Scalable preparation of three-dimensional porous structures of reduced graphene oxide/cellulose composites and their application in supercapacitors

Controlling the assembled structures of graphene has recently attracted enormous attention due to intriguing properties of the resultant structures. In this study, three-dimensional (3D) porous structures of reduced graphene oxide (RGO) with various ratios of RGO to cellulose have been fabricated by...

Full description

Saved in:
Bibliographic Details
Published inCarbon (New York) Vol. 62; pp. 501 - 509
Main Authors Ouyang, Wenzhu, Sun, Jinhua, Memon, Jamil, Wang, Chao, Geng, Jianxin, Huang, Yong
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.10.2013
Elsevier
Subjects
Online AccessGet full text
ISSN0008-6223
1873-3891
DOI10.1016/j.carbon.2013.06.049

Cover

Loading…
Abstract Controlling the assembled structures of graphene has recently attracted enormous attention due to intriguing properties of the resultant structures. In this study, three-dimensional (3D) porous structures of reduced graphene oxide (RGO) with various ratios of RGO to cellulose have been fabricated by a scalable, but simple and efficient, approach that consists of ball milling assisted chemical reduction of GO, template shaping, coagulating, and lyophilization. The efficient mechanical shearing of ball milling and the hydrogen bond interactions between RGO and cellulose molecules contribute to the formation of a homogeneous RGO/cellulose hydrogel, improved thermal stability of the resultant composites, and enhanced crystallinity of the cellulose in the composites. The coagulation effect of cellulose maintains the RGO sheets in the 3D structures of cellulose; on the other hand, the RGO sheets facilitate the preservation of the 3D structures during freeze-drying, leading to the formation of 3D porous structures of RGO/cellulose composites. Benefiting from the continuous RGO network in the composites, the 3D porous structures of RGO(70)/cellulose(100) (GO:cellulose=70:100 in weight) show an electrical conductivity of 15.28Sm−1. Moreover, the 3D porous structures show potential application in supercapacitors due to the fact that they provide high specific surface area and fast charge propagation.
AbstractList Controlling the assembled structures of graphene has recently attracted enormous attention due to intriguing properties of the resultant structures. In this study, three-dimensional (3D) porous structures of reduced graphene oxide (RGO) with various ratios of RGO to cellulose have been fabricated by a scalable, but simple and efficient, approach that consists of ball milling assisted chemical reduction of GO, template shaping, coagulating, and lyophilization. The efficient mechanical shearing of ball milling and the hydrogen bond interactions between RGO and cellulose molecules contribute to the formation of a homogeneous RGO/cellulose hydrogel, improved thermal stability of the resultant composites, and enhanced crystallinity of the cellulose in the composites. The coagulation effect of cellulose maintains the RGO sheets in the 3D structures of cellulose; on the other hand, the RGO sheets facilitate the preservation of the 3D structures during freeze-drying, leading to the formation of 3D porous structures of RGO/cellulose composites. Benefiting from the continuous RGO network in the composites, the 3D porous structures of RGO(70)/cellulose(100) (GO:cellulose=70:100 in weight) show an electrical conductivity of 15.28Sm−1. Moreover, the 3D porous structures show potential application in supercapacitors due to the fact that they provide high specific surface area and fast charge propagation.
Controlling the assembled structures of graphene has recently attracted enormous attention due to intriguing properties of the resultant structures. In this study, three-dimensional (3D) porous structures of reduced graphene oxide (RGO) with various ratios of RGO to cellulose have been fabricated by a scalable, but simple and efficient, approach that consists of ball milling assisted chemical reduction of GO, template shaping, coagulating, and lyophilization. The efficient mechanical shearing of ball milling and the hydrogen bond interactions between RGO and cellulose molecules contribute to the formation of a homogeneous RGO/cellulose hydrogel, improved thermal stability of the resultant composites, and enhanced crystallinity of the cellulose in the composites. The coagulation effect of cellulose maintains the RGO sheets in the 3D structures of cellulose; on the other hand, the RGO sheets facilitate the preservation of the 3D structures during freeze-drying, leading to the formation of 3D porous structures of RGO/cellulose composites. Benefiting from the continuous RGO network in the composites, the 3D porous structures of RGO (70)/cellulose (100) (GOxellulose = 70:100 in weight) show an electrical conductivity of 15.28 S m super(1). Moreover, the 3D porous structures show potential application in supercapacitors due to the fact that they provide high specific surface area and fast charge propagation.
Controlling the assembled structures of graphene has recently attracted enormous attention due to intriguing properties of the resultant structures. In this study, three-dimensional (3D) porous structures of reduced graphene oxide (RGO) with various ratios of RGO to cellulose have been fabricated by a scalable, but simple and efficient, approach that consists of ball milling assisted chemical reduction of GO, template shaping, coagulating, and lyophilization. The efficient mechanical shearing of ball milling and the hydrogen bond interactions between RGO and cellulose molecules contribute to the formation of a homogeneous RGO/cellulose hydrogel, improved thermal stability of the resultant composites, and enhanced crystallinity of the cellulose in the composites. The coagulation effect of cellulose maintains the RGO sheets in the 3D structures of cellulose; on the other hand, the RGO sheets facilitate the preservation of the 3D structures during freeze-drying, leading to the formation of 3D porous structures of RGO/cellulose composites. Benefiting from the continuous RGO network in the composites, the 3D porous structures of RGO(70)/cellulose(100) (GO:cellulose = 70:100 in weight) show an electrical conductivity of 15.28 S ma1. Moreover, the 3D porous structures show potential application in supercapacitors due to the fact that they provide high specific surface area and fast charge propagation.
Controlling the assembled structures of graphene has recently attracted enormous attention due to intriguing properties of the resultant structures. In this study, three-dimensional (3D) porous structures of reduced graphene oxide (RGO) with various ratios of RGO to cellulose have been fabricated by a scalable, but simple and efficient, approach that consists of ball milling assisted chemical reduction of GO, template shaping, coagulating, and lyophilization. The efficient mechanical shearing of ball milling and the hydrogen bond interactions between RGO and cellulose molecules contribute to the formation of a homogeneous RGO/cellulose hydrogel, improved thermal stability of the resultant composites, and enhanced crystallinity of the cellulose in the composites. The coagulation effect of cellulose maintains the RGO sheets in the 3D structures of cellulose; on the other hand, the RGO sheets facilitate the preservation of the 3D structures during freeze-drying, leading to the formation of 3D porous structures of RGO/cellulose composites. Benefiting from the continuous RGO network in the composites, the 3D porous structures of RGO(70)/cellulose(100) (GO:cellulose=70:100 in weight) show an electrical conductivity of 15.28Sm⁻¹. Moreover, the 3D porous structures show potential application in supercapacitors due to the fact that they provide high specific surface area and fast charge propagation.
Author Memon, Jamil
Wang, Chao
Geng, Jianxin
Huang, Yong
Sun, Jinhua
Ouyang, Wenzhu
Author_xml – sequence: 1
  givenname: Wenzhu
  surname: Ouyang
  fullname: Ouyang, Wenzhu
– sequence: 2
  givenname: Jinhua
  surname: Sun
  fullname: Sun, Jinhua
– sequence: 3
  givenname: Jamil
  surname: Memon
  fullname: Memon, Jamil
– sequence: 4
  givenname: Chao
  surname: Wang
  fullname: Wang, Chao
– sequence: 5
  givenname: Jianxin
  surname: Geng
  fullname: Geng, Jianxin
  email: jianxingeng@mail.ipc.ac.cn
– sequence: 6
  givenname: Yong
  surname: Huang
  fullname: Huang, Yong
  email: yhuang@mail.ipc.ac.cn
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27584214$$DView record in Pascal Francis
BookMark eNqFks9u1DAQxi1UJLaFN-CQCxKXpHbsxA4HJFTxp1IlDsDZsp0J9Sprm3GC6HPwwng35cKBlQ8jW7_5xjPfXJKLEAMQ8pLRhlHWX-8bZ9DG0LSU8Yb2DRXDE7JjSvKaq4FdkB2lVNV92_Jn5DLnfbkKxcSO_P7izGzsDFVCSAbN4mOo4lQt9whQj_4AIZcnM1cpYlxzlRdc3bIi5COGMK4Oxuo7mnQPAar4y49w7WCe1zlmqFw8pJj9UnATxiILHiuT0uzdVsuHKq8J0JlknF8i5ufk6WTmDC8e4xX59uH915tP9d3nj7c37-5q19Fuqa1gjClLjYASJ6uspFYIJlnfu5FLOqlRda6T1jJKLWWOTaIdB9l2MCgx8CvyetNNGH-skBd98Pn4cxOgdKqZpJ0QnElxHu0YL6XLOY8KoSTjnNOCvnpETS42TGiC81kn9AeDD7qVnRLtSfLNxjmMOSNMugzqNL0FjZ81o_q4B3qvtz3Qxz3QtNf01KX4J_mv_pm0t1saFAd-ekCdnYdQvPYIbtFj9P8X-AOGQ9NR
CODEN CRBNAH
CitedBy_id crossref_primary_10_1016_j_prime_2023_100361
crossref_primary_10_1039_C4NR07564A
crossref_primary_10_1007_s00226_020_01208_y
crossref_primary_10_1039_C5RA18494K
crossref_primary_10_1021_acsami_3c08042
crossref_primary_10_1039_C9RA08318A
crossref_primary_10_1002_app_48564
crossref_primary_10_1039_C7NJ00032D
crossref_primary_10_1039_D2NA00383J
crossref_primary_10_1039_C8QM00628H
crossref_primary_10_1016_j_cej_2018_07_088
crossref_primary_10_1016_j_cap_2014_09_021
crossref_primary_10_1007_s40820_021_00627_1
crossref_primary_10_1080_15440478_2021_1875373
crossref_primary_10_1021_acsami_5b04093
crossref_primary_10_1002_slct_201701371
crossref_primary_10_1039_C8NR02052C
crossref_primary_10_1016_j_apsusc_2015_02_030
crossref_primary_10_1039_C4NR07402E
crossref_primary_10_1007_s10570_015_0749_1
crossref_primary_10_1016_j_jallcom_2017_09_018
crossref_primary_10_3390_ma9070582
crossref_primary_10_1016_j_nanoen_2014_06_007
crossref_primary_10_1039_C4NR06609J
crossref_primary_10_1039_C5TC02194D
crossref_primary_10_1021_acsami_2c19300
crossref_primary_10_1039_c3ta14613h
crossref_primary_10_5004_dwt_2019_23249
crossref_primary_10_1007_s10570_023_05269_7
crossref_primary_10_1016_j_matchemphys_2019_121774
crossref_primary_10_1039_C7RA00958E
crossref_primary_10_1021_acssuschemeng_5b01273
crossref_primary_10_1002_tcr_202200266
crossref_primary_10_26599_PBM_2017_9260019
crossref_primary_10_1039_C8NJ03563F
crossref_primary_10_1021_ma5026237
crossref_primary_10_1149_2162_8777_ad775c
crossref_primary_10_1016_j_carbon_2013_12_086
crossref_primary_10_1515_ipp_2021_4148
crossref_primary_10_1007_s00289_019_03077_3
crossref_primary_10_1016_j_jhazmat_2017_04_030
crossref_primary_10_1049_iet_nbt_2017_0063
crossref_primary_10_3390_ma13143213
crossref_primary_10_1016_j_cej_2019_02_173
crossref_primary_10_1021_sc500738k
crossref_primary_10_1039_C7RA07533B
crossref_primary_10_1016_j_envres_2020_110652
crossref_primary_10_1016_j_polymer_2018_06_005
crossref_primary_10_1021_acs_iecr_1c01830
crossref_primary_10_1038_pj_2017_22
crossref_primary_10_1007_s10570_019_02339_7
crossref_primary_10_1007_s10570_020_03030_y
crossref_primary_10_1021_acsami_6b02164
crossref_primary_10_1021_acsami_7b02675
crossref_primary_10_1039_C4RA09497B
crossref_primary_10_1016_j_hybadv_2024_100150
crossref_primary_10_1016_j_apsusc_2016_05_146
crossref_primary_10_1016_j_compositesb_2018_12_072
crossref_primary_10_1016_j_polymer_2023_125786
crossref_primary_10_1007_s10570_018_1998_6
crossref_primary_10_1016_j_compositesb_2017_11_024
crossref_primary_10_1016_j_ijbiomac_2025_141749
crossref_primary_10_1016_j_synthmet_2016_12_010
crossref_primary_10_1016_j_carbpol_2017_05_056
crossref_primary_10_1039_C8TA07751G
crossref_primary_10_1016_j_carbon_2014_10_018
crossref_primary_10_1016_j_ijbiomac_2019_08_081
crossref_primary_10_1016_j_snb_2023_134863
crossref_primary_10_1080_10584587_2015_1033911
crossref_primary_10_1002_aenm_201801854
crossref_primary_10_1021_acssuschemeng_5b01703
crossref_primary_10_1039_C9NR00659A
crossref_primary_10_1016_j_nanoms_2020_03_003
crossref_primary_10_1016_j_carbpol_2022_119192
crossref_primary_10_1021_acssuschemeng_7b00747
crossref_primary_10_1002_ente_201700090
crossref_primary_10_1007_s10965_016_1013_6
crossref_primary_10_1016_j_colsurfa_2014_10_043
crossref_primary_10_1016_j_matchemphys_2016_01_021
crossref_primary_10_1016_j_carbpol_2018_12_010
crossref_primary_10_1016_j_progpolymsci_2018_11_002
crossref_primary_10_1002_adma_201604690
crossref_primary_10_1039_D0RA01854F
crossref_primary_10_1016_j_progpolymsci_2014_03_001
crossref_primary_10_1016_j_cis_2015_04_005
crossref_primary_10_1002_slct_201803127
crossref_primary_10_1007_s42247_021_00300_8
crossref_primary_10_1016_j_carbon_2017_05_031
crossref_primary_10_1039_C4RA07707E
crossref_primary_10_1016_j_electacta_2018_06_131
crossref_primary_10_1016_j_jece_2022_107586
crossref_primary_10_3390_jcs5080202
crossref_primary_10_1039_C6TA04112D
crossref_primary_10_1002_est2_634
crossref_primary_10_1016_j_cej_2017_02_109
crossref_primary_10_1002_cnma_201600225
crossref_primary_10_1007_s10570_018_1946_5
crossref_primary_10_1039_C7CS00904F
crossref_primary_10_1016_j_synthmet_2017_10_014
crossref_primary_10_1016_j_matlet_2017_04_141
crossref_primary_10_1002_cjoc_201700209
crossref_primary_10_1016_j_compositesa_2017_10_004
crossref_primary_10_1039_C4CP05921B
crossref_primary_10_1016_j_carbon_2016_06_107
crossref_primary_10_1016_j_cej_2014_12_001
crossref_primary_10_1039_C8TC04309D
crossref_primary_10_1016_j_carbpol_2018_06_014
crossref_primary_10_1016_j_carbpol_2018_01_031
crossref_primary_10_1016_j_renene_2018_05_030
crossref_primary_10_1007_s11051_022_05542_z
crossref_primary_10_1021_es504421y
crossref_primary_10_1039_C4TB01792G
crossref_primary_10_1016_j_envpol_2022_119557
crossref_primary_10_1002_cnma_201600332
crossref_primary_10_1016_j_ceramint_2020_07_150
crossref_primary_10_1007_s42823_019_00003_5
crossref_primary_10_1016_j_carbpol_2018_05_058
crossref_primary_10_1002_aenm_201700130
crossref_primary_10_1039_C9RA04729H
crossref_primary_10_1039_C4GC00264D
crossref_primary_10_3390_molecules26164891
crossref_primary_10_1039_C8RA08745H
crossref_primary_10_3390_su15129227
crossref_primary_10_1007_s11157_020_09551_z
crossref_primary_10_1016_j_apsusc_2018_10_169
crossref_primary_10_1021_acssuschemeng_5b00384
crossref_primary_10_1016_j_jpowsour_2017_10_012
crossref_primary_10_1016_j_sna_2016_05_045
crossref_primary_10_1039_C5RA01897H
crossref_primary_10_1177_0021998320953183
crossref_primary_10_1007_s12274_014_0609_6
crossref_primary_10_1016_j_matchemphys_2016_06_025
crossref_primary_10_1002_ente_201700150
crossref_primary_10_1016_j_snb_2020_128449
crossref_primary_10_1021_acsami_5b02787
crossref_primary_10_1039_C4EE00050A
crossref_primary_10_1007_s10570_014_0395_z
crossref_primary_10_1039_C8NR07469K
crossref_primary_10_1007_s10967_019_06641_3
crossref_primary_10_1016_j_chroma_2016_09_056
crossref_primary_10_1016_j_desal_2020_114596
crossref_primary_10_1016_j_ijoes_2023_100101
crossref_primary_10_1016_j_synthmet_2015_05_018
crossref_primary_10_1080_00914037_2016_1157799
crossref_primary_10_1049_iet_cds_2015_0034
crossref_primary_10_1016_j_jelechem_2023_118020
crossref_primary_10_1007_s10853_016_0137_8
crossref_primary_10_1515_zpch_2018_1133
crossref_primary_10_1016_j_jclepro_2022_134254
crossref_primary_10_1021_acssuschemeng_6b03101
crossref_primary_10_1016_j_compositesb_2018_10_037
crossref_primary_10_1007_s10570_018_1719_1
crossref_primary_10_1007_s40820_018_0195_3
crossref_primary_10_1016_j_indcrop_2023_117632
crossref_primary_10_3389_fbioe_2021_638744
crossref_primary_10_1039_C4RA13057J
crossref_primary_10_1021_acsnano_6b03349
crossref_primary_10_1016_j_nxener_2024_100148
crossref_primary_10_1021_acsami_6b11979
crossref_primary_10_1016_j_compositesa_2017_12_014
crossref_primary_10_1155_2018_8973643
crossref_primary_10_1039_C6RA06438H
crossref_primary_10_1039_D0TA07576K
crossref_primary_10_3390_ijms241411593
crossref_primary_10_2166_wst_2019_137
crossref_primary_10_1038_s41598_016_0010_7
crossref_primary_10_1002_cnma_201700055
crossref_primary_10_1007_s10854_018_9979_y
crossref_primary_10_3390_cryst8040168
crossref_primary_10_1016_j_ijbiomac_2022_06_053
crossref_primary_10_3390_ma9030183
crossref_primary_10_1021_acs_chemmater_5b00981
crossref_primary_10_1007_s10570_015_0559_5
crossref_primary_10_1016_j_carbpol_2017_12_046
crossref_primary_10_3390_polym14245519
crossref_primary_10_1016_j_carbpol_2020_116661
crossref_primary_10_1016_j_colsurfa_2016_05_012
crossref_primary_10_1016_j_polymer_2016_04_022
crossref_primary_10_1016_j_synthmet_2020_116624
crossref_primary_10_1002_adfm_201501733
crossref_primary_10_1016_j_ijbiomac_2022_03_028
crossref_primary_10_1016_j_ultsonch_2019_104720
crossref_primary_10_1155_2019_4294306
crossref_primary_10_1021_acsami_2c21043
crossref_primary_10_1021_acscatal_6b02833
crossref_primary_10_1016_j_cej_2018_11_115
crossref_primary_10_1007_s10924_018_1330_4
crossref_primary_10_3390_polym16030339
crossref_primary_10_59400_mtr1879
crossref_primary_10_1016_j_chphi_2022_100111
crossref_primary_10_1016_j_sna_2021_112611
crossref_primary_10_1039_C8MH01219A
Cites_doi 10.1021/ie0010417
10.1038/nmat1870
10.1021/jp105029m
10.1038/nmat3001
10.1002/polb.22337
10.1126/science.1150878
10.1016/j.electacta.2012.03.024
10.1002/adma.200600442
10.1063/1.118568
10.1002/adma.200803606
10.1002/marc.200400172
10.1021/jp2109237
10.1002/anie.201000270
10.1021/ja065035z
10.1039/c2jm31635h
10.1039/c001939a
10.1016/j.carbon.2012.01.074
10.1021/nl203903z
10.1021/ja106162f
10.1016/j.carbon.2007.02.034
10.1038/nnano.2007.451
10.1021/jp110001y
10.1039/c2jm33900e
10.1002/adfm.201000287
10.1021/jp904814h
10.1021/jp1008779
10.1002/anie.200902534
10.1038/nature07919
10.1021/nl900811r
10.1002/anie.201004692
10.1021/nn200069w
10.1038/nature04969
10.1021/jp9035887
10.1021/nn101187z
10.1021/ol062187q
10.1038/nature07872
10.1039/c3cc40563j
10.1126/science.1194372
10.1038/nnano.2008.96
10.1038/ncomms1583
10.1039/b810371b
ContentType Journal Article
Copyright 2013 Elsevier Ltd
2014 INIST-CNRS
Copyright_xml – notice: 2013 Elsevier Ltd
– notice: 2014 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7SR
7U5
8FD
JG9
L7M
7S9
L.6
DOI 10.1016/j.carbon.2013.06.049
DatabaseName CrossRef
Pascal-Francis
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Materials Research Database
Materials Research Database
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1873-3891
EndPage 509
ExternalDocumentID 27584214
10_1016_j_carbon_2013_06_049
S0008622313005708
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29B
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SSM
SSR
SSZ
T5K
TWZ
WUQ
XPP
ZMT
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
IQODW
7SR
7U5
8FD
JG9
L7M
7S9
L.6
ID FETCH-LOGICAL-c505t-b41118b0a4e118fb8b70b4417166cd370f8d85c57bb100b01c1f42d9725e98493
IEDL.DBID AIKHN
ISSN 0008-6223
IngestDate Fri Sep 05 14:28:38 EDT 2025
Fri Sep 05 12:45:29 EDT 2025
Fri Sep 05 06:20:45 EDT 2025
Mon Jul 21 09:13:58 EDT 2025
Thu Apr 24 23:08:58 EDT 2025
Tue Jul 01 01:14:30 EDT 2025
Fri Feb 23 02:24:38 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Freeze drying
Ball mill
Porous materials
Cellulose
Coagulation
Supercapacitors
Specific surface area
Crystallinity
Lyophilization
Shearing
Thermal stability
Template
Chemical reduction
Template method
Composite materials
Hydrogen bonds
Three dimensional structure
Graphene
Preparation
Graphene oxide
Hydrogel
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c505t-b41118b0a4e118fb8b70b4417166cd370f8d85c57bb100b01c1f42d9725e98493
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PQID 1448713330
PQPubID 23500
PageCount 9
ParticipantIDs proquest_miscellaneous_1705443174
proquest_miscellaneous_1513441414
proquest_miscellaneous_1448713330
pascalfrancis_primary_27584214
crossref_citationtrail_10_1016_j_carbon_2013_06_049
crossref_primary_10_1016_j_carbon_2013_06_049
elsevier_sciencedirect_doi_10_1016_j_carbon_2013_06_049
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-10-01
PublicationDateYYYYMMDD 2013-10-01
PublicationDate_xml – month: 10
  year: 2013
  text: 2013-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Carbon (New York)
PublicationYear 2013
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Hirsch (b0025) 2009; 48
Geng, Zeng (b0150) 2006; 128
Luo, Zhang, Liu, Sun (b0115) 2011; 115
Geng, Liu, Yang, Youn, Kim, Lee (b0045) 2010; 114
Li, Muller, Gilje, Kaner, Wallace (b0120) 2008; 3
Wang, Lou, Wang, Hao (b0170) 2012; 22
Sharma, Nair, Strano (b0005) 2009; 113
Zhang, Cao, Feng, Wu (b0135) 2012; 116
Zhang, Wang, Zhang, Wu, Zhang, He (b0165) 2007; 19
Li, Wang, Zhang, Lee, Dai (b0010) 2008; 319
Stankovich, Dikin, Piner, Kohlhaas, Kleinhammes, Jia (b0140) 2007; 45
Vickery, Patil, Mann (b0085) 2009; 21
Wang, Zhu (b0185) 2011; 49
Ramanathan, Abdala, Stankovich, Dikin, Herrera-Alonso, Piner (b0155) 2008; 3
Sun, Meng, Jiang, Wu, Yan, Geng (b0050) 2012; 22
Sun, Xiao, Meng, Geng, Huang (b0055) 2013; 49
Xu, Gao (b0065) 2011; 2
Zhang, Zhao, Stoller, Zhu, Ji, Murali (b0205) 2012; 12
Geng, Jung (b0040) 2010; 114
Aulin, Netrval, Wagberg, Lindstrom (b0180) 2010; 6
Paakko, Vapaavuori, Silvennoinen, Kosonen, Ankerfors, Lindstrom (b0175) 2008; 4
Liu, Seo (b0080) 2010; 20
Zhang, Ruan, Zhou (b0100) 2001; 40
Bhardwaj, Antic, Pavan, Barone, Fahlman (b0020) 2010; 132
Jiao, Zhang, Wang, Diankov, Dai (b0030) 2009; 458
Kim, Han, Lee, Kim, Ahn, Yun (b0060) 2011; 50
Zu, Han (b0110) 2009; 113
Miller, Outlaw, Holloway (b0195) 2010; 329
Campos, Manfrinato, Sanchez-Yamagishi, Kong, Jarillo-Herrero (b0015) 2009; 9
Rittigstein, Priestley, Broadbelt, Torkelson (b0160) 2007; 6
Tang, Shen, Zhuang, Wang (b0090) 2010; 49
Chen, Ren, Gao, Liu, Pei, Cheng (b0095) 2011; 10
Guo, Sun, Liu, Wang, Qiu, Gao (b0125) 2012; 50
Kosynkin, Higginbotham, Sinitskii, Lomeda, Dimiev, Price (b0035) 2009; 458
Niu, Sichel, Hoch, Moy, Tennent (b0200) 1997; 70
Stankovich, Dikin, Dommett, Kohlhaas, Zimney, Stach (b0190) 2006; 442
Cai, Zhang, Zhou, Li, Chen, Jin (b0145) 2004; 25
Xu, Sheng, Li, Shi (b0075) 2010; 4
Zhang, Zhang, Chen, Wang, Ma (b0130) 2012; 69
Xu, Gao (b0070) 2011; 5
Ikeda, Nobusawa, Hamano, Kikuchi (b0105) 2006; 8
Sun (10.1016/j.carbon.2013.06.049_b0055) 2013; 49
Wang (10.1016/j.carbon.2013.06.049_b0170) 2012; 22
Bhardwaj (10.1016/j.carbon.2013.06.049_b0020) 2010; 132
Zu (10.1016/j.carbon.2013.06.049_b0110) 2009; 113
Miller (10.1016/j.carbon.2013.06.049_b0195) 2010; 329
Zhang (10.1016/j.carbon.2013.06.049_b0130) 2012; 69
Jiao (10.1016/j.carbon.2013.06.049_b0030) 2009; 458
Sun (10.1016/j.carbon.2013.06.049_b0050) 2012; 22
Geng (10.1016/j.carbon.2013.06.049_b0150) 2006; 128
Kosynkin (10.1016/j.carbon.2013.06.049_b0035) 2009; 458
Stankovich (10.1016/j.carbon.2013.06.049_b0190) 2006; 442
Hirsch (10.1016/j.carbon.2013.06.049_b0025) 2009; 48
Xu (10.1016/j.carbon.2013.06.049_b0065) 2011; 2
Xu (10.1016/j.carbon.2013.06.049_b0075) 2010; 4
Rittigstein (10.1016/j.carbon.2013.06.049_b0160) 2007; 6
Sharma (10.1016/j.carbon.2013.06.049_b0005) 2009; 113
Campos (10.1016/j.carbon.2013.06.049_b0015) 2009; 9
Zhang (10.1016/j.carbon.2013.06.049_b0165) 2007; 19
Niu (10.1016/j.carbon.2013.06.049_b0200) 1997; 70
Vickery (10.1016/j.carbon.2013.06.049_b0085) 2009; 21
Paakko (10.1016/j.carbon.2013.06.049_b0175) 2008; 4
Tang (10.1016/j.carbon.2013.06.049_b0090) 2010; 49
Zhang (10.1016/j.carbon.2013.06.049_b0100) 2001; 40
Ikeda (10.1016/j.carbon.2013.06.049_b0105) 2006; 8
Li (10.1016/j.carbon.2013.06.049_b0120) 2008; 3
Li (10.1016/j.carbon.2013.06.049_b0010) 2008; 319
Stankovich (10.1016/j.carbon.2013.06.049_b0140) 2007; 45
Chen (10.1016/j.carbon.2013.06.049_b0095) 2011; 10
Kim (10.1016/j.carbon.2013.06.049_b0060) 2011; 50
Geng (10.1016/j.carbon.2013.06.049_b0045) 2010; 114
Zhang (10.1016/j.carbon.2013.06.049_b0135) 2012; 116
Ramanathan (10.1016/j.carbon.2013.06.049_b0155) 2008; 3
Liu (10.1016/j.carbon.2013.06.049_b0080) 2010; 20
Guo (10.1016/j.carbon.2013.06.049_b0125) 2012; 50
Cai (10.1016/j.carbon.2013.06.049_b0145) 2004; 25
Luo (10.1016/j.carbon.2013.06.049_b0115) 2011; 115
Xu (10.1016/j.carbon.2013.06.049_b0070) 2011; 5
Wang (10.1016/j.carbon.2013.06.049_b0185) 2011; 49
Geng (10.1016/j.carbon.2013.06.049_b0040) 2010; 114
Aulin (10.1016/j.carbon.2013.06.049_b0180) 2010; 6
Zhang (10.1016/j.carbon.2013.06.049_b0205) 2012; 12
References_xml – volume: 442
  start-page: 282
  year: 2006
  end-page: 286
  ident: b0190
  article-title: Graphene-based composite materials
  publication-title: Nature
– volume: 113
  start-page: 14771
  year: 2009
  end-page: 14777
  ident: b0005
  article-title: Structure-reactivity relationships for graphene nanoribbons
  publication-title: J Phys Chem C
– volume: 319
  start-page: 1229
  year: 2008
  end-page: 1232
  ident: b0010
  article-title: Chemically derived, ultrasmooth graphene nanoribbon semiconductors
  publication-title: Sci
– volume: 20
  start-page: 1930
  year: 2010
  end-page: 1936
  ident: b0080
  article-title: A controllable self-assembly method for large-scale synthesis of graphene sponges and free-standing graphene films
  publication-title: Adv Funct Mater
– volume: 25
  start-page: 1558
  year: 2004
  end-page: 1562
  ident: b0145
  article-title: Novel fibers prepared from cellulose in NaOH/urea aqueous solution
  publication-title: Macromol Rapid Commun
– volume: 50
  start-page: 3043
  year: 2011
  end-page: 3047
  ident: b0060
  article-title: Graphene oxide liquid crystals
  publication-title: Angew Chem, Int Ed
– volume: 49
  start-page: 5538
  year: 2013
  end-page: 5540
  ident: b0055
  article-title: Enhanced photoresponse of large-sized photoactive graphene composite films based on water-soluble conjugated polymers
  publication-title: Chem Commun
– volume: 9
  start-page: 2600
  year: 2009
  end-page: 2604
  ident: b0015
  article-title: Anisotropic etching and nanoribbon formation in single-layer graphene
  publication-title: Nano Lett
– volume: 458
  start-page: 877
  year: 2009
  end-page: 880
  ident: b0030
  article-title: Narrow graphene nanoribbons from carbon nanotubes
  publication-title: Nature
– volume: 21
  start-page: 2180
  year: 2009
  end-page: 2184
  ident: b0085
  article-title: Fabrication of graphene-polymer nanocomposites with higher-order three-dimensional architectures
  publication-title: Adv Mater
– volume: 19
  start-page: 698
  year: 2007
  end-page: 704
  ident: b0165
  article-title: Regenerated-cellulose/multiwalled-carbon-nanotube composite fibers with enhanced mechanical properties prepared with the ionic liquid 1-allyl-3-methylimidazolium chloride
  publication-title: Adv Mater
– volume: 5
  start-page: 2908
  year: 2011
  end-page: 2915
  ident: b0070
  article-title: Aqueous liquid crystals of graphene oxide
  publication-title: ACS Nano
– volume: 45
  start-page: 1558
  year: 2007
  end-page: 1565
  ident: b0140
  article-title: Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide
  publication-title: Carbon
– volume: 10
  start-page: 424
  year: 2011
  end-page: 428
  ident: b0095
  article-title: Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition
  publication-title: Nat Mater
– volume: 6
  start-page: 3298
  year: 2010
  end-page: 3305
  ident: b0180
  article-title: Aerogels from nanofibrillated cellulose with tunable oleophobicity
  publication-title: Soft Matter
– volume: 8
  start-page: 5489
  year: 2006
  end-page: 5492
  ident: b0105
  article-title: Single-walled carbon nanotubes template the one-dimensional ordering of a polythiophene derivative
  publication-title: Org Lett
– volume: 69
  start-page: 364
  year: 2012
  end-page: 370
  ident: b0130
  article-title: An environment-friendly route to synthesize reduced graphene oxide as a supercapacitor electrode material
  publication-title: Electrochim Acta
– volume: 4
  start-page: 4324
  year: 2010
  end-page: 4330
  ident: b0075
  article-title: Self-assembled graphene hydrogel via a one-step hydrothermal process
  publication-title: ACS Nano
– volume: 6
  start-page: 278
  year: 2007
  end-page: 282
  ident: b0160
  article-title: Model polymer nanocomposites provide an understanding of confinement effects in real nanocomposites
  publication-title: Nat Mater
– volume: 70
  start-page: 1480
  year: 1997
  end-page: 1482
  ident: b0200
  article-title: High power electrochemical capacitors based on carbon nanotube electrodes
  publication-title: Appl Phys Lett
– volume: 4
  start-page: 2492
  year: 2008
  end-page: 2499
  ident: b0175
  article-title: Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities
  publication-title: Soft Matter
– volume: 50
  start-page: 2513
  year: 2012
  end-page: 2523
  ident: b0125
  article-title: One pot preparation of reduced graphene oxide (RGO) or Au (Ag) nanoparticle-RGO hybrids using chitosan as a reducing and stabilizing agent and their use in methanol electrooxidation
  publication-title: Carbon
– volume: 22
  start-page: 12859
  year: 2012
  end-page: 12866
  ident: b0170
  article-title: Relationship between dispersion state and reinforcement effect of graphene oxide in microcrystalline cellulose-graphene oxide composite films
  publication-title: J Mater Chem
– volume: 115
  start-page: 11327
  year: 2011
  end-page: 11335
  ident: b0115
  article-title: Evaluation criteria for reduced graphene oxide
  publication-title: J Phys Chem C
– volume: 22
  start-page: 18879
  year: 2012
  end-page: 18886
  ident: b0050
  article-title: Multiple-bilayered RGO-porphyrin films: from preparation to application in photoelectrochemical cells
  publication-title: J Mater Chem
– volume: 48
  start-page: 6594
  year: 2009
  end-page: 6596
  ident: b0025
  article-title: Unzipping carbon nanotubes: a peeling method for the formation of graphene nanoribbons
  publication-title: Angew Chem, Int Ed
– volume: 132
  start-page: 12556
  year: 2010
  end-page: 12558
  ident: b0020
  article-title: Enhanced electrochemical lithium storage by graphene nanoribbons
  publication-title: J Am Chem Soc
– volume: 12
  start-page: 1806
  year: 2012
  end-page: 1812
  ident: b0205
  article-title: Highly conductive and porous activated reduced graphene oxide films for high-power supercapacitors
  publication-title: Nano Lett
– volume: 40
  start-page: 5923
  year: 2001
  end-page: 5928
  ident: b0100
  article-title: Structure and properties of regenerated cellulose films prepared from cotton linters in NaOH/Urea aqueous solution
  publication-title: Ind Eng Chem Res
– volume: 2
  start-page: 571
  year: 2011
  ident: b0065
  article-title: Graphene chiral liquid crystals and macroscopic assembled fibres
  publication-title: Nat Commun
– volume: 113
  start-page: 13651
  year: 2009
  end-page: 13657
  ident: b0110
  article-title: Aqueous dispersion of graphene sheets stabilized by pluronic copolymers: formation of supramolecular hydrogel
  publication-title: J Phys Chem C
– volume: 49
  start-page: 4603
  year: 2010
  end-page: 4607
  ident: b0090
  article-title: Noble-metal-promoted three-dimensional macroassembly of single-layered graphene oxide
  publication-title: Angew Chem, Int Ed
– volume: 329
  start-page: 1637
  year: 2010
  end-page: 1639
  ident: b0195
  article-title: Graphene double-layer capacitor with ac line-filtering performance
  publication-title: Science
– volume: 116
  start-page: 8063
  year: 2012
  end-page: 8068
  ident: b0135
  article-title: Graphene-oxide-sheet-induced gelation of cellulose and promoted mechanical properties of composite aerogels
  publication-title: J Phys Chem C
– volume: 3
  start-page: 327
  year: 2008
  end-page: 331
  ident: b0155
  article-title: Functionalized graphene sheets for polymer nanocomposites
  publication-title: Nat Nanotechnol
– volume: 49
  start-page: 1421
  year: 2011
  end-page: 1429
  ident: b0185
  article-title: Polymer nanocomposites for electrical energy storage
  publication-title: J Polym Sci, Part B: Polym Phys
– volume: 114
  start-page: 14433
  year: 2010
  end-page: 14440
  ident: b0045
  article-title: A simple approach for preparing transparent conductive graphene films using the controlled chemical reduction of exfoliated graphene oxide in an aqueous suspension
  publication-title: J Phys Chem C
– volume: 458
  start-page: 872
  year: 2009
  end-page: 876
  ident: b0035
  article-title: Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons
  publication-title: Nature
– volume: 3
  start-page: 101
  year: 2008
  end-page: 105
  ident: b0120
  article-title: Processable aqueous dispersions of graphene nanosheets
  publication-title: Nat Nanotechnol
– volume: 128
  start-page: 16827
  year: 2006
  end-page: 16833
  ident: b0150
  article-title: Influence of single-walled carbon nanotubes induced crystallinity enhancement and morphology change on polymer photovoltaic devices
  publication-title: J Am Chem Soc
– volume: 114
  start-page: 8227
  year: 2010
  end-page: 8234
  ident: b0040
  article-title: Porphyrin functionalized graphene sheets in aqueous suspensions: from the preparation of graphene sheets to highly conductive graphene films
  publication-title: J Phys Chem C
– volume: 40
  start-page: 5923
  issue: 25
  year: 2001
  ident: 10.1016/j.carbon.2013.06.049_b0100
  article-title: Structure and properties of regenerated cellulose films prepared from cotton linters in NaOH/Urea aqueous solution
  publication-title: Ind Eng Chem Res
  doi: 10.1021/ie0010417
– volume: 6
  start-page: 278
  issue: 4
  year: 2007
  ident: 10.1016/j.carbon.2013.06.049_b0160
  article-title: Model polymer nanocomposites provide an understanding of confinement effects in real nanocomposites
  publication-title: Nat Mater
  doi: 10.1038/nmat1870
– volume: 114
  start-page: 14433
  issue: 34
  year: 2010
  ident: 10.1016/j.carbon.2013.06.049_b0045
  article-title: A simple approach for preparing transparent conductive graphene films using the controlled chemical reduction of exfoliated graphene oxide in an aqueous suspension
  publication-title: J Phys Chem C
  doi: 10.1021/jp105029m
– volume: 10
  start-page: 424
  issue: 6
  year: 2011
  ident: 10.1016/j.carbon.2013.06.049_b0095
  article-title: Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition
  publication-title: Nat Mater
  doi: 10.1038/nmat3001
– volume: 49
  start-page: 1421
  issue: 20
  year: 2011
  ident: 10.1016/j.carbon.2013.06.049_b0185
  article-title: Polymer nanocomposites for electrical energy storage
  publication-title: J Polym Sci, Part B: Polym Phys
  doi: 10.1002/polb.22337
– volume: 319
  start-page: 1229
  issue: 5867
  year: 2008
  ident: 10.1016/j.carbon.2013.06.049_b0010
  article-title: Chemically derived, ultrasmooth graphene nanoribbon semiconductors
  publication-title: Sci
  doi: 10.1126/science.1150878
– volume: 69
  start-page: 364
  year: 2012
  ident: 10.1016/j.carbon.2013.06.049_b0130
  article-title: An environment-friendly route to synthesize reduced graphene oxide as a supercapacitor electrode material
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2012.03.024
– volume: 19
  start-page: 698
  issue: 5
  year: 2007
  ident: 10.1016/j.carbon.2013.06.049_b0165
  article-title: Regenerated-cellulose/multiwalled-carbon-nanotube composite fibers with enhanced mechanical properties prepared with the ionic liquid 1-allyl-3-methylimidazolium chloride
  publication-title: Adv Mater
  doi: 10.1002/adma.200600442
– volume: 70
  start-page: 1480
  issue: 11
  year: 1997
  ident: 10.1016/j.carbon.2013.06.049_b0200
  article-title: High power electrochemical capacitors based on carbon nanotube electrodes
  publication-title: Appl Phys Lett
  doi: 10.1063/1.118568
– volume: 21
  start-page: 2180
  issue: 21
  year: 2009
  ident: 10.1016/j.carbon.2013.06.049_b0085
  article-title: Fabrication of graphene-polymer nanocomposites with higher-order three-dimensional architectures
  publication-title: Adv Mater
  doi: 10.1002/adma.200803606
– volume: 25
  start-page: 1558
  issue: 17
  year: 2004
  ident: 10.1016/j.carbon.2013.06.049_b0145
  article-title: Novel fibers prepared from cellulose in NaOH/urea aqueous solution
  publication-title: Macromol Rapid Commun
  doi: 10.1002/marc.200400172
– volume: 116
  start-page: 8063
  issue: 14
  year: 2012
  ident: 10.1016/j.carbon.2013.06.049_b0135
  article-title: Graphene-oxide-sheet-induced gelation of cellulose and promoted mechanical properties of composite aerogels
  publication-title: J Phys Chem C
  doi: 10.1021/jp2109237
– volume: 49
  start-page: 4603
  issue: 27
  year: 2010
  ident: 10.1016/j.carbon.2013.06.049_b0090
  article-title: Noble-metal-promoted three-dimensional macroassembly of single-layered graphene oxide
  publication-title: Angew Chem, Int Ed
  doi: 10.1002/anie.201000270
– volume: 128
  start-page: 16827
  issue: 51
  year: 2006
  ident: 10.1016/j.carbon.2013.06.049_b0150
  article-title: Influence of single-walled carbon nanotubes induced crystallinity enhancement and morphology change on polymer photovoltaic devices
  publication-title: J Am Chem Soc
  doi: 10.1021/ja065035z
– volume: 22
  start-page: 12859
  issue: 25
  year: 2012
  ident: 10.1016/j.carbon.2013.06.049_b0170
  article-title: Relationship between dispersion state and reinforcement effect of graphene oxide in microcrystalline cellulose-graphene oxide composite films
  publication-title: J Mater Chem
  doi: 10.1039/c2jm31635h
– volume: 6
  start-page: 3298
  issue: 14
  year: 2010
  ident: 10.1016/j.carbon.2013.06.049_b0180
  article-title: Aerogels from nanofibrillated cellulose with tunable oleophobicity
  publication-title: Soft Matter
  doi: 10.1039/c001939a
– volume: 50
  start-page: 2513
  issue: 7
  year: 2012
  ident: 10.1016/j.carbon.2013.06.049_b0125
  article-title: One pot preparation of reduced graphene oxide (RGO) or Au (Ag) nanoparticle-RGO hybrids using chitosan as a reducing and stabilizing agent and their use in methanol electrooxidation
  publication-title: Carbon
  doi: 10.1016/j.carbon.2012.01.074
– volume: 12
  start-page: 1806
  issue: 4
  year: 2012
  ident: 10.1016/j.carbon.2013.06.049_b0205
  article-title: Highly conductive and porous activated reduced graphene oxide films for high-power supercapacitors
  publication-title: Nano Lett
  doi: 10.1021/nl203903z
– volume: 132
  start-page: 12556
  issue: 36
  year: 2010
  ident: 10.1016/j.carbon.2013.06.049_b0020
  article-title: Enhanced electrochemical lithium storage by graphene nanoribbons
  publication-title: J Am Chem Soc
  doi: 10.1021/ja106162f
– volume: 45
  start-page: 1558
  issue: 7
  year: 2007
  ident: 10.1016/j.carbon.2013.06.049_b0140
  article-title: Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide
  publication-title: Carbon
  doi: 10.1016/j.carbon.2007.02.034
– volume: 3
  start-page: 101
  issue: 2
  year: 2008
  ident: 10.1016/j.carbon.2013.06.049_b0120
  article-title: Processable aqueous dispersions of graphene nanosheets
  publication-title: Nat Nanotechnol
  doi: 10.1038/nnano.2007.451
– volume: 115
  start-page: 11327
  issue: 23
  year: 2011
  ident: 10.1016/j.carbon.2013.06.049_b0115
  article-title: Evaluation criteria for reduced graphene oxide
  publication-title: J Phys Chem C
  doi: 10.1021/jp110001y
– volume: 22
  start-page: 18879
  issue: 36
  year: 2012
  ident: 10.1016/j.carbon.2013.06.049_b0050
  article-title: Multiple-bilayered RGO-porphyrin films: from preparation to application in photoelectrochemical cells
  publication-title: J Mater Chem
  doi: 10.1039/c2jm33900e
– volume: 20
  start-page: 1930
  issue: 12
  year: 2010
  ident: 10.1016/j.carbon.2013.06.049_b0080
  article-title: A controllable self-assembly method for large-scale synthesis of graphene sponges and free-standing graphene films
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.201000287
– volume: 113
  start-page: 14771
  issue: 33
  year: 2009
  ident: 10.1016/j.carbon.2013.06.049_b0005
  article-title: Structure-reactivity relationships for graphene nanoribbons
  publication-title: J Phys Chem C
  doi: 10.1021/jp904814h
– volume: 114
  start-page: 8227
  issue: 18
  year: 2010
  ident: 10.1016/j.carbon.2013.06.049_b0040
  article-title: Porphyrin functionalized graphene sheets in aqueous suspensions: from the preparation of graphene sheets to highly conductive graphene films
  publication-title: J Phys Chem C
  doi: 10.1021/jp1008779
– volume: 48
  start-page: 6594
  issue: 36
  year: 2009
  ident: 10.1016/j.carbon.2013.06.049_b0025
  article-title: Unzipping carbon nanotubes: a peeling method for the formation of graphene nanoribbons
  publication-title: Angew Chem, Int Ed
  doi: 10.1002/anie.200902534
– volume: 458
  start-page: 877
  issue: 7240
  year: 2009
  ident: 10.1016/j.carbon.2013.06.049_b0030
  article-title: Narrow graphene nanoribbons from carbon nanotubes
  publication-title: Nature
  doi: 10.1038/nature07919
– volume: 9
  start-page: 2600
  issue: 7
  year: 2009
  ident: 10.1016/j.carbon.2013.06.049_b0015
  article-title: Anisotropic etching and nanoribbon formation in single-layer graphene
  publication-title: Nano Lett
  doi: 10.1021/nl900811r
– volume: 50
  start-page: 3043
  issue: 13
  year: 2011
  ident: 10.1016/j.carbon.2013.06.049_b0060
  article-title: Graphene oxide liquid crystals
  publication-title: Angew Chem, Int Ed
  doi: 10.1002/anie.201004692
– volume: 5
  start-page: 2908
  issue: 4
  year: 2011
  ident: 10.1016/j.carbon.2013.06.049_b0070
  article-title: Aqueous liquid crystals of graphene oxide
  publication-title: ACS Nano
  doi: 10.1021/nn200069w
– volume: 442
  start-page: 282
  issue: 7100
  year: 2006
  ident: 10.1016/j.carbon.2013.06.049_b0190
  article-title: Graphene-based composite materials
  publication-title: Nature
  doi: 10.1038/nature04969
– volume: 113
  start-page: 13651
  issue: 31
  year: 2009
  ident: 10.1016/j.carbon.2013.06.049_b0110
  article-title: Aqueous dispersion of graphene sheets stabilized by pluronic copolymers: formation of supramolecular hydrogel
  publication-title: J Phys Chem C
  doi: 10.1021/jp9035887
– volume: 4
  start-page: 4324
  issue: 7
  year: 2010
  ident: 10.1016/j.carbon.2013.06.049_b0075
  article-title: Self-assembled graphene hydrogel via a one-step hydrothermal process
  publication-title: ACS Nano
  doi: 10.1021/nn101187z
– volume: 8
  start-page: 5489
  issue: 24
  year: 2006
  ident: 10.1016/j.carbon.2013.06.049_b0105
  article-title: Single-walled carbon nanotubes template the one-dimensional ordering of a polythiophene derivative
  publication-title: Org Lett
  doi: 10.1021/ol062187q
– volume: 458
  start-page: 872
  issue: 7240
  year: 2009
  ident: 10.1016/j.carbon.2013.06.049_b0035
  article-title: Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons
  publication-title: Nature
  doi: 10.1038/nature07872
– volume: 49
  start-page: 5538
  issue: 49
  year: 2013
  ident: 10.1016/j.carbon.2013.06.049_b0055
  article-title: Enhanced photoresponse of large-sized photoactive graphene composite films based on water-soluble conjugated polymers
  publication-title: Chem Commun
  doi: 10.1039/c3cc40563j
– volume: 329
  start-page: 1637
  issue: 5999
  year: 2010
  ident: 10.1016/j.carbon.2013.06.049_b0195
  article-title: Graphene double-layer capacitor with ac line-filtering performance
  publication-title: Science
  doi: 10.1126/science.1194372
– volume: 3
  start-page: 327
  issue: 6
  year: 2008
  ident: 10.1016/j.carbon.2013.06.049_b0155
  article-title: Functionalized graphene sheets for polymer nanocomposites
  publication-title: Nat Nanotechnol
  doi: 10.1038/nnano.2008.96
– volume: 2
  start-page: 571
  year: 2011
  ident: 10.1016/j.carbon.2013.06.049_b0065
  article-title: Graphene chiral liquid crystals and macroscopic assembled fibres
  publication-title: Nat Commun
  doi: 10.1038/ncomms1583
– volume: 4
  start-page: 2492
  issue: 12
  year: 2008
  ident: 10.1016/j.carbon.2013.06.049_b0175
  article-title: Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities
  publication-title: Soft Matter
  doi: 10.1039/b810371b
SSID ssj0004814
Score 2.527116
Snippet Controlling the assembled structures of graphene has recently attracted enormous attention due to intriguing properties of the resultant structures. In this...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 501
SubjectTerms Ball milling
Capacitors
Cellulose
chemical reduction
Chemistry
Coagulation
Colloidal gels. Colloidal sols
Colloidal state and disperse state
Cross-disciplinary physics: materials science; rheology
crystal structure
electrical conductivity
Exact sciences and technology
freeze drying
Fullerenes and related materials; diamonds, graphite
General and physical chemistry
Graphene
hydrocolloids
hydrogen bonding
Materials science
milling
Oxides
Physics
Porous materials
Porous materials; granular materials
Resultants
Specific materials
surface area
thermal stability
Three dimensional
Title Scalable preparation of three-dimensional porous structures of reduced graphene oxide/cellulose composites and their application in supercapacitors
URI https://dx.doi.org/10.1016/j.carbon.2013.06.049
https://www.proquest.com/docview/1448713330
https://www.proquest.com/docview/1513441414
https://www.proquest.com/docview/1705443174
Volume 62
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBbp5tBCKWnTkm2TRYVenbUetuRjWBo2CeSSBHIzkiyBS7DNPqCn_on-4c5YdtrQkEBOxmYk2zPSaEaa-YaQb1rkBuxwlVSay0RKG2BKFSxxvrCcOWaC7QNkL_PljTy_zW53yGLMhcGwykH3R53ea-vhyXzg5ryra8zxRXMc7BNEXFeY8LvLRZFnE7J7cnaxvPybHqkjxDee9GODMYOuD_NyZmVbBEJlogfyRFDNx1eot51ZA99CLHjxn-7uF6TTPfJusCTpSfzY92THNx_I68VYwG2f_L6CfjAzinYrHyG-24a2gW5Afj6pENc_YnJQMMLb7ZpGMNkteOBItkJUV1_RHtMaVCJtf9aVn-NW__auXXuK4egY8wXkpqlof-ZA_zkRp3VD19vOrxysyK7Guj4fyc3p9-vFMhlqMCQObKNNYiUoQ21TIz1cg9VWpRbLlrE8d5VQadCVzlymrGUpbqo6FiSvCsUzX2hZiE9k0rSNPyBU-MxZw402gsngMp0zzwsWAlpFQakpESPfSzcAlGOdjLtyjET7UUZplSitEgPyZDElyX2rLgJ0PEOvRpGWDwZaCWvIMy1nD0bA_es4-FySMzklX8chUYKoURym8SA-8K_AL2RCiPQJmowJYKx8sh-VIl4heJGfX_wbX8gbvIsBiYdkAiPLH4FhtbEz8ur4F5sN0-cPI0kmMQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhPSRQSpsmdJsmVaFXZy1LtuRjWBq2bZJLE8hNSLIELsE2-4Ce-ifyhzNj2XmQkkBPBnss2xppNGN98w0hXxUvDPjhMqlUJhIhbIApVbLE-dJmzDETbA-QPS_ml-LHVX61QWZjLgzCKgfbH216b62HM9OhN6ddXWOOL7rj4J8g47rEhN9XIucScX1Hf-9xHkJFgm_c50fxMX-uB3k5s7At0qAy3tN4IqXmv9en151ZQq-FWO7iieXul6OTt-TN4EfS4_iq78iGb3bI1mws3_ae3PyCdjAvinYLHwm-24a2ga5Aez6pkNU_MnJQcMEh_qeRSnYN8TeKLZDT1Ve0Z7QGg0jbP3Xlp_ijf33dLj1FMDoivkDcNBXtdxzog_1wWjd0ue78wsF67Gqs6rNLLk--XczmyVCBIXHgGa0SK8AUKpsa4eEYrLIytVi0jBWFq7hMg6pU7nJpLUvxl6pjQWRVKbPcl0qUfI9sNm3jPxDKfe6syYwynIngclUwn5UsBPSJgpQTwsd-126gJ8cqGdd6xKH91lFbGrWlEY4nyglJ7u7qIj3HC_JyVKl-NMw0rCAv3Hn4aATcPS6DiEtkTEzIl3FIaFA1qsM0HtQH0RVEhYxznj4jkzMOHSuebUemyFYIMeTH__6Mz2RrfnF2qk-_n__cJ9t4JUITP5FNGGX-AFyslT3sp9AtriEm_A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scalable+preparation+of+three-dimensional+porous+structures+of+reduced+graphene+oxide%2Fcellulose+composites+and+their+application+in+supercapacitors&rft.jtitle=Carbon+%28New+York%29&rft.au=Ouyang%2C+W&rft.au=Sun%2C+J&rft.au=Memon%2C+J&rft.au=Wang%2C+C&rft.date=2013-10-01&rft.issn=0008-6223&rft.volume=62&rft.spage=501&rft.epage=509&rft_id=info:doi/10.1016%2Fj.carbon.2013.06.049&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-6223&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-6223&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-6223&client=summon