Gut Microbiota-Derived Components and Metabolites in the Progression of Non-Alcoholic Fatty Liver Disease (NAFLD)

Human gut microbiota has been increasingly recognized as a pivotal determinant of non-alcoholic fatty liver disease (NAFLD). Apart from the changes in the composition of gut microbiota, the components and metabolites derived from intestinal microbiota have emerged as key factors in modulating the pa...

Full description

Saved in:
Bibliographic Details
Published inNutrients Vol. 11; no. 8; p. 1712
Main Authors Ji, Yun, Yin, Yue, Li, Ziru, Zhang, Weizhen
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 25.07.2019
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Human gut microbiota has been increasingly recognized as a pivotal determinant of non-alcoholic fatty liver disease (NAFLD). Apart from the changes in the composition of gut microbiota, the components and metabolites derived from intestinal microbiota have emerged as key factors in modulating the pathological process of NAFLD. Compelling evidences have revealed that gut microbiota generates a variety of bioactive substances that interact with the host liver cells through the portal vein. These substances include the components derived from bacteria such as lipopolysaccharides, peptidoglycan, DNA, and extracellular vesicles, as well as the metabolites ranging from short-chain fatty acids, indole and its derivatives, trimethylamine, secondary bile acids, to carotenoids and phenolic compounds. The mechanisms underlying the hepatic responses to the bioactive substances from gut bacteria have been associated with the regulation of glycolipid metabolism, immune signaling response, and redox homeostasis. Illuminating the interplay between the unique factors produced from gut microbiome and the liver will provide a novel therapeutical target for NAFLD. The current review highlights the recent advances on the mechanisms by which the key ingredients and metabolites from gut microbiota modulate the development and progression of NAFLD.
AbstractList Human gut microbiota has been increasingly recognized as a pivotal determinant of non-alcoholic fatty liver disease (NAFLD). Apart from the changes in the composition of gut microbiota, the components and metabolites derived from intestinal microbiota have emerged as key factors in modulating the pathological process of NAFLD. Compelling evidences have revealed that gut microbiota generates a variety of bioactive substances that interact with the host liver cells through the portal vein. These substances include the components derived from bacteria such as lipopolysaccharides, peptidoglycan, DNA, and extracellular vesicles, as well as the metabolites ranging from short-chain fatty acids, indole and its derivatives, trimethylamine, secondary bile acids, to carotenoids and phenolic compounds. The mechanisms underlying the hepatic responses to the bioactive substances from gut bacteria have been associated with the regulation of glycolipid metabolism, immune signaling response, and redox homeostasis. Illuminating the interplay between the unique factors produced from gut microbiome and the liver will provide a novel therapeutical target for NAFLD. The current review highlights the recent advances on the mechanisms by which the key ingredients and metabolites from gut microbiota modulate the development and progression of NAFLD.
Human gut microbiota has been increasingly recognized as a pivotal determinant of non-alcoholic fatty liver disease (NAFLD). Apart from the changes in the composition of gut microbiota, the components and metabolites derived from intestinal microbiota have emerged as key factors in modulating the pathological process of NAFLD. Compelling evidences have revealed that gut microbiota generates a variety of bioactive substances that interact with the host liver cells through the portal vein. These substances include the components derived from bacteria such as lipopolysaccharides, peptidoglycan, DNA, and extracellular vesicles, as well as the metabolites ranging from short-chain fatty acids, indole and its derivatives, trimethylamine, secondary bile acids, to carotenoids and phenolic compounds. The mechanisms underlying the hepatic responses to the bioactive substances from gut bacteria have been associated with the regulation of glycolipid metabolism, immune signaling response, and redox homeostasis. Illuminating the interplay between the unique factors produced from gut microbiome and the liver will provide a novel therapeutical target for NAFLD. The current review highlights the recent advances on the mechanisms by which the key ingredients and metabolites from gut microbiota modulate the development and progression of NAFLD.Human gut microbiota has been increasingly recognized as a pivotal determinant of non-alcoholic fatty liver disease (NAFLD). Apart from the changes in the composition of gut microbiota, the components and metabolites derived from intestinal microbiota have emerged as key factors in modulating the pathological process of NAFLD. Compelling evidences have revealed that gut microbiota generates a variety of bioactive substances that interact with the host liver cells through the portal vein. These substances include the components derived from bacteria such as lipopolysaccharides, peptidoglycan, DNA, and extracellular vesicles, as well as the metabolites ranging from short-chain fatty acids, indole and its derivatives, trimethylamine, secondary bile acids, to carotenoids and phenolic compounds. The mechanisms underlying the hepatic responses to the bioactive substances from gut bacteria have been associated with the regulation of glycolipid metabolism, immune signaling response, and redox homeostasis. Illuminating the interplay between the unique factors produced from gut microbiome and the liver will provide a novel therapeutical target for NAFLD. The current review highlights the recent advances on the mechanisms by which the key ingredients and metabolites from gut microbiota modulate the development and progression of NAFLD.
Author Yin, Yue
Li, Ziru
Ji, Yun
Zhang, Weizhen
AuthorAffiliation 2 Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI 48109-0346, USA
1 Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing 100191, China
AuthorAffiliation_xml – name: 1 Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing 100191, China
– name: 2 Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI 48109-0346, USA
Author_xml – sequence: 1
  givenname: Yun
  orcidid: 0000-0002-3483-0729
  surname: Ji
  fullname: Ji, Yun
– sequence: 2
  givenname: Yue
  surname: Yin
  fullname: Yin, Yue
– sequence: 3
  givenname: Ziru
  surname: Li
  fullname: Li, Ziru
– sequence: 4
  givenname: Weizhen
  orcidid: 0000-0001-8791-2798
  surname: Zhang
  fullname: Zhang, Weizhen
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31349604$$D View this record in MEDLINE/PubMed
BookMark eNqFkl9LHDEUxUNRqrW-9AOUQF9sYdr8mUlmXgrLbleF1fbB95DJ3LiR2WRNMoLfvlm0VqXQvCSQX849N-e-Q3s-eEDoAyVfOe_INz9RSloqKXuDDhmRrBKi5nvPzgfoOKUbsluSSMHfogNOed0JUh-i29Mp4wtnYuhdyLpaQHR3MOB52GxLIZ8T1n7AF5B1H0aXIWHncV4D_hXDdYSUXPA4WHwZfDUbTVgXyuClzvker4pUxAuXQCfAJ5ez5Wrx-T3at3pMcPy4H6Gr5Y-r-Vm1-nl6Pp-tKtOQJldd39NikWsiGEiQhnfW1pQNtra95K1llhvOB0YHQTRtWaetMY0FLYRte36Evj_Ibqd-A4MprUQ9qm10Gx3vVdBOvbzxbq2uw50SktWE8CJw8igQw-0EKauNSwbGUXsIU1KM04YJKrr6_ygTjazbutmpfnqF3oQp-vIRRZAwLinholAfn5t_cv0ntwJ8eQBKcClFsE8IJWo3F-rvXBSYvIKNyzqX4ErjbvzXk9908bli
CitedBy_id crossref_primary_10_1152_ajpgi_00362_2020
crossref_primary_10_3389_fgene_2022_939751
crossref_primary_10_3724_abbs_2024131
crossref_primary_10_1186_s12951_021_01137_3
crossref_primary_10_3390_nu14224846
crossref_primary_10_1016_j_jep_2023_117656
crossref_primary_10_1134_S0003683824604670
crossref_primary_10_1186_s12944_024_02391_8
crossref_primary_10_3390_ijms231911710
crossref_primary_10_3390_ijms26031360
crossref_primary_10_3389_fphar_2023_1152042
crossref_primary_10_37586_2949_4745_4_2024_171_180
crossref_primary_10_1016_j_clim_2020_108575
crossref_primary_10_3390_metabo13010038
crossref_primary_10_1016_j_hnm_2025_200305
crossref_primary_10_1016_j_foodres_2022_112309
crossref_primary_10_1096_fj_202100939R
crossref_primary_10_37489_0235_2990_2024_69_7_8_67_79
crossref_primary_10_3892_mmr_2024_13375
crossref_primary_10_1007_s12010_024_04879_6
crossref_primary_10_1016_j_biopha_2021_111778
crossref_primary_10_1016_j_chemosphere_2020_129004
crossref_primary_10_3389_fmicb_2023_1146672
crossref_primary_10_3390_foods11020231
crossref_primary_10_3390_microorganisms11051134
crossref_primary_10_3389_fnut_2023_1155306
crossref_primary_10_1016_j_metop_2021_100090
crossref_primary_10_1016_j_foodres_2025_116207
crossref_primary_10_1016_j_phymed_2023_154979
crossref_primary_10_1016_j_jnutbio_2023_109347
crossref_primary_10_1016_j_jff_2023_105735
crossref_primary_10_1016_j_micpath_2023_106436
crossref_primary_10_1016_j_ecoenv_2023_115560
crossref_primary_10_1016_j_phymed_2024_155517
crossref_primary_10_3389_fphar_2022_829686
crossref_primary_10_1016_j_jpha_2021_10_003
crossref_primary_10_1186_s12967_024_04996_0
crossref_primary_10_1016_j_lfs_2021_119135
crossref_primary_10_33590_emj_10310251
crossref_primary_10_3389_fmicb_2022_984019
crossref_primary_10_3389_fnut_2023_1120254
crossref_primary_10_3390_md19030148
crossref_primary_10_1016_j_gendis_2021_12_013
crossref_primary_10_3389_fmicb_2024_1288856
crossref_primary_10_3390_livers2010003
crossref_primary_10_1016_j_jhazmat_2024_136104
crossref_primary_10_3390_applbiosci3010008
crossref_primary_10_1111_jam_15078
crossref_primary_10_1093_jmcb_mjab051
crossref_primary_10_1177_1535370219900898
crossref_primary_10_12677_pi_2024_133019
crossref_primary_10_1016_j_jnutbio_2021_108799
crossref_primary_10_3390_cancers15051375
crossref_primary_10_1007_s11426_024_2191_y
crossref_primary_10_1016_j_fbio_2025_105960
crossref_primary_10_1007_s00018_023_05061_7
crossref_primary_10_1016_j_cca_2021_10_014
crossref_primary_10_3389_fmicb_2022_908011
crossref_primary_10_3389_fcimb_2021_683743
crossref_primary_10_3390_ijms22031160
crossref_primary_10_1016_j_clnesp_2022_12_030
crossref_primary_10_1016_j_taap_2022_116174
crossref_primary_10_1016_j_jtcme_2021_09_006
crossref_primary_10_1039_D0FO02533J
crossref_primary_10_1002_JLB_3MR0121_277R
crossref_primary_10_3390_nu14091773
crossref_primary_10_1039_C9RA08721D
crossref_primary_10_1016_j_obmed_2024_100551
crossref_primary_10_3389_fmed_2022_822190
crossref_primary_10_1016_j_bbrc_2024_149882
crossref_primary_10_1038_s41575_021_00502_9
crossref_primary_10_3390_cimb45110573
crossref_primary_10_18786_2072_0505_2020_48_066
crossref_primary_10_3390_nu15071712
crossref_primary_10_1016_j_fbio_2024_104469
crossref_primary_10_1016_j_jff_2023_105640
crossref_primary_10_1016_j_fbio_2023_103376
crossref_primary_10_1053_j_gastro_2020_01_049
crossref_primary_10_1093_ibd_izad187
crossref_primary_10_3390_md21060360
crossref_primary_10_1186_s12876_024_03565_5
crossref_primary_10_1002_mco2_70012
crossref_primary_10_2147_IJN_S394802
crossref_primary_10_1080_07420528_2024_2329205
crossref_primary_10_3389_fmicb_2023_1145430
crossref_primary_10_1016_j_biopha_2021_112314
crossref_primary_10_1186_s12876_025_03756_8
crossref_primary_10_12998_wjcc_v9_i23_6654
crossref_primary_10_1038_s41598_023_42312_w
crossref_primary_10_1016_j_bioorg_2024_107369
crossref_primary_10_1016_j_lfs_2020_117762
crossref_primary_10_3390_nu16081169
crossref_primary_10_1111_brv_12765
crossref_primary_10_3390_ijms23095146
crossref_primary_10_1016_j_foodres_2024_115285
crossref_primary_10_3390_nu12082340
crossref_primary_10_1007_s12072_021_10138_1
crossref_primary_10_1038_s41522_025_00646_5
crossref_primary_10_1080_19490976_2022_2027853
crossref_primary_10_1097_HC9_0000000000000310
crossref_primary_10_3390_jpm11030238
crossref_primary_10_3390_microorganisms12122488
crossref_primary_10_22416_1382_4376_2024_34_4_64_74
crossref_primary_10_3389_fcimb_2023_1066053
crossref_primary_10_1016_j_phymed_2023_155229
crossref_primary_10_3389_fnut_2022_1037696
crossref_primary_10_3389_fphar_2023_1143785
crossref_primary_10_11569_wcjd_v29_i23_1355
crossref_primary_10_3390_metabo12060514
crossref_primary_10_4254_wjh_v15_i2_208
crossref_primary_10_3390_cimb46070399
crossref_primary_10_3390_cells12050793
crossref_primary_10_1155_2021_4232704
crossref_primary_10_3389_fmicb_2025_1523742
crossref_primary_10_3389_fcimb_2023_1119875
crossref_primary_10_1002_cbdv_202100987
crossref_primary_10_1016_j_micres_2024_127788
crossref_primary_10_1155_2022_6221340
crossref_primary_10_3390_ijms21093066
crossref_primary_10_3390_nu12051434
crossref_primary_10_3390_nu16081173
crossref_primary_10_1016_j_clinre_2024_102397
crossref_primary_10_3390_ijms242216034
crossref_primary_10_3389_fmicb_2023_1210517
crossref_primary_10_3390_ijms222413219
crossref_primary_10_3390_nu13103509
crossref_primary_10_1038_s41598_020_65051_8
crossref_primary_10_3390_genes13112142
crossref_primary_10_3389_fcimb_2022_855008
crossref_primary_10_3389_fphar_2024_1365294
crossref_primary_10_1016_j_fshw_2022_04_023
crossref_primary_10_1186_s12967_021_02814_5
crossref_primary_10_3390_toxics12060389
crossref_primary_10_3748_wjg_v26_i17_1993
crossref_primary_10_4254_wjh_v13_i12_2052
crossref_primary_10_1007_s00203_023_03752_0
crossref_primary_10_1111_jch_70012
crossref_primary_10_1007_s12072_024_10662_w
crossref_primary_10_1016_j_clnesp_2021_05_012
crossref_primary_10_1186_s12866_025_03852_5
crossref_primary_10_1016_j_diabres_2021_108951
crossref_primary_10_3390_ijms241310718
crossref_primary_10_1002_ptr_7517
crossref_primary_10_3390_ijms24098445
crossref_primary_10_1002_elsc_202300016
crossref_primary_10_3390_foods11172703
crossref_primary_10_1134_S0006297924110130
crossref_primary_10_1016_j_jnutbio_2021_108751
crossref_primary_10_3389_fendo_2023_1196831
crossref_primary_10_3389_fcimb_2022_1005318
crossref_primary_10_1002_ctd2_274
crossref_primary_10_1186_s12876_024_03547_7
crossref_primary_10_3389_fcimb_2022_824597
crossref_primary_10_3390_nu11092062
crossref_primary_10_1016_j_cellsig_2022_110442
crossref_primary_10_1590_1519_6984_266108
crossref_primary_10_3350_cmh_2024_0315
crossref_primary_10_1080_19490976_2024_2307568
Cites_doi 10.1016/j.immuni.2014.06.014
10.1007/s00125-010-1747-3
10.1128/IAI.00754-10
10.1016/j.immuni.2013.08.003
10.1053/j.gastro.2010.03.052
10.18632/oncotarget.5163
10.1371/journal.ppat.1005672
10.1189/jlb.4A0815-346R
10.1016/j.cmet.2016.05.005
10.3402/jev.v4.27066
10.1016/j.celrep.2018.03.109
10.1371/journal.pone.0011257
10.1038/nature04330
10.1177/0148607192016006529
10.1371/journal.pone.0047713
10.1152/ajpgi.00304.2014
10.1016/j.cmet.2018.07.001
10.1016/j.lfs.2008.07.021
10.1021/jf3008037
10.1038/pr.2014.157
10.1210/en.2004-1595
10.1152/ajpendo.00229.2010
10.1016/j.molmet.2017.10.003
10.1371/journal.pone.0093567
10.3389/fimmu.2016.00028
10.1038/ijo.2016.23
10.1016/j.cld.2017.08.010
10.1159/000452300
10.3390/nu11051101
10.1038/ncomms2852
10.1177/2050640618804444
10.1016/j.phytochem.2007.07.022
10.1016/j.ajpath.2017.08.005
10.4291/wjgp.v6.i4.110
10.3748/wjg.v20.i23.7381
10.1124/dmd.116.070615
10.1155/2016/6489012
10.1007/s12072-010-9202-6
10.1016/j.cmet.2009.08.001
10.4049/jimmunol.1402598
10.1073/pnas.0906112107
10.1038/nm.3145
10.1073/pnas.0600780103
10.1172/JCI83885
10.1111/j.1574-6968.2011.02329.x
10.1002/1097-4644(20010601)81:3<507::AID-JCB1064>3.0.CO;2-M
10.3389/fendo.2014.00081
10.1017/S0007114515003621
10.1038/s12276-018-0183-1
10.1074/jbc.C200651200
10.1128/IAI.01416-13
10.1113/EP085285
10.1128/IAI.73.4.2321-2326.2005
10.1371/journal.pone.0065211
10.1111/apt.13327
10.1096/fj.09-141929
10.1093/jn/120.7.668
10.1016/j.ajpath.2018.01.011
10.1074/jbc.M117.796631
10.1074/jbc.R500001200
10.1016/j.nutres.2014.08.012
10.1097/SHK.0000000000001129
10.1002/jnr.22030
10.1155/2016/3164312
10.1002/chem.200801121
10.1073/pnas.161293498
10.3748/wjg.v13.i20.2826
10.1515/jtim-2017-0027
10.1128/IAI.73.1.193-200.2005
10.1074/jbc.M112.428896
10.1016/S0022-2275(20)41116-2
10.1016/j.mam.2017.04.004
10.1139/o05-041
10.1002/hep.28431
10.1111/1758-2229.12319
10.1080/09687688.2017.1400602
10.1042/CS20160838
10.1096/fj.201800544
10.1080/13813455.2017.1398262
10.1111/jgh.12924
10.1002/pmic.201000212
10.3389/fendo.2014.00085
10.4049/jimmunol.1601462
10.1016/j.ajpath.2012.10.014
10.1007/s00441-015-2165-0
10.1128/IAI.00942-16
10.1194/jlr.M051680
10.1194/jlr.R036012
10.1172/JCI25604
10.1017/S0007114512003923
10.1007/s00125-007-0654-8
10.1096/fasebj.30.1_supplement.272.2
10.1128/AEM.06396-11
10.1021/jf502830b
10.1038/srep17192
10.4239/wjd.v7.i13.260
10.1039/C8FO01293H
10.1172/JCI44261
10.2337/db11-0004
10.1155/2010/453563
10.1136/gutjnl-2018-317726
10.1128/iai.63.7.2435-2442.1995
10.1016/j.cca.2015.06.026
10.1111/jgh.13488
10.3748/wjg.v23.i1.60
10.1126/scisignal.aan4144
10.1111/nure.12024
10.1159/000181181
10.1016/j.bbadis.2004.11.013
10.1080/19490976.2016.1156827
10.1159/000335820
10.3164/jcbn.13-49
10.1128/AEM.00166-10
10.1016/j.celrep.2014.12.036
10.1186/1476-9255-7-15
10.1128/mSystems.00070-16
10.1016/j.chom.2016.10.021
10.1042/BCJ20160510
10.3389/fimmu.2014.00177
10.1016/j.celrep.2014.10.032
10.1111/apt.14119
10.1096/fasebj.31.1_supplement.168.7
10.1016/j.metabol.2015.12.012
10.3389/fmicb.2018.01967
10.3390/nu10121971
10.2174/1381612823666170622095324
10.4049/jimmunol.177.7.4841
10.1016/S0006-8993(98)01027-0
10.4161/oxim.2.5.9498
10.1016/j.cotox.2017.01.003
10.1096/fj.201600275R
ContentType Journal Article
Copyright 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2019 by the authors. 2019
Copyright_xml – notice: 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2019 by the authors. 2019
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TS
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
7S9
L.6
5PM
DOI 10.3390/nu11081712
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Physical Education Index
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
Physical Education Index
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
CrossRef
MEDLINE
MEDLINE - Academic
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 2072-6643
ExternalDocumentID PMC6724003
31349604
10_3390_nu11081712
Genre Journal Article
Review
GrantInformation_xml – fundername: the National Natural Science Foundation of China
  grantid: 81730020
– fundername: the National Natural Science Foundation of China
  grantid: 81700516
– fundername: the Projects funded by China Postdoctoral Science Foundation
  grantid: 2018M641113
– fundername: the Major National Research Grant of China
  grantid: 2017YFSF090203
GroupedDBID ---
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
A8Z
AADQD
AAFWJ
AAHBH
AAWTL
AAYXX
ABUWG
ACIWK
ACPRK
AENEX
AFKRA
AFRAH
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
APEBS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
DIK
E3Z
EBD
ECGQY
EIHBH
ESTFP
EYRJQ
F5P
FYUFA
GX1
HMCUK
HYE
KQ8
LK8
M1P
M48
MODMG
M~E
OK1
P2P
P6G
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TR2
UKHRP
3V.
ATCPS
BBNVY
BHPHI
CGR
CUY
CVF
ECM
EIF
GROUPED_DOAJ
HCIFZ
M0K
M7P
NPM
7TS
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c505t-9bb19603a062e7e7c39ff412df4fb738f2f3c33d21d60a1829afcc5fea66f8b3
IEDL.DBID M48
ISSN 2072-6643
IngestDate Thu Aug 21 18:20:19 EDT 2025
Fri Jul 11 16:00:31 EDT 2025
Thu Jul 10 22:42:16 EDT 2025
Fri Jul 25 09:17:24 EDT 2025
Thu Jan 02 22:59:31 EST 2025
Tue Jul 01 02:30:37 EDT 2025
Thu Apr 24 22:57:51 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords metabolism
metabolite
liver disease
gut microbiota
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c505t-9bb19603a062e7e7c39ff412df4fb738f2f3c33d21d60a1829afcc5fea66f8b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-8791-2798
0000-0002-3483-0729
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/nu11081712
PMID 31349604
PQID 2302371036
PQPubID 2032353
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6724003
proquest_miscellaneous_2315261694
proquest_miscellaneous_2265748453
proquest_journals_2302371036
pubmed_primary_31349604
crossref_primary_10_3390_nu11081712
crossref_citationtrail_10_3390_nu11081712
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190725
PublicationDateYYYYMMDD 2019-07-25
PublicationDate_xml – month: 7
  year: 2019
  text: 20190725
  day: 25
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Nutrients
PublicationTitleAlternate Nutrients
PublicationYear 2019
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Tiratterra (ref_101) 2018; 31
Zhu (ref_115) 2016; 30
Amakura (ref_132) 2008; 69
ref_130
McMillin (ref_97) 2016; 30
Busbee (ref_133) 2013; 71
Tedelind (ref_71) 2007; 13
Borderie (ref_21) 2015; 450
Minton (ref_43) 2018; 18
Thomas (ref_110) 2009; 10
Groen (ref_58) 2013; 54
Girardin (ref_36) 2003; 278
Jin (ref_17) 2017; 32
Yilmaz (ref_121) 2015; 4
(ref_128) 2011; 76
Sharifnia (ref_10) 2015; 309
Jin (ref_75) 2015; 114
ref_126
Santoro (ref_47) 2016; 126
Levels (ref_18) 2005; 73
Natarajan (ref_64) 2016; 101
ref_23
Abildgaard (ref_94) 2018; 124
ref_120
Venkatesh (ref_90) 2014; 41
Shih (ref_118) 2015; 56
Siljander (ref_49) 2015; 4
Natividad (ref_88) 2018; 28
Poggi (ref_13) 2007; 50
Watanabe (ref_111) 2006; 439
Wan (ref_14) 1995; 63
Nordlund (ref_131) 2012; 60
Wan (ref_34) 2014; 34
Kim (ref_2) 2018; 22
Cariou (ref_108) 2005; 146
Koeth (ref_116) 2013; 19
Chow (ref_96) 2017; 56
Buzzetti (ref_3) 2016; 65
Pang (ref_15) 2017; 46
Tremblay (ref_103) 2017; 85
Djuric (ref_129) 2017; 31
Bellahcene (ref_66) 2013; 109
Nishina (ref_70) 1990; 120
Osawa (ref_41) 2006; 177
Chu (ref_81) 2012; 78
Chakraborti (ref_59) 2015; 6
Li (ref_136) 2018; 9
Meli (ref_38) 2014; 5
Mridha (ref_46) 2017; 131
Chimerel (ref_84) 2014; 9
Faria (ref_22) 2008; 83
Bielig (ref_53) 2011; 79
Pappo (ref_7) 1992; 16
Zhang (ref_105) 2016; 1
Keren (ref_98) 2015; 7
Zhou (ref_73) 2017; 23
Fleischer (ref_65) 2015; 361
Zelante (ref_86) 2013; 39
Tsukamoto (ref_19) 2018; 293
Gu (ref_52) 2019; 51
Choi (ref_56) 2011; 11
ref_85
Thursby (ref_4) 2017; 474
Humann (ref_28) 2009; 1
Anhe (ref_124) 2017; 6
Eo (ref_123) 2015; 63
Bansal (ref_82) 2010; 107
Wong (ref_16) 2015; 42
Zhu (ref_5) 2015; 77
Ceccarelli (ref_12) 2015; 6
Cengiz (ref_31) 2015; 30
Yoshida (ref_78) 2011; 322
Devlin (ref_79) 2016; 20
ref_57
Himes (ref_33) 2010; 24
Inoue (ref_61) 2014; 5
Muili (ref_100) 2013; 288
Harte (ref_8) 2010; 7
ref_51
Verdone (ref_77) 2005; 83
Gomes (ref_42) 2016; 99
Baena (ref_54) 2011; 121
Fukunishi (ref_11) 2014; 54
Yano (ref_80) 2010; 76
Miura (ref_48) 2010; 139
Rozman (ref_114) 2011; 2011
Martinic (ref_37) 2017; 198
Yang (ref_106) 2010; 4
Karbownik (ref_93) 2001; 81
Murray (ref_134) 2017; 2
McDonald (ref_29) 2005; 280
Kawasaki (ref_35) 2008; 14
Cornall (ref_63) 2011; 28
Ye (ref_76) 2018; 9
Bauer (ref_45) 2001; 98
Bai (ref_55) 2014; 82
Brody (ref_72) 2016; 40
Hwang (ref_92) 2009; 87
Oellgaard (ref_119) 2017; 23
Fennema (ref_112) 2016; 44
Abenavoli (ref_125) 2017; 5
Pandey (ref_127) 2009; 2
Zhou (ref_74) 2018; 50
Ruhl (ref_135) 2005; 1740
ref_113
Hofmann (ref_104) 2006; 103
Ehses (ref_32) 2010; 53
Nighot (ref_25) 2017; 187
Nonogaki (ref_40) 1995; 36
Ang (ref_62) 2016; 7
Younossi (ref_1) 2016; 64
Miura (ref_30) 2014; 20
Kimura (ref_68) 2013; 4
Warrier (ref_117) 2015; 10
Guo (ref_24) 2013; 182
Wan (ref_27) 2016; 2016
Bjursell (ref_67) 2011; 300
Krishnan (ref_89) 2018; 23
Cohen (ref_83) 2016; 7
Ma (ref_107) 2006; 116
Guo (ref_26) 2015; 195
Wahlstrom (ref_102) 2016; 24
ref_109
ref_44
Alexeev (ref_87) 2018; 188
Anand (ref_50) 2016; 33
Poeggeler (ref_91) 1999; 815
Kimura (ref_60) 2014; 5
Ni (ref_122) 2015; 5
Taoka (ref_95) 2016; 7
Rau (ref_69) 2018; 6
ref_9
Yang (ref_99) 2016; 94
Hamann (ref_20) 2005; 73
ref_6
Schertzer (ref_39) 2011; 60
References_xml – volume: 41
  start-page: 296
  year: 2014
  ident: ref_90
  article-title: Symbiotic bacterial metabolites regulate gastrointestinal barrier function via the xenobiotic sensor PXR and Toll-like receptor 4
  publication-title: Immunity
  doi: 10.1016/j.immuni.2014.06.014
– volume: 53
  start-page: 1795
  year: 2010
  ident: ref_32
  article-title: Toll-like receptor 2-deficient mice are protected from insulin resistance and beta cell dysfunction induced by a high-fat diet
  publication-title: Diabetologia
  doi: 10.1007/s00125-010-1747-3
– volume: 79
  start-page: 1418
  year: 2011
  ident: ref_53
  article-title: NOD-like receptor activation by outer membrane vesicles from Vibrio cholerae non-O1 non-O139 strains is modulated by the quorum-sensing regulator HapR
  publication-title: Infect. Immun.
  doi: 10.1128/IAI.00754-10
– volume: 39
  start-page: 372
  year: 2013
  ident: ref_86
  article-title: Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22
  publication-title: Immunity
  doi: 10.1016/j.immuni.2013.08.003
– volume: 139
  start-page: 323
  year: 2010
  ident: ref_48
  article-title: Toll-like receptor 9 promotes steatohepatitis by induction of interleukin-1beta in mice
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2010.03.052
– volume: 6
  start-page: 41434
  year: 2015
  ident: ref_12
  article-title: LPS-induced TNF-alpha factor mediates pro-inflammatory and pro-fibrogenic pattern in non-alcoholic fatty liver disease
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.5163
– ident: ref_57
  doi: 10.1371/journal.ppat.1005672
– volume: 99
  start-page: 771
  year: 2016
  ident: ref_42
  article-title: TLR9 is required for MAPK/NF-kappaB activation but does not cooperate with TLR2 or TLR6 to induce host resistance to Brucella abortus
  publication-title: J. Leukoc. Biol.
  doi: 10.1189/jlb.4A0815-346R
– volume: 31
  start-page: 266
  year: 2018
  ident: ref_101
  article-title: Role of bile acids in inflammatory bowel disease
  publication-title: Ann. Gastroenterol.
– volume: 24
  start-page: 41
  year: 2016
  ident: ref_102
  article-title: Intestinal Crosstalk between Bile Acids and Microbiota and Its Impact on Host Metabolism
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2016.05.005
– volume: 4
  start-page: 27066
  year: 2015
  ident: ref_49
  article-title: Biological properties of extracellular vesicles and their physiological functions
  publication-title: J. Extracell. Vesicles
  doi: 10.3402/jev.v4.27066
– volume: 23
  start-page: 1099
  year: 2018
  ident: ref_89
  article-title: Gut Microbiota-Derived Tryptophan Metabolites Modulate Inflammatory Response in Hepatocytes and Macrophages
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2018.03.109
– ident: ref_130
  doi: 10.1371/journal.pone.0011257
– volume: 439
  start-page: 484
  year: 2006
  ident: ref_111
  article-title: Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation
  publication-title: Nature
  doi: 10.1038/nature04330
– volume: 16
  start-page: 529
  year: 1992
  ident: ref_7
  article-title: Polymyxin B reduces total parenteral nutrition-associated hepatic steatosis by its antibacterial activity and by blocking deleterious effects of lipopolysaccharide
  publication-title: JPEN J. Parenter Enteral. Nutr.
  doi: 10.1177/0148607192016006529
– ident: ref_9
  doi: 10.1371/journal.pone.0047713
– volume: 309
  start-page: G270
  year: 2015
  ident: ref_10
  article-title: Hepatic TLR4 signaling in obese NAFLD
  publication-title: Am. J. Physiol. Gastrointest. Liver Physiol.
  doi: 10.1152/ajpgi.00304.2014
– volume: 28
  start-page: 737
  year: 2018
  ident: ref_88
  article-title: Impaired Aryl Hydrocarbon Receptor Ligand Production by the Gut Microbiota Is a Key Factor in Metabolic Syndrome
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2018.07.001
– volume: 83
  start-page: 502
  year: 2008
  ident: ref_22
  article-title: Attenuation of the cardiovascular and metabolic complications of obesity in CD14 knockout mice
  publication-title: Life Sci.
  doi: 10.1016/j.lfs.2008.07.021
– volume: 60
  start-page: 8134
  year: 2012
  ident: ref_131
  article-title: Formation of Phenolic Microbial Metabolites and Short-Chain Fatty Acids from Rye, Wheat, and Oat Bran and Their Fractions in the Metabolical in Vitro Colon Model
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf3008037
– volume: 77
  start-page: 245
  year: 2015
  ident: ref_5
  article-title: Gut microbiome and nonalcoholic fatty liver diseases
  publication-title: Pediatr. Res.
  doi: 10.1038/pr.2014.157
– volume: 146
  start-page: 981
  year: 2005
  ident: ref_108
  article-title: Farnesoid X receptor: A new player in glucose metabolism?
  publication-title: Endocrinology
  doi: 10.1210/en.2004-1595
– volume: 300
  start-page: E211
  year: 2011
  ident: ref_67
  article-title: Improved glucose control and reduced body fat mass in free fatty acid receptor 2-deficient mice fed a high-fat diet
  publication-title: Am. J. Physiol. Endocrinol. Metab.
  doi: 10.1152/ajpendo.00229.2010
– volume: 6
  start-page: 1563
  year: 2017
  ident: ref_124
  article-title: A polyphenol-rich cranberry extract reverses insulin resistance and hepatic steatosis independently of body weight loss
  publication-title: Mol. Metab.
  doi: 10.1016/j.molmet.2017.10.003
– ident: ref_109
  doi: 10.1371/journal.pone.0093567
– volume: 7
  start-page: 28
  year: 2016
  ident: ref_62
  article-title: GPR41 and GPR43 in Obesity and Inflammation-Protective or Causative?
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2016.00028
– volume: 40
  start-page: 955
  year: 2016
  ident: ref_72
  article-title: Reprogramming of hepatic fat accumulation and ‘browning’ of adipose tissue by the short-chain fatty acid acetate
  publication-title: Int. J. Obes.
  doi: 10.1038/ijo.2016.23
– volume: 22
  start-page: 133
  year: 2018
  ident: ref_2
  article-title: Nonalcoholic Fatty Liver Disease and Metabolic Syndrome
  publication-title: Clin. Liver Dis.
  doi: 10.1016/j.cld.2017.08.010
– volume: 94
  start-page: 145
  year: 2016
  ident: ref_99
  article-title: Bile Acids and the Potential Role in Primary Biliary Cirrhosis
  publication-title: Digestion
  doi: 10.1159/000452300
– volume: 2011
  start-page: 783976
  year: 2011
  ident: ref_114
  article-title: Nonalcoholic Fatty liver disease: Focus on lipoprotein and lipid deregulation
  publication-title: J. Lipids
– ident: ref_120
  doi: 10.3390/nu11051101
– volume: 4
  start-page: 1829
  year: 2013
  ident: ref_68
  article-title: The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2852
– volume: 6
  start-page: 1496
  year: 2018
  ident: ref_69
  article-title: Fecal SCFAs and SCFA-producing bacteria in gut microbiome of human NAFLD as a putative link to systemic T-cell activation and advanced disease
  publication-title: United Eur. Gastroenterol. J
  doi: 10.1177/2050640618804444
– volume: 69
  start-page: 3117
  year: 2008
  ident: ref_132
  article-title: Influence of food polyphenols on aryl hydrocarbon receptor-signaling pathway estimated by in vitro bioassay
  publication-title: Phytochemistry
  doi: 10.1016/j.phytochem.2007.07.022
– volume: 187
  start-page: 2698
  year: 2017
  ident: ref_25
  article-title: Lipopolysaccharide-Induced Increase in Intestinal Epithelial Tight Permeability Is Mediated by Toll-Like Receptor 4/Myeloid Differentiation Primary Response 88 (MyD88) Activation of Myosin Light Chain Kinase Expression
  publication-title: Am. J. Pathol.
  doi: 10.1016/j.ajpath.2017.08.005
– volume: 6
  start-page: 110
  year: 2015
  ident: ref_59
  article-title: New-found link between microbiota and obesity
  publication-title: World J. Gastrointest. Pathophysiol.
  doi: 10.4291/wjgp.v6.i4.110
– volume: 20
  start-page: 7381
  year: 2014
  ident: ref_30
  article-title: Role of gut microbiota and Toll-like receptors in nonalcoholic fatty liver disease
  publication-title: World J. Gastroenterol.
  doi: 10.3748/wjg.v20.i23.7381
– volume: 44
  start-page: 1839
  year: 2016
  ident: ref_112
  article-title: Trimethylamine and Trimethylamine N-Oxide, a Flavin-Containing Monooxygenase 3 (FMO3)-Mediated Host-Microbiome Metabolic Axis Implicated in Health and Disease
  publication-title: Drug Metab. Dispos.
  doi: 10.1124/dmd.116.070615
– volume: 2016
  start-page: 6489012
  year: 2016
  ident: ref_27
  article-title: Role of NLRP3 Inflammasome in the Progression of NAFLD to NASH
  publication-title: Can. J. Gastroenterol. Hepatol.
  doi: 10.1155/2016/6489012
– volume: 4
  start-page: 741
  year: 2010
  ident: ref_106
  article-title: Effects of nuclear receptor FXR on the regulation of liver lipid metabolism in patients with non-alcoholic fatty liver disease
  publication-title: Hepatol. Int.
  doi: 10.1007/s12072-010-9202-6
– volume: 10
  start-page: 167
  year: 2009
  ident: ref_110
  article-title: TGR5-mediated bile acid sensing controls glucose homeostasis
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2009.08.001
– volume: 195
  start-page: 4999
  year: 2015
  ident: ref_26
  article-title: Lipopolysaccharide Regulation of Intestinal Tight Junction Permeability Is Mediated by TLR4 Signal Transduction Pathway Activation of FAK and MyD88
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1402598
– volume: 107
  start-page: 228
  year: 2010
  ident: ref_82
  article-title: The bacterial signal indole increases epithelial-cell tight-junction resistance and attenuates indicators of inflammation
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0906112107
– volume: 19
  start-page: 576
  year: 2013
  ident: ref_116
  article-title: Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis
  publication-title: Nat. Med.
  doi: 10.1038/nm.3145
– volume: 103
  start-page: 4333
  year: 2006
  ident: ref_104
  article-title: How bile acids confer gut mucosal protection against bacteria
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0600780103
– volume: 126
  start-page: 859
  year: 2016
  ident: ref_47
  article-title: Hepatocyte mitochondrial DNA drives nonalcoholic steatohepatitis by activation of TLR9
  publication-title: J. Clin. Investig.
  doi: 10.1172/JCI83885
– volume: 322
  start-page: 51
  year: 2011
  ident: ref_78
  article-title: Molecular basis of indole production catalyzed by tryptophanase in the genus Prevotella
  publication-title: FEMS Microbiol. Lett.
  doi: 10.1111/j.1574-6968.2011.02329.x
– volume: 81
  start-page: 507
  year: 2001
  ident: ref_93
  article-title: Indole-3-propionic acid, a melatonin-related molecule, protects hepatic microsomal membranes from iron-induced oxidative damage: Relevance to cancer reduction
  publication-title: J. Cell Biochem.
  doi: 10.1002/1097-4644(20010601)81:3<507::AID-JCB1064>3.0.CO;2-M
– volume: 5
  start-page: 81
  year: 2014
  ident: ref_61
  article-title: Regulation of Energy Homeostasis by GPR41
  publication-title: Front. Endocrinol.
  doi: 10.3389/fendo.2014.00081
– volume: 114
  start-page: 1745
  year: 2015
  ident: ref_75
  article-title: Supplementation of sodium butyrate protects mice from the development of non-alcoholic steatohepatitis (NASH)
  publication-title: Br. J. Nutr.
  doi: 10.1017/S0007114515003621
– volume: 50
  start-page: 157
  year: 2018
  ident: ref_74
  article-title: Sodium butyrate reduces high-fat diet-induced non-alcoholic steatohepatitis through upregulation of hepatic GLP-1R expression
  publication-title: Exp. Mol. Med.
  doi: 10.1038/s12276-018-0183-1
– volume: 278
  start-page: 8869
  year: 2003
  ident: ref_36
  article-title: Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.C200651200
– volume: 82
  start-page: 4001
  year: 2014
  ident: ref_55
  article-title: Identification and characterization of outer membrane vesicle-associated proteins in Salmonella enterica serovar Typhimurium
  publication-title: Infect. Immun.
  doi: 10.1128/IAI.01416-13
– volume: 101
  start-page: 478
  year: 2016
  ident: ref_64
  article-title: Olfaction in the kidney: “Smelling” gut microbial metabolites
  publication-title: Exp. Physiol.
  doi: 10.1113/EP085285
– volume: 73
  start-page: 2321
  year: 2005
  ident: ref_18
  article-title: Lipopolysaccharide is transferred from high-density to low-density lipoproteins by lipopolysaccharide-binding protein and phospholipid transfer protein
  publication-title: Infect. Immun.
  doi: 10.1128/IAI.73.4.2321-2326.2005
– ident: ref_23
  doi: 10.1371/journal.pone.0065211
– volume: 42
  start-page: 731
  year: 2015
  ident: ref_16
  article-title: Bacterial endotoxin and non-alcoholic fatty liver disease in the general population: A prospective cohort study
  publication-title: Aliment. Pharmacol. Ther.
  doi: 10.1111/apt.13327
– volume: 24
  start-page: 731
  year: 2010
  ident: ref_33
  article-title: Tlr2 is critical for diet-induced metabolic syndrome in a murine model
  publication-title: FASEB J.
  doi: 10.1096/fj.09-141929
– volume: 120
  start-page: 668
  year: 1990
  ident: ref_70
  article-title: Effects of propionate on lipid biosynthesis in isolated rat hepatocytes
  publication-title: J. Nutr.
  doi: 10.1093/jn/120.7.668
– volume: 188
  start-page: 1183
  year: 2018
  ident: ref_87
  article-title: Microbiota-Derived Indole Metabolites Promote Human and Murine Intestinal Homeostasis through Regulation of Interleukin-10 Receptor
  publication-title: Am. J. Pathol.
  doi: 10.1016/j.ajpath.2018.01.011
– volume: 18
  start-page: 418
  year: 2018
  ident: ref_43
  article-title: LC3 anchors TLR9 signalling
  publication-title: Nat. Rev. Immunol.
– volume: 293
  start-page: 10186
  year: 2018
  ident: ref_19
  article-title: Lipopolysaccharide (LPS)-binding protein stimulates CD14-dependent Toll-like receptor 4 internalization and LPS-induced TBK1-IKK-IRF3 axis activation
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M117.796631
– volume: 280
  start-page: 20177
  year: 2005
  ident: ref_29
  article-title: Peptidoglycan signaling in innate immunity and inflammatory disease
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.R500001200
– volume: 34
  start-page: 1045
  year: 2014
  ident: ref_34
  article-title: One-week high-fat diet leads to reduced toll-like receptor 2 expression and function in young healthy men
  publication-title: Nutr. Res.
  doi: 10.1016/j.nutres.2014.08.012
– volume: 51
  start-page: 256
  year: 2019
  ident: ref_52
  article-title: Toll-Like Receptor 4 Signaling Licenses the Cytosolic Transport of Lipopolysaccharide From Bacterial Outer Membrane Vesicles
  publication-title: Shock
  doi: 10.1097/SHK.0000000000001129
– volume: 87
  start-page: 2126
  year: 2009
  ident: ref_92
  article-title: Indole-3-propionic acid attenuates neuronal damage and oxidative stress in the ischemic hippocampus
  publication-title: J. Neurosci. Res.
  doi: 10.1002/jnr.22030
– ident: ref_126
  doi: 10.1155/2016/3164312
– volume: 14
  start-page: 10318
  year: 2008
  ident: ref_35
  article-title: Synthesis of diaminopimelic acid containing peptidoglycan fragments and tracheal cytotoxin (TCT) and investigation of their biological functions
  publication-title: Chemistry
  doi: 10.1002/chem.200801121
– volume: 98
  start-page: 9237
  year: 2001
  ident: ref_45
  article-title: Human TLR9 confers responsiveness to bacterial DNA via species-specific CpG motif recognition
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.161293498
– volume: 13
  start-page: 2826
  year: 2007
  ident: ref_71
  article-title: Anti-inflammatory properties of the short-chain fatty acids acetate and propionate: A study with relevance to inflammatory bowel disease
  publication-title: World J. Gastroenterol.
  doi: 10.3748/wjg.v13.i20.2826
– volume: 5
  start-page: 144
  year: 2017
  ident: ref_125
  article-title: Polyphenols Treatment in Patients with Nonalcoholic Fatty Liver Disease
  publication-title: J. Transl. Int. Med.
  doi: 10.1515/jtim-2017-0027
– volume: 73
  start-page: 193
  year: 2005
  ident: ref_20
  article-title: Acute-phase concentrations of lipopolysaccharide (LPS)-binding protein inhibit innate immune cell activation by different LPS chemotypes via different mechanisms
  publication-title: Infect. Immun.
  doi: 10.1128/IAI.73.1.193-200.2005
– volume: 288
  start-page: 570
  year: 2013
  ident: ref_100
  article-title: Bile acids induce pancreatic acinar cell injury and pancreatitis by activating calcineurin
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M112.428896
– volume: 36
  start-page: 1987
  year: 1995
  ident: ref_40
  article-title: Lipoteichoic acid stimulates lipolysis and hepatic triglyceride secretion in rats in vivo
  publication-title: J. Lipid Res.
  doi: 10.1016/S0022-2275(20)41116-2
– volume: 56
  start-page: 34
  year: 2017
  ident: ref_96
  article-title: The role of bile acids in nonalcoholic fatty liver disease and nonalcoholic steatohepatitis
  publication-title: Mol. Aspects Med.
  doi: 10.1016/j.mam.2017.04.004
– volume: 83
  start-page: 344
  year: 2005
  ident: ref_77
  article-title: Role of histone acetylation in the control of gene expression
  publication-title: Biochem. Cell Biol.
  doi: 10.1139/o05-041
– volume: 64
  start-page: 73
  year: 2016
  ident: ref_1
  article-title: Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes
  publication-title: Hepatology
  doi: 10.1002/hep.28431
– volume: 7
  start-page: 874
  year: 2015
  ident: ref_98
  article-title: Interactions between the intestinal microbiota and bile acids in gallstones patients
  publication-title: Environ. Microbiol. Rep.
  doi: 10.1111/1758-2229.12319
– volume: 33
  start-page: 125
  year: 2016
  ident: ref_50
  article-title: Bacterial outer membrane vesicles: New insights and applications
  publication-title: Mol. Membr. Biol.
  doi: 10.1080/09687688.2017.1400602
– volume: 131
  start-page: 2145
  year: 2017
  ident: ref_46
  article-title: TLR9 is up-regulated in human and murine NASH: Pivotal role in inflammatory recruitment and cell survival
  publication-title: Clin. Sci.
  doi: 10.1042/CS20160838
– ident: ref_85
  doi: 10.1096/fj.201800544
– volume: 124
  start-page: 306
  year: 2018
  ident: ref_94
  article-title: The microbial metabolite indole-3-propionic acid improves glucose metabolism in rats, but does not affect behaviour
  publication-title: Arch. Physiol. Biochem.
  doi: 10.1080/13813455.2017.1398262
– volume: 30
  start-page: 1190
  year: 2015
  ident: ref_31
  article-title: Role of serum toll-like receptors 2 and 4 in non-alcoholic steatohepatitis and liver fibrosis
  publication-title: J. Gastroenterol. Hepatol.
  doi: 10.1111/jgh.12924
– volume: 11
  start-page: 3424
  year: 2011
  ident: ref_56
  article-title: Proteomic analysis of outer membrane vesicles derived from Pseudomonas aeruginosa
  publication-title: Proteomics
  doi: 10.1002/pmic.201000212
– volume: 5
  start-page: 85
  year: 2014
  ident: ref_60
  article-title: The SCFA Receptor GPR43 and Energy Metabolism
  publication-title: Front. Endocrinol.
  doi: 10.3389/fendo.2014.00085
– volume: 198
  start-page: 2649
  year: 2017
  ident: ref_37
  article-title: The Bacterial Peptidoglycan-Sensing Molecules NOD1 and NOD2 Promote CD8(+) Thymocyte Selection
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1601462
– volume: 182
  start-page: 375
  year: 2013
  ident: ref_24
  article-title: Lipopolysaccharide causes an increase in intestinal tight junction permeability in vitro and in vivo by inducing enterocyte membrane expression and localization of TLR-4 and CD14
  publication-title: Am. J. Pathol.
  doi: 10.1016/j.ajpath.2012.10.014
– volume: 361
  start-page: 697
  year: 2015
  ident: ref_65
  article-title: Expression of odorant receptor Olfr78 in enteroendocrine cells of the colon
  publication-title: Cell Tissue Res.
  doi: 10.1007/s00441-015-2165-0
– volume: 85
  start-page: e00942-16
  year: 2017
  ident: ref_103
  article-title: Bile Acid Administration Elicits an Intestinal Antimicrobial Program and Reduces the Bacterial Burden in Two Mouse Models of Enteric Infection
  publication-title: Infect. Immun.
  doi: 10.1128/IAI.00942-16
– volume: 56
  start-page: 22
  year: 2015
  ident: ref_118
  article-title: Flavin containing monooxygenase 3 exerts broad effects on glucose and lipid metabolism and atherosclerosis
  publication-title: J. Lipid Res.
  doi: 10.1194/jlr.M051680
– volume: 54
  start-page: 2325
  year: 2013
  ident: ref_58
  article-title: The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism
  publication-title: J. Lipid Res.
  doi: 10.1194/jlr.R036012
– volume: 116
  start-page: 1102
  year: 2006
  ident: ref_107
  article-title: Farnesoid X receptor is essential for normal glucose homeostasis
  publication-title: J. Clin. Investig.
  doi: 10.1172/JCI25604
– volume: 109
  start-page: 1755
  year: 2013
  ident: ref_66
  article-title: Male mice that lack the G-protein-coupled receptor GPR41 have low energy expenditure and increased body fat content
  publication-title: Br. J. Nutr.
  doi: 10.1017/S0007114512003923
– volume: 50
  start-page: 1267
  year: 2007
  ident: ref_13
  article-title: C3H/HeJ mice carrying a toll-like receptor 4 mutation are protected against the development of insulin resistance in white adipose tissue in response to a high-fat diet
  publication-title: Diabetologia
  doi: 10.1007/s00125-007-0654-8
– volume: 30
  start-page: 272-2
  year: 2016
  ident: ref_115
  article-title: Increased circulating trimethylamine N-oxide, a gut-flora-dependent metabolite of choline and betaine in nonalcoholic fatty liver disease is associated with high serum bile acids
  publication-title: FASEB J.
  doi: 10.1096/fasebj.30.1_supplement.272.2
– volume: 78
  start-page: 411
  year: 2012
  ident: ref_81
  article-title: Indole production promotes Escherichia coli mixed-culture growth with Pseudomonas aeruginosa by inhibiting quorum signaling
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.06396-11
– volume: 63
  start-page: 349
  year: 2015
  ident: ref_123
  article-title: Brown Alga Ecklonia cava polyphenol extract ameliorates hepatic lipogenesis, oxidative stress, and inflammation by activation of AMPK and SIRT1 in high-fat diet-induced obese mice
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf502830b
– volume: 5
  start-page: 17192
  year: 2015
  ident: ref_122
  article-title: Astaxanthin prevents and reverses diet-induced insulin resistance and steatohepatitis in mice: A comparison with vitamin E
  publication-title: Sci. Rep.
  doi: 10.1038/srep17192
– volume: 7
  start-page: 260
  year: 2016
  ident: ref_95
  article-title: Role of bile acids in the regulation of the metabolic pathways
  publication-title: World J. Diabetes
  doi: 10.4239/wjd.v7.i13.260
– volume: 9
  start-page: 4651
  year: 2018
  ident: ref_136
  article-title: (-)-Epigallocatechin-3-gallate (EGCG) inhibits starch digestion and improves glucose homeostasis through direct or indirect activation of PXR/CAR-mediated phase II metabolism in diabetic mice
  publication-title: Food Funct.
  doi: 10.1039/C8FO01293H
– volume: 121
  start-page: 1471
  year: 2011
  ident: ref_54
  article-title: Mycobacteria release active membrane vesicles that modulate immune responses in a TLR2-dependent manner in mice
  publication-title: J. Clin. Investig.
  doi: 10.1172/JCI44261
– volume: 60
  start-page: 2206
  year: 2011
  ident: ref_39
  article-title: NOD1 activators link innate immunity to insulin resistance
  publication-title: Diabetes
  doi: 10.2337/db11-0004
– ident: ref_6
  doi: 10.1155/2010/453563
– ident: ref_51
  doi: 10.1136/gutjnl-2018-317726
– volume: 63
  start-page: 2435
  year: 1995
  ident: ref_14
  article-title: Role of lipopolysaccharide (LPS), interleukin-1, interleukin-6, tumor necrosis factor, and dexamethasone in regulation of LPS-binding protein expression in normal hepatocytes and hepatocytes from LPS-treated rats
  publication-title: Infect. Immun.
  doi: 10.1128/iai.63.7.2435-2442.1995
– volume: 450
  start-page: 97
  year: 2015
  ident: ref_21
  article-title: Presepsin (sCD14-ST), an innate immune response marker in sepsis
  publication-title: Clin. Chim. Acta
  doi: 10.1016/j.cca.2015.06.026
– volume: 32
  start-page: 708
  year: 2017
  ident: ref_17
  article-title: Loss of lipopolysaccharide-binding protein attenuates the development of diet-induced non-alcoholic fatty liver disease in mice
  publication-title: J. Gastroenterol. Hepatol.
  doi: 10.1111/jgh.13488
– volume: 23
  start-page: 60
  year: 2017
  ident: ref_73
  article-title: Sodium butyrate attenuates high-fat diet-induced steatohepatitis in mice by improving gut microbiota and gastrointestinal barrier
  publication-title: World J. Gastroenterol.
  doi: 10.3748/wjg.v23.i1.60
– ident: ref_44
  doi: 10.1126/scisignal.aan4144
– volume: 71
  start-page: 353
  year: 2013
  ident: ref_133
  article-title: Use of natural AhR ligands as potential therapeutic modalities against inflammatory disorders
  publication-title: Nutr. Rev.
  doi: 10.1111/nure.12024
– volume: 1
  start-page: 88
  year: 2009
  ident: ref_28
  article-title: Bacterial peptidoglycan degrading enzymes and their impact on host muropeptide detection
  publication-title: J. Innate. Immun.
  doi: 10.1159/000181181
– volume: 1740
  start-page: 162
  year: 2005
  ident: ref_135
  article-title: Induction of PXR-mediated metabolism by beta-carotene
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbadis.2004.11.013
– volume: 7
  start-page: 246
  year: 2016
  ident: ref_83
  article-title: The microbiota-derived metabolite indole decreases mucosal inflammation and injury in a murine model of NSAID enteropathy
  publication-title: Gut Microbes
  doi: 10.1080/19490976.2016.1156827
– volume: 28
  start-page: 949
  year: 2011
  ident: ref_63
  article-title: Diet-induced obesity up-regulates the abundance of GPR43 and GPR120 in a tissue specific manner
  publication-title: Cell Physiol. Biochem.
  doi: 10.1159/000335820
– volume: 54
  start-page: 39
  year: 2014
  ident: ref_11
  article-title: Lipopolysaccharides accelerate hepatic steatosis in the development of nonalcoholic fatty liver disease in Zucker rats
  publication-title: J. Clin. Biochem. Nutr.
  doi: 10.3164/jcbn.13-49
– volume: 76
  start-page: R6
  year: 2011
  ident: ref_128
  article-title: The role of dietary fiber in the bioaccessibility and bioavailability of fruit and vegetable antioxidants
  publication-title: J. Food Sci.
– volume: 4
  start-page: 161
  year: 2015
  ident: ref_121
  article-title: Carotenoids and non-alcoholic fatty liver disease
  publication-title: Hepatobiliary Surg. Nutr.
– volume: 76
  start-page: 4260
  year: 2010
  ident: ref_80
  article-title: Production of indole from L-tryptophan and effects of these compounds on biofilm formation by Fusobacterium nucleatum ATCC 25586
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.00166-10
– volume: 10
  start-page: 326
  year: 2015
  ident: ref_117
  article-title: The TMAO-Generating Enzyme Flavin Monooxygenase 3 Is a Central Regulator of Cholesterol Balance
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2014.12.036
– volume: 7
  start-page: 15
  year: 2010
  ident: ref_8
  article-title: Elevated endotoxin levels in non-alcoholic fatty liver disease
  publication-title: J. Inflamm.
  doi: 10.1186/1476-9255-7-15
– volume: 1
  start-page: e00070-16
  year: 2016
  ident: ref_105
  article-title: Farnesoid X Receptor Signaling Shapes the Gut Microbiota and Controls Hepatic Lipid Metabolism
  publication-title: MSystems
  doi: 10.1128/mSystems.00070-16
– volume: 20
  start-page: 709
  year: 2016
  ident: ref_79
  article-title: Modulation of a Circulating Uremic Solute via Rational Genetic Manipulation of the Gut Microbiota
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2016.10.021
– volume: 474
  start-page: 1823
  year: 2017
  ident: ref_4
  article-title: Introduction to the human gut microbiota
  publication-title: Biochem. J.
  doi: 10.1042/BCJ20160510
– volume: 5
  start-page: 177
  year: 2014
  ident: ref_38
  article-title: Role of innate immune response in non-alcoholic Fatty liver disease: Metabolic complications and therapeutic tools
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2014.00177
– volume: 9
  start-page: 1202
  year: 2014
  ident: ref_84
  article-title: Bacterial metabolite indole modulates incretin secretion from intestinal enteroendocrine L cells
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2014.10.032
– volume: 46
  start-page: 175
  year: 2017
  ident: ref_15
  article-title: Significant positive association of endotoxemia with histological severity in 237 patients with non-alcoholic fatty liver disease
  publication-title: Aliment. Pharmacol. Ther.
  doi: 10.1111/apt.14119
– volume: 31
  start-page: 168-7
  year: 2017
  ident: ref_129
  article-title: Predictors of Carotenoid Concentrations in Human Serum: Role of the Intestinal Microbiome
  publication-title: Faseb J.
  doi: 10.1096/fasebj.31.1_supplement.168.7
– volume: 65
  start-page: 1038
  year: 2016
  ident: ref_3
  article-title: The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD)
  publication-title: Metabolism
  doi: 10.1016/j.metabol.2015.12.012
– volume: 9
  start-page: 1967
  year: 2018
  ident: ref_76
  article-title: Butyrate Protects Mice Against Methionine-Choline-Deficient Diet-Induced Non-alcoholic Steatohepatitis by Improving Gut Barrier Function, Attenuating Inflammation and Reducing Endotoxin Levels
  publication-title: Front Microbiol.
  doi: 10.3389/fmicb.2018.01967
– ident: ref_113
  doi: 10.3390/nu10121971
– volume: 23
  start-page: 3699
  year: 2017
  ident: ref_119
  article-title: Trimethylamine N-oxide (TMAO) as a New Potential Therapeutic Target for Insulin Resistance and Cancer
  publication-title: Curr. Pharm. Des.
  doi: 10.2174/1381612823666170622095324
– volume: 177
  start-page: 4841
  year: 2006
  ident: ref_41
  article-title: Collaborative action of NF-kappaB and p38 MAPK is involved in CpG DNA-induced IFN-alpha and chemokine production in human plasmacytoid dendritic cells
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.177.7.4841
– volume: 815
  start-page: 382
  year: 1999
  ident: ref_91
  article-title: Indole-3-propionate: A potent hydroxyl radical scavenger in rat brain
  publication-title: Brain Res.
  doi: 10.1016/S0006-8993(98)01027-0
– volume: 2
  start-page: 270
  year: 2009
  ident: ref_127
  article-title: Plant polyphenols as dietary antioxidants in human health and disease
  publication-title: Oxid. Med. Cell. Longev.
  doi: 10.4161/oxim.2.5.9498
– volume: 2
  start-page: 15
  year: 2017
  ident: ref_134
  article-title: Ligand activation of the Ah receptor contributes to gastrointestinal homeostasis
  publication-title: Curr. Opin. Toxicol.
  doi: 10.1016/j.cotox.2017.01.003
– volume: 30
  start-page: 3658
  year: 2016
  ident: ref_97
  article-title: Effects of bile acids on neurological function and disease
  publication-title: FASEB J.
  doi: 10.1096/fj.201600275R
SSID ssj0000070763
Score 2.5714853
SecondaryResourceType review_article
Snippet Human gut microbiota has been increasingly recognized as a pivotal determinant of non-alcoholic fatty liver disease (NAFLD). Apart from the changes in the...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1712
SubjectTerms Animals
bacteria
Bacteria - genetics
Bacteria - metabolism
bile acids
bioactive compounds
carotenoids
Disease Progression
DNA
Fatty liver
Gastrointestinal Microbiome
glycolipids
Gut microbiota
hepatocytes
homeostasis
Host-Pathogen Interactions
Humans
indoles
ingredients
intestinal microorganisms
Intestines - microbiology
lipid metabolism
lipopolysaccharides
liver
Liver - metabolism
Liver - pathology
metabolites
Microbiota
Non-alcoholic Fatty Liver Disease - diagnosis
Non-alcoholic Fatty Liver Disease - metabolism
Non-alcoholic Fatty Liver Disease - microbiology
peptidoglycans
phenolic compounds
portal vein
Review
short chain fatty acids
Signal Transduction
trimethylamine
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwELWgXLggaPnYUpARCNGD1cRO7PUJrViWCnVXHIq0t8ifYiXqtGwWqf-emSSbsgX17DlYmbHnzfjlDSHvnM6852PJtI2aFUW0TEfDmYGCOVinyxCwDzlfyNPvxddluewbbuueVrm9E9uL2tcOe-QnHKfbQDoU8uPlFcOpUfi62o_QuE8eoHQZRrVaqqHH0mrZSNGpkgqo7k_SBmnvucr5bh76B1ze5kj-lXRmj8mjHi3SSefeJ-ReSPvkYJKgUr64pu9py99sG-MH5OrLpqHzVSes1Bg2hdj6HTzFE18n5EtQkzydhwb8jn8er-kqUcB_9BtytDp9DlpHuqgTm3STc1eOzkzTXNMzpG_QafeaQz8sJrOz6fFTcj77fP7plPUDFZgDoNOAPywcuEyYTPKggnJCx1jk3EfwkRLjyKNwQniee5kZqDy0iQ7paEbKOLbiGdlLsOEXhEJa90ZEB3DAFdpKq_TYe7gAvLc48mpEjrdft3K92DjOvPhZQdGBnqhuPDEibwfby05i479WR1snVf0xW1c3QTEib4ZlOCD46mFSqDdgw2WJgqmluMNGAIyRudTFiDzv_D5sRaCAo8xgRe1ExGCAAt27K2n1oxXqlgoZuuLw7q2_JA8BheGvZIyXR2Sv-bUJrwDpNPZ1G85_AACdAIA
  priority: 102
  providerName: ProQuest
Title Gut Microbiota-Derived Components and Metabolites in the Progression of Non-Alcoholic Fatty Liver Disease (NAFLD)
URI https://www.ncbi.nlm.nih.gov/pubmed/31349604
https://www.proquest.com/docview/2302371036
https://www.proquest.com/docview/2265748453
https://www.proquest.com/docview/2315261694
https://pubmed.ncbi.nlm.nih.gov/PMC6724003
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEB9qC9IXUevHaj0iitiHtbeb3eTyIHJ6vRbpHUVauLclmw88qDnb7on33ztz-6GtxQcfl0wgZCbJb7KT3w_gtVF9a9OBiFXpVZxlvoyV12msMWF2pVG5c3QPOZmKo7Ps8yyfbUCr39lM4NWtqR3pSZ1dnr_7ebH6gAv-PWWcmLLvhyXVsieSxIa38ESSpGQwaWB-DYMlpuu8Zie90WUb7nKi6BONVFt3NP2FN2-WTf5xDo3vw70GQLJh7fEHsOHCQ9gZBkyev63YG7Yu6Vzfle_AxeGyYpN5zbVU6XiE4fbDWUabwCJQCQXTwbKJqzAU6DHyFZsHhpCQnVDZVk3ZwRaeTRchHtZiunPDxrqqVuyYKjrYqP7Bw95Oh-Pj0d4jOB0fnH46ihuNhdgg9qnQRSWuwT7XfZE66aThyvssSa1Ht0k-8KnnhnObJlb0NSYjSntDFWpaCD8o-WPYDDjgp8DwpLeae4MIwWSqFKVUA2txT7C2JBWsCPba2S1Mwz9OMhjnBeYh5JTit1MieNXZfq9ZN2612m2dVLSBU6SkgoSwiYsIXnbNuGboR4gObrFEm1TkxKGa83_YcEQ2IhEqi-BJ7fduKG3ARCCvRURnQJzd11vC_Ouau1tIKtrlz_6753PYRsxGD8_iNN-Fzepy6V4gLqrKHtyRM9mDrY8H05Mv-HU4S3rrhfALzCcTJQ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKOcAFAQUaKGDEQ_Rgddfe9cYHhCJCSGkScQhSbiuvHyJS623JBpQfxX9kZjfZEkC99ezRarQznvnGHn9DyCujImt5VzJVeMWSxBdMec2ZhoLZFUalzuE55Hgih1-Tz7N0tkN-bd7CYFvlJibWgdqWBs_IjzhOt4F0KOT78wuGU6PwdnUzQqNxixO3-gkl2-LdcR_s-5rzwcfphyFbTxVgBrJ9BUoV4HWR0JHkLnOZEcr7JObWg6KZ6HruhRHC8tjKSAP8Vtob7MnSUvpuIeCzN8hNyLsR1nrZLGuPdGrqHCkaElQhVHQUlthlH2cx3057_2DZv1sy_8hxg7vkzhqc0l7jTffIjgv3yV4vQGF-tqJvaN0uWp_D75GLT8uKjucNj1OlWR9c-YezFANMGbA9g-pg6dhV4Gb40HlB54EC3KRfsCWsoQOhpaeTMrBeM6h3buhAV9WKjrBbhPabyyP6dtIbjPqHD8j0Ov70Q7IbQOF9QgFFWC28AfRhElXIIlNdayHeWFvghK0OOdz83dysuc1xxMZpDjUOWiK_tESHvGxlzxtGj_9KHWyMlK939SK_9MEOedEuw37ESxYdXLkEGS5T5GdNxRUyAlCTjKVKOuRRY_dWFYF8kTKClWzLI1oB5APfXgnzbzUvuMywIVg8vlr15-TWcDoe5aPjyckTchsAIL5iYzw9ILvV96V7CiCrKp7Vrk1Jfs1b6Td9WT3Z
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKKiEuCCiPlAJGPEQPq2zsXW98QCiQhpYmqwgVqbeV1w8RiTot2YDy0_h3zOyrBFBvPXu0Gu2M7W_sz98Q8lLL0Bg2EIHMnQyiyOWBdIoFCgpmm2sZW4vnkNNUHH6JPp3Gp1vkV_MWBmmVzZpYLtRmofGMvMewuw1sh1z0XE2LmI3G784vAuwghTetTTuNKkWO7fonlG_Lt0cjiPUrxsYHJx8Og7rDQKBh5y_AwRwyMOQqFMwmNtFcOhf1mXHgdMIHjjmuOTesb0SoAIpL5TTys5QQbpBz-OwNsp1gUdQh2-8P0tnn9oCnFNIRvJJE5VyGPb9Czn0_6bPNTfAfZPs3QfOPHW98h9yuoSodVrl1l2xZf4_sDD2U6Wdr-pqW5NHyVH6HXHxcFXQ6r1SdChWMILF_WENxuVl4JGtQ5Q2d2gKSDp89L-ncUwCfdIYEsUochC4cTRc-GFZte-eajlVRrOkEuSN0VF0l0TfpcDwZ7d8nJ9fxrx-QjgeHHxEKmMIo7jRgER3JXOSJHBgDq48xOfbb6pL95u9mulY6x4Yb3zKoeDAS2WUkuuRFa3te6Xv812qvCVJWz_FldpmRXfK8HYbZiVcuytvFCmyYiFGtNeZX2HDAUKIvZNQlD6u4t65wVI8UIYwkGxnRGqA6-OaIn38tVcJFgvRgvnu168_ITZhG2eQoPX5MbgEaxCdtAYv3SKf4vrJPAHEV-dM6tynJrnk2_QZrCUN0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gut+Microbiota-Derived+Components+and+Metabolites+in+the+Progression+of+Non-Alcoholic+Fatty+Liver+Disease+%28NAFLD%29&rft.jtitle=Nutrients&rft.au=Ji%2C+Yun&rft.au=Yin%2C+Yue&rft.au=Li%2C+Ziru&rft.au=Zhang%2C+Weizhen&rft.date=2019-07-25&rft.pub=MDPI&rft.eissn=2072-6643&rft.volume=11&rft.issue=8&rft_id=info:doi/10.3390%2Fnu11081712&rft_id=info%3Apmid%2F31349604&rft.externalDocID=PMC6724003
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-6643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-6643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-6643&client=summon