Quantitative profiling of N6-methyladenosine at single-base resolution in stem-differentiating xylem of Populus trichocarpa using Nanopore direct RNA sequencing
There are no comprehensive methods to identify N 6 -methyladenosine (m 6 A) at single-base resolution for every single transcript, which is necessary for the estimation of m 6 A abundance. We develop a new pipeline called Nanom6A for the identification and quantification of m 6 A modification at sin...
Saved in:
Published in | Genome Biology Vol. 22; no. 1; p. 22 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
BioMed Central
07.01.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | There are no comprehensive methods to identify
N
6
-methyladenosine (m
6
A) at single-base resolution for every single transcript, which is necessary for the estimation of m
6
A abundance. We develop a new pipeline called Nanom6A for the identification and quantification of m
6
A modification at single-base resolution using Nanopore direct RNA sequencing based on an XGBoost model. We validate our method using methylated RNA immunoprecipitation sequencing (MeRIP-Seq) and m
6
A-sensitive RNA-endoribonuclease–facilitated sequencing (m6A-REF-seq), confirming high accuracy. Using this method, we provide a transcriptome-wide quantification of m
6
A modification in stem-differentiating xylem and reveal that different alternative polyadenylation (APA) usage shows a different ratio of m
6
A. |
---|---|
AbstractList | There are no comprehensive methods to identify
N
6
-methyladenosine (m
6
A) at single-base resolution for every single transcript, which is necessary for the estimation of m
6
A abundance. We develop a new pipeline called Nanom6A for the identification and quantification of m
6
A modification at single-base resolution using Nanopore direct RNA sequencing based on an XGBoost model. We validate our method using methylated RNA immunoprecipitation sequencing (MeRIP-Seq) and m
6
A-sensitive RNA-endoribonuclease–facilitated sequencing (m6A-REF-seq), confirming high accuracy. Using this method, we provide a transcriptome-wide quantification of m
6
A modification in stem-differentiating xylem and reveal that different alternative polyadenylation (APA) usage shows a different ratio of m
6
A. There are no comprehensive methods to identify N6-methyladenosine (m6A) at single-base resolution for every single transcript, which is necessary for the estimation of m6A abundance. We develop a new pipeline called Nanom6A for the identification and quantification of m6A modification at single-base resolution using Nanopore direct RNA sequencing based on an XGBoost model. We validate our method using methylated RNA immunoprecipitation sequencing (MeRIP-Seq) and m6A-sensitive RNA-endoribonuclease–facilitated sequencing (m6A-REF-seq), confirming high accuracy. Using this method, we provide a transcriptome-wide quantification of m6A modification in stem-differentiating xylem and reveal that different alternative polyadenylation (APA) usage shows a different ratio of m6A. There are no comprehensive methods to identify N⁶-methyladenosine (m⁶A) at single-base resolution for every single transcript, which is necessary for the estimation of m⁶A abundance. We develop a new pipeline called Nanom6A for the identification and quantification of m⁶A modification at single-base resolution using Nanopore direct RNA sequencing based on an XGBoost model. We validate our method using methylated RNA immunoprecipitation sequencing (MeRIP-Seq) and m⁶A-sensitive RNA-endoribonuclease–facilitated sequencing (m6A-REF-seq), confirming high accuracy. Using this method, we provide a transcriptome-wide quantification of m⁶A modification in stem-differentiating xylem and reveal that different alternative polyadenylation (APA) usage shows a different ratio of m⁶A. There are no comprehensive methods to identify N6-methyladenosine (m6A) at single-base resolution for every single transcript, which is necessary for the estimation of m6A abundance. We develop a new pipeline called Nanom6A for the identification and quantification of m6A modification at single-base resolution using Nanopore direct RNA sequencing based on an XGBoost model. We validate our method using methylated RNA immunoprecipitation sequencing (MeRIP-Seq) and m6A-sensitive RNA-endoribonuclease-facilitated sequencing (m6A-REF-seq), confirming high accuracy. Using this method, we provide a transcriptome-wide quantification of m6A modification in stem-differentiating xylem and reveal that different alternative polyadenylation (APA) usage shows a different ratio of m6A.There are no comprehensive methods to identify N6-methyladenosine (m6A) at single-base resolution for every single transcript, which is necessary for the estimation of m6A abundance. We develop a new pipeline called Nanom6A for the identification and quantification of m6A modification at single-base resolution using Nanopore direct RNA sequencing based on an XGBoost model. We validate our method using methylated RNA immunoprecipitation sequencing (MeRIP-Seq) and m6A-sensitive RNA-endoribonuclease-facilitated sequencing (m6A-REF-seq), confirming high accuracy. Using this method, we provide a transcriptome-wide quantification of m6A modification in stem-differentiating xylem and reveal that different alternative polyadenylation (APA) usage shows a different ratio of m6A. |
ArticleNumber | 22 |
Author | Reddy, Anireddy S. N. Kohnen, Markus V. Gu, Lianfeng Xi, Feihu Gao, Yubang Liu, Xuqing Wu, Bizhi Wang, Huihui |
Author_xml | – sequence: 1 givenname: Yubang surname: Gao fullname: Gao, Yubang – sequence: 2 givenname: Xuqing surname: Liu fullname: Liu, Xuqing – sequence: 3 givenname: Bizhi surname: Wu fullname: Wu, Bizhi – sequence: 4 givenname: Huihui surname: Wang fullname: Wang, Huihui – sequence: 5 givenname: Feihu surname: Xi fullname: Xi, Feihu – sequence: 6 givenname: Markus V. surname: Kohnen fullname: Kohnen, Markus V. – sequence: 7 givenname: Anireddy S. N. surname: Reddy fullname: Reddy, Anireddy S. N. – sequence: 8 givenname: Lianfeng orcidid: 0000-0002-3810-2411 surname: Gu fullname: Gu, Lianfeng |
BookMark | eNqFkstq3TAQhk1JaS7tC3Ql6KYbt5IlS9amEEJvEE4vtNCdkOXxOQqy5Epy6HmbPGrknBTaLNqFGMH88_GP9J9WRz54qKrnBL8ipOOvE6G4lTVucDkNI7V4VJ0QJlgtOP5x9Mf9uDpN6QpjIlnDn1THlDJC246fVDdfFu2zzTrba0BzDKN11m9RGNGG1xPk3d7pAXxI1gPSGZW6dVD3OgGKkIJbsg0eWY9Shqke7DhChIIsxML5tXcwrbTPYV7cklCO1uyC0XHWaFlhaKN9mEMENNgIJqOvm3OU4OcC3pT20-rxqF2CZ_f1rPr-7u23iw_15af3Hy_OL2vT4jbXkvf9qJlhmkrGBskklkw0mgsASQ1mgvSmowMRYmTYNJxRY5hkPeEcsJD0rHpz4M5LP8FgygpROzVHO-m4V0Fb9XfH253ahmslhCQdJQXw8h4QQzGfsppsMuCc9hCWpJq2JZJTIbr_S5ngbXEo2iJ98UB6FZboy0usqq4jmApeVN1BZWJIKcKozN2XhtWqdYpgtSZGHRKjSmLUXWKUKKPNg9HfK_9j6BYKmMfS |
CitedBy_id | crossref_primary_10_1093_bib_bbae001 crossref_primary_10_3389_fmicb_2023_1043967 crossref_primary_10_1093_nar_gkae601 crossref_primary_10_1111_pbi_13829 crossref_primary_10_1016_j_tplants_2021_11_004 crossref_primary_10_1038_s41564_024_01638_5 crossref_primary_10_1186_s13059_023_02872_6 crossref_primary_10_1016_j_ymeth_2022_07_011 crossref_primary_10_1038_s41467_024_51639_5 crossref_primary_10_1101_gr_278960_124 crossref_primary_10_1016_j_csbj_2021_05_030 crossref_primary_10_1111_tpj_15270 crossref_primary_10_1016_j_tig_2023_04_006 crossref_primary_10_1093_nar_gkac830 crossref_primary_10_1371_journal_ppat_1010972 crossref_primary_10_1016_j_talanta_2023_124697 crossref_primary_10_1016_j_molcel_2024_12_014 crossref_primary_10_1038_s42003_025_07872_9 crossref_primary_10_1038_s41467_024_54368_x crossref_primary_10_1093_bib_bbad139 crossref_primary_10_1002_ijch_202300181 crossref_primary_10_1002_yea_3893 crossref_primary_10_1016_j_xplc_2023_100546 crossref_primary_10_1038_s41467_024_47953_7 crossref_primary_10_1128_msystems_01163_23 crossref_primary_10_3724_abbs_2024152 crossref_primary_10_1002_admt_202101550 crossref_primary_10_1128_mbio_03702_21 crossref_primary_10_18632_aging_204836 crossref_primary_10_1101_gr_278849_123 crossref_primary_10_3389_fgene_2022_1037134 crossref_primary_10_1038_s41467_024_48437_4 crossref_primary_10_1038_s41587_024_02135_0 crossref_primary_10_1016_j_pneurobio_2023_102500 crossref_primary_10_1016_j_xplc_2024_101064 crossref_primary_10_59717_j_xinn_life_2024_100112 crossref_primary_10_2174_1574893617666220815153653 crossref_primary_10_3389_fgene_2024_1443532 crossref_primary_10_1186_s13567_024_01424_5 crossref_primary_10_1093_plphys_kiac272 crossref_primary_10_1038_s12276_022_00821_0 crossref_primary_10_1016_j_molcel_2024_04_011 crossref_primary_10_1080_15476286_2024_2442856 crossref_primary_10_1111_tpj_16996 crossref_primary_10_1016_j_scienta_2021_110633 crossref_primary_10_1093_bib_bbad163 crossref_primary_10_1016_j_devcel_2024_12_033 crossref_primary_10_1016_j_gde_2024_102212 crossref_primary_10_1242_dev_201775 crossref_primary_10_1080_14737159_2022_2159381 crossref_primary_10_1002_ijch_202400014 crossref_primary_10_3389_fcell_2024_1392159 crossref_primary_10_1016_j_celrep_2024_114798 crossref_primary_10_1360_SSV_2023_0213 crossref_primary_10_3389_fhort_2024_1388028 crossref_primary_10_1080_15476286_2024_2315384 crossref_primary_10_1016_j_isci_2023_105941 crossref_primary_10_3389_fpls_2022_1102044 crossref_primary_10_1146_annurev_arplant_071122_085813 crossref_primary_10_1016_j_ymeth_2022_04_003 crossref_primary_10_1016_j_molcel_2025_01_014 crossref_primary_10_1016_j_csbj_2022_10_023 crossref_primary_10_1016_j_gpb_2022_09_001 crossref_primary_10_1093_hr_uhad284 crossref_primary_10_3390_genes12081125 crossref_primary_10_1016_j_ijbiomac_2025_140863 crossref_primary_10_1002_mas_21856 crossref_primary_10_2478_jtim_2023_0103 crossref_primary_10_1186_s13059_021_02598_3 crossref_primary_10_1038_s43586_024_00365_9 crossref_primary_10_1016_j_xinn_2021_100153 crossref_primary_10_1038_s41467_023_37596_5 crossref_primary_10_1093_jas_skac034 crossref_primary_10_1016_j_ijbiomac_2024_132433 crossref_primary_10_1016_j_hpj_2024_03_017 crossref_primary_10_1093_gigascience_giac045 crossref_primary_10_1002_advs_202203480 crossref_primary_10_1186_s13059_023_02921_0 crossref_primary_10_1038_s41592_022_01633_w crossref_primary_10_1080_19490976_2022_2078619 crossref_primary_10_2174_0113892029288843240402042529 crossref_primary_10_1360_TB_2024_0097 crossref_primary_10_1093_bioinformatics_btae375 crossref_primary_10_1093_plcell_koad044 crossref_primary_10_3390_mps7010007 crossref_primary_10_1111_pce_14844 crossref_primary_10_1093_nargab_lqae052 crossref_primary_10_1515_jpm_2021_0665 crossref_primary_10_1093_nar_gkad300 crossref_primary_10_1093_nar_gkac1061 crossref_primary_10_1186_s12864_024_10440_w crossref_primary_10_1038_s41592_022_01666_1 crossref_primary_10_1093_nar_gkaf166 crossref_primary_10_1093_plphys_kiac525 crossref_primary_10_1016_j_tig_2021_09_001 crossref_primary_10_1038_s41587_021_01108_x crossref_primary_10_1016_j_csbj_2023_03_023 crossref_primary_10_1080_15476286_2021_1978215 crossref_primary_10_1186_s13059_020_02241_7 crossref_primary_10_1038_s41467_025_56173_6 crossref_primary_10_1093_nar_gkaf175 crossref_primary_10_1093_treephys_tpad074 crossref_primary_10_1016_j_semcdb_2021_11_009 crossref_primary_10_1016_j_indcrop_2025_120549 crossref_primary_10_1186_s13059_025_03498_6 crossref_primary_10_1038_s41576_022_00559_5 crossref_primary_10_2478_jtim_2022_0025 |
Cites_doi | 10.3389/fgene.2019.00600 10.1111/jipb.13002 10.1016/j.cell.2019.06.013 10.1093/bioinformatics/bty421 10.1038/s41421-018-0019-0 10.1186/s13059-020-02241-7 10.1126/sciadv.aax0250 10.14806/ej.17.1.200 10.1038/nature11112 10.1038/nmeth.3317 10.1038/nprot.2012.148 10.1002/anie.201410647 10.1093/bioinformatics/btaa601 10.1093/bioinformatics/bty191 10.1038/s41598-018-37186-2 10.1038/s41467-018-07882-8 10.1261/rna.071332.119 10.1261/rna.072785.119 10.1038/nmeth.3453 10.7554/eLife.49658 10.1093/pcp/pcl018 10.1038/s41592-019-0617-2 10.1093/gigascience/giy037 10.1038/s41467-019-11272-z 10.1089/omi.2011.0118 10.1371/journal.pone.0216709 10.3390/genes10090690 10.1038/ncb2902 10.1101/gad.269415.115 10.1093/bioinformatics/btt171 10.1016/j.tplants.2019.01.005 10.1261/rna.041178.113 10.1016/j.celrep.2014.05.048 10.1016/j.cell.2012.05.003 |
ContentType | Journal Article |
Copyright | 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2021 |
Copyright_xml | – notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2021 |
DBID | AAYXX CITATION 3V. 7X7 7XB 88E 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 7S9 L.6 5PM |
DOI | 10.1186/s13059-020-02241-7 |
DatabaseName | CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1474-760X |
EndPage | 22 |
ExternalDocumentID | PMC7791831 10_1186_s13059_020_02241_7 |
GrantInformation_xml | – fundername: ; grantid: 2016YFD0600106 |
GroupedDBID | --- 0R~ 29H 4.4 53G 5GY 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAFWJ AAHBH AAJSJ AASML AAYXX ABUWG ACGFO ACGFS ACJQM ACPRK ADBBV ADUKV AEGXH AFKRA AFPKN AHBYD AIAGR ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIAM AOIJS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CITATION EBD EBLON EBS EMOBN FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK IAO IGS IHR ISR ITC KPI LK8 M1P M7P PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO ROL RPM RSV SJN SOJ SV3 UKHRP 3V. 7XB 8FK AZQEC DWQXO GNUQQ K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c505t-96bbfa4c4a3944d94909472a67ee93c0471bc83d177f40c2643cc494b166e0793 |
IEDL.DBID | 7X7 |
ISSN | 1474-760X 1474-7596 |
IngestDate | Thu Aug 21 18:11:24 EDT 2025 Fri Jul 11 10:13:35 EDT 2025 Fri Jul 11 03:15:14 EDT 2025 Fri Jul 25 11:43:34 EDT 2025 Tue Jul 01 03:10:48 EDT 2025 Thu Apr 24 22:52:48 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c505t-96bbfa4c4a3944d94909472a67ee93c0471bc83d177f40c2643cc494b166e0793 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-3810-2411 |
OpenAccessLink | https://www.proquest.com/docview/2478810376?pq-origsite=%requestingapplication% |
PMID | 33413586 |
PQID | 2478810376 |
PQPubID | 2040232 |
PageCount | 1 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7791831 proquest_miscellaneous_2551963778 proquest_miscellaneous_2476564375 proquest_journals_2478810376 crossref_citationtrail_10_1186_s13059_020_02241_7 crossref_primary_10_1186_s13059_020_02241_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-07 |
PublicationDateYYYYMMDD | 2021-01-07 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-07 day: 07 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Genome Biology |
PublicationYear | 2021 |
Publisher | BioMed Central |
Publisher_xml | – name: BioMed Central |
References | P Lindenbaum (2241_CR34) 2015; 10 T Chen (2241_CR30) 2015; 04-2 2241_CR39 N Liu (2241_CR15) 2013; 19 MA Garcia-Campos (2241_CR8) 2019; 178 2241_CR12 Y Wang (2241_CR21) 2014; 16 H Li (2241_CR19) 2018; 34 C Soneson (2241_CR27) 2019; 10 B Linder (2241_CR7) 2015; 12 AM Smith (2241_CR13) 2019; 14 KD Meyer (2241_CR16) 2012; 149 G-Z Luo (2241_CR4) 2014; 5 Z Zhang (2241_CR9) 2019; 5 Y Yue (2241_CR18) 2018; 4 L Shen (2241_CR2) 2016; 38 D Dominissini (2241_CR35) 2013; 8 D Kim (2241_CR22) 2015; 12 H Liu (2241_CR10) 2019; 10 M Martin (2241_CR38) 2011; 17 S Ke (2241_CR6) 2015; 29 2241_CR26 X Ji (2241_CR31) 2019; 10 2241_CR28 D Dominissini (2241_CR20) 2012; 485 J Zhai (2241_CR23) 2018; 34 F Pedregosa (2241_CR32) 2011; 12 RE Workman (2241_CR14) 2019; 16 X Chen (2241_CR33) 2019; 9 G Yu (2241_CR37) 2012; 16 2241_CR1 J Meng (2241_CR36) 2013; 29 2241_CR3 M Krause (2241_CR24) 2019; 25 K Chen (2241_CR5) 2015; 54 S Schwartz (2241_CR17) 2014; 8 DA Lorenz (2241_CR11) 2020; 26 H Teng (2241_CR29) 2018; 7 2241_CR40 2241_CR41 M-H Kim (2241_CR25) 2019; 10 2241_CR42 |
References_xml | – volume: 10 start-page: 600 year: 2019 ident: 2241_CR31 publication-title: Front Genet doi: 10.3389/fgene.2019.00600 – ident: 2241_CR28 doi: 10.1111/jipb.13002 – volume: 178 start-page: 731 year: 2019 ident: 2241_CR8 publication-title: Cell doi: 10.1016/j.cell.2019.06.013 – volume: 34 start-page: 3747 year: 2018 ident: 2241_CR23 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty421 – volume: 04-2 start-page: 1 year: 2015 ident: 2241_CR30 publication-title: R package version – volume: 4 start-page: 1 year: 2018 ident: 2241_CR18 publication-title: Cell Discov doi: 10.1038/s41421-018-0019-0 – ident: 2241_CR40 doi: 10.1186/s13059-020-02241-7 – volume: 5 start-page: eaax0250 year: 2019 ident: 2241_CR9 publication-title: Sci Adv doi: 10.1126/sciadv.aax0250 – volume: 17 start-page: 10 year: 2011 ident: 2241_CR38 publication-title: EMBnet J doi: 10.14806/ej.17.1.200 – volume: 485 start-page: 201 year: 2012 ident: 2241_CR20 publication-title: Nature doi: 10.1038/nature11112 – volume: 12 start-page: 357 year: 2015 ident: 2241_CR22 publication-title: Nat Methods doi: 10.1038/nmeth.3317 – volume: 8 start-page: 176 year: 2013 ident: 2241_CR35 publication-title: Nat Protoc doi: 10.1038/nprot.2012.148 – volume: 54 start-page: 1587 year: 2015 ident: 2241_CR5 publication-title: Angew Chem Int Ed doi: 10.1002/anie.201410647 – ident: 2241_CR12 doi: 10.1093/bioinformatics/btaa601 – volume: 34 start-page: 3094 year: 2018 ident: 2241_CR19 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty191 – volume: 9 start-page: 1 year: 2019 ident: 2241_CR33 publication-title: Sci Rep doi: 10.1038/s41598-018-37186-2 – volume: 10 start-page: 1 year: 2019 ident: 2241_CR10 publication-title: Nat Commun doi: 10.1038/s41467-018-07882-8 – volume: 25 start-page: 1229 year: 2019 ident: 2241_CR24 publication-title: RNA doi: 10.1261/rna.071332.119 – ident: 2241_CR42 doi: 10.1186/s13059-020-02241-7 – volume: 26 start-page: 19 year: 2020 ident: 2241_CR11 publication-title: RNA doi: 10.1261/rna.072785.119 – volume: 12 start-page: 767 year: 2015 ident: 2241_CR7 publication-title: Nat Methods doi: 10.1038/nmeth.3453 – ident: 2241_CR1 doi: 10.7554/eLife.49658 – volume: 5 start-page: 1 year: 2014 ident: 2241_CR4 publication-title: Nat Commun – ident: 2241_CR26 doi: 10.1093/pcp/pcl018 – volume: 16 start-page: 1297 year: 2019 ident: 2241_CR14 publication-title: Nat Methods doi: 10.1038/s41592-019-0617-2 – volume: 7 start-page: giy037 year: 2018 ident: 2241_CR29 publication-title: GigaScience doi: 10.1093/gigascience/giy037 – ident: 2241_CR41 doi: 10.1186/s13059-020-02241-7 – volume: 10 start-page: 1 year: 2019 ident: 2241_CR27 publication-title: Nat commun doi: 10.1038/s41467-019-11272-z – volume: 12 start-page: 2825 year: 2011 ident: 2241_CR32 publication-title: J Mach Learn Res – ident: 2241_CR39 doi: 10.1186/s13059-020-02241-7 – volume: 16 start-page: 284 year: 2012 ident: 2241_CR37 publication-title: Omics doi: 10.1089/omi.2011.0118 – volume: 10 start-page: m9 year: 2015 ident: 2241_CR34 publication-title: FigShare – volume: 14 start-page: e0216709 year: 2019 ident: 2241_CR13 publication-title: PLoS One doi: 10.1371/journal.pone.0216709 – volume: 10 start-page: 690 year: 2019 ident: 2241_CR25 publication-title: Genes doi: 10.3390/genes10090690 – volume: 16 start-page: 191 year: 2014 ident: 2241_CR21 publication-title: Nat Cell Biol doi: 10.1038/ncb2902 – volume: 29 start-page: 2037 year: 2015 ident: 2241_CR6 publication-title: Genes Dev doi: 10.1101/gad.269415.115 – volume: 29 start-page: 1565 year: 2013 ident: 2241_CR36 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt171 – ident: 2241_CR3 doi: 10.1016/j.tplants.2019.01.005 – volume: 19 start-page: 1848 year: 2013 ident: 2241_CR15 publication-title: Rna doi: 10.1261/rna.041178.113 – volume: 8 start-page: 284 year: 2014 ident: 2241_CR17 publication-title: Cell Rep doi: 10.1016/j.celrep.2014.05.048 – volume: 149 start-page: 1635 year: 2012 ident: 2241_CR16 publication-title: Cell doi: 10.1016/j.cell.2012.05.003 – volume: 38 start-page: 186 year: 2016 ident: 2241_CR2 publication-title: Cell |
SSID | ssj0019426 ssj0017866 |
Score | 2.6250029 |
Snippet | There are no comprehensive methods to identify
N
6
-methyladenosine (m
6
A) at single-base resolution for every single transcript, which is necessary for the... There are no comprehensive methods to identify N6-methyladenosine (m6A) at single-base resolution for every single transcript, which is necessary for the... There are no comprehensive methods to identify N⁶-methyladenosine (m⁶A) at single-base resolution for every single transcript, which is necessary for the... |
SourceID | pubmedcentral proquest crossref |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 22 |
SubjectTerms | Algorithms Datasets Enzymes Gene expression genome Immunoprecipitation Method methylation N6-methyladenosine nanopores Polyadenylation Populus trichocarpa precipitin tests Ribonucleic acid RNA Standard deviation Transcription Transcriptomes Xylem |
Title | Quantitative profiling of N6-methyladenosine at single-base resolution in stem-differentiating xylem of Populus trichocarpa using Nanopore direct RNA sequencing |
URI | https://www.proquest.com/docview/2478810376 https://www.proquest.com/docview/2476564375 https://www.proquest.com/docview/2551963778 https://pubmed.ncbi.nlm.nih.gov/PMC7791831 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Ra9swEBZdy2Avpes2lq4NKuxtiMa2rLOeRltaSqGhDSuEvRhZltdCaneLA8u_2U_tnSyny0teDEaKMbnz3Xenu-8Y-wpK2yxxSthklAkZQSKM1VKkZYXa5JJMega-m7G6upfX03QaEm7zUFbZ20RvqMvGUo78JCaed2pqU9-ffwuaGkWnq2GExhu2Q9RlpNUwXQVcEWSEVcKNlnHXakQFiKlWfQdNpk7maMhTLSiS8i5NwLqXeoWe64WT_3miyz22GyAkP-1k_p5tuXqfve2GSi4_sH93C1P71jE0ZLybyY3-iTcVHytBE6OXM1MSRzgCTG5aTtmCmRPkzzgG30EX-WPNieRZ9CNUWhIiPufvcuae6Gm3NPtrMefE8f_Q0EGO4VRG_4ujyW4Q1zveOUw-GZ_yULONyx_Z_eXFj_MrEeYwCIv4qBVaFUVlpJWGumhLLTXGhBAbBc7pxI7QvxUo8DICqOTIIsRKrJVaFpFSjgj4PrHtuqndZ8YztK0uViU4WcjSgK5UgVYDYVLhnKvMgEX9_57bQFJOszJmuQ9WMpV3sspRVrmXVQ4D9m31m-eOomPj7sNenHn4XOf5q3IN2PFqGT80Oj0xtWsWfg9iX5lAumEP4k-0aADZgMGaqqzejOi811fqxwdP6w2g0b5GB5tf8At7F1NZDWWB4JBtt38W7ghxUVsMvfIP2c7Zxfh2MvTZBbxOzn6-ALEPEKg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VIgQXVP7EQgtGghOyukkcT3xAqGqptrRdAWqlvQXHcWilJSlsVrBvwxPwjMzkZ8te9tbjyo5l7Yznm7Fn5gN4jdq4JPJaumiYSBVgJK0zSsZ5Qdrko0Q1HfhOx3p0rj5O4skG_O1rYTitsreJjaHOK8d35Lsh93nnojb9_uqHZNYofl3tKTRatTj2i18Uss3eHR2QfN-E4eGHs_2R7FgFpCO0r6XRWVZY5ZTlmtDcKEMRDoZWo_cmckOy1hltPw8QCzV05DBEzimjskBrz-3kaN1bcJuAd8jBHk6WAV6ACftG3Q-jwra0iRMeY6P7ip1E784IOGIjOXJrIFTiKipeu7qriZr_Id_hFtzvXFax1-rYA9jw5UO405JYLh7Bn89zWzalamQ4RcsBTngoqkKMtWSG6sXU5tyTnBxaYWvBtxNTLxk_BQX7ne6Ly1JwU2nZU7bUrDS0zu_F1H_n1T4x19h8JphT4KLihyMrOG3_myCIqCiO8KIFaPFlvCe6HHEafgznNyKhJ7BZVqV_CiIhW-5DnaNXmcotmkJnZKXILcu894UdQND_76nrmqIzN8c0bYKjRKetrFKSVdrIKsUBvF1-c9W2BFk7e7sXZ9qZh1l6rcwDeLUcpoPNrzW29NW8mUO-toowXjOH_F2yoIjJAHBFVZY74_bhqyPl5UXTRhzRkD0Pnq3f4Eu4Ozo7PUlPjsbHz-FeyCk9fAOF27BZ_5z7HfLJ6uxFcxAEfL3pk_cPZlRISQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantitative+profiling+of+N6-methyladenosine+at+single-base+resolution+in+stem-differentiating+xylem+of+Populus+trichocarpa+using+Nanopore+direct+RNA+sequencing&rft.jtitle=Genome+biology&rft.au=Gao%2C+Yubang&rft.au=Liu%2C+Xuqing&rft.au=Wu%2C+Bizhi&rft.au=Wang%2C+Huihui&rft.date=2021-01-07&rft.issn=1474-760X&rft.eissn=1474-760X&rft.volume=22&rft.issue=1&rft_id=info:doi/10.1186%2Fs13059-020-02241-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s13059_020_02241_7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1474-760X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1474-760X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1474-760X&client=summon |