Nanotechnology Approaches for Chloroplast Biotechnology Advancements

Photosynthetic organisms are sources of sustainable foods, renewable biofuels, novel biopharmaceuticals, and next-generation biomaterials essential for modern society. Efforts to improve the yield, variety, and sustainability of products dependent on chloroplasts are limited by the need for biotechn...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in plant science Vol. 12; p. 691295
Main Authors Newkirk, Gregory M., de Allende, Pedro, Jinkerson, Robert E., Giraldo, Juan Pablo
Format Journal Article
LanguageEnglish
Published Frontiers Media S.A 26.07.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Photosynthetic organisms are sources of sustainable foods, renewable biofuels, novel biopharmaceuticals, and next-generation biomaterials essential for modern society. Efforts to improve the yield, variety, and sustainability of products dependent on chloroplasts are limited by the need for biotechnological approaches for high-throughput chloroplast transformation, monitoring chloroplast function, and engineering photosynthesis across diverse plant species. The use of nanotechnology has emerged as a novel approach to overcome some of these limitations. Nanotechnology is enabling advances in the targeted delivery of chemicals and genetic elements to chloroplasts, nanosensors for chloroplast biomolecules, and nanotherapeutics for enhancing chloroplast performance. Nanotechnology-mediated delivery of DNA to the chloroplast has the potential to revolutionize chloroplast synthetic biology by allowing transgenes, or even synthesized DNA libraries, to be delivered to a variety of photosynthetic species. Crop yield improvements could be enabled by nanomaterials that enhance photosynthesis, increase tolerance to stresses, and act as nanosensors for biomolecules associated with chloroplast function. Engineering isolated chloroplasts through nanotechnology and synthetic biology approaches are leading to a new generation of plant-based biomaterials able to self-repair using abundant CO 2 and water sources and are powered by renewable sunlight energy. Current knowledge gaps of nanotechnology-enabled approaches for chloroplast biotechnology include precise mechanisms for entry into plant cells and organelles, limited understanding about nanoparticle-based chloroplast transformations, and the translation of lab-based nanotechnology tools to the agricultural field with crop plants. Future research in chloroplast biotechnology mediated by the merging of synthetic biology and nanotechnology approaches can yield tools for precise control and monitoring of chloroplast function in vivo and ex vivo across diverse plant species, allowing increased plant productivity and turning plants into widely available sustainable technologies.
AbstractList Photosynthetic organisms are sources of sustainable foods, renewable biofuels, novel biopharmaceuticals, and next-generation biomaterials essential for modern society. Efforts to improve the yield, variety, and sustainability of products dependent on chloroplasts are limited by the need for biotechnological approaches for high-throughput chloroplast transformation, monitoring chloroplast function, and engineering photosynthesis across diverse plant species. The use of nanotechnology has emerged as a novel approach to overcome some of these limitations. Nanotechnology is enabling advances in the targeted delivery of chemicals and genetic elements to chloroplasts, nanosensors for chloroplast biomolecules, and nanotherapeutics for enhancing chloroplast performance. Nanotechnology-mediated delivery of DNA to the chloroplast has the potential to revolutionize chloroplast synthetic biology by allowing transgenes, or even synthesized DNA libraries, to be delivered to a variety of photosynthetic species. Crop yield improvements could be enabled by nanomaterials that enhance photosynthesis, increase tolerance to stresses, and act as nanosensors for biomolecules associated with chloroplast function. Engineering isolated chloroplasts through nanotechnology and synthetic biology approaches are leading to a new generation of plant-based biomaterials able to self-repair using abundant CO 2 and water sources and are powered by renewable sunlight energy. Current knowledge gaps of nanotechnology-enabled approaches for chloroplast biotechnology include precise mechanisms for entry into plant cells and organelles, limited understanding about nanoparticle-based chloroplast transformations, and the translation of lab-based nanotechnology tools to the agricultural field with crop plants. Future research in chloroplast biotechnology mediated by the merging of synthetic biology and nanotechnology approaches can yield tools for precise control and monitoring of chloroplast function in vivo and ex vivo across diverse plant species, allowing increased plant productivity and turning plants into widely available sustainable technologies.
Photosynthetic organisms are sources of sustainable foods, renewable biofuels, novel biopharmaceuticals, and next-generation biomaterials essential for modern society. Efforts to improve the yield, variety, and sustainability of products dependent on chloroplasts are limited by the need for biotechnological approaches for high-throughput chloroplast transformation, monitoring chloroplast function, and engineering photosynthesis across diverse plant species. The use of nanotechnology has emerged as a novel approach to overcome some of these limitations. Nanotechnology is enabling advances in the targeted delivery of chemicals and genetic elements to chloroplasts, nanosensors for chloroplast biomolecules, and nanotherapeutics for enhancing chloroplast performance. Nanotechnology-mediated delivery of DNA to the chloroplast has the potential to revolutionize chloroplast synthetic biology by allowing transgenes, or even synthesized DNA libraries, to be delivered to a variety of photosynthetic species. Crop yield improvements could be enabled by nanomaterials that enhance photosynthesis, increase tolerance to stresses, and act as nanosensors for biomolecules associated with chloroplast function. Engineering isolated chloroplasts through nanotechnology and synthetic biology approaches are leading to a new generation of plant-based biomaterials able to self-repair using abundant CO2 and water sources and are powered by renewable sunlight energy. Current knowledge gaps of nanotechnology-enabled approaches for chloroplast biotechnology include precise mechanisms for entry into plant cells and organelles, limited understanding about nanoparticle-based chloroplast transformations, and the translation of lab-based nanotechnology tools to the agricultural field with crop plants. Future research in chloroplast biotechnology mediated by the merging of synthetic biology and nanotechnology approaches can yield tools for precise control and monitoring of chloroplast function in vivo and ex vivo across diverse plant species, allowing increased plant productivity and turning plants into widely available sustainable technologies.
Photosynthetic organisms are sources of sustainable foods, renewable biofuels, novel biopharmaceuticals, and next-generation biomaterials essential for modern society. Efforts to improve the yield, variety, and sustainability of products dependent on chloroplasts are limited by the need for biotechnological approaches for high-throughput chloroplast transformation, monitoring chloroplast function, and engineering photosynthesis across diverse plant species. The use of nanotechnology has emerged as a novel approach to overcome some of these limitations. Nanotechnology is enabling advances in the targeted delivery of chemicals and genetic elements to chloroplasts, nanosensors for chloroplast biomolecules, and nanotherapeutics for enhancing chloroplast performance. Nanotechnology-mediated delivery of DNA to the chloroplast has the potential to revolutionize chloroplast synthetic biology by allowing transgenes, or even synthesized DNA libraries, to be delivered to a variety of photosynthetic species. Crop yield improvements could be enabled by nanomaterials that enhance photosynthesis, increase tolerance to stresses, and act as nanosensors for biomolecules associated with chloroplast function. Engineering isolated chloroplasts through nanotechnology and synthetic biology approaches are leading to a new generation of plant-based biomaterials able to self-repair using abundant CO2 and water sources and are powered by renewable sunlight energy. Current knowledge gaps of nanotechnology-enabled approaches for chloroplast biotechnology include precise mechanisms for entry into plant cells and organelles, limited understanding about nanoparticle-based chloroplast transformations, and the translation of lab-based nanotechnology tools to the agricultural field with crop plants. Future research in chloroplast biotechnology mediated by the merging of synthetic biology and nanotechnology approaches can yield tools for precise control and monitoring of chloroplast function in vivo and ex vivo across diverse plant species, allowing increased plant productivity and turning plants into widely available sustainable technologies.Photosynthetic organisms are sources of sustainable foods, renewable biofuels, novel biopharmaceuticals, and next-generation biomaterials essential for modern society. Efforts to improve the yield, variety, and sustainability of products dependent on chloroplasts are limited by the need for biotechnological approaches for high-throughput chloroplast transformation, monitoring chloroplast function, and engineering photosynthesis across diverse plant species. The use of nanotechnology has emerged as a novel approach to overcome some of these limitations. Nanotechnology is enabling advances in the targeted delivery of chemicals and genetic elements to chloroplasts, nanosensors for chloroplast biomolecules, and nanotherapeutics for enhancing chloroplast performance. Nanotechnology-mediated delivery of DNA to the chloroplast has the potential to revolutionize chloroplast synthetic biology by allowing transgenes, or even synthesized DNA libraries, to be delivered to a variety of photosynthetic species. Crop yield improvements could be enabled by nanomaterials that enhance photosynthesis, increase tolerance to stresses, and act as nanosensors for biomolecules associated with chloroplast function. Engineering isolated chloroplasts through nanotechnology and synthetic biology approaches are leading to a new generation of plant-based biomaterials able to self-repair using abundant CO2 and water sources and are powered by renewable sunlight energy. Current knowledge gaps of nanotechnology-enabled approaches for chloroplast biotechnology include precise mechanisms for entry into plant cells and organelles, limited understanding about nanoparticle-based chloroplast transformations, and the translation of lab-based nanotechnology tools to the agricultural field with crop plants. Future research in chloroplast biotechnology mediated by the merging of synthetic biology and nanotechnology approaches can yield tools for precise control and monitoring of chloroplast function in vivo and ex vivo across diverse plant species, allowing increased plant productivity and turning plants into widely available sustainable technologies.
Author Newkirk, Gregory M.
de Allende, Pedro
Giraldo, Juan Pablo
Jinkerson, Robert E.
AuthorAffiliation 2 Department of Microbiology and Plant Pathology, University of California, Riverside , Riverside, CA , United States
3 Department of Chemical and Environmental Engineering, University of California, Riverside , Riverside, CA , United States
1 Department of Botany and Plant Sciences, University of California, Riverside , Riverside, CA , United States
AuthorAffiliation_xml – name: 2 Department of Microbiology and Plant Pathology, University of California, Riverside , Riverside, CA , United States
– name: 3 Department of Chemical and Environmental Engineering, University of California, Riverside , Riverside, CA , United States
– name: 1 Department of Botany and Plant Sciences, University of California, Riverside , Riverside, CA , United States
Author_xml – sequence: 1
  givenname: Gregory M.
  surname: Newkirk
  fullname: Newkirk, Gregory M.
– sequence: 2
  givenname: Pedro
  surname: de Allende
  fullname: de Allende, Pedro
– sequence: 3
  givenname: Robert E.
  surname: Jinkerson
  fullname: Jinkerson, Robert E.
– sequence: 4
  givenname: Juan Pablo
  surname: Giraldo
  fullname: Giraldo, Juan Pablo
BookMark eNp1kctvEzEQxi1UREvpnWOOXBL8Wj8uSCXlUamCC0jcrLF3nLhy1ou9qdT_ng0pEkFiLjPyfN9PY30vydlQBiTkNaMrIYx9G8fcVpxytlKWcds9IxdMKbmUiv84-2s-J1et3dO5Okqt1S_IuZDCMGnoBbn5AkOZMGyHksvmcXE9jrVA2GJbxFIX620utYwZ2rR4n06E_QMMAXc4TO0VeR4hN7x66pfk-8cP39afl3dfP92ur--WoaPdtDSB9QqM5Gh9pNpj9B3o4LvAvKVaMM2QedFrUAgMVPToTWRcq0Ct0l5cktsjty9w78aadlAfXYHkfj-UunFQpxQyOs4EaqpARill1MZ6zbjpNRNcQq_5zHp3ZI17v8M-zP-okE-gp5shbd2mPDgjOtZZMQPePAFq-bnHNrldagFzhgHLvjneKWqEVFLOUnWUhlpaqxhdSBNMqRzIKTtG3SFRd0jUHRJ1x0RnI_3H-Oe-_1p-AZKQpqI
CitedBy_id crossref_primary_10_1186_s12951_021_01176_w
crossref_primary_10_1007_s10142_025_01528_x
crossref_primary_10_1016_j_envint_2024_108859
crossref_primary_10_1039_D3EN00179B
crossref_primary_10_1021_jacsau_4c00478
crossref_primary_10_1039_D3EN00268C
crossref_primary_10_1007_s11103_022_01279_4
crossref_primary_10_1186_s43141_021_00255_7
crossref_primary_10_1038_s41598_023_35296_0
crossref_primary_10_1002_smll_202300362
crossref_primary_10_3390_horticulturae9121338
crossref_primary_10_1111_ppl_14289
crossref_primary_10_1093_jxb_erac344
crossref_primary_10_1021_acsnano_2c02714
crossref_primary_10_1021_acs_jpcb_4c02804
crossref_primary_10_1016_j_lssr_2024_03_001
crossref_primary_10_1016_j_biotechadv_2022_107929
crossref_primary_10_3390_ijms241914836
crossref_primary_10_1039_D2EN00158F
crossref_primary_10_3389_fpls_2022_1037038
crossref_primary_10_3390_plants14060978
crossref_primary_10_1021_acs_est_3c05686
crossref_primary_10_1007_s10311_022_01529_3
crossref_primary_10_1016_j_algal_2023_103219
crossref_primary_10_3390_molecules30030446
crossref_primary_10_1021_acs_chemrev_3c00581
crossref_primary_10_3390_su16010295
crossref_primary_10_1039_D3CC00962A
Cites_doi 10.1099/mic.0.000599
10.1007/s00299-017-2206-0
10.3389/fpls.2019.01135
10.1104/pp.17.00857
10.1038/nmat4771
10.1021/acsami.8b07179
10.1007/s00344-013-9337-5
10.1007/978-1-62703-995-6_27
10.1038/s41467-020-15731-w
10.1111/pce.12425
10.1016/j.plaphy.2019.10.036
10.1007/978-90-481-8531-3_20
10.1007/s11120-014-0063-z
10.1038/s41565-019-0470-6
10.1016/j.tplants.2015.07.004
10.1016/B978-0-12-817536-1.00018-7
10.1002/adma.201804037
10.1104/pp.110.170969
10.1016/j.molp.2019.06.010
10.1111/pbi.12490
10.1038/s41596-019-0208-9
10.1104/pp.18.00767
10.2174/187221107779814140
10.1039/c5cs00914f
10.2134/agronj2010.0303
10.1002/adma.201902575
10.1155/2014/419382
10.1105/tpc.18.00427
10.1016/j.rser.2020.110164
10.1038/s41565-019-0382-5
10.1021/acs.nanolett.9b05159
10.1038/nmat3890
10.1021/acsnano.9b09178
10.1016/j.chemosphere.2008.07.040
10.1007/s00253-016-7354-6
10.1016/j.pbi.2019.12.010
10.1016/j.plantsci.2018.02.024
10.1155/2015/519513
10.3389/fpls.2019.00705
10.1111/j.1365-313X.1993.00729.x
10.1021/acsnano.7b05723
10.1093/aob/mcv046
10.1021/tx200339h
10.1007/s11103-010-9724-2
10.1007/s00227-014-2495-6
10.1002/smll.201502458
10.1186/s13007-017-0179-1
10.1073/pnas.0914423107
10.1128/MCB.26.3.863-870.2006
10.1104/pp.16.00273
10.1002/smll.201802086
10.1105/tpc.3.2.169
10.1007/s11120-007-9195-8
10.1093/jxb/ers336
10.1186/s13068-017-0823-z
10.1002/bit.24966
10.1038/s41596-020-0370-0
10.1073/pnas.0805135105
10.1093/nar/gkr1008
10.1038/s41565-019-0375-4
10.1021/acs.nanolett.5b04467
10.1021/ar300046u
10.1021/jf0721500
10.1039/C8EN00323H
10.1111/j.1467-7652.2011.00604.x
10.1073/pnas.1216898110
10.1074/jbc.M117.810861
10.1146/annurev-arplant-050213-040212
10.1038/s41565-021-00854-y
10.1126/science.aao5167
10.1111/pbi.12399
10.1016/j.copbio.2021.01.002
10.1016/j.cell.2015.03.019
10.1016/j.carbpol.2018.12.057
10.1021/acsnano.8b09781
10.1016/j.compositesb.2019.107496
10.1088/0957-4484/18/17/175103
10.1038/s41565-019-0461-7
10.1038/s41467-020-19753-2
10.1016/j.bbamcr.2006.04.007
10.3389/fpls.2017.01454
10.1038/nature11479
10.2174/1389203720666181119120120
ContentType Journal Article
Copyright Copyright © 2021 Newkirk, de Allende, Jinkerson and Giraldo.
Copyright © 2021 Newkirk, de Allende, Jinkerson and Giraldo. 2021 Newkirk, de Allende, Jinkerson and Giraldo
Copyright_xml – notice: Copyright © 2021 Newkirk, de Allende, Jinkerson and Giraldo.
– notice: Copyright © 2021 Newkirk, de Allende, Jinkerson and Giraldo. 2021 Newkirk, de Allende, Jinkerson and Giraldo
DBID AAYXX
CITATION
7X8
5PM
DOA
DOI 10.3389/fpls.2021.691295
DatabaseName CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1664-462X
ExternalDocumentID oai_doaj_org_article_213e706a4f444f789b7128d71324ad72
PMC8351593
10_3389_fpls_2021_691295
GrantInformation_xml – fundername: National Science Foundation
  grantid: 1911763
GroupedDBID 5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
CITATION
EBD
ECGQY
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
OK1
PGMZT
RNS
RPM
7X8
5PM
ID FETCH-LOGICAL-c505t-8c1d6a842e9bf07befb5a7cb5c1b9073171e1b3d7a6ea1a6fbeb8f1276c0967b3
IEDL.DBID M48
ISSN 1664-462X
IngestDate Wed Aug 27 01:28:20 EDT 2025
Thu Aug 21 18:28:17 EDT 2025
Thu Jul 10 22:12:51 EDT 2025
Tue Jul 01 03:48:42 EDT 2025
Thu Apr 24 22:55:49 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c505t-8c1d6a842e9bf07befb5a7cb5c1b9073171e1b3d7a6ea1a6fbeb8f1276c0967b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
Reviewed by: Sangram Keshari Lenka, TERI Deakin Nanobiotechnology Centre, India; Jeff Wolt, Iowa State University, United States
This article was submitted to Plant Biotechnology, a section of the journal Frontiers in Plant Science
Edited by: Patricia León, National Autonomous University of Mexico, Mexico
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fpls.2021.691295
PMID 34381480
PQID 2560834644
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_213e706a4f444f789b7128d71324ad72
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8351593
proquest_miscellaneous_2560834644
crossref_citationtrail_10_3389_fpls_2021_691295
crossref_primary_10_3389_fpls_2021_691295
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-07-26
PublicationDateYYYYMMDD 2021-07-26
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-26
  day: 26
PublicationDecade 2020
PublicationTitle Frontiers in plant science
PublicationYear 2021
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Wang (ref70) 2019; 12
Liu (ref33) 2019; 31
Wu (ref80) 2013; 46
Jin (ref27) 2015; 20
Wu (ref88); 11
Coradini (ref11) 2020; 11
Wong (ref77) 2016; 16
Zhang (ref86) 2020; 15
Tungsuchat-Huang (ref65) 2011; 76
Ganesan (ref21) 2018; 30
Demirer (ref16); 14
Adem (ref1) 2017; 13
Shahiwala (ref61) 2007; 1
Wang (ref69) 2020; 54
Masson-Delmotte (ref41) 2018
Dyo (ref18) 2018; 164
Lu (ref38) 2013; 110
Mayfield (ref44) 2015; 123
Kwak (ref29) 2018; 30
(ref5) 2020
Lo (ref34) 2021; 135
Yu (ref85) 2017; 175
Parry (ref52) 2013; 64
Przibilla (ref57) 1991; 3
Wong (ref76) 2017; 16
Merchant (ref47) 2006; 1763
Georgianna (ref22) 2012; 488
Mu (ref48) 2020
Lundqvist (ref39) 2008; 105
Wu (ref79) 2020; 20
Prakash (ref56) 2020; 146
Young (ref84) 2016; 14
Pitek (ref54) 2016; 12
Maliga (ref40) 2011; 155
Demirer (ref17); 14
Vazquez-Vilar (ref67) 2018; 273
Block (ref6) 2007; 92
Williams (ref74) 2014; 2014
O’Neill (ref49) 1993; 3
Boehm (ref8) 2019; 179
Wannathong (ref73) 2016; 100
Scown (ref60) 2021; 67
Barros (ref3) 2015; 115
Lew (ref31) 2018; 14
Xu (ref83) 2013; 32
Zhu (ref87) 2010
O’Neill (ref50) 2012; 40
Dawczynski (ref13) 2007; 55
Tran (ref64) 2013; 110
Lowry (ref36) 2019; 14
Lu (ref37) 2020; 181
Matsuo (ref43) 2006; 26
Giraldo (ref24) 2019; 14
Sanchez (ref58) 2012; 25
Day (ref14) 2011; 9
Wang (ref71) 2008; 73
Wang (ref72) 2016; 45
Wu (ref81) 2018
Woodward (ref78) 2007; 18
Santana (ref59) 2020; 11
Kwak (ref30) 2019; 14
Conaway (ref10) 2018
Verhounig (ref68) 2010; 107
Béchet (ref4) 2017; 10
Kramer (ref28) 2014; 161
Su (ref63) 2019; 10
Giraldo (ref23) 2014; 13
Hatfield (ref25) 2011; 103
Bock (ref7) 2015; 66
Demirer (ref15) 2021; 16
Economou (ref19) 2014
Li (ref32) 2018; 10
Long (ref35) 2015; 161
Medipally (ref46) 2015; 2015
Van Aken (ref66) 2016; 171
ref20
Pérez-Bueno (ref53) 2019; 10
McQualter (ref45) 2016; 14
Wu (ref82); 8
Carmo-Silva (ref9) 2015; 38
Plesa (ref55) 2018; 359
Wilson (ref75) 2018; 293
Avellan (ref2) 2019; 13
Mathiot (ref42) 2019; 208
Hu (ref26) 2020; 14
Palocci (ref51) 2017; 36
Sinha (ref62) 2019; 20
References_xml – volume: 164
  start-page: 113
  year: 2018
  ident: ref18
  article-title: The algal chloroplast as a synthetic biology platform for production of therapeutic proteins
  publication-title: Microbiology
  doi: 10.1099/mic.0.000599
– volume: 36
  start-page: 1917
  year: 2017
  ident: ref51
  article-title: Endocytic pathways involved in PLGA nanoparticle uptake by grapevine cells and role of cell wall and membrane in size selection
  publication-title: Plant Cell Rep.
  doi: 10.1007/s00299-017-2206-0
– volume: 10
  start-page: 1135
  year: 2019
  ident: ref53
  article-title: Phenotyping plant responses to biotic stress by chlorophyll fluorescence imaging
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2019.01135
– volume: 175
  start-page: 186
  year: 2017
  ident: ref85
  article-title: Efficient plastid transformation in Arabidopsis
  publication-title: Plant Physiol.
  doi: 10.1104/pp.17.00857
– volume: 16
  start-page: 264
  year: 2017
  ident: ref76
  article-title: Nitroaromatic detection and infrared communication from wild-type plants using plant nanobionics
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4771
– volume: 10
  start-page: 28279
  year: 2018
  ident: ref32
  article-title: Standoff optical glucose sensing in photosynthetic organisms by a quantum dot fluorescent probe
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b07179
– volume: 32
  start-page: 692
  year: 2013
  ident: ref83
  article-title: Interactive effects of elevated CO2, drought, and warming on plants
  publication-title: J. Plant Growth Regul.
  doi: 10.1007/s00344-013-9337-5
– start-page: 401
  volume-title: Chloroplast Biotechnology: Methods and Protocols.
  year: 2014
  ident: ref19
  article-title: A simple, low-cost method for chloroplast transformation of the green alga Chlamydomonas reinhardtii
  doi: 10.1007/978-1-62703-995-6_27
– ident: ref20
– volume: 11
  start-page: 2045
  year: 2020
  ident: ref59
  article-title: Targeted delivery of nanomaterials with chemical cargoes in plants enabled by a biorecognition motif
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15731-w
– volume: 38
  start-page: 1817
  year: 2015
  ident: ref9
  article-title: Optimizing Rubisco and its regulation for greater resource use efficiency
  publication-title: Plant Cell Environ.
  doi: 10.1111/pce.12425
– volume: 146
  start-page: 143
  year: 2020
  ident: ref56
  article-title: Analysis of temporally evolved nanoparticle-protein corona highlighted the potential ability of gold nanoparticles to stably interact with proteins and influence the major biochemical pathways in Brassica juncea
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2019.10.036
– start-page: 307
  volume-title: The Chloroplast: Basics and Applications.
  year: 2010
  ident: ref87
  article-title: Chapter 20 – Engineering photosynthetic enzymes involved in CO2-assimilation by gene shuffling
  doi: 10.1007/978-90-481-8531-3_20
– volume: 123
  start-page: 225
  year: 2015
  ident: ref44
  article-title: Photosynthetic bio-manufacturing: food, fuel, and medicine for the 21st century
  publication-title: Photosynth. Res.
  doi: 10.1007/s11120-014-0063-z
– volume: 14
  start-page: 541
  year: 2019
  ident: ref24
  article-title: Nanobiotechnology approaches for engineering smart plant sensors
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-019-0470-6
– volume: 20
  start-page: 622
  year: 2015
  ident: ref27
  article-title: The engineered chloroplast genome just got smarter
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2015.07.004
– start-page: 281
  volume-title: Microalgae Cultivation for Biofuels Production.
  year: 2020
  ident: ref48
  article-title: Chapter 18 – Life cycle assessment and techno-economic analysis of algal biofuel production
  doi: 10.1016/B978-0-12-817536-1.00018-7
– volume: 30
  start-page: e1804037
  year: 2018
  ident: ref29
  article-title: Polymethacrylamide and carbon composites that grow, strengthen, and self-repair using ambient carbon dioxide fixation
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201804037
– volume: 155
  start-page: 1501
  year: 2011
  ident: ref40
  article-title: Plastid biotechnology: food, fuel, and medicine for the 21st century
  publication-title: Plant Physiol.
  doi: 10.1104/pp.110.170969
– volume: 12
  start-page: 1037
  year: 2019
  ident: ref70
  article-title: Nanoparticle-mediated genetic engineering of plants
  publication-title: Mol. Plant
  doi: 10.1016/j.molp.2019.06.010
– volume: 14
  start-page: 1251
  year: 2016
  ident: ref84
  article-title: Codon reassignment to facilitate genetic engineering and biocontainment in the chloroplast of Chlamydomonas reinhardtii
  publication-title: Plant Biotechnol. J.
  doi: 10.1111/pbi.12490
– volume: 14
  start-page: 2954
  ident: ref16
  article-title: Carbon nanotube-mediated DNA delivery without transgene integration in intact plants
  publication-title: Nat. Protoc.
  doi: 10.1038/s41596-019-0208-9
– volume: 179
  start-page: 794
  year: 2019
  ident: ref8
  article-title: Recent advances and current challenges in synthetic biology of the plastid genetic system and metabolism
  publication-title: Plant Physiol.
  doi: 10.1104/pp.18.00767
– volume: 1
  start-page: 1
  year: 2007
  ident: ref61
  article-title: Nanocarriers for systemic and mucosal vaccine delivery
  publication-title: Recent Pat. Drug Deliv. Formul.
  doi: 10.2174/187221107779814140
– volume: 45
  start-page: 1750
  year: 2016
  ident: ref72
  article-title: Biological and environmental interactions of emerging two-dimensional nanomaterials
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c5cs00914f
– volume: 103
  start-page: 351
  year: 2011
  ident: ref25
  article-title: Climate impacts on agriculture: implications for crop production
  publication-title: Agron. J.
  doi: 10.2134/agronj2010.0303
– volume: 31
  start-page: e1902575
  year: 2019
  ident: ref33
  article-title: Fast and efficient CRISPR/Cas9 genome editing in vivo enabled by bioreducible lipid and messenger RNA nanoparticles
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201902575
– volume: 2014
  start-page: 419382
  year: 2014
  ident: ref74
  article-title: The effect of DNA and sodium cholate dispersed single-walled carbon nanotubes on the green algae Chlamydomonas reinhardtii
  publication-title: J. Nanosci. Nanotechnol.
  doi: 10.1155/2014/419382
– volume: 30
  start-page: 2161
  year: 2018
  ident: ref21
  article-title: Evaluating the functional pore size of chloroplast TOC and TIC protein translocons: import of folded proteins
  publication-title: Plant Cell
  doi: 10.1105/tpc.18.00427
– volume: 135
  start-page: 110164
  year: 2021
  ident: ref34
  article-title: Techno-economic analysis for biomass supply chain: a state-of-the-art review
  publication-title: Renew. Sust. Energ. Rev.
  doi: 10.1016/j.rser.2020.110164
– volume: 14
  start-page: 456
  ident: ref17
  article-title: High aspect ratio nanomaterials enable delivery of functional genetic material without DNA integration in mature plants
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-019-0382-5
– volume: 20
  start-page: 2432
  year: 2020
  ident: ref79
  article-title: Monitoring plant health with near-infrared fluorescent H2O2 nanosensors
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.9b05159
– volume: 13
  start-page: 400
  year: 2014
  ident: ref23
  article-title: Plant nanobionics approach to augment photosynthesis and biochemical sensing
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3890
– volume: 14
  start-page: 7970
  year: 2020
  ident: ref26
  article-title: Nanoparticle charge and size control foliar delivery efficiency to plant cells and organelles
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b09178
– volume: 73
  start-page: 1121
  year: 2008
  ident: ref71
  article-title: Toxicity assessment of manufactured nanomaterials using the unicellular green alga Chlamydomonas reinhardtii
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2008.07.040
– volume: 100
  start-page: 5467
  year: 2016
  ident: ref73
  article-title: New tools for chloroplast genetic engineering allow the synthesis of human growth hormone in the green alga Chlamydomonas reinhardtii
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-016-7354-6
– volume: 54
  start-page: 34
  year: 2020
  ident: ref69
  article-title: Deep learning for plant genomics and crop improvement
  publication-title: Curr. Opin. Plant Biol.
  doi: 10.1016/j.pbi.2019.12.010
– year: 2018
  ident: ref41
  article-title: IPCC, 2018: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. Intergovernmental Panel on Climate Change
– volume: 273
  start-page: 33
  year: 2018
  ident: ref67
  article-title: DNA assembly standards: setting the low-level programming code for plant biotechnology
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2018.02.024
– year: 2020
  ident: ref5
  article-title: Integrated Strategies to Enable Lower-Cost Biofuels. Bioenergy Technologies Office
– volume: 2015
  start-page: 519513
  year: 2015
  ident: ref46
  article-title: Microalgae as sustainable renewable energy feedstock for biofuel production
  publication-title: Biomed. Res. Int.
  doi: 10.1155/2015/519513
– volume: 10
  start-page: 705
  year: 2019
  ident: ref63
  article-title: Dynamics of peroxisome homeostasis and its role in stress response and signaling in plants
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2019.00705
– volume: 3
  start-page: 729
  year: 1993
  ident: ref49
  article-title: Chloroplast transformation in plants: polyethylene glycol (PEG) treatment of protoplasts is an alternative to biolistic delivery systems
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.1993.00729.x
– volume: 11
  start-page: 11283
  ident: ref88
  article-title: Anionic cerium oxide nanoparticles protect plant photosynthesis from abiotic stress by scavenging reactive oxygen species
  doi: 10.1021/acsnano.7b05723
– year: 2018
  ident: ref10
  article-title: Agriculture improvement act of 2018
– volume: 115
  start-page: 1053
  year: 2015
  ident: ref3
  article-title: The cell biology of lignification in higher plants
  publication-title: Ann. Bot.
  doi: 10.1093/aob/mcv046
– volume: 25
  start-page: 15
  year: 2012
  ident: ref58
  article-title: Biological interactions of graphene-family nanomaterials: an interdisciplinary review
  publication-title: Chem. Res. Toxicol.
  doi: 10.1021/tx200339h
– volume: 76
  start-page: 453
  year: 2011
  ident: ref65
  article-title: Visual spectinomycin resistance (aadA(au)) gene for facile identification of transplastomic sectors in tobacco leaves
  publication-title: Plant Mol. Biol.
  doi: 10.1007/s11103-010-9724-2
– volume: 161
  start-page: 2183
  year: 2014
  ident: ref28
  article-title: Large-scale spatial variation in epilithic algal matrix cryptofaunal assemblages on the Great Barrier Reef
  publication-title: Mar. Biol.
  doi: 10.1007/s00227-014-2495-6
– volume: 12
  start-page: 1758
  year: 2016
  ident: ref54
  article-title: The protein corona of plant virus nanoparticles influences their dispersion properties, cellular interactions, and in vivo fates
  publication-title: Small
  doi: 10.1002/smll.201502458
– volume: 13
  start-page: 30
  year: 2017
  ident: ref1
  article-title: Recent achievements obtained by chloroplast transformation
  publication-title: Plant Methods
  doi: 10.1186/s13007-017-0179-1
– volume: 107
  start-page: 6204
  year: 2010
  ident: ref68
  article-title: Inducible gene expression from the plastid genome by a synthetic riboswitch
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0914423107
– volume: 26
  start-page: 863
  year: 2006
  ident: ref43
  article-title: Real-time monitoring of chloroplast gene expression by a luciferase reporter: evidence for nuclear regulation of chloroplast circadian period
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.26.3.863-870.2006
– volume: 171
  start-page: 2150
  year: 2016
  ident: ref66
  article-title: Mitochondrial and chloroplast stress responses are modulated in distinct touch and chemical inhibition phases
  publication-title: Plant Physiol.
  doi: 10.1104/pp.16.00273
– volume: 14
  start-page: e1802086
  year: 2018
  ident: ref31
  article-title: Rational design principles for the transport and subcellular distribution of nanomaterials into plant protoplasts
  publication-title: Small
  doi: 10.1002/smll.201802086
– volume: 3
  start-page: 169
  year: 1991
  ident: ref57
  article-title: Site-specific mutagenesis of the D1 subunit of photosystem II in wild-type Chlamydomonas
  publication-title: Plant Cell
  doi: 10.1105/tpc.3.2.169
– volume: 92
  start-page: 225
  year: 2007
  ident: ref6
  article-title: Chloroplast envelope membranes: a dynamic interface between plastids and the cytosol
  publication-title: Photosynth. Res.
  doi: 10.1007/s11120-007-9195-8
– volume: 64
  start-page: 717
  year: 2013
  ident: ref52
  article-title: Rubisco activity and regulation as targets for crop improvement
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/ers336
– volume: 10
  start-page: 136
  year: 2017
  ident: ref4
  article-title: Modeling the impact of high temperatures on microalgal viability and photosynthetic activity
  publication-title: Biotechnol. Biofuels
  doi: 10.1186/s13068-017-0823-z
– volume: 110
  start-page: 2826
  year: 2013
  ident: ref64
  article-title: Production of anti-cancer immunotoxins in algae: ribosome inactivating proteins as fusion partners
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.24966
– volume: 15
  start-page: 3064
  year: 2020
  ident: ref86
  article-title: Engineering DNA nanostructures for siRNA delivery in plants
  publication-title: Nat. Protoc.
  doi: 10.1038/s41596-020-0370-0
– volume: 105
  start-page: 14265
  year: 2008
  ident: ref39
  article-title: Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0805135105
– volume: 40
  start-page: 2782
  year: 2012
  ident: ref50
  article-title: An exogenous chloroplast genome for complex sequence manipulation in algae
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkr1008
– volume: 14
  start-page: 447
  year: 2019
  ident: ref30
  article-title: Chloroplast-selective gene delivery and expression in planta using chitosan-complexed single-walled carbon nanotube carriers
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-019-0375-4
– volume: 16
  start-page: 1161
  year: 2016
  ident: ref77
  article-title: Lipid exchange envelope penetration (LEEP) of nanoparticles for plant engineering: a universal localization mechanism
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b04467
– volume: 46
  start-page: 782
  year: 2013
  ident: ref80
  article-title: Biophysical responses upon the interaction of nanomaterials with cellular interfaces
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar300046u
– volume: 55
  start-page: 10470
  year: 2007
  ident: ref13
  article-title: Nutritional and toxicological importance of macro, trace, and ultra-trace elements in algae food products
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf0721500
– year: 2018
  ident: ref81
  article-title: Hydroxyl radical scavenging by cerium oxide nanoparticles improves Arabidopsis salinity tolerance by enhancing leaf mesophyll potassium retention
  publication-title: Environ. Sci. Nano.
  doi: 10.1039/C8EN00323H
– volume: 9
  start-page: 540
  year: 2011
  ident: ref14
  article-title: The chloroplast transformation toolbox: selectable markers and marker removal
  publication-title: Plant Biotechnol. J.
  doi: 10.1111/j.1467-7652.2011.00604.x
– volume: 110
  start-page: E623
  year: 2013
  ident: ref38
  article-title: Efficient metabolic pathway engineering in transgenic tobacco and tomato plastids with synthetic multigene operons
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1216898110
– volume: 293
  start-page: 18
  year: 2018
  ident: ref75
  article-title: An improved Escherichia coli screen for Rubisco identifies a protein-protein interface that can enhance CO2-fixation kinetics
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M117.810861
– volume: 66
  start-page: 211
  year: 2015
  ident: ref7
  article-title: Engineering plastid genomes: methods, tools, and applications in basic research and biotechnology
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev-arplant-050213-040212
– volume: 16
  start-page: 243
  year: 2021
  ident: ref15
  article-title: Nanotechnology to advance CRISPR-Cas genetic engineering of plants
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-021-00854-y
– volume: 359
  start-page: 343
  year: 2018
  ident: ref55
  article-title: Multiplexed gene synthesis in emulsions for exploring protein functional landscapes
  publication-title: Science
  doi: 10.1126/science.aao5167
– volume: 14
  start-page: 567
  year: 2016
  ident: ref45
  article-title: Systems biology and metabolic modelling unveils limitations to polyhydroxybutyrate accumulation in sugarcane leaves; lessons for C4 engineering
  publication-title: Plant Biotechnol. J.
  doi: 10.1111/pbi.12399
– volume: 67
  start-page: 58
  year: 2021
  ident: ref60
  article-title: Technoeconomic analysis for biofuels and bioproducts
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2021.01.002
– volume: 161
  start-page: 56
  year: 2015
  ident: ref35
  article-title: Meeting the global food demand of the future by engineering crop photosynthesis and yield potential
  publication-title: Cell
  doi: 10.1016/j.cell.2015.03.019
– volume: 208
  start-page: 142
  year: 2019
  ident: ref42
  article-title: Microalgae starch-based bioplastics: screening of ten strains and plasticization of unfractionated microalgae by extrusion
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2018.12.057
– volume: 13
  start-page: 5291
  year: 2019
  ident: ref2
  article-title: Nanoparticle size and coating chemistry control foliar uptake pathways, translocation, and leaf-to-rhizosphere transport in wheat
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b09781
– volume: 181
  start-page: 107496
  year: 2020
  ident: ref37
  article-title: A review of recent research on bio-inspired structures and materials for energy absorption applications
  publication-title: Compos. B. Eng.
  doi: 10.1016/j.compositesb.2019.107496
– volume: 18
  start-page: 175103
  year: 2007
  ident: ref78
  article-title: Biodistribution of radioactive Cd 125m Te/ZnS nanoparticles targeted with antibody to murine lung endothelium
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/18/17/175103
– volume: 14
  start-page: 517
  year: 2019
  ident: ref36
  article-title: Opportunities and challenges for nanotechnology in the agri-tech revolution
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-019-0461-7
– volume: 11
  start-page: 6177
  year: 2020
  ident: ref11
  article-title: Building genomes to understand biology
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-19753-2
– volume: 1763
  start-page: 578
  year: 2006
  ident: ref47
  article-title: Between a rock and a hard place: trace element nutrition in Chlamydomonas
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbamcr.2006.04.007
– volume: 8
  start-page: 1454
  ident: ref82
  article-title: In vivo assembly in Escherichia coli of transformation vectors for plastid genome engineering
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2017.01454
– volume: 488
  start-page: 329
  year: 2012
  ident: ref22
  article-title: Exploiting diversity and synthetic biology for the production of algal biofuels
  publication-title: Nature
  doi: 10.1038/nature11479
– volume: 20
  start-page: 398
  year: 2019
  ident: ref62
  article-title: Current trends in protein engineering: updates and progress
  publication-title: Curr. Protein Pept. Sci.
  doi: 10.2174/1389203720666181119120120
SSID ssj0000500997
Score 2.4309113
SecondaryResourceType review_article
Snippet Photosynthetic organisms are sources of sustainable foods, renewable biofuels, novel biopharmaceuticals, and next-generation biomaterials essential for modern...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 691295
SubjectTerms chloroplast bioengineering
nano-enabled agriculture
nanosensors
plant nanobiotechnology
Plant Science
targeted delivery
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV27TsMwFLUQYmBBPEV4KUgsDKH1I3YytoWqQoKJSt0i39hWK1VJBenA33OdpFWzwMIWJY7snJv4nmM7x4Q8CMXBUcEioDqOBDAbaeA6AtdnOlVOgPbjkG_vcjIVr7N4trPVl18T1tgDN8D1GOVW9aUWTgjhVJKCwi7VoLZiQhtV976Y83bEVOPq7amPauYlUYWlPbdaenduRp9kijku7uSh2q6_wzG7KyR3Us74mBy1XDEcNG08IXu2OCUHwxL53PcZecaOsay2I-PhoHUHt18hEtFwNEclXq6QHFfhcNEp2Ez71_-2nZPp-OVjNInaPRGiHLlKFSU5NVIngtkU4VRgHcRa5RDnFFDnIhuglgI3SkurqZYOLCSOMiVzFCsK-AXZL8rCXpIwttwaqbhxJhU26ad4pIzhcZ5ozG0QkN4GoSxvDcP9vhXLDIWDxzTzmGYe06zBNCCP2ztWjVnGL2WHHvRtOW9zXZ_A4Gdt8LO_gh-Q-03IMvws_FyHLmy5xpqQySVcINsLiOrEslNj90qxmNcG28hKkeXxq_9o4jU59E_th4OZvCH71efa3iKPqeCufmV_AGzG8mM
  priority: 102
  providerName: Directory of Open Access Journals
Title Nanotechnology Approaches for Chloroplast Biotechnology Advancements
URI https://www.proquest.com/docview/2560834644
https://pubmed.ncbi.nlm.nih.gov/PMC8351593
https://doaj.org/article/213e706a4f444f789b7128d71324ad72
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9wwEB3atJRcQj_JNm1woZcenKw-LNmHUrJp01BIT13Ym9FYUhNY7O3Ggebfd8Z2tjGEHHIxxpYQevJ43oykJ4CP2iqMQssUhctSjTKkDpVLMU6lK2zU6DgPefbTnM71j0W2-L89egDw8s7Qjs-Tmq-XB3__XH8hg__MESf528O4WrLwthQHpiD3lT2GJ-SXLJvp2UD2e6VvpkO2n6u8s-I2PFMseaVZJPKWm-rU_EcUdLyA8pZHOnkOOwOVTI76sX8Bj0L9Ep7OGqJ716_gK_03m3aTOE-OBvHwcJkQT02OzylQb1bEndtkdjEq2K8K6La-vYb5ybdfx6fpcGRCWhGVadO8Et64XMtQENoWQ8TM2QqzSiCFwUQWRBCovHUmOOFMxIB5FNKaimIZi-oNbNVNHXYhyYIK3ljloy90yKcF3VnvVVbljlwfTuDwBqGyGvTE-ViLZUlxBcNbMrwlw1v28E7g06bGqtfSuKfsjEHflGMV7O5Bs_5dDkZVSqGCnRqno9Y62rxAS-7WU9wttfNWTuDDzZCVZDU8FeLq0FxRS0T0cqWJDE7AjsZy1OL4TX1x3ulvE2klEqjePrjmHmxzVzlFLM072GrXV-E9cZsW97ucAF2_L8R-9_n-A8K1_f4
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanotechnology+Approaches+for+Chloroplast+Biotechnology+Advancements&rft.jtitle=Frontiers+in+plant+science&rft.au=Newkirk%2C+Gregory+M.&rft.au=de+Allende%2C+Pedro&rft.au=Jinkerson%2C+Robert+E.&rft.au=Giraldo%2C+Juan+Pablo&rft.date=2021-07-26&rft.pub=Frontiers+Media+S.A&rft.eissn=1664-462X&rft.volume=12&rft_id=info:doi/10.3389%2Ffpls.2021.691295&rft_id=info%3Apmid%2F34381480&rft.externalDocID=PMC8351593
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-462X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-462X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-462X&client=summon