Enhanced anaerobic digestion of waste activated sludge digestion by the addition of zero valent iron

Anaerobic digestion is promising technology to recover energy from waste activated sludge. However, the sludge digestion is limited by its low efficiency of hydrolysis-acidification. Zero valent iron (ZVI) as a reducing material is expected to enhance anaerobic process including the hydrolysis-acidi...

Full description

Saved in:
Bibliographic Details
Published inWater research (Oxford) Vol. 52; pp. 242 - 250
Main Authors Feng, Yinghong, Zhang, Yaobin, Quan, Xie, Chen, Suo
Format Journal Article
LanguageEnglish
Published England 01.04.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Anaerobic digestion is promising technology to recover energy from waste activated sludge. However, the sludge digestion is limited by its low efficiency of hydrolysis-acidification. Zero valent iron (ZVI) as a reducing material is expected to enhance anaerobic process including the hydrolysis-acidification process. Considering that, ZVI was added into an anaerobic sludge digestion system to accelerate the sludge digestion in this study. The results indicated that ZVI effectively enhanced the decomposition of protein and cellulose, the two main components of the sludge. Compared to the control test without ZVI, the degradation of protein increased 21.9% and the volatile fatty acids production increased 37.3% with adding ZVI. More acetate and less propionate are found during the hydrolysis-acidification with ZVI. The activities of several key enzymes in the hydrolysis and acidification increased 0.6-1 time. ZVI made the methane production raise 43.5% and sludge reduction ratio increase 12.2 percent points. Fluorescence in situ hybridization analysis showed that the abundances of hydrogen-consuming microorganisms including homoacetogens and hydrogenotrophic methanogens with ZVI were higher than the control, which reduced the H2 accumulation to create a beneficial condition for the sludge digestion in thermodynamics.
AbstractList Anaerobic digestion is promising technology to recover energy from waste activated sludge. However, the sludge digestion is limited by its low efficiency of hydrolysis-acidification. Zero valent iron (ZVI) as a reducing material is expected to enhance anaerobic process including the hydrolysis-acidification process. Considering that, ZVI was added into an anaerobic sludge digestion system to accelerate the sludge digestion in this study. The results indicated that ZVI effectively enhanced the decomposition of protein and cellulose, the two main components of the sludge. Compared to the control test without ZVI, the degradation of protein increased 21.9% and the volatile fatty acids production increased 37.3% with adding ZVI. More acetate and less propionate are found during the hydrolysis-acidification with ZVI. The activities of several key enzymes in the hydrolysis and acidification increased 0.6-1 time. ZVI made the methane production raise 43.5% and sludge reduction ratio increase 12.2 percent points. Fluorescence in situ hybridization analysis showed that the abundances of hydrogen-consuming microorganisms including homoacetogens and hydrogenotrophic methanogens with ZVI were higher than the control, which reduced the H2 accumulation to create a beneficial condition for the sludge digestion in thermodynamics.
Anaerobic digestion is promising technology to recover energy from waste activated sludge. However, the sludge digestion is limited by its low efficiency of hydrolysis-acidification. Zero valent iron (ZVI) as a reducing material is expected to enhance anaerobic process including the hydrolysis-acidification process. Considering that, ZVI was added into an anaerobic sludge digestion system to accelerate the sludge digestion in this study. The results indicated that ZVI effectively enhanced the decomposition of protein and cellulose, the two main components of the sludge. Compared to the control test without ZVI, the degradation of protein increased 21.9% and the volatile fatty acids production increased 37.3% with adding ZVI. More acetate and less propionate are found during the hydrolysis-acidification with ZVI. The activities of several key enzymes in the hydrolysis and acidification increased 0.6-1 time. ZVI made the methane production raise 43.5% and sludge reduction ratio increase 12.2 percent points. Fluorescence in situ hybridization analysis showed that the abundances of hydrogen-consuming microorganisms including homoacetogens and hydrogenotrophic methanogens with ZVI were higher than the control, which reduced the H2 accumulation to create a beneficial condition for the sludge digestion in thermodynamics.Anaerobic digestion is promising technology to recover energy from waste activated sludge. However, the sludge digestion is limited by its low efficiency of hydrolysis-acidification. Zero valent iron (ZVI) as a reducing material is expected to enhance anaerobic process including the hydrolysis-acidification process. Considering that, ZVI was added into an anaerobic sludge digestion system to accelerate the sludge digestion in this study. The results indicated that ZVI effectively enhanced the decomposition of protein and cellulose, the two main components of the sludge. Compared to the control test without ZVI, the degradation of protein increased 21.9% and the volatile fatty acids production increased 37.3% with adding ZVI. More acetate and less propionate are found during the hydrolysis-acidification with ZVI. The activities of several key enzymes in the hydrolysis and acidification increased 0.6-1 time. ZVI made the methane production raise 43.5% and sludge reduction ratio increase 12.2 percent points. Fluorescence in situ hybridization analysis showed that the abundances of hydrogen-consuming microorganisms including homoacetogens and hydrogenotrophic methanogens with ZVI were higher than the control, which reduced the H2 accumulation to create a beneficial condition for the sludge digestion in thermodynamics.
Author Feng, Yinghong
Quan, Xie
Chen, Suo
Zhang, Yaobin
Author_xml – sequence: 1
  givenname: Yinghong
  surname: Feng
  fullname: Feng, Yinghong
– sequence: 2
  givenname: Yaobin
  surname: Zhang
  fullname: Zhang, Yaobin
– sequence: 3
  givenname: Xie
  surname: Quan
  fullname: Quan, Xie
– sequence: 4
  givenname: Suo
  surname: Chen
  fullname: Chen, Suo
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24275106$$D View this record in MEDLINE/PubMed
BookMark eNqNkstqHDEQRUVwsMdO_sCYXmbTkyo9uqXsgnEeYMgmWTd6ta2hR-1IGhvn66Nm7GCyyGQhBMW5V1Wqe0qO4hw9IecIawTs3m_WD7okn9cUkNXSGnr6iqxQ9qqlnMsjsgLgrEUm-Ak5zXkDAJQydUxOKKe9QOhWxF3FWx2td42O2qfZBNu4cONzCXNs5rF50Ln4RtsS7nWpWJ527sa_YMxjU24r4Vx41vyqRs29nnwsTUhzfENej3rK_u3TfUZ-fLr6fvmlvf72-evlx-vWChCllSNaSS0KA7TrKaiOCajT0Vo3KDthJEWthHGd0YojjFQ6yhX3nZECPTsj7_a-d2n-uav9DduQrZ8mHf28ywOtP4C8OqqDKCpU9X2s5yAqZfWtnbL_QDvJ6myMH0YFcBSshwW9eEJ3ZuvdcJfCVqfH4XmLFeB7wKY55-THPwjCsIRl2Az7sAxLWJZqDUuVffhLZkPRyxJL0mH6t_g3RS_E0w
CitedBy_id crossref_primary_10_1016_j_energy_2018_06_171
crossref_primary_10_1016_j_biortech_2018_12_075
crossref_primary_10_1016_j_jes_2019_05_027
crossref_primary_10_1016_j_biortech_2021_126023
crossref_primary_10_4491_KSEE_2015_37_7_387
crossref_primary_10_1007_s13399_021_01839_6
crossref_primary_10_1016_j_scitotenv_2020_139159
crossref_primary_10_1016_j_cej_2019_122643
crossref_primary_10_1016_j_ymben_2022_02_001
crossref_primary_10_1016_j_chemosphere_2022_136597
crossref_primary_10_1016_j_fuel_2019_04_059
crossref_primary_10_1016_j_jece_2022_108518
crossref_primary_10_1016_j_jhazmat_2020_124053
crossref_primary_10_1016_j_biortech_2019_122178
crossref_primary_10_1016_j_biortech_2014_02_114
crossref_primary_10_1016_j_envres_2023_115531
crossref_primary_10_1016_j_scitotenv_2018_03_255
crossref_primary_10_1016_j_watres_2017_03_048
crossref_primary_10_1016_j_watres_2022_119287
crossref_primary_10_1016_j_biortech_2018_12_086
crossref_primary_10_1016_j_envres_2023_116986
crossref_primary_10_1016_j_biombioe_2019_105337
crossref_primary_10_1080_10643389_2017_1334457
crossref_primary_10_1061__ASCE_EE_1943_7870_0001646
crossref_primary_10_1007_s11157_017_9445_y
crossref_primary_10_1016_j_jenvman_2025_124268
crossref_primary_10_4028_www_scientific_net_MSF_913_887
crossref_primary_10_1038_srep08263
crossref_primary_10_1016_j_rser_2023_114267
crossref_primary_10_1016_j_biortech_2018_12_050
crossref_primary_10_1016_j_biortech_2020_123804
crossref_primary_10_1016_j_biortech_2021_125035
crossref_primary_10_1016_j_fuel_2021_120883
crossref_primary_10_1016_j_watres_2020_116001
crossref_primary_10_2139_ssrn_4157301
crossref_primary_10_1016_j_biortech_2021_126248
crossref_primary_10_1080_19443994_2015_1051127
crossref_primary_10_1039_C5RA27760D
crossref_primary_10_1007_s11783_021_1514_3
crossref_primary_10_1080_09593330_2020_1733674
crossref_primary_10_1016_j_chemosphere_2020_127291
crossref_primary_10_1016_j_jenvman_2021_112353
crossref_primary_10_1021_acs_energyfuels_9b02498
crossref_primary_10_1016_j_biortech_2017_08_035
crossref_primary_10_1016_j_jece_2022_107889
crossref_primary_10_1016_j_biombioe_2021_106270
crossref_primary_10_1016_j_biortech_2017_09_073
crossref_primary_10_1016_j_scitotenv_2019_07_090
crossref_primary_10_1007_s11356_014_3514_3
crossref_primary_10_1016_j_jece_2024_113554
crossref_primary_10_1007_s11356_018_3438_4
crossref_primary_10_1016_j_eti_2021_101968
crossref_primary_10_1007_s42452_022_05222_6
crossref_primary_10_1016_j_biortech_2017_10_050
crossref_primary_10_1016_j_resconrec_2021_105844
crossref_primary_10_1038_srep12732
crossref_primary_10_1007_s00343_020_0274_4
crossref_primary_10_1016_j_jenvman_2025_124283
crossref_primary_10_1016_j_jhazmat_2015_01_036
crossref_primary_10_1021_acs_est_1c02300
crossref_primary_10_1021_acs_energyfuels_7b02135
crossref_primary_10_1016_j_scitotenv_2019_05_214
crossref_primary_10_1016_j_wasman_2018_09_042
crossref_primary_10_1016_j_biortech_2020_123901
crossref_primary_10_1016_j_biortech_2021_126465
crossref_primary_10_1177_0734242X18819954
crossref_primary_10_3390_fermentation7040303
crossref_primary_10_3390_fermentation6030092
crossref_primary_10_1016_j_fuel_2023_127703
crossref_primary_10_1016_j_cej_2017_11_029
crossref_primary_10_1016_j_rser_2015_02_032
crossref_primary_10_20535_ibb_2020_4_4_211227
crossref_primary_10_1038_s41598_020_62008_9
crossref_primary_10_1016_j_resconrec_2017_09_007
crossref_primary_10_1016_j_biortech_2018_09_008
crossref_primary_10_1038_s41598_020_64557_5
crossref_primary_10_1016_j_scitotenv_2023_169313
crossref_primary_10_1016_j_jwpe_2024_105736
crossref_primary_10_1016_j_renene_2025_122458
crossref_primary_10_1016_j_biortech_2018_12_048
crossref_primary_10_1016_j_biortech_2019_122139
crossref_primary_10_1016_j_biortech_2021_126599
crossref_primary_10_1016_j_renene_2015_10_053
crossref_primary_10_1016_j_scitotenv_2020_140687
crossref_primary_10_1016_j_watres_2024_121603
crossref_primary_10_1016_j_eti_2021_101862
crossref_primary_10_1016_j_watres_2016_10_018
crossref_primary_10_1016_j_bej_2023_108999
crossref_primary_10_1016_j_sciaf_2021_e00728
crossref_primary_10_1021_acs_energyfuels_9b01475
crossref_primary_10_3390_c4040059
crossref_primary_10_1016_j_jclepro_2020_123567
crossref_primary_10_1016_j_chemosphere_2024_143024
crossref_primary_10_1007_s11356_019_05394_6
crossref_primary_10_1016_j_cej_2021_130821
crossref_primary_10_1007_s10661_019_7225_6
crossref_primary_10_1016_j_biortech_2019_03_013
crossref_primary_10_1016_j_jece_2024_113764
crossref_primary_10_1016_j_biortech_2021_126566
crossref_primary_10_1016_j_biortech_2021_126438
crossref_primary_10_3389_fbioe_2020_590200
crossref_primary_10_1016_j_chemosphere_2018_04_170
crossref_primary_10_1016_j_rser_2018_07_029
crossref_primary_10_1016_j_jwpe_2022_103292
crossref_primary_10_1080_09593330_2016_1170209
crossref_primary_10_1016_j_apt_2018_06_022
crossref_primary_10_1016_j_crsus_2024_100019
crossref_primary_10_1016_j_cep_2018_06_020
crossref_primary_10_1016_j_watres_2023_120115
crossref_primary_10_1016_j_envres_2022_113355
crossref_primary_10_1016_j_jece_2023_111278
crossref_primary_10_1016_j_jwpe_2024_104864
crossref_primary_10_1039_C8RA09451A
crossref_primary_10_1016_j_cej_2018_06_160
crossref_primary_10_1016_j_efmat_2025_01_001
crossref_primary_10_3390_en18061425
crossref_primary_10_1016_j_jwpe_2020_101867
crossref_primary_10_1016_j_jcou_2018_08_023
crossref_primary_10_1016_j_jenvman_2019_01_093
crossref_primary_10_1016_j_fuel_2020_118234
crossref_primary_10_1007_s12517_021_08891_6
crossref_primary_10_1016_j_eti_2020_101279
crossref_primary_10_1016_j_renene_2017_06_043
crossref_primary_10_1002_wer_1414
crossref_primary_10_1016_j_ijhydene_2025_02_186
crossref_primary_10_1016_j_ijhydene_2018_05_132
crossref_primary_10_1016_j_cej_2020_126506
crossref_primary_10_3390_app9010059
crossref_primary_10_1016_j_enconman_2016_05_051
crossref_primary_10_1007_s11356_017_9859_7
crossref_primary_10_1016_j_biortech_2018_05_036
crossref_primary_10_1016_j_biortech_2021_125569
crossref_primary_10_1016_j_chemosphere_2022_135544
crossref_primary_10_1016_j_enzmictec_2023_110304
crossref_primary_10_1016_j_cej_2017_09_133
crossref_primary_10_1016_j_fuel_2022_125685
crossref_primary_10_1016_j_jhazmat_2024_136569
crossref_primary_10_1007_s12257_023_0033_4
crossref_primary_10_1016_j_cej_2021_132233
crossref_primary_10_1016_j_matpr_2023_08_284
crossref_primary_10_1080_10643389_2017_1348107
crossref_primary_10_2139_ssrn_3963576
crossref_primary_10_1177_0734242X241231397
crossref_primary_10_1016_j_jes_2023_04_001
crossref_primary_10_1021_acssuschemeng_1c01781
crossref_primary_10_1016_j_envres_2023_116589
crossref_primary_10_1016_j_renene_2019_06_050
crossref_primary_10_1016_j_watres_2014_06_010
crossref_primary_10_1016_j_watres_2015_02_056
crossref_primary_10_1016_j_jwpe_2025_107094
crossref_primary_10_1016_j_cej_2018_12_058
crossref_primary_10_1016_j_watres_2020_115528
crossref_primary_10_1016_j_watres_2024_122173
crossref_primary_10_1016_j_envres_2024_118905
crossref_primary_10_1016_j_chemosphere_2023_141041
crossref_primary_10_1016_j_rser_2019_04_064
crossref_primary_10_1016_j_energy_2024_131761
crossref_primary_10_1016_j_jece_2020_103918
crossref_primary_10_1016_j_ijhydene_2021_03_083
crossref_primary_10_1080_09593330_2022_2114856
crossref_primary_10_1016_j_watres_2020_116761
crossref_primary_10_3390_su16135683
crossref_primary_10_1061__ASCE_EE_1943_7870_0001910
crossref_primary_10_1007_s11356_020_07828_y
crossref_primary_10_1016_j_bej_2024_109625
crossref_primary_10_1016_j_renene_2024_121199
crossref_primary_10_1016_j_biortech_2014_05_052
crossref_primary_10_1016_j_watres_2020_116405
crossref_primary_10_1016_j_biortech_2019_121926
crossref_primary_10_1016_j_biotechadv_2020_107610
crossref_primary_10_1016_j_eti_2015_11_001
crossref_primary_10_1021_acssuschemeng_8b03083
crossref_primary_10_1016_j_envres_2024_119904
crossref_primary_10_1088_1757_899X_562_1_012013
crossref_primary_10_1016_j_ymben_2021_11_014
crossref_primary_10_5004_dwt_2017_20976
crossref_primary_10_1016_j_scitotenv_2019_03_136
crossref_primary_10_1016_j_renene_2019_06_154
crossref_primary_10_1016_j_jenvman_2023_117686
crossref_primary_10_1016_j_biortech_2023_129286
crossref_primary_10_1016_j_biombioe_2019_04_026
crossref_primary_10_1016_j_conbuildmat_2020_120021
crossref_primary_10_1016_j_bej_2018_10_010
crossref_primary_10_1016_j_biortech_2021_126532
crossref_primary_10_1016_j_scitotenv_2021_149667
crossref_primary_10_1007_s12649_018_0374_y
crossref_primary_10_1016_j_biortech_2018_10_077
crossref_primary_10_1016_j_scitotenv_2023_163116
crossref_primary_10_1016_j_scitotenv_2022_158420
crossref_primary_10_1016_j_scitotenv_2023_162025
crossref_primary_10_1021_acssuschemeng_0c00015
crossref_primary_10_1016_j_apenergy_2016_10_003
crossref_primary_10_1007_s11356_019_05927_z
crossref_primary_10_1007_s11356_020_08207_3
crossref_primary_10_1016_j_jhazmat_2018_11_106
crossref_primary_10_1016_j_watres_2023_119609
crossref_primary_10_1080_10934529_2020_1771120
crossref_primary_10_3389_fmicb_2022_980396
crossref_primary_10_1016_j_biombioe_2020_105833
crossref_primary_10_1016_j_watres_2021_117197
crossref_primary_10_1007_s13399_022_02417_0
crossref_primary_10_1016_j_jece_2021_106013
crossref_primary_10_1016_j_jhazmat_2020_122509
crossref_primary_10_1021_acssuschemeng_8b04115
crossref_primary_10_1002_er_7673
crossref_primary_10_1021_acs_est_0c03029
crossref_primary_10_1016_j_cej_2021_134459
crossref_primary_10_1016_j_nexus_2022_100099
crossref_primary_10_1061_JOEEDU_EEENG_7719
crossref_primary_10_1016_j_cej_2022_134977
crossref_primary_10_1039_D1CY02151F
crossref_primary_10_1016_j_biortech_2024_131824
crossref_primary_10_1016_j_cej_2020_124235
crossref_primary_10_1016_j_jhazmat_2020_123972
crossref_primary_10_1039_C6RA06868E
crossref_primary_10_1007_s42452_022_05161_2
crossref_primary_10_1007_s13762_020_02933_4
crossref_primary_10_1016_j_watres_2018_04_026
crossref_primary_10_1016_j_ijhydene_2018_06_015
crossref_primary_10_1016_j_cej_2015_09_060
crossref_primary_10_1016_j_scitotenv_2020_136594
crossref_primary_10_1016_j_fuel_2022_125537
crossref_primary_10_1016_j_jbiosc_2016_12_003
crossref_primary_10_1016_j_scitotenv_2019_04_115
crossref_primary_10_1039_C5RA24134K
crossref_primary_10_1016_j_envpol_2019_113654
crossref_primary_10_1007_s13762_020_03087_z
crossref_primary_10_1007_s11356_023_25657_7
crossref_primary_10_1016_j_cej_2017_09_103
crossref_primary_10_1016_j_ecoenv_2017_06_066
crossref_primary_10_1016_j_jclepro_2017_02_156
crossref_primary_10_1016_j_biortech_2019_122092
crossref_primary_10_1016_j_chemosphere_2019_03_138
crossref_primary_10_1016_j_jece_2024_114212
crossref_primary_10_21324_dacd_540532
crossref_primary_10_1016_j_envres_2023_116997
crossref_primary_10_1016_j_renene_2019_08_078
crossref_primary_10_21605_cukurovaumfd_982723
crossref_primary_10_3390_methane3030029
crossref_primary_10_1016_j_biortech_2014_12_011
crossref_primary_10_2139_ssrn_3953107
crossref_primary_10_1016_j_jclepro_2022_134777
crossref_primary_10_1007_s12649_022_01816_8
crossref_primary_10_1007_s11356_019_04798_8
crossref_primary_10_1016_j_cej_2014_11_003
crossref_primary_10_1155_2023_8581697
crossref_primary_10_1016_j_fuel_2024_131425
crossref_primary_10_1016_j_jenvman_2023_118337
crossref_primary_10_1061__ASCE_EE_1943_7870_0001947
crossref_primary_10_3389_fbioe_2022_868454
crossref_primary_10_1016_j_biortech_2021_124671
crossref_primary_10_1016_j_scitotenv_2021_148415
crossref_primary_10_1016_j_biortech_2020_123159
crossref_primary_10_1016_j_scitotenv_2022_160813
crossref_primary_10_1016_j_biortech_2020_124013
crossref_primary_10_1007_s11356_016_7535_y
crossref_primary_10_1016_j_scitotenv_2022_159718
crossref_primary_10_1007_s10163_021_01262_z
crossref_primary_10_1016_j_wasman_2020_09_005
crossref_primary_10_1016_j_jwpe_2024_105365
crossref_primary_10_1016_j_biortech_2019_01_021
crossref_primary_10_1016_j_envres_2023_117146
crossref_primary_10_1002_wer_10994
crossref_primary_10_1016_j_jwpe_2024_106570
crossref_primary_10_1016_j_biortech_2019_121874
crossref_primary_10_1016_j_scitotenv_2021_152080
crossref_primary_10_1016_j_radphyschem_2019_108534
crossref_primary_10_1016_j_jhazmat_2024_135514
crossref_primary_10_1007_s11270_023_06754_2
crossref_primary_10_3389_fmicb_2023_1304703
crossref_primary_10_3390_nano12030497
crossref_primary_10_2166_wst_2024_121
crossref_primary_10_1016_j_jece_2021_106616
crossref_primary_10_1039_C6RA02591A
crossref_primary_10_1007_s11270_018_3779_0
crossref_primary_10_1016_j_bej_2019_03_017
crossref_primary_10_1007_s10163_021_01174_y
crossref_primary_10_1016_j_psep_2019_12_031
crossref_primary_10_3389_fbioe_2021_649049
crossref_primary_10_1080_09593330_2019_1673829
crossref_primary_10_1016_j_energy_2018_08_118
crossref_primary_10_1016_j_chemosphere_2024_141823
crossref_primary_10_1016_j_wasman_2025_114738
crossref_primary_10_2139_ssrn_3962871
crossref_primary_10_3390_fermentation9020108
crossref_primary_10_1016_j_jclepro_2018_04_244
crossref_primary_10_1016_j_jhazmat_2022_130717
crossref_primary_10_2478_rtuect_2021_0031
crossref_primary_10_1016_j_rser_2024_114902
crossref_primary_10_1080_09593330_2024_2354123
crossref_primary_10_1177_0734242X221122560
crossref_primary_10_1016_j_jenvman_2019_04_062
crossref_primary_10_1016_j_renene_2024_120146
crossref_primary_10_1016_j_ijhydene_2019_05_154
crossref_primary_10_1007_s10668_021_01629_0
crossref_primary_10_1021_acs_energyfuels_5b02884
crossref_primary_10_1016_j_biortech_2025_132253
crossref_primary_10_1016_j_colsurfb_2020_111249
crossref_primary_10_1007_s10311_023_01632_z
crossref_primary_10_1016_j_watres_2024_121265
crossref_primary_10_1016_j_wasman_2020_12_003
crossref_primary_10_1080_09593330_2019_1604811
crossref_primary_10_1016_j_biortech_2024_130959
crossref_primary_10_1051_e3sconf_202453003004
crossref_primary_10_3390_fermentation9070622
crossref_primary_10_5004_dwt_2020_24695
crossref_primary_10_1016_j_envres_2021_112043
crossref_primary_10_1111_wej_12188
crossref_primary_10_1016_j_biteb_2022_101319
crossref_primary_10_1016_j_scitotenv_2018_07_468
crossref_primary_10_1016_j_biortech_2020_123122
crossref_primary_10_1007_s11356_019_04479_6
crossref_primary_10_1016_j_biortech_2016_05_088
crossref_primary_10_1016_j_watres_2015_11_014
crossref_primary_10_1021_acs_energyfuels_5b00573
crossref_primary_10_1021_acs_energyfuels_9b00522
crossref_primary_10_1016_j_chemosphere_2021_131277
crossref_primary_10_1080_09593330_2022_2061379
crossref_primary_10_2139_ssrn_3972009
crossref_primary_10_1016_j_watres_2022_118687
crossref_primary_10_1016_j_biortech_2019_121713
crossref_primary_10_1016_j_algal_2023_102972
crossref_primary_10_1021_acsomega_0c00174
crossref_primary_10_1016_j_watres_2018_02_025
crossref_primary_10_1007_s11368_018_2106_0
crossref_primary_10_1016_j_coal_2018_01_001
crossref_primary_10_1080_09593330_2021_1946161
crossref_primary_10_1016_j_rser_2018_02_042
crossref_primary_10_1016_j_wasman_2016_11_023
crossref_primary_10_1016_j_biortech_2018_06_053
crossref_primary_10_1002_ep_13620
crossref_primary_10_1016_j_dwt_2024_100555
crossref_primary_10_1016_j_renene_2024_121387
crossref_primary_10_1016_j_biortech_2021_124970
crossref_primary_10_1007_s11157_019_09505_0
crossref_primary_10_1007_s11356_017_9563_7
crossref_primary_10_1038_s41598_020_71141_4
crossref_primary_10_1016_j_biortech_2016_03_078
crossref_primary_10_1016_j_ceja_2022_100405
crossref_primary_10_1007_s11356_024_31851_y
crossref_primary_10_1016_j_watres_2017_01_067
crossref_primary_10_1016_j_biortech_2016_03_071
crossref_primary_10_1016_j_ijhydene_2021_10_137
crossref_primary_10_1016_j_biombioe_2024_107241
crossref_primary_10_1007_s12010_017_2615_0
crossref_primary_10_1016_j_apenergy_2019_01_243
crossref_primary_10_2166_wst_2021_414
crossref_primary_10_1021_acs_energyfuels_1c00673
crossref_primary_10_1016_j_jclepro_2021_128773
crossref_primary_10_1016_j_rser_2015_12_261
crossref_primary_10_1016_j_watres_2018_07_028
crossref_primary_10_2139_ssrn_3949242
crossref_primary_10_1016_j_energy_2018_03_069
crossref_primary_10_1016_j_jece_2024_113081
crossref_primary_10_1016_j_fuel_2024_131941
crossref_primary_10_1016_j_jhazmat_2021_127100
crossref_primary_10_1002_jctb_5548
crossref_primary_10_1016_j_jclepro_2023_136079
crossref_primary_10_1016_j_watres_2018_10_091
crossref_primary_10_1016_j_biortech_2019_02_128
crossref_primary_10_1016_j_procbio_2021_03_032
crossref_primary_10_1021_acs_est_9b02971
crossref_primary_10_1007_s00253_016_7586_5
crossref_primary_10_1039_C6GC02402E
crossref_primary_10_1016_j_jes_2019_02_009
crossref_primary_10_1016_j_watres_2022_118653
crossref_primary_10_1021_acs_est_7b02777
crossref_primary_10_1016_j_wasman_2018_05_053
crossref_primary_10_1016_j_chemosphere_2023_140148
crossref_primary_10_1016_j_jclepro_2021_129854
crossref_primary_10_1016_j_jbiosc_2021_02_009
crossref_primary_10_1016_j_biortech_2020_123799
crossref_primary_10_1039_D2EW00881E
crossref_primary_10_1021_acssuschemeng_9b01252
crossref_primary_10_1039_C8RA05369C
crossref_primary_10_1016_j_rser_2019_109282
crossref_primary_10_3390_w14101623
crossref_primary_10_1016_j_biortech_2020_123686
crossref_primary_10_1016_j_biortech_2020_123441
crossref_primary_10_1016_j_biortech_2019_02_110
crossref_primary_10_1016_j_colsurfa_2020_125315
crossref_primary_10_1016_j_jece_2023_109631
crossref_primary_10_1016_j_jenvman_2021_111970
crossref_primary_10_1016_j_cej_2017_09_160
crossref_primary_10_1016_j_envpol_2021_116801
crossref_primary_10_1016_j_biortech_2019_121351
crossref_primary_10_1016_j_envint_2019_105006
crossref_primary_10_1016_j_jhazmat_2019_121847
crossref_primary_10_1007_s11356_017_8832_9
crossref_primary_10_1016_j_biortech_2017_06_121
crossref_primary_10_3390_en15196917
crossref_primary_10_1016_j_envres_2024_118232
crossref_primary_10_1016_j_biortech_2023_128601
crossref_primary_10_1016_j_watres_2016_06_002
crossref_primary_10_1016_j_biortech_2015_03_144
crossref_primary_10_1016_j_jenvman_2022_116732
crossref_primary_10_1016_j_envint_2019_105362
crossref_primary_10_1016_j_biteb_2019_03_002
crossref_primary_10_1021_acsestengg_3c00149
crossref_primary_10_1016_j_jhazmat_2016_08_076
crossref_primary_10_1016_j_biortech_2014_10_052
crossref_primary_10_1007_s11356_018_2888_z
crossref_primary_10_1016_j_jenvman_2024_121761
crossref_primary_10_5004_dwt_2017_21049
crossref_primary_10_3390_en15113983
crossref_primary_10_1016_j_watres_2015_04_002
crossref_primary_10_1016_j_watres_2024_122619
crossref_primary_10_1016_j_scitotenv_2020_143007
crossref_primary_10_3390_fermentation9020183
crossref_primary_10_1016_j_biortech_2017_07_151
crossref_primary_10_1016_j_wasman_2019_10_003
crossref_primary_10_3390_en16073285
crossref_primary_10_3390_ma16237250
crossref_primary_10_1016_j_biortech_2019_122345
crossref_primary_10_1016_j_jclepro_2023_137252
crossref_primary_10_1080_17597269_2019_1702796
crossref_primary_10_1016_j_bej_2016_03_002
crossref_primary_10_1016_j_envres_2024_118495
crossref_primary_10_1016_j_jhazmat_2014_12_029
crossref_primary_10_1016_j_biortech_2017_11_003
crossref_primary_10_1016_j_scitotenv_2021_145969
crossref_primary_10_1016_j_rser_2020_110134
crossref_primary_10_1016_j_biortech_2018_02_088
crossref_primary_10_1016_j_jenvman_2017_12_012
crossref_primary_10_1016_j_bioelechem_2020_107625
crossref_primary_10_1016_j_fuel_2022_123923
crossref_primary_10_1016_j_jclepro_2020_120779
crossref_primary_10_1155_2019_2496905
crossref_primary_10_1016_j_cej_2021_129511
crossref_primary_10_1007_s11356_022_24655_5
crossref_primary_10_1016_j_ijhydene_2021_12_139
crossref_primary_10_1016_j_matpr_2020_02_830
crossref_primary_10_1016_j_cej_2017_06_181
crossref_primary_10_1016_j_chemosphere_2023_139639
crossref_primary_10_1016_j_renene_2016_11_017
crossref_primary_10_1016_j_wasman_2019_05_020
crossref_primary_10_1016_j_jpowsour_2023_232707
crossref_primary_10_1016_j_apenergy_2016_06_120
crossref_primary_10_1016_j_ijhydene_2020_10_256
crossref_primary_10_1155_2019_5138060
crossref_primary_10_1016_j_scitotenv_2022_153531
crossref_primary_10_1016_j_jclepro_2020_123627
crossref_primary_10_3390_applnano4030014
crossref_primary_10_1021_acssuschemeng_0c07348
crossref_primary_10_1016_j_biortech_2019_122648
crossref_primary_10_1016_j_biortech_2018_07_004
crossref_primary_10_1016_j_jwpe_2022_102697
crossref_primary_10_1016_j_bej_2025_109688
crossref_primary_10_1016_j_biortech_2019_122403
crossref_primary_10_1016_j_biortech_2020_123503
crossref_primary_10_1016_j_enconman_2020_113436
crossref_primary_10_1088_1755_1315_67_1_012004
crossref_primary_10_1016_j_bej_2022_108501
crossref_primary_10_1007_s42768_024_00190_6
crossref_primary_10_1007_s13399_020_00985_7
crossref_primary_10_1016_j_biortech_2015_05_076
crossref_primary_10_1016_j_scitotenv_2020_143573
crossref_primary_10_1016_j_cscee_2023_100377
crossref_primary_10_1007_s11356_023_29335_6
crossref_primary_10_1080_15567036_2020_1788675
crossref_primary_10_1007_s13399_023_04103_1
crossref_primary_10_1021_acsestengg_3c00103
crossref_primary_10_1016_j_jenvman_2024_122412
crossref_primary_10_1016_j_biortech_2021_126197
crossref_primary_10_1016_j_jcou_2022_101915
crossref_primary_10_1039_C6EM00219F
crossref_primary_10_1016_j_watres_2016_12_047
crossref_primary_10_1016_j_biortech_2019_121688
crossref_primary_10_1016_j_bej_2017_05_008
crossref_primary_10_1016_j_wasman_2020_04_004
crossref_primary_10_1080_09593330_2024_2306798
crossref_primary_10_1080_09593330_2022_2077137
crossref_primary_10_1007_s13399_020_00996_4
crossref_primary_10_1016_j_biombioe_2021_106128
crossref_primary_10_1016_j_jes_2020_12_030
crossref_primary_10_1016_j_chemosphere_2023_140512
crossref_primary_10_1016_j_scitotenv_2018_11_326
crossref_primary_10_1016_j_cej_2023_148444
crossref_primary_10_1007_s11356_021_13101_7
crossref_primary_10_1021_acssuschemeng_7b03637
crossref_primary_10_1016_j_jclepro_2020_120214
crossref_primary_10_1111_wej_12313
crossref_primary_10_3390_su15021264
crossref_primary_10_1016_j_ibiod_2016_04_001
crossref_primary_10_1016_j_chemosphere_2022_134903
crossref_primary_10_1016_j_jece_2023_110696
crossref_primary_10_1007_s10098_019_01698_w
crossref_primary_10_1177_0734242X20939619
crossref_primary_10_1016_j_chemosphere_2022_134908
crossref_primary_10_1016_j_energy_2016_11_137
crossref_primary_10_3390_en10020258
crossref_primary_10_1016_j_biortech_2020_122753
crossref_primary_10_1134_S0040579523060155
crossref_primary_10_1016_j_scitotenv_2019_135878
crossref_primary_10_1016_j_renene_2021_06_042
crossref_primary_10_2166_wst_2024_340
crossref_primary_10_1016_j_cej_2021_131407
crossref_primary_10_1016_j_bej_2024_109276
crossref_primary_10_1016_j_jhazmat_2021_126883
crossref_primary_10_3390_ijerph19084470
crossref_primary_10_3390_ijerph192215093
crossref_primary_10_1016_j_chemosphere_2020_125866
crossref_primary_10_1016_j_biortech_2020_122989
crossref_primary_10_3390_w12051283
crossref_primary_10_1016_j_cej_2022_135175
crossref_primary_10_1016_j_jhazmat_2014_11_029
crossref_primary_10_1016_j_biortech_2020_122870
crossref_primary_10_1016_j_jclepro_2019_118195
crossref_primary_10_1186_s12896_019_0513_y
crossref_primary_10_1007_s11356_024_33844_3
crossref_primary_10_3390_w13040391
Cites_doi 10.1099/00221287-147-2-373
10.1016/j.biortech.2012.06.115
10.1128/AEM.00489-06
10.1016/S0043-1354(00)00468-1
10.1016/j.bej.2013.02.004
10.1021/es990510x
10.1128/jb.87.1.171-187.1964
10.1016/S0043-1354(99)00361-9
10.1016/j.watres.2009.02.012
10.1021/es034291y
10.1016/j.watres.2012.11.020
10.1016/j.pecs.2008.06.002
10.1016/j.biombioe.2005.11.010
10.2166/wst.2003.0471
10.1007/BF00164784
10.1016/j.biortech.2006.07.026
10.1016/j.watres.2012.11.052
10.1016/j.watres.2012.07.051
10.1021/ac020271n
10.1016/j.watres.2011.11.073
10.1038/nature02321
10.1271/bbb.64.1737
10.1016/j.bej.2008.06.020
10.1016/S1389-1723(03)80028-2
10.1021/es102878m
10.1016/j.watres.2011.01.005
10.1007/BF00504740
10.2166/wst.1997.0406
10.1016/S1389-1723(04)00258-0
10.1016/j.watres.2013.04.003
10.1016/S0360-3199(02)00090-3
10.1016/j.biortech.2010.06.019
10.1016/j.biortech.2005.05.010
10.1016/j.jhazmat.2010.06.129
10.1128/aem.56.3.719-723.1990
10.1016/j.biortech.2010.07.100
10.1021/es902958c
10.1002/bit.260300510
10.1016/j.biombioe.2010.08.002
10.1016/S0167-7799(01)01701-2
10.1126/science.237.4814.509
10.1080/09593332608618606
10.1016/j.cep.2006.02.005
10.1128/AEM.65.11.5117-5123.1999
10.1016/j.watres.2007.05.037
ContentType Journal Article
Copyright Copyright © 2013 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: Copyright © 2013 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QH
7TG
7UA
C1K
F1W
H97
KL.
L.G
8FD
FR3
KR7
7S9
L.6
DOI 10.1016/j.watres.2013.10.072
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Aqualine
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aqualine
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Sciences and Pollution Management
Technology Research Database
Civil Engineering Abstracts
Engineering Research Database
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE
AGRICOLA
MEDLINE - Academic
Technology Research Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-2448
EndPage 250
ExternalDocumentID 24275106
10_1016_j_watres_2013_10_072
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
-DZ
-~X
.55
.DC
.~1
0R~
123
186
1B1
1RT
1~.
1~5
29R
4.4
457
4G.
53G
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
AAYXX
ABEFU
ABFNM
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABQEM
ABQYD
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACKIV
ACLVX
ACRLP
ACRPL
ACSBN
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
AEBSH
AEFWE
AEGFY
AEIPS
AEKER
AENEX
AEUPX
AFFNX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRNS
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKIFW
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
BNPGV
CITATION
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HMC
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
KCYFY
KOM
LY3
LY9
M41
MO0
MVM
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SCU
SDF
SDG
SDP
SEN
SEP
SES
SEW
SPC
SPCBC
SSE
SSH
SSJ
SSZ
T5K
TAE
TN5
TWZ
WH7
WUQ
X7M
XOL
XPP
YHZ
YV5
ZCA
ZMT
ZXP
ZY4
~02
~A~
~G-
~KM
AACTN
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QH
7TG
7UA
C1K
F1W
H97
KL.
L.G
8FD
FR3
KR7
7S9
L.6
ID FETCH-LOGICAL-c505t-8f1c82c15b026720963502012f1cb1865b821a95bd6ba9410f28d2494e6b851e3
ISSN 0043-1354
1879-2448
IngestDate Thu Jul 10 23:40:38 EDT 2025
Fri Jul 11 03:10:25 EDT 2025
Fri Jul 11 03:24:37 EDT 2025
Thu Jul 10 18:36:07 EDT 2025
Fri Jul 11 00:36:08 EDT 2025
Thu Apr 03 07:04:25 EDT 2025
Tue Jul 01 03:53:40 EDT 2025
Thu Apr 24 23:05:16 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Sludge reduction
Waste activated sludge
Methane production
Anaerobic digestion
Zero-valent iron
Language English
License Copyright © 2013 Elsevier Ltd. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c505t-8f1c82c15b026720963502012f1cb1865b821a95bd6ba9410f28d2494e6b851e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 24275106
PQID 1504153704
PQPubID 23462
PageCount 9
ParticipantIDs proquest_miscellaneous_2000142019
proquest_miscellaneous_1919963196
proquest_miscellaneous_1880005023
proquest_miscellaneous_1868326734
proquest_miscellaneous_1504153704
pubmed_primary_24275106
crossref_primary_10_1016_j_watres_2013_10_072
crossref_citationtrail_10_1016_j_watres_2013_10_072
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-04-00
2014-Apr-01
20140401
PublicationDateYYYYMMDD 2014-04-01
PublicationDate_xml – month: 04
  year: 2014
  text: 2014-04-00
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Water research (Oxford)
PublicationTitleAlternate Water Res
PublicationYear 2014
References Dinh (10.1016/j.watres.2013.10.072_bib16) 2004; 427
Nah (10.1016/j.watres.2013.10.072_bib37) 2000; 34
Arnaiz (10.1016/j.watres.2013.10.072_bib5) 2006; 97
Chaplin (10.1016/j.watres.2013.10.072_bib10) 1994
Chu (10.1016/j.watres.2013.10.072_bib12) 2009; 43
Zhang (10.1016/j.watres.2013.10.072_bib49) 2003; 75
Liu (10.1016/j.watres.2013.10.072_bib32) 2012; 192
Basu (10.1016/j.watres.2013.10.072_bib7) 2005; 26
Bougrier (10.1016/j.watres.2013.10.072_bib8) 2006; 45
Yanagita (10.1016/j.watres.2013.10.072_bib46) 2000; 64
Heo (10.1016/j.watres.2013.10.072_bib22) 2003; 48
Wu (10.1016/j.watres.2013.10.072_bib45) 2001; 147
Daniels (10.1016/j.watres.2013.10.072_bib15) 1987; 237
Alkaya (10.1016/j.watres.2013.10.072_bib1) 2011; 35
Ferrer (10.1016/j.watres.2013.10.072_bib18) 2008; 42
Hawkes (10.1016/j.watres.2013.10.072_bib21) 2002; 27
Karadzic (10.1016/j.watres.2013.10.072_bib27) 2004; 98
Appels (10.1016/j.watres.2013.10.072_bib4) 2008; 34
Jiang (10.1016/j.watres.2013.10.072_bib25) 2011; 45
Jimenez (10.1016/j.watres.2013.10.072_bib26) 2012; 47
Park (10.1016/j.watres.2013.10.072_bib39) 2004; 50
Allen (10.1016/j.watres.2013.10.072_bib2) 1964; 87
Liu (10.1016/j.watres.2013.10.072_bib33) 2012; 121
Oh (10.1016/j.watres.2013.10.072_bib38) 2003; 37
Carrere (10.1016/j.watres.2013.10.072_bib9) 2010; 183
Lettinga (10.1016/j.watres.2013.10.072_bib31) 2001; 19
Kim (10.1016/j.watres.2013.10.072_bib29) 2003; 95
Yang (10.1016/j.watres.2013.10.072_bib47) 1987; 30
Karakashev (10.1016/j.watres.2013.10.072_bib28) 2006; 72
Association, A.P.H (10.1016/j.watres.2013.10.072_bib6) 1994
Küsel (10.1016/j.watres.2013.10.072_bib30) 1999; 65
Zhang (10.1016/j.watres.2013.10.072_bib48) 2010; 44
Zhao (10.1016/j.watres.2013.10.072_bib50) 2010; 44
Ibeid (10.1016/j.watres.2013.10.072_bib23) 2013; 47
Lv (10.1016/j.watres.2013.10.072_bib35) 2010; 101
Wang (10.1016/j.watres.2013.10.072_bib44) 2006; 30
Meng (10.1016/j.watres.2013.10.072_bib36) 2013; 73
Fukuzaki (10.1016/j.watres.2013.10.072_bib20) 1990; 56
Wang (10.1016/j.watres.2013.10.072_bib43) 2013; 47
Chiu (10.1016/j.watres.2013.10.072_bib11) 1997; 36
Ren (10.1016/j.watres.2013.10.072_bib40) 2007; 98
Imbierowicz (10.1016/j.watres.2013.10.072_bib24) 2012; 46
Lu (10.1016/j.watres.2013.10.072_bib34) 2012; 46
Fr (10.1016/j.watres.2013.10.072_bib19) 1995; 43
Cooper (10.1016/j.watres.2013.10.072_bib14) 2000; 34
Tiehm (10.1016/j.watres.2013.10.072_bib42) 2001; 35
Andersch (10.1016/j.watres.2013.10.072_bib3) 1983; 18
Siriwongrungson (10.1016/j.watres.2013.10.072_bib41) 2007; 41
Erden (10.1016/j.watres.2013.10.072_bib17) 2010; 101
References_xml – volume: 192
  start-page: 179
  issue: 1
  year: 2012
  ident: 10.1016/j.watres.2013.10.072_bib32
  article-title: Optimization of anaerobic acidogenesis by adding Fe0 powder to enhance anaerobic wastewater treatment
  publication-title: Chem. Eng. J.
– volume: 147
  start-page: 373
  issue: 2
  year: 2001
  ident: 10.1016/j.watres.2013.10.072_bib45
  article-title: Characterization of microbial consortia in a terephthalate-degrading anaerobic granular sludge system
  publication-title: Microbiology
  doi: 10.1099/00221287-147-2-373
– volume: 121
  start-page: 148
  year: 2012
  ident: 10.1016/j.watres.2013.10.072_bib33
  article-title: Enhanced azo dye wastewater treatment in a two-stage anaerobic system with Fe0 dosing
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2012.06.115
– volume: 72
  start-page: 5138
  issue: 7
  year: 2006
  ident: 10.1016/j.watres.2013.10.072_bib28
  article-title: Acetate oxidation is the dominant methanogenic pathway from acetate in the absence of Methanosaetaceae
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.00489-06
– volume: 35
  start-page: 2003
  issue: 8
  year: 2001
  ident: 10.1016/j.watres.2013.10.072_bib42
  article-title: Ultrasonic waste activated sludge disintegration for improving anaerobic stabilization
  publication-title: Water Res.
  doi: 10.1016/S0043-1354(00)00468-1
– volume: 73
  start-page: 80
  issue: 15
  year: 2013
  ident: 10.1016/j.watres.2013.10.072_bib36
  article-title: Adding Fe0 powder to enhance the anaerobic conversion of propionate to acetate
  publication-title: Biochem. Eng. J.
  doi: 10.1016/j.bej.2013.02.004
– volume: 34
  start-page: 100
  issue: 1
  year: 2000
  ident: 10.1016/j.watres.2013.10.072_bib14
  article-title: Zinc immobilization and magnetite formation via ferric oxide reduction by Shewanella putrefaciens 200
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es990510x
– year: 1994
  ident: 10.1016/j.watres.2013.10.072_bib6
– volume: 87
  start-page: 171
  issue: 1
  year: 1964
  ident: 10.1016/j.watres.2013.10.072_bib2
  article-title: Purification and properties of enzymes involved in the propionic acid fermentation
  publication-title: J. Bacteriol.
  doi: 10.1128/jb.87.1.171-187.1964
– volume: 34
  start-page: 2362
  issue: 8
  year: 2000
  ident: 10.1016/j.watres.2013.10.072_bib37
  article-title: Mechanical pretreatment of waste activated sludge for anaerobic digestion process
  publication-title: Water Res.
  doi: 10.1016/S0043-1354(99)00361-9
– volume: 43
  start-page: 1811
  issue: 7
  year: 2009
  ident: 10.1016/j.watres.2013.10.072_bib12
  article-title: Progress and perspectives of sludge ozonation as a powerful pretreatment method for minimization of excess sludge production
  publication-title: Water Res.
  doi: 10.1016/j.watres.2009.02.012
– volume: 37
  start-page: 5186
  issue: 22
  year: 2003
  ident: 10.1016/j.watres.2013.10.072_bib38
  article-title: The relative effectiveness of pH control and heat treatment for enhancing biohydrogen gas production
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es034291y
– volume: 47
  start-page: 903
  issue: 2
  year: 2013
  ident: 10.1016/j.watres.2013.10.072_bib23
  article-title: Modification of activated sludge properties caused by application of continuous and intermittent current
  publication-title: Water Res.
  doi: 10.1016/j.watres.2012.11.020
– volume: 34
  start-page: 755
  issue: 6
  year: 2008
  ident: 10.1016/j.watres.2013.10.072_bib4
  article-title: Principles and potential of the anaerobic digestion of waste-activated sludge
  publication-title: Prog. Energy Combustion Sci.
  doi: 10.1016/j.pecs.2008.06.002
– volume: 30
  start-page: 177
  issue: 2
  year: 2006
  ident: 10.1016/j.watres.2013.10.072_bib44
  article-title: Avoiding propionic acid accumulation in the anaerobic process for biohydrogen production
  publication-title: Biomass and Bioenergy
  doi: 10.1016/j.biombioe.2005.11.010
– volume: 48
  start-page: 211
  issue: 8
  year: 2003
  ident: 10.1016/j.watres.2013.10.072_bib22
  article-title: Solubilization of waste activated sludge by alkaline pretreatment and biochemical methane potential (BMP) tests for anaerobic co-digestion of municipal organic waste
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.2003.0471
– volume: 43
  start-page: 755
  issue: 4
  year: 1995
  ident: 10.1016/j.watres.2013.10.072_bib19
  article-title: Enzymatic activity in the activated-sludge floc matrix
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/BF00164784
– volume: 98
  start-page: 1774
  issue: 9
  year: 2007
  ident: 10.1016/j.watres.2013.10.072_bib40
  article-title: Assessing optimal fermentation type for bio-hydrogen production in continuous-flow acidogenic reactors
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2006.07.026
– volume: 47
  start-page: 1751
  issue: 5
  year: 2012
  ident: 10.1016/j.watres.2013.10.072_bib26
  article-title: A statistical comparison of protein and carbohydrate characterisation methodology applied on sewage sludge samples
  publication-title: Water Res.
  doi: 10.1016/j.watres.2012.11.052
– volume: 46
  start-page: 5747
  issue: 17
  year: 2012
  ident: 10.1016/j.watres.2013.10.072_bib24
  article-title: Kinetic model of excess activated sludge thermohydrolysis
  publication-title: Water Res.
  doi: 10.1016/j.watres.2012.07.051
– volume: 75
  start-page: 219
  issue: 2
  year: 2003
  ident: 10.1016/j.watres.2013.10.072_bib49
  article-title: Quantification of cell and cellulase mass concentrations during anaerobic cellulose fermentation: development of an enzyme-linked immunosorbent assay-based method with application to Clostridium thermocellum batch cultures
  publication-title: Anal. Chem.
  doi: 10.1021/ac020271n
– volume: 46
  start-page: 1015
  issue: 4
  year: 2012
  ident: 10.1016/j.watres.2013.10.072_bib34
  article-title: Enhanced hydrogen production from waste activated sludge by cascade utilization of organic matter in microbial electrolysis cells
  publication-title: Water Res.
  doi: 10.1016/j.watres.2011.11.073
– volume: 427
  start-page: 829
  issue: 6977
  year: 2004
  ident: 10.1016/j.watres.2013.10.072_bib16
  article-title: Iron corrosion by novel anaerobic microorganisms
  publication-title: Nature
  doi: 10.1038/nature02321
– volume: 64
  start-page: 1737
  issue: 8
  year: 2000
  ident: 10.1016/j.watres.2013.10.072_bib46
  article-title: Phylogenetic analysis of methanogens in sheep rumen ecosystem and detection of Methanomicrobium mobile by fluorescence in situ hybridization
  publication-title: Biosci. Biotechnol. Biochem.
  doi: 10.1271/bbb.64.1737
– volume: 42
  start-page: 186
  issue: 2
  year: 2008
  ident: 10.1016/j.watres.2013.10.072_bib18
  article-title: Increasing biogas production by thermal (70°C) sludge pre-treatment prior to thermophilic anaerobic digestion
  publication-title: Biochem. Eng. J.
  doi: 10.1016/j.bej.2008.06.020
– volume: 95
  start-page: 271
  issue: 3
  year: 2003
  ident: 10.1016/j.watres.2013.10.072_bib29
  article-title: Effects of various pretreatments for enhanced anaerobic digestion with waste activated sludge
  publication-title: J. Biosci. Bioeng.
  doi: 10.1016/S1389-1723(03)80028-2
– volume: 50
  start-page: 17
  issue: 9
  year: 2004
  ident: 10.1016/j.watres.2013.10.072_bib39
  article-title: Use of microwave pretreatment for enhanced anaerobiosis of secondary sludge
  publication-title: Resour. Sludge: Forging New Front.
– volume: 44
  start-page: 9343
  issue: 24
  year: 2010
  ident: 10.1016/j.watres.2013.10.072_bib48
  article-title: Understanding short-chain fatty acids accumulation enhanced in waste activated sludge alkaline fermentation: kinetics and microbiology
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es102878m
– volume: 45
  start-page: 2191
  issue: 6
  year: 2011
  ident: 10.1016/j.watres.2013.10.072_bib25
  article-title: Nitrate reduction using nanosized zero-valent iron supported by polystyrene resins: role of surface functional groups
  publication-title: Water Res.
  doi: 10.1016/j.watres.2011.01.005
– year: 1994
  ident: 10.1016/j.watres.2013.10.072_bib10
– volume: 18
  start-page: 327
  issue: 6
  year: 1983
  ident: 10.1016/j.watres.2013.10.072_bib3
  article-title: Level of enzymes involved in acetate, butyrate, acetone and butanol formation by Clostridium acetobutylicum
  publication-title: Eur. J. Appl. Microbiol. Biotechnol.
  doi: 10.1007/BF00504740
– volume: 36
  start-page: 155
  issue: 11
  year: 1997
  ident: 10.1016/j.watres.2013.10.072_bib11
  article-title: Alkaline and ultrasonic pretreatment of sludge before anaerobic digestion
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.1997.0406
– volume: 98
  start-page: 145
  issue: 3
  year: 2004
  ident: 10.1016/j.watres.2013.10.072_bib27
  article-title: Purification and characterization of a protease from Pseudomonas aeruginosa grown in cutting oil
  publication-title: J. Biosci. Bioeng.
  doi: 10.1016/S1389-1723(04)00258-0
– volume: 47
  start-page: 3835
  issue: 11
  year: 2013
  ident: 10.1016/j.watres.2013.10.072_bib43
  article-title: Determining the limits of anaerobic co-digestion of thickened waste activated sludge with grease interceptor waste
  publication-title: Water Res.
  doi: 10.1016/j.watres.2013.04.003
– volume: 27
  start-page: 1339
  issue: 11
  year: 2002
  ident: 10.1016/j.watres.2013.10.072_bib21
  article-title: Sustainable fermentative hydrogen production: challenges for process optimisation
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/S0360-3199(02)00090-3
– volume: 101
  start-page: 8093
  issue: 21
  year: 2010
  ident: 10.1016/j.watres.2013.10.072_bib17
  article-title: Disintegration of biological sludge: effect of ozone oxidation and ultrasonic treatment on aerobic digestibility
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2010.06.019
– volume: 97
  start-page: 1179
  issue: 10
  year: 2006
  ident: 10.1016/j.watres.2013.10.072_bib5
  article-title: Biomass stabilization in the anaerobic digestion of wastewater sludges
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2005.05.010
– volume: 183
  start-page: 1
  issue: 1
  year: 2010
  ident: 10.1016/j.watres.2013.10.072_bib9
  article-title: Pretreatment methods to improve sludge anaerobic degradability: a review
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2010.06.129
– volume: 56
  start-page: 719
  issue: 3
  year: 1990
  ident: 10.1016/j.watres.2013.10.072_bib20
  article-title: Inhibition of the fermentation of propionate to methane by hydrogen, acetate, and propionate
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/aem.56.3.719-723.1990
– volume: 101
  start-page: 9409
  issue: 24
  year: 2010
  ident: 10.1016/j.watres.2013.10.072_bib35
  article-title: Putting microbes to work in sequence: recent advances in temperature-phased anaerobic digestion processes
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2010.07.100
– volume: 44
  start-page: 3317
  issue: 9
  year: 2010
  ident: 10.1016/j.watres.2013.10.072_bib50
  article-title: Waste activated sludge fermentation for hydrogen production enhanced by anaerobic process improvement and acetobacteria inhibition: the role of fermentation pH
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es902958c
– volume: 30
  start-page: 661
  issue: 5
  year: 1987
  ident: 10.1016/j.watres.2013.10.072_bib47
  article-title: Kinetic study and mathematical modeling of methanogenesis of acetate using pure cultures of methanogens
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.260300510
– volume: 35
  start-page: 32
  issue: 1
  year: 2011
  ident: 10.1016/j.watres.2013.10.072_bib1
  article-title: Anaerobic acidification of sugar-beet processing wastes: effect of operational parameters
  publication-title: Biomass and Bioenergy
  doi: 10.1016/j.biombioe.2010.08.002
– volume: 19
  start-page: 363
  issue: 9
  year: 2001
  ident: 10.1016/j.watres.2013.10.072_bib31
  article-title: Challenge of psychrophilic anaerobic wastewater treatment
  publication-title: Trends. Biotechnol.
  doi: 10.1016/S0167-7799(01)01701-2
– volume: 237
  start-page: 509
  issue: 4814
  year: 1987
  ident: 10.1016/j.watres.2013.10.072_bib15
  article-title: Bacterial methanogenesis and growth from CO2 with elemental iron as the sole source of electrons
  publication-title: Science
  doi: 10.1126/science.237.4814.509
– volume: 26
  start-page: 1383
  issue: 12
  year: 2005
  ident: 10.1016/j.watres.2013.10.072_bib7
  article-title: Effect of sulfidogenic and methanogenic inhibitors on reductive dehalogenation of 2-chlorophenol
  publication-title: Environ. Technol.
  doi: 10.1080/09593332608618606
– volume: 45
  start-page: 711
  issue: 8
  year: 2006
  ident: 10.1016/j.watres.2013.10.072_bib8
  article-title: Effect of ultrasonic, thermal and ozone pre-treatments on waste activated sludge solubilisation and anaerobic biodegradability
  publication-title: Chem. Eng. Process. Process Intensification
  doi: 10.1016/j.cep.2006.02.005
– volume: 65
  start-page: 5117
  issue: 11
  year: 1999
  ident: 10.1016/j.watres.2013.10.072_bib30
  article-title: Acetogenic and sulfate-reducing bacteria inhabiting the rhizoplane and deep cortex cells of the sea grass Halodule wrightii
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.65.11.5117-5123.1999
– volume: 41
  start-page: 4204
  issue: 18
  year: 2007
  ident: 10.1016/j.watres.2013.10.072_bib41
  article-title: Homoacetogenesis as the alternative pathway for H2 sink during thermophilic anaerobic degradation of butyrate under suppressed methanogenesis
  publication-title: Water Res.
  doi: 10.1016/j.watres.2007.05.037
SSID ssj0002239
Score 2.617509
Snippet Anaerobic digestion is promising technology to recover energy from waste activated sludge. However, the sludge digestion is limited by its low efficiency of...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 242
SubjectTerms Acetates
acidification
Activated sludge
Anaerobic digestion
Anaerobiosis
Biofuels
cellulose
energy
Enzymes
Enzymes - metabolism
Fatty Acids - metabolism
fluorescence in situ hybridization
hydrogen
Hydrogen - metabolism
Hydrolysis
In Situ Hybridization, Fluorescence
Iron
Methane - metabolism
methane production
methanogens
Microbial Consortia
Polysaccharides - metabolism
propionic acid
protein degradation
Proteins
Proteins - metabolism
Sewage - microbiology
Sludge
Sludge digestion
thermodynamics
volatile fatty acids
Waste Disposal, Fluid - methods
Title Enhanced anaerobic digestion of waste activated sludge digestion by the addition of zero valent iron
URI https://www.ncbi.nlm.nih.gov/pubmed/24275106
https://www.proquest.com/docview/1504153704
https://www.proquest.com/docview/1868326734
https://www.proquest.com/docview/1880005023
https://www.proquest.com/docview/1919963196
https://www.proquest.com/docview/2000142019
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagXOCAeLO8ZCRuVVZNHCfxEVVFFRJcaMX2FNlOVktVkoruUuiB3843dpyklF0elyhyJl6v54s9Hs98ZuyVFbXBvAHw0ueWStwZlatIWWnTLM2ldow3795n-4fp25mcDfHzLrtkaab24rd5Jf-jVZRBr5Ql-w-a7StFAe6hX1yhYVz_Ssd7zcJv4OtG10SoZLcrt2HUWYHnGjp0dBlfNVmWZycrys4aZMj2BE4oqCi8c4GKttFIihGgFLix9fpRE6Vixw-0cEyl33xwfO9OQP-4weMIU-Ki7abFsWP6SFPG2eBv9Q7Y2aceYLtdvsiHVTt2ScTjSJbaD6NFTvs2nkMzjLOeqTYMlJ5T68oA7n0Jx9NzTakyFHonphR9l18ShxpOPzulop4cw8ovbNpufg6PrrMbCdYQdLzF9McQ_wO7SIVcShfwd_UniSm6q-Sy2bJmLeJskoM77Ha3mOCvPTLusmt1c4_dGlFM3mdVwAjvMcJ7_fN2zh1GeI8R7jEykjHfOTDCA0boHcII9xjhhJEH7PDN3sHuftSdrBFZWLzLqJjHtkhsLA0dQJZgGSsk1g1xgnITF5k0RRJrJU2VGa3SeGeeFBUW6mmdGZjotXjItpq2qR8zXqg0F5lSRtCG-06qK2nnAoZ1PpdVpsWEidBxpe1o5-n0k5MyxBcel77nS-p5KkXPT1jUv3XqaVf-IP8y6KTE-EibXrqp29VZiQUPbFSBlm2QKTJMbFkuNsoUjiwpERtkFMX006S2XiZxXgk0XU3YIw-e_h8GsD1Z--Qpuzl8cM_Y1vLLqn4Oq3hpXjh0_wR5sbWr
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+anaerobic+digestion+of+waste+activated+sludge+digestion+by+the+addition+of+zero+valent+iron&rft.jtitle=Water+research+%28Oxford%29&rft.au=Feng%2C+Yinghong&rft.au=Zhang%2C+Yaobin&rft.au=Quan%2C+Xie&rft.au=Chen%2C+Suo&rft.date=2014-04-01&rft.eissn=1879-2448&rft.volume=52&rft.spage=242&rft_id=info:doi/10.1016%2Fj.watres.2013.10.072&rft_id=info%3Apmid%2F24275106&rft.externalDocID=24275106
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1354&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1354&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1354&client=summon