Enhanced anaerobic digestion of waste activated sludge digestion by the addition of zero valent iron
Anaerobic digestion is promising technology to recover energy from waste activated sludge. However, the sludge digestion is limited by its low efficiency of hydrolysis-acidification. Zero valent iron (ZVI) as a reducing material is expected to enhance anaerobic process including the hydrolysis-acidi...
Saved in:
Published in | Water research (Oxford) Vol. 52; pp. 242 - 250 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
01.04.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Anaerobic digestion is promising technology to recover energy from waste activated sludge. However, the sludge digestion is limited by its low efficiency of hydrolysis-acidification. Zero valent iron (ZVI) as a reducing material is expected to enhance anaerobic process including the hydrolysis-acidification process. Considering that, ZVI was added into an anaerobic sludge digestion system to accelerate the sludge digestion in this study. The results indicated that ZVI effectively enhanced the decomposition of protein and cellulose, the two main components of the sludge. Compared to the control test without ZVI, the degradation of protein increased 21.9% and the volatile fatty acids production increased 37.3% with adding ZVI. More acetate and less propionate are found during the hydrolysis-acidification with ZVI. The activities of several key enzymes in the hydrolysis and acidification increased 0.6-1 time. ZVI made the methane production raise 43.5% and sludge reduction ratio increase 12.2 percent points. Fluorescence in situ hybridization analysis showed that the abundances of hydrogen-consuming microorganisms including homoacetogens and hydrogenotrophic methanogens with ZVI were higher than the control, which reduced the H2 accumulation to create a beneficial condition for the sludge digestion in thermodynamics. |
---|---|
AbstractList | Anaerobic digestion is promising technology to recover energy from waste activated sludge. However, the sludge digestion is limited by its low efficiency of hydrolysis-acidification. Zero valent iron (ZVI) as a reducing material is expected to enhance anaerobic process including the hydrolysis-acidification process. Considering that, ZVI was added into an anaerobic sludge digestion system to accelerate the sludge digestion in this study. The results indicated that ZVI effectively enhanced the decomposition of protein and cellulose, the two main components of the sludge. Compared to the control test without ZVI, the degradation of protein increased 21.9% and the volatile fatty acids production increased 37.3% with adding ZVI. More acetate and less propionate are found during the hydrolysis-acidification with ZVI. The activities of several key enzymes in the hydrolysis and acidification increased 0.6-1 time. ZVI made the methane production raise 43.5% and sludge reduction ratio increase 12.2 percent points. Fluorescence in situ hybridization analysis showed that the abundances of hydrogen-consuming microorganisms including homoacetogens and hydrogenotrophic methanogens with ZVI were higher than the control, which reduced the H2 accumulation to create a beneficial condition for the sludge digestion in thermodynamics. Anaerobic digestion is promising technology to recover energy from waste activated sludge. However, the sludge digestion is limited by its low efficiency of hydrolysis-acidification. Zero valent iron (ZVI) as a reducing material is expected to enhance anaerobic process including the hydrolysis-acidification process. Considering that, ZVI was added into an anaerobic sludge digestion system to accelerate the sludge digestion in this study. The results indicated that ZVI effectively enhanced the decomposition of protein and cellulose, the two main components of the sludge. Compared to the control test without ZVI, the degradation of protein increased 21.9% and the volatile fatty acids production increased 37.3% with adding ZVI. More acetate and less propionate are found during the hydrolysis-acidification with ZVI. The activities of several key enzymes in the hydrolysis and acidification increased 0.6-1 time. ZVI made the methane production raise 43.5% and sludge reduction ratio increase 12.2 percent points. Fluorescence in situ hybridization analysis showed that the abundances of hydrogen-consuming microorganisms including homoacetogens and hydrogenotrophic methanogens with ZVI were higher than the control, which reduced the H2 accumulation to create a beneficial condition for the sludge digestion in thermodynamics.Anaerobic digestion is promising technology to recover energy from waste activated sludge. However, the sludge digestion is limited by its low efficiency of hydrolysis-acidification. Zero valent iron (ZVI) as a reducing material is expected to enhance anaerobic process including the hydrolysis-acidification process. Considering that, ZVI was added into an anaerobic sludge digestion system to accelerate the sludge digestion in this study. The results indicated that ZVI effectively enhanced the decomposition of protein and cellulose, the two main components of the sludge. Compared to the control test without ZVI, the degradation of protein increased 21.9% and the volatile fatty acids production increased 37.3% with adding ZVI. More acetate and less propionate are found during the hydrolysis-acidification with ZVI. The activities of several key enzymes in the hydrolysis and acidification increased 0.6-1 time. ZVI made the methane production raise 43.5% and sludge reduction ratio increase 12.2 percent points. Fluorescence in situ hybridization analysis showed that the abundances of hydrogen-consuming microorganisms including homoacetogens and hydrogenotrophic methanogens with ZVI were higher than the control, which reduced the H2 accumulation to create a beneficial condition for the sludge digestion in thermodynamics. |
Author | Feng, Yinghong Quan, Xie Chen, Suo Zhang, Yaobin |
Author_xml | – sequence: 1 givenname: Yinghong surname: Feng fullname: Feng, Yinghong – sequence: 2 givenname: Yaobin surname: Zhang fullname: Zhang, Yaobin – sequence: 3 givenname: Xie surname: Quan fullname: Quan, Xie – sequence: 4 givenname: Suo surname: Chen fullname: Chen, Suo |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24275106$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkstqHDEQRUVwsMdO_sCYXmbTkyo9uqXsgnEeYMgmWTd6ta2hR-1IGhvn66Nm7GCyyGQhBMW5V1Wqe0qO4hw9IecIawTs3m_WD7okn9cUkNXSGnr6iqxQ9qqlnMsjsgLgrEUm-Ak5zXkDAJQydUxOKKe9QOhWxF3FWx2td42O2qfZBNu4cONzCXNs5rF50Ln4RtsS7nWpWJ527sa_YMxjU24r4Vx41vyqRs29nnwsTUhzfENej3rK_u3TfUZ-fLr6fvmlvf72-evlx-vWChCllSNaSS0KA7TrKaiOCajT0Vo3KDthJEWthHGd0YojjFQ6yhX3nZECPTsj7_a-d2n-uav9DduQrZ8mHf28ywOtP4C8OqqDKCpU9X2s5yAqZfWtnbL_QDvJ6myMH0YFcBSshwW9eEJ3ZuvdcJfCVqfH4XmLFeB7wKY55-THPwjCsIRl2Az7sAxLWJZqDUuVffhLZkPRyxJL0mH6t_g3RS_E0w |
CitedBy_id | crossref_primary_10_1016_j_energy_2018_06_171 crossref_primary_10_1016_j_biortech_2018_12_075 crossref_primary_10_1016_j_jes_2019_05_027 crossref_primary_10_1016_j_biortech_2021_126023 crossref_primary_10_4491_KSEE_2015_37_7_387 crossref_primary_10_1007_s13399_021_01839_6 crossref_primary_10_1016_j_scitotenv_2020_139159 crossref_primary_10_1016_j_cej_2019_122643 crossref_primary_10_1016_j_ymben_2022_02_001 crossref_primary_10_1016_j_chemosphere_2022_136597 crossref_primary_10_1016_j_fuel_2019_04_059 crossref_primary_10_1016_j_jece_2022_108518 crossref_primary_10_1016_j_jhazmat_2020_124053 crossref_primary_10_1016_j_biortech_2019_122178 crossref_primary_10_1016_j_biortech_2014_02_114 crossref_primary_10_1016_j_envres_2023_115531 crossref_primary_10_1016_j_scitotenv_2018_03_255 crossref_primary_10_1016_j_watres_2017_03_048 crossref_primary_10_1016_j_watres_2022_119287 crossref_primary_10_1016_j_biortech_2018_12_086 crossref_primary_10_1016_j_envres_2023_116986 crossref_primary_10_1016_j_biombioe_2019_105337 crossref_primary_10_1080_10643389_2017_1334457 crossref_primary_10_1061__ASCE_EE_1943_7870_0001646 crossref_primary_10_1007_s11157_017_9445_y crossref_primary_10_1016_j_jenvman_2025_124268 crossref_primary_10_4028_www_scientific_net_MSF_913_887 crossref_primary_10_1038_srep08263 crossref_primary_10_1016_j_rser_2023_114267 crossref_primary_10_1016_j_biortech_2018_12_050 crossref_primary_10_1016_j_biortech_2020_123804 crossref_primary_10_1016_j_biortech_2021_125035 crossref_primary_10_1016_j_fuel_2021_120883 crossref_primary_10_1016_j_watres_2020_116001 crossref_primary_10_2139_ssrn_4157301 crossref_primary_10_1016_j_biortech_2021_126248 crossref_primary_10_1080_19443994_2015_1051127 crossref_primary_10_1039_C5RA27760D crossref_primary_10_1007_s11783_021_1514_3 crossref_primary_10_1080_09593330_2020_1733674 crossref_primary_10_1016_j_chemosphere_2020_127291 crossref_primary_10_1016_j_jenvman_2021_112353 crossref_primary_10_1021_acs_energyfuels_9b02498 crossref_primary_10_1016_j_biortech_2017_08_035 crossref_primary_10_1016_j_jece_2022_107889 crossref_primary_10_1016_j_biombioe_2021_106270 crossref_primary_10_1016_j_biortech_2017_09_073 crossref_primary_10_1016_j_scitotenv_2019_07_090 crossref_primary_10_1007_s11356_014_3514_3 crossref_primary_10_1016_j_jece_2024_113554 crossref_primary_10_1007_s11356_018_3438_4 crossref_primary_10_1016_j_eti_2021_101968 crossref_primary_10_1007_s42452_022_05222_6 crossref_primary_10_1016_j_biortech_2017_10_050 crossref_primary_10_1016_j_resconrec_2021_105844 crossref_primary_10_1038_srep12732 crossref_primary_10_1007_s00343_020_0274_4 crossref_primary_10_1016_j_jenvman_2025_124283 crossref_primary_10_1016_j_jhazmat_2015_01_036 crossref_primary_10_1021_acs_est_1c02300 crossref_primary_10_1021_acs_energyfuels_7b02135 crossref_primary_10_1016_j_scitotenv_2019_05_214 crossref_primary_10_1016_j_wasman_2018_09_042 crossref_primary_10_1016_j_biortech_2020_123901 crossref_primary_10_1016_j_biortech_2021_126465 crossref_primary_10_1177_0734242X18819954 crossref_primary_10_3390_fermentation7040303 crossref_primary_10_3390_fermentation6030092 crossref_primary_10_1016_j_fuel_2023_127703 crossref_primary_10_1016_j_cej_2017_11_029 crossref_primary_10_1016_j_rser_2015_02_032 crossref_primary_10_20535_ibb_2020_4_4_211227 crossref_primary_10_1038_s41598_020_62008_9 crossref_primary_10_1016_j_resconrec_2017_09_007 crossref_primary_10_1016_j_biortech_2018_09_008 crossref_primary_10_1038_s41598_020_64557_5 crossref_primary_10_1016_j_scitotenv_2023_169313 crossref_primary_10_1016_j_jwpe_2024_105736 crossref_primary_10_1016_j_renene_2025_122458 crossref_primary_10_1016_j_biortech_2018_12_048 crossref_primary_10_1016_j_biortech_2019_122139 crossref_primary_10_1016_j_biortech_2021_126599 crossref_primary_10_1016_j_renene_2015_10_053 crossref_primary_10_1016_j_scitotenv_2020_140687 crossref_primary_10_1016_j_watres_2024_121603 crossref_primary_10_1016_j_eti_2021_101862 crossref_primary_10_1016_j_watres_2016_10_018 crossref_primary_10_1016_j_bej_2023_108999 crossref_primary_10_1016_j_sciaf_2021_e00728 crossref_primary_10_1021_acs_energyfuels_9b01475 crossref_primary_10_3390_c4040059 crossref_primary_10_1016_j_jclepro_2020_123567 crossref_primary_10_1016_j_chemosphere_2024_143024 crossref_primary_10_1007_s11356_019_05394_6 crossref_primary_10_1016_j_cej_2021_130821 crossref_primary_10_1007_s10661_019_7225_6 crossref_primary_10_1016_j_biortech_2019_03_013 crossref_primary_10_1016_j_jece_2024_113764 crossref_primary_10_1016_j_biortech_2021_126566 crossref_primary_10_1016_j_biortech_2021_126438 crossref_primary_10_3389_fbioe_2020_590200 crossref_primary_10_1016_j_chemosphere_2018_04_170 crossref_primary_10_1016_j_rser_2018_07_029 crossref_primary_10_1016_j_jwpe_2022_103292 crossref_primary_10_1080_09593330_2016_1170209 crossref_primary_10_1016_j_apt_2018_06_022 crossref_primary_10_1016_j_crsus_2024_100019 crossref_primary_10_1016_j_cep_2018_06_020 crossref_primary_10_1016_j_watres_2023_120115 crossref_primary_10_1016_j_envres_2022_113355 crossref_primary_10_1016_j_jece_2023_111278 crossref_primary_10_1016_j_jwpe_2024_104864 crossref_primary_10_1039_C8RA09451A crossref_primary_10_1016_j_cej_2018_06_160 crossref_primary_10_1016_j_efmat_2025_01_001 crossref_primary_10_3390_en18061425 crossref_primary_10_1016_j_jwpe_2020_101867 crossref_primary_10_1016_j_jcou_2018_08_023 crossref_primary_10_1016_j_jenvman_2019_01_093 crossref_primary_10_1016_j_fuel_2020_118234 crossref_primary_10_1007_s12517_021_08891_6 crossref_primary_10_1016_j_eti_2020_101279 crossref_primary_10_1016_j_renene_2017_06_043 crossref_primary_10_1002_wer_1414 crossref_primary_10_1016_j_ijhydene_2025_02_186 crossref_primary_10_1016_j_ijhydene_2018_05_132 crossref_primary_10_1016_j_cej_2020_126506 crossref_primary_10_3390_app9010059 crossref_primary_10_1016_j_enconman_2016_05_051 crossref_primary_10_1007_s11356_017_9859_7 crossref_primary_10_1016_j_biortech_2018_05_036 crossref_primary_10_1016_j_biortech_2021_125569 crossref_primary_10_1016_j_chemosphere_2022_135544 crossref_primary_10_1016_j_enzmictec_2023_110304 crossref_primary_10_1016_j_cej_2017_09_133 crossref_primary_10_1016_j_fuel_2022_125685 crossref_primary_10_1016_j_jhazmat_2024_136569 crossref_primary_10_1007_s12257_023_0033_4 crossref_primary_10_1016_j_cej_2021_132233 crossref_primary_10_1016_j_matpr_2023_08_284 crossref_primary_10_1080_10643389_2017_1348107 crossref_primary_10_2139_ssrn_3963576 crossref_primary_10_1177_0734242X241231397 crossref_primary_10_1016_j_jes_2023_04_001 crossref_primary_10_1021_acssuschemeng_1c01781 crossref_primary_10_1016_j_envres_2023_116589 crossref_primary_10_1016_j_renene_2019_06_050 crossref_primary_10_1016_j_watres_2014_06_010 crossref_primary_10_1016_j_watres_2015_02_056 crossref_primary_10_1016_j_jwpe_2025_107094 crossref_primary_10_1016_j_cej_2018_12_058 crossref_primary_10_1016_j_watres_2020_115528 crossref_primary_10_1016_j_watres_2024_122173 crossref_primary_10_1016_j_envres_2024_118905 crossref_primary_10_1016_j_chemosphere_2023_141041 crossref_primary_10_1016_j_rser_2019_04_064 crossref_primary_10_1016_j_energy_2024_131761 crossref_primary_10_1016_j_jece_2020_103918 crossref_primary_10_1016_j_ijhydene_2021_03_083 crossref_primary_10_1080_09593330_2022_2114856 crossref_primary_10_1016_j_watres_2020_116761 crossref_primary_10_3390_su16135683 crossref_primary_10_1061__ASCE_EE_1943_7870_0001910 crossref_primary_10_1007_s11356_020_07828_y crossref_primary_10_1016_j_bej_2024_109625 crossref_primary_10_1016_j_renene_2024_121199 crossref_primary_10_1016_j_biortech_2014_05_052 crossref_primary_10_1016_j_watres_2020_116405 crossref_primary_10_1016_j_biortech_2019_121926 crossref_primary_10_1016_j_biotechadv_2020_107610 crossref_primary_10_1016_j_eti_2015_11_001 crossref_primary_10_1021_acssuschemeng_8b03083 crossref_primary_10_1016_j_envres_2024_119904 crossref_primary_10_1088_1757_899X_562_1_012013 crossref_primary_10_1016_j_ymben_2021_11_014 crossref_primary_10_5004_dwt_2017_20976 crossref_primary_10_1016_j_scitotenv_2019_03_136 crossref_primary_10_1016_j_renene_2019_06_154 crossref_primary_10_1016_j_jenvman_2023_117686 crossref_primary_10_1016_j_biortech_2023_129286 crossref_primary_10_1016_j_biombioe_2019_04_026 crossref_primary_10_1016_j_conbuildmat_2020_120021 crossref_primary_10_1016_j_bej_2018_10_010 crossref_primary_10_1016_j_biortech_2021_126532 crossref_primary_10_1016_j_scitotenv_2021_149667 crossref_primary_10_1007_s12649_018_0374_y crossref_primary_10_1016_j_biortech_2018_10_077 crossref_primary_10_1016_j_scitotenv_2023_163116 crossref_primary_10_1016_j_scitotenv_2022_158420 crossref_primary_10_1016_j_scitotenv_2023_162025 crossref_primary_10_1021_acssuschemeng_0c00015 crossref_primary_10_1016_j_apenergy_2016_10_003 crossref_primary_10_1007_s11356_019_05927_z crossref_primary_10_1007_s11356_020_08207_3 crossref_primary_10_1016_j_jhazmat_2018_11_106 crossref_primary_10_1016_j_watres_2023_119609 crossref_primary_10_1080_10934529_2020_1771120 crossref_primary_10_3389_fmicb_2022_980396 crossref_primary_10_1016_j_biombioe_2020_105833 crossref_primary_10_1016_j_watres_2021_117197 crossref_primary_10_1007_s13399_022_02417_0 crossref_primary_10_1016_j_jece_2021_106013 crossref_primary_10_1016_j_jhazmat_2020_122509 crossref_primary_10_1021_acssuschemeng_8b04115 crossref_primary_10_1002_er_7673 crossref_primary_10_1021_acs_est_0c03029 crossref_primary_10_1016_j_cej_2021_134459 crossref_primary_10_1016_j_nexus_2022_100099 crossref_primary_10_1061_JOEEDU_EEENG_7719 crossref_primary_10_1016_j_cej_2022_134977 crossref_primary_10_1039_D1CY02151F crossref_primary_10_1016_j_biortech_2024_131824 crossref_primary_10_1016_j_cej_2020_124235 crossref_primary_10_1016_j_jhazmat_2020_123972 crossref_primary_10_1039_C6RA06868E crossref_primary_10_1007_s42452_022_05161_2 crossref_primary_10_1007_s13762_020_02933_4 crossref_primary_10_1016_j_watres_2018_04_026 crossref_primary_10_1016_j_ijhydene_2018_06_015 crossref_primary_10_1016_j_cej_2015_09_060 crossref_primary_10_1016_j_scitotenv_2020_136594 crossref_primary_10_1016_j_fuel_2022_125537 crossref_primary_10_1016_j_jbiosc_2016_12_003 crossref_primary_10_1016_j_scitotenv_2019_04_115 crossref_primary_10_1039_C5RA24134K crossref_primary_10_1016_j_envpol_2019_113654 crossref_primary_10_1007_s13762_020_03087_z crossref_primary_10_1007_s11356_023_25657_7 crossref_primary_10_1016_j_cej_2017_09_103 crossref_primary_10_1016_j_ecoenv_2017_06_066 crossref_primary_10_1016_j_jclepro_2017_02_156 crossref_primary_10_1016_j_biortech_2019_122092 crossref_primary_10_1016_j_chemosphere_2019_03_138 crossref_primary_10_1016_j_jece_2024_114212 crossref_primary_10_21324_dacd_540532 crossref_primary_10_1016_j_envres_2023_116997 crossref_primary_10_1016_j_renene_2019_08_078 crossref_primary_10_21605_cukurovaumfd_982723 crossref_primary_10_3390_methane3030029 crossref_primary_10_1016_j_biortech_2014_12_011 crossref_primary_10_2139_ssrn_3953107 crossref_primary_10_1016_j_jclepro_2022_134777 crossref_primary_10_1007_s12649_022_01816_8 crossref_primary_10_1007_s11356_019_04798_8 crossref_primary_10_1016_j_cej_2014_11_003 crossref_primary_10_1155_2023_8581697 crossref_primary_10_1016_j_fuel_2024_131425 crossref_primary_10_1016_j_jenvman_2023_118337 crossref_primary_10_1061__ASCE_EE_1943_7870_0001947 crossref_primary_10_3389_fbioe_2022_868454 crossref_primary_10_1016_j_biortech_2021_124671 crossref_primary_10_1016_j_scitotenv_2021_148415 crossref_primary_10_1016_j_biortech_2020_123159 crossref_primary_10_1016_j_scitotenv_2022_160813 crossref_primary_10_1016_j_biortech_2020_124013 crossref_primary_10_1007_s11356_016_7535_y crossref_primary_10_1016_j_scitotenv_2022_159718 crossref_primary_10_1007_s10163_021_01262_z crossref_primary_10_1016_j_wasman_2020_09_005 crossref_primary_10_1016_j_jwpe_2024_105365 crossref_primary_10_1016_j_biortech_2019_01_021 crossref_primary_10_1016_j_envres_2023_117146 crossref_primary_10_1002_wer_10994 crossref_primary_10_1016_j_jwpe_2024_106570 crossref_primary_10_1016_j_biortech_2019_121874 crossref_primary_10_1016_j_scitotenv_2021_152080 crossref_primary_10_1016_j_radphyschem_2019_108534 crossref_primary_10_1016_j_jhazmat_2024_135514 crossref_primary_10_1007_s11270_023_06754_2 crossref_primary_10_3389_fmicb_2023_1304703 crossref_primary_10_3390_nano12030497 crossref_primary_10_2166_wst_2024_121 crossref_primary_10_1016_j_jece_2021_106616 crossref_primary_10_1039_C6RA02591A crossref_primary_10_1007_s11270_018_3779_0 crossref_primary_10_1016_j_bej_2019_03_017 crossref_primary_10_1007_s10163_021_01174_y crossref_primary_10_1016_j_psep_2019_12_031 crossref_primary_10_3389_fbioe_2021_649049 crossref_primary_10_1080_09593330_2019_1673829 crossref_primary_10_1016_j_energy_2018_08_118 crossref_primary_10_1016_j_chemosphere_2024_141823 crossref_primary_10_1016_j_wasman_2025_114738 crossref_primary_10_2139_ssrn_3962871 crossref_primary_10_3390_fermentation9020108 crossref_primary_10_1016_j_jclepro_2018_04_244 crossref_primary_10_1016_j_jhazmat_2022_130717 crossref_primary_10_2478_rtuect_2021_0031 crossref_primary_10_1016_j_rser_2024_114902 crossref_primary_10_1080_09593330_2024_2354123 crossref_primary_10_1177_0734242X221122560 crossref_primary_10_1016_j_jenvman_2019_04_062 crossref_primary_10_1016_j_renene_2024_120146 crossref_primary_10_1016_j_ijhydene_2019_05_154 crossref_primary_10_1007_s10668_021_01629_0 crossref_primary_10_1021_acs_energyfuels_5b02884 crossref_primary_10_1016_j_biortech_2025_132253 crossref_primary_10_1016_j_colsurfb_2020_111249 crossref_primary_10_1007_s10311_023_01632_z crossref_primary_10_1016_j_watres_2024_121265 crossref_primary_10_1016_j_wasman_2020_12_003 crossref_primary_10_1080_09593330_2019_1604811 crossref_primary_10_1016_j_biortech_2024_130959 crossref_primary_10_1051_e3sconf_202453003004 crossref_primary_10_3390_fermentation9070622 crossref_primary_10_5004_dwt_2020_24695 crossref_primary_10_1016_j_envres_2021_112043 crossref_primary_10_1111_wej_12188 crossref_primary_10_1016_j_biteb_2022_101319 crossref_primary_10_1016_j_scitotenv_2018_07_468 crossref_primary_10_1016_j_biortech_2020_123122 crossref_primary_10_1007_s11356_019_04479_6 crossref_primary_10_1016_j_biortech_2016_05_088 crossref_primary_10_1016_j_watres_2015_11_014 crossref_primary_10_1021_acs_energyfuels_5b00573 crossref_primary_10_1021_acs_energyfuels_9b00522 crossref_primary_10_1016_j_chemosphere_2021_131277 crossref_primary_10_1080_09593330_2022_2061379 crossref_primary_10_2139_ssrn_3972009 crossref_primary_10_1016_j_watres_2022_118687 crossref_primary_10_1016_j_biortech_2019_121713 crossref_primary_10_1016_j_algal_2023_102972 crossref_primary_10_1021_acsomega_0c00174 crossref_primary_10_1016_j_watres_2018_02_025 crossref_primary_10_1007_s11368_018_2106_0 crossref_primary_10_1016_j_coal_2018_01_001 crossref_primary_10_1080_09593330_2021_1946161 crossref_primary_10_1016_j_rser_2018_02_042 crossref_primary_10_1016_j_wasman_2016_11_023 crossref_primary_10_1016_j_biortech_2018_06_053 crossref_primary_10_1002_ep_13620 crossref_primary_10_1016_j_dwt_2024_100555 crossref_primary_10_1016_j_renene_2024_121387 crossref_primary_10_1016_j_biortech_2021_124970 crossref_primary_10_1007_s11157_019_09505_0 crossref_primary_10_1007_s11356_017_9563_7 crossref_primary_10_1038_s41598_020_71141_4 crossref_primary_10_1016_j_biortech_2016_03_078 crossref_primary_10_1016_j_ceja_2022_100405 crossref_primary_10_1007_s11356_024_31851_y crossref_primary_10_1016_j_watres_2017_01_067 crossref_primary_10_1016_j_biortech_2016_03_071 crossref_primary_10_1016_j_ijhydene_2021_10_137 crossref_primary_10_1016_j_biombioe_2024_107241 crossref_primary_10_1007_s12010_017_2615_0 crossref_primary_10_1016_j_apenergy_2019_01_243 crossref_primary_10_2166_wst_2021_414 crossref_primary_10_1021_acs_energyfuels_1c00673 crossref_primary_10_1016_j_jclepro_2021_128773 crossref_primary_10_1016_j_rser_2015_12_261 crossref_primary_10_1016_j_watres_2018_07_028 crossref_primary_10_2139_ssrn_3949242 crossref_primary_10_1016_j_energy_2018_03_069 crossref_primary_10_1016_j_jece_2024_113081 crossref_primary_10_1016_j_fuel_2024_131941 crossref_primary_10_1016_j_jhazmat_2021_127100 crossref_primary_10_1002_jctb_5548 crossref_primary_10_1016_j_jclepro_2023_136079 crossref_primary_10_1016_j_watres_2018_10_091 crossref_primary_10_1016_j_biortech_2019_02_128 crossref_primary_10_1016_j_procbio_2021_03_032 crossref_primary_10_1021_acs_est_9b02971 crossref_primary_10_1007_s00253_016_7586_5 crossref_primary_10_1039_C6GC02402E crossref_primary_10_1016_j_jes_2019_02_009 crossref_primary_10_1016_j_watres_2022_118653 crossref_primary_10_1021_acs_est_7b02777 crossref_primary_10_1016_j_wasman_2018_05_053 crossref_primary_10_1016_j_chemosphere_2023_140148 crossref_primary_10_1016_j_jclepro_2021_129854 crossref_primary_10_1016_j_jbiosc_2021_02_009 crossref_primary_10_1016_j_biortech_2020_123799 crossref_primary_10_1039_D2EW00881E crossref_primary_10_1021_acssuschemeng_9b01252 crossref_primary_10_1039_C8RA05369C crossref_primary_10_1016_j_rser_2019_109282 crossref_primary_10_3390_w14101623 crossref_primary_10_1016_j_biortech_2020_123686 crossref_primary_10_1016_j_biortech_2020_123441 crossref_primary_10_1016_j_biortech_2019_02_110 crossref_primary_10_1016_j_colsurfa_2020_125315 crossref_primary_10_1016_j_jece_2023_109631 crossref_primary_10_1016_j_jenvman_2021_111970 crossref_primary_10_1016_j_cej_2017_09_160 crossref_primary_10_1016_j_envpol_2021_116801 crossref_primary_10_1016_j_biortech_2019_121351 crossref_primary_10_1016_j_envint_2019_105006 crossref_primary_10_1016_j_jhazmat_2019_121847 crossref_primary_10_1007_s11356_017_8832_9 crossref_primary_10_1016_j_biortech_2017_06_121 crossref_primary_10_3390_en15196917 crossref_primary_10_1016_j_envres_2024_118232 crossref_primary_10_1016_j_biortech_2023_128601 crossref_primary_10_1016_j_watres_2016_06_002 crossref_primary_10_1016_j_biortech_2015_03_144 crossref_primary_10_1016_j_jenvman_2022_116732 crossref_primary_10_1016_j_envint_2019_105362 crossref_primary_10_1016_j_biteb_2019_03_002 crossref_primary_10_1021_acsestengg_3c00149 crossref_primary_10_1016_j_jhazmat_2016_08_076 crossref_primary_10_1016_j_biortech_2014_10_052 crossref_primary_10_1007_s11356_018_2888_z crossref_primary_10_1016_j_jenvman_2024_121761 crossref_primary_10_5004_dwt_2017_21049 crossref_primary_10_3390_en15113983 crossref_primary_10_1016_j_watres_2015_04_002 crossref_primary_10_1016_j_watres_2024_122619 crossref_primary_10_1016_j_scitotenv_2020_143007 crossref_primary_10_3390_fermentation9020183 crossref_primary_10_1016_j_biortech_2017_07_151 crossref_primary_10_1016_j_wasman_2019_10_003 crossref_primary_10_3390_en16073285 crossref_primary_10_3390_ma16237250 crossref_primary_10_1016_j_biortech_2019_122345 crossref_primary_10_1016_j_jclepro_2023_137252 crossref_primary_10_1080_17597269_2019_1702796 crossref_primary_10_1016_j_bej_2016_03_002 crossref_primary_10_1016_j_envres_2024_118495 crossref_primary_10_1016_j_jhazmat_2014_12_029 crossref_primary_10_1016_j_biortech_2017_11_003 crossref_primary_10_1016_j_scitotenv_2021_145969 crossref_primary_10_1016_j_rser_2020_110134 crossref_primary_10_1016_j_biortech_2018_02_088 crossref_primary_10_1016_j_jenvman_2017_12_012 crossref_primary_10_1016_j_bioelechem_2020_107625 crossref_primary_10_1016_j_fuel_2022_123923 crossref_primary_10_1016_j_jclepro_2020_120779 crossref_primary_10_1155_2019_2496905 crossref_primary_10_1016_j_cej_2021_129511 crossref_primary_10_1007_s11356_022_24655_5 crossref_primary_10_1016_j_ijhydene_2021_12_139 crossref_primary_10_1016_j_matpr_2020_02_830 crossref_primary_10_1016_j_cej_2017_06_181 crossref_primary_10_1016_j_chemosphere_2023_139639 crossref_primary_10_1016_j_renene_2016_11_017 crossref_primary_10_1016_j_wasman_2019_05_020 crossref_primary_10_1016_j_jpowsour_2023_232707 crossref_primary_10_1016_j_apenergy_2016_06_120 crossref_primary_10_1016_j_ijhydene_2020_10_256 crossref_primary_10_1155_2019_5138060 crossref_primary_10_1016_j_scitotenv_2022_153531 crossref_primary_10_1016_j_jclepro_2020_123627 crossref_primary_10_3390_applnano4030014 crossref_primary_10_1021_acssuschemeng_0c07348 crossref_primary_10_1016_j_biortech_2019_122648 crossref_primary_10_1016_j_biortech_2018_07_004 crossref_primary_10_1016_j_jwpe_2022_102697 crossref_primary_10_1016_j_bej_2025_109688 crossref_primary_10_1016_j_biortech_2019_122403 crossref_primary_10_1016_j_biortech_2020_123503 crossref_primary_10_1016_j_enconman_2020_113436 crossref_primary_10_1088_1755_1315_67_1_012004 crossref_primary_10_1016_j_bej_2022_108501 crossref_primary_10_1007_s42768_024_00190_6 crossref_primary_10_1007_s13399_020_00985_7 crossref_primary_10_1016_j_biortech_2015_05_076 crossref_primary_10_1016_j_scitotenv_2020_143573 crossref_primary_10_1016_j_cscee_2023_100377 crossref_primary_10_1007_s11356_023_29335_6 crossref_primary_10_1080_15567036_2020_1788675 crossref_primary_10_1007_s13399_023_04103_1 crossref_primary_10_1021_acsestengg_3c00103 crossref_primary_10_1016_j_jenvman_2024_122412 crossref_primary_10_1016_j_biortech_2021_126197 crossref_primary_10_1016_j_jcou_2022_101915 crossref_primary_10_1039_C6EM00219F crossref_primary_10_1016_j_watres_2016_12_047 crossref_primary_10_1016_j_biortech_2019_121688 crossref_primary_10_1016_j_bej_2017_05_008 crossref_primary_10_1016_j_wasman_2020_04_004 crossref_primary_10_1080_09593330_2024_2306798 crossref_primary_10_1080_09593330_2022_2077137 crossref_primary_10_1007_s13399_020_00996_4 crossref_primary_10_1016_j_biombioe_2021_106128 crossref_primary_10_1016_j_jes_2020_12_030 crossref_primary_10_1016_j_chemosphere_2023_140512 crossref_primary_10_1016_j_scitotenv_2018_11_326 crossref_primary_10_1016_j_cej_2023_148444 crossref_primary_10_1007_s11356_021_13101_7 crossref_primary_10_1021_acssuschemeng_7b03637 crossref_primary_10_1016_j_jclepro_2020_120214 crossref_primary_10_1111_wej_12313 crossref_primary_10_3390_su15021264 crossref_primary_10_1016_j_ibiod_2016_04_001 crossref_primary_10_1016_j_chemosphere_2022_134903 crossref_primary_10_1016_j_jece_2023_110696 crossref_primary_10_1007_s10098_019_01698_w crossref_primary_10_1177_0734242X20939619 crossref_primary_10_1016_j_chemosphere_2022_134908 crossref_primary_10_1016_j_energy_2016_11_137 crossref_primary_10_3390_en10020258 crossref_primary_10_1016_j_biortech_2020_122753 crossref_primary_10_1134_S0040579523060155 crossref_primary_10_1016_j_scitotenv_2019_135878 crossref_primary_10_1016_j_renene_2021_06_042 crossref_primary_10_2166_wst_2024_340 crossref_primary_10_1016_j_cej_2021_131407 crossref_primary_10_1016_j_bej_2024_109276 crossref_primary_10_1016_j_jhazmat_2021_126883 crossref_primary_10_3390_ijerph19084470 crossref_primary_10_3390_ijerph192215093 crossref_primary_10_1016_j_chemosphere_2020_125866 crossref_primary_10_1016_j_biortech_2020_122989 crossref_primary_10_3390_w12051283 crossref_primary_10_1016_j_cej_2022_135175 crossref_primary_10_1016_j_jhazmat_2014_11_029 crossref_primary_10_1016_j_biortech_2020_122870 crossref_primary_10_1016_j_jclepro_2019_118195 crossref_primary_10_1186_s12896_019_0513_y crossref_primary_10_1007_s11356_024_33844_3 crossref_primary_10_3390_w13040391 |
Cites_doi | 10.1099/00221287-147-2-373 10.1016/j.biortech.2012.06.115 10.1128/AEM.00489-06 10.1016/S0043-1354(00)00468-1 10.1016/j.bej.2013.02.004 10.1021/es990510x 10.1128/jb.87.1.171-187.1964 10.1016/S0043-1354(99)00361-9 10.1016/j.watres.2009.02.012 10.1021/es034291y 10.1016/j.watres.2012.11.020 10.1016/j.pecs.2008.06.002 10.1016/j.biombioe.2005.11.010 10.2166/wst.2003.0471 10.1007/BF00164784 10.1016/j.biortech.2006.07.026 10.1016/j.watres.2012.11.052 10.1016/j.watres.2012.07.051 10.1021/ac020271n 10.1016/j.watres.2011.11.073 10.1038/nature02321 10.1271/bbb.64.1737 10.1016/j.bej.2008.06.020 10.1016/S1389-1723(03)80028-2 10.1021/es102878m 10.1016/j.watres.2011.01.005 10.1007/BF00504740 10.2166/wst.1997.0406 10.1016/S1389-1723(04)00258-0 10.1016/j.watres.2013.04.003 10.1016/S0360-3199(02)00090-3 10.1016/j.biortech.2010.06.019 10.1016/j.biortech.2005.05.010 10.1016/j.jhazmat.2010.06.129 10.1128/aem.56.3.719-723.1990 10.1016/j.biortech.2010.07.100 10.1021/es902958c 10.1002/bit.260300510 10.1016/j.biombioe.2010.08.002 10.1016/S0167-7799(01)01701-2 10.1126/science.237.4814.509 10.1080/09593332608618606 10.1016/j.cep.2006.02.005 10.1128/AEM.65.11.5117-5123.1999 10.1016/j.watres.2007.05.037 |
ContentType | Journal Article |
Copyright | Copyright © 2013 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: Copyright © 2013 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7QH 7TG 7UA C1K F1W H97 KL. L.G 8FD FR3 KR7 7S9 L.6 |
DOI | 10.1016/j.watres.2013.10.072 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Aqualine Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Engineering Research Database Civil Engineering Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aqualine Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management Technology Research Database Civil Engineering Abstracts Engineering Research Database AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE AGRICOLA MEDLINE - Academic Technology Research Database Aquatic Science & Fisheries Abstracts (ASFA) Professional |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-2448 |
EndPage | 250 |
ExternalDocumentID | 24275106 10_1016_j_watres_2013_10_072 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M -DZ -~X .55 .DC .~1 0R~ 123 186 1B1 1RT 1~. 1~5 29R 4.4 457 4G. 53G 5VS 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO AAYXX ABEFU ABFNM ABFRF ABFYP ABJNI ABLST ABMAC ABQEM ABQYD ABWVN ABXDB ACDAQ ACGFO ACGFS ACKIV ACLVX ACRLP ACRPL ACSBN ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO AEBSH AEFWE AEGFY AEIPS AEKER AENEX AEUPX AFFNX AFJKZ AFPUW AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRNS AGUBO AGYEJ AHEUO AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKIFW AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLECG BLXMC BNPGV CITATION CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HMC HVGLF HZ~ H~9 IHE IMUCA J1W KCYFY KOM LY3 LY9 M41 MO0 MVM N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SCU SDF SDG SDP SEN SEP SES SEW SPC SPCBC SSE SSH SSJ SSZ T5K TAE TN5 TWZ WH7 WUQ X7M XOL XPP YHZ YV5 ZCA ZMT ZXP ZY4 ~02 ~A~ ~G- ~KM AACTN CGR CUY CVF ECM EIF NPM 7X8 7QH 7TG 7UA C1K F1W H97 KL. L.G 8FD FR3 KR7 7S9 L.6 |
ID | FETCH-LOGICAL-c505t-8f1c82c15b026720963502012f1cb1865b821a95bd6ba9410f28d2494e6b851e3 |
ISSN | 0043-1354 1879-2448 |
IngestDate | Thu Jul 10 23:40:38 EDT 2025 Fri Jul 11 03:10:25 EDT 2025 Fri Jul 11 03:24:37 EDT 2025 Thu Jul 10 18:36:07 EDT 2025 Fri Jul 11 00:36:08 EDT 2025 Thu Apr 03 07:04:25 EDT 2025 Tue Jul 01 03:53:40 EDT 2025 Thu Apr 24 23:05:16 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Sludge reduction Waste activated sludge Methane production Anaerobic digestion Zero-valent iron |
Language | English |
License | Copyright © 2013 Elsevier Ltd. All rights reserved. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c505t-8f1c82c15b026720963502012f1cb1865b821a95bd6ba9410f28d2494e6b851e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 24275106 |
PQID | 1504153704 |
PQPubID | 23462 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2000142019 proquest_miscellaneous_1919963196 proquest_miscellaneous_1880005023 proquest_miscellaneous_1868326734 proquest_miscellaneous_1504153704 pubmed_primary_24275106 crossref_primary_10_1016_j_watres_2013_10_072 crossref_citationtrail_10_1016_j_watres_2013_10_072 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-04-00 2014-Apr-01 20140401 |
PublicationDateYYYYMMDD | 2014-04-01 |
PublicationDate_xml | – month: 04 year: 2014 text: 2014-04-00 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Water research (Oxford) |
PublicationTitleAlternate | Water Res |
PublicationYear | 2014 |
References | Dinh (10.1016/j.watres.2013.10.072_bib16) 2004; 427 Nah (10.1016/j.watres.2013.10.072_bib37) 2000; 34 Arnaiz (10.1016/j.watres.2013.10.072_bib5) 2006; 97 Chaplin (10.1016/j.watres.2013.10.072_bib10) 1994 Chu (10.1016/j.watres.2013.10.072_bib12) 2009; 43 Zhang (10.1016/j.watres.2013.10.072_bib49) 2003; 75 Liu (10.1016/j.watres.2013.10.072_bib32) 2012; 192 Basu (10.1016/j.watres.2013.10.072_bib7) 2005; 26 Bougrier (10.1016/j.watres.2013.10.072_bib8) 2006; 45 Yanagita (10.1016/j.watres.2013.10.072_bib46) 2000; 64 Heo (10.1016/j.watres.2013.10.072_bib22) 2003; 48 Wu (10.1016/j.watres.2013.10.072_bib45) 2001; 147 Daniels (10.1016/j.watres.2013.10.072_bib15) 1987; 237 Alkaya (10.1016/j.watres.2013.10.072_bib1) 2011; 35 Ferrer (10.1016/j.watres.2013.10.072_bib18) 2008; 42 Hawkes (10.1016/j.watres.2013.10.072_bib21) 2002; 27 Karadzic (10.1016/j.watres.2013.10.072_bib27) 2004; 98 Appels (10.1016/j.watres.2013.10.072_bib4) 2008; 34 Jiang (10.1016/j.watres.2013.10.072_bib25) 2011; 45 Jimenez (10.1016/j.watres.2013.10.072_bib26) 2012; 47 Park (10.1016/j.watres.2013.10.072_bib39) 2004; 50 Allen (10.1016/j.watres.2013.10.072_bib2) 1964; 87 Liu (10.1016/j.watres.2013.10.072_bib33) 2012; 121 Oh (10.1016/j.watres.2013.10.072_bib38) 2003; 37 Carrere (10.1016/j.watres.2013.10.072_bib9) 2010; 183 Lettinga (10.1016/j.watres.2013.10.072_bib31) 2001; 19 Kim (10.1016/j.watres.2013.10.072_bib29) 2003; 95 Yang (10.1016/j.watres.2013.10.072_bib47) 1987; 30 Karakashev (10.1016/j.watres.2013.10.072_bib28) 2006; 72 Association, A.P.H (10.1016/j.watres.2013.10.072_bib6) 1994 Küsel (10.1016/j.watres.2013.10.072_bib30) 1999; 65 Zhang (10.1016/j.watres.2013.10.072_bib48) 2010; 44 Zhao (10.1016/j.watres.2013.10.072_bib50) 2010; 44 Ibeid (10.1016/j.watres.2013.10.072_bib23) 2013; 47 Lv (10.1016/j.watres.2013.10.072_bib35) 2010; 101 Wang (10.1016/j.watres.2013.10.072_bib44) 2006; 30 Meng (10.1016/j.watres.2013.10.072_bib36) 2013; 73 Fukuzaki (10.1016/j.watres.2013.10.072_bib20) 1990; 56 Wang (10.1016/j.watres.2013.10.072_bib43) 2013; 47 Chiu (10.1016/j.watres.2013.10.072_bib11) 1997; 36 Ren (10.1016/j.watres.2013.10.072_bib40) 2007; 98 Imbierowicz (10.1016/j.watres.2013.10.072_bib24) 2012; 46 Lu (10.1016/j.watres.2013.10.072_bib34) 2012; 46 Fr (10.1016/j.watres.2013.10.072_bib19) 1995; 43 Cooper (10.1016/j.watres.2013.10.072_bib14) 2000; 34 Tiehm (10.1016/j.watres.2013.10.072_bib42) 2001; 35 Andersch (10.1016/j.watres.2013.10.072_bib3) 1983; 18 Siriwongrungson (10.1016/j.watres.2013.10.072_bib41) 2007; 41 Erden (10.1016/j.watres.2013.10.072_bib17) 2010; 101 |
References_xml | – volume: 192 start-page: 179 issue: 1 year: 2012 ident: 10.1016/j.watres.2013.10.072_bib32 article-title: Optimization of anaerobic acidogenesis by adding Fe0 powder to enhance anaerobic wastewater treatment publication-title: Chem. Eng. J. – volume: 147 start-page: 373 issue: 2 year: 2001 ident: 10.1016/j.watres.2013.10.072_bib45 article-title: Characterization of microbial consortia in a terephthalate-degrading anaerobic granular sludge system publication-title: Microbiology doi: 10.1099/00221287-147-2-373 – volume: 121 start-page: 148 year: 2012 ident: 10.1016/j.watres.2013.10.072_bib33 article-title: Enhanced azo dye wastewater treatment in a two-stage anaerobic system with Fe0 dosing publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2012.06.115 – volume: 72 start-page: 5138 issue: 7 year: 2006 ident: 10.1016/j.watres.2013.10.072_bib28 article-title: Acetate oxidation is the dominant methanogenic pathway from acetate in the absence of Methanosaetaceae publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.00489-06 – volume: 35 start-page: 2003 issue: 8 year: 2001 ident: 10.1016/j.watres.2013.10.072_bib42 article-title: Ultrasonic waste activated sludge disintegration for improving anaerobic stabilization publication-title: Water Res. doi: 10.1016/S0043-1354(00)00468-1 – volume: 73 start-page: 80 issue: 15 year: 2013 ident: 10.1016/j.watres.2013.10.072_bib36 article-title: Adding Fe0 powder to enhance the anaerobic conversion of propionate to acetate publication-title: Biochem. Eng. J. doi: 10.1016/j.bej.2013.02.004 – volume: 34 start-page: 100 issue: 1 year: 2000 ident: 10.1016/j.watres.2013.10.072_bib14 article-title: Zinc immobilization and magnetite formation via ferric oxide reduction by Shewanella putrefaciens 200 publication-title: Environ. Sci. Technol. doi: 10.1021/es990510x – year: 1994 ident: 10.1016/j.watres.2013.10.072_bib6 – volume: 87 start-page: 171 issue: 1 year: 1964 ident: 10.1016/j.watres.2013.10.072_bib2 article-title: Purification and properties of enzymes involved in the propionic acid fermentation publication-title: J. Bacteriol. doi: 10.1128/jb.87.1.171-187.1964 – volume: 34 start-page: 2362 issue: 8 year: 2000 ident: 10.1016/j.watres.2013.10.072_bib37 article-title: Mechanical pretreatment of waste activated sludge for anaerobic digestion process publication-title: Water Res. doi: 10.1016/S0043-1354(99)00361-9 – volume: 43 start-page: 1811 issue: 7 year: 2009 ident: 10.1016/j.watres.2013.10.072_bib12 article-title: Progress and perspectives of sludge ozonation as a powerful pretreatment method for minimization of excess sludge production publication-title: Water Res. doi: 10.1016/j.watres.2009.02.012 – volume: 37 start-page: 5186 issue: 22 year: 2003 ident: 10.1016/j.watres.2013.10.072_bib38 article-title: The relative effectiveness of pH control and heat treatment for enhancing biohydrogen gas production publication-title: Environ. Sci. Technol. doi: 10.1021/es034291y – volume: 47 start-page: 903 issue: 2 year: 2013 ident: 10.1016/j.watres.2013.10.072_bib23 article-title: Modification of activated sludge properties caused by application of continuous and intermittent current publication-title: Water Res. doi: 10.1016/j.watres.2012.11.020 – volume: 34 start-page: 755 issue: 6 year: 2008 ident: 10.1016/j.watres.2013.10.072_bib4 article-title: Principles and potential of the anaerobic digestion of waste-activated sludge publication-title: Prog. Energy Combustion Sci. doi: 10.1016/j.pecs.2008.06.002 – volume: 30 start-page: 177 issue: 2 year: 2006 ident: 10.1016/j.watres.2013.10.072_bib44 article-title: Avoiding propionic acid accumulation in the anaerobic process for biohydrogen production publication-title: Biomass and Bioenergy doi: 10.1016/j.biombioe.2005.11.010 – volume: 48 start-page: 211 issue: 8 year: 2003 ident: 10.1016/j.watres.2013.10.072_bib22 article-title: Solubilization of waste activated sludge by alkaline pretreatment and biochemical methane potential (BMP) tests for anaerobic co-digestion of municipal organic waste publication-title: Water Sci. Technol. doi: 10.2166/wst.2003.0471 – volume: 43 start-page: 755 issue: 4 year: 1995 ident: 10.1016/j.watres.2013.10.072_bib19 article-title: Enzymatic activity in the activated-sludge floc matrix publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/BF00164784 – volume: 98 start-page: 1774 issue: 9 year: 2007 ident: 10.1016/j.watres.2013.10.072_bib40 article-title: Assessing optimal fermentation type for bio-hydrogen production in continuous-flow acidogenic reactors publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2006.07.026 – volume: 47 start-page: 1751 issue: 5 year: 2012 ident: 10.1016/j.watres.2013.10.072_bib26 article-title: A statistical comparison of protein and carbohydrate characterisation methodology applied on sewage sludge samples publication-title: Water Res. doi: 10.1016/j.watres.2012.11.052 – volume: 46 start-page: 5747 issue: 17 year: 2012 ident: 10.1016/j.watres.2013.10.072_bib24 article-title: Kinetic model of excess activated sludge thermohydrolysis publication-title: Water Res. doi: 10.1016/j.watres.2012.07.051 – volume: 75 start-page: 219 issue: 2 year: 2003 ident: 10.1016/j.watres.2013.10.072_bib49 article-title: Quantification of cell and cellulase mass concentrations during anaerobic cellulose fermentation: development of an enzyme-linked immunosorbent assay-based method with application to Clostridium thermocellum batch cultures publication-title: Anal. Chem. doi: 10.1021/ac020271n – volume: 46 start-page: 1015 issue: 4 year: 2012 ident: 10.1016/j.watres.2013.10.072_bib34 article-title: Enhanced hydrogen production from waste activated sludge by cascade utilization of organic matter in microbial electrolysis cells publication-title: Water Res. doi: 10.1016/j.watres.2011.11.073 – volume: 427 start-page: 829 issue: 6977 year: 2004 ident: 10.1016/j.watres.2013.10.072_bib16 article-title: Iron corrosion by novel anaerobic microorganisms publication-title: Nature doi: 10.1038/nature02321 – volume: 64 start-page: 1737 issue: 8 year: 2000 ident: 10.1016/j.watres.2013.10.072_bib46 article-title: Phylogenetic analysis of methanogens in sheep rumen ecosystem and detection of Methanomicrobium mobile by fluorescence in situ hybridization publication-title: Biosci. Biotechnol. Biochem. doi: 10.1271/bbb.64.1737 – volume: 42 start-page: 186 issue: 2 year: 2008 ident: 10.1016/j.watres.2013.10.072_bib18 article-title: Increasing biogas production by thermal (70°C) sludge pre-treatment prior to thermophilic anaerobic digestion publication-title: Biochem. Eng. J. doi: 10.1016/j.bej.2008.06.020 – volume: 95 start-page: 271 issue: 3 year: 2003 ident: 10.1016/j.watres.2013.10.072_bib29 article-title: Effects of various pretreatments for enhanced anaerobic digestion with waste activated sludge publication-title: J. Biosci. Bioeng. doi: 10.1016/S1389-1723(03)80028-2 – volume: 50 start-page: 17 issue: 9 year: 2004 ident: 10.1016/j.watres.2013.10.072_bib39 article-title: Use of microwave pretreatment for enhanced anaerobiosis of secondary sludge publication-title: Resour. Sludge: Forging New Front. – volume: 44 start-page: 9343 issue: 24 year: 2010 ident: 10.1016/j.watres.2013.10.072_bib48 article-title: Understanding short-chain fatty acids accumulation enhanced in waste activated sludge alkaline fermentation: kinetics and microbiology publication-title: Environ. Sci. Technol. doi: 10.1021/es102878m – volume: 45 start-page: 2191 issue: 6 year: 2011 ident: 10.1016/j.watres.2013.10.072_bib25 article-title: Nitrate reduction using nanosized zero-valent iron supported by polystyrene resins: role of surface functional groups publication-title: Water Res. doi: 10.1016/j.watres.2011.01.005 – year: 1994 ident: 10.1016/j.watres.2013.10.072_bib10 – volume: 18 start-page: 327 issue: 6 year: 1983 ident: 10.1016/j.watres.2013.10.072_bib3 article-title: Level of enzymes involved in acetate, butyrate, acetone and butanol formation by Clostridium acetobutylicum publication-title: Eur. J. Appl. Microbiol. Biotechnol. doi: 10.1007/BF00504740 – volume: 36 start-page: 155 issue: 11 year: 1997 ident: 10.1016/j.watres.2013.10.072_bib11 article-title: Alkaline and ultrasonic pretreatment of sludge before anaerobic digestion publication-title: Water Sci. Technol. doi: 10.2166/wst.1997.0406 – volume: 98 start-page: 145 issue: 3 year: 2004 ident: 10.1016/j.watres.2013.10.072_bib27 article-title: Purification and characterization of a protease from Pseudomonas aeruginosa grown in cutting oil publication-title: J. Biosci. Bioeng. doi: 10.1016/S1389-1723(04)00258-0 – volume: 47 start-page: 3835 issue: 11 year: 2013 ident: 10.1016/j.watres.2013.10.072_bib43 article-title: Determining the limits of anaerobic co-digestion of thickened waste activated sludge with grease interceptor waste publication-title: Water Res. doi: 10.1016/j.watres.2013.04.003 – volume: 27 start-page: 1339 issue: 11 year: 2002 ident: 10.1016/j.watres.2013.10.072_bib21 article-title: Sustainable fermentative hydrogen production: challenges for process optimisation publication-title: Int. J. Hydrogen Energy doi: 10.1016/S0360-3199(02)00090-3 – volume: 101 start-page: 8093 issue: 21 year: 2010 ident: 10.1016/j.watres.2013.10.072_bib17 article-title: Disintegration of biological sludge: effect of ozone oxidation and ultrasonic treatment on aerobic digestibility publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2010.06.019 – volume: 97 start-page: 1179 issue: 10 year: 2006 ident: 10.1016/j.watres.2013.10.072_bib5 article-title: Biomass stabilization in the anaerobic digestion of wastewater sludges publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2005.05.010 – volume: 183 start-page: 1 issue: 1 year: 2010 ident: 10.1016/j.watres.2013.10.072_bib9 article-title: Pretreatment methods to improve sludge anaerobic degradability: a review publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2010.06.129 – volume: 56 start-page: 719 issue: 3 year: 1990 ident: 10.1016/j.watres.2013.10.072_bib20 article-title: Inhibition of the fermentation of propionate to methane by hydrogen, acetate, and propionate publication-title: Appl. Environ. Microbiol. doi: 10.1128/aem.56.3.719-723.1990 – volume: 101 start-page: 9409 issue: 24 year: 2010 ident: 10.1016/j.watres.2013.10.072_bib35 article-title: Putting microbes to work in sequence: recent advances in temperature-phased anaerobic digestion processes publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2010.07.100 – volume: 44 start-page: 3317 issue: 9 year: 2010 ident: 10.1016/j.watres.2013.10.072_bib50 article-title: Waste activated sludge fermentation for hydrogen production enhanced by anaerobic process improvement and acetobacteria inhibition: the role of fermentation pH publication-title: Environ. Sci. Technol. doi: 10.1021/es902958c – volume: 30 start-page: 661 issue: 5 year: 1987 ident: 10.1016/j.watres.2013.10.072_bib47 article-title: Kinetic study and mathematical modeling of methanogenesis of acetate using pure cultures of methanogens publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.260300510 – volume: 35 start-page: 32 issue: 1 year: 2011 ident: 10.1016/j.watres.2013.10.072_bib1 article-title: Anaerobic acidification of sugar-beet processing wastes: effect of operational parameters publication-title: Biomass and Bioenergy doi: 10.1016/j.biombioe.2010.08.002 – volume: 19 start-page: 363 issue: 9 year: 2001 ident: 10.1016/j.watres.2013.10.072_bib31 article-title: Challenge of psychrophilic anaerobic wastewater treatment publication-title: Trends. Biotechnol. doi: 10.1016/S0167-7799(01)01701-2 – volume: 237 start-page: 509 issue: 4814 year: 1987 ident: 10.1016/j.watres.2013.10.072_bib15 article-title: Bacterial methanogenesis and growth from CO2 with elemental iron as the sole source of electrons publication-title: Science doi: 10.1126/science.237.4814.509 – volume: 26 start-page: 1383 issue: 12 year: 2005 ident: 10.1016/j.watres.2013.10.072_bib7 article-title: Effect of sulfidogenic and methanogenic inhibitors on reductive dehalogenation of 2-chlorophenol publication-title: Environ. Technol. doi: 10.1080/09593332608618606 – volume: 45 start-page: 711 issue: 8 year: 2006 ident: 10.1016/j.watres.2013.10.072_bib8 article-title: Effect of ultrasonic, thermal and ozone pre-treatments on waste activated sludge solubilisation and anaerobic biodegradability publication-title: Chem. Eng. Process. Process Intensification doi: 10.1016/j.cep.2006.02.005 – volume: 65 start-page: 5117 issue: 11 year: 1999 ident: 10.1016/j.watres.2013.10.072_bib30 article-title: Acetogenic and sulfate-reducing bacteria inhabiting the rhizoplane and deep cortex cells of the sea grass Halodule wrightii publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.65.11.5117-5123.1999 – volume: 41 start-page: 4204 issue: 18 year: 2007 ident: 10.1016/j.watres.2013.10.072_bib41 article-title: Homoacetogenesis as the alternative pathway for H2 sink during thermophilic anaerobic degradation of butyrate under suppressed methanogenesis publication-title: Water Res. doi: 10.1016/j.watres.2007.05.037 |
SSID | ssj0002239 |
Score | 2.617509 |
Snippet | Anaerobic digestion is promising technology to recover energy from waste activated sludge. However, the sludge digestion is limited by its low efficiency of... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 242 |
SubjectTerms | Acetates acidification Activated sludge Anaerobic digestion Anaerobiosis Biofuels cellulose energy Enzymes Enzymes - metabolism Fatty Acids - metabolism fluorescence in situ hybridization hydrogen Hydrogen - metabolism Hydrolysis In Situ Hybridization, Fluorescence Iron Methane - metabolism methane production methanogens Microbial Consortia Polysaccharides - metabolism propionic acid protein degradation Proteins Proteins - metabolism Sewage - microbiology Sludge Sludge digestion thermodynamics volatile fatty acids Waste Disposal, Fluid - methods |
Title | Enhanced anaerobic digestion of waste activated sludge digestion by the addition of zero valent iron |
URI | https://www.ncbi.nlm.nih.gov/pubmed/24275106 https://www.proquest.com/docview/1504153704 https://www.proquest.com/docview/1868326734 https://www.proquest.com/docview/1880005023 https://www.proquest.com/docview/1919963196 https://www.proquest.com/docview/2000142019 |
Volume | 52 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagXOCAeLO8ZCRuVVZNHCfxEVVFFRJcaMX2FNlOVktVkoruUuiB3843dpyklF0elyhyJl6v54s9Hs98ZuyVFbXBvAHw0ueWStwZlatIWWnTLM2ldow3795n-4fp25mcDfHzLrtkaab24rd5Jf-jVZRBr5Ql-w-a7StFAe6hX1yhYVz_Ssd7zcJv4OtG10SoZLcrt2HUWYHnGjp0dBlfNVmWZycrys4aZMj2BE4oqCi8c4GKttFIihGgFLix9fpRE6Vixw-0cEyl33xwfO9OQP-4weMIU-Ki7abFsWP6SFPG2eBv9Q7Y2aceYLtdvsiHVTt2ScTjSJbaD6NFTvs2nkMzjLOeqTYMlJ5T68oA7n0Jx9NzTakyFHonphR9l18ShxpOPzulop4cw8ovbNpufg6PrrMbCdYQdLzF9McQ_wO7SIVcShfwd_UniSm6q-Sy2bJmLeJskoM77Ha3mOCvPTLusmt1c4_dGlFM3mdVwAjvMcJ7_fN2zh1GeI8R7jEykjHfOTDCA0boHcII9xjhhJEH7PDN3sHuftSdrBFZWLzLqJjHtkhsLA0dQJZgGSsk1g1xgnITF5k0RRJrJU2VGa3SeGeeFBUW6mmdGZjotXjItpq2qR8zXqg0F5lSRtCG-06qK2nnAoZ1PpdVpsWEidBxpe1o5-n0k5MyxBcel77nS-p5KkXPT1jUv3XqaVf-IP8y6KTE-EibXrqp29VZiQUPbFSBlm2QKTJMbFkuNsoUjiwpERtkFMX006S2XiZxXgk0XU3YIw-e_h8GsD1Z--Qpuzl8cM_Y1vLLqn4Oq3hpXjh0_wR5sbWr |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+anaerobic+digestion+of+waste+activated+sludge+digestion+by+the+addition+of+zero+valent+iron&rft.jtitle=Water+research+%28Oxford%29&rft.au=Feng%2C+Yinghong&rft.au=Zhang%2C+Yaobin&rft.au=Quan%2C+Xie&rft.au=Chen%2C+Suo&rft.date=2014-04-01&rft.eissn=1879-2448&rft.volume=52&rft.spage=242&rft_id=info:doi/10.1016%2Fj.watres.2013.10.072&rft_id=info%3Apmid%2F24275106&rft.externalDocID=24275106 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1354&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1354&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1354&client=summon |