Application of Nanomaterials and Related Drug Delivery Systems in Autophagy

Autophagy, a lysosomal self-degradation pathway, plays a critical role in cellular homeostasis by degrading endogenous damaged organelles and protein aggregates into recyclable biological molecules. Additionally, it detoxifies extracellular toxic substances, including drugs and toxic materials, ther...

Full description

Saved in:
Bibliographic Details
Published inMolecules (Basel, Switzerland) Vol. 29; no. 15; p. 3513
Main Authors Mei, Ling, Liao, Kai, Chen, Haiyan, Zhang, Yifan, Zhang, Zihan, Li, Qiangwei, Li, Man
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.08.2024
Subjects
Online AccessGet full text
ISSN1420-3049
1420-3049
DOI10.3390/molecules29153513

Cover

Abstract Autophagy, a lysosomal self-degradation pathway, plays a critical role in cellular homeostasis by degrading endogenous damaged organelles and protein aggregates into recyclable biological molecules. Additionally, it detoxifies extracellular toxic substances, including drugs and toxic materials, thereby preserving the stability of the intracellular environment. The swift progression of nanotechnology has led to an increased focus on understanding the relationship between nanomaterials and autophagy. The effects of various nanomaterials and nano drug delivery systems on autophagy and their biological functions have been preliminarily assessed, revealing that modulation of intracellular autophagy levels by these agents represents a novel cellular response mechanism. Notably, autophagy regulation based on nanomaterials or nano drug delivery systems for a range of diseases is currently the subject of extensive research. Given the close association between autophagy levels and tumors, the regulation of autophagy has emerged as a highly active area of research in the development of innovative tumor therapies. This review synthesizes the current understanding of the application of nanomaterials or nano drug delivery systems on autophagy and their potential biological functions, suggesting a new avenue for nanomaterial-based autophagy regulation.
AbstractList Autophagy, a lysosomal self-degradation pathway, plays a critical role in cellular homeostasis by degrading endogenous damaged organelles and protein aggregates into recyclable biological molecules. Additionally, it detoxifies extracellular toxic substances, including drugs and toxic materials, thereby preserving the stability of the intracellular environment. The swift progression of nanotechnology has led to an increased focus on understanding the relationship between nanomaterials and autophagy. The effects of various nanomaterials and nano drug delivery systems on autophagy and their biological functions have been preliminarily assessed, revealing that modulation of intracellular autophagy levels by these agents represents a novel cellular response mechanism. Notably, autophagy regulation based on nanomaterials or nano drug delivery systems for a range of diseases is currently the subject of extensive research. Given the close association between autophagy levels and tumors, the regulation of autophagy has emerged as a highly active area of research in the development of innovative tumor therapies. This review synthesizes the current understanding of the application of nanomaterials or nano drug delivery systems on autophagy and their potential biological functions, suggesting a new avenue for nanomaterial-based autophagy regulation.
Autophagy, a lysosomal self-degradation pathway, plays a critical role in cellular homeostasis by degrading endogenous damaged organelles and protein aggregates into recyclable biological molecules. Additionally, it detoxifies extracellular toxic substances, including drugs and toxic materials, thereby preserving the stability of the intracellular environment. The swift progression of nanotechnology has led to an increased focus on understanding the relationship between nanomaterials and autophagy. The effects of various nanomaterials and nano drug delivery systems on autophagy and their biological functions have been preliminarily assessed, revealing that modulation of intracellular autophagy levels by these agents represents a novel cellular response mechanism. Notably, autophagy regulation based on nanomaterials or nano drug delivery systems for a range of diseases is currently the subject of extensive research. Given the close association between autophagy levels and tumors, the regulation of autophagy has emerged as a highly active area of research in the development of innovative tumor therapies. This review synthesizes the current understanding of the application of nanomaterials or nano drug delivery systems on autophagy and their potential biological functions, suggesting a new avenue for nanomaterial-based autophagy regulation.Autophagy, a lysosomal self-degradation pathway, plays a critical role in cellular homeostasis by degrading endogenous damaged organelles and protein aggregates into recyclable biological molecules. Additionally, it detoxifies extracellular toxic substances, including drugs and toxic materials, thereby preserving the stability of the intracellular environment. The swift progression of nanotechnology has led to an increased focus on understanding the relationship between nanomaterials and autophagy. The effects of various nanomaterials and nano drug delivery systems on autophagy and their biological functions have been preliminarily assessed, revealing that modulation of intracellular autophagy levels by these agents represents a novel cellular response mechanism. Notably, autophagy regulation based on nanomaterials or nano drug delivery systems for a range of diseases is currently the subject of extensive research. Given the close association between autophagy levels and tumors, the regulation of autophagy has emerged as a highly active area of research in the development of innovative tumor therapies. This review synthesizes the current understanding of the application of nanomaterials or nano drug delivery systems on autophagy and their potential biological functions, suggesting a new avenue for nanomaterial-based autophagy regulation.
Audience Academic
Author Chen, Haiyan
Li, Qiangwei
Zhang, Zihan
Zhang, Yifan
Liao, Kai
Li, Man
Mei, Ling
Author_xml – sequence: 1
  givenname: Ling
  orcidid: 0000-0002-2762-2235
  surname: Mei
  fullname: Mei, Ling
– sequence: 2
  givenname: Kai
  surname: Liao
  fullname: Liao, Kai
– sequence: 3
  givenname: Haiyan
  surname: Chen
  fullname: Chen, Haiyan
– sequence: 4
  givenname: Yifan
  surname: Zhang
  fullname: Zhang, Yifan
– sequence: 5
  givenname: Zihan
  surname: Zhang
  fullname: Zhang, Zihan
– sequence: 6
  givenname: Qiangwei
  surname: Li
  fullname: Li, Qiangwei
– sequence: 7
  givenname: Man
  surname: Li
  fullname: Li, Man
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39124918$$D View this record in MEDLINE/PubMed
BookMark eNp9kt9vFCEQx4mpse3pH-CL2cQXX67CstzC46W1tbHRxB_PZGCHkwu7rLBrcv-9XK9WrcbwAEw-3-8wzJySoyEOSMhzRs84V_R1HwPaOWCuFRNcMP6InLCmpktOG3X02_mYnOa8pbRmDRNPyDFXrG4Ukyfk3Xocg7cw-ThU0VXvYYg9TJg8hFzB0FUfMZR7V12keVNdYPDfMe2qT7s8YZ8rP1TreYrjV9jsnpLHrqjw2d2-IF8u33w-f7u8-XB1fb6-WVpBxbRssW6Rq5aCUC1Y1hppTO2YQkOxY91KOmWFMpw3AEqCMUaqWlLrmhUD4HxBrg--XYStHpPvIe10BK9vAzFtNKTJ24C6pYwbEK7uWNtQ7gDYyiqJClytFHbF69XBa0zx24x50r3PFkOAAeOcNaflq-SqKeIFefkA3cY5DaXSPUVVaYlsf1EbKPn94OKUwO5N9VrSRrBWiKZQZ_-gyuqw97Z02fkS_0Pw4i75bHrs7qv-2ckCsANgU8w5obtHGNX7adF_TUvRtA801k-3o1Be48N_lD8A9tnEag
CitedBy_id crossref_primary_10_3390_pharmaceutics16121549
crossref_primary_10_3390_toxics13030178
Cites_doi 10.1186/s12989-017-0194-4
10.7150/thno.80687
10.1016/j.biomaterials.2019.02.023
10.1080/10611860410001670026
10.14336/AD.2018.1020
10.1016/j.ejpb.2015.03.018
10.1016/j.ccr.2022.214438
10.1126/science.290.5497.1717
10.1021/acssensors.1c00191
10.4161/onci.28131
10.1016/j.gendis.2021.10.010
10.1016/j.ejmech.2018.08.034
10.1021/mp5000423
10.1039/D0CS00913J
10.1073/pnas.1703921114
10.1016/j.archoralbio.2019.05.011
10.1002/anbr.202100109
10.1016/j.biomaterials.2022.121651
10.1016/j.toxlet.2013.06.208
10.1016/j.bbadis.2021.166326
10.1016/j.cbi.2018.09.015
10.4161/auto.7.9.16451
10.1080/17435390.2018.1466932
10.1080/15548627.2018.1458174
10.1002/adma.201405926
10.1021/ja5112628
10.1039/C8TB02390E
10.3892/ol.2021.12639
10.1016/j.biomaterials.2011.03.006
10.1016/j.addr.2006.09.011
10.1080/15548627.2019.1687210
10.1080/2162402X.2018.1466766
10.2147/IJN.S146398
10.1002/adma.202002160
10.1039/C5NR04200C
10.1039/D2TB00575A
10.1007/978-981-15-0602-4_5
10.1021/nn202155y
10.7150/thno.49577
10.1016/j.jconrel.2014.12.005
10.3390/genes14020474
10.1021/acsanm.3c04532
10.4161/auto.5.8.9842
10.1016/j.tiv.2014.07.010
10.2174/13892002113149990008
10.1016/j.lfs.2024.122653
10.1126/science.1193497
10.1021/acs.chemmater.7b01982
10.1080/15548627.2018.1509171
10.1016/j.saa.2020.118428
10.1016/j.apsb.2019.03.006
10.1039/C8NR02798F
10.1007/s10565-016-9352-y
10.4161/auto.18777
10.1016/j.tox.2017.01.019
10.1038/cddis.2014.175
10.1002/adhm.201300294
10.2147/IJN.S229576
10.1021/acs.chemrev.3c00705
10.1021/acsami.7b16522
10.1016/j.nano.2018.09.003
10.1186/s12943-019-0944-z
10.1002/adfm.202108571
10.4161/auto.5.2.7640
10.1016/j.jconrel.2020.02.042
10.1038/s41551-022-00904-3
10.1038/ni.1720
10.1002/adbi.201800259
10.1038/cdd.2012.81
10.1039/C7TX00153C
10.1039/C7CC09397G
10.1039/C6NR07255K
10.1016/j.apsb.2020.12.001
10.1166/jbn.2019.2684
10.1111/bjd.17333
10.2217/nnm-2022-0065
10.1002/smll.201700996
10.1016/j.cell.2011.10.026
10.3390/cells11233761
10.1021/acsami.7b08223
10.1093/burnst/tkae009
10.1021/acsomega.7b00045
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
DOA
DOI 10.3390/molecules29153513
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1420-3049
ExternalDocumentID oai_doaj_org_article_7013ba5f2d17403faa16c98e9af299ed
A804517554
39124918
10_3390_molecules29153513
Genre Journal Article
Review
GroupedDBID ---
0R~
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
A8Z
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABUWG
ACGFO
ACIWK
ACPRK
ACUHS
AEGXH
AENEX
AFKRA
AFPKN
AFRAH
AFZYC
AIAGR
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DIK
DU5
E3Z
EBD
EMOBN
ESX
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
HZ~
I09
IAO
IHR
ITC
KQ8
LK8
M1P
MODMG
O-U
O9-
OK1
P2P
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RPM
SV3
TR2
TUS
UKHRP
~8M
3V.
ABJCF
BBNVY
BHPHI
CGR
CUY
CVF
ECM
EIF
HCIFZ
KB.
M7P
M~E
NPM
PDBOC
PMFND
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
ESTFP
PUEGO
ID FETCH-LOGICAL-c505t-7e27e3970a597ac17b8bb2f19eb0ed1d68f9c59b334aa98abbb89280cf461aa33
IEDL.DBID DOA
ISSN 1420-3049
IngestDate Wed Aug 27 01:27:47 EDT 2025
Mon Sep 08 04:59:39 EDT 2025
Sat Jul 26 02:47:05 EDT 2025
Tue Jun 17 22:04:28 EDT 2025
Tue Jun 10 21:01:37 EDT 2025
Wed Feb 19 02:06:58 EST 2025
Tue Jul 01 03:59:57 EDT 2025
Thu Apr 24 22:49:59 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Keywords nanoparticle
tumor targeted
nanomaterials
autophagy
drug delivery
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c505t-7e27e3970a597ac17b8bb2f19eb0ed1d68f9c59b334aa98abbb89280cf461aa33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-2762-2235
OpenAccessLink https://doaj.org/article/7013ba5f2d17403faa16c98e9af299ed
PMID 39124918
PQID 3090933987
PQPubID 2032355
ParticipantIDs doaj_primary_oai_doaj_org_article_7013ba5f2d17403faa16c98e9af299ed
proquest_miscellaneous_3091286440
proquest_journals_3090933987
gale_infotracmisc_A804517554
gale_infotracacademiconefile_A804517554
pubmed_primary_39124918
crossref_primary_10_3390_molecules29153513
crossref_citationtrail_10_3390_molecules29153513
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-08-01
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Molecules (Basel, Switzerland)
PublicationTitleAlternate Molecules
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Shekhar (ref_12) 2022; 17
Tu (ref_83) 2023; 6
Zhou (ref_33) 2017; 6
Raza (ref_10) 2018; 157
Marquardt (ref_43) 2017; 379
English (ref_77) 2009; 10
Zhang (ref_8) 2023; 10
Zhou (ref_63) 2019; 203
Liu (ref_44) 2018; 12
Wu (ref_47) 2024; 12
He (ref_50) 2019; 15
(ref_15) 2015; 93
Wang (ref_68) 2020; 321
ref_18
Das (ref_25) 2021; 6
Hettich (ref_74) 2014; 5
Jin (ref_54) 2016; 8
Jiang (ref_76) 2019; 18
ref_59
Wang (ref_52) 2018; 14
Mittal (ref_40) 2017; 14
Calvet (ref_80) 2014; 3
Rabinowitz (ref_2) 2010; 330
Jiang (ref_17) 2022; 10
Beach (ref_60) 2024; 124
Zhang (ref_56) 2009; 5
Ma (ref_48) 2011; 5
Lou (ref_13) 2021; 11
Wang (ref_65) 2020; 32
Farokhzad (ref_24) 2006; 58
Hu (ref_30) 2017; 29
Huang (ref_41) 2009; 5
Li (ref_57) 2014; 3
Diwan (ref_75) 2003; 11
Zhou (ref_38) 2018; 6
(ref_14) 2019; 103
Mizushima (ref_1) 2011; 147
ref_29
Lyu (ref_21) 2022; 32
Tian (ref_16) 2019; 10
Comenge (ref_61) 2013; 14
Wu (ref_37) 2018; 10
Zhang (ref_58) 2021; 21
Wang (ref_64) 2015; 27
ref_78
Verykiou (ref_81) 2019; 180
Shi (ref_11) 2020; 10
Xu (ref_62) 2019; 1206
Yang (ref_5) 2017; 9
Wu (ref_34) 2011; 32
Wei (ref_49) 2019; 15
Lin (ref_3) 2017; 13
You (ref_6) 2022; 26
Li (ref_23) 2012; 8
Acar (ref_31) 2023; 22
Mohammadinejad (ref_32) 2019; 15
Wan (ref_53) 2013; 221
Fageria (ref_19) 2017; 2
Zhang (ref_42) 2016; 32
Wang (ref_67) 2015; 199
Mgrditchian (ref_84) 2017; 114
Klionsky (ref_7) 2000; 290
Shi (ref_55) 2018; 54
ref_82
Chen (ref_73) 2018; 10
Hilton (ref_79) 2018; 7
Xu (ref_51) 2015; 7
Chen (ref_20) 2015; 137
Choi (ref_22) 2011; 7
Ouyuan (ref_26) 2022; 458
Li (ref_46) 2024; 347
Chen (ref_28) 2022; 6
Mei (ref_66) 2019; 9
Yang (ref_72) 2023; 13
Jeong (ref_45) 2017; 12
Qu (ref_69) 2020; 16
Ding (ref_27) 2020; 49
ref_9
Park (ref_35) 2014; 28
He (ref_70) 2020; 15
Zhang (ref_39) 2018; 296
ref_4
Ashrafi (ref_36) 2013; 20
Saiyin (ref_71) 2014; 11
References_xml – volume: 14
  start-page: 15
  year: 2017
  ident: ref_40
  article-title: Impaired Lysosomal Activity Mediated Autophagic Flux Disruption by Graphite Carbon Nanofibers Induce Apoptosis in Human Lung Epithelial Cells through Oxidative Stress and Energetic Impairment
  publication-title: Part. Fibre Toxicol.
  doi: 10.1186/s12989-017-0194-4
– volume: 13
  start-page: 295
  year: 2023
  ident: ref_72
  article-title: Multifunctional Metal-Organic Framework (MOF)-Based Nanoplatforms for Cancer Therapy: From Single to Combination Therapy
  publication-title: Theranostics
  doi: 10.7150/thno.80687
– volume: 203
  start-page: 63
  year: 2019
  ident: ref_63
  article-title: Melanin-like Nanoparticles Decorated with an Autophagy-Inducing Peptide for Efficient Targeted Photothermal Therapy
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2019.02.023
– volume: 11
  start-page: 495
  year: 2003
  ident: ref_75
  article-title: Biodegradable Nanoparticle Mediated Antigen Delivery to Human Cord Blood Derived Dendritic Cells for Induction of Primary T Cell Responses
  publication-title: J. Drug Target.
  doi: 10.1080/10611860410001670026
– volume: 10
  start-page: 1302
  year: 2019
  ident: ref_16
  article-title: Interplay between Exosomes and Autophagy in Cardiovascular Diseases: Novel Promising Target for Diagnostic and Therapeutic Application
  publication-title: Aging Dis.
  doi: 10.14336/AD.2018.1020
– volume: 22
  start-page: 520
  year: 2023
  ident: ref_31
  article-title: The bridge between cell survival and cell death: Reactive oxygen species-mediated cellular stress
  publication-title: EXCLI J.
– volume: 93
  start-page: 52
  year: 2015
  ident: ref_15
  article-title: Advanced Targeted Therapies in Cancer: Drug Nanocarriers, the Future of Chemotherapy
  publication-title: Eur. J. Pharm. Biopharm.
  doi: 10.1016/j.ejpb.2015.03.018
– volume: 458
  start-page: 214438
  year: 2022
  ident: ref_26
  article-title: Biomarker-activatable probes based on smart AIEgens for fluorescence and optoacoustic
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2022.214438
– volume: 290
  start-page: 1717
  year: 2000
  ident: ref_7
  article-title: Autophagy as a Regulated Pathway of Cellular Degradation
  publication-title: Science
  doi: 10.1126/science.290.5497.1717
– volume: 26
  start-page: 101386
  year: 2022
  ident: ref_6
  article-title: Targeting and promoting atherosclerosis regression using hybrid membrane coated nanomaterials via alleviated inflammation and enhanced autophagy
  publication-title: Appl. Mater.
– volume: 6
  start-page: 2252
  year: 2021
  ident: ref_25
  article-title: Spatio-Temporal Autophagy Tracking with a Cell-Permeable, Water-Soluble, Peptide-Based, Autophagic Vesicle-Targeted Sensor
  publication-title: ACS Sens.
  doi: 10.1021/acssensors.1c00191
– volume: 3
  start-page: e28131
  year: 2014
  ident: ref_80
  article-title: Electrochemotherapy with Bleomycin Induces Hallmarks of Immunogenic Cell Death in Murine Colon Cancer Cells
  publication-title: Oncoimmunology
  doi: 10.4161/onci.28131
– volume: 10
  start-page: 447
  year: 2023
  ident: ref_8
  article-title: The Role of Autophagy in Regulating Metabolism in the Tumor Microenvironment
  publication-title: Genes Dis.
  doi: 10.1016/j.gendis.2021.10.010
– volume: 157
  start-page: 705
  year: 2018
  ident: ref_10
  article-title: Redox-Responsive Nano-Carriers as Tumor-Targeted Drug Delivery Systems
  publication-title: Eur. J. Med. Chem.
  doi: 10.1016/j.ejmech.2018.08.034
– volume: 11
  start-page: 1662
  year: 2014
  ident: ref_71
  article-title: Sequential Release of Autophagy Inhibitor and Chemotherapeutic Drug with Polymeric Delivery System for Oral Squamous Cell Carcinoma Therapy
  publication-title: Mol. Pharm.
  doi: 10.1021/mp5000423
– volume: 49
  start-page: 8354
  year: 2020
  ident: ref_27
  article-title: The Fluorescence Toolbox for Visualizing Autophagy
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D0CS00913J
– volume: 114
  start-page: E9271
  year: 2017
  ident: ref_84
  article-title: Targeting autophagy inhibits melanoma growth by enhancing NK cells infiltration in a CCL5-dependent manner
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1703921114
– volume: 103
  start-page: 47
  year: 2019
  ident: ref_14
  article-title: Liposome-Coated Nano Doxorubicin Induces Apoptosis on Oral Squamous Cell Carcinoma CAL-27 Cells
  publication-title: Arch. Oral Biol.
  doi: 10.1016/j.archoralbio.2019.05.011
– ident: ref_59
  doi: 10.1002/anbr.202100109
– ident: ref_82
  doi: 10.1016/j.biomaterials.2022.121651
– volume: 221
  start-page: 118
  year: 2013
  ident: ref_53
  article-title: Single-Walled Carbon Nanotubes and Graphene Oxides Induce Autophagosome Accumulation and Lysosome Impairment in Primarily Cultured Murine Peritoneal Macrophages
  publication-title: Toxicol. Lett.
  doi: 10.1016/j.toxlet.2013.06.208
– ident: ref_29
  doi: 10.1016/j.bbadis.2021.166326
– volume: 296
  start-page: 124
  year: 2018
  ident: ref_39
  article-title: Titanium Dioxide Nanoparticles Induce Proteostasis Disruption and Autophagy in Human Trophoblast Cells
  publication-title: Chem. Biol. Interact.
  doi: 10.1016/j.cbi.2018.09.015
– volume: 7
  start-page: 1052
  year: 2011
  ident: ref_22
  article-title: A Monitoring Method for Atg4 Activation in Living Cells Using Peptide-Conjugated Polymeric Nanoparticles
  publication-title: Autophagy
  doi: 10.4161/auto.7.9.16451
– volume: 12
  start-page: 586
  year: 2018
  ident: ref_44
  article-title: The Protective Role of Autophagy in Nephrotoxicity Induced by Bismuth Nanoparticles through AMPK/MTOR Pathway
  publication-title: Nanotoxicology
  doi: 10.1080/17435390.2018.1466932
– volume: 14
  start-page: 1185
  year: 2018
  ident: ref_52
  article-title: Silica Nanoparticles Induce Autophagosome Accumulation via Activation of the EIF2AK3 and ATF6 UPR Pathways in Hepatocytes
  publication-title: Autophagy
  doi: 10.1080/15548627.2018.1458174
– volume: 27
  start-page: 2627
  year: 2015
  ident: ref_64
  article-title: Self-Assembled Autophagy-Inducing Polymeric Nanoparticles for Breast Cancer Interference In-Vivo
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201405926
– volume: 137
  start-page: 1903
  year: 2015
  ident: ref_20
  article-title: Single Gold@Silver Nanoprobes for Real-Time Tracing the Entire Autophagy Process at Single-Cell Level
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja5112628
– volume: 6
  start-page: 8127
  year: 2018
  ident: ref_38
  article-title: Gold Nanoparticles Impair Autophagy Flux through Shape-Dependent Endocytosis and Lysosomal Dysfunction
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C8TB02390E
– volume: 21
  start-page: 378
  year: 2021
  ident: ref_58
  article-title: Autophagy Is a Double-edged Sword in the Therapy of Colorectal Cancer
  publication-title: Oncol. Lett.
  doi: 10.3892/ol.2021.12639
– volume: 32
  start-page: 4565
  year: 2011
  ident: ref_34
  article-title: The Selective Growth Inhibition of Oral Cancer by Iron Core-Gold Shell Nanoparticles through Mitochondria-Mediated Autophagy
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2011.03.006
– volume: 58
  start-page: 1456
  year: 2006
  ident: ref_24
  article-title: Nanomedicine: Developing Smarter Therapeutic and Diagnostic Modalities
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2006.09.011
– volume: 16
  start-page: 1413
  year: 2020
  ident: ref_69
  article-title: Manipulation of Mitophagy by “All-in-One” Nanosensitizer Augments Sonodynamic Glioma Therapy
  publication-title: Autophagy
  doi: 10.1080/15548627.2019.1687210
– volume: 7
  start-page: e1466766
  year: 2018
  ident: ref_79
  article-title: Autophagosome-Based Strategy to Monitor Apparent Tumor-Specific CD8 T Cells in Patients with Prostate Cancer
  publication-title: Oncoimmunology
  doi: 10.1080/2162402X.2018.1466766
– volume: 12
  start-page: 8143
  year: 2017
  ident: ref_45
  article-title: Autophagic Flux Induced by Graphene Oxide Has a Neuroprotective Effect against Human Prion Protein Fragments
  publication-title: Int. J. Nanomed.
  doi: 10.2147/IJN.S146398
– volume: 32
  start-page: e2002160
  year: 2020
  ident: ref_65
  article-title: On-Demand Autophagy Cascade Amplification Nanoparticles Precisely Enhanced Oxaliplatin-Induced Cancer Immunotherapy
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202002160
– volume: 7
  start-page: 16100
  year: 2015
  ident: ref_51
  article-title: Silver Nanoparticles Impede Phorbol Myristate Acetate-Induced Monocyte–Macrophage Differentiation and Autophagy
  publication-title: Nanoscale
  doi: 10.1039/C5NR04200C
– volume: 10
  start-page: 4285
  year: 2022
  ident: ref_17
  article-title: A Dual-Response Fluorescent Probe for Simultaneously Monitoring Polarity and ATP during Autophagy
  publication-title: J. Mater. Chem. B
  doi: 10.1039/D2TB00575A
– volume: 1206
  start-page: 109
  year: 2019
  ident: ref_62
  article-title: Beclin 1, Bcl-2 and Autophagy
  publication-title: Adv. Exp. Med. Biol.
  doi: 10.1007/978-981-15-0602-4_5
– volume: 5
  start-page: 8629
  year: 2011
  ident: ref_48
  article-title: Gold Nanoparticles Induce Autophagosome Accumulation through Size-Dependent Nanoparticle Uptake and Lysosome Impairment
  publication-title: ACS Nano
  doi: 10.1021/nn202155y
– volume: 10
  start-page: 7921
  year: 2020
  ident: ref_11
  article-title: The EPR Effect and beyond: Strategies to Improve Tumor Targeting and Cancer Nanomedicine Treatment Efficacy
  publication-title: Theranostics
  doi: 10.7150/thno.49577
– volume: 199
  start-page: 17
  year: 2015
  ident: ref_67
  article-title: A Novel Antitumour Strategy Using Bidirectional Autophagic Vesicles Accumulation via Initiative Induction and the Terminal Restraint of Autophagic Flux
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2014.12.005
– ident: ref_78
  doi: 10.3390/genes14020474
– volume: 6
  start-page: 23150
  year: 2023
  ident: ref_83
  article-title: Antitumor and Immunotherapy Sensitizing Effects of a Thermosensitive Liposome by Increasing Autophagosome Accumulation
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.3c04532
– volume: 5
  start-page: 1107
  year: 2009
  ident: ref_56
  article-title: Autophagy-Mediated Chemosensitization in Cancer Cells by Fullerene C60 Nanocrystal
  publication-title: Autophagy
  doi: 10.4161/auto.5.8.9842
– volume: 28
  start-page: 1402
  year: 2014
  ident: ref_35
  article-title: Magnetic Iron Oxide Nanoparticles Induce Autophagy Preceding Apoptosis through Mitochondrial Damage and ER Stress in RAW264.7 Cells
  publication-title: Toxicol. Vitr.
  doi: 10.1016/j.tiv.2014.07.010
– volume: 14
  start-page: 518
  year: 2013
  ident: ref_61
  article-title: Engineered inorganic nanoparticles for drug delivery applications
  publication-title: Curr. Drug Metab.
  doi: 10.2174/13892002113149990008
– volume: 347
  start-page: 122653
  year: 2024
  ident: ref_46
  article-title: Molecular Mechanisms of Secretory Autophagy and Its Potential Role in Diseases
  publication-title: Life Sci.
  doi: 10.1016/j.lfs.2024.122653
– volume: 330
  start-page: 1344
  year: 2010
  ident: ref_2
  article-title: Autophagy and Metabolism
  publication-title: Science
  doi: 10.1126/science.1193497
– volume: 29
  start-page: 7658
  year: 2017
  ident: ref_30
  article-title: Bioinspired Design of Stereospecific d-Protein Nanomimics for High-Efficiency Autophagy Induction
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b01982
– volume: 15
  start-page: 4
  year: 2019
  ident: ref_32
  article-title: Necrotic, Apoptotic and Autophagic Cell Fates Triggered by Nanoparticles
  publication-title: Autophagy
  doi: 10.1080/15548627.2018.1509171
– ident: ref_18
  doi: 10.1016/j.saa.2020.118428
– volume: 9
  start-page: 1061
  year: 2019
  ident: ref_66
  article-title: Actively Priming Autophagic Cell Death with Novel Transferrin Receptor-Targeted Nanomedicine for Synergistic Chemotherapy against Breast Cancer
  publication-title: Acta Pharm. Sin. B
  doi: 10.1016/j.apsb.2019.03.006
– volume: 10
  start-page: 14637
  year: 2018
  ident: ref_37
  article-title: Reduction of Graphene Oxide Alters Its Cyto-Compatibility towards Primary and Immortalized Macrophages
  publication-title: Nanoscale
  doi: 10.1039/C8NR02798F
– volume: 32
  start-page: 513
  year: 2016
  ident: ref_42
  article-title: Nano-TiO2 Induces Autophagy to Protect against Cell Death through Antioxidative Mechanism in Podocytes
  publication-title: Cell Biol. Toxicol.
  doi: 10.1007/s10565-016-9352-y
– volume: 8
  start-page: 401
  year: 2012
  ident: ref_23
  article-title: A High-Throughput FRET-Based Assay for Determination of Atg4 Activity
  publication-title: Autophagy
  doi: 10.4161/auto.18777
– volume: 379
  start-page: 40
  year: 2017
  ident: ref_43
  article-title: Autophagy Induced by Silica Nanoparticles Protects RAW264.7 Macrophages from Cell Death
  publication-title: Toxicology
  doi: 10.1016/j.tox.2017.01.019
– volume: 5
  start-page: e1209
  year: 2014
  ident: ref_74
  article-title: Metformin lowers Ser-129 phosphorylated α-synuclein levels via mTOR-dependent protein phosphatase 2A activation
  publication-title: Cell Death Dis.
  doi: 10.1038/cddis.2014.175
– volume: 3
  start-page: 354
  year: 2014
  ident: ref_57
  article-title: Autophagy-Sensitized Cytotoxicity of Quantum Dots in PC12 Cells
  publication-title: Adv. Healthc. Mater.
  doi: 10.1002/adhm.201300294
– volume: 15
  start-page: 779
  year: 2020
  ident: ref_70
  article-title: Pulmonary-Affinity Paclitaxel Polymer Micelles in Response to Biological Functions of Ambroxol Enhance Therapeutic Effect on Lung Cancer
  publication-title: Int. J. Nanomed.
  doi: 10.2147/IJN.S229576
– volume: 124
  start-page: 5505
  year: 2024
  ident: ref_60
  article-title: Polymeric Nanoparticles for Drug Delivery
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.3c00705
– volume: 10
  start-page: 2328
  year: 2018
  ident: ref_73
  article-title: MOF Nanoparticles with Encapsulated Autophagy Inhibitor in Controlled Drug Delivery System for Antitumor
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b16522
– volume: 15
  start-page: 59
  year: 2019
  ident: ref_50
  article-title: High-Content Analysis for Mitophagy Response to Nanoparticles: A Potential Sensitive Biomarker for Nanosafety Assessment
  publication-title: Nanomedicine
  doi: 10.1016/j.nano.2018.09.003
– volume: 18
  start-page: 17
  year: 2019
  ident: ref_76
  article-title: The Relationship between Autophagy and the Immune System and Its Applications for Tumor Immunotherapy
  publication-title: Mol. Cancer
  doi: 10.1186/s12943-019-0944-z
– volume: 32
  start-page: 2108571
  year: 2022
  ident: ref_21
  article-title: Monitoring Autophagy with Atg4B Protease-Activated Aggregation-Induced Emission Probe
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202108571
– volume: 5
  start-page: 273
  year: 2009
  ident: ref_41
  article-title: To Die or to Live: The Dual Role of Poly(ADP-Ribose) Polymerase-1 in Autophagy and Necrosis under Oxidative Stress and DNA Damage
  publication-title: Autophagy
  doi: 10.4161/auto.5.2.7640
– volume: 321
  start-page: 497
  year: 2020
  ident: ref_68
  article-title: Autophagy Inhibition Changes the Disposition of Non-Viral Gene Carriers during Blood-Brain Barrier Penetration and Enhances TRAIL-Induced Apoptosis in Brain Metastatic Tumor
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2020.02.042
– volume: 6
  start-page: 1045
  year: 2022
  ident: ref_28
  article-title: A Nanoparticle Probe for the Imaging of Autophagic Flux in Live Mice via Magnetic Resonance and Near-Infrared Fluorescence
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-022-00904-3
– volume: 10
  start-page: 480
  year: 2009
  ident: ref_77
  article-title: Autophagy Enhances the Presentation of Endogenous Viral Antigens on MHC Class I Molecules during HSV-1 Infection
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.1720
– ident: ref_4
  doi: 10.1002/adbi.201800259
– volume: 20
  start-page: 31
  year: 2013
  ident: ref_36
  article-title: The Pathways of Mitophagy for Quality Control and Clearance of Mitochondria
  publication-title: Cell Death Differ.
  doi: 10.1038/cdd.2012.81
– volume: 6
  start-page: 889
  year: 2017
  ident: ref_33
  article-title: Nanoparticulate Titanium Dioxide-Inhibited Dendritic Development Is Involved in Apoptosis and Autophagy of Hippocampal Neurons in Offspring Mice
  publication-title: Toxicol. Res.
  doi: 10.1039/C7TX00153C
– volume: 54
  start-page: 1327
  year: 2018
  ident: ref_55
  article-title: Effects of Tetrahedral DNA Nanostructures on Autophagy in Chondrocytes
  publication-title: Chem. Commun.
  doi: 10.1039/C7CC09397G
– volume: 8
  start-page: 18740
  year: 2016
  ident: ref_54
  article-title: Autophagy-Mediated Clearance of Ubiquitinated Mutant Huntingtin by Graphene Oxide
  publication-title: Nanoscale
  doi: 10.1039/C6NR07255K
– volume: 11
  start-page: 2048
  year: 2021
  ident: ref_13
  article-title: Pure Redox-Sensitive Paclitaxel–Maleimide Prodrug Nanoparticles: Endogenous Albumin-Induced Size Switching and Improved Antitumor Efficiency
  publication-title: Acta Pharm. Sin. B
  doi: 10.1016/j.apsb.2020.12.001
– volume: 15
  start-page: 340
  year: 2019
  ident: ref_49
  article-title: Graphene Oxide Nanocolloids Induce Autophagy-Lysosome Dysfunction in Mouse Embryonic Stem Cells
  publication-title: J. Biomed. Nanotechnol.
  doi: 10.1166/jbn.2019.2684
– volume: 180
  start-page: 346
  year: 2019
  ident: ref_81
  article-title: Harnessing Autophagy to Overcome Mitogen-activated Protein Kinase Kinase Inhibitor-induced Resistance in Metastatic Melanoma
  publication-title: Br. J. Dermatol.
  doi: 10.1111/bjd.17333
– volume: 17
  start-page: 1213
  year: 2022
  ident: ref_12
  article-title: Enhanced Permeability and Retention Effect-Focused Tumor-Targeted Nanomedicines: Latest Trends, Obstacles and Future Perspective
  publication-title: Nanomedicine
  doi: 10.2217/nnm-2022-0065
– volume: 13
  start-page: 1700996
  year: 2017
  ident: ref_3
  article-title: Recent Advances in Nanotechnology for Autophagy Detection
  publication-title: Small
  doi: 10.1002/smll.201700996
– volume: 147
  start-page: 728
  year: 2011
  ident: ref_1
  article-title: Autophagy: Renovation of Cells and Tissues
  publication-title: Cell
  doi: 10.1016/j.cell.2011.10.026
– ident: ref_9
  doi: 10.3390/cells11233761
– volume: 9
  start-page: 27512
  year: 2017
  ident: ref_5
  article-title: Dual-Ratiometric Fluorescent Nanoprobe for Visualizing the Dynamic Process of pH and Superoxide Anion Changes in Autophagy and Apoptosis
  publication-title: ACS Appl. Mater.
  doi: 10.1021/acsami.7b08223
– volume: 12
  start-page: tkae009
  year: 2024
  ident: ref_47
  article-title: Immunomodulatory Poly(L-Lactic Acid) Nanofibrous Membranes Promote Diabetic Wound Healing by Inhibiting Inflammation, Oxidation and Bacterial Infection
  publication-title: Burns Trauma
  doi: 10.1093/burnst/tkae009
– volume: 2
  start-page: 1489
  year: 2017
  ident: ref_19
  article-title: Biosynthesized Protein-Capped Silver Nanoparticles Induce ROS-Dependent Proapoptotic Signals and Prosurvival Autophagy in Cancer Cells
  publication-title: ACS Omega
  doi: 10.1021/acsomega.7b00045
SSID ssj0021415
Score 2.4411142
SecondaryResourceType review_article
Snippet Autophagy, a lysosomal self-degradation pathway, plays a critical role in cellular homeostasis by degrading endogenous damaged organelles and protein...
SourceID doaj
proquest
gale
pubmed
crossref
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
StartPage 3513
SubjectTerms Animals
Autophagy
Autophagy - drug effects
Development and progression
drug delivery
Drug Delivery Systems
Drug dosages
Drugs
Humans
Nanomaterials
nanoparticle
Nanoparticles
Nanostructures - chemistry
Nanotechnology
Neoplasms - drug therapy
Neoplasms - metabolism
Neoplasms - pathology
Peptides
Proteins
Real time
tumor targeted
Tumors
Vehicles
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Za9wwEB7S5KF9Kb3rNC0qFAoFE8vyIT2UsrkILV1KaSBvZiRLSyC1083uQ_59ZnyFbSCv1oEtzfGNNfoG4JNJya15U5B-SxtnnECIEk0c0sznha4zjXx3-Oe8OD3Lvp_n51swH-_CcFrlaBM7Q123jv-R76vEcPBNIfK3q38xV43i09WxhAYOpRXqrx3F2CPYIZOsSe53Do7nv35PIZgkf9WfbdJUyf7fvgStv04NaX4u1YZ36kj875vq_wBo54hOnsHTAUGKWb_lz2HLNy_g8eFYuO0l_JjdHUqLNggyoC3h0l7UBDa16DLgfC2OluuFOPKXnJtxIwbycnHRiNma-QZwcfMKzk6O_xyexkPNhNgRllnFpU9LTxgjQYoU0MnSamvTII23ia9lXehgXG6sUhmi0Wit1SbViQtZIRGVeg3bTdv4tyC09nkelMUyx8wn1iBBu2Clz6QOCnUEybhWlRsIxbmuxWVFgQUvb3VveSP4Mg256tk0Hup8wBswdWQi7O5Bu1xUg15VJUFYi3lIawqtEhUQZeEMSR8GcrS-juAzb1_F6kov53C4dUCfyMRX1UwzwU5JoCqCvY2etGlus3kUgGpQ8-vqTigj-Dg180hOXWt8u-76kCgS7EwieNMLzvRJynDtb6l3H578HTxJCUv1eYd7sL1arv17wkIr-2EQ8Fv-9gma
  priority: 102
  providerName: ProQuest
Title Application of Nanomaterials and Related Drug Delivery Systems in Autophagy
URI https://www.ncbi.nlm.nih.gov/pubmed/39124918
https://www.proquest.com/docview/3090933987
https://www.proquest.com/docview/3091286440
https://doaj.org/article/7013ba5f2d17403faa16c98e9af299ed
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB7a9NBeStKnm2RRoVAomEiWbUnHzWMbWhpKaWBvYmRLoZB6S7J7yL_PyPJuswkkl1x8sCUjjWY036DRNwCfTEFuzZua7Fu4vIwJhCjQ5KEofVXrttQY7w7_OKmPT8tv02p6o9RXzAlL9MBJcHuKMIrDKhQtYWcuA6KoG0O_x0A7qW_j7ssNXwZTQ6glyC-lM0xJQf3e31Rq1l8Whiy8EnLNC_Vk_Xe35FtAs3c4k014OSBFNk4j3IInvnsFzw-WBdpew_fx_8NnNguMNsoZ4c-kUgy7lvWZbr5lhxeLM3boz2MOxhUbSMrZn46NF5FXAM-u3sDp5Oj3wXE-1EbIG8Is81z5QnnCEhwpIsBGKKedK4Iw3nHfirbWwTSVcVKWiEajc06bQvMmlLVAlPItbHSzzr8HprWvqkBCVhWWnjuDBOGCE74UOkjUGfClrGwzEIfH-hXnlgKIKF57R7wZfFl1-ZdYM-5rvB8XYNUwEl73L0gN7KAG9iE1yOBzXD4bzZIG1-Bwu4CmGAmu7FhHIh1F4CmDnbWWtGjN-uelAtjBnC-tJA0zNHqtMvi4-hx7xhS1zs8WfRvy9QQveQbvkuKspiRNrPEt9IfHmOo2vCgIWaUsxB3YmF8s_C4ho7kbwVM1VfTUk68jeLZ_dPLz16g3jGsl0g9W
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBZhc0gvpe-6TVsVWgoFE8tP6RDKJpuw6SZLKQnk5o5saSmkdroPyv65_rbO2LLDNpBbrmt5saXRfN9YM_Mx9kGFCGtGpbi_hfZjSiAEAcq3YWySVJaxBKodPpum44v462VyucX-drUwlFbZ-cTGUZd1Qd_I96JAUfCNIfKX698-qUbR6WonoQFOWqHcb1qMucKOiVn_wRBusX8ywvX-GIbHR-eHY9-pDPgFov_Sz0yYGUTlAJBbQyEyLbUOrVBGB6YUZSqtKhKloygGUBK01lKFMihsnAoA-iCKELAdU4XrgG0fHE2_fe9DPoH42J6l4qMHe79ayVuzCBV6mkREG2jYiAbchob_CG8DfMeP2EPHWPmwNbHHbMtUT9jOYScU95RNhjeH4Ly2HB12jTy4NW0OVcmbjDtT8tF8NeMjc0W5IGvumqXznxUfrqi_AczWz9jFvczeczao6sq8ZFxKkyQ20pAlEJtAK0AqabUwsZA2AumxoJurvHANzElH4yrHQIamN781vR773N9y3XbvuGvwAS1AP5Aabzc_1PNZ7vZxniFl1pDYsMRQLogsgEgLhdYOFoHdlB77RMuXk3vAhyvAVTngK1KjrXwoqaFPhiTOY7sbI3HRis3LnQHkzq0s8ptN4LH3_WW6k1LlKlOvmjHIOZDmBh570RpO_0qRIq1xIV_d_efv2M74_Ow0Pz2ZTl6zByHyuDbncZcNlvOVeYM8bKnfOmPn7Md9769_WJZHdw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9RAFD6ULagv4t1o1REUQQibyXXmoci226V1dSlioW_xTDKzCDWpe0H2L_qrPJNMUtZC3_qazITMzLl8Z-bM-QDeyZDcmpYp6TdXfmwTCJGj9E0Y6yQVZSzQ3h3-OkuPz-LP58n5Dvzt7sLYtMrOJjaGuqwLu0c-jAJpg28KkYfGpUWcjiefLn_7lkHKnrR2dBroaBbK_abcmLvkMdWbPxTOLfdPxrT278NwcvT98Nh3jAN-QUhg5Wc6zDR56AAJZ2PBMyWUCg2XWgW65GUqjCwSqaIoRpQClVJChiIoTJxyRLs5Su5gNyMvGQ9g9-BodvqtD_84-cr2XJWGEQx_tfS3ehlKsjoJj7Y8Y0MgcN1N_Ad-Gyc4eQD3HXplo1bcHsKOrh7B3cOONO4xTEdXB-KsNoyMd02YuBVzhlXJmuw7XbLxYj1nY31h80I2zBVOZz8rNlrbWgc43zyBs1uZvacwqOpKPwcmhE4SEynMEox1oCQSrDSK65gLE6HwIOjmKi9cMXPLqXGRU1Bjpze_Nr0efOy7XLaVPG5qfGAXoG9oi3A3D-rFPHc6nWcEnxUmJiwprAsig8jTQpLkoyEnr0sPPtjly62poJ8r0N14oCHaolv5SNjiPhkBOg_2tlrSohXbrzsByJ2JWeZXCuHB2_617WnT5ipdr5s2hD8I8gYePGsFpx9SJC3vOBcvbv74G7hDepZ_OZlNX8K9kCBdm_64B4PVYq1fESRbqddO1hn8uG31-gdPm0uj
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+Nanomaterials+and+Related+Drug+Delivery+Systems+in+Autophagy&rft.jtitle=Molecules+%28Basel%2C+Switzerland%29&rft.au=Mei%2C+Ling&rft.au=Liao%2C+Kai&rft.au=Chen%2C+Haiyan&rft.au=Zhang%2C+Yifan&rft.date=2024-08-01&rft.pub=MDPI+AG&rft.issn=1420-3049&rft.eissn=1420-3049&rft.volume=29&rft.issue=15&rft_id=info:doi/10.3390%2Fmolecules29153513&rft.externalDocID=A804517554
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1420-3049&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1420-3049&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1420-3049&client=summon