Variability of Sub-Canopy Flow, Temperature, and Horizontal Advection in Moderately Complex Terrain

We examine the space-time structure of the wind and temperature fields, as well as that of the resulting spatial temperature gradients and horizontal advection of sensible heat, in the sub-canopy of a forest with a dense overstorey in moderately complex terrain. Data were collected from a sensor net...

Full description

Saved in:
Bibliographic Details
Published inBoundary-layer meteorology Vol. 139; no. 1; pp. 61 - 81
Main Author Thomas, Christoph K
Format Journal Article
LanguageEnglish
Published Dordrecht Dordrecht : Springer Netherlands 01.04.2011
Springer Netherlands
Springer
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0006-8314
1573-1472
DOI10.1007/s10546-010-9578-9

Cover

Loading…
Abstract We examine the space-time structure of the wind and temperature fields, as well as that of the resulting spatial temperature gradients and horizontal advection of sensible heat, in the sub-canopy of a forest with a dense overstorey in moderately complex terrain. Data were collected from a sensor network consisting of ten stations and subject to orthogonal decomposition using the multiresolution basis set and stochastic analyses including two-point correlations, dimensional structure functions, and various other bulk measures for space and time variability. Despite some similarities, fundamental differences were found in the space-time structure of the motions dominating the variability of the sub-canopy wind and temperature fields. The dominating motions occupy similar spatial, but different temporal, scales. A conceptual space-time diagram was constructed based on the stochastic analysis that includes the important end members of the spatial and temporal scales of the observed motions of both variables. Short-lived and small-scale motions govern the variability of the wind, while the diurnal temperature oscillation driven by the surface radiative transfer is the main determinant of the variability in the temperature signal, which occupies much larger time scales. This scale mismatch renders Taylor's hypothesis for sub-canopy flow invalid and aggravates the computation of meaningful estimates of horizontal advective fluxes without dense spatial information. It may further explain the ambiguous and inconclusive results reported in numerous energy and mass balance and advection studies evaluating the hypothesis that accounting for budget components other than the change in storage term and the vertical turbulent flux improves the budget closure when turbulent diffusion is suppressed in plant canopies. Estimates of spatial temperature gradients and advective fluxes were sensitive to the network geometry and the spatial interpolation method. The assumption of linear spatial temperature gradients was not supported by the results, and leads to increased spatial and temporal variability of inferred spatial gradients and advection estimates. A method is proposed to estimate the appropriate minimum network size of wind and temperature sensors suitable for an evaluation of energy and mass balances by reducing spatial and temporal variability of the spatially sampled signals, which was estimated to be on the order of 200 m at the study site.
AbstractList We examine the space-time structure of the wind and temperature fields, as well as that of the resulting spatial temperature gradients and horizontal advection of sensible heat, in the sub-canopy of a forest with a dense overstorey in moderately complex terrain. Data were collected from a sensor network consisting of ten stations and subject to orthogonal decomposition using the multiresolution basis set and stochastic analyses including two-point correlations, dimensional structure functions, and various other bulk measures for space and time variability. Despite some similarities, fundamental differences were found in the space-time structure of the motions dominating the variability of the sub-canopy wind and temperature fields. The dominating motions occupy similar spatial, but different temporal, scales. A conceptual space-time diagram was constructed based on the stochastic analysis that includes the important end members of the spatial and temporal scales of the observed motions of both variables. Short-lived and small-scale motions govern the variability of the wind, while the diurnal temperature oscillation driven by the surface radiative transfer is the main determinant of the variability in the temperature signal, which occupies much larger time scales. This scale mismatch renders Taylor's hypothesis for sub-canopy flow invalid and aggravates the computation of meaningful estimates of horizontal advective fluxes without dense spatial information. It may further explain the ambiguous and inconclusive results reported in numerous energy and mass balance and advection studies evaluating the hypothesis that accounting for budget components other than the change in storage term and the vertical turbulent flux improves the budget closure when turbulent diffusion is suppressed in plant canopies. Estimates of spatial temperature gradients and advective fluxes were sensitive to the network geometry and the spatial interpolation method. The assumption of linear spatial temperature gradients was not supported by the results, and leads to increased spatial and temporal variability of inferred spatial gradients and advection estimates. A method is proposed to estimate the appropriate minimum network size of wind and temperature sensors suitable for an evaluation of energy and mass balances by reducing spatial and temporal variability of the spatially sampled signals, which was estimated to be on the order of 200 m at the study site.
We examine the space-time structure of the wind and temperature fields, as well as that of the resulting spatial temperature gradients and horizontal advection of sensible heat, in the sub-canopy of a forest with a dense overstorey in moderately complex terrain. Data were collected from a sensor network consisting of ten stations and subject to orthogonal decomposition using the multiresolution basis set and stochastic analyses including two-point correlations, dimensional structure functions, and various other bulk measures for space and time variability. Despite some similarities, fundamental differences were found in the space-time structure of the motions dominating the variability of the sub-canopy wind and temperature fields. The dominating motions occupy similar spatial, but different temporal, scales. A conceptual space-time diagram was constructed based on the stochastic analysis that includes the important end members of the spatial and temporal scales of the observed motions of both variables. Short-lived and small-scale motions govern the variability of the wind, while the diurnal temperature oscillation driven by the surface radiative transfer is the main determinant of the variability in the temperature signal, which occupies much larger time scales. This scale mismatch renders Taylor's hypothesis for sub-canopy flow invalid and aggravates the computation of meaningful estimates of horizontal advective fluxes without dense spatial information. It may further explain the ambiguous and inconclusive results reported in numerous energy and mass balance and advection studies evaluating the hypothesis that accounting for budget components other than the change in storage term and the vertical turbulent flux improves the budget closure when turbulent diffusion is suppressed in plant canopies. Estimates of spatial temperature gradients and advective fluxes were sensitive to the network geometry and the spatial interpolation method. The assumption of linear spatial temperature gradients was not supported by the results, and leads to increased spatial and temporal variability of inferred spatial gradients and advection estimates. A method is proposed to estimate the appropriate minimum network size of wind and temperature sensors suitable for an evaluation of energy and mass balances by reducing spatial and temporal variability of the spatially sampled signals, which was estimated to be on the order of 200 m at the study site.[PUBLICATION ABSTRACT]
We examine the space-time structure of the wind and temperature fields, as well as that of the resulting spatial temperature gradients and horizontal advection of sensible heat, in the sub-canopy of a forest with a dense overstorey in moderately complex terrain. Data were collected from a sensor network consisting of ten stations and subject to orthogonal decomposition using the multiresolution basis set and stochastic analyses including two-point correlations, dimensional structure functions, and various other bulk measures for space and time variability. Despite some similarities, fundamental differences were found in the space-time structure of the motions dominating the variability of the sub-canopy wind and temperature fields. The dominating motions occupy similar spatial, but different temporal, scales. A conceptual space-time diagram was constructed based on the stochastic analysis that includes the important end members of the spatial and temporal scales of the observed motions of both variables. Short-lived and small-scale motions govern the variability of the wind, while the diurnal temperature oscillation driven by the surface radiative transfer is the main determinant of the variability in the temperature signal, which occupies much larger time scales. This scale mismatch renders Taylor's hypothesis for sub-canopy flow invalid and aggravates the computation of meaningful estimates of horizontal advective fluxes without dense spatial information. It may further explain the ambiguous and inconclusive results reported in numerous energy and mass balance and advection studies evaluating the hypothesis that accounting for budget components other than the change in storage term and the vertical turbulent flux improves the budget closure when turbulent diffusion is suppressed in plant canopies. Estimates of spatial temperature gradients and advective fluxes were sensitive to the network geometry and the spatial interpolation method. The assumption of linear spatial temperature gradients was not supported by the results, and leads to increased spatial and temporal variability of inferred spatial gradients and advection estimates. A method is proposed to estimate the appropriate minimum network size of wind and temperature sensors suitable for an evaluation of energy and mass balances by reducing spatial and temporal variability of the spatially sampled signals, which was estimated to be on the order of 200 m at the study site. Keywords Advection * Energy budget * Plant canopies * Sensible heat * Taylor's hypothesis * Variability
Audience Academic
Author Thomas, Christoph K
Author_xml – sequence: 1
  fullname: Thomas, Christoph K
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24009675$$DView record in Pascal Francis
BookMark eNqNkk9rFDEYxgep4Lb6ATw5CKKHTk0m_ybHZbFWqHho6zW8k0mWlGyyJjPV9dObYSpCD4vkEBJ-zxOevM9pdRJiMFX1GqMLjJD4mDFilDcIo0Yy0TXyWbXCTJAGU9GeVCuEEG86gumL6jTn-3IUmKFVpb9DctA778ZDHW19M_XNBkLcH-pLH3-e17dmtzcJximZ8xrCUF_F5H7HMIKv18OD0aOLoXah_hqHmTP-UG_ibu_Nr6JNCVx4WT234LN59bifVXeXn243V831t89fNuvrRjPExka2wDjovkVAbScHqRlmumPAGLdYCoIHQq0etLRdT0AM_TCgnhss2rajYMlZ9X7x3af4YzJ5VDuXtfEegolTVh2nkreCo_8gUSdo283kh6Mk5gJTWUBc0LdP0Ps4pVASq45xLhkRtEAXC7QFb5QLNo4JdFmD2TldZmpduV8TQgTGAs2u7x5dIWvwNkHQLqt9cjtIB9VShCQXrHBi4XSKOSdjlXYjzMMpDzivMFJzUdRSFFWKouaiKFmU-Inyr_kxTbtocmHD1qR_WY-J3iwiC1HBNpUYdzdtyYhw-RwsMfkDXinZUA
CODEN BLMEBR
CitedBy_id crossref_primary_10_1007_s10546_012_9701_1
crossref_primary_10_1007_s10546_014_9972_9
crossref_primary_10_1007_s10546_012_9745_2
crossref_primary_10_1016_j_agrformet_2013_07_014
crossref_primary_10_5194_amt_16_809_2023
crossref_primary_10_1016_j_agrformet_2017_10_019
crossref_primary_10_1007_s10546_017_0281_y
crossref_primary_10_1016_j_agrformet_2022_108983
crossref_primary_10_1175_JTECH_D_21_0019_1
crossref_primary_10_5194_amt_10_4165_2017
crossref_primary_10_3390_atmos6010060
crossref_primary_10_1029_2021GL093746
crossref_primary_10_1002_2016JD025057
crossref_primary_10_1029_2021JD036042
crossref_primary_10_5194_amt_13_1563_2020
crossref_primary_10_3389_ffgc_2020_594274
crossref_primary_10_1016_j_agrformet_2024_110326
crossref_primary_10_1007_s10546_022_00711_y
crossref_primary_10_1175_JAS_D_17_0161_1
crossref_primary_10_1016_j_agrformet_2013_09_012
crossref_primary_10_1007_s10546_019_00491_y
crossref_primary_10_5194_amt_14_2409_2021
crossref_primary_10_1016_j_agrformet_2013_01_001
crossref_primary_10_1175_JTECH_D_12_00044_1
crossref_primary_10_1016_j_agrformet_2022_108993
crossref_primary_10_1016_j_agrformet_2021_108598
crossref_primary_10_5194_acp_14_9665_2014
crossref_primary_10_1002_qj_3192
crossref_primary_10_1002_qj_3508
crossref_primary_10_1007_s10546_016_0158_5
crossref_primary_10_1007_s00704_020_03412_z
crossref_primary_10_1007_s10546_015_0111_z
crossref_primary_10_5194_essd_13_3439_2021
crossref_primary_10_1002_qj_1884
crossref_primary_10_1016_j_agrformet_2019_107696
crossref_primary_10_5194_gmd_14_6309_2021
crossref_primary_10_5194_essd_14_885_2022
crossref_primary_10_1175_JAS_D_13_0131_1
crossref_primary_10_1175_JHM_D_13_026_1
crossref_primary_10_1007_s10546_011_9672_7
crossref_primary_10_1175_JAMC_D_21_0205_1
crossref_primary_10_2134_agronj2015_0454
crossref_primary_10_5194_bg_16_1343_2019
Cites_doi 10.1002/qj.49710645011
10.1023/A:1002786702909
10.1016/j.agrformet.2006.04.001
10.1016/j.agrformet.2008.03.002
10.1023/A:1002693625637
10.1002/qj.348
10.1023/B:BOUN.0000016576.05621.73
10.1007/s10546-004-1984-4
10.1007/s10546-009-9404-4
10.1016/0004-6981(86)90145-9
10.1007/s10546-006-9102-4
10.1023/A:1024168428135
10.1146/annurev.fl.13.010181.000525
10.1175/1520-0426(2000)017<0077:EOAITD>2.0.CO;2
10.1007/s10546-004-7091-8
10.1023/A:1014508928693
10.1016/j.agrformet.2008.06.006
10.1175/1520-0426(1998)015<0157:RHEINV>2.0.CO;2
10.1016/j.agrformet.2003.09.011
10.1023/B:BOUN.0000039372.86053.ff
10.1175/JTECH1762.1
10.1023/A:1000210427798
10.1890/06-1336.1
10.1007/s10546-005-9038-0
10.1007/s10546-008-9336-4
10.1007/s10546-006-9136-7
10.1175/2008JTECHA1046.1
10.1016/j.agrformet.2010.01.016
10.1016/S0168-1923(99)00088-X
10.1023/A:1018779506973
10.5194/bg-5-657-2008
10.1175/JAM2265.1
10.1111/j.1600-0870.2008.00324.x
10.1007/s10546-006-9144-7
ContentType Journal Article
Copyright Springer Science+Business Media B.V. 2011
2015 INIST-CNRS
COPYRIGHT 2011 Springer
Copyright_xml – notice: Springer Science+Business Media B.V. 2011
– notice: 2015 INIST-CNRS
– notice: COPYRIGHT 2011 Springer
DBID FBQ
AAYXX
CITATION
IQODW
3V.
7TG
7TN
7UA
7XB
88F
88I
8FD
8FE
8FG
8FK
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
GNUQQ
H8D
H96
HCIFZ
KL.
L.G
L7M
M1Q
M2P
P5Z
P62
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PYCSY
Q9U
7S9
L.6
7QH
DOI 10.1007/s10546-010-9578-9
DatabaseName AGRIS
CrossRef
Pascal-Francis
ProQuest Central (Corporate)
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Water Resources Abstracts
ProQuest Central (purchase pre-March 2016)
Military Database (Alumni Edition)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Military Database
Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Environmental Science Collection
ProQuest Central Basic
AGRICOLA
AGRICOLA - Academic
Aqualine
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Military Collection
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest Military Collection (Alumni Edition)
ProQuest SciTech Collection
Environmental Science Collection
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Environmental Science Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
AGRICOLA
AGRICOLA - Academic
Aqualine
DatabaseTitleList AGRICOLA
Aquatic Science & Fisheries Abstracts (ASFA) Professional

Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database


Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
– sequence: 2
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Biology
EISSN 1573-1472
EndPage 81
ExternalDocumentID 2290655051
A333711701
24009675
10_1007_s10546_010_9578_9
US201301953191
Genre Feature
GroupedDBID -5A
-5G
-5~
-BR
-EM
-Y2
-~C
-~X
.86
.HR
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
23N
28-
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2XV
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67M
67Z
6NX
6TJ
78A
7XC
88I
8FE
8FG
8FH
8TC
8UJ
8WZ
95-
95.
95~
96X
A6W
AAAVM
AABHQ
AABYN
AAFGU
AAHNG
AAIAL
AAJKR
AAMRO
AANZL
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
AAZAB
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABEOS
ABFGW
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABPPZ
ABPTK
ABQBU
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACGOD
ACHSB
ACHXU
ACIGE
ACIPQ
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACTTH
ACVWB
ACWMK
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEEQQ
AEFIE
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFNRJ
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIDUJ
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
BPHCQ
CAG
CCPQU
COF
CSCUP
D1K
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EBLON
EBS
EDH
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FBQ
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IAO
IEP
IFM
IHE
IJ-
IKXTQ
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6-
KDC
KOV
KOW
LAK
LK5
LLZTM
M1Q
M2P
M4Y
M7R
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P0-
P19
P62
PATMY
PCBAR
PF0
PQQKQ
PROAC
PT4
PT5
PYCSY
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SC5
SCK
SCLPG
SDH
SDM
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK6
WK8
YLTOR
Z45
Z7R
Z7Y
Z7Z
Z86
Z8M
Z8S
Z8T
ZMTXR
ZY4
~02
~8M
~EX
~KM
AACDK
AAHBH
AAJBT
AASML
AAYZH
ABAKF
ABQSL
ACAOD
ACDTI
ACPIV
ACUHS
ACZOJ
AEFQL
AEMSY
AEUYN
AGQEE
AGRTI
AIGIU
BSONS
H13
AAPKM
AAYXX
ABBRH
ABDBE
ADHKG
AFDZB
AFOHR
AGQPQ
AHPBZ
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ABRTQ
IQODW
PQGLB
PMFND
7TG
7TN
7UA
7XB
8FD
8FK
C1K
F1W
H8D
H96
KL.
L.G
L7M
PKEHL
PQEST
PQUKI
Q9U
7S9
L.6
7QH
PUEGO
ID FETCH-LOGICAL-c505t-92a56acb20a4f89d9c515c85a556f19731d34fcdc9f8b3a7dbdd0b6e172284af3
IEDL.DBID U2A
ISSN 0006-8314
IngestDate Sun Aug 24 03:20:40 EDT 2025
Thu Jul 10 18:17:54 EDT 2025
Thu Jul 10 23:00:50 EDT 2025
Sat Jul 26 00:22:51 EDT 2025
Tue Jun 10 20:11:13 EDT 2025
Mon Jul 21 09:17:41 EDT 2025
Thu Apr 24 23:02:45 EDT 2025
Tue Jul 01 04:27:15 EDT 2025
Fri Feb 21 02:34:07 EST 2025
Wed Dec 27 18:28:08 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Energy budget
Sensible heat
Advection
Taylor’s hypothesis
Variability
Plant canopies
Structure function
time variations
mass balance
radiative transfer
Turbulent transfer
energy balance
Taylor's hypothesis
Complex terrain
winds
spatial variations
sensible heat
Temperature distribution
Wind field
Temperature sensor
Turbulent diffusion
forests
horizontal gradient
Temperature gradient
interpolation
Canopy(vegetation)
correlation function
Language English
License http://www.springer.com/tdm
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c505t-92a56acb20a4f89d9c515c85a556f19731d34fcdc9f8b3a7dbdd0b6e172284af3
Notes http://dx.doi.org/10.1007/s10546-010-9578-9
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 856695374
PQPubID 105435
PageCount 21
ParticipantIDs proquest_miscellaneous_864962760
proquest_miscellaneous_860874280
proquest_miscellaneous_1671498031
proquest_journals_856695374
gale_infotracacademiconefile_A333711701
pascalfrancis_primary_24009675
crossref_citationtrail_10_1007_s10546_010_9578_9
crossref_primary_10_1007_s10546_010_9578_9
springer_journals_10_1007_s10546_010_9578_9
fao_agris_US201301953191
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-04-01
PublicationDateYYYYMMDD 2011-04-01
PublicationDate_xml – month: 04
  year: 2011
  text: 2011-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle An International Journal of Physical, Chemical and Biological Processes in the Atmospheric Boundary Layer
PublicationTitle Boundary-layer meteorology
PublicationTitleAbbrev Boundary-Layer Meteorol
PublicationYear 2011
Publisher Dordrecht : Springer Netherlands
Springer Netherlands
Springer
Springer Nature B.V
Publisher_xml – name: Dordrecht : Springer Netherlands
– name: Springer Netherlands
– name: Springer
– name: Springer Nature B.V
References Feigenwinter, Bernhofer, Vogt (CR8) 2004; 113
Mauder, Desjardins, Gao, Van Haarlem (CR20) 2008; 25
Lee, Hu (CR15) 2002; 103
Aubinet, Feigenwinter, Heinesch, Bernhofer, Canepa, Lindroth, Montagnani, Rebmann, Sedlak, van Gorsel (CR6) 2010; 150
Mahrt, Thomas, Prueger (CR19) 2009; 135
Hanna (CR11) 1986; 20
Vickers, Mahrt (CR32) 2006; 138
Aubinet, Berbigier, Bernhofer, Cescatti, Feigenwinter, Granier, Grunwald, Havrankova, Heinesch, Longdoz, Marcolla, Montagnani, Sedlak (CR5) 2005; 116
Anfossi, Oettl, Degrazia, Goulart (CR2) 2005; 114
Mahrt (CR18) 2009; 130
Aubinet, Heinesch, Yernaux (CR4) 2003; 108
Anderson, Baumgartner (CR1) 1998; 15
Garratt (CR10) 1992
Mahrt (CR17) 2008; 60
Thomas, Martin, Goeckede, Siqueira, Foken, Law, Loescher, Katul (CR31) 2008; 148
Leuning, Zegelin, Jones, Keith, Hughes (CR16) 2008; 148
Wilson, Baldocchi (CR34) 2000; 100
Bohrer, Katul, Walko, Avissar (CR7) 2009; 132
Poggi, Porporato, Ridolfi, Albertson, Katul (CR25) 2004; 111
Whiteman, Hubbe, Shaw (CR33) 2000; 17
Raupach, Thom (CR26) 1981; 13
Wilson, Meyers (CR35) 2001; 98
Aubinet (CR3) 2008; 18
Staebler, Fitzjarrald (CR28) 2005; 44
Novak, Warland, Orchansky, Kettler, Green (CR23) 2000; 95
Heinesch, Yernaux, Aubinet (CR13) 2008; 5
Staebler, Fitzjarrald (CR27) 2004; 122
Thomas, Mayer, Meixner, Foken (CR30) 2006; 119
Thomas, Foken (CR29) 2007; 123
Garratt (CR9) 1980; 106
Moderow, Feigenwinter, Bernhofer (CR21) 2007; 123
Paw, Baldocchi, Meyers, Wilson (CR24) 2000; 97
Heinesch, Yernaux, Aubinet (CR12) 2007; 122
Howell, Mahrt (CR14) 1997; 83
Nakamura, Mahrt (CR22) 2005; 22
M Novak (9578_CR23) 2000; 95
M Aubinet (9578_CR4) 2003; 108
C Thomas (9578_CR30) 2006; 119
M Aubinet (9578_CR3) 2008; 18
L Mahrt (9578_CR17) 2008; 60
SR Hanna (9578_CR11) 1986; 20
XH Lee (9578_CR15) 2002; 103
JF Howell (9578_CR14) 1997; 83
D Anfossi (9578_CR2) 2005; 114
R Leuning (9578_CR16) 2008; 148
JR Garratt (9578_CR9) 1980; 106
KB Wilson (9578_CR34) 2000; 100
D Vickers (9578_CR32) 2006; 138
M Aubinet (9578_CR6) 2010; 150
M Aubinet (9578_CR5) 2005; 116
R Nakamura (9578_CR22) 2005; 22
C Thomas (9578_CR31) 2008; 148
C Thomas (9578_CR29) 2007; 123
RM Staebler (9578_CR28) 2005; 44
G Bohrer (9578_CR7) 2009; 132
L Mahrt (9578_CR19) 2009; 135
L Mahrt (9578_CR18) 2009; 130
MR Raupach (9578_CR26) 1981; 13
JR Garratt (9578_CR10) 1992
U KT Paw (9578_CR24) 2000; 97
SP Anderson (9578_CR1) 1998; 15
U Moderow (9578_CR21) 2007; 123
B Heinesch (9578_CR13) 2008; 5
D Poggi (9578_CR25) 2004; 111
RM Staebler (9578_CR27) 2004; 122
KB Wilson (9578_CR35) 2001; 98
C Feigenwinter (9578_CR8) 2004; 113
M Mauder (9578_CR20) 2008; 25
B Heinesch (9578_CR12) 2007; 122
CD Whiteman (9578_CR33) 2000; 17
References_xml – volume: 106
  start-page: 803
  year: 1980
  end-page: 819
  ident: CR9
  article-title: Surface influence upon vertical profiles in the atmospheric near-surface layer
  publication-title: Q J R Meteorol Soc
  doi: 10.1002/qj.49710645011
– volume: 97
  start-page: 487
  issue: 3
  year: 2000
  end-page: 511
  ident: CR24
  article-title: Correction of eddy-covariance measurements incorporating both advective effects and density fluxes
  publication-title: Boundary-Layer Meteorol
  doi: 10.1023/A:1002786702909
– volume: 138
  start-page: 93
  year: 2006
  end-page: 103
  ident: CR32
  article-title: Contrasting mean vertical motion from tilt correction methods and mass continuity
  publication-title: Agric For Meteorol
  doi: 10.1016/j.agrformet.2006.04.001
– volume: 148
  start-page: 1210
  issue: 8–9
  year: 2008
  end-page: 1229
  ident: CR31
  article-title: Estimating daytime subcanopy respiration from conditional sampling methods applied to multi-scalar high frequency turbulence time series
  publication-title: Agric For Meteorol
  doi: 10.1016/j.agrformet.2008.03.002
– volume: 95
  start-page: 457
  year: 2000
  end-page: 495
  ident: CR23
  article-title: Wind tunnel and field measurements of turbulent flow in forests. Part I: Uniformly thinned stands
  publication-title: Boundary-Layer Meteorol
  doi: 10.1023/A:1002693625637
– volume: 135
  start-page: 67
  year: 2009
  end-page: 75
  ident: CR19
  article-title: Space-time structure of mesoscale modes in the stable boundary layer
  publication-title: Q J Roy Meteorol Soc
  doi: 10.1002/qj.348
– volume: 111
  start-page: 565
  year: 2004
  end-page: 587
  ident: CR25
  article-title: The effect of vegetation density on canopy sub-layer turbulence
  publication-title: Boundary-Layer Meteorol
  doi: 10.1023/B:BOUN.0000016576.05621.73
– volume: 114
  start-page: 179
  issue: 1
  year: 2005
  end-page: 203
  ident: CR2
  article-title: An analysis of sonic anemometer observations in low wind speed conditions
  publication-title: Boundary-Layer Meteorol
  doi: 10.1007/s10546-004-1984-4
– volume: 132
  start-page: 351
  issue: 3
  year: 2009
  end-page: 382
  ident: CR7
  article-title: Exploring the effects of microscale structural heterogeneity of forest canopies using large-eddy simulations
  publication-title: Boundary-Layer Meteorol
  doi: 10.1007/s10546-009-9404-4
– volume: 20
  start-page: 1131
  issue: 6
  year: 1986
  end-page: 1137
  ident: CR11
  article-title: Spectra of concentration fluctuations—the two time scales of a meandering plume
  publication-title: Atmos Environ
  doi: 10.1016/0004-6981(86)90145-9
– volume: 122
  start-page: 457
  issue: 2
  year: 2007
  end-page: 478
  ident: CR12
  article-title: Some methodological questions concerning advection measurements: a case study
  publication-title: Boundary-Layer Meteorol
  doi: 10.1007/s10546-006-9102-4
– volume: 108
  start-page: 397
  issue: 3
  year: 2003
  end-page: 417
  ident: CR4
  article-title: Horizontal and vertical CO advection in a sloping forest
  publication-title: Boundary-Layer Meteorol
  doi: 10.1023/A:1024168428135
– volume: 13
  start-page: 97
  year: 1981
  end-page: 129
  ident: CR26
  article-title: Turbulence in and above plant canopies
  publication-title: Annu Rev Fluid Mech
  doi: 10.1146/annurev.fl.13.010181.000525
– volume: 17
  start-page: 77
  issue: 1
  year: 2000
  end-page: 81
  ident: CR33
  article-title: Evaluation of an inexpensive temperature datalogger for meteorological applications
  publication-title: J Atmos Ocean Technol
  doi: 10.1175/1520-0426(2000)017<0077:EOAITD>2.0.CO;2
– volume: 116
  start-page: 63
  issue: 1
  year: 2005
  end-page: 94
  ident: CR5
  article-title: Comparing CO storage and advection conditions at night at different carboeuroflux sites
  publication-title: Boundary-Layer Meteorol
  doi: 10.1007/s10546-004-7091-8
– volume: 103
  start-page: 277
  issue: 2
  year: 2002
  end-page: 301
  ident: CR15
  article-title: Forest-air fluxes of carbon, water and energy over non-flat terrain
  publication-title: Boundary-Layer Meteorol
  doi: 10.1023/A:1014508928693
– volume: 148
  start-page: 1777
  issue: 11
  year: 2008
  end-page: 1797
  ident: CR16
  article-title: Measurement of horizontal and vertical advectlion of CO within a forest canopy
  publication-title: Agric For Meteorol
  doi: 10.1016/j.agrformet.2008.06.006
– volume: 15
  start-page: 157
  issue: 1
  year: 1998
  end-page: 173
  ident: CR1
  article-title: Radiative heating errors in naturally ventilated air temperature measurements made from buoys
  publication-title: J Atmos Ocean Technol
  doi: 10.1175/1520-0426(1998)015<0157:RHEINV>2.0.CO;2
– volume: 122
  start-page: 139
  issue: 3–4
  year: 2004
  end-page: 156
  ident: CR27
  article-title: Observing subcanopy CO advection
  publication-title: Agric For Meteorol
  doi: 10.1016/j.agrformet.2003.09.011
– volume: 113
  start-page: 201
  issue: 2
  year: 2004
  end-page: 224
  ident: CR8
  article-title: The influence of advection on the short term CO -budget in and above a forest canopy
  publication-title: Boundary-Layer Meteorol
  doi: 10.1023/B:BOUN.0000039372.86053.ff
– volume: 22
  start-page: 1046
  issue: 7
  year: 2005
  end-page: 1058
  ident: CR22
  article-title: Air temperature measurement errors in naturally ventilated radiation shields
  publication-title: J Atmos Ocean Technol
  doi: 10.1175/JTECH1762.1
– volume: 83
  start-page: 117
  year: 1997
  end-page: 137
  ident: CR14
  article-title: Multiresolution flux decomposition
  publication-title: Boundary-Layer Meteorol
  doi: 10.1023/A:1000210427798
– volume: 18
  start-page: 1368
  issue: 6
  year: 2008
  end-page: 1378
  ident: CR3
  article-title: Eddy covariance CO flux measurements in nocturnal conditions: an analysis of the problem
  publication-title: Ecol Appl
  doi: 10.1890/06-1336.1
– volume: 119
  start-page: 563
  year: 2006
  end-page: 587
  ident: CR30
  article-title: Analysis of low-frequency turbulence above tall vegetation using a Doppler sodar
  publication-title: Boundary-Layer Meteorol
  doi: 10.1007/s10546-005-9038-0
– volume: 130
  start-page: 1
  issue: 1
  year: 2009
  end-page: 14
  ident: CR18
  article-title: Characteristics of submeso winds in the stable boundary layer
  publication-title: Boundary-Layer Meteorol
  doi: 10.1007/s10546-008-9336-4
– start-page: 316 pp
  year: 1992
  ident: CR10
  publication-title: The atmospheric boundary layer
– volume: 123
  start-page: 99
  issue: 1
  year: 2007
  end-page: 120
  ident: CR21
  article-title: Estimating the components of the sensible heat budget of a tall forest canopy in complex terrain
  publication-title: Boundary-Layer Meteorol
  doi: 10.1007/s10546-006-9136-7
– volume: 25
  start-page: 2145
  issue: 11
  year: 2008
  end-page: 2151
  ident: CR20
  article-title: Errors of naturally ventilated air temperature measurements in a spatial observation network
  publication-title: J Atmos Ocean Technol
  doi: 10.1175/2008JTECHA1046.1
– volume: 150
  start-page: 655
  issue: 5
  year: 2010
  end-page: 664
  ident: CR6
  article-title: Direct advection measurements do not help to solve the night-time CO closure problem: evidence from three different forests
  publication-title: Agric For Meteorol
  doi: 10.1016/j.agrformet.2010.01.016
– volume: 100
  start-page: 1
  issue: 1
  year: 2000
  end-page: 18
  ident: CR34
  article-title: Seasonal and interannual variability of energy fluxes over a broadleaved temperate deciduous forest in North America
  publication-title: Agric For Meteorol
  doi: 10.1016/S0168-1923(99)00088-X
– volume: 98
  start-page: 443
  issue: 3
  year: 2001
  end-page: 473
  ident: CR35
  article-title: The spatial variability of energy and carbon dioxide fluxes at the floor of a deciduous forest
  publication-title: Boundary-Layer Meteorol
  doi: 10.1023/A:1018779506973
– volume: 5
  start-page: 657
  issue: 3
  year: 2008
  end-page: 668
  ident: CR13
  article-title: Dependence of CO advection patterns on wind direction on a gentle forested slope
  publication-title: Biogeoscience
  doi: 10.5194/bg-5-657-2008
– volume: 44
  start-page: 1161
  issue: 8
  year: 2005
  end-page: 1179
  ident: CR28
  article-title: Measuring canopy structure and the kinematics of subcanopy flows in two forests
  publication-title: J Appl Meteorol
  doi: 10.1175/JAM2265.1
– volume: 60
  start-page: 700
  issue: 4
  year: 2008
  end-page: 705
  ident: CR17
  article-title: Mesoscale wind direction shifts in the stable boundary-layer
  publication-title: Tellus A
  doi: 10.1111/j.1600-0870.2008.00324.x
– volume: 123
  start-page: 317
  year: 2007
  end-page: 337
  ident: CR29
  article-title: Flux contribution of coherent structures and its implications for the exchange of energy and matter in a tall spruce canopy
  publication-title: Boundary-Layer Meteorol
  doi: 10.1007/s10546-006-9144-7
– volume: 25
  start-page: 2145
  issue: 11
  year: 2008
  ident: 9578_CR20
  publication-title: J Atmos Ocean Technol
  doi: 10.1175/2008JTECHA1046.1
– volume: 150
  start-page: 655
  issue: 5
  year: 2010
  ident: 9578_CR6
  publication-title: Agric For Meteorol
  doi: 10.1016/j.agrformet.2010.01.016
– volume: 95
  start-page: 457
  year: 2000
  ident: 9578_CR23
  publication-title: Boundary-Layer Meteorol
  doi: 10.1023/A:1002693625637
– volume: 60
  start-page: 700
  issue: 4
  year: 2008
  ident: 9578_CR17
  publication-title: Tellus A
  doi: 10.1111/j.1600-0870.2008.00324.x
– volume: 148
  start-page: 1210
  issue: 8–9
  year: 2008
  ident: 9578_CR31
  publication-title: Agric For Meteorol
  doi: 10.1016/j.agrformet.2008.03.002
– volume: 18
  start-page: 1368
  issue: 6
  year: 2008
  ident: 9578_CR3
  publication-title: Ecol Appl
  doi: 10.1890/06-1336.1
– volume: 100
  start-page: 1
  issue: 1
  year: 2000
  ident: 9578_CR34
  publication-title: Agric For Meteorol
  doi: 10.1016/S0168-1923(99)00088-X
– volume: 130
  start-page: 1
  issue: 1
  year: 2009
  ident: 9578_CR18
  publication-title: Boundary-Layer Meteorol
  doi: 10.1007/s10546-008-9336-4
– volume: 119
  start-page: 563
  year: 2006
  ident: 9578_CR30
  publication-title: Boundary-Layer Meteorol
  doi: 10.1007/s10546-005-9038-0
– volume: 108
  start-page: 397
  issue: 3
  year: 2003
  ident: 9578_CR4
  publication-title: Boundary-Layer Meteorol
  doi: 10.1023/A:1024168428135
– volume: 123
  start-page: 99
  issue: 1
  year: 2007
  ident: 9578_CR21
  publication-title: Boundary-Layer Meteorol
  doi: 10.1007/s10546-006-9136-7
– volume: 17
  start-page: 77
  issue: 1
  year: 2000
  ident: 9578_CR33
  publication-title: J Atmos Ocean Technol
  doi: 10.1175/1520-0426(2000)017<0077:EOAITD>2.0.CO;2
– volume: 106
  start-page: 803
  year: 1980
  ident: 9578_CR9
  publication-title: Q J R Meteorol Soc
  doi: 10.1002/qj.49710645011
– volume: 83
  start-page: 117
  year: 1997
  ident: 9578_CR14
  publication-title: Boundary-Layer Meteorol
  doi: 10.1023/A:1000210427798
– volume: 103
  start-page: 277
  issue: 2
  year: 2002
  ident: 9578_CR15
  publication-title: Boundary-Layer Meteorol
  doi: 10.1023/A:1014508928693
– volume: 148
  start-page: 1777
  issue: 11
  year: 2008
  ident: 9578_CR16
  publication-title: Agric For Meteorol
  doi: 10.1016/j.agrformet.2008.06.006
– volume: 13
  start-page: 97
  year: 1981
  ident: 9578_CR26
  publication-title: Annu Rev Fluid Mech
  doi: 10.1146/annurev.fl.13.010181.000525
– volume: 116
  start-page: 63
  issue: 1
  year: 2005
  ident: 9578_CR5
  publication-title: Boundary-Layer Meteorol
  doi: 10.1007/s10546-004-7091-8
– volume: 97
  start-page: 487
  issue: 3
  year: 2000
  ident: 9578_CR24
  publication-title: Boundary-Layer Meteorol
  doi: 10.1023/A:1002786702909
– volume: 98
  start-page: 443
  issue: 3
  year: 2001
  ident: 9578_CR35
  publication-title: Boundary-Layer Meteorol
  doi: 10.1023/A:1018779506973
– volume: 5
  start-page: 657
  issue: 3
  year: 2008
  ident: 9578_CR13
  publication-title: Biogeoscience
  doi: 10.5194/bg-5-657-2008
– volume: 22
  start-page: 1046
  issue: 7
  year: 2005
  ident: 9578_CR22
  publication-title: J Atmos Ocean Technol
  doi: 10.1175/JTECH1762.1
– volume: 135
  start-page: 67
  year: 2009
  ident: 9578_CR19
  publication-title: Q J Roy Meteorol Soc
  doi: 10.1002/qj.348
– volume: 123
  start-page: 317
  year: 2007
  ident: 9578_CR29
  publication-title: Boundary-Layer Meteorol
  doi: 10.1007/s10546-006-9144-7
– volume: 20
  start-page: 1131
  issue: 6
  year: 1986
  ident: 9578_CR11
  publication-title: Atmos Environ
  doi: 10.1016/0004-6981(86)90145-9
– volume: 114
  start-page: 179
  issue: 1
  year: 2005
  ident: 9578_CR2
  publication-title: Boundary-Layer Meteorol
  doi: 10.1007/s10546-004-1984-4
– start-page: 316 pp
  volume-title: The atmospheric boundary layer
  year: 1992
  ident: 9578_CR10
– volume: 138
  start-page: 93
  year: 2006
  ident: 9578_CR32
  publication-title: Agric For Meteorol
  doi: 10.1016/j.agrformet.2006.04.001
– volume: 132
  start-page: 351
  issue: 3
  year: 2009
  ident: 9578_CR7
  publication-title: Boundary-Layer Meteorol
  doi: 10.1007/s10546-009-9404-4
– volume: 15
  start-page: 157
  issue: 1
  year: 1998
  ident: 9578_CR1
  publication-title: J Atmos Ocean Technol
  doi: 10.1175/1520-0426(1998)015<0157:RHEINV>2.0.CO;2
– volume: 111
  start-page: 565
  year: 2004
  ident: 9578_CR25
  publication-title: Boundary-Layer Meteorol
  doi: 10.1023/B:BOUN.0000016576.05621.73
– volume: 122
  start-page: 457
  issue: 2
  year: 2007
  ident: 9578_CR12
  publication-title: Boundary-Layer Meteorol
  doi: 10.1007/s10546-006-9102-4
– volume: 122
  start-page: 139
  issue: 3–4
  year: 2004
  ident: 9578_CR27
  publication-title: Agric For Meteorol
  doi: 10.1016/j.agrformet.2003.09.011
– volume: 113
  start-page: 201
  issue: 2
  year: 2004
  ident: 9578_CR8
  publication-title: Boundary-Layer Meteorol
  doi: 10.1023/B:BOUN.0000039372.86053.ff
– volume: 44
  start-page: 1161
  issue: 8
  year: 2005
  ident: 9578_CR28
  publication-title: J Appl Meteorol
  doi: 10.1175/JAM2265.1
SSID ssj0007150
Score 2.1710904
Snippet We examine the space-time structure of the wind and temperature fields, as well as that of the resulting spatial temperature gradients and horizontal advection...
We examine the space–time structure of the wind and temperature fields, as well as that of the resulting spatial temperature gradients and horizontal advection...
SourceID proquest
gale
pascalfrancis
crossref
springer
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 61
SubjectTerms Advection
Analysis
Atmospheric boundary layer
Atmospheric Protection/Air Quality Control/Air Pollution
Atmospheric Sciences
Canopies
Convection, turbulence, diffusion. Boundary layer structure and dynamics
Earth and Environmental Science
Earth Sciences
Earth, ocean, space
Eddy diffusion
Energy budget
Estimates
Exact sciences and technology
External geophysics
Fluxes
Forests
heat
Horizontal
Mathematical analysis
Mathematical models
Meteorology
Networks
overstory
Plant canopies
Radiative transfer
Sensible heat
Sensors
Taylor's hypothesis
Temperature
Temperature gradient
Temperature gradients
temperature profiles
Temporal logic
temporal variation
Variability
Wind
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1taxQxEA62RRBEtCrdVksEUdAGs5vsSz5JPXocQotoT_otZPMihWX3vLtSz1_vzO7elhN6H7M7S0ImmTyzk5mHkLepTcqgLGeeB8mQw5qVRRIzJ3LvvAnStlwE5xfZZCq_XqVX_d2cRX-tcm0TW0PtGov_yD8VgDtUKnL5efabIWkUBld7Bo0dsgcWuADfa-_L2cW374MpzuO0y0EBt7kQsVyHNbvcuVSiM82ZglXL1MbBtBNMMxjpxzOzgAkLHdPFBhT9L3raHkrjp-RJjybpaaf-Z-SBr_fJw45fcrVPonOAxM28bdF3dFRdAz5tW8-J_Qlecleke0WbQMGCsJGpm9mKjqvm9oReekDUXcXlE2pqRycwH38bzJ6kSOPcJkTQ65q2dGoAWasVRetS-T_w7RypJ16Q6fjscjRhPeMCs4CElkwlJs2MLRNuZCiUUxbgji1Sk6ZZiJHlygkZrLMqFKUwuSud42XmAQXBMWeCeEl266b2B4Q6pVyaJ9Z6KSU3SVk6nrUchvBUOBERvp5ubfty5MiKUem7QsqoIQ0a0qghrSLyYfhk1tXi2CZ8ADrU5hfYSj39kWCEFkOG4J9G5D0qVuMWhi6t6TMRYOBYDEufCiFyZOQByeMN3Q_d4s1bBb5WRI7Wi0H3m3-hh6UakTfDW9i1GIoxtW9uFjrOcnBNC7CoEaH3yBQZL3LwDvk2EYnkSRmIfFyvxLtx3Ds3h1tHfUQedT_O8XrSK7K7nN_414C8luVxv7_-ATB6J-0
  priority: 102
  providerName: ProQuest
Title Variability of Sub-Canopy Flow, Temperature, and Horizontal Advection in Moderately Complex Terrain
URI https://link.springer.com/article/10.1007/s10546-010-9578-9
https://www.proquest.com/docview/856695374
https://www.proquest.com/docview/1671498031
https://www.proquest.com/docview/860874280
https://www.proquest.com/docview/864962760
Volume 139
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3raxNBEB9MiyBI0ar0rIYVREF7cI-9x36MIWlQWkQbqZ-WvX1IINyFJMXGv96Ze6RGbMFPx93N3R47u7O_udmZH8DrREeFEzrwbeC4TxzWfpFHoW_izBqrHNc1F8HZeTqZ8o-XyWWbx73qdrt3IcnaUv-R7JZw8n4DX-Aw80UP9hNy3XEQT6PB1vxmYdLknaCrnMch70KZ_3rFzmLUc6raGuaHC7XCTnINu8UO_PwrYlovRONHcNAiSDZoVP4Y7tnyEO43nJKbQ_DOEAZXy_qMvWHD-QwxaX32BPQ39IybwtwbVjmGVsMfqrJabNh4Xv08YRcWUXRTZfmEqdKwSbWc_aooY5IRdXOdBMFmJasp1BCmzjeMLMrcXuOzS6KbeArT8ehiOPFblgVfI_pZ-yJSSap0EQWKu1wYoRHi6DxRSZK6kJitTMydNlq4vIhVZgpjgiK1iHxwaVMufgZ7ZVXaI2BGCJNkkdaWcx6oqChMkNa8hXg1NrEHQdfdUrclyIkJYy5viieThiRqSJKGpPDg3faRRVN_4y7hI9ShVD_QPsrp14iishQmRJ_Ug7ekWEnTFpvUqs0-wA-nAlhyEMdxRiw8KNnf0f22WdptK9C_8uC4GwyynfArmSMsxpYy7sGr7V2cqRR-UaWtrlYyTDN0R3O0oh6wW2TyNMgz9AiDu0Q4ESalKPK-G4k333Fr3zz_L-ljeND8PKctSi9gb728si8Rfa2LPvTy8Wkf9gen3z-N8PhhdP75S7-eg78BRbQnhA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELe2IQQSQjBAC4NhJD4kmEUaOx9-QGgqlI6te6Gd9mYcf6BJVVLaTqP8T_yP3CVNpiKtb3tMemksn_27u5zvfoS8ik2Ue2lC5kIvGHJYszyLOszy1FmnvTAVF8HgJOmPxLez-GyD_G1qYfBYZYOJFVDb0uA38g8Z-B0y5qn4NPnFkDQKk6sNg0a9Ko7c4hIittnHw8-g3tdR1Psy7PbZklSAGTD2cyYjHSfa5FGohc-klQYsusliHceJ7yCRk-XCG2ukz3KuU5tbG-aJA0MPSK49h__dJLcE5xI3VNb72gJ_2onrihcI0jPeEU0Sta7UiwWG7iGTsEeYXDGDm16XrUm4N9EzUI-veTVWHN__crWVCew9IPeXvis9qBfbQ7Lhim1yu2azXGyTYAAOeDmtrugb2h2fgzdcXT0i5hRi8rol-IKWngJesa4uysmC9sbl5T4dOvDf6_7O-1QXlvZh9v-UWKtJkTS6Kr-g5wWtyNvAQR4vKGLZ2P2GZ6dIdPGYjG5EFU_IVlEWbodQK6WN08gYJ4QIdZTnNkwqxkS4yy0PSNhMtzLL5ufIwTFWV22bUUMKNKRQQ0oG5F37yKTu_LFOeAd0qPRPQGY1-h5hPhgTlBANB-QtKlYhYMArjV7WPcDAsfWWOuCcp8j_A5J7K7pvX4vnfCVEdgHZbRaDWkLNTLUbIyAv218BIzDxowtXXsxUJ0khEM4AvwNCr5HJkjBLIRYN14kIpGpKQOR9sxKvxnHt3DxdO-oX5E5_ODhWx4cnR7vkbv3JHg9GPSNb8-mFew4-3zzfq3YaJT9uemv_A6a3ZFs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1taxNBEF7aFEUQ0ar0rNYVfAHbo5fbvZf9IFLThtTaULSRflv39kUK4S4mKTX-M_-dM_dWKjTf-vEuc7llZ_eZmZudeQh5Hekwc0IHvg0c95HD2s_SsOsbllhjleO65CI4HsaDEf98Fp2tkL9NLQweq2wwsQRqU2j8Rr6bgt8hIpbwXVefijjZ73-c_PKRQAoTrQ2bRrVCjuziEqK32YfDfVD1mzDsH5z2Bn5NMOBrMPxzX4QqipXOwkBxlwojNFh3nUYqimLXRVInw7jTRguXZkwlJjMmyGILRh9QXTkG_7tK1hIIioIOWft0MDz52pqBpBtV9S8Qsqesy5uUalW3F3EM5ANfwI7xxTWjuOpU0RqI-xM1A2W5imXjmhv8X-a2NIj9h-RB7cnSvWrpPSIrNl8ndypuy8U68Y7BHS-m5RV9S3vjc_CNy6vHRH-HCL1qEL6ghaOAXn5P5cVkQfvj4nKHnlrw5qtuzztU5YYOYP7_FFi5SZFCuizGoOc5LancwF0eLygi29j-hmenSHvxhIxuRRlPSScvcrtBqBHCREmoteWcByrMMhPEJX8i3GWGeSRoplvquhU6MnKM5VUTZ9SQBA1J1JAUHnnfPjKp-oAsE94AHUr1E3Bajr6FmB3GdCXExh55h4qVCB_wSq3qKggYODbiknuMsQTZgEBy65ru29fiqV8BcZ5HNpvFIGvgmcl2m3jkVfsrIAamgVRui4uZ7MYJhMUpoLlH6A0yaRykCUSmwTIRjsRNMYhsNyvxahw3zs2zpaN-Se7CtpZfDodHm-Re9f0eT0k9J5359MK-AAdwnm3VW42SH7e9u_8Bivhp7Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Variability+of+Sub-Canopy+Flow%2C+Temperature%2C+and+Horizontal+Advection+in+Moderately+Complex+Terrain&rft.jtitle=Boundary-layer+meteorology&rft.au=Thomas%2C+Christoph+K&rft.date=2011-04-01&rft.issn=0006-8314&rft.eissn=1573-1472&rft.volume=139&rft.issue=1&rft.spage=61&rft.epage=81&rft_id=info:doi/10.1007%2Fs10546-010-9578-9&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-8314&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-8314&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-8314&client=summon