Citrus Flavonoids as Promising Phytochemicals Targeting Diabetes and Related Complications: A Systematic Review of In Vitro and In Vivo Studies
The consumption of plant-based food is important for health promotion, especially concerning the prevention and management of chronic diseases. Flavonoids are the main bioactive compounds in citrus fruits, with multiple beneficial effects, especially antidiabetic effects. We systematically review th...
Saved in:
Published in | Nutrients Vol. 12; no. 10; p. 2907 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
23.09.2020
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The consumption of plant-based food is important for health promotion, especially concerning the prevention and management of chronic diseases. Flavonoids are the main bioactive compounds in citrus fruits, with multiple beneficial effects, especially antidiabetic effects. We systematically review the potential antidiabetic action and molecular mechanisms of citrus flavonoids based on in vitro and in vivo studies. A search of the PubMed, EMBASE, Scopus, and Web of Science Core Collection databases for articles published since 2010 was carried out using the keywords citrus, flavonoid, and diabetes. All articles identified were analyzed, and data were extracted using a standardized form. The search identified 38 articles, which reported that 19 citrus flavonoids, including 8-prenylnaringenin, cosmosiin, didymin, diosmin, hesperetin, hesperidin, isosiennsetin, naringenin, naringin, neohesperidin, nobiletin, poncirin, quercetin, rhoifolin, rutin, sineesytin, sudachitin, tangeretin, and xanthohumol, have antidiabetic potential. These flavonoids regulated biomarkers of glycemic control, lipid profiles, renal function, hepatic enzymes, and antioxidant enzymes, and modulated signaling pathways related to glucose uptake and insulin sensitivity that are involved in the pathogenesis of diabetes and its related complications. Citrus flavonoids, therefore, are promising antidiabetic candidates, while their antidiabetic effects remain to be verified in forthcoming human studies. |
---|---|
AbstractList | The consumption of plant-based food is important for health promotion, especially concerning the prevention and management of chronic diseases. Flavonoids are the main bioactive compounds in citrus fruits, with multiple beneficial effects, especially antidiabetic effects. We systematically review the potential antidiabetic action and molecular mechanisms of citrus flavonoids based on in vitro and in vivo studies. A search of the PubMed, EMBASE, Scopus, and Web of Science Core Collection databases for articles published since 2010 was carried out using the keywords citrus, flavonoid, and diabetes. All articles identified were analyzed, and data were extracted using a standardized form. The search identified 38 articles, which reported that 19 citrus flavonoids, including 8-prenylnaringenin, cosmosiin, didymin, diosmin, hesperetin, hesperidin, isosiennsetin, naringenin, naringin, neohesperidin, nobiletin, poncirin, quercetin, rhoifolin, rutin, sineesytin, sudachitin, tangeretin, and xanthohumol, have antidiabetic potential. These flavonoids regulated biomarkers of glycemic control, lipid profiles, renal function, hepatic enzymes, and antioxidant enzymes, and modulated signaling pathways related to glucose uptake and insulin sensitivity that are involved in the pathogenesis of diabetes and its related complications. Citrus flavonoids, therefore, are promising antidiabetic candidates, while their antidiabetic effects remain to be verified in forthcoming human studies. The consumption of plant-based food is important for health promotion, especially concerning the prevention and management of chronic diseases. Flavonoids are the main bioactive compounds in citrus fruits, with multiple beneficial effects, especially antidiabetic effects. We systematically review the potential antidiabetic action and molecular mechanisms of citrus flavonoids based on in vitro and in vivo studies. A search of the PubMed, EMBASE, Scopus, and Web of Science Core Collection databases for articles published since 2010 was carried out using the keywords citrus, flavonoid, and diabetes. All articles identified were analyzed, and data were extracted using a standardized form. The search identified 38 articles, which reported that 19 citrus flavonoids, including 8-prenylnaringenin, cosmosiin, didymin, diosmin, hesperetin, hesperidin, isosiennsetin, naringenin, naringin, neohesperidin, nobiletin, poncirin, quercetin, rhoifolin, rutin, sineesytin, sudachitin, tangeretin, and xanthohumol, have antidiabetic potential. These flavonoids regulated biomarkers of glycemic control, lipid profiles, renal function, hepatic enzymes, and antioxidant enzymes, and modulated signaling pathways related to glucose uptake and insulin sensitivity that are involved in the pathogenesis of diabetes and its related complications. Citrus flavonoids, therefore, are promising antidiabetic candidates, while their antidiabetic effects remain to be verified in forthcoming human studies.The consumption of plant-based food is important for health promotion, especially concerning the prevention and management of chronic diseases. Flavonoids are the main bioactive compounds in citrus fruits, with multiple beneficial effects, especially antidiabetic effects. We systematically review the potential antidiabetic action and molecular mechanisms of citrus flavonoids based on in vitro and in vivo studies. A search of the PubMed, EMBASE, Scopus, and Web of Science Core Collection databases for articles published since 2010 was carried out using the keywords citrus, flavonoid, and diabetes. All articles identified were analyzed, and data were extracted using a standardized form. The search identified 38 articles, which reported that 19 citrus flavonoids, including 8-prenylnaringenin, cosmosiin, didymin, diosmin, hesperetin, hesperidin, isosiennsetin, naringenin, naringin, neohesperidin, nobiletin, poncirin, quercetin, rhoifolin, rutin, sineesytin, sudachitin, tangeretin, and xanthohumol, have antidiabetic potential. These flavonoids regulated biomarkers of glycemic control, lipid profiles, renal function, hepatic enzymes, and antioxidant enzymes, and modulated signaling pathways related to glucose uptake and insulin sensitivity that are involved in the pathogenesis of diabetes and its related complications. Citrus flavonoids, therefore, are promising antidiabetic candidates, while their antidiabetic effects remain to be verified in forthcoming human studies. |
Author | Li, Hang Wu, Ding-Tao Vasconcelos, Alan Bruno Silva Geng, Fang Gan, Ren-You Gandhi, Gopalsamy Rajiv Antony, Poovathumkal James Narain, Narendra Li, Hua-Bin Gurgel, Ricardo Queiroz |
AuthorAffiliation | 2 Chengdu National Agricultural Science and Technology Center, Chengdu 600103, China 9 Laboratory of Flavor and Chromatographic Analysis, Federal University of Sergipe, Campus São Cristóvão, São Cristóvão, Sergipe 49.100-000, Brazil; narendra.narain@gmail.com 3 Postgraduate Program of Health Sciences (PPGCS), Federal University of Sergipe (UFS), Prof. João Cardoso Nascimento Campus, Aracaju, Sergipe 49060-108, Brazil; ricardoqgurgel@gmail.com 8 Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; gengfang@cdu.edu.cn 1 Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences (CAAS), Chengdu 600103, China; egarajiv@gmail.com (G.R.G.); tiantsai@sina.com (H.L.) 6 Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 5100 |
AuthorAffiliation_xml | – name: 1 Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences (CAAS), Chengdu 600103, China; egarajiv@gmail.com (G.R.G.); tiantsai@sina.com (H.L.) – name: 4 Postgraduate Program of Physiological Sciences (PROCFIS), Federal University of Sergipe (UFS), Campus São Cristóvão, São Cristóvão, Sergipe 49100-000, Brazil; abs.vasconcelos@gmail.com – name: 6 Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; lihuabin@mail.sysu.edu.cn – name: 7 Department of Microbiology, St. Xavier’s College, Kathmandu 44600, Nepal; jamesantonysj@gmail.com – name: 5 Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya’an 625014, China; DT_Wu@sicau.edu.cn – name: 8 Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; gengfang@cdu.edu.cn – name: 3 Postgraduate Program of Health Sciences (PPGCS), Federal University of Sergipe (UFS), Prof. João Cardoso Nascimento Campus, Aracaju, Sergipe 49060-108, Brazil; ricardoqgurgel@gmail.com – name: 2 Chengdu National Agricultural Science and Technology Center, Chengdu 600103, China – name: 9 Laboratory of Flavor and Chromatographic Analysis, Federal University of Sergipe, Campus São Cristóvão, São Cristóvão, Sergipe 49.100-000, Brazil; narendra.narain@gmail.com |
Author_xml | – sequence: 1 givenname: Gopalsamy Rajiv surname: Gandhi fullname: Gandhi, Gopalsamy Rajiv – sequence: 2 givenname: Alan Bruno Silva orcidid: 0000-0002-7481-2015 surname: Vasconcelos fullname: Vasconcelos, Alan Bruno Silva – sequence: 3 givenname: Ding-Tao orcidid: 0000-0002-7896-1886 surname: Wu fullname: Wu, Ding-Tao – sequence: 4 givenname: Hua-Bin orcidid: 0000-0003-2332-8554 surname: Li fullname: Li, Hua-Bin – sequence: 5 givenname: Poovathumkal James surname: Antony fullname: Antony, Poovathumkal James – sequence: 6 givenname: Hang orcidid: 0000-0003-4681-8791 surname: Li fullname: Li, Hang – sequence: 7 givenname: Fang orcidid: 0000-0002-8275-6770 surname: Geng fullname: Geng, Fang – sequence: 8 givenname: Ricardo Queiroz orcidid: 0000-0001-9651-3713 surname: Gurgel fullname: Gurgel, Ricardo Queiroz – sequence: 9 givenname: Narendra orcidid: 0000-0003-3913-5992 surname: Narain fullname: Narain, Narendra – sequence: 10 givenname: Ren-You orcidid: 0000-0002-4162-1511 surname: Gan fullname: Gan, Ren-You |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32977511$$D View this record in MEDLINE/PubMed |
BookMark | eNqFklFrFDEQxxep2Fr74geQgC8inCbZbHLxQSin1ULBYquvYTY7d5eym1yT7Ml9Cr-yuWurtQjmJRnmN_-ZzMzTas8Hj1X1nNE3da3pWz8yzijXVD2qDjhVfCKlqPfuvfero5Su6PYoqmT9pNqvuVaqYeyg-jlzOY6JnPSwDj64LhFI5DyGwSXnF-R8ucnBLnFwFvpELiEuMG8dHxy0mLHgviNfsYeMHZmFYdUXMrvg0ztyTC42KeNQbFuYtcMfJMzJqSffS9awC90Z60Au8tg5TM-qx_OSCI9u78Pq28nHy9nnydmXT6ez47OJbWiTJyCnoBlgZ6UG1rWS8hasYLbhtaBaSpRz24HSoFrVIddai5ZyhRKBSYD6sHp_o7sa26HIoM8RerOKboC4MQGc-dvj3dIswtqoRk-ZrovAq1uBGK5HTNmUjlnse_AYxmR4aS9TjeDs_6gQUkou2LSgLx-gV2GMvnSiCNaNoFxIWqgX94v_XfXdWAtAbwAbQ0oR58a6vJtK-YvrDaNmuzzmz_KUkNcPQu5U_wH_AtoNxdY |
CitedBy_id | crossref_primary_10_3390_nu13082748 crossref_primary_10_1039_D3FO02456C crossref_primary_10_3390_nu13051445 crossref_primary_10_1016_j_biopha_2024_116322 crossref_primary_10_1016_j_fbio_2021_101277 crossref_primary_10_3390_su15097731 crossref_primary_10_1016_j_sajb_2024_02_003 crossref_primary_10_3390_nu15112547 crossref_primary_10_1016_j_lwt_2023_115606 crossref_primary_10_1177_20406223221140392 crossref_primary_10_3390_foods13111681 crossref_primary_10_1016_j_heliyon_2021_e07695 crossref_primary_10_3390_pr11092721 crossref_primary_10_1016_j_psj_2024_104179 crossref_primary_10_32604_jrm_2022_018811 crossref_primary_10_1016_j_athplu_2024_12_004 crossref_primary_10_1016_j_scitotenv_2023_162212 crossref_primary_10_1080_10408398_2021_1983765 crossref_primary_10_1016_j_heliyon_2024_e36103 crossref_primary_10_3390_foods12101947 crossref_primary_10_1016_j_lwt_2024_116135 crossref_primary_10_1016_j_lwt_2024_117102 crossref_primary_10_3390_ijms232012485 crossref_primary_10_1080_10408398_2022_2106179 crossref_primary_10_26599_FSHW_2022_9250003 crossref_primary_10_1007_s42452_024_05970_7 crossref_primary_10_1155_2020_8878172 crossref_primary_10_1016_j_phymed_2021_153766 crossref_primary_10_1039_D4FO02538E crossref_primary_10_3390_molecules26154411 crossref_primary_10_1080_10408398_2022_2149466 crossref_primary_10_1016_j_fct_2024_115097 crossref_primary_10_1016_j_phymed_2025_156598 crossref_primary_10_3390_pharmaceutics15092306 crossref_primary_10_1021_acs_jafc_3c09308 crossref_primary_10_2174_1381612826666201127122313 crossref_primary_10_3390_molecules30050980 crossref_primary_10_1625_jcam_21_1 crossref_primary_10_1186_s12906_023_04136_z crossref_primary_10_1111_1750_3841_16461 crossref_primary_10_1111_ijfs_16239 crossref_primary_10_1002_cbf_4011 crossref_primary_10_1155_2021_3508281 crossref_primary_10_3390_plants11182371 crossref_primary_10_1016_j_jff_2024_106596 crossref_primary_10_1080_03079457_2024_2395357 crossref_primary_10_1007_s12013_021_00997_8 crossref_primary_10_3390_ijms22105094 crossref_primary_10_1016_j_foodchem_2023_137793 crossref_primary_10_1080_0886022X_2024_2375033 crossref_primary_10_3390_nu17050898 crossref_primary_10_3897_pharmacia_70_e101623 crossref_primary_10_1093_nutrit_nuad116 crossref_primary_10_3390_foods11172590 crossref_primary_10_1021_acs_jafc_2c03257 crossref_primary_10_3390_ph15030385 crossref_primary_10_3390_gels9020095 crossref_primary_10_1021_acsfoodscitech_2c00165 crossref_primary_10_1039_D0FO03403G crossref_primary_10_1016_j_phymed_2024_155506 crossref_primary_10_1016_j_tifs_2021_12_015 crossref_primary_10_3390_molecules25245959 crossref_primary_10_3390_ijms23074000 crossref_primary_10_3389_fendo_2023_1122709 crossref_primary_10_1111_1541_4337_12945 crossref_primary_10_3390_ph18030361 crossref_primary_10_1002_ptr_8190 crossref_primary_10_1039_D3FO04505F crossref_primary_10_3389_fphar_2022_900693 crossref_primary_10_1021_acs_jafc_2c00010 crossref_primary_10_54393_df_v4i03_78 crossref_primary_10_3390_ijms23095037 crossref_primary_10_3390_nu13103382 crossref_primary_10_1016_j_fochx_2024_101296 crossref_primary_10_1021_acsomega_3c03155 crossref_primary_10_3389_fphar_2021_639651 crossref_primary_10_31883_pjfns_143164 crossref_primary_10_3390_separations10060354 crossref_primary_10_1007_s10238_023_01161_7 crossref_primary_10_1016_j_bbrc_2023_05_117 crossref_primary_10_3390_ijms24098071 crossref_primary_10_2174_1871530323666221018090024 crossref_primary_10_1021_acs_jafc_2c08607 crossref_primary_10_3390_plants11131637 crossref_primary_10_3390_antiox11020239 crossref_primary_10_3390_nu15010158 crossref_primary_10_1038_s41598_024_83987_z crossref_primary_10_1111_jfpp_16116 crossref_primary_10_3390_molecules29143265 crossref_primary_10_1016_j_foodchem_2021_131635 crossref_primary_10_1016_j_cbi_2021_109781 crossref_primary_10_3390_nu13010145 crossref_primary_10_3390_nu13113922 crossref_primary_10_3390_agronomy11010089 crossref_primary_10_3389_fpls_2023_1218426 crossref_primary_10_3390_antiox12040972 crossref_primary_10_1155_2022_9119547 crossref_primary_10_3389_fphar_2021_661072 crossref_primary_10_3390_molecules27113381 crossref_primary_10_1016_j_chroma_2025_465747 crossref_primary_10_47836_mjmhs_18_s15_46 crossref_primary_10_3389_fnut_2022_977756 crossref_primary_10_3390_nu13020473 crossref_primary_10_3390_antiox10020140 crossref_primary_10_3390_ijms252413721 crossref_primary_10_3390_plants13020191 crossref_primary_10_3390_medicina60101580 crossref_primary_10_2147_DMSO_S427412 crossref_primary_10_3389_fnut_2021_669805 crossref_primary_10_3892_ol_2022_13356 crossref_primary_10_3390_molecules27248709 crossref_primary_10_1007_s12291_024_01222_y crossref_primary_10_1016_j_scienta_2022_110909 crossref_primary_10_1016_j_crbiot_2024_100204 crossref_primary_10_3390_foods11091256 crossref_primary_10_1039_D1FO04209B crossref_primary_10_3390_ijms24021676 crossref_primary_10_3390_plants12122350 crossref_primary_10_1007_s12013_024_01444_0 crossref_primary_10_1016_j_intimp_2024_113911 crossref_primary_10_3390_plants13070960 crossref_primary_10_1248_yakushi_21_00121 crossref_primary_10_1016_j_foodres_2022_111669 crossref_primary_10_1016_j_jff_2024_106031 crossref_primary_10_3390_catal14120935 crossref_primary_10_1080_10408398_2021_1931023 crossref_primary_10_1039_D1FO00126D crossref_primary_10_1080_10408398_2021_2009761 crossref_primary_10_1186_s42269_022_00820_1 crossref_primary_10_29219_fnr_v68_10745 crossref_primary_10_3389_fphar_2024_1447077 crossref_primary_10_3390_ijms241612641 crossref_primary_10_3390_nu14030534 crossref_primary_10_3389_fnut_2023_1165841 crossref_primary_10_3390_nu14122401 crossref_primary_10_3390_nu14091847 crossref_primary_10_3390_foods10112872 crossref_primary_10_1111_raq_12680 crossref_primary_10_1007_s11172_024_4295_6 crossref_primary_10_1080_10408398_2022_2098250 crossref_primary_10_3390_ph16121681 crossref_primary_10_1002_jat_4628 crossref_primary_10_1080_09513590_2023_2181637 crossref_primary_10_3390_ani12131654 crossref_primary_10_4103_abr_abr_94_23 crossref_primary_10_1186_s12951_025_03228_x crossref_primary_10_3177_jnsv_70_61 crossref_primary_10_1016_j_ejphar_2024_176541 crossref_primary_10_3390_biom12050626 crossref_primary_10_3390_foods13020189 crossref_primary_10_1089_rej_2023_0065 crossref_primary_10_3390_ani12050627 crossref_primary_10_3390_nu16213709 crossref_primary_10_1007_s11064_022_03746_2 crossref_primary_10_1016_j_scp_2023_101258 crossref_primary_10_2174_0115665240268940231113044317 crossref_primary_10_3390_scipharm91040046 crossref_primary_10_1016_j_trac_2022_116554 crossref_primary_10_2174_1568026622666220107105233 crossref_primary_10_1016_j_compbiomed_2020_104185 crossref_primary_10_1111_jfbc_14444 crossref_primary_10_3390_nu14112270 crossref_primary_10_1016_j_scienta_2023_112804 crossref_primary_10_1590_acb380823 crossref_primary_10_1016_j_chroma_2022_463640 |
Cites_doi | 10.3390/molecules22071213 10.1016/j.cbi.2019.05.040 10.1016/j.jnutbio.2012.03.014 10.1111/j.1472-8206.2009.00675.x 10.1002/mrd.23079 10.1155/2020/8609213 10.1016/j.ejphar.2019.172712 10.3390/nu12020457 10.2147/IJN.S213724 10.1177/0960327117694075 10.1016/j.jff.2012.12.004 10.1155/2016/2918796 10.2337/db10-0589 10.1016/j.phymed.2014.01.007 10.1016/j.fitote.2012.01.010 10.1016/j.biopha.2017.10.102 10.1080/09168451.2018.1514246 10.1016/j.jfca.2006.02.012 10.1016/j.lungcan.2009.08.013 10.1016/j.cbi.2016.11.026 10.14715/cmb/2018.64.3.5 10.1002/9780470015902.a0027666 10.1186/s12906-016-1069-1 10.1515/jbcpp-2019-0191 10.1007/s11684-019-0729-1 10.1016/j.cjca.2017.12.005 10.1007/s10753-016-0321-7 10.1002/jsfa.6893 10.2174/1871521409666200324110031 10.4103/0253-7613.96350 10.1038/s41598-017-10970-2 10.1080/10408398.2014.906382 10.1080/01635580802143836 10.1007/s11883-007-0009-4 10.1007/s00109-014-1146-1 10.1139/cjpp-2014-0281 10.1016/j.bbrc.2014.10.038 10.3164/jcbn.09-82 10.1016/j.diabres.2018.02.023 10.1016/j.intimp.2018.05.017 10.1155/2015/404085 10.1002/ptr.4730 10.1016/j.jep.2018.01.002 10.3390/12081641 10.1186/s12986-019-0370-7 10.1371/journal.pone.0191192 10.1016/j.lfs.2018.08.074 10.1016/j.tox.2010.01.012 10.1016/j.bbagen.2011.11.015 10.1016/j.foodchem.2012.06.004 10.1007/s11010-016-2716-z 10.2174/1573399813666170505120621 10.1007/s10753-019-01007-z 10.1016/j.jff.2015.03.024 10.1016/j.foodchem.2006.11.054 10.1093/ecam/nep204 10.1021/jf904608h 10.1016/j.cbi.2019.03.018 10.1016/j.lfs.2017.04.001 10.1016/j.jfca.2005.12.009 10.3390/nu10121852 10.4103/pm.pm_41_17 10.3390/nu9121312 10.1007/s12272-010-0203-8 10.1007/s10753-014-9994-y 10.1007/s13410-014-0268-x 10.1371/journal.pmed.1000097 10.1021/jf072826r 10.1007/s11418-019-01332-5 10.3945/jn.115.213660 10.1016/j.mce.2016.09.026 10.1039/C4FO00993B 10.1194/jlr.RA119000542 10.1016/j.biopha.2018.03.169 10.1007/s12272-019-01174-5 10.1039/C6FO00294C 10.1016/S2095-4964(14)60001-7 10.3389/fphar.2017.00336 10.3390/ijms20174281 10.1016/j.bcp.2018.03.012 10.5772/63689 10.1002/ptr.6385 10.3389/fphar.2018.00530 10.1016/S2213-8587(13)70046-9 10.1007/s10787-017-0326-3 10.1016/j.fitote.2015.03.007 10.3390/cancers11060867 10.3390/molecules23030660 10.3945/an.113.005603 10.1186/1743-7075-11-32 10.1016/j.pupt.2015.07.002 10.1002/jcp.28384 10.3164/jcbn.18-70 10.1016/j.cbi.2015.06.036 10.3945/an.116.014050 10.4000/books.pcjb.2107 10.1155/2019/5484138 10.3390/nu9070684 10.1007/s11010-008-9930-2 10.1080/1028415X.2019.1594554 10.1007/s11064-016-1949-2 10.1021/np060217s 10.1016/j.cbi.2017.09.015 10.1002/jmr.2224 10.1016/j.biopha.2009.08.007 10.1016/j.jdiacomp.2012.06.001 10.1007/s13105-014-0369-5 10.1104/pp.16.01340 10.1002/jcb.22850 10.3390/molecules23102547 10.1017/S1479262111000189 10.1016/j.diabet.2017.06.003 10.1016/j.lfs.2018.07.017 10.1158/1940-6207.CAPR-11-0318 10.1080/01480545.2020.1722690 10.3109/13880209.2013.870584 10.1080/13880209.2016.1216131 10.1186/1472-6882-12-31 10.1053/j.gastro.2006.05.054 10.1007/s00432-015-2097-9 10.1016/j.pbb.2014.11.002 10.1155/2019/2676307 |
ContentType | Journal Article |
Copyright | 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2020 by the authors. 2020 |
Copyright_xml | – notice: 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2020 by the authors. 2020 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TS 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 7S9 L.6 5PM |
DOI | 10.3390/nu12102907 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Physical Education Index Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni) Medical Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China Physical Education Index ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic Publicly Available Content Database CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 2072-6643 |
ExternalDocumentID | PMC7598193 32977511 10_3390_nu12102907 |
Genre | Systematic Review Journal Article |
GrantInformation_xml | – fundername: Local Financial Funds of National Agricultural Science and Technology Center, Chengdu grantid: NASC2020KR02 – fundername: Central Public-interest Scientific Institution Basal Research Fund grantid: Y2020XK05 – fundername: National Key R & D Program of China grantid: 2018YFC1604405 |
GroupedDBID | --- 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ A8Z AADQD AAFWJ AAHBH AAWTL AAYXX ABUWG ACIWK ACPRK AENEX AFKRA AFRAH AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS APEBS BENPR BPHCQ BVXVI CCPQU CITATION DIK E3Z EBD ECGQY EIHBH ESTFP EYRJQ F5P FYUFA GX1 HMCUK HYE KQ8 LK8 M1P M48 MODMG M~E OK1 P2P P6G PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TR2 UKHRP CGR CUY CVF ECM EIF NPM 3V. 7TS 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c505t-a68a91aedc69a1db602bac41c52340966e6fcda79a7b7de29994b027e6ea16aa3 |
IEDL.DBID | M48 |
ISSN | 2072-6643 |
IngestDate | Thu Aug 21 14:30:58 EDT 2025 Fri Jul 11 14:09:04 EDT 2025 Mon Jul 21 11:56:05 EDT 2025 Fri Jul 25 09:48:41 EDT 2025 Thu Apr 03 06:53:55 EDT 2025 Thu Apr 24 23:09:07 EDT 2025 Tue Jul 01 00:49:42 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | polyphenols flavonoids inflammation diabetes citrus |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c505t-a68a91aedc69a1db602bac41c52340966e6fcda79a7b7de29994b027e6ea16aa3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Feature-3 ObjectType-Evidence Based Healthcare-1 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 ObjectType-Undefined-3 |
ORCID | 0000-0003-4681-8791 0000-0003-2332-8554 0000-0002-7481-2015 0000-0002-7896-1886 0000-0002-4162-1511 0000-0003-3913-5992 0000-0001-9651-3713 0000-0002-8275-6770 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/nu12102907 |
PMID | 32977511 |
PQID | 2535402460 |
PQPubID | 2032353 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7598193 proquest_miscellaneous_2511175421 proquest_miscellaneous_2446662418 proquest_journals_2535402460 pubmed_primary_32977511 crossref_citationtrail_10_3390_nu12102907 crossref_primary_10_3390_nu12102907 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200923 |
PublicationDateYYYYMMDD | 2020-09-23 |
PublicationDate_xml | – month: 9 year: 2020 text: 20200923 day: 23 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Nutrients |
PublicationTitleAlternate | Nutrients |
PublicationYear | 2020 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | ref_93 Koyuncu (ref_52) 2018; 64 ref_92 Jia (ref_102) 2015; 6 Man (ref_6) 2019; 2019 Goulet (ref_3) 2017; 173 Chtourou (ref_114) 2015; 239 Ahmad (ref_107) 2015; 38 ref_19 Wong (ref_13) 2013; 1 Heinonen (ref_14) 2015; 2015 ref_15 Liao (ref_48) 2019; 234 Li (ref_123) 2018; 61 Visnagri (ref_85) 2014; 52 Zhang (ref_45) 2016; 417 Vij (ref_113) 2009; 23 Li (ref_86) 2018; 17 Jayaraman (ref_97) 2018; 97 ref_126 ref_125 Tsutsumi (ref_54) 2014; 11 ref_25 Zareei (ref_59) 2017; 178 Tan (ref_121) 2017; 439 ref_23 Dokumacioglu (ref_87) 2018; 14 ref_22 Chen (ref_105) 2016; 54 Zhang (ref_115) 2012; 135 Peterson (ref_77) 2006; 19 Hwang (ref_117) 2008; 56 Zhao (ref_119) 2019; 33 Hosokawa (ref_69) 2019; 42 Wei (ref_76) 2017; 261 Mitani (ref_68) 2019; 64 Grabarczyk (ref_24) 2015; 103 Zhang (ref_21) 2019; 16 Munhoz (ref_29) 2018; 14 Jiang (ref_122) 2018; 9 Gattuso (ref_130) 2007; 12 Fallahi (ref_100) 2012; 44 Fernandes (ref_99) 2010; 64 Li (ref_17) 2017; 57 Zhang (ref_110) 2016; 142 Chen (ref_60) 2018; 102 Refaat (ref_47) 2015; 2 ref_73 Tripoli (ref_7) 2007; 104 Mulvihill (ref_41) 2011; 60 Abe (ref_67) 2018; 82 Morrow (ref_46) 2020; 61 Sundaram (ref_71) 2014; 21 Mahmoud (ref_83) 2012; 26 Millar (ref_18) 2017; 8 Wang (ref_38) 2019; 14 Hung (ref_74) 2010; 68 Petrie (ref_28) 2018; 34 Reach (ref_10) 2017; 43 Hasanein (ref_101) 2014; 70 Samie (ref_98) 2018; 210 Sundaram (ref_72) 2015; 16 Sachdeva (ref_112) 2014; 127 Jo (ref_94) 2019; 42 Huang (ref_36) 2016; 2016 Gray (ref_12) 2014; 92 Kim (ref_95) 2019; 86 ref_50 Rao (ref_30) 2011; 2011 Nandakumar (ref_79) 2012; 9 Sultana (ref_51) 2018; 216 Lee (ref_37) 2013; 24 ref_58 ref_53 Guo (ref_120) 2019; 864 Kwatra (ref_111) 2016; 41 Bellocco (ref_118) 2009; 321 Abdallah (ref_84) 2014; 92 Gong (ref_116) 2015; 95 Malakul (ref_103) 2018; 15 Luro (ref_2) 2011; 9 Mahmoud (ref_8) 2019; 2019 Singhal (ref_75) 2012; 5 ref_66 ref_63 Jiao (ref_108) 2015; 33 Nakagawa (ref_65) 2006; 69 Kandhare (ref_106) 2012; 83 Ali (ref_62) 2019; 305 Yoshida (ref_55) 2014; 454 (ref_81) 2017; 25 Stuetz (ref_128) 2010; 58 Tilg (ref_88) 2006; 131 Xiong (ref_109) 2016; 39 Dhanya (ref_57) 2017; 8 Costa (ref_27) 2018; 4 Parkar (ref_44) 2016; 7 Shalkami (ref_31) 2018; 37 Phan (ref_49) 2010; 33 Ashrafizadeh (ref_70) 2020; 31 Klimczak (ref_127) 2007; 20 Mahmoud (ref_80) 2017; 277 ref_35 Jain (ref_34) 2014; 12 Yaribeygi (ref_16) 2020; 2020 Furtado (ref_91) 2012; 25 ref_39 Somerset (ref_90) 2008; 60 Ramful (ref_129) 2010; 278 Alam (ref_104) 2014; 5 Zaidun (ref_20) 2018; 208 Feldo (ref_32) 2013; 8 Wang (ref_124) 2017; 7 Kanda (ref_43) 2012; 1820 Onda (ref_42) 2013; 27 Mehta (ref_89) 2007; 9 Tsuhako (ref_64) 2019; 74 Aguilera (ref_78) 2015; 145 Cho (ref_11) 2018; 138 Mahmoud (ref_56) 2015; 35 Akiyama (ref_82) 2010; 46 Shukla (ref_61) 2018; 152 ref_40 ref_1 Badenes (ref_4) 2012; Volume 8 Costa (ref_26) 2010; 111 Srinivasan (ref_33) 2013; 5 ref_9 Chen (ref_96) 2019; 308 ref_5 |
References_xml | – ident: ref_50 doi: 10.3390/molecules22071213 – ident: ref_9 – volume: 308 start-page: 269 year: 2019 ident: ref_96 article-title: Hesperetin relieves cisplatin-induced acute kidney injury by mitigating oxidative stress, inflammation and apoptosis publication-title: Chem. Biol. Interact. doi: 10.1016/j.cbi.2019.05.040 – volume: 24 start-page: 156 year: 2013 ident: ref_37 article-title: Nobiletin improves obesity and insulin resistance in high-fat diet-induced obese mice publication-title: J. Nutr. Biochem. doi: 10.1016/j.jnutbio.2012.03.014 – volume: 23 start-page: 331 year: 2009 ident: ref_113 article-title: Modulation of antigen-induced chronic fatigue in mouse model of water immersion stress by naringin, a polyphenolic antioxidant publication-title: Fundam. Clin. Pharmacol. doi: 10.1111/j.1472-8206.2009.00675.x – volume: 86 start-page: 32 year: 2019 ident: ref_95 article-title: Antioxidant hesperetin improves the quality of porcine oocytes during aging in vitro publication-title: Mol. Reprod. Dev. doi: 10.1002/mrd.23079 – volume: 2020 start-page: 8609213 year: 2020 ident: ref_16 article-title: Molecular mechanisms linking oxidative stress and diabetes mellitus publication-title: Oxid. Med. Cell. Longev. doi: 10.1155/2020/8609213 – volume: 864 start-page: 172712 year: 2019 ident: ref_120 article-title: Neohesperidin inhibits TGF-β1/Smad3 signaling and alleviates bleomycin-induced pulmonary fibrosis in mice publication-title: Eur. J. Pharmacol. doi: 10.1016/j.ejphar.2019.172712 – ident: ref_22 doi: 10.3390/nu12020457 – volume: 14 start-page: 7839 year: 2019 ident: ref_38 article-title: Nobiletin-loaded micelles reduce ovariectomy-induced bone loss by suppressing osteoclastogenesis publication-title: Int. J. Nanomed. doi: 10.2147/IJN.S213724 – volume: 37 start-page: 78 year: 2018 ident: ref_31 article-title: Anti-inflammatory, antioxidant and anti-apoptotic activity of diosmin in acetic acid-induced ulcerative colitis publication-title: Hum. Exp. Toxicol. doi: 10.1177/0960327117694075 – volume: 5 start-page: 484 year: 2013 ident: ref_33 article-title: Antihyperlipidemic effect of diosmin: A citrus flavonoid on lipid metabolism in experimental diabetic rats publication-title: J. Funct. Foods doi: 10.1016/j.jff.2012.12.004 – volume: 2016 start-page: 2918796 year: 2016 ident: ref_36 article-title: The multifunctional effects of nobiletin and its metabolites in vivo and in vitro publication-title: Evid. Based Complement. Alternat. Med. doi: 10.1155/2016/2918796 – volume: 60 start-page: 1446 year: 2011 ident: ref_41 article-title: Nobiletin attenuates VLDL overproduction, dyslipidemia, and atherosclerosis in mice with diet-induced insulin resistance publication-title: Diabetes doi: 10.2337/db10-0589 – volume: 21 start-page: 793 year: 2014 ident: ref_71 article-title: Effect of tangeretin, a polymethoxylated flavone on glucose metabolism in streptozotocin-induced diabetic rats publication-title: Phytomedicine doi: 10.1016/j.phymed.2014.01.007 – volume: 83 start-page: 650 year: 2012 ident: ref_106 article-title: Neuroprotective effect of naringin by modulation of endogenous biomarkers in streptozotocin induced painful diabetic neuropathy publication-title: Fitoterapia doi: 10.1016/j.fitote.2012.01.010 – volume: 97 start-page: 98 year: 2018 ident: ref_97 article-title: Antihyperglycemic effect of hesperetin, a citrus flavonoid, extenuates hyperglycemia and exploring the potential role in antioxidant and antihyperlipidemic in streptozotocin-induced diabetic rats publication-title: Biomed. Pharmacother. doi: 10.1016/j.biopha.2017.10.102 – volume: 82 start-page: 2064 year: 2018 ident: ref_67 article-title: Citrus peel polymethoxyflavones, sudachitin and nobiletin, induce distinct cellular responses in human keratinocyte HaCaT cells publication-title: Biosci. Biotechnol. Biochem. doi: 10.1080/09168451.2018.1514246 – volume: 20 start-page: 313 year: 2007 ident: ref_127 article-title: Effect of storage on the content of polyphenols, vitamin C and the antioxidant activity of orange juices publication-title: J. Food Compos. Anal. doi: 10.1016/j.jfca.2006.02.012 – volume: 68 start-page: 366 year: 2010 ident: ref_74 article-title: Didymin, a dietary flavonoid glycoside from citrus fruits, induces Fas-mediated apoptotic pathway in human non-small-cell lung cancer cells in vitro and in vivo publication-title: Lung Cancer doi: 10.1016/j.lungcan.2009.08.013 – volume: 261 start-page: 118 year: 2017 ident: ref_76 article-title: Didymin induces apoptosis through mitochondrial dysfunction and up-regulation of RKIP in human hepatoma cells publication-title: Chem. Biol. Interact. doi: 10.1016/j.cbi.2016.11.026 – volume: 64 start-page: 25 year: 2018 ident: ref_52 article-title: Evaluation of anticancer, antioxidant activity and phenolic compounds of Artemisia absinthium L. publication-title: Extract. Cell. Mol. Biol. doi: 10.14715/cmb/2018.64.3.5 – ident: ref_125 doi: 10.1002/9780470015902.a0027666 – ident: ref_126 doi: 10.1186/s12906-016-1069-1 – volume: 31 start-page: 20190191 year: 2020 ident: ref_70 article-title: Tangeretin: A mechanistic review of its pharmacological and therapeutic effects publication-title: J. Basic Clin. Physiol. Pharmacol. doi: 10.1515/jbcpp-2019-0191 – ident: ref_15 doi: 10.1007/s11684-019-0729-1 – volume: 34 start-page: 575 year: 2018 ident: ref_28 article-title: Diabetes, hypertension and cardiovascular disease: Clinical insights and vascular mechanisms publication-title: Can. J. Cardiol. doi: 10.1016/j.cjca.2017.12.005 – volume: 39 start-page: 891 year: 2016 ident: ref_109 article-title: Naringin protects ovalbumin-induced airway inflammation in a mouse model of asthma publication-title: Inflammation doi: 10.1007/s10753-016-0321-7 – volume: 95 start-page: 1885 year: 2015 ident: ref_116 article-title: Development of new reference material neohesperidin for quality control of dietary supplements publication-title: J. Sci. Food Agric. doi: 10.1002/jsfa.6893 – volume: 8 start-page: 1934578X1300800435 year: 2013 ident: ref_32 article-title: Diosmin—Isolation techniques, determination in plant material and pharmaceutical formulations, and clinical use publication-title: Nat. Prod. Commun. – ident: ref_93 doi: 10.2174/1871521409666200324110031 – volume: 44 start-page: 382 year: 2012 ident: ref_100 article-title: Citrus flavonoid naringenin improves aortic reactivity in streptozotocin-diabetic rats publication-title: Indian J. Pharmacol. doi: 10.4103/0253-7613.96350 – volume: 7 start-page: 10549 year: 2017 ident: ref_124 article-title: Characterization and metabolic diversity of flavonoids in Citrus species publication-title: Sci. Rep. doi: 10.1038/s41598-017-10970-2 – volume: 57 start-page: 613 year: 2017 ident: ref_17 article-title: Health-promoting effects of the citrus flavanone hesperidin publication-title: Crit. Rev. Food Sci. Nutr. doi: 10.1080/10408398.2014.906382 – volume: 60 start-page: 442 year: 2008 ident: ref_90 article-title: Dietary flavonoid sources in Australian adults publication-title: Nutr. Cancer doi: 10.1080/01635580802143836 – volume: 9 start-page: 134 year: 2007 ident: ref_89 article-title: Obesity and inflammation: A new look at an old problem publication-title: Curr. Atheroscler. Rep. doi: 10.1007/s11883-007-0009-4 – volume: 92 start-page: 441 year: 2014 ident: ref_12 article-title: The pathobiology of diabetic vascular complications—Cardiovascular and kidney disease publication-title: J. Mol. Med. doi: 10.1007/s00109-014-1146-1 – volume: 92 start-page: 945 year: 2014 ident: ref_84 article-title: Anti-depressant effect of hesperidin in diabetic rats publication-title: Can. J. Physiol. Pharmacol. doi: 10.1139/cjpp-2014-0281 – volume: 454 start-page: 95 year: 2014 ident: ref_55 article-title: Naringenin suppresses macrophage infiltration into adipose tissue in an early phase of high-fat diet-induced obesity publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2014.10.038 – volume: 46 start-page: 87 year: 2010 ident: ref_82 article-title: Dietary hesperidin exerts hypoglycemic and hypolipidemic effects in streptozotocin-induced marginal type 1 diabetic rats publication-title: J. Clin. Biochem. Nutr. doi: 10.3164/jcbn.09-82 – volume: 138 start-page: 271 year: 2018 ident: ref_11 article-title: IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045 publication-title: Diabetes Res. Clin. Pract. doi: 10.1016/j.diabres.2018.02.023 – volume: 61 start-page: 277 year: 2018 ident: ref_123 article-title: Xanthohumol attenuates cisplatin-induced nephrotoxicity through inhibiting NF-κB and activating Nrf2 signaling pathways publication-title: Int. Immunopharmacol. doi: 10.1016/j.intimp.2018.05.017 – volume: 2015 start-page: 404085 year: 2015 ident: ref_14 article-title: Animal models of diabetic macrovascular complications: Key players in the development of new therapeutic approaches publication-title: J. Diabetes Res. doi: 10.1155/2015/404085 – volume: 27 start-page: 312 year: 2013 ident: ref_42 article-title: Polymethoxyflavonoids tangeretin and nobiletin increase glucose uptake in murine adipocytes publication-title: Phytother. Res. doi: 10.1002/ptr.4730 – volume: 216 start-page: 104 year: 2018 ident: ref_51 article-title: Escalation of liver malfunctioning: A step toward Herbal Awareness publication-title: J. Ethnopharmacol. doi: 10.1016/j.jep.2018.01.002 – volume: 12 start-page: 1641 year: 2007 ident: ref_130 article-title: Flavonoid composition of citrus juices publication-title: Molecules doi: 10.3390/12081641 – volume: 16 start-page: 47 year: 2019 ident: ref_21 article-title: Flavonoids as inducers of white adipose tissue browning and thermogenesis: Signalling pathways and molecular triggers publication-title: Nutr. Metab. doi: 10.1186/s12986-019-0370-7 – ident: ref_66 doi: 10.1371/journal.pone.0191192 – volume: 210 start-page: 132 year: 2018 ident: ref_98 article-title: Hesperetin, a citrus flavonoid, attenuates testicular damage in diabetic rats via inhibition of oxidative stress, inflammation, and apoptosis publication-title: Life Sci. doi: 10.1016/j.lfs.2018.08.074 – volume: 278 start-page: 75 year: 2010 ident: ref_129 article-title: Bioactive phenolics and antioxidant propensity of flavedo extracts of Mauritian citrus fruits: Potential prophylactic ingredients for functional foods application publication-title: Toxicology doi: 10.1016/j.tox.2010.01.012 – volume: 1820 start-page: 461 year: 2012 ident: ref_43 article-title: Nobiletin suppresses adipocyte differentiation of 3T3-L1 cells by an insulin and IBMX mixture induction publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbagen.2011.11.015 – volume: 135 start-page: 1471 year: 2012 ident: ref_115 article-title: Purification of naringin and neohesperidin from Huyou (Citrus changshanensis) fruit and their effects on glucose consumption in human HepG2 cells publication-title: Food Chem. doi: 10.1016/j.foodchem.2012.06.004 – volume: 417 start-page: 87 year: 2016 ident: ref_45 article-title: Nobiletin attenuates cardiac dysfunction, oxidative stress, and inflammatory in streptozotocin: Induced diabetic cardiomyopathy publication-title: Mol. Cell. Biochem. doi: 10.1007/s11010-016-2716-z – volume: 14 start-page: 36 year: 2018 ident: ref_29 article-title: Isolated compounds from natural products with potential antidiabetic activity—A systematic review publication-title: Curr. Diabetes Rev. doi: 10.2174/1573399813666170505120621 – volume: 42 start-page: 1456 year: 2019 ident: ref_69 article-title: Sudachitin inhibits matrix metalloproteinase-1 and -3 production in tumor necrosis factor-α-stimulated human periodontal ligament cells publication-title: Inflammation doi: 10.1007/s10753-019-01007-z – volume: 16 start-page: 315 year: 2015 ident: ref_72 article-title: Tangeretin, a polymethoxylated flavone, modulates lipid homeostasis and decreases oxidative stress by inhibiting NF-κB activation and proinflammatory cytokines in cardiac tissue of streptozotocin-induced diabetic rats publication-title: J. Funct. Foods doi: 10.1016/j.jff.2015.03.024 – volume: 104 start-page: 466 year: 2007 ident: ref_7 article-title: Citrus flavonoids: Molecular structure, biological activity and nutritional properties: A review publication-title: Food Chem. doi: 10.1016/j.foodchem.2006.11.054 – volume: 2011 start-page: 624375 year: 2011 ident: ref_30 article-title: Insulin-mimetic action of rhoifolin and cosmosiin isolated from Citrus grandis (L.) Osbeck leaves: Enhanced adiponectin secretion and insulin receptor phosphorylation in 3T3-L1 cells publication-title: Evid. Based Complement. Alternat. Med. doi: 10.1093/ecam/nep204 – volume: 58 start-page: 6069 year: 2010 ident: ref_128 article-title: Polymethoxylated flavones, flavanone glycosides, carotenoids, and antioxidants in different cultivation types of tangerines (Citrus reticulata Blanco cv. Sainampueng) from Northern Thailand publication-title: J. Agric. Food Chem. doi: 10.1021/jf904608h – volume: 305 start-page: 180 year: 2019 ident: ref_62 article-title: Didymin, a dietary citrus flavonoid exhibits anti-diabetic complications and promotes glucose uptake through the activation of PI3K/Akt signaling pathway in insulin-resistant HepG2 cells publication-title: Chem. Biol. Interact. doi: 10.1016/j.cbi.2019.03.018 – volume: 178 start-page: 49 year: 2017 ident: ref_59 article-title: Inhibition of liver alanine aminotransferase and aspartate aminotransferase by hesperidin and its aglycone hesperetin: An in vitro and in silico study publication-title: Life Sci. doi: 10.1016/j.lfs.2017.04.001 – volume: 19 start-page: S74 year: 2006 ident: ref_77 article-title: Flavanones in grapefruit, lemons, and limes: A compilation and review of the data from the analytical literature publication-title: J. Food Compos. Anal. doi: 10.1016/j.jfca.2005.12.009 – ident: ref_19 doi: 10.3390/nu10121852 – volume: 17 start-page: 399 year: 2018 ident: ref_86 article-title: Hesperidin, a plant flavonoid accelerated the cutaneous wound healing in streptozotocin-induced diabetic rats: Role of TGF-ß/Smads and Ang-1/Tie-2 signaling pathways publication-title: EXCLI J. – volume: 14 start-page: 167 year: 2018 ident: ref_87 article-title: The effects of hesperidin and quercetin on serum tumor necrosis factor-alpha and interleukin-6 levels in streptozotocin-induced diabetes model publication-title: Pharmacogn. Mag. doi: 10.4103/pm.pm_41_17 – ident: ref_58 doi: 10.3390/nu9121312 – volume: 33 start-page: 203 year: 2010 ident: ref_49 article-title: Two new C-glucosyl benzoic acids and flavonoids from Mallotus nanus and their antioxidant activity publication-title: Arch. Pharm. Res. doi: 10.1007/s12272-010-0203-8 – volume: 38 start-page: 846 year: 2015 ident: ref_107 article-title: Naringin attenuates the development of carrageenan-induced acute lung inflammation through inhibition of NF-κb, STAT3 and pro-inflammatory mediators and enhancement of IκBα and anti-inflammatory cytokines publication-title: Inflammation doi: 10.1007/s10753-014-9994-y – volume: 35 start-page: 250 year: 2015 ident: ref_56 article-title: In vivo and in vitro antidiabetic effects of citrus flavonoids; a study on the mechanism of action publication-title: Int. J. Diabetes Dev. Ctries. doi: 10.1007/s13410-014-0268-x – ident: ref_23 doi: 10.1371/journal.pmed.1000097 – volume: 56 start-page: 859 year: 2008 ident: ref_117 article-title: Neuroprotective effects of the citrus flavanones against H2 O2 -induced cytotoxicity in PC12 cells publication-title: J. Agric. Food Chem. doi: 10.1021/jf072826r – volume: 74 start-page: 229 year: 2019 ident: ref_64 article-title: Naringenin suppresses neutrophil infiltration into adipose tissue in high-fat diet-induced obese mice publication-title: J. Nat. Med. doi: 10.1007/s11418-019-01332-5 – volume: 145 start-page: 1808 year: 2015 ident: ref_78 article-title: Normal or high polyphenol concentration in orange juice affects antioxidant activity, blood pressure, and body weight in obese or overweight adults publication-title: J. Nutr. doi: 10.3945/jn.115.213660 – volume: 439 start-page: 369 year: 2017 ident: ref_121 article-title: Neohesperidin suppresses osteoclast differentiation, bone resorption and ovariectomised-induced osteoporosis in mice publication-title: Mol. Cell. Endocrinol. doi: 10.1016/j.mce.2016.09.026 – volume: 6 start-page: 878 year: 2015 ident: ref_102 article-title: Hypoglycemic and hypolipidemic effects of neohesperidin derived from Citrus aurantium L. in diabetic KK-A(y) mice publication-title: Food Funct. doi: 10.1039/C4FO00993B – volume: 61 start-page: 387 year: 2020 ident: ref_46 article-title: The citrus flavonoid nobiletin confers protection from metabolic dysregulation in high-fat-fed mice independent of AMPK publication-title: J. Lipid Res. doi: 10.1194/jlr.RA119000542 – volume: 2 start-page: 102 year: 2015 ident: ref_47 article-title: Rhoifolin: A review of sources and biological activities publication-title: Int. J. Pharmacogn. – volume: 102 start-page: 1077 year: 2018 ident: ref_60 article-title: Tangeretin inhibits high glucose-induced extracellular matrix accumulation in human glomerular mesangial cells publication-title: Biomed. Pharmacother. doi: 10.1016/j.biopha.2018.03.169 – volume: 42 start-page: 695 year: 2019 ident: ref_94 article-title: Hesperetin inhibits neuroinflammation on microglia by suppressing inflammatory cytokines and MAPK pathways publication-title: Arch. Pharm. Res. doi: 10.1007/s12272-019-01174-5 – volume: 7 start-page: 3121 year: 2016 ident: ref_44 article-title: Efficacy of nobiletin, a citrus flavonoid, in the treatment of the cardiovascular dysfunction of diabetes in rats publication-title: Food Funct. doi: 10.1039/C6FO00294C – volume: 12 start-page: 35 year: 2014 ident: ref_34 article-title: Protective effect of diosmin against diabetic neuropathy in experimental rats publication-title: J. Integr. Med. doi: 10.1016/S2095-4964(14)60001-7 – volume: 8 start-page: 336 year: 2017 ident: ref_57 article-title: Quercetin, a lead compound against type 2 diabetes ameliorates glucose uptake via AMPK pathway in skeletal muscle cell line publication-title: Front. Pharmacol. doi: 10.3389/fphar.2017.00336 – ident: ref_40 doi: 10.3390/ijms20174281 – volume: 152 start-page: 1 year: 2018 ident: ref_61 article-title: Didymin prevents hyperglycemia-induced human umbilical endothelial cells dysfunction and death publication-title: Biochem. Pharmacol. doi: 10.1016/j.bcp.2018.03.012 – ident: ref_5 doi: 10.5772/63689 – volume: 33 start-page: 2034 year: 2019 ident: ref_119 article-title: Neohesperidin suppresses IgE-mediated anaphylactic reactions and mast cell activation via Lyn-PLC-Ca(2+) pathway publication-title: Phytother. Res. doi: 10.1002/ptr.6385 – volume: Volume 8 start-page: 623 year: 2012 ident: ref_4 article-title: Citrus publication-title: Fruit Breeding – volume: 9 start-page: 530 year: 2018 ident: ref_122 article-title: Anticancer activity and mechanism of xanthohumol: A prenylated flavonoid from hops (Humulus lupulus L.) publication-title: Front. Pharmacol. doi: 10.3389/fphar.2018.00530 – volume: 1 start-page: 106 year: 2013 ident: ref_13 article-title: Diabetes and risk of physical disability in adults: A systematic review and meta-analysis publication-title: Lancet Diabetes Endocrinol. doi: 10.1016/S2213-8587(13)70046-9 – volume: 25 start-page: 265 year: 2017 ident: ref_81 article-title: Pro-inflammatory cytokines involvement in the hesperidin antihyperalgesic effects at peripheral and central levels in a neuropathic pain model publication-title: Inflammopharmacology doi: 10.1007/s10787-017-0326-3 – volume: 103 start-page: 71 year: 2015 ident: ref_24 article-title: Isoxanthohumol—Biologically active hop flavonoid publication-title: Fitoterapia doi: 10.1016/j.fitote.2015.03.007 – ident: ref_39 doi: 10.3390/cancers11060867 – ident: ref_25 doi: 10.3390/molecules23030660 – volume: 5 start-page: 404 year: 2014 ident: ref_104 article-title: Effect of citrus flavonoids, naringin and naringenin, on metabolic syndrome and their mechanisms of action publication-title: Adv. Nutr. doi: 10.3945/an.113.005603 – volume: 11 start-page: 32 year: 2014 ident: ref_54 article-title: Sudachitin, a polymethoxylated flavone, improves glucose and lipid metabolism by increasing mitochondrial biogenesis in skeletal muscle publication-title: Nutr. Metab. doi: 10.1186/1743-7075-11-32 – volume: 33 start-page: 59 year: 2015 ident: ref_108 article-title: Therapeutic effects of naringin in a guinea pig model of ovalbumin-induced cough-variant asthma publication-title: Pulm. Pharmacol. Ther. doi: 10.1016/j.pupt.2015.07.002 – volume: 234 start-page: 17600 year: 2019 ident: ref_48 article-title: Rhoifolin ameliorates titanium particle-stimulated osteolysis and attenuates osteoclastogenesis via RANKL-induced NF-κB and MAPK pathways publication-title: J. Cell. Physiol. doi: 10.1002/jcp.28384 – volume: 64 start-page: 158 year: 2019 ident: ref_68 article-title: Sudachitin, polymethoxyflavone from Citrus sudachi, enhances antigen-specific cellular and humoral immune responses in BALB/c mice publication-title: J. Clin. Biochem. Nutr. doi: 10.3164/jcbn.18-70 – volume: 239 start-page: 76 year: 2015 ident: ref_114 article-title: Protective role of naringin against cisplatin induced oxidative stress, inflammatory response and apoptosis in rat striatum via suppressing ROS-mediated NF-κB and P53 signaling pathways publication-title: Chem. Biol. Interact. doi: 10.1016/j.cbi.2015.06.036 – volume: 8 start-page: 226 year: 2017 ident: ref_18 article-title: Effects of dietary flavonoids on reverse cholesterol transport, HDL metabolism, and HDL function publication-title: Adv. Nutr. doi: 10.3945/an.116.014050 – ident: ref_1 doi: 10.4000/books.pcjb.2107 – volume: 2019 start-page: 5484138 year: 2019 ident: ref_8 article-title: Beneficial effects of citrus flavonoids on cardiovascular and metabolic health publication-title: Oxid. Med. Cell. Longev. doi: 10.1155/2019/5484138 – ident: ref_35 doi: 10.3390/nu9070684 – volume: 4 start-page: e23 year: 2018 ident: ref_27 article-title: Xanthohumol and 8-prenylnaringenin reduce type 2 diabetes-associated oxidative stress by downregulating galectin-3 publication-title: Porto Biomed. J. – volume: 321 start-page: 165 year: 2009 ident: ref_118 article-title: Influence of l-rhamnosyl-d-glucosyl derivatives on properties and biological interaction of flavonoids publication-title: Mol. Cell. Biochem. doi: 10.1007/s11010-008-9930-2 – ident: ref_63 doi: 10.1080/1028415X.2019.1594554 – volume: 41 start-page: 2352 year: 2016 ident: ref_111 article-title: Naringin and sertraline ameliorate doxorubicin-induced behavioral deficits through modulation of serotonin level and mitochondrial complexes protection pathway in rat hippocampus publication-title: Neurochem. Res. doi: 10.1007/s11064-016-1949-2 – volume: 69 start-page: 1177 year: 2006 ident: ref_65 article-title: Chemical constituents from the peels of Citrus sudachi publication-title: J. Nat. Prod. doi: 10.1021/np060217s – volume: 277 start-page: 146 year: 2017 ident: ref_80 article-title: Hesperidin protects against chemically induced hepatocarcinogenesis via modulation of Nrf2/ARE/HO-1, PPARγ and TGF-β1/Smad3 signaling, and amelioration of oxidative stress and inflammation publication-title: Chem. Biol. Interact. doi: 10.1016/j.cbi.2017.09.015 – volume: 25 start-page: 595 year: 2012 ident: ref_91 article-title: Hesperidinase encapsulation towards hesperitin production targeting improved bioavailability publication-title: J. Mol. Recognit. doi: 10.1002/jmr.2224 – volume: 64 start-page: 214 year: 2010 ident: ref_99 article-title: Influence of rutin treatment on biochemical alterations in experimental diabetes publication-title: Biomed. Pharmacother. doi: 10.1016/j.biopha.2009.08.007 – volume: 15 start-page: 3140 year: 2018 ident: ref_103 article-title: Naringin ameliorates endothelial dysfunction in fructose-fed rats publication-title: Exp. Ther. Med. – volume: 26 start-page: 483 year: 2012 ident: ref_83 article-title: Hesperidin and naringin attenuate hyperglycemia-mediated oxidative stress and proinflammatory cytokine production in high fat fed/streptozotocin-induced type 2 diabetic rats publication-title: J. Diabetes Complicat. doi: 10.1016/j.jdiacomp.2012.06.001 – volume: 70 start-page: 997 year: 2014 ident: ref_101 article-title: Role of naringenin in protection against diabetic hyperalgesia and tactile allodynia in male Wistar rats publication-title: J. Physiol. Biochem. doi: 10.1007/s13105-014-0369-5 – volume: 173 start-page: 65 year: 2017 ident: ref_3 article-title: Hybridization in plants: Old ideas, new techniques publication-title: Plant Physiol. doi: 10.1104/pp.16.01340 – volume: 111 start-page: 1270 year: 2010 ident: ref_26 article-title: Angiogenesis and inflammation signaling are targets of beer polyphenols on vascular cells publication-title: J. Cell. Biochem. doi: 10.1002/jcb.22850 – ident: ref_73 doi: 10.3390/molecules23102547 – volume: 9 start-page: 321 year: 2012 ident: ref_79 article-title: Hesperidin a citrus bioflavonoid modulates hepatic biotransformation enzymes and enhances intrinsic antioxidants in experimental breast cancer rats challenged with 7, 12-dimethylbenz (a) anthracene publication-title: J. Exp. Ther. Oncol. – volume: 9 start-page: 218 year: 2011 ident: ref_2 article-title: Analysis of genetic diversity in Citrus publication-title: Plant Genet. Resour. doi: 10.1017/S1479262111000189 – volume: 43 start-page: 501 year: 2017 ident: ref_10 article-title: Clinical inertia and its impact on treatment intensification in people with type 2 diabetes mellitus publication-title: Diabetes Metab. doi: 10.1016/j.diabet.2017.06.003 – volume: 208 start-page: 111 year: 2018 ident: ref_20 article-title: Combating oxidative stress disorders with citrus flavonoid: Naringenin publication-title: Life Sci. doi: 10.1016/j.lfs.2018.07.017 – volume: 5 start-page: 473 year: 2012 ident: ref_75 article-title: Didymin induces apoptosis by inhibiting N-Myc and upregulating RKIP in neuroblastoma publication-title: Cancer Prev. Res. doi: 10.1158/1940-6207.CAPR-11-0318 – ident: ref_92 doi: 10.1080/01480545.2020.1722690 – volume: 52 start-page: 814 year: 2014 ident: ref_85 article-title: Hesperidin, a flavanoglycone attenuates experimental diabetic neuropathy via modulation of cellular and biochemical marker to improve nerve functions publication-title: Pharm. Biol. doi: 10.3109/13880209.2013.870584 – volume: 54 start-page: 3203 year: 2016 ident: ref_105 article-title: Therapeutic potential of naringin: An overview publication-title: Pharm. Biol. doi: 10.1080/13880209.2016.1216131 – ident: ref_53 doi: 10.1186/1472-6882-12-31 – volume: 131 start-page: 934 year: 2006 ident: ref_88 article-title: Nonalcoholic fatty liver disease: Cytokine-adipokine interplay and regulation of insulin resistance publication-title: Gastroenterology doi: 10.1053/j.gastro.2006.05.054 – volume: 142 start-page: 913 year: 2016 ident: ref_110 article-title: Naringin, a natural dietary compound, prevents intestinal tumorigenesis in Apc (Min/+) mouse model publication-title: J. Cancer Res. Clin. Oncol. doi: 10.1007/s00432-015-2097-9 – volume: 127 start-page: 101 year: 2014 ident: ref_112 article-title: Naringin ameliorates memory deficits in experimental paradigm of Alzheimer’s disease by attenuating mitochondrial dysfunction publication-title: Pharmacol. Biochem. Behav. doi: 10.1016/j.pbb.2014.11.002 – volume: 2019 start-page: 2676307 year: 2019 ident: ref_6 article-title: Benefits of hesperidin for cutaneous functions publication-title: Evid. Based Complement. Alternat. Med. doi: 10.1155/2019/2676307 |
SSID | ssj0000070763 |
Score | 2.6245651 |
SecondaryResourceType | review_article |
Snippet | The consumption of plant-based food is important for health promotion, especially concerning the prevention and management of chronic diseases. Flavonoids are... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 2907 |
SubjectTerms | Adipocytes administrative management Animals Antidiabetics antioxidant enzymes Antioxidants bioactive compounds biomarkers Cell cycle Cholesterol chronic diseases Chronic illnesses Citrus Citrus - chemistry Citrus fruits Diabetes Diabetes Mellitus - diet therapy Diabetic neuropathy Disaccharides Disease Flavanones Flavones Flavonoids Flavonoids - chemistry Flavonoids - therapeutic use Glucose glycemic control glycemic effect Glycosides health promotion hesperetin Hesperidin - analogs & derivatives Humans in vivo studies Inflammation Inflammation - diet therapy Insulin resistance lipid composition Lipids Lipoproteins Metabolism Metabolites naringenin naringin neohesperidin nutrients Oxidative stress pathogenesis Phytochemicals - chemistry Phytochemicals - therapeutic use plant-based foods Polyphenols - therapeutic use Propiophenones quercetin renal function Review rutin signal transduction Systematic review |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEB-0vvgi1voRrbKiCD6EXrLJ5tYXOQ6PKiiCrdxb2K_QQt2t5lrwr_Bf7sxmL7220sdjJySXmez85mN_A_C2s1bKrlQ57r9VXknd5dpakasCvY_WteGSTiN__Sb2D6svy3qZEm59aqtc74lxo7bBUI58r6wpQ1FWYvLx9HdOU6OouppGaNyFe0RdRlbdLJsxxxK5bAQfWEk5Rvd7_iwSZkmaHrvph26Ay-s9khtOZ_EQHiS0yGaDerfhjvOPYGfmMVL-9Ze9Y7F_MybGd-DfPB6gYIsTdR58OLY9Uz37_iegJtE_keyKxmNFfoCeHcQWcFpITTEo7i2LzXHOsvlmq_kHNmM_RspnNtQTWOjYZ89-4l1DvDT-OA8stSY-hsPFp4P5fp7GLeQGYdAqV2KqZKHwLwupCqvFpNTKVIXBWBWjQCGc6IxVjVSNbqxDPyYrjVGtE04VQin-BLZ88O4ZsCmCAlMoMZlaU1V01lbzzmC0zWsyjUkG79cvvzWJi5xGYpy0GJOQotpLRWXwZpQ9HRg4_iu1u9Zhm77Cvr20mQxej8v41qkoorwLZyhDBW2BOGZ6iwyi0oJGBRcZPB3MYnwUXiKCxvUMmisGMwoQf_fVFX98FHm8m1oiHuPPb3_0F3C_pBifKmF8F7bQlNxLBEIr_Spa-wWXeAz0 priority: 102 providerName: ProQuest |
Title | Citrus Flavonoids as Promising Phytochemicals Targeting Diabetes and Related Complications: A Systematic Review of In Vitro and In Vivo Studies |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32977511 https://www.proquest.com/docview/2535402460 https://www.proquest.com/docview/2446662418 https://www.proquest.com/docview/2511175421 https://pubmed.ncbi.nlm.nih.gov/PMC7598193 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEB9qC9IXUav2tB4RRfBh9bIfyUUQOY-eVWgp2pN7W_Kxi4Uz2_auxf4V_svOZD_s1eKDj0smZDcz2fn9kskMwIvSOaXKWEf4_02jVJkyMs6JSHP0PsZkNlF0G3n_QOxN08-zbLYGbf3OZgIXN1I7qic1PZu__nl6-R4X_DtinEjZ3_jzkAVL0aXyDfRIkioZ7Dcwv4bBEul6UmcnvdZlE24nMYKgjPNV1_QX3rweNnnFD03uwp0GQLJRrfF7sFb4-7A18kief1yylyyEdIa98i34NQ53Kthkri8qXx27BdMLdnhWoXLRZZHskipmhZQBC3YUosKpoYmTQXHvWIiXKxwbX40-f8tG7GuXBZrVRwysKtknz77hqFXoGh4uKtZEKz6A6WT3aLwXNRUYIovIaBlpMdSKa_xkoTR3Rgxio23KLdJXJIZCFKK0TkulpZGuQNemUoNEtxCF5kLr5CGs-8oX28CGiBMs12IwdDZN6fqtSUqLBDzJyFoGPXjVTn5um_TkVCVjniNNIZ3lf3TWg-ed7EmdlONGqZ1Wh3lrV3mc0UZXnAoc8FnXjLNO5yTaF9U5ytAZt0BDGv5DBu2FU_Vg3oNHtVl0r9LaUw_kisF0ApTSe7XFH38Pqb1lphCiJY__u-cT2IxpR4DOzZIdWEcrK54ibFqaPtySM9mHjQ-7B4df8OnjjPfDOvkNLq4fqw |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcoALAsrDUGARD4mDVdtrr7NICEWBKKEPIZGi3My-LCoVu-C0qL-Cf8JvZGbtuCmg3nq0dhJbns87z_0G4HlprZRlokLcf9MwlboMtbUiVDFaH60zwyWdRt7dE5P99MM8m6_B7-VZGGqrXO6JfqO2taEc-VaSUYYiSUX09uh7SFOjqLq6HKHRwmLbnf7EkK15M32H-n2RJOP3s9Ek7KYKhAat_SJUYqBkrJw1QqrYahElWpk0NhiSYbAjhBOlsSqXKte5dbhdy1Rj8OaEU7FQiuP_XoGraHgjCvbyed7ndDx3juAtCyrnMtqqjj1Bl6Rptat27x9n9u-ezBUjN74JNzrvlA1bON2CNVfdho1hhZH5t1P2kvl-UZ-I34BfI39gg40P1Uld1Qe2YaphH3_UiBy0hyS7oHFcno-gYTPfck4LXRMOileW-WY8Z9lotbX9NRuyTz3FNGvrF6wu2bRin_Gutf-pvzipWdcKeQf2L0URd2G9qit3H9gAnRATKxENrElTOtureWkwuucZQTEK4NXy5Rem4z6nERyHBcZApKjiTFEBPOtlj1rGj_9KbS51WHRffVOcYTSAp_0yvnUqwqjK1ccoQwV0gX7T4AIZ9IJjGk0cB3CvhUX_KDxBjx3XA8jPAaYXIL7w8yvVwVfPG55nEv0__uDiR38C1yaz3Z1iZ7q3_RCuJ5RfoCoc34R1hJV7hE7YQj_2yGfw5bI_tT-HIEsF |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwEB6VrYR4QUA5UgoYcUg8RJvTWSMhtGy76lJYraBFfQuO7aiVilPItqi_gv_Dr2PGyaZbQH3rY-TJIc-XuT0D8LzUWogykj7K38RPRFH6hdbclyFqn6JIVSzoNPLHKd_eS97vp_sr8HtxFobKKhcy0QlqXSmKkfejlCIUUcKDftmWRcw2x2-Pv_s0QYoyrYtxGg1EdszZT3Tf6jeTTeT1iygab-2Otv12woCvUPPPfckHUoTSaMWFDHXBg6iQKgkVumfo-HBueKm0zITMikwbFN0iKdCRM9zIkEsZ43OvwWpGXlEPVt9tTWefugiP66TD46YnahyLoG9PXLsuQbNrl7XgP6bt3xWaSypvfAtutrYqGzbgug0rxt6BtaFFP_3bGXvJXPWoC8uvwa-RO77BxkfytLLVoa6ZrNnsR4U4Qu1ItHMazuW6E9Rs1xWg00JbkoPkVjNXmmc0Gy0Xur9mQ_a5azjNmmwGq0o2sewLvrVyt7qL04q1hZF3Ye9KWHEPeray5gGwAZokKpQ8GGiVJHTSt4hLhb5-nBIwAw9eLTY_V20ndBrIcZSjR0SMys8Z5cGzjva46f_xX6qNBQ_zVgbU-TliPXjaLeOuU0pGWlOdIA2l0zlaUYNLaNAmDmlQcejB_QYW3afEEdrvuO5BdgEwHQF1D7-4Yg8PXBfxLBVoDcbrl3_6E7iOv1n-YTLdeQg3Igo2UEou3oAeoso8QotsXjxuoc_g61X_bX8ANxVQoA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Citrus+Flavonoids+as+Promising+Phytochemicals+Targeting+Diabetes+and+Related+Complications%3A+A+Systematic+Review+of+In+Vitro+and+In+Vivo+Studies&rft.jtitle=Nutrients&rft.au=Gandhi%2C+Gopalsamy+Rajiv&rft.au=Vasconcelos%2C+Alan+Bruno+Silva&rft.au=Wu%2C+Ding-Tao&rft.au=Li%2C+Hua-Bin&rft.date=2020-09-23&rft.pub=MDPI&rft.eissn=2072-6643&rft.volume=12&rft.issue=10&rft_id=info:doi/10.3390%2Fnu12102907&rft_id=info%3Apmid%2F32977511&rft.externalDocID=PMC7598193 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-6643&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-6643&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-6643&client=summon |