Scalable preparation of three-dimensional porous structures of reduced graphene oxide/cellulose composites and their application in supercapacitors
Controlling the assembled structures of graphene has recently attracted enormous attention due to intriguing properties of the resultant structures. In this study, three-dimensional (3D) porous structures of reduced graphene oxide (RGO) with various ratios of RGO to cellulose have been fabricated by...
Saved in:
Published in | Carbon (New York) Vol. 62; pp. 501 - 509 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
01.10.2013
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0008-6223 1873-3891 |
DOI | 10.1016/j.carbon.2013.06.049 |
Cover
Loading…
Abstract | Controlling the assembled structures of graphene has recently attracted enormous attention due to intriguing properties of the resultant structures. In this study, three-dimensional (3D) porous structures of reduced graphene oxide (RGO) with various ratios of RGO to cellulose have been fabricated by a scalable, but simple and efficient, approach that consists of ball milling assisted chemical reduction of GO, template shaping, coagulating, and lyophilization. The efficient mechanical shearing of ball milling and the hydrogen bond interactions between RGO and cellulose molecules contribute to the formation of a homogeneous RGO/cellulose hydrogel, improved thermal stability of the resultant composites, and enhanced crystallinity of the cellulose in the composites. The coagulation effect of cellulose maintains the RGO sheets in the 3D structures of cellulose; on the other hand, the RGO sheets facilitate the preservation of the 3D structures during freeze-drying, leading to the formation of 3D porous structures of RGO/cellulose composites. Benefiting from the continuous RGO network in the composites, the 3D porous structures of RGO(70)/cellulose(100) (GO:cellulose=70:100 in weight) show an electrical conductivity of 15.28Sm−1. Moreover, the 3D porous structures show potential application in supercapacitors due to the fact that they provide high specific surface area and fast charge propagation. |
---|---|
AbstractList | Controlling the assembled structures of graphene has recently attracted enormous attention due to intriguing properties of the resultant structures. In this study, three-dimensional (3D) porous structures of reduced graphene oxide (RGO) with various ratios of RGO to cellulose have been fabricated by a scalable, but simple and efficient, approach that consists of ball milling assisted chemical reduction of GO, template shaping, coagulating, and lyophilization. The efficient mechanical shearing of ball milling and the hydrogen bond interactions between RGO and cellulose molecules contribute to the formation of a homogeneous RGO/cellulose hydrogel, improved thermal stability of the resultant composites, and enhanced crystallinity of the cellulose in the composites. The coagulation effect of cellulose maintains the RGO sheets in the 3D structures of cellulose; on the other hand, the RGO sheets facilitate the preservation of the 3D structures during freeze-drying, leading to the formation of 3D porous structures of RGO/cellulose composites. Benefiting from the continuous RGO network in the composites, the 3D porous structures of RGO(70)/cellulose(100) (GO:cellulose=70:100 in weight) show an electrical conductivity of 15.28Sm−1. Moreover, the 3D porous structures show potential application in supercapacitors due to the fact that they provide high specific surface area and fast charge propagation. Controlling the assembled structures of graphene has recently attracted enormous attention due to intriguing properties of the resultant structures. In this study, three-dimensional (3D) porous structures of reduced graphene oxide (RGO) with various ratios of RGO to cellulose have been fabricated by a scalable, but simple and efficient, approach that consists of ball milling assisted chemical reduction of GO, template shaping, coagulating, and lyophilization. The efficient mechanical shearing of ball milling and the hydrogen bond interactions between RGO and cellulose molecules contribute to the formation of a homogeneous RGO/cellulose hydrogel, improved thermal stability of the resultant composites, and enhanced crystallinity of the cellulose in the composites. The coagulation effect of cellulose maintains the RGO sheets in the 3D structures of cellulose; on the other hand, the RGO sheets facilitate the preservation of the 3D structures during freeze-drying, leading to the formation of 3D porous structures of RGO/cellulose composites. Benefiting from the continuous RGO network in the composites, the 3D porous structures of RGO (70)/cellulose (100) (GOxellulose = 70:100 in weight) show an electrical conductivity of 15.28 S m super(1). Moreover, the 3D porous structures show potential application in supercapacitors due to the fact that they provide high specific surface area and fast charge propagation. Controlling the assembled structures of graphene has recently attracted enormous attention due to intriguing properties of the resultant structures. In this study, three-dimensional (3D) porous structures of reduced graphene oxide (RGO) with various ratios of RGO to cellulose have been fabricated by a scalable, but simple and efficient, approach that consists of ball milling assisted chemical reduction of GO, template shaping, coagulating, and lyophilization. The efficient mechanical shearing of ball milling and the hydrogen bond interactions between RGO and cellulose molecules contribute to the formation of a homogeneous RGO/cellulose hydrogel, improved thermal stability of the resultant composites, and enhanced crystallinity of the cellulose in the composites. The coagulation effect of cellulose maintains the RGO sheets in the 3D structures of cellulose; on the other hand, the RGO sheets facilitate the preservation of the 3D structures during freeze-drying, leading to the formation of 3D porous structures of RGO/cellulose composites. Benefiting from the continuous RGO network in the composites, the 3D porous structures of RGO(70)/cellulose(100) (GO:cellulose = 70:100 in weight) show an electrical conductivity of 15.28 S ma1. Moreover, the 3D porous structures show potential application in supercapacitors due to the fact that they provide high specific surface area and fast charge propagation. Controlling the assembled structures of graphene has recently attracted enormous attention due to intriguing properties of the resultant structures. In this study, three-dimensional (3D) porous structures of reduced graphene oxide (RGO) with various ratios of RGO to cellulose have been fabricated by a scalable, but simple and efficient, approach that consists of ball milling assisted chemical reduction of GO, template shaping, coagulating, and lyophilization. The efficient mechanical shearing of ball milling and the hydrogen bond interactions between RGO and cellulose molecules contribute to the formation of a homogeneous RGO/cellulose hydrogel, improved thermal stability of the resultant composites, and enhanced crystallinity of the cellulose in the composites. The coagulation effect of cellulose maintains the RGO sheets in the 3D structures of cellulose; on the other hand, the RGO sheets facilitate the preservation of the 3D structures during freeze-drying, leading to the formation of 3D porous structures of RGO/cellulose composites. Benefiting from the continuous RGO network in the composites, the 3D porous structures of RGO(70)/cellulose(100) (GO:cellulose=70:100 in weight) show an electrical conductivity of 15.28Sm⁻¹. Moreover, the 3D porous structures show potential application in supercapacitors due to the fact that they provide high specific surface area and fast charge propagation. |
Author | Memon, Jamil Wang, Chao Geng, Jianxin Huang, Yong Sun, Jinhua Ouyang, Wenzhu |
Author_xml | – sequence: 1 givenname: Wenzhu surname: Ouyang fullname: Ouyang, Wenzhu – sequence: 2 givenname: Jinhua surname: Sun fullname: Sun, Jinhua – sequence: 3 givenname: Jamil surname: Memon fullname: Memon, Jamil – sequence: 4 givenname: Chao surname: Wang fullname: Wang, Chao – sequence: 5 givenname: Jianxin surname: Geng fullname: Geng, Jianxin email: jianxingeng@mail.ipc.ac.cn – sequence: 6 givenname: Yong surname: Huang fullname: Huang, Yong email: yhuang@mail.ipc.ac.cn |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27584214$$DView record in Pascal Francis |
BookMark | eNqFks9u1DAQxi1UJLaFN-CQCxKXpHbsxA4HJFTxp1IlDsDZsp0J9Sprm3GC6HPwwng35cKBlQ8jW7_5xjPfXJKLEAMQ8pLRhlHWX-8bZ9DG0LSU8Yb2DRXDE7JjSvKaq4FdkB2lVNV92_Jn5DLnfbkKxcSO_P7izGzsDFVCSAbN4mOo4lQt9whQj_4AIZcnM1cpYlxzlRdc3bIi5COGMK4Oxuo7mnQPAar4y49w7WCe1zlmqFw8pJj9UnATxiILHiuT0uzdVsuHKq8J0JlknF8i5ufk6WTmDC8e4xX59uH915tP9d3nj7c37-5q19Fuqa1gjClLjYASJ6uspFYIJlnfu5FLOqlRda6T1jJKLWWOTaIdB9l2MCgx8CvyetNNGH-skBd98Pn4cxOgdKqZpJ0QnElxHu0YL6XLOY8KoSTjnNOCvnpETS42TGiC81kn9AeDD7qVnRLtSfLNxjmMOSNMugzqNL0FjZ81o_q4B3qvtz3Qxz3QtNf01KX4J_mv_pm0t1saFAd-ekCdnYdQvPYIbtFj9P8X-AOGQ9NR |
CODEN | CRBNAH |
CitedBy_id | crossref_primary_10_1016_j_prime_2023_100361 crossref_primary_10_1039_C4NR07564A crossref_primary_10_1007_s00226_020_01208_y crossref_primary_10_1039_C5RA18494K crossref_primary_10_1021_acsami_3c08042 crossref_primary_10_1039_C9RA08318A crossref_primary_10_1002_app_48564 crossref_primary_10_1039_C7NJ00032D crossref_primary_10_1039_D2NA00383J crossref_primary_10_1039_C8QM00628H crossref_primary_10_1016_j_cej_2018_07_088 crossref_primary_10_1016_j_cap_2014_09_021 crossref_primary_10_1007_s40820_021_00627_1 crossref_primary_10_1080_15440478_2021_1875373 crossref_primary_10_1021_acsami_5b04093 crossref_primary_10_1002_slct_201701371 crossref_primary_10_1039_C8NR02052C crossref_primary_10_1016_j_apsusc_2015_02_030 crossref_primary_10_1039_C4NR07402E crossref_primary_10_1007_s10570_015_0749_1 crossref_primary_10_1016_j_jallcom_2017_09_018 crossref_primary_10_3390_ma9070582 crossref_primary_10_1016_j_nanoen_2014_06_007 crossref_primary_10_1039_C4NR06609J crossref_primary_10_1039_C5TC02194D crossref_primary_10_1021_acsami_2c19300 crossref_primary_10_1039_c3ta14613h crossref_primary_10_5004_dwt_2019_23249 crossref_primary_10_1007_s10570_023_05269_7 crossref_primary_10_1016_j_matchemphys_2019_121774 crossref_primary_10_1039_C7RA00958E crossref_primary_10_1021_acssuschemeng_5b01273 crossref_primary_10_1002_tcr_202200266 crossref_primary_10_26599_PBM_2017_9260019 crossref_primary_10_1039_C8NJ03563F crossref_primary_10_1021_ma5026237 crossref_primary_10_1149_2162_8777_ad775c crossref_primary_10_1016_j_carbon_2013_12_086 crossref_primary_10_1515_ipp_2021_4148 crossref_primary_10_1007_s00289_019_03077_3 crossref_primary_10_1016_j_jhazmat_2017_04_030 crossref_primary_10_1049_iet_nbt_2017_0063 crossref_primary_10_3390_ma13143213 crossref_primary_10_1016_j_cej_2019_02_173 crossref_primary_10_1021_sc500738k crossref_primary_10_1039_C7RA07533B crossref_primary_10_1016_j_envres_2020_110652 crossref_primary_10_1016_j_polymer_2018_06_005 crossref_primary_10_1021_acs_iecr_1c01830 crossref_primary_10_1038_pj_2017_22 crossref_primary_10_1007_s10570_019_02339_7 crossref_primary_10_1007_s10570_020_03030_y crossref_primary_10_1021_acsami_6b02164 crossref_primary_10_1021_acsami_7b02675 crossref_primary_10_1039_C4RA09497B crossref_primary_10_1016_j_hybadv_2024_100150 crossref_primary_10_1016_j_apsusc_2016_05_146 crossref_primary_10_1016_j_compositesb_2018_12_072 crossref_primary_10_1016_j_polymer_2023_125786 crossref_primary_10_1007_s10570_018_1998_6 crossref_primary_10_1016_j_compositesb_2017_11_024 crossref_primary_10_1016_j_ijbiomac_2025_141749 crossref_primary_10_1016_j_synthmet_2016_12_010 crossref_primary_10_1016_j_carbpol_2017_05_056 crossref_primary_10_1039_C8TA07751G crossref_primary_10_1016_j_carbon_2014_10_018 crossref_primary_10_1016_j_ijbiomac_2019_08_081 crossref_primary_10_1016_j_snb_2023_134863 crossref_primary_10_1080_10584587_2015_1033911 crossref_primary_10_1002_aenm_201801854 crossref_primary_10_1021_acssuschemeng_5b01703 crossref_primary_10_1039_C9NR00659A crossref_primary_10_1016_j_nanoms_2020_03_003 crossref_primary_10_1016_j_carbpol_2022_119192 crossref_primary_10_1021_acssuschemeng_7b00747 crossref_primary_10_1002_ente_201700090 crossref_primary_10_1007_s10965_016_1013_6 crossref_primary_10_1016_j_colsurfa_2014_10_043 crossref_primary_10_1016_j_matchemphys_2016_01_021 crossref_primary_10_1016_j_carbpol_2018_12_010 crossref_primary_10_1016_j_progpolymsci_2018_11_002 crossref_primary_10_1002_adma_201604690 crossref_primary_10_1039_D0RA01854F crossref_primary_10_1016_j_progpolymsci_2014_03_001 crossref_primary_10_1016_j_cis_2015_04_005 crossref_primary_10_1002_slct_201803127 crossref_primary_10_1007_s42247_021_00300_8 crossref_primary_10_1016_j_carbon_2017_05_031 crossref_primary_10_1039_C4RA07707E crossref_primary_10_1016_j_electacta_2018_06_131 crossref_primary_10_1016_j_jece_2022_107586 crossref_primary_10_3390_jcs5080202 crossref_primary_10_1039_C6TA04112D crossref_primary_10_1002_est2_634 crossref_primary_10_1016_j_cej_2017_02_109 crossref_primary_10_1002_cnma_201600225 crossref_primary_10_1007_s10570_018_1946_5 crossref_primary_10_1039_C7CS00904F crossref_primary_10_1016_j_synthmet_2017_10_014 crossref_primary_10_1016_j_matlet_2017_04_141 crossref_primary_10_1002_cjoc_201700209 crossref_primary_10_1016_j_compositesa_2017_10_004 crossref_primary_10_1039_C4CP05921B crossref_primary_10_1016_j_carbon_2016_06_107 crossref_primary_10_1016_j_cej_2014_12_001 crossref_primary_10_1039_C8TC04309D crossref_primary_10_1016_j_carbpol_2018_06_014 crossref_primary_10_1016_j_carbpol_2018_01_031 crossref_primary_10_1016_j_renene_2018_05_030 crossref_primary_10_1007_s11051_022_05542_z crossref_primary_10_1021_es504421y crossref_primary_10_1039_C4TB01792G crossref_primary_10_1016_j_envpol_2022_119557 crossref_primary_10_1002_cnma_201600332 crossref_primary_10_1016_j_ceramint_2020_07_150 crossref_primary_10_1007_s42823_019_00003_5 crossref_primary_10_1016_j_carbpol_2018_05_058 crossref_primary_10_1002_aenm_201700130 crossref_primary_10_1039_C9RA04729H crossref_primary_10_1039_C4GC00264D crossref_primary_10_3390_molecules26164891 crossref_primary_10_1039_C8RA08745H crossref_primary_10_3390_su15129227 crossref_primary_10_1007_s11157_020_09551_z crossref_primary_10_1016_j_apsusc_2018_10_169 crossref_primary_10_1021_acssuschemeng_5b00384 crossref_primary_10_1016_j_jpowsour_2017_10_012 crossref_primary_10_1016_j_sna_2016_05_045 crossref_primary_10_1039_C5RA01897H crossref_primary_10_1177_0021998320953183 crossref_primary_10_1007_s12274_014_0609_6 crossref_primary_10_1016_j_matchemphys_2016_06_025 crossref_primary_10_1002_ente_201700150 crossref_primary_10_1016_j_snb_2020_128449 crossref_primary_10_1021_acsami_5b02787 crossref_primary_10_1039_C4EE00050A crossref_primary_10_1007_s10570_014_0395_z crossref_primary_10_1039_C8NR07469K crossref_primary_10_1007_s10967_019_06641_3 crossref_primary_10_1016_j_chroma_2016_09_056 crossref_primary_10_1016_j_desal_2020_114596 crossref_primary_10_1016_j_ijoes_2023_100101 crossref_primary_10_1016_j_synthmet_2015_05_018 crossref_primary_10_1080_00914037_2016_1157799 crossref_primary_10_1049_iet_cds_2015_0034 crossref_primary_10_1016_j_jelechem_2023_118020 crossref_primary_10_1007_s10853_016_0137_8 crossref_primary_10_1515_zpch_2018_1133 crossref_primary_10_1016_j_jclepro_2022_134254 crossref_primary_10_1021_acssuschemeng_6b03101 crossref_primary_10_1016_j_compositesb_2018_10_037 crossref_primary_10_1007_s10570_018_1719_1 crossref_primary_10_1007_s40820_018_0195_3 crossref_primary_10_1016_j_indcrop_2023_117632 crossref_primary_10_3389_fbioe_2021_638744 crossref_primary_10_1039_C4RA13057J crossref_primary_10_1021_acsnano_6b03349 crossref_primary_10_1016_j_nxener_2024_100148 crossref_primary_10_1021_acsami_6b11979 crossref_primary_10_1016_j_compositesa_2017_12_014 crossref_primary_10_1155_2018_8973643 crossref_primary_10_1039_C6RA06438H crossref_primary_10_1039_D0TA07576K crossref_primary_10_3390_ijms241411593 crossref_primary_10_2166_wst_2019_137 crossref_primary_10_1038_s41598_016_0010_7 crossref_primary_10_1002_cnma_201700055 crossref_primary_10_1007_s10854_018_9979_y crossref_primary_10_3390_cryst8040168 crossref_primary_10_1016_j_ijbiomac_2022_06_053 crossref_primary_10_3390_ma9030183 crossref_primary_10_1021_acs_chemmater_5b00981 crossref_primary_10_1007_s10570_015_0559_5 crossref_primary_10_1016_j_carbpol_2017_12_046 crossref_primary_10_3390_polym14245519 crossref_primary_10_1016_j_carbpol_2020_116661 crossref_primary_10_1016_j_colsurfa_2016_05_012 crossref_primary_10_1016_j_polymer_2016_04_022 crossref_primary_10_1016_j_synthmet_2020_116624 crossref_primary_10_1002_adfm_201501733 crossref_primary_10_1016_j_ijbiomac_2022_03_028 crossref_primary_10_1016_j_ultsonch_2019_104720 crossref_primary_10_1155_2019_4294306 crossref_primary_10_1021_acsami_2c21043 crossref_primary_10_1021_acscatal_6b02833 crossref_primary_10_1016_j_cej_2018_11_115 crossref_primary_10_1007_s10924_018_1330_4 crossref_primary_10_3390_polym16030339 crossref_primary_10_59400_mtr1879 crossref_primary_10_1016_j_chphi_2022_100111 crossref_primary_10_1016_j_sna_2021_112611 crossref_primary_10_1039_C8MH01219A |
Cites_doi | 10.1021/ie0010417 10.1038/nmat1870 10.1021/jp105029m 10.1038/nmat3001 10.1002/polb.22337 10.1126/science.1150878 10.1016/j.electacta.2012.03.024 10.1002/adma.200600442 10.1063/1.118568 10.1002/adma.200803606 10.1002/marc.200400172 10.1021/jp2109237 10.1002/anie.201000270 10.1021/ja065035z 10.1039/c2jm31635h 10.1039/c001939a 10.1016/j.carbon.2012.01.074 10.1021/nl203903z 10.1021/ja106162f 10.1016/j.carbon.2007.02.034 10.1038/nnano.2007.451 10.1021/jp110001y 10.1039/c2jm33900e 10.1002/adfm.201000287 10.1021/jp904814h 10.1021/jp1008779 10.1002/anie.200902534 10.1038/nature07919 10.1021/nl900811r 10.1002/anie.201004692 10.1021/nn200069w 10.1038/nature04969 10.1021/jp9035887 10.1021/nn101187z 10.1021/ol062187q 10.1038/nature07872 10.1039/c3cc40563j 10.1126/science.1194372 10.1038/nnano.2008.96 10.1038/ncomms1583 10.1039/b810371b |
ContentType | Journal Article |
Copyright | 2013 Elsevier Ltd 2014 INIST-CNRS |
Copyright_xml | – notice: 2013 Elsevier Ltd – notice: 2014 INIST-CNRS |
DBID | AAYXX CITATION IQODW 7SR 7U5 8FD JG9 L7M 7S9 L.6 |
DOI | 10.1016/j.carbon.2013.06.049 |
DatabaseName | CrossRef Pascal-Francis Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Materials Research Database Materials Research Database AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 1873-3891 |
EndPage | 509 |
ExternalDocumentID | 27584214 10_1016_j_carbon_2013_06_049 S0008622313005708 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29B 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABFNM ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JARJE KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SMS SPC SPCBC SSM SSR SSZ T5K TWZ WUQ XPP ZMT ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS IQODW 7SR 7U5 8FD JG9 L7M 7S9 L.6 |
ID | FETCH-LOGICAL-c505t-b41118b0a4e118fb8b70b4417166cd370f8d85c57bb100b01c1f42d9725e98493 |
IEDL.DBID | AIKHN |
ISSN | 0008-6223 |
IngestDate | Fri Sep 05 14:28:38 EDT 2025 Fri Sep 05 12:45:29 EDT 2025 Fri Sep 05 06:20:45 EDT 2025 Mon Jul 21 09:13:58 EDT 2025 Thu Apr 24 23:08:58 EDT 2025 Tue Jul 01 01:14:30 EDT 2025 Fri Feb 23 02:24:38 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Freeze drying Ball mill Porous materials Cellulose Coagulation Supercapacitors Specific surface area Crystallinity Lyophilization Shearing Thermal stability Template Chemical reduction Template method Composite materials Hydrogen bonds Three dimensional structure Graphene Preparation Graphene oxide Hydrogel |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c505t-b41118b0a4e118fb8b70b4417166cd370f8d85c57bb100b01c1f42d9725e98493 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
PQID | 1448713330 |
PQPubID | 23500 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1705443174 proquest_miscellaneous_1513441414 proquest_miscellaneous_1448713330 pascalfrancis_primary_27584214 crossref_citationtrail_10_1016_j_carbon_2013_06_049 crossref_primary_10_1016_j_carbon_2013_06_049 elsevier_sciencedirect_doi_10_1016_j_carbon_2013_06_049 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-10-01 |
PublicationDateYYYYMMDD | 2013-10-01 |
PublicationDate_xml | – month: 10 year: 2013 text: 2013-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | Carbon (New York) |
PublicationYear | 2013 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Hirsch (b0025) 2009; 48 Geng, Zeng (b0150) 2006; 128 Luo, Zhang, Liu, Sun (b0115) 2011; 115 Geng, Liu, Yang, Youn, Kim, Lee (b0045) 2010; 114 Li, Muller, Gilje, Kaner, Wallace (b0120) 2008; 3 Wang, Lou, Wang, Hao (b0170) 2012; 22 Sharma, Nair, Strano (b0005) 2009; 113 Zhang, Cao, Feng, Wu (b0135) 2012; 116 Zhang, Wang, Zhang, Wu, Zhang, He (b0165) 2007; 19 Li, Wang, Zhang, Lee, Dai (b0010) 2008; 319 Stankovich, Dikin, Piner, Kohlhaas, Kleinhammes, Jia (b0140) 2007; 45 Vickery, Patil, Mann (b0085) 2009; 21 Wang, Zhu (b0185) 2011; 49 Ramanathan, Abdala, Stankovich, Dikin, Herrera-Alonso, Piner (b0155) 2008; 3 Sun, Meng, Jiang, Wu, Yan, Geng (b0050) 2012; 22 Sun, Xiao, Meng, Geng, Huang (b0055) 2013; 49 Xu, Gao (b0065) 2011; 2 Zhang, Zhao, Stoller, Zhu, Ji, Murali (b0205) 2012; 12 Geng, Jung (b0040) 2010; 114 Aulin, Netrval, Wagberg, Lindstrom (b0180) 2010; 6 Paakko, Vapaavuori, Silvennoinen, Kosonen, Ankerfors, Lindstrom (b0175) 2008; 4 Liu, Seo (b0080) 2010; 20 Zhang, Ruan, Zhou (b0100) 2001; 40 Bhardwaj, Antic, Pavan, Barone, Fahlman (b0020) 2010; 132 Jiao, Zhang, Wang, Diankov, Dai (b0030) 2009; 458 Kim, Han, Lee, Kim, Ahn, Yun (b0060) 2011; 50 Zu, Han (b0110) 2009; 113 Miller, Outlaw, Holloway (b0195) 2010; 329 Campos, Manfrinato, Sanchez-Yamagishi, Kong, Jarillo-Herrero (b0015) 2009; 9 Rittigstein, Priestley, Broadbelt, Torkelson (b0160) 2007; 6 Tang, Shen, Zhuang, Wang (b0090) 2010; 49 Chen, Ren, Gao, Liu, Pei, Cheng (b0095) 2011; 10 Guo, Sun, Liu, Wang, Qiu, Gao (b0125) 2012; 50 Kosynkin, Higginbotham, Sinitskii, Lomeda, Dimiev, Price (b0035) 2009; 458 Niu, Sichel, Hoch, Moy, Tennent (b0200) 1997; 70 Stankovich, Dikin, Dommett, Kohlhaas, Zimney, Stach (b0190) 2006; 442 Cai, Zhang, Zhou, Li, Chen, Jin (b0145) 2004; 25 Xu, Sheng, Li, Shi (b0075) 2010; 4 Zhang, Zhang, Chen, Wang, Ma (b0130) 2012; 69 Xu, Gao (b0070) 2011; 5 Ikeda, Nobusawa, Hamano, Kikuchi (b0105) 2006; 8 Sun (10.1016/j.carbon.2013.06.049_b0055) 2013; 49 Wang (10.1016/j.carbon.2013.06.049_b0170) 2012; 22 Bhardwaj (10.1016/j.carbon.2013.06.049_b0020) 2010; 132 Zu (10.1016/j.carbon.2013.06.049_b0110) 2009; 113 Miller (10.1016/j.carbon.2013.06.049_b0195) 2010; 329 Zhang (10.1016/j.carbon.2013.06.049_b0130) 2012; 69 Jiao (10.1016/j.carbon.2013.06.049_b0030) 2009; 458 Sun (10.1016/j.carbon.2013.06.049_b0050) 2012; 22 Geng (10.1016/j.carbon.2013.06.049_b0150) 2006; 128 Kosynkin (10.1016/j.carbon.2013.06.049_b0035) 2009; 458 Stankovich (10.1016/j.carbon.2013.06.049_b0190) 2006; 442 Hirsch (10.1016/j.carbon.2013.06.049_b0025) 2009; 48 Xu (10.1016/j.carbon.2013.06.049_b0065) 2011; 2 Xu (10.1016/j.carbon.2013.06.049_b0075) 2010; 4 Rittigstein (10.1016/j.carbon.2013.06.049_b0160) 2007; 6 Sharma (10.1016/j.carbon.2013.06.049_b0005) 2009; 113 Campos (10.1016/j.carbon.2013.06.049_b0015) 2009; 9 Zhang (10.1016/j.carbon.2013.06.049_b0165) 2007; 19 Niu (10.1016/j.carbon.2013.06.049_b0200) 1997; 70 Vickery (10.1016/j.carbon.2013.06.049_b0085) 2009; 21 Paakko (10.1016/j.carbon.2013.06.049_b0175) 2008; 4 Tang (10.1016/j.carbon.2013.06.049_b0090) 2010; 49 Zhang (10.1016/j.carbon.2013.06.049_b0100) 2001; 40 Ikeda (10.1016/j.carbon.2013.06.049_b0105) 2006; 8 Li (10.1016/j.carbon.2013.06.049_b0120) 2008; 3 Li (10.1016/j.carbon.2013.06.049_b0010) 2008; 319 Stankovich (10.1016/j.carbon.2013.06.049_b0140) 2007; 45 Chen (10.1016/j.carbon.2013.06.049_b0095) 2011; 10 Kim (10.1016/j.carbon.2013.06.049_b0060) 2011; 50 Geng (10.1016/j.carbon.2013.06.049_b0045) 2010; 114 Zhang (10.1016/j.carbon.2013.06.049_b0135) 2012; 116 Ramanathan (10.1016/j.carbon.2013.06.049_b0155) 2008; 3 Liu (10.1016/j.carbon.2013.06.049_b0080) 2010; 20 Guo (10.1016/j.carbon.2013.06.049_b0125) 2012; 50 Cai (10.1016/j.carbon.2013.06.049_b0145) 2004; 25 Luo (10.1016/j.carbon.2013.06.049_b0115) 2011; 115 Xu (10.1016/j.carbon.2013.06.049_b0070) 2011; 5 Wang (10.1016/j.carbon.2013.06.049_b0185) 2011; 49 Geng (10.1016/j.carbon.2013.06.049_b0040) 2010; 114 Aulin (10.1016/j.carbon.2013.06.049_b0180) 2010; 6 Zhang (10.1016/j.carbon.2013.06.049_b0205) 2012; 12 |
References_xml | – volume: 442 start-page: 282 year: 2006 end-page: 286 ident: b0190 article-title: Graphene-based composite materials publication-title: Nature – volume: 113 start-page: 14771 year: 2009 end-page: 14777 ident: b0005 article-title: Structure-reactivity relationships for graphene nanoribbons publication-title: J Phys Chem C – volume: 319 start-page: 1229 year: 2008 end-page: 1232 ident: b0010 article-title: Chemically derived, ultrasmooth graphene nanoribbon semiconductors publication-title: Sci – volume: 20 start-page: 1930 year: 2010 end-page: 1936 ident: b0080 article-title: A controllable self-assembly method for large-scale synthesis of graphene sponges and free-standing graphene films publication-title: Adv Funct Mater – volume: 25 start-page: 1558 year: 2004 end-page: 1562 ident: b0145 article-title: Novel fibers prepared from cellulose in NaOH/urea aqueous solution publication-title: Macromol Rapid Commun – volume: 50 start-page: 3043 year: 2011 end-page: 3047 ident: b0060 article-title: Graphene oxide liquid crystals publication-title: Angew Chem, Int Ed – volume: 49 start-page: 5538 year: 2013 end-page: 5540 ident: b0055 article-title: Enhanced photoresponse of large-sized photoactive graphene composite films based on water-soluble conjugated polymers publication-title: Chem Commun – volume: 9 start-page: 2600 year: 2009 end-page: 2604 ident: b0015 article-title: Anisotropic etching and nanoribbon formation in single-layer graphene publication-title: Nano Lett – volume: 458 start-page: 877 year: 2009 end-page: 880 ident: b0030 article-title: Narrow graphene nanoribbons from carbon nanotubes publication-title: Nature – volume: 21 start-page: 2180 year: 2009 end-page: 2184 ident: b0085 article-title: Fabrication of graphene-polymer nanocomposites with higher-order three-dimensional architectures publication-title: Adv Mater – volume: 19 start-page: 698 year: 2007 end-page: 704 ident: b0165 article-title: Regenerated-cellulose/multiwalled-carbon-nanotube composite fibers with enhanced mechanical properties prepared with the ionic liquid 1-allyl-3-methylimidazolium chloride publication-title: Adv Mater – volume: 5 start-page: 2908 year: 2011 end-page: 2915 ident: b0070 article-title: Aqueous liquid crystals of graphene oxide publication-title: ACS Nano – volume: 45 start-page: 1558 year: 2007 end-page: 1565 ident: b0140 article-title: Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide publication-title: Carbon – volume: 10 start-page: 424 year: 2011 end-page: 428 ident: b0095 article-title: Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition publication-title: Nat Mater – volume: 6 start-page: 3298 year: 2010 end-page: 3305 ident: b0180 article-title: Aerogels from nanofibrillated cellulose with tunable oleophobicity publication-title: Soft Matter – volume: 8 start-page: 5489 year: 2006 end-page: 5492 ident: b0105 article-title: Single-walled carbon nanotubes template the one-dimensional ordering of a polythiophene derivative publication-title: Org Lett – volume: 69 start-page: 364 year: 2012 end-page: 370 ident: b0130 article-title: An environment-friendly route to synthesize reduced graphene oxide as a supercapacitor electrode material publication-title: Electrochim Acta – volume: 4 start-page: 4324 year: 2010 end-page: 4330 ident: b0075 article-title: Self-assembled graphene hydrogel via a one-step hydrothermal process publication-title: ACS Nano – volume: 6 start-page: 278 year: 2007 end-page: 282 ident: b0160 article-title: Model polymer nanocomposites provide an understanding of confinement effects in real nanocomposites publication-title: Nat Mater – volume: 70 start-page: 1480 year: 1997 end-page: 1482 ident: b0200 article-title: High power electrochemical capacitors based on carbon nanotube electrodes publication-title: Appl Phys Lett – volume: 4 start-page: 2492 year: 2008 end-page: 2499 ident: b0175 article-title: Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities publication-title: Soft Matter – volume: 50 start-page: 2513 year: 2012 end-page: 2523 ident: b0125 article-title: One pot preparation of reduced graphene oxide (RGO) or Au (Ag) nanoparticle-RGO hybrids using chitosan as a reducing and stabilizing agent and their use in methanol electrooxidation publication-title: Carbon – volume: 22 start-page: 12859 year: 2012 end-page: 12866 ident: b0170 article-title: Relationship between dispersion state and reinforcement effect of graphene oxide in microcrystalline cellulose-graphene oxide composite films publication-title: J Mater Chem – volume: 115 start-page: 11327 year: 2011 end-page: 11335 ident: b0115 article-title: Evaluation criteria for reduced graphene oxide publication-title: J Phys Chem C – volume: 22 start-page: 18879 year: 2012 end-page: 18886 ident: b0050 article-title: Multiple-bilayered RGO-porphyrin films: from preparation to application in photoelectrochemical cells publication-title: J Mater Chem – volume: 48 start-page: 6594 year: 2009 end-page: 6596 ident: b0025 article-title: Unzipping carbon nanotubes: a peeling method for the formation of graphene nanoribbons publication-title: Angew Chem, Int Ed – volume: 132 start-page: 12556 year: 2010 end-page: 12558 ident: b0020 article-title: Enhanced electrochemical lithium storage by graphene nanoribbons publication-title: J Am Chem Soc – volume: 12 start-page: 1806 year: 2012 end-page: 1812 ident: b0205 article-title: Highly conductive and porous activated reduced graphene oxide films for high-power supercapacitors publication-title: Nano Lett – volume: 40 start-page: 5923 year: 2001 end-page: 5928 ident: b0100 article-title: Structure and properties of regenerated cellulose films prepared from cotton linters in NaOH/Urea aqueous solution publication-title: Ind Eng Chem Res – volume: 2 start-page: 571 year: 2011 ident: b0065 article-title: Graphene chiral liquid crystals and macroscopic assembled fibres publication-title: Nat Commun – volume: 113 start-page: 13651 year: 2009 end-page: 13657 ident: b0110 article-title: Aqueous dispersion of graphene sheets stabilized by pluronic copolymers: formation of supramolecular hydrogel publication-title: J Phys Chem C – volume: 49 start-page: 4603 year: 2010 end-page: 4607 ident: b0090 article-title: Noble-metal-promoted three-dimensional macroassembly of single-layered graphene oxide publication-title: Angew Chem, Int Ed – volume: 329 start-page: 1637 year: 2010 end-page: 1639 ident: b0195 article-title: Graphene double-layer capacitor with ac line-filtering performance publication-title: Science – volume: 116 start-page: 8063 year: 2012 end-page: 8068 ident: b0135 article-title: Graphene-oxide-sheet-induced gelation of cellulose and promoted mechanical properties of composite aerogels publication-title: J Phys Chem C – volume: 3 start-page: 327 year: 2008 end-page: 331 ident: b0155 article-title: Functionalized graphene sheets for polymer nanocomposites publication-title: Nat Nanotechnol – volume: 49 start-page: 1421 year: 2011 end-page: 1429 ident: b0185 article-title: Polymer nanocomposites for electrical energy storage publication-title: J Polym Sci, Part B: Polym Phys – volume: 114 start-page: 14433 year: 2010 end-page: 14440 ident: b0045 article-title: A simple approach for preparing transparent conductive graphene films using the controlled chemical reduction of exfoliated graphene oxide in an aqueous suspension publication-title: J Phys Chem C – volume: 458 start-page: 872 year: 2009 end-page: 876 ident: b0035 article-title: Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons publication-title: Nature – volume: 3 start-page: 101 year: 2008 end-page: 105 ident: b0120 article-title: Processable aqueous dispersions of graphene nanosheets publication-title: Nat Nanotechnol – volume: 128 start-page: 16827 year: 2006 end-page: 16833 ident: b0150 article-title: Influence of single-walled carbon nanotubes induced crystallinity enhancement and morphology change on polymer photovoltaic devices publication-title: J Am Chem Soc – volume: 114 start-page: 8227 year: 2010 end-page: 8234 ident: b0040 article-title: Porphyrin functionalized graphene sheets in aqueous suspensions: from the preparation of graphene sheets to highly conductive graphene films publication-title: J Phys Chem C – volume: 40 start-page: 5923 issue: 25 year: 2001 ident: 10.1016/j.carbon.2013.06.049_b0100 article-title: Structure and properties of regenerated cellulose films prepared from cotton linters in NaOH/Urea aqueous solution publication-title: Ind Eng Chem Res doi: 10.1021/ie0010417 – volume: 6 start-page: 278 issue: 4 year: 2007 ident: 10.1016/j.carbon.2013.06.049_b0160 article-title: Model polymer nanocomposites provide an understanding of confinement effects in real nanocomposites publication-title: Nat Mater doi: 10.1038/nmat1870 – volume: 114 start-page: 14433 issue: 34 year: 2010 ident: 10.1016/j.carbon.2013.06.049_b0045 article-title: A simple approach for preparing transparent conductive graphene films using the controlled chemical reduction of exfoliated graphene oxide in an aqueous suspension publication-title: J Phys Chem C doi: 10.1021/jp105029m – volume: 10 start-page: 424 issue: 6 year: 2011 ident: 10.1016/j.carbon.2013.06.049_b0095 article-title: Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition publication-title: Nat Mater doi: 10.1038/nmat3001 – volume: 49 start-page: 1421 issue: 20 year: 2011 ident: 10.1016/j.carbon.2013.06.049_b0185 article-title: Polymer nanocomposites for electrical energy storage publication-title: J Polym Sci, Part B: Polym Phys doi: 10.1002/polb.22337 – volume: 319 start-page: 1229 issue: 5867 year: 2008 ident: 10.1016/j.carbon.2013.06.049_b0010 article-title: Chemically derived, ultrasmooth graphene nanoribbon semiconductors publication-title: Sci doi: 10.1126/science.1150878 – volume: 69 start-page: 364 year: 2012 ident: 10.1016/j.carbon.2013.06.049_b0130 article-title: An environment-friendly route to synthesize reduced graphene oxide as a supercapacitor electrode material publication-title: Electrochim Acta doi: 10.1016/j.electacta.2012.03.024 – volume: 19 start-page: 698 issue: 5 year: 2007 ident: 10.1016/j.carbon.2013.06.049_b0165 article-title: Regenerated-cellulose/multiwalled-carbon-nanotube composite fibers with enhanced mechanical properties prepared with the ionic liquid 1-allyl-3-methylimidazolium chloride publication-title: Adv Mater doi: 10.1002/adma.200600442 – volume: 70 start-page: 1480 issue: 11 year: 1997 ident: 10.1016/j.carbon.2013.06.049_b0200 article-title: High power electrochemical capacitors based on carbon nanotube electrodes publication-title: Appl Phys Lett doi: 10.1063/1.118568 – volume: 21 start-page: 2180 issue: 21 year: 2009 ident: 10.1016/j.carbon.2013.06.049_b0085 article-title: Fabrication of graphene-polymer nanocomposites with higher-order three-dimensional architectures publication-title: Adv Mater doi: 10.1002/adma.200803606 – volume: 25 start-page: 1558 issue: 17 year: 2004 ident: 10.1016/j.carbon.2013.06.049_b0145 article-title: Novel fibers prepared from cellulose in NaOH/urea aqueous solution publication-title: Macromol Rapid Commun doi: 10.1002/marc.200400172 – volume: 116 start-page: 8063 issue: 14 year: 2012 ident: 10.1016/j.carbon.2013.06.049_b0135 article-title: Graphene-oxide-sheet-induced gelation of cellulose and promoted mechanical properties of composite aerogels publication-title: J Phys Chem C doi: 10.1021/jp2109237 – volume: 49 start-page: 4603 issue: 27 year: 2010 ident: 10.1016/j.carbon.2013.06.049_b0090 article-title: Noble-metal-promoted three-dimensional macroassembly of single-layered graphene oxide publication-title: Angew Chem, Int Ed doi: 10.1002/anie.201000270 – volume: 128 start-page: 16827 issue: 51 year: 2006 ident: 10.1016/j.carbon.2013.06.049_b0150 article-title: Influence of single-walled carbon nanotubes induced crystallinity enhancement and morphology change on polymer photovoltaic devices publication-title: J Am Chem Soc doi: 10.1021/ja065035z – volume: 22 start-page: 12859 issue: 25 year: 2012 ident: 10.1016/j.carbon.2013.06.049_b0170 article-title: Relationship between dispersion state and reinforcement effect of graphene oxide in microcrystalline cellulose-graphene oxide composite films publication-title: J Mater Chem doi: 10.1039/c2jm31635h – volume: 6 start-page: 3298 issue: 14 year: 2010 ident: 10.1016/j.carbon.2013.06.049_b0180 article-title: Aerogels from nanofibrillated cellulose with tunable oleophobicity publication-title: Soft Matter doi: 10.1039/c001939a – volume: 50 start-page: 2513 issue: 7 year: 2012 ident: 10.1016/j.carbon.2013.06.049_b0125 article-title: One pot preparation of reduced graphene oxide (RGO) or Au (Ag) nanoparticle-RGO hybrids using chitosan as a reducing and stabilizing agent and their use in methanol electrooxidation publication-title: Carbon doi: 10.1016/j.carbon.2012.01.074 – volume: 12 start-page: 1806 issue: 4 year: 2012 ident: 10.1016/j.carbon.2013.06.049_b0205 article-title: Highly conductive and porous activated reduced graphene oxide films for high-power supercapacitors publication-title: Nano Lett doi: 10.1021/nl203903z – volume: 132 start-page: 12556 issue: 36 year: 2010 ident: 10.1016/j.carbon.2013.06.049_b0020 article-title: Enhanced electrochemical lithium storage by graphene nanoribbons publication-title: J Am Chem Soc doi: 10.1021/ja106162f – volume: 45 start-page: 1558 issue: 7 year: 2007 ident: 10.1016/j.carbon.2013.06.049_b0140 article-title: Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide publication-title: Carbon doi: 10.1016/j.carbon.2007.02.034 – volume: 3 start-page: 101 issue: 2 year: 2008 ident: 10.1016/j.carbon.2013.06.049_b0120 article-title: Processable aqueous dispersions of graphene nanosheets publication-title: Nat Nanotechnol doi: 10.1038/nnano.2007.451 – volume: 115 start-page: 11327 issue: 23 year: 2011 ident: 10.1016/j.carbon.2013.06.049_b0115 article-title: Evaluation criteria for reduced graphene oxide publication-title: J Phys Chem C doi: 10.1021/jp110001y – volume: 22 start-page: 18879 issue: 36 year: 2012 ident: 10.1016/j.carbon.2013.06.049_b0050 article-title: Multiple-bilayered RGO-porphyrin films: from preparation to application in photoelectrochemical cells publication-title: J Mater Chem doi: 10.1039/c2jm33900e – volume: 20 start-page: 1930 issue: 12 year: 2010 ident: 10.1016/j.carbon.2013.06.049_b0080 article-title: A controllable self-assembly method for large-scale synthesis of graphene sponges and free-standing graphene films publication-title: Adv Funct Mater doi: 10.1002/adfm.201000287 – volume: 113 start-page: 14771 issue: 33 year: 2009 ident: 10.1016/j.carbon.2013.06.049_b0005 article-title: Structure-reactivity relationships for graphene nanoribbons publication-title: J Phys Chem C doi: 10.1021/jp904814h – volume: 114 start-page: 8227 issue: 18 year: 2010 ident: 10.1016/j.carbon.2013.06.049_b0040 article-title: Porphyrin functionalized graphene sheets in aqueous suspensions: from the preparation of graphene sheets to highly conductive graphene films publication-title: J Phys Chem C doi: 10.1021/jp1008779 – volume: 48 start-page: 6594 issue: 36 year: 2009 ident: 10.1016/j.carbon.2013.06.049_b0025 article-title: Unzipping carbon nanotubes: a peeling method for the formation of graphene nanoribbons publication-title: Angew Chem, Int Ed doi: 10.1002/anie.200902534 – volume: 458 start-page: 877 issue: 7240 year: 2009 ident: 10.1016/j.carbon.2013.06.049_b0030 article-title: Narrow graphene nanoribbons from carbon nanotubes publication-title: Nature doi: 10.1038/nature07919 – volume: 9 start-page: 2600 issue: 7 year: 2009 ident: 10.1016/j.carbon.2013.06.049_b0015 article-title: Anisotropic etching and nanoribbon formation in single-layer graphene publication-title: Nano Lett doi: 10.1021/nl900811r – volume: 50 start-page: 3043 issue: 13 year: 2011 ident: 10.1016/j.carbon.2013.06.049_b0060 article-title: Graphene oxide liquid crystals publication-title: Angew Chem, Int Ed doi: 10.1002/anie.201004692 – volume: 5 start-page: 2908 issue: 4 year: 2011 ident: 10.1016/j.carbon.2013.06.049_b0070 article-title: Aqueous liquid crystals of graphene oxide publication-title: ACS Nano doi: 10.1021/nn200069w – volume: 442 start-page: 282 issue: 7100 year: 2006 ident: 10.1016/j.carbon.2013.06.049_b0190 article-title: Graphene-based composite materials publication-title: Nature doi: 10.1038/nature04969 – volume: 113 start-page: 13651 issue: 31 year: 2009 ident: 10.1016/j.carbon.2013.06.049_b0110 article-title: Aqueous dispersion of graphene sheets stabilized by pluronic copolymers: formation of supramolecular hydrogel publication-title: J Phys Chem C doi: 10.1021/jp9035887 – volume: 4 start-page: 4324 issue: 7 year: 2010 ident: 10.1016/j.carbon.2013.06.049_b0075 article-title: Self-assembled graphene hydrogel via a one-step hydrothermal process publication-title: ACS Nano doi: 10.1021/nn101187z – volume: 8 start-page: 5489 issue: 24 year: 2006 ident: 10.1016/j.carbon.2013.06.049_b0105 article-title: Single-walled carbon nanotubes template the one-dimensional ordering of a polythiophene derivative publication-title: Org Lett doi: 10.1021/ol062187q – volume: 458 start-page: 872 issue: 7240 year: 2009 ident: 10.1016/j.carbon.2013.06.049_b0035 article-title: Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons publication-title: Nature doi: 10.1038/nature07872 – volume: 49 start-page: 5538 issue: 49 year: 2013 ident: 10.1016/j.carbon.2013.06.049_b0055 article-title: Enhanced photoresponse of large-sized photoactive graphene composite films based on water-soluble conjugated polymers publication-title: Chem Commun doi: 10.1039/c3cc40563j – volume: 329 start-page: 1637 issue: 5999 year: 2010 ident: 10.1016/j.carbon.2013.06.049_b0195 article-title: Graphene double-layer capacitor with ac line-filtering performance publication-title: Science doi: 10.1126/science.1194372 – volume: 3 start-page: 327 issue: 6 year: 2008 ident: 10.1016/j.carbon.2013.06.049_b0155 article-title: Functionalized graphene sheets for polymer nanocomposites publication-title: Nat Nanotechnol doi: 10.1038/nnano.2008.96 – volume: 2 start-page: 571 year: 2011 ident: 10.1016/j.carbon.2013.06.049_b0065 article-title: Graphene chiral liquid crystals and macroscopic assembled fibres publication-title: Nat Commun doi: 10.1038/ncomms1583 – volume: 4 start-page: 2492 issue: 12 year: 2008 ident: 10.1016/j.carbon.2013.06.049_b0175 article-title: Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities publication-title: Soft Matter doi: 10.1039/b810371b |
SSID | ssj0004814 |
Score | 2.527116 |
Snippet | Controlling the assembled structures of graphene has recently attracted enormous attention due to intriguing properties of the resultant structures. In this... |
SourceID | proquest pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 501 |
SubjectTerms | Ball milling Capacitors Cellulose chemical reduction Chemistry Coagulation Colloidal gels. Colloidal sols Colloidal state and disperse state Cross-disciplinary physics: materials science; rheology crystal structure electrical conductivity Exact sciences and technology freeze drying Fullerenes and related materials; diamonds, graphite General and physical chemistry Graphene hydrocolloids hydrogen bonding Materials science milling Oxides Physics Porous materials Porous materials; granular materials Resultants Specific materials surface area thermal stability Three dimensional |
Title | Scalable preparation of three-dimensional porous structures of reduced graphene oxide/cellulose composites and their application in supercapacitors |
URI | https://dx.doi.org/10.1016/j.carbon.2013.06.049 https://www.proquest.com/docview/1448713330 https://www.proquest.com/docview/1513441414 https://www.proquest.com/docview/1705443174 |
Volume | 62 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBbp5tBCKWnTkm2TRYVenbUetuRjWBo2CeSSBHIzkiyBS7DNPqCn_on-4c5YdtrQkEBOxmYk2zPSaEaa-YaQb1rkBuxwlVSay0RKG2BKFSxxvrCcOWaC7QNkL_PljTy_zW53yGLMhcGwykH3R53ea-vhyXzg5ryra8zxRXMc7BNEXFeY8LvLRZFnE7J7cnaxvPybHqkjxDee9GODMYOuD_NyZmVbBEJlogfyRFDNx1eot51ZA99CLHjxn-7uF6TTPfJusCTpSfzY92THNx_I68VYwG2f_L6CfjAzinYrHyG-24a2gW5Afj6pENc_YnJQMMLb7ZpGMNkteOBItkJUV1_RHtMaVCJtf9aVn-NW__auXXuK4egY8wXkpqlof-ZA_zkRp3VD19vOrxysyK7Guj4fyc3p9-vFMhlqMCQObKNNYiUoQ21TIz1cg9VWpRbLlrE8d5VQadCVzlymrGUpbqo6FiSvCsUzX2hZiE9k0rSNPyBU-MxZw402gsngMp0zzwsWAlpFQakpESPfSzcAlGOdjLtyjET7UUZplSitEgPyZDElyX2rLgJ0PEOvRpGWDwZaCWvIMy1nD0bA_es4-FySMzklX8chUYKoURym8SA-8K_AL2RCiPQJmowJYKx8sh-VIl4heJGfX_wbX8gbvIsBiYdkAiPLH4FhtbEz8ur4F5sN0-cPI0kmMQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhPSRQSpsmdJsmVaFXZy1LtuRjWBq2bZJLE8hNSLIELsE2-4Ce-ifyhzNj2XmQkkBPBnss2xppNGN98w0hXxUvDPjhMqlUJhIhbIApVbLE-dJmzDETbA-QPS_ml-LHVX61QWZjLgzCKgfbH216b62HM9OhN6ddXWOOL7rj4J8g47rEhN9XIucScX1Hf-9xHkJFgm_c50fxMX-uB3k5s7At0qAy3tN4IqXmv9en151ZQq-FWO7iieXul6OTt-TN4EfS4_iq78iGb3bI1mws3_ae3PyCdjAvinYLHwm-24a2ga5Aez6pkNU_MnJQcMEh_qeRSnYN8TeKLZDT1Ve0Z7QGg0jbP3Xlp_ijf33dLj1FMDoivkDcNBXtdxzog_1wWjd0ue78wsF67Gqs6rNLLk--XczmyVCBIXHgGa0SK8AUKpsa4eEYrLIytVi0jBWFq7hMg6pU7nJpLUvxl6pjQWRVKbPcl0qUfI9sNm3jPxDKfe6syYwynIngclUwn5UsBPSJgpQTwsd-126gJ8cqGdd6xKH91lFbGrWlEY4nyglJ7u7qIj3HC_JyVKl-NMw0rCAv3Hn4aATcPS6DiEtkTEzIl3FIaFA1qsM0HtQH0RVEhYxznj4jkzMOHSuebUemyFYIMeTH__6Mz2RrfnF2qk-_n__cJ9t4JUITP5FNGGX-AFyslT3sp9AtriEm_A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scalable+preparation+of+three-dimensional+porous+structures+of+reduced+graphene+oxide%2Fcellulose+composites+and+their+application+in+supercapacitors&rft.jtitle=Carbon+%28New+York%29&rft.au=Ouyang%2C+W&rft.au=Sun%2C+J&rft.au=Memon%2C+J&rft.au=Wang%2C+C&rft.date=2013-10-01&rft.issn=0008-6223&rft.volume=62&rft.spage=501&rft.epage=509&rft_id=info:doi/10.1016%2Fj.carbon.2013.06.049&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-6223&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-6223&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-6223&client=summon |