Citrus Flavonoids as Promising Phytochemicals Targeting Diabetes and Related Complications: A Systematic Review of In Vitro and In Vivo Studies

The consumption of plant-based food is important for health promotion, especially concerning the prevention and management of chronic diseases. Flavonoids are the main bioactive compounds in citrus fruits, with multiple beneficial effects, especially antidiabetic effects. We systematically review th...

Full description

Saved in:
Bibliographic Details
Published inNutrients Vol. 12; no. 10; p. 2907
Main Authors Gandhi, Gopalsamy Rajiv, Vasconcelos, Alan Bruno Silva, Wu, Ding-Tao, Li, Hua-Bin, Antony, Poovathumkal James, Li, Hang, Geng, Fang, Gurgel, Ricardo Queiroz, Narain, Narendra, Gan, Ren-You
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 23.09.2020
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The consumption of plant-based food is important for health promotion, especially concerning the prevention and management of chronic diseases. Flavonoids are the main bioactive compounds in citrus fruits, with multiple beneficial effects, especially antidiabetic effects. We systematically review the potential antidiabetic action and molecular mechanisms of citrus flavonoids based on in vitro and in vivo studies. A search of the PubMed, EMBASE, Scopus, and Web of Science Core Collection databases for articles published since 2010 was carried out using the keywords citrus, flavonoid, and diabetes. All articles identified were analyzed, and data were extracted using a standardized form. The search identified 38 articles, which reported that 19 citrus flavonoids, including 8-prenylnaringenin, cosmosiin, didymin, diosmin, hesperetin, hesperidin, isosiennsetin, naringenin, naringin, neohesperidin, nobiletin, poncirin, quercetin, rhoifolin, rutin, sineesytin, sudachitin, tangeretin, and xanthohumol, have antidiabetic potential. These flavonoids regulated biomarkers of glycemic control, lipid profiles, renal function, hepatic enzymes, and antioxidant enzymes, and modulated signaling pathways related to glucose uptake and insulin sensitivity that are involved in the pathogenesis of diabetes and its related complications. Citrus flavonoids, therefore, are promising antidiabetic candidates, while their antidiabetic effects remain to be verified in forthcoming human studies.
AbstractList The consumption of plant-based food is important for health promotion, especially concerning the prevention and management of chronic diseases. Flavonoids are the main bioactive compounds in citrus fruits, with multiple beneficial effects, especially antidiabetic effects. We systematically review the potential antidiabetic action and molecular mechanisms of citrus flavonoids based on in vitro and in vivo studies. A search of the PubMed, EMBASE, Scopus, and Web of Science Core Collection databases for articles published since 2010 was carried out using the keywords citrus, flavonoid, and diabetes. All articles identified were analyzed, and data were extracted using a standardized form. The search identified 38 articles, which reported that 19 citrus flavonoids, including 8-prenylnaringenin, cosmosiin, didymin, diosmin, hesperetin, hesperidin, isosiennsetin, naringenin, naringin, neohesperidin, nobiletin, poncirin, quercetin, rhoifolin, rutin, sineesytin, sudachitin, tangeretin, and xanthohumol, have antidiabetic potential. These flavonoids regulated biomarkers of glycemic control, lipid profiles, renal function, hepatic enzymes, and antioxidant enzymes, and modulated signaling pathways related to glucose uptake and insulin sensitivity that are involved in the pathogenesis of diabetes and its related complications. Citrus flavonoids, therefore, are promising antidiabetic candidates, while their antidiabetic effects remain to be verified in forthcoming human studies.
The consumption of plant-based food is important for health promotion, especially concerning the prevention and management of chronic diseases. Flavonoids are the main bioactive compounds in citrus fruits, with multiple beneficial effects, especially antidiabetic effects. We systematically review the potential antidiabetic action and molecular mechanisms of citrus flavonoids based on in vitro and in vivo studies. A search of the PubMed, EMBASE, Scopus, and Web of Science Core Collection databases for articles published since 2010 was carried out using the keywords citrus, flavonoid, and diabetes. All articles identified were analyzed, and data were extracted using a standardized form. The search identified 38 articles, which reported that 19 citrus flavonoids, including 8-prenylnaringenin, cosmosiin, didymin, diosmin, hesperetin, hesperidin, isosiennsetin, naringenin, naringin, neohesperidin, nobiletin, poncirin, quercetin, rhoifolin, rutin, sineesytin, sudachitin, tangeretin, and xanthohumol, have antidiabetic potential. These flavonoids regulated biomarkers of glycemic control, lipid profiles, renal function, hepatic enzymes, and antioxidant enzymes, and modulated signaling pathways related to glucose uptake and insulin sensitivity that are involved in the pathogenesis of diabetes and its related complications. Citrus flavonoids, therefore, are promising antidiabetic candidates, while their antidiabetic effects remain to be verified in forthcoming human studies.The consumption of plant-based food is important for health promotion, especially concerning the prevention and management of chronic diseases. Flavonoids are the main bioactive compounds in citrus fruits, with multiple beneficial effects, especially antidiabetic effects. We systematically review the potential antidiabetic action and molecular mechanisms of citrus flavonoids based on in vitro and in vivo studies. A search of the PubMed, EMBASE, Scopus, and Web of Science Core Collection databases for articles published since 2010 was carried out using the keywords citrus, flavonoid, and diabetes. All articles identified were analyzed, and data were extracted using a standardized form. The search identified 38 articles, which reported that 19 citrus flavonoids, including 8-prenylnaringenin, cosmosiin, didymin, diosmin, hesperetin, hesperidin, isosiennsetin, naringenin, naringin, neohesperidin, nobiletin, poncirin, quercetin, rhoifolin, rutin, sineesytin, sudachitin, tangeretin, and xanthohumol, have antidiabetic potential. These flavonoids regulated biomarkers of glycemic control, lipid profiles, renal function, hepatic enzymes, and antioxidant enzymes, and modulated signaling pathways related to glucose uptake and insulin sensitivity that are involved in the pathogenesis of diabetes and its related complications. Citrus flavonoids, therefore, are promising antidiabetic candidates, while their antidiabetic effects remain to be verified in forthcoming human studies.
Author Li, Hang
Wu, Ding-Tao
Vasconcelos, Alan Bruno Silva
Geng, Fang
Gan, Ren-You
Gandhi, Gopalsamy Rajiv
Antony, Poovathumkal James
Narain, Narendra
Li, Hua-Bin
Gurgel, Ricardo Queiroz
AuthorAffiliation 2 Chengdu National Agricultural Science and Technology Center, Chengdu 600103, China
9 Laboratory of Flavor and Chromatographic Analysis, Federal University of Sergipe, Campus São Cristóvão, São Cristóvão, Sergipe 49.100-000, Brazil; narendra.narain@gmail.com
3 Postgraduate Program of Health Sciences (PPGCS), Federal University of Sergipe (UFS), Prof. João Cardoso Nascimento Campus, Aracaju, Sergipe 49060-108, Brazil; ricardoqgurgel@gmail.com
8 Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; gengfang@cdu.edu.cn
1 Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences (CAAS), Chengdu 600103, China; egarajiv@gmail.com (G.R.G.); tiantsai@sina.com (H.L.)
6 Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 5100
AuthorAffiliation_xml – name: 1 Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences (CAAS), Chengdu 600103, China; egarajiv@gmail.com (G.R.G.); tiantsai@sina.com (H.L.)
– name: 4 Postgraduate Program of Physiological Sciences (PROCFIS), Federal University of Sergipe (UFS), Campus São Cristóvão, São Cristóvão, Sergipe 49100-000, Brazil; abs.vasconcelos@gmail.com
– name: 6 Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; lihuabin@mail.sysu.edu.cn
– name: 7 Department of Microbiology, St. Xavier’s College, Kathmandu 44600, Nepal; jamesantonysj@gmail.com
– name: 5 Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya’an 625014, China; DT_Wu@sicau.edu.cn
– name: 8 Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; gengfang@cdu.edu.cn
– name: 3 Postgraduate Program of Health Sciences (PPGCS), Federal University of Sergipe (UFS), Prof. João Cardoso Nascimento Campus, Aracaju, Sergipe 49060-108, Brazil; ricardoqgurgel@gmail.com
– name: 2 Chengdu National Agricultural Science and Technology Center, Chengdu 600103, China
– name: 9 Laboratory of Flavor and Chromatographic Analysis, Federal University of Sergipe, Campus São Cristóvão, São Cristóvão, Sergipe 49.100-000, Brazil; narendra.narain@gmail.com
Author_xml – sequence: 1
  givenname: Gopalsamy Rajiv
  surname: Gandhi
  fullname: Gandhi, Gopalsamy Rajiv
– sequence: 2
  givenname: Alan Bruno Silva
  orcidid: 0000-0002-7481-2015
  surname: Vasconcelos
  fullname: Vasconcelos, Alan Bruno Silva
– sequence: 3
  givenname: Ding-Tao
  orcidid: 0000-0002-7896-1886
  surname: Wu
  fullname: Wu, Ding-Tao
– sequence: 4
  givenname: Hua-Bin
  orcidid: 0000-0003-2332-8554
  surname: Li
  fullname: Li, Hua-Bin
– sequence: 5
  givenname: Poovathumkal James
  surname: Antony
  fullname: Antony, Poovathumkal James
– sequence: 6
  givenname: Hang
  orcidid: 0000-0003-4681-8791
  surname: Li
  fullname: Li, Hang
– sequence: 7
  givenname: Fang
  orcidid: 0000-0002-8275-6770
  surname: Geng
  fullname: Geng, Fang
– sequence: 8
  givenname: Ricardo Queiroz
  orcidid: 0000-0001-9651-3713
  surname: Gurgel
  fullname: Gurgel, Ricardo Queiroz
– sequence: 9
  givenname: Narendra
  orcidid: 0000-0003-3913-5992
  surname: Narain
  fullname: Narain, Narendra
– sequence: 10
  givenname: Ren-You
  orcidid: 0000-0002-4162-1511
  surname: Gan
  fullname: Gan, Ren-You
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32977511$$D View this record in MEDLINE/PubMed
BookMark eNqFklFrFDEQxxep2Fr74geQgC8inCbZbHLxQSin1ULBYquvYTY7d5eym1yT7Ml9Cr-yuWurtQjmJRnmN_-ZzMzTas8Hj1X1nNE3da3pWz8yzijXVD2qDjhVfCKlqPfuvfero5Su6PYoqmT9pNqvuVaqYeyg-jlzOY6JnPSwDj64LhFI5DyGwSXnF-R8ucnBLnFwFvpELiEuMG8dHxy0mLHgviNfsYeMHZmFYdUXMrvg0ztyTC42KeNQbFuYtcMfJMzJqSffS9awC90Z60Au8tg5TM-qx_OSCI9u78Pq28nHy9nnydmXT6ez47OJbWiTJyCnoBlgZ6UG1rWS8hasYLbhtaBaSpRz24HSoFrVIddai5ZyhRKBSYD6sHp_o7sa26HIoM8RerOKboC4MQGc-dvj3dIswtqoRk-ZrovAq1uBGK5HTNmUjlnse_AYxmR4aS9TjeDs_6gQUkou2LSgLx-gV2GMvnSiCNaNoFxIWqgX94v_XfXdWAtAbwAbQ0oR58a6vJtK-YvrDaNmuzzmz_KUkNcPQu5U_wH_AtoNxdY
CitedBy_id crossref_primary_10_3390_nu13082748
crossref_primary_10_1039_D3FO02456C
crossref_primary_10_3390_nu13051445
crossref_primary_10_1016_j_biopha_2024_116322
crossref_primary_10_1016_j_fbio_2021_101277
crossref_primary_10_3390_su15097731
crossref_primary_10_1016_j_sajb_2024_02_003
crossref_primary_10_3390_nu15112547
crossref_primary_10_1016_j_lwt_2023_115606
crossref_primary_10_1177_20406223221140392
crossref_primary_10_3390_foods13111681
crossref_primary_10_1016_j_heliyon_2021_e07695
crossref_primary_10_3390_pr11092721
crossref_primary_10_1016_j_psj_2024_104179
crossref_primary_10_32604_jrm_2022_018811
crossref_primary_10_1016_j_athplu_2024_12_004
crossref_primary_10_1016_j_scitotenv_2023_162212
crossref_primary_10_1080_10408398_2021_1983765
crossref_primary_10_1016_j_heliyon_2024_e36103
crossref_primary_10_3390_foods12101947
crossref_primary_10_1016_j_lwt_2024_116135
crossref_primary_10_1016_j_lwt_2024_117102
crossref_primary_10_3390_ijms232012485
crossref_primary_10_1080_10408398_2022_2106179
crossref_primary_10_26599_FSHW_2022_9250003
crossref_primary_10_1007_s42452_024_05970_7
crossref_primary_10_1155_2020_8878172
crossref_primary_10_1016_j_phymed_2021_153766
crossref_primary_10_1039_D4FO02538E
crossref_primary_10_3390_molecules26154411
crossref_primary_10_1080_10408398_2022_2149466
crossref_primary_10_1016_j_fct_2024_115097
crossref_primary_10_1016_j_phymed_2025_156598
crossref_primary_10_3390_pharmaceutics15092306
crossref_primary_10_1021_acs_jafc_3c09308
crossref_primary_10_2174_1381612826666201127122313
crossref_primary_10_3390_molecules30050980
crossref_primary_10_1625_jcam_21_1
crossref_primary_10_1186_s12906_023_04136_z
crossref_primary_10_1111_1750_3841_16461
crossref_primary_10_1111_ijfs_16239
crossref_primary_10_1002_cbf_4011
crossref_primary_10_1155_2021_3508281
crossref_primary_10_3390_plants11182371
crossref_primary_10_1016_j_jff_2024_106596
crossref_primary_10_1080_03079457_2024_2395357
crossref_primary_10_1007_s12013_021_00997_8
crossref_primary_10_3390_ijms22105094
crossref_primary_10_1016_j_foodchem_2023_137793
crossref_primary_10_1080_0886022X_2024_2375033
crossref_primary_10_3390_nu17050898
crossref_primary_10_3897_pharmacia_70_e101623
crossref_primary_10_1093_nutrit_nuad116
crossref_primary_10_3390_foods11172590
crossref_primary_10_1021_acs_jafc_2c03257
crossref_primary_10_3390_ph15030385
crossref_primary_10_3390_gels9020095
crossref_primary_10_1021_acsfoodscitech_2c00165
crossref_primary_10_1039_D0FO03403G
crossref_primary_10_1016_j_phymed_2024_155506
crossref_primary_10_1016_j_tifs_2021_12_015
crossref_primary_10_3390_molecules25245959
crossref_primary_10_3390_ijms23074000
crossref_primary_10_3389_fendo_2023_1122709
crossref_primary_10_1111_1541_4337_12945
crossref_primary_10_3390_ph18030361
crossref_primary_10_1002_ptr_8190
crossref_primary_10_1039_D3FO04505F
crossref_primary_10_3389_fphar_2022_900693
crossref_primary_10_1021_acs_jafc_2c00010
crossref_primary_10_54393_df_v4i03_78
crossref_primary_10_3390_ijms23095037
crossref_primary_10_3390_nu13103382
crossref_primary_10_1016_j_fochx_2024_101296
crossref_primary_10_1021_acsomega_3c03155
crossref_primary_10_3389_fphar_2021_639651
crossref_primary_10_31883_pjfns_143164
crossref_primary_10_3390_separations10060354
crossref_primary_10_1007_s10238_023_01161_7
crossref_primary_10_1016_j_bbrc_2023_05_117
crossref_primary_10_3390_ijms24098071
crossref_primary_10_2174_1871530323666221018090024
crossref_primary_10_1021_acs_jafc_2c08607
crossref_primary_10_3390_plants11131637
crossref_primary_10_3390_antiox11020239
crossref_primary_10_3390_nu15010158
crossref_primary_10_1038_s41598_024_83987_z
crossref_primary_10_1111_jfpp_16116
crossref_primary_10_3390_molecules29143265
crossref_primary_10_1016_j_foodchem_2021_131635
crossref_primary_10_1016_j_cbi_2021_109781
crossref_primary_10_3390_nu13010145
crossref_primary_10_3390_nu13113922
crossref_primary_10_3390_agronomy11010089
crossref_primary_10_3389_fpls_2023_1218426
crossref_primary_10_3390_antiox12040972
crossref_primary_10_1155_2022_9119547
crossref_primary_10_3389_fphar_2021_661072
crossref_primary_10_3390_molecules27113381
crossref_primary_10_1016_j_chroma_2025_465747
crossref_primary_10_47836_mjmhs_18_s15_46
crossref_primary_10_3389_fnut_2022_977756
crossref_primary_10_3390_nu13020473
crossref_primary_10_3390_antiox10020140
crossref_primary_10_3390_ijms252413721
crossref_primary_10_3390_plants13020191
crossref_primary_10_3390_medicina60101580
crossref_primary_10_2147_DMSO_S427412
crossref_primary_10_3389_fnut_2021_669805
crossref_primary_10_3892_ol_2022_13356
crossref_primary_10_3390_molecules27248709
crossref_primary_10_1007_s12291_024_01222_y
crossref_primary_10_1016_j_scienta_2022_110909
crossref_primary_10_1016_j_crbiot_2024_100204
crossref_primary_10_3390_foods11091256
crossref_primary_10_1039_D1FO04209B
crossref_primary_10_3390_ijms24021676
crossref_primary_10_3390_plants12122350
crossref_primary_10_1007_s12013_024_01444_0
crossref_primary_10_1016_j_intimp_2024_113911
crossref_primary_10_3390_plants13070960
crossref_primary_10_1248_yakushi_21_00121
crossref_primary_10_1016_j_foodres_2022_111669
crossref_primary_10_1016_j_jff_2024_106031
crossref_primary_10_3390_catal14120935
crossref_primary_10_1080_10408398_2021_1931023
crossref_primary_10_1039_D1FO00126D
crossref_primary_10_1080_10408398_2021_2009761
crossref_primary_10_1186_s42269_022_00820_1
crossref_primary_10_29219_fnr_v68_10745
crossref_primary_10_3389_fphar_2024_1447077
crossref_primary_10_3390_ijms241612641
crossref_primary_10_3390_nu14030534
crossref_primary_10_3389_fnut_2023_1165841
crossref_primary_10_3390_nu14122401
crossref_primary_10_3390_nu14091847
crossref_primary_10_3390_foods10112872
crossref_primary_10_1111_raq_12680
crossref_primary_10_1007_s11172_024_4295_6
crossref_primary_10_1080_10408398_2022_2098250
crossref_primary_10_3390_ph16121681
crossref_primary_10_1002_jat_4628
crossref_primary_10_1080_09513590_2023_2181637
crossref_primary_10_3390_ani12131654
crossref_primary_10_4103_abr_abr_94_23
crossref_primary_10_1186_s12951_025_03228_x
crossref_primary_10_3177_jnsv_70_61
crossref_primary_10_1016_j_ejphar_2024_176541
crossref_primary_10_3390_biom12050626
crossref_primary_10_3390_foods13020189
crossref_primary_10_1089_rej_2023_0065
crossref_primary_10_3390_ani12050627
crossref_primary_10_3390_nu16213709
crossref_primary_10_1007_s11064_022_03746_2
crossref_primary_10_1016_j_scp_2023_101258
crossref_primary_10_2174_0115665240268940231113044317
crossref_primary_10_3390_scipharm91040046
crossref_primary_10_1016_j_trac_2022_116554
crossref_primary_10_2174_1568026622666220107105233
crossref_primary_10_1016_j_compbiomed_2020_104185
crossref_primary_10_1111_jfbc_14444
crossref_primary_10_3390_nu14112270
crossref_primary_10_1016_j_scienta_2023_112804
crossref_primary_10_1590_acb380823
crossref_primary_10_1016_j_chroma_2022_463640
Cites_doi 10.3390/molecules22071213
10.1016/j.cbi.2019.05.040
10.1016/j.jnutbio.2012.03.014
10.1111/j.1472-8206.2009.00675.x
10.1002/mrd.23079
10.1155/2020/8609213
10.1016/j.ejphar.2019.172712
10.3390/nu12020457
10.2147/IJN.S213724
10.1177/0960327117694075
10.1016/j.jff.2012.12.004
10.1155/2016/2918796
10.2337/db10-0589
10.1016/j.phymed.2014.01.007
10.1016/j.fitote.2012.01.010
10.1016/j.biopha.2017.10.102
10.1080/09168451.2018.1514246
10.1016/j.jfca.2006.02.012
10.1016/j.lungcan.2009.08.013
10.1016/j.cbi.2016.11.026
10.14715/cmb/2018.64.3.5
10.1002/9780470015902.a0027666
10.1186/s12906-016-1069-1
10.1515/jbcpp-2019-0191
10.1007/s11684-019-0729-1
10.1016/j.cjca.2017.12.005
10.1007/s10753-016-0321-7
10.1002/jsfa.6893
10.2174/1871521409666200324110031
10.4103/0253-7613.96350
10.1038/s41598-017-10970-2
10.1080/10408398.2014.906382
10.1080/01635580802143836
10.1007/s11883-007-0009-4
10.1007/s00109-014-1146-1
10.1139/cjpp-2014-0281
10.1016/j.bbrc.2014.10.038
10.3164/jcbn.09-82
10.1016/j.diabres.2018.02.023
10.1016/j.intimp.2018.05.017
10.1155/2015/404085
10.1002/ptr.4730
10.1016/j.jep.2018.01.002
10.3390/12081641
10.1186/s12986-019-0370-7
10.1371/journal.pone.0191192
10.1016/j.lfs.2018.08.074
10.1016/j.tox.2010.01.012
10.1016/j.bbagen.2011.11.015
10.1016/j.foodchem.2012.06.004
10.1007/s11010-016-2716-z
10.2174/1573399813666170505120621
10.1007/s10753-019-01007-z
10.1016/j.jff.2015.03.024
10.1016/j.foodchem.2006.11.054
10.1093/ecam/nep204
10.1021/jf904608h
10.1016/j.cbi.2019.03.018
10.1016/j.lfs.2017.04.001
10.1016/j.jfca.2005.12.009
10.3390/nu10121852
10.4103/pm.pm_41_17
10.3390/nu9121312
10.1007/s12272-010-0203-8
10.1007/s10753-014-9994-y
10.1007/s13410-014-0268-x
10.1371/journal.pmed.1000097
10.1021/jf072826r
10.1007/s11418-019-01332-5
10.3945/jn.115.213660
10.1016/j.mce.2016.09.026
10.1039/C4FO00993B
10.1194/jlr.RA119000542
10.1016/j.biopha.2018.03.169
10.1007/s12272-019-01174-5
10.1039/C6FO00294C
10.1016/S2095-4964(14)60001-7
10.3389/fphar.2017.00336
10.3390/ijms20174281
10.1016/j.bcp.2018.03.012
10.5772/63689
10.1002/ptr.6385
10.3389/fphar.2018.00530
10.1016/S2213-8587(13)70046-9
10.1007/s10787-017-0326-3
10.1016/j.fitote.2015.03.007
10.3390/cancers11060867
10.3390/molecules23030660
10.3945/an.113.005603
10.1186/1743-7075-11-32
10.1016/j.pupt.2015.07.002
10.1002/jcp.28384
10.3164/jcbn.18-70
10.1016/j.cbi.2015.06.036
10.3945/an.116.014050
10.4000/books.pcjb.2107
10.1155/2019/5484138
10.3390/nu9070684
10.1007/s11010-008-9930-2
10.1080/1028415X.2019.1594554
10.1007/s11064-016-1949-2
10.1021/np060217s
10.1016/j.cbi.2017.09.015
10.1002/jmr.2224
10.1016/j.biopha.2009.08.007
10.1016/j.jdiacomp.2012.06.001
10.1007/s13105-014-0369-5
10.1104/pp.16.01340
10.1002/jcb.22850
10.3390/molecules23102547
10.1017/S1479262111000189
10.1016/j.diabet.2017.06.003
10.1016/j.lfs.2018.07.017
10.1158/1940-6207.CAPR-11-0318
10.1080/01480545.2020.1722690
10.3109/13880209.2013.870584
10.1080/13880209.2016.1216131
10.1186/1472-6882-12-31
10.1053/j.gastro.2006.05.054
10.1007/s00432-015-2097-9
10.1016/j.pbb.2014.11.002
10.1155/2019/2676307
ContentType Journal Article
Copyright 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2020 by the authors. 2020
Copyright_xml – notice: 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2020 by the authors. 2020
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TS
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
7S9
L.6
5PM
DOI 10.3390/nu12102907
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Physical Education Index
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni)
Medical Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
Physical Education Index
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

MEDLINE - Academic
Publicly Available Content Database
CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 2072-6643
ExternalDocumentID PMC7598193
32977511
10_3390_nu12102907
Genre Systematic Review
Journal Article
GrantInformation_xml – fundername: Local Financial Funds of National Agricultural Science and Technology Center, Chengdu
  grantid: NASC2020KR02
– fundername: Central Public-interest Scientific Institution Basal Research Fund
  grantid: Y2020XK05
– fundername: National Key R & D Program of China
  grantid: 2018YFC1604405
GroupedDBID ---
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
A8Z
AADQD
AAFWJ
AAHBH
AAWTL
AAYXX
ABUWG
ACIWK
ACPRK
AENEX
AFKRA
AFRAH
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
APEBS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
DIK
E3Z
EBD
ECGQY
EIHBH
ESTFP
EYRJQ
F5P
FYUFA
GX1
HMCUK
HYE
KQ8
LK8
M1P
M48
MODMG
M~E
OK1
P2P
P6G
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TR2
UKHRP
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TS
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c505t-a68a91aedc69a1db602bac41c52340966e6fcda79a7b7de29994b027e6ea16aa3
IEDL.DBID M48
ISSN 2072-6643
IngestDate Thu Aug 21 14:30:58 EDT 2025
Fri Jul 11 14:09:04 EDT 2025
Mon Jul 21 11:56:05 EDT 2025
Fri Jul 25 09:48:41 EDT 2025
Thu Apr 03 06:53:55 EDT 2025
Thu Apr 24 23:09:07 EDT 2025
Tue Jul 01 00:49:42 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords polyphenols
flavonoids
inflammation
diabetes
citrus
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c505t-a68a91aedc69a1db602bac41c52340966e6fcda79a7b7de29994b027e6ea16aa3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-3
ObjectType-Evidence Based Healthcare-1
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ObjectType-Undefined-3
ORCID 0000-0003-4681-8791
0000-0003-2332-8554
0000-0002-7481-2015
0000-0002-7896-1886
0000-0002-4162-1511
0000-0003-3913-5992
0000-0001-9651-3713
0000-0002-8275-6770
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/nu12102907
PMID 32977511
PQID 2535402460
PQPubID 2032353
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7598193
proquest_miscellaneous_2511175421
proquest_miscellaneous_2446662418
proquest_journals_2535402460
pubmed_primary_32977511
crossref_citationtrail_10_3390_nu12102907
crossref_primary_10_3390_nu12102907
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200923
PublicationDateYYYYMMDD 2020-09-23
PublicationDate_xml – month: 9
  year: 2020
  text: 20200923
  day: 23
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Nutrients
PublicationTitleAlternate Nutrients
PublicationYear 2020
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_93
Koyuncu (ref_52) 2018; 64
ref_92
Jia (ref_102) 2015; 6
Man (ref_6) 2019; 2019
Goulet (ref_3) 2017; 173
Chtourou (ref_114) 2015; 239
Ahmad (ref_107) 2015; 38
ref_19
Wong (ref_13) 2013; 1
Heinonen (ref_14) 2015; 2015
ref_15
Liao (ref_48) 2019; 234
Li (ref_123) 2018; 61
Visnagri (ref_85) 2014; 52
Zhang (ref_45) 2016; 417
Vij (ref_113) 2009; 23
Li (ref_86) 2018; 17
Jayaraman (ref_97) 2018; 97
ref_126
ref_125
Tsutsumi (ref_54) 2014; 11
ref_25
Zareei (ref_59) 2017; 178
Tan (ref_121) 2017; 439
ref_23
Dokumacioglu (ref_87) 2018; 14
ref_22
Chen (ref_105) 2016; 54
Zhang (ref_115) 2012; 135
Peterson (ref_77) 2006; 19
Hwang (ref_117) 2008; 56
Zhao (ref_119) 2019; 33
Hosokawa (ref_69) 2019; 42
Wei (ref_76) 2017; 261
Mitani (ref_68) 2019; 64
Grabarczyk (ref_24) 2015; 103
Zhang (ref_21) 2019; 16
Munhoz (ref_29) 2018; 14
Jiang (ref_122) 2018; 9
Gattuso (ref_130) 2007; 12
Fallahi (ref_100) 2012; 44
Fernandes (ref_99) 2010; 64
Li (ref_17) 2017; 57
Zhang (ref_110) 2016; 142
Chen (ref_60) 2018; 102
Refaat (ref_47) 2015; 2
ref_73
Tripoli (ref_7) 2007; 104
Mulvihill (ref_41) 2011; 60
Abe (ref_67) 2018; 82
Morrow (ref_46) 2020; 61
Sundaram (ref_71) 2014; 21
Mahmoud (ref_83) 2012; 26
Millar (ref_18) 2017; 8
Wang (ref_38) 2019; 14
Hung (ref_74) 2010; 68
Petrie (ref_28) 2018; 34
Reach (ref_10) 2017; 43
Hasanein (ref_101) 2014; 70
Samie (ref_98) 2018; 210
Sundaram (ref_72) 2015; 16
Sachdeva (ref_112) 2014; 127
Jo (ref_94) 2019; 42
Huang (ref_36) 2016; 2016
Gray (ref_12) 2014; 92
Kim (ref_95) 2019; 86
ref_50
Rao (ref_30) 2011; 2011
Nandakumar (ref_79) 2012; 9
Sultana (ref_51) 2018; 216
Lee (ref_37) 2013; 24
ref_58
ref_53
Guo (ref_120) 2019; 864
Kwatra (ref_111) 2016; 41
Bellocco (ref_118) 2009; 321
Abdallah (ref_84) 2014; 92
Gong (ref_116) 2015; 95
Malakul (ref_103) 2018; 15
Luro (ref_2) 2011; 9
Mahmoud (ref_8) 2019; 2019
Singhal (ref_75) 2012; 5
ref_66
ref_63
Jiao (ref_108) 2015; 33
Nakagawa (ref_65) 2006; 69
Kandhare (ref_106) 2012; 83
Ali (ref_62) 2019; 305
Yoshida (ref_55) 2014; 454
(ref_81) 2017; 25
Stuetz (ref_128) 2010; 58
Tilg (ref_88) 2006; 131
Xiong (ref_109) 2016; 39
Dhanya (ref_57) 2017; 8
Costa (ref_27) 2018; 4
Parkar (ref_44) 2016; 7
Shalkami (ref_31) 2018; 37
Phan (ref_49) 2010; 33
Ashrafizadeh (ref_70) 2020; 31
Klimczak (ref_127) 2007; 20
Mahmoud (ref_80) 2017; 277
ref_35
Jain (ref_34) 2014; 12
Yaribeygi (ref_16) 2020; 2020
Furtado (ref_91) 2012; 25
ref_39
Somerset (ref_90) 2008; 60
Ramful (ref_129) 2010; 278
Alam (ref_104) 2014; 5
Zaidun (ref_20) 2018; 208
Feldo (ref_32) 2013; 8
Wang (ref_124) 2017; 7
Kanda (ref_43) 2012; 1820
Onda (ref_42) 2013; 27
Mehta (ref_89) 2007; 9
Tsuhako (ref_64) 2019; 74
Aguilera (ref_78) 2015; 145
Cho (ref_11) 2018; 138
Mahmoud (ref_56) 2015; 35
Akiyama (ref_82) 2010; 46
Shukla (ref_61) 2018; 152
ref_40
ref_1
Badenes (ref_4) 2012; Volume 8
Costa (ref_26) 2010; 111
Srinivasan (ref_33) 2013; 5
ref_9
Chen (ref_96) 2019; 308
ref_5
References_xml – ident: ref_50
  doi: 10.3390/molecules22071213
– ident: ref_9
– volume: 308
  start-page: 269
  year: 2019
  ident: ref_96
  article-title: Hesperetin relieves cisplatin-induced acute kidney injury by mitigating oxidative stress, inflammation and apoptosis
  publication-title: Chem. Biol. Interact.
  doi: 10.1016/j.cbi.2019.05.040
– volume: 24
  start-page: 156
  year: 2013
  ident: ref_37
  article-title: Nobiletin improves obesity and insulin resistance in high-fat diet-induced obese mice
  publication-title: J. Nutr. Biochem.
  doi: 10.1016/j.jnutbio.2012.03.014
– volume: 23
  start-page: 331
  year: 2009
  ident: ref_113
  article-title: Modulation of antigen-induced chronic fatigue in mouse model of water immersion stress by naringin, a polyphenolic antioxidant
  publication-title: Fundam. Clin. Pharmacol.
  doi: 10.1111/j.1472-8206.2009.00675.x
– volume: 86
  start-page: 32
  year: 2019
  ident: ref_95
  article-title: Antioxidant hesperetin improves the quality of porcine oocytes during aging in vitro
  publication-title: Mol. Reprod. Dev.
  doi: 10.1002/mrd.23079
– volume: 2020
  start-page: 8609213
  year: 2020
  ident: ref_16
  article-title: Molecular mechanisms linking oxidative stress and diabetes mellitus
  publication-title: Oxid. Med. Cell. Longev.
  doi: 10.1155/2020/8609213
– volume: 864
  start-page: 172712
  year: 2019
  ident: ref_120
  article-title: Neohesperidin inhibits TGF-β1/Smad3 signaling and alleviates bleomycin-induced pulmonary fibrosis in mice
  publication-title: Eur. J. Pharmacol.
  doi: 10.1016/j.ejphar.2019.172712
– ident: ref_22
  doi: 10.3390/nu12020457
– volume: 14
  start-page: 7839
  year: 2019
  ident: ref_38
  article-title: Nobiletin-loaded micelles reduce ovariectomy-induced bone loss by suppressing osteoclastogenesis
  publication-title: Int. J. Nanomed.
  doi: 10.2147/IJN.S213724
– volume: 37
  start-page: 78
  year: 2018
  ident: ref_31
  article-title: Anti-inflammatory, antioxidant and anti-apoptotic activity of diosmin in acetic acid-induced ulcerative colitis
  publication-title: Hum. Exp. Toxicol.
  doi: 10.1177/0960327117694075
– volume: 5
  start-page: 484
  year: 2013
  ident: ref_33
  article-title: Antihyperlipidemic effect of diosmin: A citrus flavonoid on lipid metabolism in experimental diabetic rats
  publication-title: J. Funct. Foods
  doi: 10.1016/j.jff.2012.12.004
– volume: 2016
  start-page: 2918796
  year: 2016
  ident: ref_36
  article-title: The multifunctional effects of nobiletin and its metabolites in vivo and in vitro
  publication-title: Evid. Based Complement. Alternat. Med.
  doi: 10.1155/2016/2918796
– volume: 60
  start-page: 1446
  year: 2011
  ident: ref_41
  article-title: Nobiletin attenuates VLDL overproduction, dyslipidemia, and atherosclerosis in mice with diet-induced insulin resistance
  publication-title: Diabetes
  doi: 10.2337/db10-0589
– volume: 21
  start-page: 793
  year: 2014
  ident: ref_71
  article-title: Effect of tangeretin, a polymethoxylated flavone on glucose metabolism in streptozotocin-induced diabetic rats
  publication-title: Phytomedicine
  doi: 10.1016/j.phymed.2014.01.007
– volume: 83
  start-page: 650
  year: 2012
  ident: ref_106
  article-title: Neuroprotective effect of naringin by modulation of endogenous biomarkers in streptozotocin induced painful diabetic neuropathy
  publication-title: Fitoterapia
  doi: 10.1016/j.fitote.2012.01.010
– volume: 97
  start-page: 98
  year: 2018
  ident: ref_97
  article-title: Antihyperglycemic effect of hesperetin, a citrus flavonoid, extenuates hyperglycemia and exploring the potential role in antioxidant and antihyperlipidemic in streptozotocin-induced diabetic rats
  publication-title: Biomed. Pharmacother.
  doi: 10.1016/j.biopha.2017.10.102
– volume: 82
  start-page: 2064
  year: 2018
  ident: ref_67
  article-title: Citrus peel polymethoxyflavones, sudachitin and nobiletin, induce distinct cellular responses in human keratinocyte HaCaT cells
  publication-title: Biosci. Biotechnol. Biochem.
  doi: 10.1080/09168451.2018.1514246
– volume: 20
  start-page: 313
  year: 2007
  ident: ref_127
  article-title: Effect of storage on the content of polyphenols, vitamin C and the antioxidant activity of orange juices
  publication-title: J. Food Compos. Anal.
  doi: 10.1016/j.jfca.2006.02.012
– volume: 68
  start-page: 366
  year: 2010
  ident: ref_74
  article-title: Didymin, a dietary flavonoid glycoside from citrus fruits, induces Fas-mediated apoptotic pathway in human non-small-cell lung cancer cells in vitro and in vivo
  publication-title: Lung Cancer
  doi: 10.1016/j.lungcan.2009.08.013
– volume: 261
  start-page: 118
  year: 2017
  ident: ref_76
  article-title: Didymin induces apoptosis through mitochondrial dysfunction and up-regulation of RKIP in human hepatoma cells
  publication-title: Chem. Biol. Interact.
  doi: 10.1016/j.cbi.2016.11.026
– volume: 64
  start-page: 25
  year: 2018
  ident: ref_52
  article-title: Evaluation of anticancer, antioxidant activity and phenolic compounds of Artemisia absinthium L.
  publication-title: Extract. Cell. Mol. Biol.
  doi: 10.14715/cmb/2018.64.3.5
– ident: ref_125
  doi: 10.1002/9780470015902.a0027666
– ident: ref_126
  doi: 10.1186/s12906-016-1069-1
– volume: 31
  start-page: 20190191
  year: 2020
  ident: ref_70
  article-title: Tangeretin: A mechanistic review of its pharmacological and therapeutic effects
  publication-title: J. Basic Clin. Physiol. Pharmacol.
  doi: 10.1515/jbcpp-2019-0191
– ident: ref_15
  doi: 10.1007/s11684-019-0729-1
– volume: 34
  start-page: 575
  year: 2018
  ident: ref_28
  article-title: Diabetes, hypertension and cardiovascular disease: Clinical insights and vascular mechanisms
  publication-title: Can. J. Cardiol.
  doi: 10.1016/j.cjca.2017.12.005
– volume: 39
  start-page: 891
  year: 2016
  ident: ref_109
  article-title: Naringin protects ovalbumin-induced airway inflammation in a mouse model of asthma
  publication-title: Inflammation
  doi: 10.1007/s10753-016-0321-7
– volume: 95
  start-page: 1885
  year: 2015
  ident: ref_116
  article-title: Development of new reference material neohesperidin for quality control of dietary supplements
  publication-title: J. Sci. Food Agric.
  doi: 10.1002/jsfa.6893
– volume: 8
  start-page: 1934578X1300800435
  year: 2013
  ident: ref_32
  article-title: Diosmin—Isolation techniques, determination in plant material and pharmaceutical formulations, and clinical use
  publication-title: Nat. Prod. Commun.
– ident: ref_93
  doi: 10.2174/1871521409666200324110031
– volume: 44
  start-page: 382
  year: 2012
  ident: ref_100
  article-title: Citrus flavonoid naringenin improves aortic reactivity in streptozotocin-diabetic rats
  publication-title: Indian J. Pharmacol.
  doi: 10.4103/0253-7613.96350
– volume: 7
  start-page: 10549
  year: 2017
  ident: ref_124
  article-title: Characterization and metabolic diversity of flavonoids in Citrus species
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-10970-2
– volume: 57
  start-page: 613
  year: 2017
  ident: ref_17
  article-title: Health-promoting effects of the citrus flavanone hesperidin
  publication-title: Crit. Rev. Food Sci. Nutr.
  doi: 10.1080/10408398.2014.906382
– volume: 60
  start-page: 442
  year: 2008
  ident: ref_90
  article-title: Dietary flavonoid sources in Australian adults
  publication-title: Nutr. Cancer
  doi: 10.1080/01635580802143836
– volume: 9
  start-page: 134
  year: 2007
  ident: ref_89
  article-title: Obesity and inflammation: A new look at an old problem
  publication-title: Curr. Atheroscler. Rep.
  doi: 10.1007/s11883-007-0009-4
– volume: 92
  start-page: 441
  year: 2014
  ident: ref_12
  article-title: The pathobiology of diabetic vascular complications—Cardiovascular and kidney disease
  publication-title: J. Mol. Med.
  doi: 10.1007/s00109-014-1146-1
– volume: 92
  start-page: 945
  year: 2014
  ident: ref_84
  article-title: Anti-depressant effect of hesperidin in diabetic rats
  publication-title: Can. J. Physiol. Pharmacol.
  doi: 10.1139/cjpp-2014-0281
– volume: 454
  start-page: 95
  year: 2014
  ident: ref_55
  article-title: Naringenin suppresses macrophage infiltration into adipose tissue in an early phase of high-fat diet-induced obesity
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2014.10.038
– volume: 46
  start-page: 87
  year: 2010
  ident: ref_82
  article-title: Dietary hesperidin exerts hypoglycemic and hypolipidemic effects in streptozotocin-induced marginal type 1 diabetic rats
  publication-title: J. Clin. Biochem. Nutr.
  doi: 10.3164/jcbn.09-82
– volume: 138
  start-page: 271
  year: 2018
  ident: ref_11
  article-title: IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045
  publication-title: Diabetes Res. Clin. Pract.
  doi: 10.1016/j.diabres.2018.02.023
– volume: 61
  start-page: 277
  year: 2018
  ident: ref_123
  article-title: Xanthohumol attenuates cisplatin-induced nephrotoxicity through inhibiting NF-κB and activating Nrf2 signaling pathways
  publication-title: Int. Immunopharmacol.
  doi: 10.1016/j.intimp.2018.05.017
– volume: 2015
  start-page: 404085
  year: 2015
  ident: ref_14
  article-title: Animal models of diabetic macrovascular complications: Key players in the development of new therapeutic approaches
  publication-title: J. Diabetes Res.
  doi: 10.1155/2015/404085
– volume: 27
  start-page: 312
  year: 2013
  ident: ref_42
  article-title: Polymethoxyflavonoids tangeretin and nobiletin increase glucose uptake in murine adipocytes
  publication-title: Phytother. Res.
  doi: 10.1002/ptr.4730
– volume: 216
  start-page: 104
  year: 2018
  ident: ref_51
  article-title: Escalation of liver malfunctioning: A step toward Herbal Awareness
  publication-title: J. Ethnopharmacol.
  doi: 10.1016/j.jep.2018.01.002
– volume: 12
  start-page: 1641
  year: 2007
  ident: ref_130
  article-title: Flavonoid composition of citrus juices
  publication-title: Molecules
  doi: 10.3390/12081641
– volume: 16
  start-page: 47
  year: 2019
  ident: ref_21
  article-title: Flavonoids as inducers of white adipose tissue browning and thermogenesis: Signalling pathways and molecular triggers
  publication-title: Nutr. Metab.
  doi: 10.1186/s12986-019-0370-7
– ident: ref_66
  doi: 10.1371/journal.pone.0191192
– volume: 210
  start-page: 132
  year: 2018
  ident: ref_98
  article-title: Hesperetin, a citrus flavonoid, attenuates testicular damage in diabetic rats via inhibition of oxidative stress, inflammation, and apoptosis
  publication-title: Life Sci.
  doi: 10.1016/j.lfs.2018.08.074
– volume: 278
  start-page: 75
  year: 2010
  ident: ref_129
  article-title: Bioactive phenolics and antioxidant propensity of flavedo extracts of Mauritian citrus fruits: Potential prophylactic ingredients for functional foods application
  publication-title: Toxicology
  doi: 10.1016/j.tox.2010.01.012
– volume: 1820
  start-page: 461
  year: 2012
  ident: ref_43
  article-title: Nobiletin suppresses adipocyte differentiation of 3T3-L1 cells by an insulin and IBMX mixture induction
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbagen.2011.11.015
– volume: 135
  start-page: 1471
  year: 2012
  ident: ref_115
  article-title: Purification of naringin and neohesperidin from Huyou (Citrus changshanensis) fruit and their effects on glucose consumption in human HepG2 cells
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2012.06.004
– volume: 417
  start-page: 87
  year: 2016
  ident: ref_45
  article-title: Nobiletin attenuates cardiac dysfunction, oxidative stress, and inflammatory in streptozotocin: Induced diabetic cardiomyopathy
  publication-title: Mol. Cell. Biochem.
  doi: 10.1007/s11010-016-2716-z
– volume: 14
  start-page: 36
  year: 2018
  ident: ref_29
  article-title: Isolated compounds from natural products with potential antidiabetic activity—A systematic review
  publication-title: Curr. Diabetes Rev.
  doi: 10.2174/1573399813666170505120621
– volume: 42
  start-page: 1456
  year: 2019
  ident: ref_69
  article-title: Sudachitin inhibits matrix metalloproteinase-1 and -3 production in tumor necrosis factor-α-stimulated human periodontal ligament cells
  publication-title: Inflammation
  doi: 10.1007/s10753-019-01007-z
– volume: 16
  start-page: 315
  year: 2015
  ident: ref_72
  article-title: Tangeretin, a polymethoxylated flavone, modulates lipid homeostasis and decreases oxidative stress by inhibiting NF-κB activation and proinflammatory cytokines in cardiac tissue of streptozotocin-induced diabetic rats
  publication-title: J. Funct. Foods
  doi: 10.1016/j.jff.2015.03.024
– volume: 104
  start-page: 466
  year: 2007
  ident: ref_7
  article-title: Citrus flavonoids: Molecular structure, biological activity and nutritional properties: A review
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2006.11.054
– volume: 2011
  start-page: 624375
  year: 2011
  ident: ref_30
  article-title: Insulin-mimetic action of rhoifolin and cosmosiin isolated from Citrus grandis (L.) Osbeck leaves: Enhanced adiponectin secretion and insulin receptor phosphorylation in 3T3-L1 cells
  publication-title: Evid. Based Complement. Alternat. Med.
  doi: 10.1093/ecam/nep204
– volume: 58
  start-page: 6069
  year: 2010
  ident: ref_128
  article-title: Polymethoxylated flavones, flavanone glycosides, carotenoids, and antioxidants in different cultivation types of tangerines (Citrus reticulata Blanco cv. Sainampueng) from Northern Thailand
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf904608h
– volume: 305
  start-page: 180
  year: 2019
  ident: ref_62
  article-title: Didymin, a dietary citrus flavonoid exhibits anti-diabetic complications and promotes glucose uptake through the activation of PI3K/Akt signaling pathway in insulin-resistant HepG2 cells
  publication-title: Chem. Biol. Interact.
  doi: 10.1016/j.cbi.2019.03.018
– volume: 178
  start-page: 49
  year: 2017
  ident: ref_59
  article-title: Inhibition of liver alanine aminotransferase and aspartate aminotransferase by hesperidin and its aglycone hesperetin: An in vitro and in silico study
  publication-title: Life Sci.
  doi: 10.1016/j.lfs.2017.04.001
– volume: 19
  start-page: S74
  year: 2006
  ident: ref_77
  article-title: Flavanones in grapefruit, lemons, and limes: A compilation and review of the data from the analytical literature
  publication-title: J. Food Compos. Anal.
  doi: 10.1016/j.jfca.2005.12.009
– ident: ref_19
  doi: 10.3390/nu10121852
– volume: 17
  start-page: 399
  year: 2018
  ident: ref_86
  article-title: Hesperidin, a plant flavonoid accelerated the cutaneous wound healing in streptozotocin-induced diabetic rats: Role of TGF-ß/Smads and Ang-1/Tie-2 signaling pathways
  publication-title: EXCLI J.
– volume: 14
  start-page: 167
  year: 2018
  ident: ref_87
  article-title: The effects of hesperidin and quercetin on serum tumor necrosis factor-alpha and interleukin-6 levels in streptozotocin-induced diabetes model
  publication-title: Pharmacogn. Mag.
  doi: 10.4103/pm.pm_41_17
– ident: ref_58
  doi: 10.3390/nu9121312
– volume: 33
  start-page: 203
  year: 2010
  ident: ref_49
  article-title: Two new C-glucosyl benzoic acids and flavonoids from Mallotus nanus and their antioxidant activity
  publication-title: Arch. Pharm. Res.
  doi: 10.1007/s12272-010-0203-8
– volume: 38
  start-page: 846
  year: 2015
  ident: ref_107
  article-title: Naringin attenuates the development of carrageenan-induced acute lung inflammation through inhibition of NF-κb, STAT3 and pro-inflammatory mediators and enhancement of IκBα and anti-inflammatory cytokines
  publication-title: Inflammation
  doi: 10.1007/s10753-014-9994-y
– volume: 35
  start-page: 250
  year: 2015
  ident: ref_56
  article-title: In vivo and in vitro antidiabetic effects of citrus flavonoids; a study on the mechanism of action
  publication-title: Int. J. Diabetes Dev. Ctries.
  doi: 10.1007/s13410-014-0268-x
– ident: ref_23
  doi: 10.1371/journal.pmed.1000097
– volume: 56
  start-page: 859
  year: 2008
  ident: ref_117
  article-title: Neuroprotective effects of the citrus flavanones against H2 O2 -induced cytotoxicity in PC12 cells
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf072826r
– volume: 74
  start-page: 229
  year: 2019
  ident: ref_64
  article-title: Naringenin suppresses neutrophil infiltration into adipose tissue in high-fat diet-induced obese mice
  publication-title: J. Nat. Med.
  doi: 10.1007/s11418-019-01332-5
– volume: 145
  start-page: 1808
  year: 2015
  ident: ref_78
  article-title: Normal or high polyphenol concentration in orange juice affects antioxidant activity, blood pressure, and body weight in obese or overweight adults
  publication-title: J. Nutr.
  doi: 10.3945/jn.115.213660
– volume: 439
  start-page: 369
  year: 2017
  ident: ref_121
  article-title: Neohesperidin suppresses osteoclast differentiation, bone resorption and ovariectomised-induced osteoporosis in mice
  publication-title: Mol. Cell. Endocrinol.
  doi: 10.1016/j.mce.2016.09.026
– volume: 6
  start-page: 878
  year: 2015
  ident: ref_102
  article-title: Hypoglycemic and hypolipidemic effects of neohesperidin derived from Citrus aurantium L. in diabetic KK-A(y) mice
  publication-title: Food Funct.
  doi: 10.1039/C4FO00993B
– volume: 61
  start-page: 387
  year: 2020
  ident: ref_46
  article-title: The citrus flavonoid nobiletin confers protection from metabolic dysregulation in high-fat-fed mice independent of AMPK
  publication-title: J. Lipid Res.
  doi: 10.1194/jlr.RA119000542
– volume: 2
  start-page: 102
  year: 2015
  ident: ref_47
  article-title: Rhoifolin: A review of sources and biological activities
  publication-title: Int. J. Pharmacogn.
– volume: 102
  start-page: 1077
  year: 2018
  ident: ref_60
  article-title: Tangeretin inhibits high glucose-induced extracellular matrix accumulation in human glomerular mesangial cells
  publication-title: Biomed. Pharmacother.
  doi: 10.1016/j.biopha.2018.03.169
– volume: 42
  start-page: 695
  year: 2019
  ident: ref_94
  article-title: Hesperetin inhibits neuroinflammation on microglia by suppressing inflammatory cytokines and MAPK pathways
  publication-title: Arch. Pharm. Res.
  doi: 10.1007/s12272-019-01174-5
– volume: 7
  start-page: 3121
  year: 2016
  ident: ref_44
  article-title: Efficacy of nobiletin, a citrus flavonoid, in the treatment of the cardiovascular dysfunction of diabetes in rats
  publication-title: Food Funct.
  doi: 10.1039/C6FO00294C
– volume: 12
  start-page: 35
  year: 2014
  ident: ref_34
  article-title: Protective effect of diosmin against diabetic neuropathy in experimental rats
  publication-title: J. Integr. Med.
  doi: 10.1016/S2095-4964(14)60001-7
– volume: 8
  start-page: 336
  year: 2017
  ident: ref_57
  article-title: Quercetin, a lead compound against type 2 diabetes ameliorates glucose uptake via AMPK pathway in skeletal muscle cell line
  publication-title: Front. Pharmacol.
  doi: 10.3389/fphar.2017.00336
– ident: ref_40
  doi: 10.3390/ijms20174281
– volume: 152
  start-page: 1
  year: 2018
  ident: ref_61
  article-title: Didymin prevents hyperglycemia-induced human umbilical endothelial cells dysfunction and death
  publication-title: Biochem. Pharmacol.
  doi: 10.1016/j.bcp.2018.03.012
– ident: ref_5
  doi: 10.5772/63689
– volume: 33
  start-page: 2034
  year: 2019
  ident: ref_119
  article-title: Neohesperidin suppresses IgE-mediated anaphylactic reactions and mast cell activation via Lyn-PLC-Ca(2+) pathway
  publication-title: Phytother. Res.
  doi: 10.1002/ptr.6385
– volume: Volume 8
  start-page: 623
  year: 2012
  ident: ref_4
  article-title: Citrus
  publication-title: Fruit Breeding
– volume: 9
  start-page: 530
  year: 2018
  ident: ref_122
  article-title: Anticancer activity and mechanism of xanthohumol: A prenylated flavonoid from hops (Humulus lupulus L.)
  publication-title: Front. Pharmacol.
  doi: 10.3389/fphar.2018.00530
– volume: 1
  start-page: 106
  year: 2013
  ident: ref_13
  article-title: Diabetes and risk of physical disability in adults: A systematic review and meta-analysis
  publication-title: Lancet Diabetes Endocrinol.
  doi: 10.1016/S2213-8587(13)70046-9
– volume: 25
  start-page: 265
  year: 2017
  ident: ref_81
  article-title: Pro-inflammatory cytokines involvement in the hesperidin antihyperalgesic effects at peripheral and central levels in a neuropathic pain model
  publication-title: Inflammopharmacology
  doi: 10.1007/s10787-017-0326-3
– volume: 103
  start-page: 71
  year: 2015
  ident: ref_24
  article-title: Isoxanthohumol—Biologically active hop flavonoid
  publication-title: Fitoterapia
  doi: 10.1016/j.fitote.2015.03.007
– ident: ref_39
  doi: 10.3390/cancers11060867
– ident: ref_25
  doi: 10.3390/molecules23030660
– volume: 5
  start-page: 404
  year: 2014
  ident: ref_104
  article-title: Effect of citrus flavonoids, naringin and naringenin, on metabolic syndrome and their mechanisms of action
  publication-title: Adv. Nutr.
  doi: 10.3945/an.113.005603
– volume: 11
  start-page: 32
  year: 2014
  ident: ref_54
  article-title: Sudachitin, a polymethoxylated flavone, improves glucose and lipid metabolism by increasing mitochondrial biogenesis in skeletal muscle
  publication-title: Nutr. Metab.
  doi: 10.1186/1743-7075-11-32
– volume: 33
  start-page: 59
  year: 2015
  ident: ref_108
  article-title: Therapeutic effects of naringin in a guinea pig model of ovalbumin-induced cough-variant asthma
  publication-title: Pulm. Pharmacol. Ther.
  doi: 10.1016/j.pupt.2015.07.002
– volume: 234
  start-page: 17600
  year: 2019
  ident: ref_48
  article-title: Rhoifolin ameliorates titanium particle-stimulated osteolysis and attenuates osteoclastogenesis via RANKL-induced NF-κB and MAPK pathways
  publication-title: J. Cell. Physiol.
  doi: 10.1002/jcp.28384
– volume: 64
  start-page: 158
  year: 2019
  ident: ref_68
  article-title: Sudachitin, polymethoxyflavone from Citrus sudachi, enhances antigen-specific cellular and humoral immune responses in BALB/c mice
  publication-title: J. Clin. Biochem. Nutr.
  doi: 10.3164/jcbn.18-70
– volume: 239
  start-page: 76
  year: 2015
  ident: ref_114
  article-title: Protective role of naringin against cisplatin induced oxidative stress, inflammatory response and apoptosis in rat striatum via suppressing ROS-mediated NF-κB and P53 signaling pathways
  publication-title: Chem. Biol. Interact.
  doi: 10.1016/j.cbi.2015.06.036
– volume: 8
  start-page: 226
  year: 2017
  ident: ref_18
  article-title: Effects of dietary flavonoids on reverse cholesterol transport, HDL metabolism, and HDL function
  publication-title: Adv. Nutr.
  doi: 10.3945/an.116.014050
– ident: ref_1
  doi: 10.4000/books.pcjb.2107
– volume: 2019
  start-page: 5484138
  year: 2019
  ident: ref_8
  article-title: Beneficial effects of citrus flavonoids on cardiovascular and metabolic health
  publication-title: Oxid. Med. Cell. Longev.
  doi: 10.1155/2019/5484138
– ident: ref_35
  doi: 10.3390/nu9070684
– volume: 4
  start-page: e23
  year: 2018
  ident: ref_27
  article-title: Xanthohumol and 8-prenylnaringenin reduce type 2 diabetes-associated oxidative stress by downregulating galectin-3
  publication-title: Porto Biomed. J.
– volume: 321
  start-page: 165
  year: 2009
  ident: ref_118
  article-title: Influence of l-rhamnosyl-d-glucosyl derivatives on properties and biological interaction of flavonoids
  publication-title: Mol. Cell. Biochem.
  doi: 10.1007/s11010-008-9930-2
– ident: ref_63
  doi: 10.1080/1028415X.2019.1594554
– volume: 41
  start-page: 2352
  year: 2016
  ident: ref_111
  article-title: Naringin and sertraline ameliorate doxorubicin-induced behavioral deficits through modulation of serotonin level and mitochondrial complexes protection pathway in rat hippocampus
  publication-title: Neurochem. Res.
  doi: 10.1007/s11064-016-1949-2
– volume: 69
  start-page: 1177
  year: 2006
  ident: ref_65
  article-title: Chemical constituents from the peels of Citrus sudachi
  publication-title: J. Nat. Prod.
  doi: 10.1021/np060217s
– volume: 277
  start-page: 146
  year: 2017
  ident: ref_80
  article-title: Hesperidin protects against chemically induced hepatocarcinogenesis via modulation of Nrf2/ARE/HO-1, PPARγ and TGF-β1/Smad3 signaling, and amelioration of oxidative stress and inflammation
  publication-title: Chem. Biol. Interact.
  doi: 10.1016/j.cbi.2017.09.015
– volume: 25
  start-page: 595
  year: 2012
  ident: ref_91
  article-title: Hesperidinase encapsulation towards hesperitin production targeting improved bioavailability
  publication-title: J. Mol. Recognit.
  doi: 10.1002/jmr.2224
– volume: 64
  start-page: 214
  year: 2010
  ident: ref_99
  article-title: Influence of rutin treatment on biochemical alterations in experimental diabetes
  publication-title: Biomed. Pharmacother.
  doi: 10.1016/j.biopha.2009.08.007
– volume: 15
  start-page: 3140
  year: 2018
  ident: ref_103
  article-title: Naringin ameliorates endothelial dysfunction in fructose-fed rats
  publication-title: Exp. Ther. Med.
– volume: 26
  start-page: 483
  year: 2012
  ident: ref_83
  article-title: Hesperidin and naringin attenuate hyperglycemia-mediated oxidative stress and proinflammatory cytokine production in high fat fed/streptozotocin-induced type 2 diabetic rats
  publication-title: J. Diabetes Complicat.
  doi: 10.1016/j.jdiacomp.2012.06.001
– volume: 70
  start-page: 997
  year: 2014
  ident: ref_101
  article-title: Role of naringenin in protection against diabetic hyperalgesia and tactile allodynia in male Wistar rats
  publication-title: J. Physiol. Biochem.
  doi: 10.1007/s13105-014-0369-5
– volume: 173
  start-page: 65
  year: 2017
  ident: ref_3
  article-title: Hybridization in plants: Old ideas, new techniques
  publication-title: Plant Physiol.
  doi: 10.1104/pp.16.01340
– volume: 111
  start-page: 1270
  year: 2010
  ident: ref_26
  article-title: Angiogenesis and inflammation signaling are targets of beer polyphenols on vascular cells
  publication-title: J. Cell. Biochem.
  doi: 10.1002/jcb.22850
– ident: ref_73
  doi: 10.3390/molecules23102547
– volume: 9
  start-page: 321
  year: 2012
  ident: ref_79
  article-title: Hesperidin a citrus bioflavonoid modulates hepatic biotransformation enzymes and enhances intrinsic antioxidants in experimental breast cancer rats challenged with 7, 12-dimethylbenz (a) anthracene
  publication-title: J. Exp. Ther. Oncol.
– volume: 9
  start-page: 218
  year: 2011
  ident: ref_2
  article-title: Analysis of genetic diversity in Citrus
  publication-title: Plant Genet. Resour.
  doi: 10.1017/S1479262111000189
– volume: 43
  start-page: 501
  year: 2017
  ident: ref_10
  article-title: Clinical inertia and its impact on treatment intensification in people with type 2 diabetes mellitus
  publication-title: Diabetes Metab.
  doi: 10.1016/j.diabet.2017.06.003
– volume: 208
  start-page: 111
  year: 2018
  ident: ref_20
  article-title: Combating oxidative stress disorders with citrus flavonoid: Naringenin
  publication-title: Life Sci.
  doi: 10.1016/j.lfs.2018.07.017
– volume: 5
  start-page: 473
  year: 2012
  ident: ref_75
  article-title: Didymin induces apoptosis by inhibiting N-Myc and upregulating RKIP in neuroblastoma
  publication-title: Cancer Prev. Res.
  doi: 10.1158/1940-6207.CAPR-11-0318
– ident: ref_92
  doi: 10.1080/01480545.2020.1722690
– volume: 52
  start-page: 814
  year: 2014
  ident: ref_85
  article-title: Hesperidin, a flavanoglycone attenuates experimental diabetic neuropathy via modulation of cellular and biochemical marker to improve nerve functions
  publication-title: Pharm. Biol.
  doi: 10.3109/13880209.2013.870584
– volume: 54
  start-page: 3203
  year: 2016
  ident: ref_105
  article-title: Therapeutic potential of naringin: An overview
  publication-title: Pharm. Biol.
  doi: 10.1080/13880209.2016.1216131
– ident: ref_53
  doi: 10.1186/1472-6882-12-31
– volume: 131
  start-page: 934
  year: 2006
  ident: ref_88
  article-title: Nonalcoholic fatty liver disease: Cytokine-adipokine interplay and regulation of insulin resistance
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2006.05.054
– volume: 142
  start-page: 913
  year: 2016
  ident: ref_110
  article-title: Naringin, a natural dietary compound, prevents intestinal tumorigenesis in Apc (Min/+) mouse model
  publication-title: J. Cancer Res. Clin. Oncol.
  doi: 10.1007/s00432-015-2097-9
– volume: 127
  start-page: 101
  year: 2014
  ident: ref_112
  article-title: Naringin ameliorates memory deficits in experimental paradigm of Alzheimer’s disease by attenuating mitochondrial dysfunction
  publication-title: Pharmacol. Biochem. Behav.
  doi: 10.1016/j.pbb.2014.11.002
– volume: 2019
  start-page: 2676307
  year: 2019
  ident: ref_6
  article-title: Benefits of hesperidin for cutaneous functions
  publication-title: Evid. Based Complement. Alternat. Med.
  doi: 10.1155/2019/2676307
SSID ssj0000070763
Score 2.6245651
SecondaryResourceType review_article
Snippet The consumption of plant-based food is important for health promotion, especially concerning the prevention and management of chronic diseases. Flavonoids are...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 2907
SubjectTerms Adipocytes
administrative management
Animals
Antidiabetics
antioxidant enzymes
Antioxidants
bioactive compounds
biomarkers
Cell cycle
Cholesterol
chronic diseases
Chronic illnesses
Citrus
Citrus - chemistry
Citrus fruits
Diabetes
Diabetes Mellitus - diet therapy
Diabetic neuropathy
Disaccharides
Disease
Flavanones
Flavones
Flavonoids
Flavonoids - chemistry
Flavonoids - therapeutic use
Glucose
glycemic control
glycemic effect
Glycosides
health promotion
hesperetin
Hesperidin - analogs & derivatives
Humans
in vivo studies
Inflammation
Inflammation - diet therapy
Insulin resistance
lipid composition
Lipids
Lipoproteins
Metabolism
Metabolites
naringenin
naringin
neohesperidin
nutrients
Oxidative stress
pathogenesis
Phytochemicals - chemistry
Phytochemicals - therapeutic use
plant-based foods
Polyphenols - therapeutic use
Propiophenones
quercetin
renal function
Review
rutin
signal transduction
Systematic review
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEB-0vvgi1voRrbKiCD6EXrLJ5tYXOQ6PKiiCrdxb2K_QQt2t5lrwr_Bf7sxmL7220sdjJySXmez85mN_A_C2s1bKrlQ57r9VXknd5dpakasCvY_WteGSTiN__Sb2D6svy3qZEm59aqtc74lxo7bBUI58r6wpQ1FWYvLx9HdOU6OouppGaNyFe0RdRlbdLJsxxxK5bAQfWEk5Rvd7_iwSZkmaHrvph26Ay-s9khtOZ_EQHiS0yGaDerfhjvOPYGfmMVL-9Ze9Y7F_MybGd-DfPB6gYIsTdR58OLY9Uz37_iegJtE_keyKxmNFfoCeHcQWcFpITTEo7i2LzXHOsvlmq_kHNmM_RspnNtQTWOjYZ89-4l1DvDT-OA8stSY-hsPFp4P5fp7GLeQGYdAqV2KqZKHwLwupCqvFpNTKVIXBWBWjQCGc6IxVjVSNbqxDPyYrjVGtE04VQin-BLZ88O4ZsCmCAlMoMZlaU1V01lbzzmC0zWsyjUkG79cvvzWJi5xGYpy0GJOQotpLRWXwZpQ9HRg4_iu1u9Zhm77Cvr20mQxej8v41qkoorwLZyhDBW2BOGZ6iwyi0oJGBRcZPB3MYnwUXiKCxvUMmisGMwoQf_fVFX98FHm8m1oiHuPPb3_0F3C_pBifKmF8F7bQlNxLBEIr_Spa-wWXeAz0
  priority: 102
  providerName: ProQuest
Title Citrus Flavonoids as Promising Phytochemicals Targeting Diabetes and Related Complications: A Systematic Review of In Vitro and In Vivo Studies
URI https://www.ncbi.nlm.nih.gov/pubmed/32977511
https://www.proquest.com/docview/2535402460
https://www.proquest.com/docview/2446662418
https://www.proquest.com/docview/2511175421
https://pubmed.ncbi.nlm.nih.gov/PMC7598193
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEB9qC9IXUav2tB4RRfBh9bIfyUUQOY-eVWgp2pN7W_Kxi4Uz2_auxf4V_svOZD_s1eKDj0smZDcz2fn9kskMwIvSOaXKWEf4_02jVJkyMs6JSHP0PsZkNlF0G3n_QOxN08-zbLYGbf3OZgIXN1I7qic1PZu__nl6-R4X_DtinEjZ3_jzkAVL0aXyDfRIkioZ7Dcwv4bBEul6UmcnvdZlE24nMYKgjPNV1_QX3rweNnnFD03uwp0GQLJRrfF7sFb4-7A18kief1yylyyEdIa98i34NQ53Kthkri8qXx27BdMLdnhWoXLRZZHskipmhZQBC3YUosKpoYmTQXHvWIiXKxwbX40-f8tG7GuXBZrVRwysKtknz77hqFXoGh4uKtZEKz6A6WT3aLwXNRUYIovIaBlpMdSKa_xkoTR3Rgxio23KLdJXJIZCFKK0TkulpZGuQNemUoNEtxCF5kLr5CGs-8oX28CGiBMs12IwdDZN6fqtSUqLBDzJyFoGPXjVTn5um_TkVCVjniNNIZ3lf3TWg-ed7EmdlONGqZ1Wh3lrV3mc0UZXnAoc8FnXjLNO5yTaF9U5ytAZt0BDGv5DBu2FU_Vg3oNHtVl0r9LaUw_kisF0ApTSe7XFH38Pqb1lphCiJY__u-cT2IxpR4DOzZIdWEcrK54ibFqaPtySM9mHjQ-7B4df8OnjjPfDOvkNLq4fqw
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcoALAsrDUGARD4mDVdtrr7NICEWBKKEPIZGi3My-LCoVu-C0qL-Cf8JvZGbtuCmg3nq0dhJbns87z_0G4HlprZRlokLcf9MwlboMtbUiVDFaH60zwyWdRt7dE5P99MM8m6_B7-VZGGqrXO6JfqO2taEc-VaSUYYiSUX09uh7SFOjqLq6HKHRwmLbnf7EkK15M32H-n2RJOP3s9Ek7KYKhAat_SJUYqBkrJw1QqrYahElWpk0NhiSYbAjhBOlsSqXKte5dbhdy1Rj8OaEU7FQiuP_XoGraHgjCvbyed7ndDx3juAtCyrnMtqqjj1Bl6Rptat27x9n9u-ezBUjN74JNzrvlA1bON2CNVfdho1hhZH5t1P2kvl-UZ-I34BfI39gg40P1Uld1Qe2YaphH3_UiBy0hyS7oHFcno-gYTPfck4LXRMOileW-WY8Z9lotbX9NRuyTz3FNGvrF6wu2bRin_Gutf-pvzipWdcKeQf2L0URd2G9qit3H9gAnRATKxENrElTOtureWkwuucZQTEK4NXy5Rem4z6nERyHBcZApKjiTFEBPOtlj1rGj_9KbS51WHRffVOcYTSAp_0yvnUqwqjK1ccoQwV0gX7T4AIZ9IJjGk0cB3CvhUX_KDxBjx3XA8jPAaYXIL7w8yvVwVfPG55nEv0__uDiR38C1yaz3Z1iZ7q3_RCuJ5RfoCoc34R1hJV7hE7YQj_2yGfw5bI_tT-HIEsF
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwEB6VrYR4QUA5UgoYcUg8RJvTWSMhtGy76lJYraBFfQuO7aiVilPItqi_gv_Dr2PGyaZbQH3rY-TJIc-XuT0D8LzUWogykj7K38RPRFH6hdbclyFqn6JIVSzoNPLHKd_eS97vp_sr8HtxFobKKhcy0QlqXSmKkfejlCIUUcKDftmWRcw2x2-Pv_s0QYoyrYtxGg1EdszZT3Tf6jeTTeT1iygab-2Otv12woCvUPPPfckHUoTSaMWFDHXBg6iQKgkVumfo-HBueKm0zITMikwbFN0iKdCRM9zIkEsZ43OvwWpGXlEPVt9tTWefugiP66TD46YnahyLoG9PXLsuQbNrl7XgP6bt3xWaSypvfAtutrYqGzbgug0rxt6BtaFFP_3bGXvJXPWoC8uvwa-RO77BxkfytLLVoa6ZrNnsR4U4Qu1ItHMazuW6E9Rs1xWg00JbkoPkVjNXmmc0Gy0Xur9mQ_a5azjNmmwGq0o2sewLvrVyt7qL04q1hZF3Ye9KWHEPeray5gGwAZokKpQ8GGiVJHTSt4hLhb5-nBIwAw9eLTY_V20ndBrIcZSjR0SMys8Z5cGzjva46f_xX6qNBQ_zVgbU-TliPXjaLeOuU0pGWlOdIA2l0zlaUYNLaNAmDmlQcejB_QYW3afEEdrvuO5BdgEwHQF1D7-4Yg8PXBfxLBVoDcbrl3_6E7iOv1n-YTLdeQg3Igo2UEou3oAeoso8QotsXjxuoc_g61X_bX8ANxVQoA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Citrus+Flavonoids+as+Promising+Phytochemicals+Targeting+Diabetes+and+Related+Complications%3A+A+Systematic+Review+of+In+Vitro+and+In+Vivo+Studies&rft.jtitle=Nutrients&rft.au=Gandhi%2C+Gopalsamy+Rajiv&rft.au=Vasconcelos%2C+Alan+Bruno+Silva&rft.au=Wu%2C+Ding-Tao&rft.au=Li%2C+Hua-Bin&rft.date=2020-09-23&rft.pub=MDPI&rft.eissn=2072-6643&rft.volume=12&rft.issue=10&rft_id=info:doi/10.3390%2Fnu12102907&rft_id=info%3Apmid%2F32977511&rft.externalDocID=PMC7598193
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-6643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-6643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-6643&client=summon