Application of Nanomaterials and Related Drug Delivery Systems in Autophagy
Autophagy, a lysosomal self-degradation pathway, plays a critical role in cellular homeostasis by degrading endogenous damaged organelles and protein aggregates into recyclable biological molecules. Additionally, it detoxifies extracellular toxic substances, including drugs and toxic materials, ther...
Saved in:
Published in | Molecules (Basel, Switzerland) Vol. 29; no. 15; p. 3513 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
01.08.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1420-3049 1420-3049 |
DOI | 10.3390/molecules29153513 |
Cover
Abstract | Autophagy, a lysosomal self-degradation pathway, plays a critical role in cellular homeostasis by degrading endogenous damaged organelles and protein aggregates into recyclable biological molecules. Additionally, it detoxifies extracellular toxic substances, including drugs and toxic materials, thereby preserving the stability of the intracellular environment. The swift progression of nanotechnology has led to an increased focus on understanding the relationship between nanomaterials and autophagy. The effects of various nanomaterials and nano drug delivery systems on autophagy and their biological functions have been preliminarily assessed, revealing that modulation of intracellular autophagy levels by these agents represents a novel cellular response mechanism. Notably, autophagy regulation based on nanomaterials or nano drug delivery systems for a range of diseases is currently the subject of extensive research. Given the close association between autophagy levels and tumors, the regulation of autophagy has emerged as a highly active area of research in the development of innovative tumor therapies. This review synthesizes the current understanding of the application of nanomaterials or nano drug delivery systems on autophagy and their potential biological functions, suggesting a new avenue for nanomaterial-based autophagy regulation. |
---|---|
AbstractList | Autophagy, a lysosomal self-degradation pathway, plays a critical role in cellular homeostasis by degrading endogenous damaged organelles and protein aggregates into recyclable biological molecules. Additionally, it detoxifies extracellular toxic substances, including drugs and toxic materials, thereby preserving the stability of the intracellular environment. The swift progression of nanotechnology has led to an increased focus on understanding the relationship between nanomaterials and autophagy. The effects of various nanomaterials and nano drug delivery systems on autophagy and their biological functions have been preliminarily assessed, revealing that modulation of intracellular autophagy levels by these agents represents a novel cellular response mechanism. Notably, autophagy regulation based on nanomaterials or nano drug delivery systems for a range of diseases is currently the subject of extensive research. Given the close association between autophagy levels and tumors, the regulation of autophagy has emerged as a highly active area of research in the development of innovative tumor therapies. This review synthesizes the current understanding of the application of nanomaterials or nano drug delivery systems on autophagy and their potential biological functions, suggesting a new avenue for nanomaterial-based autophagy regulation. Autophagy, a lysosomal self-degradation pathway, plays a critical role in cellular homeostasis by degrading endogenous damaged organelles and protein aggregates into recyclable biological molecules. Additionally, it detoxifies extracellular toxic substances, including drugs and toxic materials, thereby preserving the stability of the intracellular environment. The swift progression of nanotechnology has led to an increased focus on understanding the relationship between nanomaterials and autophagy. The effects of various nanomaterials and nano drug delivery systems on autophagy and their biological functions have been preliminarily assessed, revealing that modulation of intracellular autophagy levels by these agents represents a novel cellular response mechanism. Notably, autophagy regulation based on nanomaterials or nano drug delivery systems for a range of diseases is currently the subject of extensive research. Given the close association between autophagy levels and tumors, the regulation of autophagy has emerged as a highly active area of research in the development of innovative tumor therapies. This review synthesizes the current understanding of the application of nanomaterials or nano drug delivery systems on autophagy and their potential biological functions, suggesting a new avenue for nanomaterial-based autophagy regulation.Autophagy, a lysosomal self-degradation pathway, plays a critical role in cellular homeostasis by degrading endogenous damaged organelles and protein aggregates into recyclable biological molecules. Additionally, it detoxifies extracellular toxic substances, including drugs and toxic materials, thereby preserving the stability of the intracellular environment. The swift progression of nanotechnology has led to an increased focus on understanding the relationship between nanomaterials and autophagy. The effects of various nanomaterials and nano drug delivery systems on autophagy and their biological functions have been preliminarily assessed, revealing that modulation of intracellular autophagy levels by these agents represents a novel cellular response mechanism. Notably, autophagy regulation based on nanomaterials or nano drug delivery systems for a range of diseases is currently the subject of extensive research. Given the close association between autophagy levels and tumors, the regulation of autophagy has emerged as a highly active area of research in the development of innovative tumor therapies. This review synthesizes the current understanding of the application of nanomaterials or nano drug delivery systems on autophagy and their potential biological functions, suggesting a new avenue for nanomaterial-based autophagy regulation. |
Audience | Academic |
Author | Chen, Haiyan Li, Qiangwei Zhang, Zihan Zhang, Yifan Liao, Kai Li, Man Mei, Ling |
Author_xml | – sequence: 1 givenname: Ling orcidid: 0000-0002-2762-2235 surname: Mei fullname: Mei, Ling – sequence: 2 givenname: Kai surname: Liao fullname: Liao, Kai – sequence: 3 givenname: Haiyan surname: Chen fullname: Chen, Haiyan – sequence: 4 givenname: Yifan surname: Zhang fullname: Zhang, Yifan – sequence: 5 givenname: Zihan surname: Zhang fullname: Zhang, Zihan – sequence: 6 givenname: Qiangwei surname: Li fullname: Li, Qiangwei – sequence: 7 givenname: Man surname: Li fullname: Li, Man |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39124918$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kt9vFCEQx4mpse3pH-CL2cQXX67CstzC46W1tbHRxB_PZGCHkwu7rLBrcv-9XK9WrcbwAEw-3-8wzJySoyEOSMhzRs84V_R1HwPaOWCuFRNcMP6InLCmpktOG3X02_mYnOa8pbRmDRNPyDFXrG4Ukyfk3Xocg7cw-ThU0VXvYYg9TJg8hFzB0FUfMZR7V12keVNdYPDfMe2qT7s8YZ8rP1TreYrjV9jsnpLHrqjw2d2-IF8u33w-f7u8-XB1fb6-WVpBxbRssW6Rq5aCUC1Y1hppTO2YQkOxY91KOmWFMpw3AEqCMUaqWlLrmhUD4HxBrg--XYStHpPvIe10BK9vAzFtNKTJ24C6pYwbEK7uWNtQ7gDYyiqJClytFHbF69XBa0zx24x50r3PFkOAAeOcNaflq-SqKeIFefkA3cY5DaXSPUVVaYlsf1EbKPn94OKUwO5N9VrSRrBWiKZQZ_-gyuqw97Z02fkS_0Pw4i75bHrs7qv-2ckCsANgU8w5obtHGNX7adF_TUvRtA801k-3o1Be48N_lD8A9tnEag |
CitedBy_id | crossref_primary_10_3390_pharmaceutics16121549 crossref_primary_10_3390_toxics13030178 |
Cites_doi | 10.1186/s12989-017-0194-4 10.7150/thno.80687 10.1016/j.biomaterials.2019.02.023 10.1080/10611860410001670026 10.14336/AD.2018.1020 10.1016/j.ejpb.2015.03.018 10.1016/j.ccr.2022.214438 10.1126/science.290.5497.1717 10.1021/acssensors.1c00191 10.4161/onci.28131 10.1016/j.gendis.2021.10.010 10.1016/j.ejmech.2018.08.034 10.1021/mp5000423 10.1039/D0CS00913J 10.1073/pnas.1703921114 10.1016/j.archoralbio.2019.05.011 10.1002/anbr.202100109 10.1016/j.biomaterials.2022.121651 10.1016/j.toxlet.2013.06.208 10.1016/j.bbadis.2021.166326 10.1016/j.cbi.2018.09.015 10.4161/auto.7.9.16451 10.1080/17435390.2018.1466932 10.1080/15548627.2018.1458174 10.1002/adma.201405926 10.1021/ja5112628 10.1039/C8TB02390E 10.3892/ol.2021.12639 10.1016/j.biomaterials.2011.03.006 10.1016/j.addr.2006.09.011 10.1080/15548627.2019.1687210 10.1080/2162402X.2018.1466766 10.2147/IJN.S146398 10.1002/adma.202002160 10.1039/C5NR04200C 10.1039/D2TB00575A 10.1007/978-981-15-0602-4_5 10.1021/nn202155y 10.7150/thno.49577 10.1016/j.jconrel.2014.12.005 10.3390/genes14020474 10.1021/acsanm.3c04532 10.4161/auto.5.8.9842 10.1016/j.tiv.2014.07.010 10.2174/13892002113149990008 10.1016/j.lfs.2024.122653 10.1126/science.1193497 10.1021/acs.chemmater.7b01982 10.1080/15548627.2018.1509171 10.1016/j.saa.2020.118428 10.1016/j.apsb.2019.03.006 10.1039/C8NR02798F 10.1007/s10565-016-9352-y 10.4161/auto.18777 10.1016/j.tox.2017.01.019 10.1038/cddis.2014.175 10.1002/adhm.201300294 10.2147/IJN.S229576 10.1021/acs.chemrev.3c00705 10.1021/acsami.7b16522 10.1016/j.nano.2018.09.003 10.1186/s12943-019-0944-z 10.1002/adfm.202108571 10.4161/auto.5.2.7640 10.1016/j.jconrel.2020.02.042 10.1038/s41551-022-00904-3 10.1038/ni.1720 10.1002/adbi.201800259 10.1038/cdd.2012.81 10.1039/C7TX00153C 10.1039/C7CC09397G 10.1039/C6NR07255K 10.1016/j.apsb.2020.12.001 10.1166/jbn.2019.2684 10.1111/bjd.17333 10.2217/nnm-2022-0065 10.1002/smll.201700996 10.1016/j.cell.2011.10.026 10.3390/cells11233761 10.1021/acsami.7b08223 10.1093/burnst/tkae009 10.1021/acsomega.7b00045 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 DOA |
DOI | 10.3390/molecules29153513 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1420-3049 |
ExternalDocumentID | oai_doaj_org_article_7013ba5f2d17403faa16c98e9af299ed A804517554 39124918 10_3390_molecules29153513 |
Genre | Journal Article Review |
GroupedDBID | --- 0R~ 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ A8Z AADQD AAFWJ AAHBH AAYXX ABDBF ABUWG ACGFO ACIWK ACPRK ACUHS AEGXH AENEX AFKRA AFPKN AFRAH AFZYC AIAGR ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DIK DU5 E3Z EBD EMOBN ESX FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE HZ~ I09 IAO IHR ITC KQ8 LK8 M1P MODMG O-U O9- OK1 P2P PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RPM SV3 TR2 TUS UKHRP ~8M 3V. ABJCF BBNVY BHPHI CGR CUY CVF ECM EIF HCIFZ KB. M7P M~E NPM PDBOC PMFND 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 ESTFP PUEGO |
ID | FETCH-LOGICAL-c505t-7e27e3970a597ac17b8bb2f19eb0ed1d68f9c59b334aa98abbb89280cf461aa33 |
IEDL.DBID | DOA |
ISSN | 1420-3049 |
IngestDate | Wed Aug 27 01:27:47 EDT 2025 Mon Sep 08 04:59:39 EDT 2025 Sat Jul 26 02:47:05 EDT 2025 Tue Jun 17 22:04:28 EDT 2025 Tue Jun 10 21:01:37 EDT 2025 Wed Feb 19 02:06:58 EST 2025 Tue Jul 01 03:59:57 EDT 2025 Thu Apr 24 22:49:59 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Keywords | nanoparticle tumor targeted nanomaterials autophagy drug delivery |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c505t-7e27e3970a597ac17b8bb2f19eb0ed1d68f9c59b334aa98abbb89280cf461aa33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-2762-2235 |
OpenAccessLink | https://doaj.org/article/7013ba5f2d17403faa16c98e9af299ed |
PMID | 39124918 |
PQID | 3090933987 |
PQPubID | 2032355 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_7013ba5f2d17403faa16c98e9af299ed proquest_miscellaneous_3091286440 proquest_journals_3090933987 gale_infotracmisc_A804517554 gale_infotracacademiconefile_A804517554 pubmed_primary_39124918 crossref_primary_10_3390_molecules29153513 crossref_citationtrail_10_3390_molecules29153513 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-08-01 |
PublicationDateYYYYMMDD | 2024-08-01 |
PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Molecules (Basel, Switzerland) |
PublicationTitleAlternate | Molecules |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Shekhar (ref_12) 2022; 17 Tu (ref_83) 2023; 6 Zhou (ref_33) 2017; 6 Raza (ref_10) 2018; 157 Marquardt (ref_43) 2017; 379 English (ref_77) 2009; 10 Zhang (ref_8) 2023; 10 Zhou (ref_63) 2019; 203 Liu (ref_44) 2018; 12 Wu (ref_47) 2024; 12 He (ref_50) 2019; 15 (ref_15) 2015; 93 Wang (ref_68) 2020; 321 ref_18 Das (ref_25) 2021; 6 Hettich (ref_74) 2014; 5 Jin (ref_54) 2016; 8 Jiang (ref_76) 2019; 18 ref_59 Wang (ref_52) 2018; 14 Mittal (ref_40) 2017; 14 Calvet (ref_80) 2014; 3 Rabinowitz (ref_2) 2010; 330 Jiang (ref_17) 2022; 10 Beach (ref_60) 2024; 124 Zhang (ref_56) 2009; 5 Ma (ref_48) 2011; 5 Lou (ref_13) 2021; 11 Wang (ref_65) 2020; 32 Farokhzad (ref_24) 2006; 58 Hu (ref_30) 2017; 29 Huang (ref_41) 2009; 5 Li (ref_57) 2014; 3 Diwan (ref_75) 2003; 11 Zhou (ref_38) 2018; 6 (ref_14) 2019; 103 Mizushima (ref_1) 2011; 147 ref_29 Lyu (ref_21) 2022; 32 Tian (ref_16) 2019; 10 Comenge (ref_61) 2013; 14 Wu (ref_37) 2018; 10 Zhang (ref_58) 2021; 21 Wang (ref_64) 2015; 27 ref_78 Verykiou (ref_81) 2019; 180 Shi (ref_11) 2020; 10 Xu (ref_62) 2019; 1206 Yang (ref_5) 2017; 9 Wu (ref_34) 2011; 32 Wei (ref_49) 2019; 15 Lin (ref_3) 2017; 13 You (ref_6) 2022; 26 Li (ref_23) 2012; 8 Acar (ref_31) 2023; 22 Mohammadinejad (ref_32) 2019; 15 Wan (ref_53) 2013; 221 Fageria (ref_19) 2017; 2 Zhang (ref_42) 2016; 32 Wang (ref_67) 2015; 199 Mgrditchian (ref_84) 2017; 114 Klionsky (ref_7) 2000; 290 Shi (ref_55) 2018; 54 ref_82 Chen (ref_73) 2018; 10 Hilton (ref_79) 2018; 7 Xu (ref_51) 2015; 7 Chen (ref_20) 2015; 137 Choi (ref_22) 2011; 7 Ouyuan (ref_26) 2022; 458 Li (ref_46) 2024; 347 Chen (ref_28) 2022; 6 Mei (ref_66) 2019; 9 Yang (ref_72) 2023; 13 Jeong (ref_45) 2017; 12 Qu (ref_69) 2020; 16 Ding (ref_27) 2020; 49 ref_9 Park (ref_35) 2014; 28 He (ref_70) 2020; 15 Zhang (ref_39) 2018; 296 ref_4 Ashrafi (ref_36) 2013; 20 Saiyin (ref_71) 2014; 11 |
References_xml | – volume: 14 start-page: 15 year: 2017 ident: ref_40 article-title: Impaired Lysosomal Activity Mediated Autophagic Flux Disruption by Graphite Carbon Nanofibers Induce Apoptosis in Human Lung Epithelial Cells through Oxidative Stress and Energetic Impairment publication-title: Part. Fibre Toxicol. doi: 10.1186/s12989-017-0194-4 – volume: 13 start-page: 295 year: 2023 ident: ref_72 article-title: Multifunctional Metal-Organic Framework (MOF)-Based Nanoplatforms for Cancer Therapy: From Single to Combination Therapy publication-title: Theranostics doi: 10.7150/thno.80687 – volume: 203 start-page: 63 year: 2019 ident: ref_63 article-title: Melanin-like Nanoparticles Decorated with an Autophagy-Inducing Peptide for Efficient Targeted Photothermal Therapy publication-title: Biomaterials doi: 10.1016/j.biomaterials.2019.02.023 – volume: 11 start-page: 495 year: 2003 ident: ref_75 article-title: Biodegradable Nanoparticle Mediated Antigen Delivery to Human Cord Blood Derived Dendritic Cells for Induction of Primary T Cell Responses publication-title: J. Drug Target. doi: 10.1080/10611860410001670026 – volume: 10 start-page: 1302 year: 2019 ident: ref_16 article-title: Interplay between Exosomes and Autophagy in Cardiovascular Diseases: Novel Promising Target for Diagnostic and Therapeutic Application publication-title: Aging Dis. doi: 10.14336/AD.2018.1020 – volume: 22 start-page: 520 year: 2023 ident: ref_31 article-title: The bridge between cell survival and cell death: Reactive oxygen species-mediated cellular stress publication-title: EXCLI J. – volume: 93 start-page: 52 year: 2015 ident: ref_15 article-title: Advanced Targeted Therapies in Cancer: Drug Nanocarriers, the Future of Chemotherapy publication-title: Eur. J. Pharm. Biopharm. doi: 10.1016/j.ejpb.2015.03.018 – volume: 458 start-page: 214438 year: 2022 ident: ref_26 article-title: Biomarker-activatable probes based on smart AIEgens for fluorescence and optoacoustic publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2022.214438 – volume: 290 start-page: 1717 year: 2000 ident: ref_7 article-title: Autophagy as a Regulated Pathway of Cellular Degradation publication-title: Science doi: 10.1126/science.290.5497.1717 – volume: 26 start-page: 101386 year: 2022 ident: ref_6 article-title: Targeting and promoting atherosclerosis regression using hybrid membrane coated nanomaterials via alleviated inflammation and enhanced autophagy publication-title: Appl. Mater. – volume: 6 start-page: 2252 year: 2021 ident: ref_25 article-title: Spatio-Temporal Autophagy Tracking with a Cell-Permeable, Water-Soluble, Peptide-Based, Autophagic Vesicle-Targeted Sensor publication-title: ACS Sens. doi: 10.1021/acssensors.1c00191 – volume: 3 start-page: e28131 year: 2014 ident: ref_80 article-title: Electrochemotherapy with Bleomycin Induces Hallmarks of Immunogenic Cell Death in Murine Colon Cancer Cells publication-title: Oncoimmunology doi: 10.4161/onci.28131 – volume: 10 start-page: 447 year: 2023 ident: ref_8 article-title: The Role of Autophagy in Regulating Metabolism in the Tumor Microenvironment publication-title: Genes Dis. doi: 10.1016/j.gendis.2021.10.010 – volume: 157 start-page: 705 year: 2018 ident: ref_10 article-title: Redox-Responsive Nano-Carriers as Tumor-Targeted Drug Delivery Systems publication-title: Eur. J. Med. Chem. doi: 10.1016/j.ejmech.2018.08.034 – volume: 11 start-page: 1662 year: 2014 ident: ref_71 article-title: Sequential Release of Autophagy Inhibitor and Chemotherapeutic Drug with Polymeric Delivery System for Oral Squamous Cell Carcinoma Therapy publication-title: Mol. Pharm. doi: 10.1021/mp5000423 – volume: 49 start-page: 8354 year: 2020 ident: ref_27 article-title: The Fluorescence Toolbox for Visualizing Autophagy publication-title: Chem. Soc. Rev. doi: 10.1039/D0CS00913J – volume: 114 start-page: E9271 year: 2017 ident: ref_84 article-title: Targeting autophagy inhibits melanoma growth by enhancing NK cells infiltration in a CCL5-dependent manner publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1703921114 – volume: 103 start-page: 47 year: 2019 ident: ref_14 article-title: Liposome-Coated Nano Doxorubicin Induces Apoptosis on Oral Squamous Cell Carcinoma CAL-27 Cells publication-title: Arch. Oral Biol. doi: 10.1016/j.archoralbio.2019.05.011 – ident: ref_59 doi: 10.1002/anbr.202100109 – ident: ref_82 doi: 10.1016/j.biomaterials.2022.121651 – volume: 221 start-page: 118 year: 2013 ident: ref_53 article-title: Single-Walled Carbon Nanotubes and Graphene Oxides Induce Autophagosome Accumulation and Lysosome Impairment in Primarily Cultured Murine Peritoneal Macrophages publication-title: Toxicol. Lett. doi: 10.1016/j.toxlet.2013.06.208 – ident: ref_29 doi: 10.1016/j.bbadis.2021.166326 – volume: 296 start-page: 124 year: 2018 ident: ref_39 article-title: Titanium Dioxide Nanoparticles Induce Proteostasis Disruption and Autophagy in Human Trophoblast Cells publication-title: Chem. Biol. Interact. doi: 10.1016/j.cbi.2018.09.015 – volume: 7 start-page: 1052 year: 2011 ident: ref_22 article-title: A Monitoring Method for Atg4 Activation in Living Cells Using Peptide-Conjugated Polymeric Nanoparticles publication-title: Autophagy doi: 10.4161/auto.7.9.16451 – volume: 12 start-page: 586 year: 2018 ident: ref_44 article-title: The Protective Role of Autophagy in Nephrotoxicity Induced by Bismuth Nanoparticles through AMPK/MTOR Pathway publication-title: Nanotoxicology doi: 10.1080/17435390.2018.1466932 – volume: 14 start-page: 1185 year: 2018 ident: ref_52 article-title: Silica Nanoparticles Induce Autophagosome Accumulation via Activation of the EIF2AK3 and ATF6 UPR Pathways in Hepatocytes publication-title: Autophagy doi: 10.1080/15548627.2018.1458174 – volume: 27 start-page: 2627 year: 2015 ident: ref_64 article-title: Self-Assembled Autophagy-Inducing Polymeric Nanoparticles for Breast Cancer Interference In-Vivo publication-title: Adv. Mater. doi: 10.1002/adma.201405926 – volume: 137 start-page: 1903 year: 2015 ident: ref_20 article-title: Single Gold@Silver Nanoprobes for Real-Time Tracing the Entire Autophagy Process at Single-Cell Level publication-title: J. Am. Chem. Soc. doi: 10.1021/ja5112628 – volume: 6 start-page: 8127 year: 2018 ident: ref_38 article-title: Gold Nanoparticles Impair Autophagy Flux through Shape-Dependent Endocytosis and Lysosomal Dysfunction publication-title: J. Mater. Chem. B doi: 10.1039/C8TB02390E – volume: 21 start-page: 378 year: 2021 ident: ref_58 article-title: Autophagy Is a Double-edged Sword in the Therapy of Colorectal Cancer publication-title: Oncol. Lett. doi: 10.3892/ol.2021.12639 – volume: 32 start-page: 4565 year: 2011 ident: ref_34 article-title: The Selective Growth Inhibition of Oral Cancer by Iron Core-Gold Shell Nanoparticles through Mitochondria-Mediated Autophagy publication-title: Biomaterials doi: 10.1016/j.biomaterials.2011.03.006 – volume: 58 start-page: 1456 year: 2006 ident: ref_24 article-title: Nanomedicine: Developing Smarter Therapeutic and Diagnostic Modalities publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2006.09.011 – volume: 16 start-page: 1413 year: 2020 ident: ref_69 article-title: Manipulation of Mitophagy by “All-in-One” Nanosensitizer Augments Sonodynamic Glioma Therapy publication-title: Autophagy doi: 10.1080/15548627.2019.1687210 – volume: 7 start-page: e1466766 year: 2018 ident: ref_79 article-title: Autophagosome-Based Strategy to Monitor Apparent Tumor-Specific CD8 T Cells in Patients with Prostate Cancer publication-title: Oncoimmunology doi: 10.1080/2162402X.2018.1466766 – volume: 12 start-page: 8143 year: 2017 ident: ref_45 article-title: Autophagic Flux Induced by Graphene Oxide Has a Neuroprotective Effect against Human Prion Protein Fragments publication-title: Int. J. Nanomed. doi: 10.2147/IJN.S146398 – volume: 32 start-page: e2002160 year: 2020 ident: ref_65 article-title: On-Demand Autophagy Cascade Amplification Nanoparticles Precisely Enhanced Oxaliplatin-Induced Cancer Immunotherapy publication-title: Adv. Mater. doi: 10.1002/adma.202002160 – volume: 7 start-page: 16100 year: 2015 ident: ref_51 article-title: Silver Nanoparticles Impede Phorbol Myristate Acetate-Induced Monocyte–Macrophage Differentiation and Autophagy publication-title: Nanoscale doi: 10.1039/C5NR04200C – volume: 10 start-page: 4285 year: 2022 ident: ref_17 article-title: A Dual-Response Fluorescent Probe for Simultaneously Monitoring Polarity and ATP during Autophagy publication-title: J. Mater. Chem. B doi: 10.1039/D2TB00575A – volume: 1206 start-page: 109 year: 2019 ident: ref_62 article-title: Beclin 1, Bcl-2 and Autophagy publication-title: Adv. Exp. Med. Biol. doi: 10.1007/978-981-15-0602-4_5 – volume: 5 start-page: 8629 year: 2011 ident: ref_48 article-title: Gold Nanoparticles Induce Autophagosome Accumulation through Size-Dependent Nanoparticle Uptake and Lysosome Impairment publication-title: ACS Nano doi: 10.1021/nn202155y – volume: 10 start-page: 7921 year: 2020 ident: ref_11 article-title: The EPR Effect and beyond: Strategies to Improve Tumor Targeting and Cancer Nanomedicine Treatment Efficacy publication-title: Theranostics doi: 10.7150/thno.49577 – volume: 199 start-page: 17 year: 2015 ident: ref_67 article-title: A Novel Antitumour Strategy Using Bidirectional Autophagic Vesicles Accumulation via Initiative Induction and the Terminal Restraint of Autophagic Flux publication-title: J. Control. Release doi: 10.1016/j.jconrel.2014.12.005 – ident: ref_78 doi: 10.3390/genes14020474 – volume: 6 start-page: 23150 year: 2023 ident: ref_83 article-title: Antitumor and Immunotherapy Sensitizing Effects of a Thermosensitive Liposome by Increasing Autophagosome Accumulation publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.3c04532 – volume: 5 start-page: 1107 year: 2009 ident: ref_56 article-title: Autophagy-Mediated Chemosensitization in Cancer Cells by Fullerene C60 Nanocrystal publication-title: Autophagy doi: 10.4161/auto.5.8.9842 – volume: 28 start-page: 1402 year: 2014 ident: ref_35 article-title: Magnetic Iron Oxide Nanoparticles Induce Autophagy Preceding Apoptosis through Mitochondrial Damage and ER Stress in RAW264.7 Cells publication-title: Toxicol. Vitr. doi: 10.1016/j.tiv.2014.07.010 – volume: 14 start-page: 518 year: 2013 ident: ref_61 article-title: Engineered inorganic nanoparticles for drug delivery applications publication-title: Curr. Drug Metab. doi: 10.2174/13892002113149990008 – volume: 347 start-page: 122653 year: 2024 ident: ref_46 article-title: Molecular Mechanisms of Secretory Autophagy and Its Potential Role in Diseases publication-title: Life Sci. doi: 10.1016/j.lfs.2024.122653 – volume: 330 start-page: 1344 year: 2010 ident: ref_2 article-title: Autophagy and Metabolism publication-title: Science doi: 10.1126/science.1193497 – volume: 29 start-page: 7658 year: 2017 ident: ref_30 article-title: Bioinspired Design of Stereospecific d-Protein Nanomimics for High-Efficiency Autophagy Induction publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.7b01982 – volume: 15 start-page: 4 year: 2019 ident: ref_32 article-title: Necrotic, Apoptotic and Autophagic Cell Fates Triggered by Nanoparticles publication-title: Autophagy doi: 10.1080/15548627.2018.1509171 – ident: ref_18 doi: 10.1016/j.saa.2020.118428 – volume: 9 start-page: 1061 year: 2019 ident: ref_66 article-title: Actively Priming Autophagic Cell Death with Novel Transferrin Receptor-Targeted Nanomedicine for Synergistic Chemotherapy against Breast Cancer publication-title: Acta Pharm. Sin. B doi: 10.1016/j.apsb.2019.03.006 – volume: 10 start-page: 14637 year: 2018 ident: ref_37 article-title: Reduction of Graphene Oxide Alters Its Cyto-Compatibility towards Primary and Immortalized Macrophages publication-title: Nanoscale doi: 10.1039/C8NR02798F – volume: 32 start-page: 513 year: 2016 ident: ref_42 article-title: Nano-TiO2 Induces Autophagy to Protect against Cell Death through Antioxidative Mechanism in Podocytes publication-title: Cell Biol. Toxicol. doi: 10.1007/s10565-016-9352-y – volume: 8 start-page: 401 year: 2012 ident: ref_23 article-title: A High-Throughput FRET-Based Assay for Determination of Atg4 Activity publication-title: Autophagy doi: 10.4161/auto.18777 – volume: 379 start-page: 40 year: 2017 ident: ref_43 article-title: Autophagy Induced by Silica Nanoparticles Protects RAW264.7 Macrophages from Cell Death publication-title: Toxicology doi: 10.1016/j.tox.2017.01.019 – volume: 5 start-page: e1209 year: 2014 ident: ref_74 article-title: Metformin lowers Ser-129 phosphorylated α-synuclein levels via mTOR-dependent protein phosphatase 2A activation publication-title: Cell Death Dis. doi: 10.1038/cddis.2014.175 – volume: 3 start-page: 354 year: 2014 ident: ref_57 article-title: Autophagy-Sensitized Cytotoxicity of Quantum Dots in PC12 Cells publication-title: Adv. Healthc. Mater. doi: 10.1002/adhm.201300294 – volume: 15 start-page: 779 year: 2020 ident: ref_70 article-title: Pulmonary-Affinity Paclitaxel Polymer Micelles in Response to Biological Functions of Ambroxol Enhance Therapeutic Effect on Lung Cancer publication-title: Int. J. Nanomed. doi: 10.2147/IJN.S229576 – volume: 124 start-page: 5505 year: 2024 ident: ref_60 article-title: Polymeric Nanoparticles for Drug Delivery publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.3c00705 – volume: 10 start-page: 2328 year: 2018 ident: ref_73 article-title: MOF Nanoparticles with Encapsulated Autophagy Inhibitor in Controlled Drug Delivery System for Antitumor publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b16522 – volume: 15 start-page: 59 year: 2019 ident: ref_50 article-title: High-Content Analysis for Mitophagy Response to Nanoparticles: A Potential Sensitive Biomarker for Nanosafety Assessment publication-title: Nanomedicine doi: 10.1016/j.nano.2018.09.003 – volume: 18 start-page: 17 year: 2019 ident: ref_76 article-title: The Relationship between Autophagy and the Immune System and Its Applications for Tumor Immunotherapy publication-title: Mol. Cancer doi: 10.1186/s12943-019-0944-z – volume: 32 start-page: 2108571 year: 2022 ident: ref_21 article-title: Monitoring Autophagy with Atg4B Protease-Activated Aggregation-Induced Emission Probe publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202108571 – volume: 5 start-page: 273 year: 2009 ident: ref_41 article-title: To Die or to Live: The Dual Role of Poly(ADP-Ribose) Polymerase-1 in Autophagy and Necrosis under Oxidative Stress and DNA Damage publication-title: Autophagy doi: 10.4161/auto.5.2.7640 – volume: 321 start-page: 497 year: 2020 ident: ref_68 article-title: Autophagy Inhibition Changes the Disposition of Non-Viral Gene Carriers during Blood-Brain Barrier Penetration and Enhances TRAIL-Induced Apoptosis in Brain Metastatic Tumor publication-title: J. Control. Release doi: 10.1016/j.jconrel.2020.02.042 – volume: 6 start-page: 1045 year: 2022 ident: ref_28 article-title: A Nanoparticle Probe for the Imaging of Autophagic Flux in Live Mice via Magnetic Resonance and Near-Infrared Fluorescence publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-022-00904-3 – volume: 10 start-page: 480 year: 2009 ident: ref_77 article-title: Autophagy Enhances the Presentation of Endogenous Viral Antigens on MHC Class I Molecules during HSV-1 Infection publication-title: Nat. Immunol. doi: 10.1038/ni.1720 – ident: ref_4 doi: 10.1002/adbi.201800259 – volume: 20 start-page: 31 year: 2013 ident: ref_36 article-title: The Pathways of Mitophagy for Quality Control and Clearance of Mitochondria publication-title: Cell Death Differ. doi: 10.1038/cdd.2012.81 – volume: 6 start-page: 889 year: 2017 ident: ref_33 article-title: Nanoparticulate Titanium Dioxide-Inhibited Dendritic Development Is Involved in Apoptosis and Autophagy of Hippocampal Neurons in Offspring Mice publication-title: Toxicol. Res. doi: 10.1039/C7TX00153C – volume: 54 start-page: 1327 year: 2018 ident: ref_55 article-title: Effects of Tetrahedral DNA Nanostructures on Autophagy in Chondrocytes publication-title: Chem. Commun. doi: 10.1039/C7CC09397G – volume: 8 start-page: 18740 year: 2016 ident: ref_54 article-title: Autophagy-Mediated Clearance of Ubiquitinated Mutant Huntingtin by Graphene Oxide publication-title: Nanoscale doi: 10.1039/C6NR07255K – volume: 11 start-page: 2048 year: 2021 ident: ref_13 article-title: Pure Redox-Sensitive Paclitaxel–Maleimide Prodrug Nanoparticles: Endogenous Albumin-Induced Size Switching and Improved Antitumor Efficiency publication-title: Acta Pharm. Sin. B doi: 10.1016/j.apsb.2020.12.001 – volume: 15 start-page: 340 year: 2019 ident: ref_49 article-title: Graphene Oxide Nanocolloids Induce Autophagy-Lysosome Dysfunction in Mouse Embryonic Stem Cells publication-title: J. Biomed. Nanotechnol. doi: 10.1166/jbn.2019.2684 – volume: 180 start-page: 346 year: 2019 ident: ref_81 article-title: Harnessing Autophagy to Overcome Mitogen-activated Protein Kinase Kinase Inhibitor-induced Resistance in Metastatic Melanoma publication-title: Br. J. Dermatol. doi: 10.1111/bjd.17333 – volume: 17 start-page: 1213 year: 2022 ident: ref_12 article-title: Enhanced Permeability and Retention Effect-Focused Tumor-Targeted Nanomedicines: Latest Trends, Obstacles and Future Perspective publication-title: Nanomedicine doi: 10.2217/nnm-2022-0065 – volume: 13 start-page: 1700996 year: 2017 ident: ref_3 article-title: Recent Advances in Nanotechnology for Autophagy Detection publication-title: Small doi: 10.1002/smll.201700996 – volume: 147 start-page: 728 year: 2011 ident: ref_1 article-title: Autophagy: Renovation of Cells and Tissues publication-title: Cell doi: 10.1016/j.cell.2011.10.026 – ident: ref_9 doi: 10.3390/cells11233761 – volume: 9 start-page: 27512 year: 2017 ident: ref_5 article-title: Dual-Ratiometric Fluorescent Nanoprobe for Visualizing the Dynamic Process of pH and Superoxide Anion Changes in Autophagy and Apoptosis publication-title: ACS Appl. Mater. doi: 10.1021/acsami.7b08223 – volume: 12 start-page: tkae009 year: 2024 ident: ref_47 article-title: Immunomodulatory Poly(L-Lactic Acid) Nanofibrous Membranes Promote Diabetic Wound Healing by Inhibiting Inflammation, Oxidation and Bacterial Infection publication-title: Burns Trauma doi: 10.1093/burnst/tkae009 – volume: 2 start-page: 1489 year: 2017 ident: ref_19 article-title: Biosynthesized Protein-Capped Silver Nanoparticles Induce ROS-Dependent Proapoptotic Signals and Prosurvival Autophagy in Cancer Cells publication-title: ACS Omega doi: 10.1021/acsomega.7b00045 |
SSID | ssj0021415 |
Score | 2.4411142 |
SecondaryResourceType | review_article |
Snippet | Autophagy, a lysosomal self-degradation pathway, plays a critical role in cellular homeostasis by degrading endogenous damaged organelles and protein... |
SourceID | doaj proquest gale pubmed crossref |
SourceType | Open Website Aggregation Database Index Database Enrichment Source |
StartPage | 3513 |
SubjectTerms | Animals Autophagy Autophagy - drug effects Development and progression drug delivery Drug Delivery Systems Drug dosages Drugs Humans Nanomaterials nanoparticle Nanoparticles Nanostructures - chemistry Nanotechnology Neoplasms - drug therapy Neoplasms - metabolism Neoplasms - pathology Peptides Proteins Real time tumor targeted Tumors Vehicles |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Za9wwEB7S5KF9Kb3rNC0qFAoFE8vyIT2UsrkILV1KaSBvZiRLSyC1083uQ_59ZnyFbSCv1oEtzfGNNfoG4JNJya15U5B-SxtnnECIEk0c0sznha4zjXx3-Oe8OD3Lvp_n51swH-_CcFrlaBM7Q123jv-R76vEcPBNIfK3q38xV43i09WxhAYOpRXqrx3F2CPYIZOsSe53Do7nv35PIZgkf9WfbdJUyf7fvgStv04NaX4u1YZ36kj875vq_wBo54hOnsHTAUGKWb_lz2HLNy_g8eFYuO0l_JjdHUqLNggyoC3h0l7UBDa16DLgfC2OluuFOPKXnJtxIwbycnHRiNma-QZwcfMKzk6O_xyexkPNhNgRllnFpU9LTxgjQYoU0MnSamvTII23ia9lXehgXG6sUhmi0Wit1SbViQtZIRGVeg3bTdv4tyC09nkelMUyx8wn1iBBu2Clz6QOCnUEybhWlRsIxbmuxWVFgQUvb3VveSP4Mg256tk0Hup8wBswdWQi7O5Bu1xUg15VJUFYi3lIawqtEhUQZeEMSR8GcrS-juAzb1_F6kov53C4dUCfyMRX1UwzwU5JoCqCvY2etGlus3kUgGpQ8-vqTigj-Dg180hOXWt8u-76kCgS7EwieNMLzvRJynDtb6l3H578HTxJCUv1eYd7sL1arv17wkIr-2EQ8Fv-9gma priority: 102 providerName: ProQuest |
Title | Application of Nanomaterials and Related Drug Delivery Systems in Autophagy |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39124918 https://www.proquest.com/docview/3090933987 https://www.proquest.com/docview/3091286440 https://doaj.org/article/7013ba5f2d17403faa16c98e9af299ed |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB7a9NBeStKnm2RRoVAomEiWbUnHzWMbWhpKaWBvYmRLoZB6S7J7yL_PyPJuswkkl1x8sCUjjWY036DRNwCfTEFuzZua7Fu4vIwJhCjQ5KEofVXrttQY7w7_OKmPT8tv02p6o9RXzAlL9MBJcHuKMIrDKhQtYWcuA6KoG0O_x0A7qW_j7ssNXwZTQ6glyC-lM0xJQf3e31Rq1l8Whiy8EnLNC_Vk_Xe35FtAs3c4k014OSBFNk4j3IInvnsFzw-WBdpew_fx_8NnNguMNsoZ4c-kUgy7lvWZbr5lhxeLM3boz2MOxhUbSMrZn46NF5FXAM-u3sDp5Oj3wXE-1EbIG8Is81z5QnnCEhwpIsBGKKedK4Iw3nHfirbWwTSVcVKWiEajc06bQvMmlLVAlPItbHSzzr8HprWvqkBCVhWWnjuDBOGCE74UOkjUGfClrGwzEIfH-hXnlgKIKF57R7wZfFl1-ZdYM-5rvB8XYNUwEl73L0gN7KAG9iE1yOBzXD4bzZIG1-Bwu4CmGAmu7FhHIh1F4CmDnbWWtGjN-uelAtjBnC-tJA0zNHqtMvi4-hx7xhS1zs8WfRvy9QQveQbvkuKspiRNrPEt9IfHmOo2vCgIWaUsxB3YmF8s_C4ho7kbwVM1VfTUk68jeLZ_dPLz16g3jGsl0g9W |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBZhc0gvpe-6TVsVWgoFE8tP6RDKJpuw6SZLKQnk5o5saSmkdroPyv65_rbO2LLDNpBbrmt5saXRfN9YM_Mx9kGFCGtGpbi_hfZjSiAEAcq3YWySVJaxBKodPpum44v462VyucX-drUwlFbZ-cTGUZd1Qd_I96JAUfCNIfKX698-qUbR6WonoQFOWqHcb1qMucKOiVn_wRBusX8ywvX-GIbHR-eHY9-pDPgFov_Sz0yYGUTlAJBbQyEyLbUOrVBGB6YUZSqtKhKloygGUBK01lKFMihsnAoA-iCKELAdU4XrgG0fHE2_fe9DPoH42J6l4qMHe79ayVuzCBV6mkREG2jYiAbchob_CG8DfMeP2EPHWPmwNbHHbMtUT9jOYScU95RNhjeH4Ly2HB12jTy4NW0OVcmbjDtT8tF8NeMjc0W5IGvumqXznxUfrqi_AczWz9jFvczeczao6sq8ZFxKkyQ20pAlEJtAK0AqabUwsZA2AumxoJurvHANzElH4yrHQIamN781vR773N9y3XbvuGvwAS1AP5Aabzc_1PNZ7vZxniFl1pDYsMRQLogsgEgLhdYOFoHdlB77RMuXk3vAhyvAVTngK1KjrXwoqaFPhiTOY7sbI3HRis3LnQHkzq0s8ptN4LH3_WW6k1LlKlOvmjHIOZDmBh570RpO_0qRIq1xIV_d_efv2M74_Ow0Pz2ZTl6zByHyuDbncZcNlvOVeYM8bKnfOmPn7Md9769_WJZHdw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9RAFD6ULagv4t1o1REUQQibyXXmoci226V1dSlioW_xTDKzCDWpe0H2L_qrPJNMUtZC3_qazITMzLl8Z-bM-QDeyZDcmpYp6TdXfmwTCJGj9E0Y6yQVZSzQ3h3-OkuPz-LP58n5Dvzt7sLYtMrOJjaGuqwLu0c-jAJpg28KkYfGpUWcjiefLn_7lkHKnrR2dBroaBbK_abcmLvkMdWbPxTOLfdPxrT278NwcvT98Nh3jAN-QUhg5Wc6zDR56AAJZ2PBMyWUCg2XWgW65GUqjCwSqaIoRpQClVJChiIoTJxyRLs5Su5gNyMvGQ9g9-BodvqtD_84-cr2XJWGEQx_tfS3ehlKsjoJj7Y8Y0MgcN1N_Ad-Gyc4eQD3HXplo1bcHsKOrh7B3cOONO4xTEdXB-KsNoyMd02YuBVzhlXJmuw7XbLxYj1nY31h80I2zBVOZz8rNlrbWgc43zyBs1uZvacwqOpKPwcmhE4SEynMEox1oCQSrDSK65gLE6HwIOjmKi9cMXPLqXGRU1Bjpze_Nr0efOy7XLaVPG5qfGAXoG9oi3A3D-rFPHc6nWcEnxUmJiwprAsig8jTQpLkoyEnr0sPPtjly62poJ8r0N14oCHaolv5SNjiPhkBOg_2tlrSohXbrzsByJ2JWeZXCuHB2_617WnT5ipdr5s2hD8I8gYePGsFpx9SJC3vOBcvbv74G7hDepZ_OZlNX8K9kCBdm_64B4PVYq1fESRbqddO1hn8uG31-gdPm0uj |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+Nanomaterials+and+Related+Drug+Delivery+Systems+in+Autophagy&rft.jtitle=Molecules+%28Basel%2C+Switzerland%29&rft.au=Mei%2C+Ling&rft.au=Liao%2C+Kai&rft.au=Chen%2C+Haiyan&rft.au=Zhang%2C+Yifan&rft.date=2024-08-01&rft.pub=MDPI+AG&rft.issn=1420-3049&rft.eissn=1420-3049&rft.volume=29&rft.issue=15&rft_id=info:doi/10.3390%2Fmolecules29153513&rft.externalDocID=A804517554 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1420-3049&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1420-3049&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1420-3049&client=summon |