Characterization of super liquid-repellent surfaces

Characterization of the wetting properties is a prerequisite for a fundamental understanding and the targeted development of superhydrophobic and superamphiphobic layers. To fabricate super liquid-repellent layers, two requirements need to be met: The surfaces have to be of low energy and their nano...

Full description

Saved in:
Bibliographic Details
Published inCurrent opinion in colloid & interface science Vol. 19; no. 4; pp. 343 - 354
Main Authors Butt, Hans-Jürgen, Roisman, Ilia V., Brinkmann, Martin, Papadopoulos, Periklis, Vollmer, Doris, Semprebon, Ciro
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.08.2014
Subjects
Online AccessGet full text
ISSN1359-0294
1879-0399
DOI10.1016/j.cocis.2014.04.009

Cover

Loading…
Abstract Characterization of the wetting properties is a prerequisite for a fundamental understanding and the targeted development of superhydrophobic and superamphiphobic layers. To fabricate super liquid-repellent layers, two requirements need to be met: The surfaces have to be of low energy and their nano- and microstructure needs to be designed in a way that leads to the entrapment of air. The challenge is to design and produce suitable nano- and microstructures to control wetting. Here we describe important methods to quantify wetting properties of super liquid-repellent layers. These properties include the apparent advancing and receding contact angles, the roll-off angle, tensile and lateral adhesion, the impalement pressure, and the observation of drop impact. The most important one is the apparent receding contact angle because it also limits lateral adhesion. The link of these properties to the nano- and microscopic structure of the layer is discussed. Limits, problems, and future challenges are pointed out. [Display omitted] •High apparent receding contact angle and high impalement pressure best characterize a super liquid-repellent surface.•The receding and advancing edges of drops progress in fundamentally different ways.•Tensile adhesion measurements are a sensitive way of characterizing super liquid-repellency.•The impalement pressure is determined mainly by the substrate morphology.
AbstractList Characterization of the wetting properties is a prerequisite for a fundamental understanding and the targeted development of superhydrophobic and superamphiphobic layers. To fabricate super liquid-repellent layers, two requirements need to be met: The surfaces have to be of low energy and their nano- and microstructure needs to be designed in a way that leads to the entrapment of air. The challenge is to design and produce suitable nano- and microstructures to control wetting. Here we describe important methods to quantify wetting properties of super liquid-repellent layers. These properties include the apparent advancing and receding contact angles, the roll-off angle, tensile and lateral adhesion, the impalement pressure, and the observation of drop impact. The most important one is the apparent receding contact angle because it also limits lateral adhesion. The link of these properties to the nano- and microscopic structure of the layer is discussed. Limits, problems, and future challenges are pointed out
Characterization of the wetting properties is a prerequisite for a fundamental understanding and the targeted development of superhydrophobic and superamphiphobic layers. To fabricate super liquid-repellent layers, two requirements need to be met: The surfaces have to be of low energy and their nano- and microstructure needs to be designed in a way that leads to the entrapment of air. The challenge is to design and produce suitable nano- and microstructures to control wetting. Here we describe important methods to quantify wetting properties of super liquid-repellent layers. These properties include the apparent advancing and receding contact angles, the roll-off angle, tensile and lateral adhesion, the impalement pressure, and the observation of drop impact. The most important one is the apparent receding contact angle because it also limits lateral adhesion. The link of these properties to the nano- and microscopic structure of the layer is discussed. Limits, problems, and future challenges are pointed out. [Display omitted] •High apparent receding contact angle and high impalement pressure best characterize a super liquid-repellent surface.•The receding and advancing edges of drops progress in fundamentally different ways.•Tensile adhesion measurements are a sensitive way of characterizing super liquid-repellency.•The impalement pressure is determined mainly by the substrate morphology.
Characterization of the wetting properties is a prerequisite for a fundamental understanding and the targeted development of superhydrophobic and superamphiphobic layers. To fabricate super liquid-repellent layers, two requirements need to be met: The surfaces have to be of low energy and their nano- and microstructure needs to be designed in a way that leads to the entrapment of air. The challenge is to design and produce suitable nano- and microstructures to control wetting. Here we describe important methods to quantify wetting properties of super liquid-repellent layers. These properties include the apparent advancing and receding contact angles, the roll-off angle, tensile and lateral adhesion, the impalement pressure, and the observation of drop impact. The most important one is the apparent receding contact angle because it also limits lateral adhesion. The link of these properties to the nano- and microscopic structure of the layer is discussed. Limits, problems, and future challenges are pointed out.
Author Semprebon, Ciro
Butt, Hans-Jürgen
Brinkmann, Martin
Vollmer, Doris
Roisman, Ilia V.
Papadopoulos, Periklis
Author_xml – sequence: 1
  givenname: Hans-Jürgen
  orcidid: 0000-0001-5391-2618
  surname: Butt
  fullname: Butt, Hans-Jürgen
  organization: Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
– sequence: 2
  givenname: Ilia V.
  surname: Roisman
  fullname: Roisman, Ilia V.
  organization: Center of Smart Interfaces, Technical University Darmstadt, Alarich-Weiss-Straße 10, 64287 Darmstadt, Germany
– sequence: 3
  givenname: Martin
  surname: Brinkmann
  fullname: Brinkmann, Martin
  organization: Max Planck Institute for Dynamics and Self-Organization, Am Faßberg 17, 37077 Göttingen, Germany
– sequence: 4
  givenname: Periklis
  surname: Papadopoulos
  fullname: Papadopoulos, Periklis
  organization: Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
– sequence: 5
  givenname: Doris
  surname: Vollmer
  fullname: Vollmer, Doris
  organization: Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
– sequence: 6
  givenname: Ciro
  surname: Semprebon
  fullname: Semprebon, Ciro
  organization: Max Planck Institute for Dynamics and Self-Organization, Am Faßberg 17, 37077 Göttingen, Germany
BookMark eNqFkE9Lw0AQxRepYFv9BF569JI4m81usgcPUvwHBS96XjaTCW5Jk3Y3EfTTu209ebAwMMPwfsO8N2OTru-IsWsOKQeubtcp9uhCmgHPU4gF-oxNeVnoBITWkzgLGedM5xdsFsIaAHiWySkTyw_rLQ7k3bcdXN8t-mYRxi35Ret2o6sTT1tqW-qGuPaNRQqX7LyxbaCr3z5n748Pb8vnZPX69LK8XyUoQQ5JVTcFgUbKaqWqUlJR1xlWFRdcKJRNJqDRhSpUhQ1wrssKqK5KBIsFL6UVc3ZzvLv1_W6kMJiNCxifsR31YzAZl0JFHzI_KeVK6TIXhRZRqo9S9H0InhqDbjhYH7x1reFg9pmatTlkavaZGogFOrLiD7v1bmP91wnq7khRDOvTkTcBHXVItfOEg6l79y__A417k74
CitedBy_id crossref_primary_10_3390_ma15144747
crossref_primary_10_1021_acs_langmuir_0c02643
crossref_primary_10_3390_polym14010122
crossref_primary_10_1002_anie_202115238
crossref_primary_10_1016_j_colsurfa_2016_08_030
crossref_primary_10_31083_j_fbl2705144
crossref_primary_10_1016_j_colsurfa_2016_04_017
crossref_primary_10_3390_coatings9090541
crossref_primary_10_1021_acs_jpclett_1c00760
crossref_primary_10_1016_j_colsurfa_2016_06_024
crossref_primary_10_1126_science_aaf2073
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124370
crossref_primary_10_1038_s41557_023_01346_3
crossref_primary_10_1002_adma_201405855
crossref_primary_10_1103_PhysRevLett_126_234503
crossref_primary_10_1021_acs_chemmater_6b03537
crossref_primary_10_1021_acs_langmuir_5b01174
crossref_primary_10_1016_j_jcis_2023_05_161
crossref_primary_10_1038_s41598_017_15287_8
crossref_primary_10_1039_D0CS00751J
crossref_primary_10_1134_S1061933X22040081
crossref_primary_10_1038_s41598_020_64345_1
crossref_primary_10_3390_ijms22073341
crossref_primary_10_1016_j_jcis_2018_10_046
crossref_primary_10_1016_j_porgcoat_2023_107875
crossref_primary_10_1021_acsami_6b01926
crossref_primary_10_1021_acs_langmuir_3c03967
crossref_primary_10_1063_5_0207533
crossref_primary_10_1016_j_porgcoat_2019_03_042
crossref_primary_10_1039_C8NR06119J
crossref_primary_10_1002_admi_202001205
crossref_primary_10_1021_acs_langmuir_9b03953
crossref_primary_10_1016_j_cis_2017_09_003
crossref_primary_10_1016_j_jiec_2020_12_017
crossref_primary_10_1002_adma_202402893
crossref_primary_10_1016_j_jcis_2018_08_059
crossref_primary_10_1039_C9SM01221D
crossref_primary_10_4028_www_scientific_net_AMM_815_116
crossref_primary_10_1038_s41467_017_01510_7
crossref_primary_10_1016_j_cocis_2019_11_012
crossref_primary_10_1021_acs_langmuir_1c03134
crossref_primary_10_1063_5_0064040
crossref_primary_10_3762_bjnano_8_84
crossref_primary_10_1016_j_colsurfa_2020_125524
crossref_primary_10_1016_j_memsci_2017_03_033
crossref_primary_10_1021_acs_langmuir_2c02095
crossref_primary_10_1021_acs_langmuir_5b01157
crossref_primary_10_1016_j_surfcoat_2019_05_077
crossref_primary_10_1021_acsami_0c00636
crossref_primary_10_1038_s44172_025_00386_6
crossref_primary_10_1002_pssa_201700895
crossref_primary_10_1021_acssuschemeng_3c07635
crossref_primary_10_1016_j_precisioneng_2018_01_004
crossref_primary_10_1016_j_cej_2019_05_077
crossref_primary_10_1088_1361_665X_ad1c3a
crossref_primary_10_1002_adma_202105130
crossref_primary_10_1021_acs_langmuir_9b00152
crossref_primary_10_1039_C8SM01333K
crossref_primary_10_1088_1748_3190_11_2_025002
crossref_primary_10_3390_ma9050373
crossref_primary_10_1021_acs_langmuir_8b03276
crossref_primary_10_1016_j_apsusc_2016_04_101
crossref_primary_10_1021_ie503798k
crossref_primary_10_1002_admi_201701052
crossref_primary_10_1002_admi_201900839
crossref_primary_10_1016_j_cej_2022_136985
crossref_primary_10_1021_acs_langmuir_3c01841
crossref_primary_10_1080_01932691_2015_1101610
crossref_primary_10_1021_acs_langmuir_5b00193
crossref_primary_10_1021_acs_langmuir_4c00618
crossref_primary_10_1088_1361_6439_ad208a
crossref_primary_10_1016_j_cej_2025_159306
crossref_primary_10_1063_5_0070828
crossref_primary_10_1016_j_jcis_2022_10_091
crossref_primary_10_3390_biomimetics7040196
crossref_primary_10_1038_s41586_020_2331_8
crossref_primary_10_1002_pi_6098
crossref_primary_10_1002_pssa_202200417
crossref_primary_10_1016_j_ceramint_2021_01_009
crossref_primary_10_2174_1872212115666210929115445
crossref_primary_10_1016_j_apsusc_2020_148611
crossref_primary_10_1134_S2075113320020203
crossref_primary_10_1021_acs_chemmater_6b02765
crossref_primary_10_1073_pnas_1614667114
crossref_primary_10_1016_j_clay_2024_107626
crossref_primary_10_1002_dro2_9
crossref_primary_10_1039_D3SM01178J
crossref_primary_10_1115_1_4032596
crossref_primary_10_3390_polym12010023
crossref_primary_10_1016_j_eurpolymj_2020_110087
crossref_primary_10_1038_s42005_024_01582_0
crossref_primary_10_1007_s00348_018_2514_3
crossref_primary_10_1016_j_jcis_2022_09_140
crossref_primary_10_3390_polym12071528
crossref_primary_10_1016_j_colsurfa_2019_124175
crossref_primary_10_1002_adma_201602714
crossref_primary_10_1039_D4SM00601A
crossref_primary_10_1016_j_colsurfa_2016_08_061
crossref_primary_10_1016_j_colsurfa_2023_132993
crossref_primary_10_1039_C5NR07678A
crossref_primary_10_1038_s41467_018_05895_x
crossref_primary_10_1002_ange_202115238
crossref_primary_10_1002_admi_201700381
crossref_primary_10_1080_09506608_2023_2193784
crossref_primary_10_1021_acs_nanolett_8b00164
crossref_primary_10_1103_PhysRevFluids_10_013602
crossref_primary_10_1002_admi_201800167
crossref_primary_10_1021_acs_langmuir_0c03365
crossref_primary_10_1016_j_jmrt_2021_02_068
crossref_primary_10_1039_C5RA20782G
crossref_primary_10_1016_j_cis_2021_102470
crossref_primary_10_1063_5_0169631
crossref_primary_10_1016_j_cis_2022_102692
crossref_primary_10_1126_science_aav5388
crossref_primary_10_1038_s42005_023_01268_z
crossref_primary_10_1021_acs_biomac_8b01176
crossref_primary_10_1021_la503601u
crossref_primary_10_1007_s40516_020_00130_2
crossref_primary_10_1016_j_coco_2021_100740
crossref_primary_10_1002_smll_202203820
crossref_primary_10_1021_acs_langmuir_8b03088
crossref_primary_10_1016_j_colsurfa_2022_129899
crossref_primary_10_1063_5_0243873
crossref_primary_10_1103_PhysRevLett_125_184502
crossref_primary_10_1103_PhysRevApplied_20_064004
crossref_primary_10_1016_j_apsusc_2016_12_098
crossref_primary_10_1021_acs_langmuir_0c02147
crossref_primary_10_1002_smll_202405335
crossref_primary_10_1021_acs_jpclett_4c02834
crossref_primary_10_1002_app_53629
crossref_primary_10_1080_02670844_2019_1609205
crossref_primary_10_1002_admi_202400680
crossref_primary_10_1038_s41467_022_32409_7
crossref_primary_10_1021_acsami_6b08607
crossref_primary_10_1002_admi_202300507
crossref_primary_10_1016_j_foodchem_2025_143793
crossref_primary_10_1103_PhysRevE_93_022804
crossref_primary_10_1007_s00396_017_4188_4
crossref_primary_10_1038_527041a
crossref_primary_10_1021_acsnano_9b08211
crossref_primary_10_1002_smll_201700860
crossref_primary_10_1016_j_ijheatmasstransfer_2021_122169
crossref_primary_10_1038_s43246_020_00065_3
crossref_primary_10_1039_C7NR05188C
crossref_primary_10_1063_1_5020085
crossref_primary_10_1002_dro2_55
crossref_primary_10_1007_s00226_022_01420_y
crossref_primary_10_3390_coatings11121508
crossref_primary_10_1007_s00396_015_3823_1
crossref_primary_10_1021_acsanm_3c02575
crossref_primary_10_1039_C5CS00438A
crossref_primary_10_1016_j_cis_2022_102797
crossref_primary_10_1103_PhysRevE_95_063104
crossref_primary_10_1039_D1CS00258A
crossref_primary_10_1039_D4SM01509F
crossref_primary_10_3390_coatings11030369
crossref_primary_10_1016_j_matlet_2016_08_078
crossref_primary_10_1038_srep21400
crossref_primary_10_1007_s10570_021_04088_y
crossref_primary_10_1016_j_scitotenv_2022_161195
crossref_primary_10_1021_acs_langmuir_9b02368
crossref_primary_10_1038_s41598_018_33542_4
crossref_primary_10_1073_pnas_1916772116
Cites_doi 10.1007/s00396-011-2570-1
10.1103/PhysRevLett.112.016101
10.1016/0095-8522(62)90011-9
10.1007/s004250050096
10.1016/0095-8522(60)90044-1
10.1021/la020088p
10.1021/la062634a
10.1063/1.3244597
10.1021/la000598o
10.1103/PhysRevLett.109.166101
10.1557/mrs.2013.103
10.1146/annurev-fluid-121108-145558
10.1021/la102566c
10.1021/la970645l
10.1126/science.1207115
10.1039/tf9444000546
10.1021/la062301d
10.1680/si.13.00010
10.1021/la204424n
10.1039/c2sm06744g
10.1209/0295-5075/81/36003
10.1073/pnas.1218673110
10.1021/la025769z
10.1021/la103097y
10.1209/epl/i2005-10523-2
10.1364/AO.37.006892
10.1039/b501657f
10.1006/jcis.1995.1130
10.1098/rspa.1942.0031
10.1021/la100031d
10.1063/1.4757122
10.1016/0021-9797(80)90124-1
10.1038/417811a
10.1103/RevModPhys.57.827
10.1126/science.1148326
10.1016/0021-9797(82)90115-1
10.1016/j.cis.2008.10.002
10.1063/1.3129282
10.1038/ncomms3512
10.1017/S0022112004000904
10.1039/c3sm51959g
10.1021/la402409f
10.1146/annurev.fluid.38.050304.092144
10.1002/adma.201200184
10.1364/OL.25.000478
10.1021/la060323u
10.1103/PhysRevLett.96.146106
10.1021/jp8066876
10.1021/la3041067
10.1021/la302856b
10.1021/la401120j
10.1073/pnas.0804872105
10.1017/jfm.2013.284
10.1021/la804099z
10.1021/la9047424
10.1039/B917861A
10.1017/S0022112085000842
10.1039/b925970h
10.1021/la8014578
10.1039/B811945G
10.1021/ja310517s
10.1039/c2sm25156f
10.1021/la400009m
10.1615/AtomizSpr.2012005704
10.1016/j.cocis.2006.06.002
10.1021/la990074s
10.1021/la062596v
10.1209/epl/i2005-10522-3
10.1016/j.jcis.2007.05.059
10.1209/0295-5075/81/26006
10.1140/epje/i2007-10235-y
10.1021/am200741f
10.1006/jcis.1998.5813
10.1063/1.3129283
10.1039/c1sm05801k
10.1021/la8003504
10.1209/epl/i1999-00548-y
10.1038/ncomms2482
10.1021/la052540l
10.2109/jcersj2.119.711
10.1103/PhysRevLett.105.166104
10.1002/adma.201100410
10.1021/la4022678
10.1021/am302541f
10.1021/la950418o
10.1021/la0518795
10.1021/la304179b
10.1021/cm201797e
10.1021/la304641q
10.1021/la102330e
10.1039/c1sm05832k
10.1016/j.colsurfa.2007.09.032
10.1209/epl/i2000-00418-8
10.1021/la300379u
10.1016/j.jcis.2009.07.027
10.1039/c2sm25746g
10.1017/S0022112098003747
10.1021/jp2032466
10.1021/la802897g
10.1021/la0474565
10.1002/ppap.201100124
10.1021/nl8037272
10.1038/nmat924
10.1103/PhysRevE.69.016301
10.1016/0021-9797(82)90175-8
10.1021/la103539m
10.1039/b807857b
10.1016/j.jcis.2006.02.018
10.1039/C2SM27016A
10.1021/la00009a049
10.1039/c2sm26399h
10.1063/1.4705296
10.1016/j.cocis.2011.06.009
ContentType Journal Article
Copyright 2014 Elsevier Ltd
Copyright_xml – notice: 2014 Elsevier Ltd
DBID AAYXX
CITATION
7U5
8FD
L7M
7S9
L.6
DOI 10.1016/j.cocis.2014.04.009
DatabaseName CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Solid State and Superconductivity Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Technology Research Database

AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1879-0399
EndPage 354
ExternalDocumentID 10_1016_j_cocis_2014_04_009
S1359029414000478
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AAXUO
ABJNI
ABMAC
ABNEU
ABNUV
ABXDB
ABXRA
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHPOS
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCB
SCC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SSG
SSK
SSM
SSQ
SSZ
T5K
XPP
ZMT
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7U5
8FD
L7M
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c505t-bdf7e09ce2d66b85e7dd2cbb13136c5f230f97676bcf01198b0edb8c0ac7185a3
IEDL.DBID .~1
ISSN 1359-0294
IngestDate Sun Aug 24 03:06:44 EDT 2025
Fri Jul 11 09:51:10 EDT 2025
Thu Apr 24 23:00:17 EDT 2025
Tue Jul 01 00:47:24 EDT 2025
Fri Feb 23 02:33:40 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Nanostructure
Superhydrophobicity
Superomniphobicity
Superoleophobicity
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c505t-bdf7e09ce2d66b85e7dd2cbb13136c5f230f97676bcf01198b0edb8c0ac7185a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5391-2618
PQID 1669843793
PQPubID 23500
PageCount 12
ParticipantIDs proquest_miscellaneous_2153601254
proquest_miscellaneous_1669843793
crossref_citationtrail_10_1016_j_cocis_2014_04_009
crossref_primary_10_1016_j_cocis_2014_04_009
elsevier_sciencedirect_doi_10_1016_j_cocis_2014_04_009
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-08-01
PublicationDateYYYYMMDD 2014-08-01
PublicationDate_xml – month: 08
  year: 2014
  text: 2014-08-01
  day: 01
PublicationDecade 2010
PublicationTitle Current opinion in colloid & interface science
PublicationYear 2014
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References de Gennes (bb0180) 1985; 57
Duvivier, Rioboo, Voue, De Coninck (bb0540) 2012; 22
Joly, Biben (bb0090) 2009; 5
Cassie, Baxter (bb0240) 1944; 40
Checco, Ocko, Tasinkevych, Dietrich (bb0460) 2012; 109
Extrand, Kumagai (bb0410) 1995; 170
Busse, Sandham, McHale, Newton (bb0110) 2013; 727
Semprebon, Herminghaus, Brinkmann (bb0295) 2012; 8
Li (bb0605) 2013
Churaev, Starov, Derjaguin (bb0175) 1982; 89
Deng, Schellenberger, Papadopoulos, Vollmer, Butt (bb0555) 2013; 29
Pan, Kota, Mabry, Tuteja (bb0550) 2013; 135
Xu, Mondal, Lyons (bb0130) 2011; 3
Poetes, Holtzmann, Franze, Steiner (bb0480) 2010; 105
Callies, Quéré (bb0225) 2005; 1
Wiegand, Neumaier, Sackmann (bb0215) 1998; 37
Öner, McCarthy (bb0255) 2000; 16
Paxson, Varanasi (bb0280) 2013; 4
Starov, Velarde, Radke (bb0230) 2007
Quéré, Azzopardi, Delattre (bb0380) 1998; 14
Antonini, Carmona, Pierce, Marengo, Amirfazil (bb0395) 2009; 25
Jin, Tian, Ikkala, Ras (bb0150) 2013; 5
Lafuma, Quéré (bb0435) 2003; 2
Reyssat, Pépin, Marty, Chen, Quéré (bb0585) 2006; 74
Sahu, Sinha-Ray, Yarin, Pourdeyhimi (bb0600) 2012; 8
Frenkel (bb0370) 1948; 18
Tsai, van der Veen, van de Raa, Lohse (bb0535) 2010; 26
Cheng, Lai, Du, Zhu, Zhang, Sun (bb0325) 2012; 8
Macdougall, Ockrent (bb0360) 1942; 180
Nosonovsky (bb0085) 2007; 23
Wolfram, Faust (bb0415) 1978
Xiong, Liu, Hong, Duncan (bb0070) 2011; 23
Kota, Kwon, Choi, Mabry, Tuteja (bb0160) 2012; 1038
Barthlott, Neinhuis (bb0010) 1997; 202
Herminghaus (bb0030) 2000; 52
Furmidge (bb0335) 1962; 17
Samuel, Zhao, Law (bb0305) 2011; 115
Reyssat, Quéré (bb0300) 2009; 113
Mognetti, Yeomans (bb0290) 2010; 26
Patankar (bb0545) 2010; 26
Drelich (bb0190) 2013; 4
Roisman, Berberovic, Tropea (bb0595) 2009; 21
Ye, Deng, Ally, Papadopoulos, Schellenberger, Vollmer (bb0330) 2014; 112
McHale, Newton, Shirtcliffe (bb0100) 2010; 6
Butt, Semprebon, Papadopoulos, Vollmer, Brinkmann, Ciccotti (bb0235) 2013; 9
Krasovitski, Marmur (bb0420) 2005; 21
Steele, Bayer, Loth (bb0065) 2009; 9
Zhou, Wang, Niu, Gestos, Wang, Lin (bb0140) 2012; 24
Kawasaki (bb0365) 1960; 15
Bico, Marzolin, Quéré (bb0245) 1999; 47
Wayner (bb0170) 1982; 88
Watanabe, Udagawa, Udagawa (bb0095) 1999; 381
Marengo, Antonini, Roisman, Tropea (bb0505) 2011; 16
Bartolo, Bouamrirene, Verneuil, Guguin, Silberzan, Moulinet (bb0510) 2006; 74
Clanet, Béguin, Richard, Quéré (bb0565) 2004; 517
Sakai, Song, Yoshida, Suzuki, Kameshima, Nakajima (bb0385) 2006; 22
Bormashenko, Musin, Whyman, Zinigrad (bb0475) 2012; 28
Tsai, Hendrix, Dijkstra, Shui, Lohse (bb0570) 2011; 7
Nguyen, Brunet, Coffinier, Boukherroub (bb0530) 2010; 26
Park, Chhatre, Srinivasan, Cohen, McKinley (bb0115) 2013; 29
Susarrey-Arce, Marin, Nair, Lefferts, Gardeniers, Lohse (bb0055) 2012; 8
Dufour, Harnois, Thomy, Boukherroub, Senez (bb0045) 2011; 7
Kleingartner, Srinivasan, Mabry, Cohen, McKinley (bb0185) 2013; 29
Gnanappa, Papageorgiou, Gogolides, Tserepi, Papathanasiou, Boudouvis (bb0495) 2012; 9
Shibuichi, Yamamoto, Onda, Tsujii (bb0060) 1998; 208
Biance, Clanet, Quéré (bb0490) 2004; 69
Tuteja, Choi, Mabry, McKinley, Cohen (bb0040) 2008; 105
Miljkovic, Wang (bb0120) 2013; 38
Tuteja, Choi, Ma, Mabry, Mazzella, Rutledge (bb0035) 2007; 318
Deng, Mammen, Butt, Vollmer (bb0075) 2012; 335
Rothstein (bb0105) 2010; 42
Hensel, Helbig, Aland, Braun, Voigt, Neinhuis (bb0455) 2013; 29
Dorrer, Rühe (bb0285) 2007; 23
Papadopoulos, Deng, Mammen, Drotlef, Battagliarin, Li (bb0205) 2012; 28
Yoshimitsu, Nakajima, Watanabe, Hashimoto (bb0260) 2002; 18
Groten, Rühe (bb0145) 2013; 29
Korhonen, Huhtamaki, Ikkala, Ras (bb0200) 2013; 29
Gao, McCarthy (bb0270) 2007; 23
Kwak, Lee, Senthil, Yong (bb0520) 2009; 95
Onda, Shibuichi, Satoh, Tsujii (bb0015) 1996; 12
Dussan (bb0375) 1985; 151
Baret, Brinkmann (bb0345) 2006; 96
Reyssat, Yeomans, Quéré (bb0440) 2008; 81
Brown, Orr, Scriven (bb0405) 1980; 73
ElSherbini, Jacobi (bb0390) 2006; 299
Lembach, Tan, Roisman, Gambaryan-Roisman, Zhang, Tropea (bb0590) 2010; 26
Im, Im, Lee, Yoon, Choi (bb0050) 2010; 6
Deng, Mammen, Zhao, Lellig, Müllen, Li (bb0135) 2011; 23
Pilat, Papadopoulos, Schäffel, Vollmer, Berger, Butt (bb0310) 2012; 28
Dettre, Johnson (bb0005) 1967; 25
Moulinet, Bartolo (bb0485) 2007; 24
Roisman (bb0580) 2009; 21
Pierce, Carmona, Amirfazli (bb0425) 2008; 323
Antonini, Amirfazli, Marengo (bb0575) 2012; 24
Fischer, Ovryn (bb0220) 2000; 25
Choi, Tuteja, Mabry, Cohen, McKinley (bb0275) 2009; 339
Jung, Bhushan (bb0525) 2008; 24
Zhang, Wang, Zhao, Xu, Gao, Zheng (bb0315) 2008; 4
Extrand, Moon (bb0195) 2010; 26
Ensikat, Mayser, Barthlott (bb0320) 2012; 28
Dorrer, Rühe (bb0250) 2009; 5
Yoshida (bb0080) 2012; 290
Yarin (bb0500) 2006; 38
Extrand (bb0400) 2006; 22
Butt, Kappl (bb0350) 2009; 146
Extrand (bb0265) 2002; 18
Paven, Papadopoulos, Schöttler, Deng, Mailänder, Vollmer (bb0125) 2013; 4
Lobaton, Salamon (bb0465) 2007; 314
Rioboo, Voué, Vaillant, De Coninck (bb0515) 2008; 24
Semprebon, Brinkmann (bb0430) 2014; 10
Nakajima (bb0355) 2011; 119
Kusumaatmaja, Blow, Dupuis, Yeomans (bb0470) 2008; 81
Barthlott (bb0165) 1992
McHale, Aqil, Shirtcliffe, Newton, Erbil (bb0445) 2005; 21
Richard, Clanet, Quéré (bb0560) 2002; 417
Chen, Fadeev, Hsieh (bb0020) 1999; 15
Schrader (bb0340) 1995; 11
Kwon, Lee (bb0450) 2012; 100
Ma, Hill (bb0025) 2006; 11
Gao, McCarthy (bb0155) 2008; 24
Papadopoulos, Mammen, Deng, Vollmer, Butt (bb0210) 2013; 110
Butt (10.1016/j.cocis.2014.04.009_bb0350) 2009; 146
Chen (10.1016/j.cocis.2014.04.009_bb0020) 1999; 15
Dussan (10.1016/j.cocis.2014.04.009_bb0375) 1985; 151
Dorrer (10.1016/j.cocis.2014.04.009_bb0250) 2009; 5
Tuteja (10.1016/j.cocis.2014.04.009_bb0035) 2007; 318
Antonini (10.1016/j.cocis.2014.04.009_bb0575) 2012; 24
Barthlott (10.1016/j.cocis.2014.04.009_bb0165) 1992
Watanabe (10.1016/j.cocis.2014.04.009_bb0095) 1999; 381
McHale (10.1016/j.cocis.2014.04.009_bb0100) 2010; 6
Checco (10.1016/j.cocis.2014.04.009_bb0460) 2012; 109
Choi (10.1016/j.cocis.2014.04.009_bb0275) 2009; 339
Extrand (10.1016/j.cocis.2014.04.009_bb0410) 1995; 170
Park (10.1016/j.cocis.2014.04.009_bb0115) 2013; 29
Schrader (10.1016/j.cocis.2014.04.009_bb0340) 1995; 11
Mognetti (10.1016/j.cocis.2014.04.009_bb0290) 2010; 26
Lafuma (10.1016/j.cocis.2014.04.009_bb0435) 2003; 2
Sakai (10.1016/j.cocis.2014.04.009_bb0385) 2006; 22
Patankar (10.1016/j.cocis.2014.04.009_bb0545) 2010; 26
Xiong (10.1016/j.cocis.2014.04.009_bb0070) 2011; 23
Ye (10.1016/j.cocis.2014.04.009_bb0330) 2014; 112
Yoshida (10.1016/j.cocis.2014.04.009_bb0080) 2012; 290
Rioboo (10.1016/j.cocis.2014.04.009_bb0515) 2008; 24
Marengo (10.1016/j.cocis.2014.04.009_bb0505) 2011; 16
Pan (10.1016/j.cocis.2014.04.009_bb0550) 2013; 135
Fischer (10.1016/j.cocis.2014.04.009_bb0220) 2000; 25
Xu (10.1016/j.cocis.2014.04.009_bb0130) 2011; 3
Samuel (10.1016/j.cocis.2014.04.009_bb0305) 2011; 115
Extrand (10.1016/j.cocis.2014.04.009_bb0265) 2002; 18
Extrand (10.1016/j.cocis.2014.04.009_bb0195) 2010; 26
Pilat (10.1016/j.cocis.2014.04.009_bb0310) 2012; 28
Cheng (10.1016/j.cocis.2014.04.009_bb0325) 2012; 8
Korhonen (10.1016/j.cocis.2014.04.009_bb0200) 2013; 29
Ma (10.1016/j.cocis.2014.04.009_bb0025) 2006; 11
Papadopoulos (10.1016/j.cocis.2014.04.009_bb0205) 2012; 28
Deng (10.1016/j.cocis.2014.04.009_bb0135) 2011; 23
Moulinet (10.1016/j.cocis.2014.04.009_bb0485) 2007; 24
Deng (10.1016/j.cocis.2014.04.009_bb0075) 2012; 335
Bormashenko (10.1016/j.cocis.2014.04.009_bb0475) 2012; 28
Krasovitski (10.1016/j.cocis.2014.04.009_bb0420) 2005; 21
Duvivier (10.1016/j.cocis.2014.04.009_bb0540) 2012; 22
Furmidge (10.1016/j.cocis.2014.04.009_bb0335) 1962; 17
Quéré (10.1016/j.cocis.2014.04.009_bb0380) 1998; 14
Reyssat (10.1016/j.cocis.2014.04.009_bb0585) 2006; 74
de Gennes (10.1016/j.cocis.2014.04.009_bb0180) 1985; 57
Wiegand (10.1016/j.cocis.2014.04.009_bb0215) 1998; 37
Clanet (10.1016/j.cocis.2014.04.009_bb0565) 2004; 517
Barthlott (10.1016/j.cocis.2014.04.009_bb0010) 1997; 202
Callies (10.1016/j.cocis.2014.04.009_bb0225) 2005; 1
Kusumaatmaja (10.1016/j.cocis.2014.04.009_bb0470) 2008; 81
Churaev (10.1016/j.cocis.2014.04.009_bb0175) 1982; 89
Shibuichi (10.1016/j.cocis.2014.04.009_bb0060) 1998; 208
Brown (10.1016/j.cocis.2014.04.009_bb0405) 1980; 73
Jung (10.1016/j.cocis.2014.04.009_bb0525) 2008; 24
Sahu (10.1016/j.cocis.2014.04.009_bb0600) 2012; 8
Kota (10.1016/j.cocis.2014.04.009_bb0160) 2012; 1038
Papadopoulos (10.1016/j.cocis.2014.04.009_bb0210) 2013; 110
Kwon (10.1016/j.cocis.2014.04.009_bb0450) 2012; 100
Extrand (10.1016/j.cocis.2014.04.009_bb0400) 2006; 22
Jin (10.1016/j.cocis.2014.04.009_bb0150) 2013; 5
Gao (10.1016/j.cocis.2014.04.009_bb0270) 2007; 23
Dettre (10.1016/j.cocis.2014.04.009_bb0005) 1967; 25
Susarrey-Arce (10.1016/j.cocis.2014.04.009_bb0055) 2012; 8
Semprebon (10.1016/j.cocis.2014.04.009_bb0295) 2012; 8
Steele (10.1016/j.cocis.2014.04.009_bb0065) 2009; 9
Busse (10.1016/j.cocis.2014.04.009_bb0110) 2013; 727
Ensikat (10.1016/j.cocis.2014.04.009_bb0320) 2012; 28
Wolfram (10.1016/j.cocis.2014.04.009_bb0415) 1978
Poetes (10.1016/j.cocis.2014.04.009_bb0480) 2010; 105
Richard (10.1016/j.cocis.2014.04.009_bb0560) 2002; 417
Yarin (10.1016/j.cocis.2014.04.009_bb0500) 2006; 38
Deng (10.1016/j.cocis.2014.04.009_bb0555) 2013; 29
Joly (10.1016/j.cocis.2014.04.009_bb0090) 2009; 5
Nakajima (10.1016/j.cocis.2014.04.009_bb0355) 2011; 119
Reyssat (10.1016/j.cocis.2014.04.009_bb0300) 2009; 113
Antonini (10.1016/j.cocis.2014.04.009_bb0395) 2009; 25
Miljkovic (10.1016/j.cocis.2014.04.009_bb0120) 2013; 38
Dorrer (10.1016/j.cocis.2014.04.009_bb0285) 2007; 23
Kwak (10.1016/j.cocis.2014.04.009_bb0520) 2009; 95
Pierce (10.1016/j.cocis.2014.04.009_bb0425) 2008; 323
Zhang (10.1016/j.cocis.2014.04.009_bb0315) 2008; 4
Nosonovsky (10.1016/j.cocis.2014.04.009_bb0085) 2007; 23
Macdougall (10.1016/j.cocis.2014.04.009_bb0360) 1942; 180
Bico (10.1016/j.cocis.2014.04.009_bb0245) 1999; 47
Paven (10.1016/j.cocis.2014.04.009_bb0125) 2013; 4
Starov (10.1016/j.cocis.2014.04.009_bb0230) 2007
Onda (10.1016/j.cocis.2014.04.009_bb0015) 1996; 12
Gnanappa (10.1016/j.cocis.2014.04.009_bb0495) 2012; 9
Kleingartner (10.1016/j.cocis.2014.04.009_bb0185) 2013; 29
Nguyen (10.1016/j.cocis.2014.04.009_bb0530) 2010; 26
Zhou (10.1016/j.cocis.2014.04.009_bb0140) 2012; 24
Butt (10.1016/j.cocis.2014.04.009_bb0235) 2013; 9
Roisman (10.1016/j.cocis.2014.04.009_bb0595) 2009; 21
Yoshimitsu (10.1016/j.cocis.2014.04.009_bb0260) 2002; 18
Bartolo (10.1016/j.cocis.2014.04.009_bb0510) 2006; 74
ElSherbini (10.1016/j.cocis.2014.04.009_bb0390) 2006; 299
Hensel (10.1016/j.cocis.2014.04.009_bb0455) 2013; 29
Frenkel (10.1016/j.cocis.2014.04.009_bb0370) 1948; 18
Reyssat (10.1016/j.cocis.2014.04.009_bb0440) 2008; 81
Lembach (10.1016/j.cocis.2014.04.009_bb0590) 2010; 26
Semprebon (10.1016/j.cocis.2014.04.009_bb0430) 2014; 10
Tsai (10.1016/j.cocis.2014.04.009_bb0535) 2010; 26
Baret (10.1016/j.cocis.2014.04.009_bb0345) 2006; 96
Drelich (10.1016/j.cocis.2014.04.009_bb0190) 2013; 4
Tsai (10.1016/j.cocis.2014.04.009_bb0570) 2011; 7
Lobaton (10.1016/j.cocis.2014.04.009_bb0465) 2007; 314
Herminghaus (10.1016/j.cocis.2014.04.009_bb0030) 2000; 52
Öner (10.1016/j.cocis.2014.04.009_bb0255) 2000; 16
Roisman (10.1016/j.cocis.2014.04.009_bb0580) 2009; 21
Li (10.1016/j.cocis.2014.04.009_bb0605) 2013
Tuteja (10.1016/j.cocis.2014.04.009_bb0040) 2008; 105
McHale (10.1016/j.cocis.2014.04.009_bb0445) 2005; 21
Groten (10.1016/j.cocis.2014.04.009_bb0145) 2013; 29
Dufour (10.1016/j.cocis.2014.04.009_bb0045) 2011; 7
Wayner (10.1016/j.cocis.2014.04.009_bb0170) 1982; 88
Im (10.1016/j.cocis.2014.04.009_bb0050) 2010; 6
Cassie (10.1016/j.cocis.2014.04.009_bb0240) 1944; 40
Biance (10.1016/j.cocis.2014.04.009_bb0490) 2004; 69
Kawasaki (10.1016/j.cocis.2014.04.009_bb0365) 1960; 15
Gao (10.1016/j.cocis.2014.04.009_bb0155) 2008; 24
Paxson (10.1016/j.cocis.2014.04.009_bb0280) 2013; 4
Rothstein (10.1016/j.cocis.2014.04.009_bb0105) 2010; 42
References_xml – volume: 15
  start-page: 3395
  year: 1999
  end-page: 3399
  ident: bb0020
  article-title: Ultrahydrophobic and ultralyophobic surfaces: some comments and examples
  publication-title: Langmuir
– volume: 24
  start-page: 14074
  year: 2008
  end-page: 14077
  ident: bb0515
  article-title: Drop impact on porous superhydrophobic polymer surfaces
  publication-title: Langmuir
– volume: 12
  start-page: 2125
  year: 1996
  end-page: 2127
  ident: bb0015
  article-title: Super-water-repellent fractal surfaces
  publication-title: Langmuir
– volume: 23
  start-page: 4357
  year: 2011
  end-page: 4366
  ident: bb0070
  article-title: Superamphiphobic diblock copolymer coatings
  publication-title: Chem Mater
– volume: 5
  start-page: 2549
  year: 2009
  end-page: 2557
  ident: bb0090
  article-title: Wetting and friction on superoleophobic surfaces
  publication-title: Soft Matter
– volume: 25
  start-page: 144
  year: 1967
  end-page: 163
  ident: bb0005
  article-title: Contact angle hysteresis — porous surfaces
  publication-title: SCI Monogr
– start-page: 117
  year: 1992
  end-page: 120
  ident: bb0165
  article-title: Die Selbstreinigungsfähigkeit pflanzlicher Oberflächen durch Epicuticularwachse
  publication-title: Verantwortung für die Zukunft
– volume: 318
  start-page: 1618
  year: 2007
  end-page: 1622
  ident: bb0035
  article-title: Designing superoleophobic surfaces
  publication-title: Science
– volume: 81
  start-page: 26006
  year: 2008
  ident: bb0440
  article-title: Impalement of fakir drops
  publication-title: Europhys Lett
– volume: 9
  start-page: 501
  year: 2009
  end-page: 505
  ident: bb0065
  article-title: Inherently superoleophobic nanocomposite coatings by spray atomization
  publication-title: Nano Lett
– volume: 290
  start-page: 525
  year: 2012
  end-page: 530
  ident: bb0080
  article-title: Preparation of micro- and nanospheres with superamphiphobic surfaces by dispersion polymerization
  publication-title: Colloid Polym Sci
– volume: 16
  start-page: 292
  year: 2011
  end-page: 302
  ident: bb0505
  article-title: Drop collisions with simple and complex surfaces
  publication-title: Curr Opin Colloid Interface Sci
– volume: 26
  start-page: 18162
  year: 2010
  end-page: 18168
  ident: bb0290
  article-title: Modeling receding contact lines on superhydrophobic surfaces
  publication-title: Langmuir
– volume: 4
  start-page: 1492
  year: 2013
  end-page: 1496
  ident: bb0280
  article-title: Self-similarity of contact line depinning from textured surfaces
  publication-title: Nat Commun
– volume: 8
  start-page: 3957
  year: 2012
  end-page: 3970
  ident: bb0600
  article-title: Drop impacts on electrospun nanofiber membranes
  publication-title: Soft Matter
– volume: 25
  start-page: 478
  year: 2000
  end-page: 480
  ident: bb0220
  article-title: Interfacial shape and contact-angle measurement of transparent samples with confocal interference microscopy
  publication-title: Opt Lett
– volume: 25
  start-page: 6143
  year: 2009
  end-page: 6154
  ident: bb0395
  article-title: General methodology for evaluating the adhesion force of drops and bubbles on solid surfaces
  publication-title: Langmuir
– volume: 2
  start-page: 457
  year: 2003
  end-page: 460
  ident: bb0435
  article-title: Superhydrophobic states
  publication-title: Nat Mater
– volume: 727
  start-page: 488
  year: 2013
  end-page: 508
  ident: bb0110
  article-title: Change in drag, apparent slip and optimum air layer thickness for laminar flow over an idealised superhydrophobic surface
  publication-title: J Fluid Mech
– volume: 89
  start-page: 16
  year: 1982
  end-page: 24
  ident: bb0175
  article-title: The shape of the transition zone between a thin film and bulk liquid and the line tension
  publication-title: J Colloid Interface Sci
– volume: 28
  start-page: 16812
  year: 2012
  end-page: 16820
  ident: bb0310
  article-title: Dynamic measurement of the force required to move a liquid drop on a solid surface
  publication-title: Langmuir
– volume: 28
  start-page: 14338
  year: 2012
  end-page: 14346
  ident: bb0320
  article-title: Superhydrophobic and adhesive properties of surfaces: testing the quality by an elaborated scanning electron microscopy method
  publication-title: Langmuir
– volume: 26
  start-page: 9516
  year: 2010
  end-page: 9523
  ident: bb0590
  article-title: Drop impact, spreading, splashing, and penetration into electrospun nanofiber mats
  publication-title: Langmuir
– volume: 6
  start-page: 1401
  year: 2010
  end-page: 1404
  ident: bb0050
  article-title: A robust superhydrophobic and superoleophobic surface with inverse-trapezoidal microstructures on a large transparent flexible substrate
  publication-title: Soft Matter
– volume: 151
  start-page: 1
  year: 1985
  end-page: 20
  ident: bb0375
  article-title: On the ability of drops or bubbles to stick to non-horizontal surfaces of solids. 2. Small drops or bubbles having contact angles of arbitrary size
  publication-title: J Fluid Mech
– volume: 22
  start-page: 4906
  year: 2006
  end-page: 4909
  ident: bb0385
  article-title: Direct observation of internal fluidity in a water droplet during sliding on hydrophobic surfaces
  publication-title: Langmuir
– volume: 4
  start-page: 2232
  year: 2008
  end-page: 2237
  ident: bb0315
  article-title: How does the leaf margin make the lotus surface dry as the lotus leaf floats on water
  publication-title: Soft Matter
– volume: 15
  start-page: 402
  year: 1960
  end-page: 407
  ident: bb0365
  article-title: Study of wettability of polymers by sliding of a water drop
  publication-title: J Colloid Sci
– volume: 208
  start-page: 287
  year: 1998
  end-page: 294
  ident: bb0060
  article-title: Super water- and oil-repellent surfaces resulting from fractal structure
  publication-title: J Colloid Interface Sci
– volume: 9
  start-page: 304
  year: 2012
  end-page: 315
  ident: bb0495
  article-title: Hierarchical, plasma nanotextured, robust superamphiphobic polymeric surfaces structurally stabilized through a wetting–drying cycle
  publication-title: Plasma Process Polym
– volume: 24
  start-page: 102104
  year: 2012
  ident: bb0575
  article-title: Drop impact and wettability: from hydrophilic to superhydrophobic surfaces
  publication-title: Phys Fluids
– volume: 18
  start-page: 659
  year: 1948
  end-page: 669
  ident: bb0370
  article-title: On the behavior of liquid drops on a solid surface. 1. The sliding of drops on an inclined surface
  publication-title: J Exp Theoret Phys (USSR)
– volume: 22
  start-page: 1711
  year: 2006
  end-page: 1714
  ident: bb0400
  article-title: Designing for optimum liquid repellency
  publication-title: Langmuir
– year: 2013
  ident: bb0605
  article-title: Drop impact on dry surfaces with phase change
  publication-title: Mechanical Engineering
– volume: 95
  start-page: 153101
  year: 2009
  ident: bb0520
  article-title: Impact dynamics of water droplets on chemically modified WO
  publication-title: Appl Phys Lett
– volume: 7
  start-page: 11325
  year: 2011
  end-page: 11333
  ident: bb0570
  article-title: Microscopic structure influencing macroscopic splash at high Weber number
  publication-title: Soft Matter
– volume: 29
  start-page: 3765
  year: 2013
  end-page: 3772
  ident: bb0145
  article-title: Surfaces with combined microscale and nanoscale structures: a route to mechanically stable superhydrophobic surfaces?
  publication-title: Langmuir
– volume: 26
  start-page: 16090
  year: 2010
  end-page: 16095
  ident: bb0535
  article-title: How micropatterns and air pressure affect splashing on surfaces
  publication-title: Langmuir
– volume: 105
  start-page: 18200
  year: 2008
  end-page: 18205
  ident: bb0040
  article-title: Robust omniphobic surfaces
  publication-title: Proc Natl Acad Sci U S A
– volume: 417
  start-page: 811-811
  year: 2002
  ident: bb0560
  article-title: Surface phenomena — contact time of a bouncing drop
  publication-title: Nature
– volume: 74
  start-page: 306
  year: 2006
  end-page: 312
  ident: bb0585
  article-title: Bouncing transitions on microtextured materials
  publication-title: Europhys Lett
– volume: 146
  start-page: 48
  year: 2009
  end-page: 60
  ident: bb0350
  article-title: Normal capillary forces
  publication-title: Adv Colloid Interface Sci
– volume: 335
  start-page: 67
  year: 2012
  end-page: 70
  ident: bb0075
  article-title: Candle soot as a template for a transparent robust superamphiphobic coating
  publication-title: Science
– volume: 113
  start-page: 3906
  year: 2009
  end-page: 3909
  ident: bb0300
  article-title: Contact angle hysteresis generated by strong dilute defects
  publication-title: J Phys Chem B
– year: 2007
  ident: bb0230
  article-title: Wetting and spreading dynamics
– volume: 73
  start-page: 76
  year: 1980
  end-page: 87
  ident: bb0405
  article-title: Static drop on an inclined plane: analysis by the finite element method
  publication-title: J Colloid Interface Sci
– volume: 339
  start-page: 208
  year: 2009
  end-page: 216
  ident: bb0275
  article-title: A modified Cassie–Baxter relationship to explain contact angle hysteresis and anisotropy on non-wetting textured surfaces
  publication-title: J Colloid Interface Sci
– volume: 11
  start-page: 3585
  year: 1995
  end-page: 3589
  ident: bb0340
  article-title: Young–Dupre revisited
  publication-title: Langmuir
– volume: 314
  start-page: 184
  year: 2007
  end-page: 198
  ident: bb0465
  article-title: Computation of constant mean curvature surfaces: application to the gas–liquid interface of a pressurized fluid on a superhydrophobic surface
  publication-title: J Colloid Interface Sci
– volume: 8
  start-page: 9765
  year: 2012
  end-page: 9770
  ident: bb0055
  article-title: Absence of an evaporation-driven wetting transition on omniphobic surfaces
  publication-title: Soft Matter
– volume: 105
  start-page: 166104
  year: 2010
  ident: bb0480
  article-title: Metastable underwater superhydrophobicity
  publication-title: Phys Rev Lett
– volume: 24
  start-page: 6262
  year: 2008
  end-page: 6269
  ident: bb0525
  article-title: Dynamic effects of bouncing water droplets on superhydrophobic surfaces
  publication-title: Langmuir
– volume: 16
  start-page: 7777
  year: 2000
  end-page: 7782
  ident: bb0255
  article-title: Ultrahydrophobic surfaces. Effects of topography length scales on wettability
  publication-title: Langmuir
– volume: 14
  start-page: 2213
  year: 1998
  end-page: 2216
  ident: bb0380
  article-title: Drops at rest on a tilted plane
  publication-title: Langmuir
– volume: 24
  start-page: 9183
  year: 2008
  end-page: 9188
  ident: bb0155
  article-title: Teflon is hydrophilic. Comments on definitions of hydrophobic, shear versus tensile hydrophobicity, and wettability characterization
  publication-title: Langmuir
– volume: 29
  start-page: 13269
  year: 2013
  end-page: 13277
  ident: bb0115
  article-title: Optimal design of permeable fiber network structures for fog harvesting
  publication-title: Langmuir
– volume: 38
  start-page: 159
  year: 2006
  end-page: 192
  ident: bb0500
  article-title: Drop impact dynamics: splashing, spreading, receding, bouncing
  publication-title: Annu Rev Fluid Mech
– volume: 4
  start-page: 2512
  year: 2013
  ident: bb0125
  article-title: Super liquid-repellent gas membranes for carbon dioxide capture and heart–lung machines
  publication-title: Nat Commun
– volume: 11
  start-page: 193
  year: 2006
  end-page: 202
  ident: bb0025
  article-title: Superhydrophobic surfaces
  publication-title: Curr Opin Colloid Interface Sci
– volume: 18
  start-page: 7991
  year: 2002
  end-page: 7999
  ident: bb0265
  article-title: Model for contact angles and hysteresis on rough and ultrahydrophobic surfaces
  publication-title: Langmuir
– volume: 8
  start-page: 9635
  year: 2012
  end-page: 9641
  ident: bb0325
  article-title: Super-hydrophobic surface with switchable adhesion responsive to both temperature and pH
  publication-title: Soft Matter
– volume: 7
  start-page: 9380
  year: 2011
  end-page: 9387
  ident: bb0045
  article-title: Contact angle hysteresis origins: Investigation on super-omniphobic surfaces
  publication-title: Soft Matter
– volume: 47
  start-page: 220
  year: 1999
  end-page: 226
  ident: bb0245
  article-title: Pearl drops
  publication-title: Europhys Lett
– start-page: 213
  year: 1978
  end-page: 222
  ident: bb0415
  article-title: Liquid drops on a tilted plate, contact angle hysteresis and the Young contact angle
  publication-title: Wetting, Spreading and Adhesion
– volume: 69
  start-page: 016301
  year: 2004
  ident: bb0490
  article-title: First steps in the spreading of a liquid droplet
  publication-title: Phys Rev E
– volume: 26
  start-page: 17090
  year: 2010
  end-page: 17099
  ident: bb0195
  article-title: Contact angles of liquid drops on super hydrophobic surfaces: understanding the role of flattening of drops by gravity
  publication-title: Langmuir
– volume: 110
  start-page: 3254
  year: 2013
  end-page: 3258
  ident: bb0210
  article-title: How superhydrophobicity breaks down
  publication-title: Proc Natl Acad Sci U S A
– volume: 23
  start-page: 3157
  year: 2007
  end-page: 3161
  ident: bb0085
  article-title: Multiscale roughness and stability of superhydrophobic biomimetic interfaces
  publication-title: Langmuir
– volume: 5
  start-page: 485
  year: 2013
  end-page: 488
  ident: bb0150
  article-title: Preservation of superhydrophobic and superoleophobic properties upon wear damage
  publication-title: ACS Appl Mater Interfaces
– volume: 38
  start-page: 397
  year: 2013
  end-page: 406
  ident: bb0120
  article-title: Condensation heat transfer on superhydrophobic surfaces
  publication-title: MRS Bull
– volume: 135
  start-page: 578
  year: 2013
  end-page: 581
  ident: bb0550
  article-title: Superomniphobic surfaces for effective chemical shielding
  publication-title: J Am Chem Soc
– volume: 40
  start-page: 546
  year: 1944
  end-page: 551
  ident: bb0240
  article-title: Wettability of porous surfaces
  publication-title: Trans Faraday Soc
– volume: 5
  start-page: 51
  year: 2009
  end-page: 61
  ident: bb0250
  article-title: Some thoughts on superhydrophobic wetting
  publication-title: Soft Matter
– volume: 381
  start-page: 225
  year: 1999
  end-page: 238
  ident: bb0095
  article-title: Drag reduction of Newtonian fluid in a circular pipe with a highly water-repellent wall
  publication-title: J Fluid Mech
– volume: 4
  start-page: 248
  year: 2013
  end-page: 254
  ident: bb0190
  article-title: Guidelines to measurements of reproducible contact angles using a sessile-drop technique
  publication-title: Surf Innov
– volume: 23
  start-page: 3179
  year: 2007
  end-page: 3183
  ident: bb0285
  article-title: Contact line shape on ultrahydrophobic post surfaces
  publication-title: Langmuir
– volume: 29
  start-page: 3858
  year: 2013
  end-page: 3863
  ident: bb0200
  article-title: Reliable measurement of the receding contact angle
  publication-title: Langmuir
– volume: 3
  start-page: 3508
  year: 2011
  end-page: 3514
  ident: bb0130
  article-title: Fabricating superhydrophobic polymer surfaces with excellent abrasion resistance by a simple lamination templating method
  publication-title: ACS Appl Mater Interfaces
– volume: 1
  start-page: 55
  year: 2005
  end-page: 61
  ident: bb0225
  article-title: On water repellency
  publication-title: Soft Matter
– volume: 29
  start-page: 7847
  year: 2013
  end-page: 7856
  ident: bb0555
  article-title: Liquid drops impacting superamphiphobic coatings
  publication-title: Langmuir
– volume: 18
  start-page: 5818
  year: 2002
  end-page: 5822
  ident: bb0260
  article-title: Effects of surface structure on the hydrophobicity and sliding behavior of water droplets
  publication-title: Langmuir
– volume: 21
  start-page: 052103
  year: 2009
  ident: bb0595
  article-title: Inertia dominated drop collisions. I. On the universal flow in the lamella
  publication-title: Phys Fluids
– volume: 42
  start-page: 89
  year: 2010
  end-page: 109
  ident: bb0105
  article-title: Slip on superhydrophobic surfaces
  publication-title: Annu Rev Fluid Mech
– volume: 9
  start-page: 418
  year: 2013
  end-page: 428
  ident: bb0235
  article-title: Design principles for superamphiphobic surfaces
  publication-title: Soft Matter
– volume: 24
  start-page: 2409
  year: 2012
  end-page: 2412
  ident: bb0140
  article-title: Fluoroalkyl silane modified silicone rubber/nanoparticle composite: a super durable, robust superhydrophobic fabric coating
  publication-title: Adv Mater
– volume: 112
  start-page: 016101
  year: 2014
  ident: bb0330
  article-title: Superamphiphobic particles — how small can we go?
  publication-title: Phys Rev Lett
– volume: 21
  start-page: 052104
  year: 2009
  ident: bb0580
  article-title: Inertia dominated drop collisions. II. An analytical solution of the Navier–Stokes equations for a spreading viscous film
  publication-title: Phys Fluids
– volume: 26
  start-page: 8941
  year: 2010
  end-page: 8945
  ident: bb0545
  article-title: Consolidation of hydrophobic transition criteria by using an approximate energy minimization approach
  publication-title: Langmuir
– volume: 28
  start-page: 8392
  year: 2012
  end-page: 8398
  ident: bb0205
  article-title: Wetting on the microscale: shape of a liquid drop on a microstructured surface at different length scales
  publication-title: Langmuir
– volume: 202
  start-page: 1
  year: 1997
  end-page: 8
  ident: bb0010
  article-title: Purity of the sacred lotus, or escape from contamination in biological surfaces
  publication-title: Planta
– volume: 115
  start-page: 14852
  year: 2011
  end-page: 14861
  ident: bb0305
  article-title: Study of wetting and adhesion interactions between water and various polymer and superhydrophobic surfaces
  publication-title: J Phys Chem C
– volume: 180
  start-page: 151
  year: 1942
  end-page: 173
  ident: bb0360
  article-title: Surface energy relations in liquid/solid systems. I. The adhesion of liquids to solids and a new method of determining the surface tension of liquids
  publication-title: Proc Roy Soc London A
– volume: 23
  start-page: 2962
  year: 2011
  ident: bb0135
  article-title: Transparent, thermally stable and mechanically robust superhydrophobic surfaces made from porous silica capsules
  publication-title: Adv Mater
– volume: 1038
  start-page: 1
  year: 2012
  end-page: 7
  ident: bb0160
  article-title: Hygro-responsive membranes for effective oil–water separation
  publication-title: Nat Commun
– volume: 323
  start-page: 73
  year: 2008
  end-page: 82
  ident: bb0425
  article-title: Understanding of sliding and contact angle results in tilted plate experiments
  publication-title: Colloids Surf A
– volume: 10
  start-page: 3325
  year: 2014
  end-page: 3334
  ident: bb0430
  article-title: On the onset of motion of sliding drops
  publication-title: Soft Matter
– volume: 8
  start-page: 6301
  year: 2012
  end-page: 6309
  ident: bb0295
  article-title: Advancing modes on regularly patterned substrates
  publication-title: Soft Matter
– volume: 96
  start-page: 146106
  year: 2006
  ident: bb0345
  article-title: Wettability control of droplet deposition and detachment
  publication-title: Phys Rev Lett
– volume: 88
  start-page: 294
  year: 1982
  end-page: 295
  ident: bb0170
  article-title: The interfacial profile in the contact line region and the Young–Dupré equation
  publication-title: J Colloid Interface Sci
– volume: 26
  start-page: 18369
  year: 2010
  end-page: 18373
  ident: bb0530
  article-title: Quantitative testing of robustness on superomniphobic surfaces by drop impact
  publication-title: Langmuir
– volume: 29
  start-page: 1100
  year: 2013
  end-page: 1112
  ident: bb0455
  article-title: Wetting resistance at its topographical limit: the benefit of mushroom and serif T structures
  publication-title: Langmuir
– volume: 81
  start-page: 36003
  year: 2008
  ident: bb0470
  article-title: The collapse transition on superhydrophobic surfaces
  publication-title: Eur. Phys Lett
– volume: 6
  start-page: 714
  year: 2010
  end-page: 719
  ident: bb0100
  article-title: Immersed superhydrophobic surfaces: gas exchange, slip and drag reduction properties
  publication-title: Soft Matter
– volume: 57
  start-page: 827
  year: 1985
  end-page: 863
  ident: bb0180
  article-title: Wetting: statics and dynamics
  publication-title: Rev Mod Phys
– volume: 37
  start-page: 6892
  year: 1998
  end-page: 6905
  ident: bb0215
  article-title: Microinterferometry: three-dimensional reconstruction of surface microtopography for thin-film and wetting studies by reflection interference contrast microscopy (RICM)
  publication-title: Appl Optics
– volume: 170
  start-page: 515
  year: 1995
  end-page: 521
  ident: bb0410
  article-title: Liquid drops on an inclined plane: the relation between contact angles, drops shape, and retention forces
  publication-title: J Colloid Interface Sci
– volume: 74
  start-page: 299
  year: 2006
  end-page: 305
  ident: bb0510
  article-title: Bouncing or sticky droplets: impalement transitions on superhydrophobic micropatterned surfaces
  publication-title: Europhys Lett
– volume: 22
  start-page: 409
  year: 2012
  end-page: 429
  ident: bb0540
  article-title: Drop impact on superhydrophobic surfaces — varying gravitational effects
  publication-title: Atomization and Sprays
– volume: 109
  start-page: 166101
  year: 2012
  ident: bb0460
  article-title: Stability of thin wetting films on chemically nanostructured surfaces
  publication-title: Phys Rev Lett
– volume: 24
  start-page: 251
  year: 2007
  end-page: 260
  ident: bb0485
  article-title: Life and death of a fakir droplet: impalement transitions on superhydrophobic surfaces
  publication-title: Eur Phys J E
– volume: 52
  start-page: 165
  year: 2000
  end-page: 170
  ident: bb0030
  article-title: Roughness-induced non-wetting
  publication-title: Europhys Lett
– volume: 29
  start-page: 13396
  year: 2013
  end-page: 13406
  ident: bb0185
  article-title: Utilizing dynamic tensiometry to quantify contact angle hysteresis and wetting state transitions on nonwetting surfaces
  publication-title: Langmuir
– volume: 23
  start-page: 3762
  year: 2007
  end-page: 3765
  ident: bb0270
  article-title: How Wenzel and Cassie were wrong
  publication-title: Langmuir
– volume: 100
  start-page: 171601
  year: 2012
  ident: bb0450
  article-title: Impact and wetting behaviors of impinging microdroplets on superhydrophobic textured surfaces
  publication-title: Appl Phys Lett
– volume: 21
  start-page: 11053
  year: 2005
  end-page: 11060
  ident: bb0445
  article-title: Analysis of droplet evaporation on a superhydrophobic surface
  publication-title: Langmuir
– volume: 119
  start-page: 711
  year: 2011
  end-page: 719
  ident: bb0355
  article-title: Control of static and dynamic hydrophobicity of solid surface and its application
  publication-title: J Ceram Soc Jpn
– volume: 28
  start-page: 3460
  year: 2012
  end-page: 3464
  ident: bb0475
  article-title: Wetting transitions and depinning of the triple line
  publication-title: Langmuir
– volume: 517
  start-page: 199
  year: 2004
  end-page: 208
  ident: bb0565
  article-title: Maximal deformation of an impacting drop
  publication-title: J Fluid Mech
– volume: 21
  start-page: 3881
  year: 2005
  end-page: 3885
  ident: bb0420
  article-title: Drops down the hill: theoretical study of limiting contact angles and the hysteresis range on a tilted plate
  publication-title: Langmuir
– volume: 299
  start-page: 841
  year: 2006
  end-page: 849
  ident: bb0390
  article-title: Retention forces and contact angles for critical liquid drops on non-horizontal surfaces
  publication-title: J Colloid Interface Sci
– volume: 17
  start-page: 309
  year: 1962
  end-page: 324
  ident: bb0335
  article-title: Studies at phase interfaces. I. The sliding of liquid drops on solid surfaces and a theory for spray retention
  publication-title: J Colloid Sci
– volume: 290
  start-page: 525
  year: 2012
  ident: 10.1016/j.cocis.2014.04.009_bb0080
  article-title: Preparation of micro- and nanospheres with superamphiphobic surfaces by dispersion polymerization
  publication-title: Colloid Polym Sci
  doi: 10.1007/s00396-011-2570-1
– volume: 112
  start-page: 016101
  year: 2014
  ident: 10.1016/j.cocis.2014.04.009_bb0330
  article-title: Superamphiphobic particles — how small can we go?
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.112.016101
– volume: 17
  start-page: 309
  year: 1962
  ident: 10.1016/j.cocis.2014.04.009_bb0335
  article-title: Studies at phase interfaces. I. The sliding of liquid drops on solid surfaces and a theory for spray retention
  publication-title: J Colloid Sci
  doi: 10.1016/0095-8522(62)90011-9
– volume: 202
  start-page: 1
  year: 1997
  ident: 10.1016/j.cocis.2014.04.009_bb0010
  article-title: Purity of the sacred lotus, or escape from contamination in biological surfaces
  publication-title: Planta
  doi: 10.1007/s004250050096
– volume: 15
  start-page: 402
  year: 1960
  ident: 10.1016/j.cocis.2014.04.009_bb0365
  article-title: Study of wettability of polymers by sliding of a water drop
  publication-title: J Colloid Sci
  doi: 10.1016/0095-8522(60)90044-1
– volume: 18
  start-page: 5818
  year: 2002
  ident: 10.1016/j.cocis.2014.04.009_bb0260
  article-title: Effects of surface structure on the hydrophobicity and sliding behavior of water droplets
  publication-title: Langmuir
  doi: 10.1021/la020088p
– volume: 23
  start-page: 3762
  year: 2007
  ident: 10.1016/j.cocis.2014.04.009_bb0270
  article-title: How Wenzel and Cassie were wrong
  publication-title: Langmuir
  doi: 10.1021/la062634a
– volume: 95
  start-page: 153101
  year: 2009
  ident: 10.1016/j.cocis.2014.04.009_bb0520
  article-title: Impact dynamics of water droplets on chemically modified WOx nanowire arrays
  publication-title: Appl Phys Lett
  doi: 10.1063/1.3244597
– volume: 16
  start-page: 7777
  year: 2000
  ident: 10.1016/j.cocis.2014.04.009_bb0255
  article-title: Ultrahydrophobic surfaces. Effects of topography length scales on wettability
  publication-title: Langmuir
  doi: 10.1021/la000598o
– volume: 109
  start-page: 166101
  year: 2012
  ident: 10.1016/j.cocis.2014.04.009_bb0460
  article-title: Stability of thin wetting films on chemically nanostructured surfaces
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.109.166101
– volume: 38
  start-page: 397
  year: 2013
  ident: 10.1016/j.cocis.2014.04.009_bb0120
  article-title: Condensation heat transfer on superhydrophobic surfaces
  publication-title: MRS Bull
  doi: 10.1557/mrs.2013.103
– volume: 42
  start-page: 89
  year: 2010
  ident: 10.1016/j.cocis.2014.04.009_bb0105
  article-title: Slip on superhydrophobic surfaces
  publication-title: Annu Rev Fluid Mech
  doi: 10.1146/annurev-fluid-121108-145558
– volume: 26
  start-page: 17090
  year: 2010
  ident: 10.1016/j.cocis.2014.04.009_bb0195
  article-title: Contact angles of liquid drops on super hydrophobic surfaces: understanding the role of flattening of drops by gravity
  publication-title: Langmuir
  doi: 10.1021/la102566c
– volume: 14
  start-page: 2213
  year: 1998
  ident: 10.1016/j.cocis.2014.04.009_bb0380
  article-title: Drops at rest on a tilted plane
  publication-title: Langmuir
  doi: 10.1021/la970645l
– volume: 335
  start-page: 67
  year: 2012
  ident: 10.1016/j.cocis.2014.04.009_bb0075
  article-title: Candle soot as a template for a transparent robust superamphiphobic coating
  publication-title: Science
  doi: 10.1126/science.1207115
– volume: 40
  start-page: 546
  year: 1944
  ident: 10.1016/j.cocis.2014.04.009_bb0240
  article-title: Wettability of porous surfaces
  publication-title: Trans Faraday Soc
  doi: 10.1039/tf9444000546
– volume: 23
  start-page: 3157
  year: 2007
  ident: 10.1016/j.cocis.2014.04.009_bb0085
  article-title: Multiscale roughness and stability of superhydrophobic biomimetic interfaces
  publication-title: Langmuir
  doi: 10.1021/la062301d
– volume: 4
  start-page: 248
  year: 2013
  ident: 10.1016/j.cocis.2014.04.009_bb0190
  article-title: Guidelines to measurements of reproducible contact angles using a sessile-drop technique
  publication-title: Surf Innov
  doi: 10.1680/si.13.00010
– volume: 28
  start-page: 3460
  year: 2012
  ident: 10.1016/j.cocis.2014.04.009_bb0475
  article-title: Wetting transitions and depinning of the triple line
  publication-title: Langmuir
  doi: 10.1021/la204424n
– volume: 8
  start-page: 3957
  year: 2012
  ident: 10.1016/j.cocis.2014.04.009_bb0600
  article-title: Drop impacts on electrospun nanofiber membranes
  publication-title: Soft Matter
  doi: 10.1039/c2sm06744g
– volume: 81
  start-page: 36003
  year: 2008
  ident: 10.1016/j.cocis.2014.04.009_bb0470
  article-title: The collapse transition on superhydrophobic surfaces
  publication-title: Eur. Phys Lett
  doi: 10.1209/0295-5075/81/36003
– volume: 110
  start-page: 3254
  year: 2013
  ident: 10.1016/j.cocis.2014.04.009_bb0210
  article-title: How superhydrophobicity breaks down
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1218673110
– volume: 18
  start-page: 7991
  year: 2002
  ident: 10.1016/j.cocis.2014.04.009_bb0265
  article-title: Model for contact angles and hysteresis on rough and ultrahydrophobic surfaces
  publication-title: Langmuir
  doi: 10.1021/la025769z
– volume: 26
  start-page: 18369
  year: 2010
  ident: 10.1016/j.cocis.2014.04.009_bb0530
  article-title: Quantitative testing of robustness on superomniphobic surfaces by drop impact
  publication-title: Langmuir
  doi: 10.1021/la103097y
– volume: 74
  start-page: 306
  year: 2006
  ident: 10.1016/j.cocis.2014.04.009_bb0585
  article-title: Bouncing transitions on microtextured materials
  publication-title: Europhys Lett
  doi: 10.1209/epl/i2005-10523-2
– volume: 37
  start-page: 6892
  year: 1998
  ident: 10.1016/j.cocis.2014.04.009_bb0215
  article-title: Microinterferometry: three-dimensional reconstruction of surface microtopography for thin-film and wetting studies by reflection interference contrast microscopy (RICM)
  publication-title: Appl Optics
  doi: 10.1364/AO.37.006892
– volume: 1
  start-page: 55
  year: 2005
  ident: 10.1016/j.cocis.2014.04.009_bb0225
  article-title: On water repellency
  publication-title: Soft Matter
  doi: 10.1039/b501657f
– volume: 18
  start-page: 659
  year: 1948
  ident: 10.1016/j.cocis.2014.04.009_bb0370
  article-title: On the behavior of liquid drops on a solid surface. 1. The sliding of drops on an inclined surface
  publication-title: J Exp Theoret Phys (USSR)
– volume: 170
  start-page: 515
  year: 1995
  ident: 10.1016/j.cocis.2014.04.009_bb0410
  article-title: Liquid drops on an inclined plane: the relation between contact angles, drops shape, and retention forces
  publication-title: J Colloid Interface Sci
  doi: 10.1006/jcis.1995.1130
– volume: 180
  start-page: 151
  year: 1942
  ident: 10.1016/j.cocis.2014.04.009_bb0360
  article-title: Surface energy relations in liquid/solid systems. I. The adhesion of liquids to solids and a new method of determining the surface tension of liquids
  publication-title: Proc Roy Soc London A
  doi: 10.1098/rspa.1942.0031
– volume: 26
  start-page: 9516
  year: 2010
  ident: 10.1016/j.cocis.2014.04.009_bb0590
  article-title: Drop impact, spreading, splashing, and penetration into electrospun nanofiber mats
  publication-title: Langmuir
  doi: 10.1021/la100031d
– start-page: 213
  year: 1978
  ident: 10.1016/j.cocis.2014.04.009_bb0415
  article-title: Liquid drops on a tilted plate, contact angle hysteresis and the Young contact angle
– volume: 24
  start-page: 102104
  year: 2012
  ident: 10.1016/j.cocis.2014.04.009_bb0575
  article-title: Drop impact and wettability: from hydrophilic to superhydrophobic surfaces
  publication-title: Phys Fluids
  doi: 10.1063/1.4757122
– volume: 73
  start-page: 76
  year: 1980
  ident: 10.1016/j.cocis.2014.04.009_bb0405
  article-title: Static drop on an inclined plane: analysis by the finite element method
  publication-title: J Colloid Interface Sci
  doi: 10.1016/0021-9797(80)90124-1
– volume: 417
  start-page: 811-811
  year: 2002
  ident: 10.1016/j.cocis.2014.04.009_bb0560
  article-title: Surface phenomena — contact time of a bouncing drop
  publication-title: Nature
  doi: 10.1038/417811a
– volume: 57
  start-page: 827
  year: 1985
  ident: 10.1016/j.cocis.2014.04.009_bb0180
  article-title: Wetting: statics and dynamics
  publication-title: Rev Mod Phys
  doi: 10.1103/RevModPhys.57.827
– year: 2007
  ident: 10.1016/j.cocis.2014.04.009_bb0230
– volume: 318
  start-page: 1618
  year: 2007
  ident: 10.1016/j.cocis.2014.04.009_bb0035
  article-title: Designing superoleophobic surfaces
  publication-title: Science
  doi: 10.1126/science.1148326
– volume: 89
  start-page: 16
  year: 1982
  ident: 10.1016/j.cocis.2014.04.009_bb0175
  article-title: The shape of the transition zone between a thin film and bulk liquid and the line tension
  publication-title: J Colloid Interface Sci
  doi: 10.1016/0021-9797(82)90115-1
– volume: 146
  start-page: 48
  year: 2009
  ident: 10.1016/j.cocis.2014.04.009_bb0350
  article-title: Normal capillary forces
  publication-title: Adv Colloid Interface Sci
  doi: 10.1016/j.cis.2008.10.002
– volume: 21
  start-page: 052103
  year: 2009
  ident: 10.1016/j.cocis.2014.04.009_bb0595
  article-title: Inertia dominated drop collisions. I. On the universal flow in the lamella
  publication-title: Phys Fluids
  doi: 10.1063/1.3129282
– volume: 4
  start-page: 2512
  year: 2013
  ident: 10.1016/j.cocis.2014.04.009_bb0125
  article-title: Super liquid-repellent gas membranes for carbon dioxide capture and heart–lung machines
  publication-title: Nat Commun
  doi: 10.1038/ncomms3512
– volume: 517
  start-page: 199
  year: 2004
  ident: 10.1016/j.cocis.2014.04.009_bb0565
  article-title: Maximal deformation of an impacting drop
  publication-title: J Fluid Mech
  doi: 10.1017/S0022112004000904
– volume: 10
  start-page: 3325
  year: 2014
  ident: 10.1016/j.cocis.2014.04.009_bb0430
  article-title: On the onset of motion of sliding drops
  publication-title: Soft Matter
  doi: 10.1039/c3sm51959g
– volume: 29
  start-page: 13269
  year: 2013
  ident: 10.1016/j.cocis.2014.04.009_bb0115
  article-title: Optimal design of permeable fiber network structures for fog harvesting
  publication-title: Langmuir
  doi: 10.1021/la402409f
– volume: 38
  start-page: 159
  year: 2006
  ident: 10.1016/j.cocis.2014.04.009_bb0500
  article-title: Drop impact dynamics: splashing, spreading, receding, bouncing
  publication-title: Annu Rev Fluid Mech
  doi: 10.1146/annurev.fluid.38.050304.092144
– volume: 24
  start-page: 2409
  year: 2012
  ident: 10.1016/j.cocis.2014.04.009_bb0140
  article-title: Fluoroalkyl silane modified silicone rubber/nanoparticle composite: a super durable, robust superhydrophobic fabric coating
  publication-title: Adv Mater
  doi: 10.1002/adma.201200184
– volume: 25
  start-page: 478
  year: 2000
  ident: 10.1016/j.cocis.2014.04.009_bb0220
  article-title: Interfacial shape and contact-angle measurement of transparent samples with confocal interference microscopy
  publication-title: Opt Lett
  doi: 10.1364/OL.25.000478
– volume: 22
  start-page: 4906
  year: 2006
  ident: 10.1016/j.cocis.2014.04.009_bb0385
  article-title: Direct observation of internal fluidity in a water droplet during sliding on hydrophobic surfaces
  publication-title: Langmuir
  doi: 10.1021/la060323u
– volume: 96
  start-page: 146106
  year: 2006
  ident: 10.1016/j.cocis.2014.04.009_bb0345
  article-title: Wettability control of droplet deposition and detachment
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.96.146106
– volume: 113
  start-page: 3906
  year: 2009
  ident: 10.1016/j.cocis.2014.04.009_bb0300
  article-title: Contact angle hysteresis generated by strong dilute defects
  publication-title: J Phys Chem B
  doi: 10.1021/jp8066876
– volume: 28
  start-page: 16812
  year: 2012
  ident: 10.1016/j.cocis.2014.04.009_bb0310
  article-title: Dynamic measurement of the force required to move a liquid drop on a solid surface
  publication-title: Langmuir
  doi: 10.1021/la3041067
– volume: 28
  start-page: 14338
  year: 2012
  ident: 10.1016/j.cocis.2014.04.009_bb0320
  article-title: Superhydrophobic and adhesive properties of surfaces: testing the quality by an elaborated scanning electron microscopy method
  publication-title: Langmuir
  doi: 10.1021/la302856b
– volume: 29
  start-page: 7847
  year: 2013
  ident: 10.1016/j.cocis.2014.04.009_bb0555
  article-title: Liquid drops impacting superamphiphobic coatings
  publication-title: Langmuir
  doi: 10.1021/la401120j
– year: 2013
  ident: 10.1016/j.cocis.2014.04.009_bb0605
  article-title: Drop impact on dry surfaces with phase change
– volume: 105
  start-page: 18200
  year: 2008
  ident: 10.1016/j.cocis.2014.04.009_bb0040
  article-title: Robust omniphobic surfaces
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0804872105
– volume: 1038
  start-page: 1
  year: 2012
  ident: 10.1016/j.cocis.2014.04.009_bb0160
  article-title: Hygro-responsive membranes for effective oil–water separation
  publication-title: Nat Commun
– volume: 727
  start-page: 488
  year: 2013
  ident: 10.1016/j.cocis.2014.04.009_bb0110
  article-title: Change in drag, apparent slip and optimum air layer thickness for laminar flow over an idealised superhydrophobic surface
  publication-title: J Fluid Mech
  doi: 10.1017/jfm.2013.284
– volume: 25
  start-page: 6143
  year: 2009
  ident: 10.1016/j.cocis.2014.04.009_bb0395
  article-title: General methodology for evaluating the adhesion force of drops and bubbles on solid surfaces
  publication-title: Langmuir
  doi: 10.1021/la804099z
– volume: 26
  start-page: 8941
  year: 2010
  ident: 10.1016/j.cocis.2014.04.009_bb0545
  article-title: Consolidation of hydrophobic transition criteria by using an approximate energy minimization approach
  publication-title: Langmuir
  doi: 10.1021/la9047424
– volume: 6
  start-page: 714
  year: 2010
  ident: 10.1016/j.cocis.2014.04.009_bb0100
  article-title: Immersed superhydrophobic surfaces: gas exchange, slip and drag reduction properties
  publication-title: Soft Matter
  doi: 10.1039/B917861A
– volume: 151
  start-page: 1
  year: 1985
  ident: 10.1016/j.cocis.2014.04.009_bb0375
  article-title: On the ability of drops or bubbles to stick to non-horizontal surfaces of solids. 2. Small drops or bubbles having contact angles of arbitrary size
  publication-title: J Fluid Mech
  doi: 10.1017/S0022112085000842
– volume: 25
  start-page: 144
  year: 1967
  ident: 10.1016/j.cocis.2014.04.009_bb0005
  article-title: Contact angle hysteresis — porous surfaces
  publication-title: SCI Monogr
– volume: 6
  start-page: 1401
  year: 2010
  ident: 10.1016/j.cocis.2014.04.009_bb0050
  article-title: A robust superhydrophobic and superoleophobic surface with inverse-trapezoidal microstructures on a large transparent flexible substrate
  publication-title: Soft Matter
  doi: 10.1039/b925970h
– volume: 24
  start-page: 9183
  year: 2008
  ident: 10.1016/j.cocis.2014.04.009_bb0155
  article-title: Teflon is hydrophilic. Comments on definitions of hydrophobic, shear versus tensile hydrophobicity, and wettability characterization
  publication-title: Langmuir
  doi: 10.1021/la8014578
– volume: 5
  start-page: 51
  year: 2009
  ident: 10.1016/j.cocis.2014.04.009_bb0250
  article-title: Some thoughts on superhydrophobic wetting
  publication-title: Soft Matter
  doi: 10.1039/B811945G
– volume: 135
  start-page: 578
  year: 2013
  ident: 10.1016/j.cocis.2014.04.009_bb0550
  article-title: Superomniphobic surfaces for effective chemical shielding
  publication-title: J Am Chem Soc
  doi: 10.1021/ja310517s
– volume: 8
  start-page: 6301
  year: 2012
  ident: 10.1016/j.cocis.2014.04.009_bb0295
  article-title: Advancing modes on regularly patterned substrates
  publication-title: Soft Matter
  doi: 10.1039/c2sm25156f
– volume: 29
  start-page: 3858
  year: 2013
  ident: 10.1016/j.cocis.2014.04.009_bb0200
  article-title: Reliable measurement of the receding contact angle
  publication-title: Langmuir
  doi: 10.1021/la400009m
– volume: 22
  start-page: 409
  year: 2012
  ident: 10.1016/j.cocis.2014.04.009_bb0540
  article-title: Drop impact on superhydrophobic surfaces — varying gravitational effects
  publication-title: Atomization and Sprays
  doi: 10.1615/AtomizSpr.2012005704
– volume: 11
  start-page: 193
  year: 2006
  ident: 10.1016/j.cocis.2014.04.009_bb0025
  article-title: Superhydrophobic surfaces
  publication-title: Curr Opin Colloid Interface Sci
  doi: 10.1016/j.cocis.2006.06.002
– volume: 15
  start-page: 3395
  year: 1999
  ident: 10.1016/j.cocis.2014.04.009_bb0020
  article-title: Ultrahydrophobic and ultralyophobic surfaces: some comments and examples
  publication-title: Langmuir
  doi: 10.1021/la990074s
– volume: 23
  start-page: 3179
  year: 2007
  ident: 10.1016/j.cocis.2014.04.009_bb0285
  article-title: Contact line shape on ultrahydrophobic post surfaces
  publication-title: Langmuir
  doi: 10.1021/la062596v
– volume: 74
  start-page: 299
  year: 2006
  ident: 10.1016/j.cocis.2014.04.009_bb0510
  article-title: Bouncing or sticky droplets: impalement transitions on superhydrophobic micropatterned surfaces
  publication-title: Europhys Lett
  doi: 10.1209/epl/i2005-10522-3
– volume: 314
  start-page: 184
  year: 2007
  ident: 10.1016/j.cocis.2014.04.009_bb0465
  article-title: Computation of constant mean curvature surfaces: application to the gas–liquid interface of a pressurized fluid on a superhydrophobic surface
  publication-title: J Colloid Interface Sci
  doi: 10.1016/j.jcis.2007.05.059
– volume: 81
  start-page: 26006
  year: 2008
  ident: 10.1016/j.cocis.2014.04.009_bb0440
  article-title: Impalement of fakir drops
  publication-title: Europhys Lett
  doi: 10.1209/0295-5075/81/26006
– volume: 24
  start-page: 251
  year: 2007
  ident: 10.1016/j.cocis.2014.04.009_bb0485
  article-title: Life and death of a fakir droplet: impalement transitions on superhydrophobic surfaces
  publication-title: Eur Phys J E
  doi: 10.1140/epje/i2007-10235-y
– volume: 3
  start-page: 3508
  year: 2011
  ident: 10.1016/j.cocis.2014.04.009_bb0130
  article-title: Fabricating superhydrophobic polymer surfaces with excellent abrasion resistance by a simple lamination templating method
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/am200741f
– volume: 208
  start-page: 287
  year: 1998
  ident: 10.1016/j.cocis.2014.04.009_bb0060
  article-title: Super water- and oil-repellent surfaces resulting from fractal structure
  publication-title: J Colloid Interface Sci
  doi: 10.1006/jcis.1998.5813
– volume: 21
  start-page: 052104
  year: 2009
  ident: 10.1016/j.cocis.2014.04.009_bb0580
  article-title: Inertia dominated drop collisions. II. An analytical solution of the Navier–Stokes equations for a spreading viscous film
  publication-title: Phys Fluids
  doi: 10.1063/1.3129283
– volume: 7
  start-page: 11325
  year: 2011
  ident: 10.1016/j.cocis.2014.04.009_bb0570
  article-title: Microscopic structure influencing macroscopic splash at high Weber number
  publication-title: Soft Matter
  doi: 10.1039/c1sm05801k
– volume: 24
  start-page: 6262
  year: 2008
  ident: 10.1016/j.cocis.2014.04.009_bb0525
  article-title: Dynamic effects of bouncing water droplets on superhydrophobic surfaces
  publication-title: Langmuir
  doi: 10.1021/la8003504
– volume: 47
  start-page: 220
  year: 1999
  ident: 10.1016/j.cocis.2014.04.009_bb0245
  article-title: Pearl drops
  publication-title: Europhys Lett
  doi: 10.1209/epl/i1999-00548-y
– volume: 4
  start-page: 1492
  year: 2013
  ident: 10.1016/j.cocis.2014.04.009_bb0280
  article-title: Self-similarity of contact line depinning from textured surfaces
  publication-title: Nat Commun
  doi: 10.1038/ncomms2482
– volume: 22
  start-page: 1711
  year: 2006
  ident: 10.1016/j.cocis.2014.04.009_bb0400
  article-title: Designing for optimum liquid repellency
  publication-title: Langmuir
  doi: 10.1021/la052540l
– volume: 119
  start-page: 711
  year: 2011
  ident: 10.1016/j.cocis.2014.04.009_bb0355
  article-title: Control of static and dynamic hydrophobicity of solid surface and its application
  publication-title: J Ceram Soc Jpn
  doi: 10.2109/jcersj2.119.711
– start-page: 117
  year: 1992
  ident: 10.1016/j.cocis.2014.04.009_bb0165
  article-title: Die Selbstreinigungsfähigkeit pflanzlicher Oberflächen durch Epicuticularwachse
– volume: 105
  start-page: 166104
  year: 2010
  ident: 10.1016/j.cocis.2014.04.009_bb0480
  article-title: Metastable underwater superhydrophobicity
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.105.166104
– volume: 23
  start-page: 2962
  year: 2011
  ident: 10.1016/j.cocis.2014.04.009_bb0135
  article-title: Transparent, thermally stable and mechanically robust superhydrophobic surfaces made from porous silica capsules
  publication-title: Adv Mater
  doi: 10.1002/adma.201100410
– volume: 29
  start-page: 13396
  year: 2013
  ident: 10.1016/j.cocis.2014.04.009_bb0185
  article-title: Utilizing dynamic tensiometry to quantify contact angle hysteresis and wetting state transitions on nonwetting surfaces
  publication-title: Langmuir
  doi: 10.1021/la4022678
– volume: 5
  start-page: 485
  year: 2013
  ident: 10.1016/j.cocis.2014.04.009_bb0150
  article-title: Preservation of superhydrophobic and superoleophobic properties upon wear damage
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/am302541f
– volume: 12
  start-page: 2125
  year: 1996
  ident: 10.1016/j.cocis.2014.04.009_bb0015
  article-title: Super-water-repellent fractal surfaces
  publication-title: Langmuir
  doi: 10.1021/la950418o
– volume: 21
  start-page: 11053
  year: 2005
  ident: 10.1016/j.cocis.2014.04.009_bb0445
  article-title: Analysis of droplet evaporation on a superhydrophobic surface
  publication-title: Langmuir
  doi: 10.1021/la0518795
– volume: 29
  start-page: 1100
  year: 2013
  ident: 10.1016/j.cocis.2014.04.009_bb0455
  article-title: Wetting resistance at its topographical limit: the benefit of mushroom and serif T structures
  publication-title: Langmuir
  doi: 10.1021/la304179b
– volume: 23
  start-page: 4357
  year: 2011
  ident: 10.1016/j.cocis.2014.04.009_bb0070
  article-title: Superamphiphobic diblock copolymer coatings
  publication-title: Chem Mater
  doi: 10.1021/cm201797e
– volume: 29
  start-page: 3765
  year: 2013
  ident: 10.1016/j.cocis.2014.04.009_bb0145
  article-title: Surfaces with combined microscale and nanoscale structures: a route to mechanically stable superhydrophobic surfaces?
  publication-title: Langmuir
  doi: 10.1021/la304641q
– volume: 26
  start-page: 16090
  year: 2010
  ident: 10.1016/j.cocis.2014.04.009_bb0535
  article-title: How micropatterns and air pressure affect splashing on surfaces
  publication-title: Langmuir
  doi: 10.1021/la102330e
– volume: 7
  start-page: 9380
  year: 2011
  ident: 10.1016/j.cocis.2014.04.009_bb0045
  article-title: Contact angle hysteresis origins: Investigation on super-omniphobic surfaces
  publication-title: Soft Matter
  doi: 10.1039/c1sm05832k
– volume: 323
  start-page: 73
  year: 2008
  ident: 10.1016/j.cocis.2014.04.009_bb0425
  article-title: Understanding of sliding and contact angle results in tilted plate experiments
  publication-title: Colloids Surf A
  doi: 10.1016/j.colsurfa.2007.09.032
– volume: 52
  start-page: 165
  year: 2000
  ident: 10.1016/j.cocis.2014.04.009_bb0030
  article-title: Roughness-induced non-wetting
  publication-title: Europhys Lett
  doi: 10.1209/epl/i2000-00418-8
– volume: 28
  start-page: 8392
  year: 2012
  ident: 10.1016/j.cocis.2014.04.009_bb0205
  article-title: Wetting on the microscale: shape of a liquid drop on a microstructured surface at different length scales
  publication-title: Langmuir
  doi: 10.1021/la300379u
– volume: 339
  start-page: 208
  year: 2009
  ident: 10.1016/j.cocis.2014.04.009_bb0275
  article-title: A modified Cassie–Baxter relationship to explain contact angle hysteresis and anisotropy on non-wetting textured surfaces
  publication-title: J Colloid Interface Sci
  doi: 10.1016/j.jcis.2009.07.027
– volume: 8
  start-page: 9765
  year: 2012
  ident: 10.1016/j.cocis.2014.04.009_bb0055
  article-title: Absence of an evaporation-driven wetting transition on omniphobic surfaces
  publication-title: Soft Matter
  doi: 10.1039/c2sm25746g
– volume: 381
  start-page: 225
  year: 1999
  ident: 10.1016/j.cocis.2014.04.009_bb0095
  article-title: Drag reduction of Newtonian fluid in a circular pipe with a highly water-repellent wall
  publication-title: J Fluid Mech
  doi: 10.1017/S0022112098003747
– volume: 115
  start-page: 14852
  year: 2011
  ident: 10.1016/j.cocis.2014.04.009_bb0305
  article-title: Study of wetting and adhesion interactions between water and various polymer and superhydrophobic surfaces
  publication-title: J Phys Chem C
  doi: 10.1021/jp2032466
– volume: 24
  start-page: 14074
  year: 2008
  ident: 10.1016/j.cocis.2014.04.009_bb0515
  article-title: Drop impact on porous superhydrophobic polymer surfaces
  publication-title: Langmuir
  doi: 10.1021/la802897g
– volume: 21
  start-page: 3881
  year: 2005
  ident: 10.1016/j.cocis.2014.04.009_bb0420
  article-title: Drops down the hill: theoretical study of limiting contact angles and the hysteresis range on a tilted plate
  publication-title: Langmuir
  doi: 10.1021/la0474565
– volume: 9
  start-page: 304
  year: 2012
  ident: 10.1016/j.cocis.2014.04.009_bb0495
  article-title: Hierarchical, plasma nanotextured, robust superamphiphobic polymeric surfaces structurally stabilized through a wetting–drying cycle
  publication-title: Plasma Process Polym
  doi: 10.1002/ppap.201100124
– volume: 9
  start-page: 501
  year: 2009
  ident: 10.1016/j.cocis.2014.04.009_bb0065
  article-title: Inherently superoleophobic nanocomposite coatings by spray atomization
  publication-title: Nano Lett
  doi: 10.1021/nl8037272
– volume: 2
  start-page: 457
  year: 2003
  ident: 10.1016/j.cocis.2014.04.009_bb0435
  article-title: Superhydrophobic states
  publication-title: Nat Mater
  doi: 10.1038/nmat924
– volume: 69
  start-page: 016301
  year: 2004
  ident: 10.1016/j.cocis.2014.04.009_bb0490
  article-title: First steps in the spreading of a liquid droplet
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.69.016301
– volume: 88
  start-page: 294
  year: 1982
  ident: 10.1016/j.cocis.2014.04.009_bb0170
  article-title: The interfacial profile in the contact line region and the Young–Dupré equation
  publication-title: J Colloid Interface Sci
  doi: 10.1016/0021-9797(82)90175-8
– volume: 5
  start-page: 2549
  year: 2009
  ident: 10.1016/j.cocis.2014.04.009_bb0090
  article-title: Wetting and friction on superoleophobic surfaces
  publication-title: Soft Matter
– volume: 26
  start-page: 18162
  year: 2010
  ident: 10.1016/j.cocis.2014.04.009_bb0290
  article-title: Modeling receding contact lines on superhydrophobic surfaces
  publication-title: Langmuir
  doi: 10.1021/la103539m
– volume: 4
  start-page: 2232
  year: 2008
  ident: 10.1016/j.cocis.2014.04.009_bb0315
  article-title: How does the leaf margin make the lotus surface dry as the lotus leaf floats on water
  publication-title: Soft Matter
  doi: 10.1039/b807857b
– volume: 299
  start-page: 841
  year: 2006
  ident: 10.1016/j.cocis.2014.04.009_bb0390
  article-title: Retention forces and contact angles for critical liquid drops on non-horizontal surfaces
  publication-title: J Colloid Interface Sci
  doi: 10.1016/j.jcis.2006.02.018
– volume: 9
  start-page: 418
  year: 2013
  ident: 10.1016/j.cocis.2014.04.009_bb0235
  article-title: Design principles for superamphiphobic surfaces
  publication-title: Soft Matter
  doi: 10.1039/C2SM27016A
– volume: 11
  start-page: 3585
  year: 1995
  ident: 10.1016/j.cocis.2014.04.009_bb0340
  article-title: Young–Dupre revisited
  publication-title: Langmuir
  doi: 10.1021/la00009a049
– volume: 8
  start-page: 9635
  year: 2012
  ident: 10.1016/j.cocis.2014.04.009_bb0325
  article-title: Super-hydrophobic surface with switchable adhesion responsive to both temperature and pH
  publication-title: Soft Matter
  doi: 10.1039/c2sm26399h
– volume: 100
  start-page: 171601
  year: 2012
  ident: 10.1016/j.cocis.2014.04.009_bb0450
  article-title: Impact and wetting behaviors of impinging microdroplets on superhydrophobic textured surfaces
  publication-title: Appl Phys Lett
  doi: 10.1063/1.4705296
– volume: 16
  start-page: 292
  year: 2011
  ident: 10.1016/j.cocis.2014.04.009_bb0505
  article-title: Drop collisions with simple and complex surfaces
  publication-title: Curr Opin Colloid Interface Sci
  doi: 10.1016/j.cocis.2011.06.009
SSID ssj0001225
Score 2.524082
SecondaryResourceType review_article
Snippet Characterization of the wetting properties is a prerequisite for a fundamental understanding and the targeted development of superhydrophobic and...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 343
SubjectTerms Adhesion
air
Contact
Contact angle
Contact pressure
energy
Entrapment
hydrophobicity
Links
Microstructure
Nanostructure
Superhydrophobicity
Superoleophobicity
Superomniphobicity
Wetting
Title Characterization of super liquid-repellent surfaces
URI https://dx.doi.org/10.1016/j.cocis.2014.04.009
https://www.proquest.com/docview/1669843793
https://www.proquest.com/docview/2153601254
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6LHtSD6Kr4poJH67ZpmrRHKS7rAxF1wVto0gQqS3et26u_3Zk-fKEehEJpmECYDvMg33xDyLFhVFEhtOsJ67mMp9qNFILGlRbacowJNUD2ho_G7PIxfOyRpOuFQVhl6_sbn15763Zl0GpzMMvzwb0fIPVIzKBEQM5DbPhlTKCVn75-wDx8Wg9eRWEXpTvmoRrjBT4nR85un9V8p4hK_Dk6ffPTdfAZrpHVNmt0zpqDrZOeKfpkKemGtfXJyidewQ0SJO80zE2XpTO1zks1M6UzyZ-rPHNLg7cuEHBgubQIy9ok4-H5QzJy2-kIroasZe6qzArjxdrQjHMVhUZkGdVK-YEfcB1aqC0s5BqCK22R2C1SnslUpL1UQzwK02CLLBTTwmwTh2oeUg2RKjaGBVmmIOmxsRdGqQmFoWyH0E4rUrfU4TjBYiI7jNiTrFUpUZXSg8eLd8jJ-6ZZw5zxtzjv1C2_GIAE3_73xqPu50hQOt53pIWZVi_SBzuLkG8x-F0GMp4AalIok3f_e4A9soxfDSpwnyzMy8ocQKYyV4e1KR6SxbPk7voW3xdXo5s3oCLpag
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qe1APolWxPiN4NDTZJJvkKEVpbe3FFnpbsptdiJS29vH_ncmjqKgHIafNLCyzyzcz7LffANxpn0kWhsp2QuPYPk-UHUkijUsVKsMpJuQE2SHvjv3nSTCpQad6C0O0yhL7C0zP0bocaZfebC-yrP3qeiQ9EvtYIpDmYbQDDVKnCurQeOj1u8MtILss771K9jZNqMSHcpoXwk5Gst2un0ueEjHx5wD1Darz-PN0CAdl4mg9FGs7gpqeNWG3U_Vra8L-J2nBY_A6WyXm4qGlNTfWarPQS2uavW-y1F5qunjBmIPDS0PMrBMYPz2OOl27bJBgK0xc1rZMTaidWGmWci6jQIdpypSUrud6XAUGywuD6UbIpTKk7RZJR6cyUk6iMCQFiXcK9dl8ps_AYooHTGGwirX2vTSVmPeY2AmiRAehZn4LWOUVoUr1cGpiMRUVTexN5K4U5Erh4OfELbjfTloU4hl_m_PK3eLLGRAI739PvK02R6DT6cojmen5ZiVcPGoRSS56v9tg0uNhWYqV8vl_F3ADu93Ry0AMesP-BezRn4IkeAn19XKjrzBxWcvr8mB-AFN96oY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterization+of+super+liquid-repellent+surfaces&rft.jtitle=Current+opinion+in+colloid+%26+interface+science&rft.au=Butt%2C+Hans-Jurgen&rft.au=Roisman%2C+Ilia+V&rft.au=Brinkmann%2C+Martin&rft.au=Papadopoulos%2C+Periklis&rft.date=2014-08-01&rft.issn=1359-0294&rft.volume=19&rft.issue=4&rft.spage=343&rft.epage=354&rft_id=info:doi/10.1016%2Fj.cocis.2014.04.009&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-0294&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-0294&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-0294&client=summon