 1980 end-page: 87 ident: bb0405 article-title: Static drop on an inclined plane: analysis by the finite element method publication-title: J Colloid Interface Sci – volume: 339 start-page: 208 year: 2009 end-page: 216 ident: bb0275 article-title: A modified Cassie–Baxter relationship to explain contact angle hysteresis and anisotropy on non-wetting textured surfaces publication-title: J Colloid Interface Sci – volume: 11 start-page: 3585 year: 1995 end-page: 3589 ident: bb0340 article-title: Young–Dupre revisited publication-title: Langmuir – volume: 314 start-page: 184 year: 2007 end-page: 198 ident: bb0465 article-title: Computation of constant mean curvature surfaces: application to the gas–liquid interface of a pressurized fluid on a superhydrophobic surface publication-title: J Colloid Interface Sci – volume: 8 start-page: 9765 year: 2012 end-page: 9770 ident: bb0055 article-title: Absence of an evaporation-driven wetting transition on omniphobic surfaces publication-title: Soft Matter – volume: 105 start-page: 166104 year: 2010 ident: bb0480 article-title: Metastable underwater superhydrophobicity publication-title: Phys Rev Lett – volume: 24 start-page: 6262 year: 2008 end-page: 6269 ident: bb0525 article-title: Dynamic effects of bouncing water droplets on superhydrophobic surfaces publication-title: Langmuir – volume: 16 start-page: 7777 year: 2000 end-page: 7782 ident: bb0255 article-title: Ultrahydrophobic surfaces. Effects of topography length scales on wettability publication-title: Langmuir – volume: 14 start-page: 2213 year: 1998 end-page: 2216 ident: bb0380 article-title: Drops at rest on a tilted plane publication-title: Langmuir – volume: 24 start-page: 9183 year: 2008 end-page: 9188 ident: bb0155 article-title: Teflon is hydrophilic. Comments on definitions of hydrophobic, shear versus tensile hydrophobicity, and wettability characterization publication-title: Langmuir – volume: 29 start-page: 13269 year: 2013 end-page: 13277 ident: bb0115 article-title: Optimal design of permeable fiber network structures for fog harvesting publication-title: Langmuir – volume: 38 start-page: 159 year: 2006 end-page: 192 ident: bb0500 article-title: Drop impact dynamics: splashing, spreading, receding, bouncing publication-title: Annu Rev Fluid Mech – volume: 4 start-page: 2512 year: 2013 ident: bb0125 article-title: Super liquid-repellent gas membranes for carbon dioxide capture and heart–lung machines publication-title: Nat Commun – volume: 11 start-page: 193 year: 2006 end-page: 202 ident: bb0025 article-title: Superhydrophobic surfaces publication-title: Curr Opin Colloid Interface Sci – volume: 18 start-page: 7991 year: 2002 end-page: 7999 ident: bb0265 article-title: Model for contact angles and hysteresis on rough and ultrahydrophobic surfaces publication-title: Langmuir – volume: 8 start-page: 9635 year: 2012 end-page: 9641 ident: bb0325 article-title: Super-hydrophobic surface with switchable adhesion responsive to both temperature and pH publication-title: Soft Matter – volume: 7 start-page: 9380 year: 2011 end-page: 9387 ident: bb0045 article-title: Contact angle hysteresis origins: Investigation on super-omniphobic surfaces publication-title: Soft Matter – volume: 47 start-page: 220 year: 1999 end-page: 226 ident: bb0245 article-title: Pearl drops publication-title: Europhys Lett – start-page: 213 year: 1978 end-page: 222 ident: bb0415 article-title: Liquid drops on a tilted plate, contact angle hysteresis and the Young contact angle publication-title: Wetting, Spreading and Adhesion – volume: 69 start-page: 016301 year: 2004 ident: bb0490 article-title: First steps in the spreading of a liquid droplet publication-title: Phys Rev E – volume: 26 start-page: 17090 year: 2010 end-page: 17099 ident: bb0195 article-title: Contact angles of liquid drops on super hydrophobic surfaces: understanding the role of flattening of drops by gravity publication-title: Langmuir – volume: 110 start-page: 3254 year: 2013 end-page: 3258 ident: bb0210 article-title: How superhydrophobicity breaks down publication-title: Proc Natl Acad Sci U S A – volume: 23 start-page: 3157 year: 2007 end-page: 3161 ident: bb0085 article-title: Multiscale roughness and stability of superhydrophobic biomimetic interfaces publication-title: Langmuir – volume: 5 start-page: 485 year: 2013 end-page: 488 ident: bb0150 article-title: Preservation of superhydrophobic and superoleophobic properties upon wear damage publication-title: ACS Appl Mater Interfaces – volume: 38 start-page: 397 year: 2013 end-page: 406 ident: bb0120 article-title: Condensation heat transfer on superhydrophobic surfaces publication-title: MRS Bull – volume: 135 start-page: 578 year: 2013 end-page: 581 ident: bb0550 article-title: Superomniphobic surfaces for effective chemical shielding publication-title: J Am Chem Soc – volume: 40 start-page: 546 year: 1944 end-page: 551 ident: bb0240 article-title: Wettability of porous surfaces publication-title: Trans Faraday Soc – volume: 5 start-page: 51 year: 2009 end-page: 61 ident: bb0250 article-title: Some thoughts on superhydrophobic wetting publication-title: Soft Matter – volume: 381 start-page: 225 year: 1999 end-page: 238 ident: bb0095 article-title: Drag reduction of Newtonian fluid in a circular pipe with a highly water-repellent wall publication-title: J Fluid Mech – volume: 4 start-page: 248 year: 2013 end-page: 254 ident: bb0190 article-title: Guidelines to measurements of reproducible contact angles using a sessile-drop technique publication-title: Surf Innov – volume: 23 start-page: 3179 year: 2007 end-page: 3183 ident: bb0285 article-title: Contact line shape on ultrahydrophobic post surfaces publication-title: Langmuir – volume: 29 start-page: 3858 year: 2013 end-page: 3863 ident: bb0200 article-title: Reliable measurement of the receding contact angle publication-title: Langmuir – volume: 3 start-page: 3508 year: 2011 end-page: 3514 ident: bb0130 article-title: Fabricating superhydrophobic polymer surfaces with excellent abrasion resistance by a simple lamination templating method publication-title: ACS Appl Mater Interfaces – volume: 1 start-page: 55 year: 2005 end-page: 61 ident: bb0225 article-title: On water repellency publication-title: Soft Matter – volume: 29 start-page: 7847 year: 2013 end-page: 7856 ident: bb0555 article-title: Liquid drops impacting superamphiphobic coatings publication-title: Langmuir – volume: 18 start-page: 5818 year: 2002 end-page: 5822 ident: bb0260 article-title: Effects of surface structure on the hydrophobicity and sliding behavior of water droplets publication-title: Langmuir – volume: 21 start-page: 052103 year: 2009 ident: bb0595 article-title: Inertia dominated drop collisions. I. On the universal flow in the lamella publication-title: Phys Fluids – volume: 42 start-page: 89 year: 2010 end-page: 109 ident: bb0105 article-title: Slip on superhydrophobic surfaces publication-title: Annu Rev Fluid Mech – volume: 9 start-page: 418 year: 2013 end-page: 428 ident: bb0235 article-title: Design principles for superamphiphobic surfaces publication-title: Soft Matter – volume: 24 start-page: 2409 year: 2012 end-page: 2412 ident: bb0140 article-title: Fluoroalkyl silane modified silicone rubber/nanoparticle composite: a super durable, robust superhydrophobic fabric coating publication-title: Adv Mater – volume: 112 start-page: 016101 year: 2014 ident: bb0330 article-title: Superamphiphobic particles — how small can we go? publication-title: Phys Rev Lett – volume: 21 start-page: 052104 year: 2009 ident: bb0580 article-title: Inertia dominated drop collisions. II. An analytical solution of the Navier–Stokes equations for a spreading viscous film publication-title: Phys Fluids – volume: 26 start-page: 8941 year: 2010 end-page: 8945 ident: bb0545 article-title: Consolidation of hydrophobic transition criteria by using an approximate energy minimization approach publication-title: Langmuir – volume: 28 start-page: 8392 year: 2012 end-page: 8398 ident: bb0205 article-title: Wetting on the microscale: shape of a liquid drop on a microstructured surface at different length scales publication-title: Langmuir – volume: 202 start-page: 1 year: 1997 end-page: 8 ident: bb0010 article-title: Purity of the sacred lotus, or escape from contamination in biological surfaces publication-title: Planta – volume: 115 start-page: 14852 year: 2011 end-page: 14861 ident: bb0305 article-title: Study of wetting and adhesion interactions between water and various polymer and superhydrophobic surfaces publication-title: J Phys Chem C – volume: 180 start-page: 151 year: 1942 end-page: 173 ident: bb0360 article-title: Surface energy relations in liquid/solid systems. I. The adhesion of liquids to solids and a new method of determining the surface tension of liquids publication-title: Proc Roy Soc London A – volume: 23 start-page: 2962 year: 2011 ident: bb0135 article-title: Transparent, thermally stable and mechanically robust superhydrophobic surfaces made from porous silica capsules publication-title: Adv Mater – volume: 1038 start-page: 1 year: 2012 end-page: 7 ident: bb0160 article-title: Hygro-responsive membranes for effective oil–water separation publication-title: Nat Commun – volume: 323 start-page: 73 year: 2008 end-page: 82 ident: bb0425 article-title: Understanding of sliding and contact angle results in tilted plate experiments publication-title: Colloids Surf A – volume: 10 start-page: 3325 year: 2014 end-page: 3334 ident: bb0430 article-title: On the onset of motion of sliding drops publication-title: Soft Matter – volume: 8 start-page: 6301 year: 2012 end-page: 6309 ident: bb0295 article-title: Advancing modes on regularly patterned substrates publication-title: Soft Matter – volume: 96 start-page: 146106 year: 2006 ident: bb0345 article-title: Wettability control of droplet deposition and detachment publication-title: Phys Rev Lett – volume: 88 start-page: 294 year: 1982 end-page: 295 ident: bb0170 article-title: The interfacial profile in the contact line region and the Young–Dupré equation publication-title: J Colloid Interface Sci – volume: 26 start-page: 18369 year: 2010 end-page: 18373 ident: bb0530 article-title: Quantitative testing of robustness on superomniphobic surfaces by drop impact publication-title: Langmuir – volume: 29 start-page: 1100 year: 2013 end-page: 1112 ident: bb0455 article-title: Wetting resistance at its topographical limit: the benefit of mushroom and serif T structures publication-title: Langmuir – volume: 81 start-page: 36003 year: 2008 ident: bb0470 article-title: The collapse transition on superhydrophobic surfaces publication-title: Eur. Phys Lett – volume: 6 start-page: 714 year: 2010 end-page: 719 ident: bb0100 article-title: Immersed superhydrophobic surfaces: gas exchange, slip and drag reduction properties publication-title: Soft Matter – volume: 57 start-page: 827 year: 1985 end-page: 863 ident: bb0180 article-title: Wetting: statics and dynamics publication-title: Rev Mod Phys – volume: 37 start-page: 6892 year: 1998 end-page: 6905 ident: bb0215 article-title: Microinterferometry: three-dimensional reconstruction of surface microtopography for thin-film and wetting studies by reflection interference contrast microscopy (RICM) publication-title: Appl Optics – volume: 170 start-page: 515 year: 1995 end-page: 521 ident: bb0410 article-title: Liquid drops on an inclined plane: the relation between contact angles, drops shape, and retention forces publication-title: J Colloid Interface Sci – volume: 74 start-page: 299 year: 2006 end-page: 305 ident: bb0510 article-title: Bouncing or sticky droplets: impalement transitions on superhydrophobic micropatterned surfaces publication-title: Europhys Lett – volume: 22 start-page: 409 year: 2012 end-page: 429 ident: bb0540 article-title: Drop impact on superhydrophobic surfaces — varying gravitational effects publication-title: Atomization and Sprays – volume: 109 start-page: 166101 year: 2012 ident: bb0460 article-title: Stability of thin wetting films on chemically nanostructured surfaces publication-title: Phys Rev Lett – volume: 24 start-page: 251 year: 2007 end-page: 260 ident: bb0485 article-title: Life and death of a fakir droplet: impalement transitions on superhydrophobic surfaces publication-title: Eur Phys J E – volume: 52 start-page: 165 year: 2000 end-page: 170 ident: bb0030 article-title: Roughness-induced non-wetting publication-title: Europhys Lett – volume: 29 start-page: 13396 year: 2013 end-page: 13406 ident: bb0185 article-title: Utilizing dynamic tensiometry to quantify contact angle hysteresis and wetting state transitions on nonwetting surfaces publication-title: Langmuir – volume: 23 start-page: 3762 year: 2007 end-page: 3765 ident: bb0270 article-title: How Wenzel and Cassie were wrong publication-title: Langmuir – volume: 100 start-page: 171601 year: 2012 ident: bb0450 article-title: Impact and wetting behaviors of impinging microdroplets on superhydrophobic textured surfaces publication-title: Appl Phys Lett – volume: 21 start-page: 11053 year: 2005 end-page: 11060 ident: bb0445 article-title: Analysis of droplet evaporation on a superhydrophobic surface publication-title: Langmuir – volume: 119 start-page: 711 year: 2011 end-page: 719 ident: bb0355 article-title: Control of static and dynamic hydrophobicity of solid surface and its application publication-title: J Ceram Soc Jpn – volume: 28 start-page: 3460 year: 2012 end-page: 3464 ident: bb0475 article-title: Wetting transitions and depinning of the triple line publication-title: Langmuir – volume: 517 start-page: 199 year: 2004 end-page: 208 ident: bb0565 article-title: Maximal deformation of an impacting drop publication-title: J Fluid Mech – volume: 21 start-page: 3881 year: 2005 end-page: 3885 ident: bb0420 article-title: Drops down the hill: theoretical study of limiting contact angles and the hysteresis range on a tilted plate publication-title: Langmuir – volume: 299 start-page: 841 year: 2006 end-page: 849 ident: bb0390 article-title: Retention forces and contact angles for critical liquid drops on non-horizontal surfaces publication-title: J Colloid Interface Sci – volume: 17 start-page: 309 year: 1962 end-page: 324 ident: bb0335 article-title: Studies at phase interfaces. I. The sliding of liquid drops on solid surfaces and a theory for spray retention publication-title: J Colloid Sci – volume: 290 start-page: 525 year: 2012 ident: 10.1016/j.cocis.2014.04.009_bb0080 article-title: Preparation of micro- and nanospheres with superamphiphobic surfaces by dispersion polymerization publication-title: Colloid Polym Sci doi: 10.1007/s00396-011-2570-1 – volume: 112 start-page: 016101 year: 2014 ident: 10.1016/j.cocis.2014.04.009_bb0330 article-title: Superamphiphobic particles — how small can we go? publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.112.016101 – volume: 17 start-page: 309 year: 1962 ident: 10.1016/j.cocis.2014.04.009_bb0335 article-title: Studies at phase interfaces. I. The sliding of liquid drops on solid surfaces and a theory for spray retention publication-title: J Colloid Sci doi: 10.1016/0095-8522(62)90011-9 – volume: 202 start-page: 1 year: 1997 ident: 10.1016/j.cocis.2014.04.009_bb0010 article-title: Purity of the sacred lotus, or escape from contamination in biological surfaces publication-title: Planta doi: 10.1007/s004250050096 – volume: 15 start-page: 402 year: 1960 ident: 10.1016/j.cocis.2014.04.009_bb0365 article-title: Study of wettability of polymers by sliding of a water drop publication-title: J Colloid Sci doi: 10.1016/0095-8522(60)90044-1 – volume: 18 start-page: 5818 year: 2002 ident: 10.1016/j.cocis.2014.04.009_bb0260 article-title: Effects of surface structure on the hydrophobicity and sliding behavior of water droplets publication-title: Langmuir doi: 10.1021/la020088p – volume: 23 start-page: 3762 year: 2007 ident: 10.1016/j.cocis.2014.04.009_bb0270 article-title: How Wenzel and Cassie were wrong publication-title: Langmuir doi: 10.1021/la062634a – volume: 95 start-page: 153101 year: 2009 ident: 10.1016/j.cocis.2014.04.009_bb0520 article-title: Impact dynamics of water droplets on chemically modified WOx nanowire arrays publication-title: Appl Phys Lett doi: 10.1063/1.3244597 – volume: 16 start-page: 7777 year: 2000 ident: 10.1016/j.cocis.2014.04.009_bb0255 article-title: Ultrahydrophobic surfaces. Effects of topography length scales on wettability publication-title: Langmuir doi: 10.1021/la000598o – volume: 109 start-page: 166101 year: 2012 ident: 10.1016/j.cocis.2014.04.009_bb0460 article-title: Stability of thin wetting films on chemically nanostructured surfaces publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.109.166101 – volume: 38 start-page: 397 year: 2013 ident: 10.1016/j.cocis.2014.04.009_bb0120 article-title: Condensation heat transfer on superhydrophobic surfaces publication-title: MRS Bull doi: 10.1557/mrs.2013.103 – volume: 42 start-page: 89 year: 2010 ident: 10.1016/j.cocis.2014.04.009_bb0105 article-title: Slip on superhydrophobic surfaces publication-title: Annu Rev Fluid Mech doi: 10.1146/annurev-fluid-121108-145558 – volume: 26 start-page: 17090 year: 2010 ident: 10.1016/j.cocis.2014.04.009_bb0195 article-title: Contact angles of liquid drops on super hydrophobic surfaces: understanding the role of flattening of drops by gravity publication-title: Langmuir doi: 10.1021/la102566c – volume: 14 start-page: 2213 year: 1998 ident: 10.1016/j.cocis.2014.04.009_bb0380 article-title: Drops at rest on a tilted plane publication-title: Langmuir doi: 10.1021/la970645l – volume: 335 start-page: 67 year: 2012 ident: 10.1016/j.cocis.2014.04.009_bb0075 article-title: Candle soot as a template for a transparent robust superamphiphobic coating publication-title: Science doi: 10.1126/science.1207115 – volume: 40 start-page: 546 year: 1944 ident: 10.1016/j.cocis.2014.04.009_bb0240 article-title: Wettability of porous surfaces publication-title: Trans Faraday Soc doi: 10.1039/tf9444000546 – volume: 23 start-page: 3157 year: 2007 ident: 10.1016/j.cocis.2014.04.009_bb0085 article-title: Multiscale roughness and stability of superhydrophobic biomimetic interfaces publication-title: Langmuir doi: 10.1021/la062301d – volume: 4 start-page: 248 year: 2013 ident: 10.1016/j.cocis.2014.04.009_bb0190 article-title: Guidelines to measurements of reproducible contact angles using a sessile-drop technique publication-title: Surf Innov doi: 10.1680/si.13.00010 – volume: 28 start-page: 3460 year: 2012 ident: 10.1016/j.cocis.2014.04.009_bb0475 article-title: Wetting transitions and depinning of the triple line publication-title: Langmuir doi: 10.1021/la204424n – volume: 8 start-page: 3957 year: 2012 ident: 10.1016/j.cocis.2014.04.009_bb0600 article-title: Drop impacts on electrospun nanofiber membranes publication-title: Soft Matter doi: 10.1039/c2sm06744g – volume: 81 start-page: 36003 year: 2008 ident: 10.1016/j.cocis.2014.04.009_bb0470 article-title: The collapse transition on superhydrophobic surfaces publication-title: Eur. Phys Lett doi: 10.1209/0295-5075/81/36003 – volume: 110 start-page: 3254 year: 2013 ident: 10.1016/j.cocis.2014.04.009_bb0210 article-title: How superhydrophobicity breaks down publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1218673110 – volume: 18 start-page: 7991 year: 2002 ident: 10.1016/j.cocis.2014.04.009_bb0265 article-title: Model for contact angles and hysteresis on rough and ultrahydrophobic surfaces publication-title: Langmuir doi: 10.1021/la025769z – volume: 26 start-page: 18369 year: 2010 ident: 10.1016/j.cocis.2014.04.009_bb0530 article-title: Quantitative testing of robustness on superomniphobic surfaces by drop impact publication-title: Langmuir doi: 10.1021/la103097y – volume: 74 start-page: 306 year: 2006 ident: 10.1016/j.cocis.2014.04.009_bb0585 article-title: Bouncing transitions on microtextured materials publication-title: Europhys Lett doi: 10.1209/epl/i2005-10523-2 – volume: 37 start-page: 6892 year: 1998 ident: 10.1016/j.cocis.2014.04.009_bb0215 article-title: Microinterferometry: three-dimensional reconstruction of surface microtopography for thin-film and wetting studies by reflection interference contrast microscopy (RICM) publication-title: Appl Optics doi: 10.1364/AO.37.006892 – volume: 1 start-page: 55 year: 2005 ident: 10.1016/j.cocis.2014.04.009_bb0225 article-title: On water repellency publication-title: Soft Matter doi: 10.1039/b501657f – volume: 18 start-page: 659 year: 1948 ident: 10.1016/j.cocis.2014.04.009_bb0370 article-title: On the behavior of liquid drops on a solid surface. 1. The sliding of drops on an inclined surface publication-title: J Exp Theoret Phys (USSR) – volume: 170 start-page: 515 year: 1995 ident: 10.1016/j.cocis.2014.04.009_bb0410 article-title: Liquid drops on an inclined plane: the relation between contact angles, drops shape, and retention forces publication-title: J Colloid Interface Sci doi: 10.1006/jcis.1995.1130 – volume: 180 start-page: 151 year: 1942 ident: 10.1016/j.cocis.2014.04.009_bb0360 article-title: Surface energy relations in liquid/solid systems. I. The adhesion of liquids to solids and a new method of determining the surface tension of liquids publication-title: Proc Roy Soc London A doi: 10.1098/rspa.1942.0031 – volume: 26 start-page: 9516 year: 2010 ident: 10.1016/j.cocis.2014.04.009_bb0590 article-title: Drop impact, spreading, splashing, and penetration into electrospun nanofiber mats publication-title: Langmuir doi: 10.1021/la100031d – start-page: 213 year: 1978 ident: 10.1016/j.cocis.2014.04.009_bb0415 article-title: Liquid drops on a tilted plate, contact angle hysteresis and the Young contact angle – volume: 24 start-page: 102104 year: 2012 ident: 10.1016/j.cocis.2014.04.009_bb0575 article-title: Drop impact and wettability: from hydrophilic to superhydrophobic surfaces publication-title: Phys Fluids doi: 10.1063/1.4757122 – volume: 73 start-page: 76 year: 1980 ident: 10.1016/j.cocis.2014.04.009_bb0405 article-title: Static drop on an inclined plane: analysis by the finite element method publication-title: J Colloid Interface Sci doi: 10.1016/0021-9797(80)90124-1 – volume: 417 start-page: 811-811 year: 2002 ident: 10.1016/j.cocis.2014.04.009_bb0560 article-title: Surface phenomena — contact time of a bouncing drop publication-title: Nature doi: 10.1038/417811a – volume: 57 start-page: 827 year: 1985 ident: 10.1016/j.cocis.2014.04.009_bb0180 article-title: Wetting: statics and dynamics publication-title: Rev Mod Phys doi: 10.1103/RevModPhys.57.827 – year: 2007 ident: 10.1016/j.cocis.2014.04.009_bb0230 – volume: 318 start-page: 1618 year: 2007 ident: 10.1016/j.cocis.2014.04.009_bb0035 article-title: Designing superoleophobic surfaces publication-title: Science doi: 10.1126/science.1148326 – volume: 89 start-page: 16 year: 1982 ident: 10.1016/j.cocis.2014.04.009_bb0175 article-title: The shape of the transition zone between a thin film and bulk liquid and the line tension publication-title: J Colloid Interface Sci doi: 10.1016/0021-9797(82)90115-1 – volume: 146 start-page: 48 year: 2009 ident: 10.1016/j.cocis.2014.04.009_bb0350 article-title: Normal capillary forces publication-title: Adv Colloid Interface Sci doi: 10.1016/j.cis.2008.10.002 – volume: 21 start-page: 052103 year: 2009 ident: 10.1016/j.cocis.2014.04.009_bb0595 article-title: Inertia dominated drop collisions. I. On the universal flow in the lamella publication-title: Phys Fluids doi: 10.1063/1.3129282 – volume: 4 start-page: 2512 year: 2013 ident: 10.1016/j.cocis.2014.04.009_bb0125 article-title: Super liquid-repellent gas membranes for carbon dioxide capture and heart–lung machines publication-title: Nat Commun doi: 10.1038/ncomms3512 – volume: 517 start-page: 199 year: 2004 ident: 10.1016/j.cocis.2014.04.009_bb0565 article-title: Maximal deformation of an impacting drop publication-title: J Fluid Mech doi: 10.1017/S0022112004000904 – volume: 10 start-page: 3325 year: 2014 ident: 10.1016/j.cocis.2014.04.009_bb0430 article-title: On the onset of motion of sliding drops publication-title: Soft Matter doi: 10.1039/c3sm51959g – volume: 29 start-page: 13269 year: 2013 ident: 10.1016/j.cocis.2014.04.009_bb0115 article-title: Optimal design of permeable fiber network structures for fog harvesting publication-title: Langmuir doi: 10.1021/la402409f – volume: 38 start-page: 159 year: 2006 ident: 10.1016/j.cocis.2014.04.009_bb0500 article-title: Drop impact dynamics: splashing, spreading, receding, bouncing publication-title: Annu Rev Fluid Mech doi: 10.1146/annurev.fluid.38.050304.092144 – volume: 24 start-page: 2409 year: 2012 ident: 10.1016/j.cocis.2014.04.009_bb0140 article-title: Fluoroalkyl silane modified silicone rubber/nanoparticle composite: a super durable, robust superhydrophobic fabric coating publication-title: Adv Mater doi: 10.1002/adma.201200184 – volume: 25 start-page: 478 year: 2000 ident: 10.1016/j.cocis.2014.04.009_bb0220 article-title: Interfacial shape and contact-angle measurement of transparent samples with confocal interference microscopy publication-title: Opt Lett doi: 10.1364/OL.25.000478 – volume: 22 start-page: 4906 year: 2006 ident: 10.1016/j.cocis.2014.04.009_bb0385 article-title: Direct observation of internal fluidity in a water droplet during sliding on hydrophobic surfaces publication-title: Langmuir doi: 10.1021/la060323u – volume: 96 start-page: 146106 year: 2006 ident: 10.1016/j.cocis.2014.04.009_bb0345 article-title: Wettability control of droplet deposition and detachment publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.96.146106 – volume: 113 start-page: 3906 year: 2009 ident: 10.1016/j.cocis.2014.04.009_bb0300 article-title: Contact angle hysteresis generated by strong dilute defects publication-title: J Phys Chem B doi: 10.1021/jp8066876 – volume: 28 start-page: 16812 year: 2012 ident: 10.1016/j.cocis.2014.04.009_bb0310 article-title: Dynamic measurement of the force required to move a liquid drop on a solid surface publication-title: Langmuir doi: 10.1021/la3041067 – volume: 28 start-page: 14338 year: 2012 ident: 10.1016/j.cocis.2014.04.009_bb0320 article-title: Superhydrophobic and adhesive properties of surfaces: testing the quality by an elaborated scanning electron microscopy method publication-title: Langmuir doi: 10.1021/la302856b – volume: 29 start-page: 7847 year: 2013 ident: 10.1016/j.cocis.2014.04.009_bb0555 article-title: Liquid drops impacting superamphiphobic coatings publication-title: Langmuir doi: 10.1021/la401120j – year: 2013 ident: 10.1016/j.cocis.2014.04.009_bb0605 article-title: Drop impact on dry surfaces with phase change – volume: 105 start-page: 18200 year: 2008 ident: 10.1016/j.cocis.2014.04.009_bb0040 article-title: Robust omniphobic surfaces publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0804872105 – volume: 1038 start-page: 1 year: 2012 ident: 10.1016/j.cocis.2014.04.009_bb0160 article-title: Hygro-responsive membranes for effective oil–water separation publication-title: Nat Commun – volume: 727 start-page: 488 year: 2013 ident: 10.1016/j.cocis.2014.04.009_bb0110 article-title: Change in drag, apparent slip and optimum air layer thickness for laminar flow over an idealised superhydrophobic surface publication-title: J Fluid Mech doi: 10.1017/jfm.2013.284 – volume: 25 start-page: 6143 year: 2009 ident: 10.1016/j.cocis.2014.04.009_bb0395 article-title: General methodology for evaluating the adhesion force of drops and bubbles on solid surfaces publication-title: Langmuir doi: 10.1021/la804099z – volume: 26 start-page: 8941 year: 2010 ident: 10.1016/j.cocis.2014.04.009_bb0545 article-title: Consolidation of hydrophobic transition criteria by using an approximate energy minimization approach publication-title: Langmuir doi: 10.1021/la9047424 – volume: 6 start-page: 714 year: 2010 ident: 10.1016/j.cocis.2014.04.009_bb0100 article-title: Immersed superhydrophobic surfaces: gas exchange, slip and drag reduction properties publication-title: Soft Matter doi: 10.1039/B917861A – volume: 151 start-page: 1 year: 1985 ident: 10.1016/j.cocis.2014.04.009_bb0375 article-title: On the ability of drops or bubbles to stick to non-horizontal surfaces of solids. 2. Small drops or bubbles having contact angles of arbitrary size publication-title: J Fluid Mech doi: 10.1017/S0022112085000842 – volume: 25 start-page: 144 year: 1967 ident: 10.1016/j.cocis.2014.04.009_bb0005 article-title: Contact angle hysteresis — porous surfaces publication-title: SCI Monogr – volume: 6 start-page: 1401 year: 2010 ident: 10.1016/j.cocis.2014.04.009_bb0050 article-title: A robust superhydrophobic and superoleophobic surface with inverse-trapezoidal microstructures on a large transparent flexible substrate publication-title: Soft Matter doi: 10.1039/b925970h – volume: 24 start-page: 9183 year: 2008 ident: 10.1016/j.cocis.2014.04.009_bb0155 article-title: Teflon is hydrophilic. Comments on definitions of hydrophobic, shear versus tensile hydrophobicity, and wettability characterization publication-title: Langmuir doi: 10.1021/la8014578 – volume: 5 start-page: 51 year: 2009 ident: 10.1016/j.cocis.2014.04.009_bb0250 article-title: Some thoughts on superhydrophobic wetting publication-title: Soft Matter doi: 10.1039/B811945G – volume: 135 start-page: 578 year: 2013 ident: 10.1016/j.cocis.2014.04.009_bb0550 article-title: Superomniphobic surfaces for effective chemical shielding publication-title: J Am Chem Soc doi: 10.1021/ja310517s – volume: 8 start-page: 6301 year: 2012 ident: 10.1016/j.cocis.2014.04.009_bb0295 article-title: Advancing modes on regularly patterned substrates publication-title: Soft Matter doi: 10.1039/c2sm25156f – volume: 29 start-page: 3858 year: 2013 ident: 10.1016/j.cocis.2014.04.009_bb0200 article-title: Reliable measurement of the receding contact angle publication-title: Langmuir doi: 10.1021/la400009m – volume: 22 start-page: 409 year: 2012 ident: 10.1016/j.cocis.2014.04.009_bb0540 article-title: Drop impact on superhydrophobic surfaces — varying gravitational effects publication-title: Atomization and Sprays doi: 10.1615/AtomizSpr.2012005704 – volume: 11 start-page: 193 year: 2006 ident: 10.1016/j.cocis.2014.04.009_bb0025 article-title: Superhydrophobic surfaces publication-title: Curr Opin Colloid Interface Sci doi: 10.1016/j.cocis.2006.06.002 – volume: 15 start-page: 3395 year: 1999 ident: 10.1016/j.cocis.2014.04.009_bb0020 article-title: Ultrahydrophobic and ultralyophobic surfaces: some comments and examples publication-title: Langmuir doi: 10.1021/la990074s – volume: 23 start-page: 3179 year: 2007 ident: 10.1016/j.cocis.2014.04.009_bb0285 article-title: Contact line shape on ultrahydrophobic post surfaces publication-title: Langmuir doi: 10.1021/la062596v – volume: 74 start-page: 299 year: 2006 ident: 10.1016/j.cocis.2014.04.009_bb0510 article-title: Bouncing or sticky droplets: impalement transitions on superhydrophobic micropatterned surfaces publication-title: Europhys Lett doi: 10.1209/epl/i2005-10522-3 – volume: 314 start-page: 184 year: 2007 ident: 10.1016/j.cocis.2014.04.009_bb0465 article-title: Computation of constant mean curvature surfaces: application to the gas–liquid interface of a pressurized fluid on a superhydrophobic surface publication-title: J Colloid Interface Sci doi: 10.1016/j.jcis.2007.05.059 – volume: 81 start-page: 26006 year: 2008 ident: 10.1016/j.cocis.2014.04.009_bb0440 article-title: Impalement of fakir drops publication-title: Europhys Lett doi: 10.1209/0295-5075/81/26006 – volume: 24 start-page: 251 year: 2007 ident: 10.1016/j.cocis.2014.04.009_bb0485 article-title: Life and death of a fakir droplet: impalement transitions on superhydrophobic surfaces publication-title: Eur Phys J E doi: 10.1140/epje/i2007-10235-y – volume: 3 start-page: 3508 year: 2011 ident: 10.1016/j.cocis.2014.04.009_bb0130 article-title: Fabricating superhydrophobic polymer surfaces with excellent abrasion resistance by a simple lamination templating method publication-title: ACS Appl Mater Interfaces doi: 10.1021/am200741f – volume: 208 start-page: 287 year: 1998 ident: 10.1016/j.cocis.2014.04.009_bb0060 article-title: Super water- and oil-repellent surfaces resulting from fractal structure publication-title: J Colloid Interface Sci doi: 10.1006/jcis.1998.5813 – volume: 21 start-page: 052104 year: 2009 ident: 10.1016/j.cocis.2014.04.009_bb0580 article-title: Inertia dominated drop collisions. II. An analytical solution of the Navier–Stokes equations for a spreading viscous film publication-title: Phys Fluids doi: 10.1063/1.3129283 – volume: 7 start-page: 11325 year: 2011 ident: 10.1016/j.cocis.2014.04.009_bb0570 article-title: Microscopic structure influencing macroscopic splash at high Weber number publication-title: Soft Matter doi: 10.1039/c1sm05801k – volume: 24 start-page: 6262 year: 2008 ident: 10.1016/j.cocis.2014.04.009_bb0525 article-title: Dynamic effects of bouncing water droplets on superhydrophobic surfaces publication-title: Langmuir doi: 10.1021/la8003504 – volume: 47 start-page: 220 year: 1999 ident: 10.1016/j.cocis.2014.04.009_bb0245 article-title: Pearl drops publication-title: Europhys Lett doi: 10.1209/epl/i1999-00548-y – volume: 4 start-page: 1492 year: 2013 ident: 10.1016/j.cocis.2014.04.009_bb0280 article-title: Self-similarity of contact line depinning from textured surfaces publication-title: Nat Commun doi: 10.1038/ncomms2482 – volume: 22 start-page: 1711 year: 2006 ident: 10.1016/j.cocis.2014.04.009_bb0400 article-title: Designing for optimum liquid repellency publication-title: Langmuir doi: 10.1021/la052540l – volume: 119 start-page: 711 year: 2011 ident: 10.1016/j.cocis.2014.04.009_bb0355 article-title: Control of static and dynamic hydrophobicity of solid surface and its application publication-title: J Ceram Soc Jpn doi: 10.2109/jcersj2.119.711 – start-page: 117 year: 1992 ident: 10.1016/j.cocis.2014.04.009_bb0165 article-title: Die Selbstreinigungsfähigkeit pflanzlicher Oberflächen durch Epicuticularwachse – volume: 105 start-page: 166104 year: 2010 ident: 10.1016/j.cocis.2014.04.009_bb0480 article-title: Metastable underwater superhydrophobicity publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.105.166104 – volume: 23 start-page: 2962 year: 2011 ident: 10.1016/j.cocis.2014.04.009_bb0135 article-title: Transparent, thermally stable and mechanically robust superhydrophobic surfaces made from porous silica capsules publication-title: Adv Mater doi: 10.1002/adma.201100410 – volume: 29 start-page: 13396 year: 2013 ident: 10.1016/j.cocis.2014.04.009_bb0185 article-title: Utilizing dynamic tensiometry to quantify contact angle hysteresis and wetting state transitions on nonwetting surfaces publication-title: Langmuir doi: 10.1021/la4022678 – volume: 5 start-page: 485 year: 2013 ident: 10.1016/j.cocis.2014.04.009_bb0150 article-title: Preservation of superhydrophobic and superoleophobic properties upon wear damage publication-title: ACS Appl Mater Interfaces doi: 10.1021/am302541f – volume: 12 start-page: 2125 year: 1996 ident: 10.1016/j.cocis.2014.04.009_bb0015 article-title: Super-water-repellent fractal surfaces publication-title: Langmuir doi: 10.1021/la950418o – volume: 21 start-page: 11053 year: 2005 ident: 10.1016/j.cocis.2014.04.009_bb0445 article-title: Analysis of droplet evaporation on a superhydrophobic surface publication-title: Langmuir doi: 10.1021/la0518795 – volume: 29 start-page: 1100 year: 2013 ident: 10.1016/j.cocis.2014.04.009_bb0455 article-title: Wetting resistance at its topographical limit: the benefit of mushroom and serif T structures publication-title: Langmuir doi: 10.1021/la304179b – volume: 23 start-page: 4357 year: 2011 ident: 10.1016/j.cocis.2014.04.009_bb0070 article-title: Superamphiphobic diblock copolymer coatings publication-title: Chem Mater doi: 10.1021/cm201797e – volume: 29 start-page: 3765 year: 2013 ident: 10.1016/j.cocis.2014.04.009_bb0145 article-title: Surfaces with combined microscale and nanoscale structures: a route to mechanically stable superhydrophobic surfaces? publication-title: Langmuir doi: 10.1021/la304641q – volume: 26 start-page: 16090 year: 2010 ident: 10.1016/j.cocis.2014.04.009_bb0535 article-title: How micropatterns and air pressure affect splashing on surfaces publication-title: Langmuir doi: 10.1021/la102330e – volume: 7 start-page: 9380 year: 2011 ident: 10.1016/j.cocis.2014.04.009_bb0045 article-title: Contact angle hysteresis origins: Investigation on super-omniphobic surfaces publication-title: Soft Matter doi: 10.1039/c1sm05832k – volume: 323 start-page: 73 year: 2008 ident: 10.1016/j.cocis.2014.04.009_bb0425 article-title: Understanding of sliding and contact angle results in tilted plate experiments publication-title: Colloids Surf A doi: 10.1016/j.colsurfa.2007.09.032 – volume: 52 start-page: 165 year: 2000 ident: 10.1016/j.cocis.2014.04.009_bb0030 article-title: Roughness-induced non-wetting publication-title: Europhys Lett doi: 10.1209/epl/i2000-00418-8 – volume: 28 start-page: 8392 year: 2012 ident: 10.1016/j.cocis.2014.04.009_bb0205 article-title: Wetting on the microscale: shape of a liquid drop on a microstructured surface at different length scales publication-title: Langmuir doi: 10.1021/la300379u – volume: 339 start-page: 208 year: 2009 ident: 10.1016/j.cocis.2014.04.009_bb0275 article-title: A modified Cassie–Baxter relationship to explain contact angle hysteresis and anisotropy on non-wetting textured surfaces publication-title: J Colloid Interface Sci doi: 10.1016/j.jcis.2009.07.027 – volume: 8 start-page: 9765 year: 2012 ident: 10.1016/j.cocis.2014.04.009_bb0055 article-title: Absence of an evaporation-driven wetting transition on omniphobic surfaces publication-title: Soft Matter doi: 10.1039/c2sm25746g – volume: 381 start-page: 225 year: 1999 ident: 10.1016/j.cocis.2014.04.009_bb0095 article-title: Drag reduction of Newtonian fluid in a circular pipe with a highly water-repellent wall publication-title: J Fluid Mech doi: 10.1017/S0022112098003747 – volume: 115 start-page: 14852 year: 2011 ident: 10.1016/j.cocis.2014.04.009_bb0305 article-title: Study of wetting and adhesion interactions between water and various polymer and superhydrophobic surfaces publication-title: J Phys Chem C doi: 10.1021/jp2032466 – volume: 24 start-page: 14074 year: 2008 ident: 10.1016/j.cocis.2014.04.009_bb0515 article-title: Drop impact on porous superhydrophobic polymer surfaces publication-title: Langmuir doi: 10.1021/la802897g – volume: 21 start-page: 3881 year: 2005 ident: 10.1016/j.cocis.2014.04.009_bb0420 article-title: Drops down the hill: theoretical study of limiting contact angles and the hysteresis range on a tilted plate publication-title: Langmuir doi: 10.1021/la0474565 – volume: 9 start-page: 304 year: 2012 ident: 10.1016/j.cocis.2014.04.009_bb0495 article-title: Hierarchical, plasma nanotextured, robust superamphiphobic polymeric surfaces structurally stabilized through a wetting–drying cycle publication-title: Plasma Process Polym doi: 10.1002/ppap.201100124 – volume: 9 start-page: 501 year: 2009 ident: 10.1016/j.cocis.2014.04.009_bb0065 article-title: Inherently superoleophobic nanocomposite coatings by spray atomization publication-title: Nano Lett doi: 10.1021/nl8037272 – volume: 2 start-page: 457 year: 2003 ident: 10.1016/j.cocis.2014.04.009_bb0435 article-title: Superhydrophobic states publication-title: Nat Mater doi: 10.1038/nmat924 – volume: 69 start-page: 016301 year: 2004 ident: 10.1016/j.cocis.2014.04.009_bb0490 article-title: First steps in the spreading of a liquid droplet publication-title: Phys Rev E doi: 10.1103/PhysRevE.69.016301 – volume: 88 start-page: 294 year: 1982 ident: 10.1016/j.cocis.2014.04.009_bb0170 article-title: The interfacial profile in the contact line region and the Young–Dupré equation publication-title: J Colloid Interface Sci doi: 10.1016/0021-9797(82)90175-8 – volume: 5 start-page: 2549 year: 2009 ident: 10.1016/j.cocis.2014.04.009_bb0090 article-title: Wetting and friction on superoleophobic surfaces publication-title: Soft Matter – volume: 26 start-page: 18162 year: 2010 ident: 10.1016/j.cocis.2014.04.009_bb0290 article-title: Modeling receding contact lines on superhydrophobic surfaces publication-title: Langmuir doi: 10.1021/la103539m – volume: 4 start-page: 2232 year: 2008 ident: 10.1016/j.cocis.2014.04.009_bb0315 article-title: How does the leaf margin make the lotus surface dry as the lotus leaf floats on water publication-title: Soft Matter doi: 10.1039/b807857b – volume: 299 start-page: 841 year: 2006 ident: 10.1016/j.cocis.2014.04.009_bb0390 article-title: Retention forces and contact angles for critical liquid drops on non-horizontal surfaces publication-title: J Colloid Interface Sci doi: 10.1016/j.jcis.2006.02.018 – volume: 9 start-page: 418 year: 2013 ident: 10.1016/j.cocis.2014.04.009_bb0235 article-title: Design principles for superamphiphobic surfaces publication-title: Soft Matter doi: 10.1039/C2SM27016A – volume: 11 start-page: 3585 year: 1995 ident: 10.1016/j.cocis.2014.04.009_bb0340 article-title: Young–Dupre revisited publication-title: Langmuir doi: 10.1021/la00009a049 – volume: 8 start-page: 9635 year: 2012 ident: 10.1016/j.cocis.2014.04.009_bb0325 article-title: Super-hydrophobic surface with switchable adhesion responsive to both temperature and pH publication-title: Soft Matter doi: 10.1039/c2sm26399h – volume: 100 start-page: 171601 year: 2012 ident: 10.1016/j.cocis.2014.04.009_bb0450 article-title: Impact and wetting behaviors of impinging microdroplets on superhydrophobic textured surfaces publication-title: Appl Phys Lett doi: 10.1063/1.4705296 – volume: 16 start-page: 292 year: 2011 ident: 10.1016/j.cocis.2014.04.009_bb0505 article-title: Drop collisions with simple and complex surfaces publication-title: Curr Opin Colloid Interface Sci doi: 10.1016/j.cocis.2011.06.009 |
SSID | ssj0001225 |
Score | 2.524082 |
SecondaryResourceType | review_article |
Snippet | Characterization of the wetting properties is a prerequisite for a fundamental understanding and the targeted development of superhydrophobic and... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 343 |
SubjectTerms | Adhesion air Contact Contact angle Contact pressure energy Entrapment hydrophobicity Links Microstructure Nanostructure Superhydrophobicity Superoleophobicity Superomniphobicity Wetting |
Title | Characterization of super liquid-repellent surfaces |
URI | https://dx.doi.org/10.1016/j.cocis.2014.04.009 https://www.proquest.com/docview/1669843793 https://www.proquest.com/docview/2153601254 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6LHtSD6Kr4poJH67ZpmrRHKS7rAxF1wVto0gQqS3et26u_3Zk-fKEehEJpmECYDvMg33xDyLFhVFEhtOsJ67mMp9qNFILGlRbacowJNUD2ho_G7PIxfOyRpOuFQVhl6_sbn15763Zl0GpzMMvzwb0fIPVIzKBEQM5DbPhlTKCVn75-wDx8Wg9eRWEXpTvmoRrjBT4nR85un9V8p4hK_Dk6ffPTdfAZrpHVNmt0zpqDrZOeKfpkKemGtfXJyidewQ0SJO80zE2XpTO1zks1M6UzyZ-rPHNLg7cuEHBgubQIy9ok4-H5QzJy2-kIroasZe6qzArjxdrQjHMVhUZkGdVK-YEfcB1aqC0s5BqCK22R2C1SnslUpL1UQzwK02CLLBTTwmwTh2oeUg2RKjaGBVmmIOmxsRdGqQmFoWyH0E4rUrfU4TjBYiI7jNiTrFUpUZXSg8eLd8jJ-6ZZw5zxtzjv1C2_GIAE3_73xqPu50hQOt53pIWZVi_SBzuLkG8x-F0GMp4AalIok3f_e4A9soxfDSpwnyzMy8ocQKYyV4e1KR6SxbPk7voW3xdXo5s3oCLpag |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qe1APolWxPiN4NDTZJJvkKEVpbe3FFnpbsptdiJS29vH_ncmjqKgHIafNLCyzyzcz7LffANxpn0kWhsp2QuPYPk-UHUkijUsVKsMpJuQE2SHvjv3nSTCpQad6C0O0yhL7C0zP0bocaZfebC-yrP3qeiQ9EvtYIpDmYbQDDVKnCurQeOj1u8MtILss771K9jZNqMSHcpoXwk5Gst2un0ueEjHx5wD1Darz-PN0CAdl4mg9FGs7gpqeNWG3U_Vra8L-J2nBY_A6WyXm4qGlNTfWarPQS2uavW-y1F5qunjBmIPDS0PMrBMYPz2OOl27bJBgK0xc1rZMTaidWGmWci6jQIdpypSUrud6XAUGywuD6UbIpTKk7RZJR6cyUk6iMCQFiXcK9dl8ps_AYooHTGGwirX2vTSVmPeY2AmiRAehZn4LWOUVoUr1cGpiMRUVTexN5K4U5Erh4OfELbjfTloU4hl_m_PK3eLLGRAI739PvK02R6DT6cojmen5ZiVcPGoRSS56v9tg0uNhWYqV8vl_F3ADu93Ry0AMesP-BezRn4IkeAn19XKjrzBxWcvr8mB-AFN96oY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterization+of+super+liquid-repellent+surfaces&rft.jtitle=Current+opinion+in+colloid+%26+interface+science&rft.au=Butt%2C+Hans-Jurgen&rft.au=Roisman%2C+Ilia+V&rft.au=Brinkmann%2C+Martin&rft.au=Papadopoulos%2C+Periklis&rft.date=2014-08-01&rft.issn=1359-0294&rft.volume=19&rft.issue=4&rft.spage=343&rft.epage=354&rft_id=info:doi/10.1016%2Fj.cocis.2014.04.009&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-0294&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-0294&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-0294&client=summon |