UCP1 Dependent and Independent Thermogenesis in Brown and Beige Adipocytes

Mammals have two types of thermogenic adipocytes: brown adipocytes and beige adipocytes. Thermogenic adipocytes express high levels of uncoupling protein 1 (UCP1) to dissipates energy in the form of heat by uncoupling the mitochondrial proton gradient from mitochondrial respiration. There is much ev...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in endocrinology (Lausanne) Vol. 11; p. 498
Main Authors Ikeda, Kenji, Yamada, Tetsuya
Format Journal Article
LanguageEnglish
Published Frontiers Media S.A 28.07.2020
Subjects
Online AccessGet full text
ISSN1664-2392
1664-2392
DOI10.3389/fendo.2020.00498

Cover

Loading…
Abstract Mammals have two types of thermogenic adipocytes: brown adipocytes and beige adipocytes. Thermogenic adipocytes express high levels of uncoupling protein 1 (UCP1) to dissipates energy in the form of heat by uncoupling the mitochondrial proton gradient from mitochondrial respiration. There is much evidence that UCP1 is the center of BAT thermogenesis and systemic energy homeostasis. Recently, UCP1 independent thermogenic pathway identified in thermogenic adipocytes. Importantly, the thermogenic pathways are different in brown and beige adipocytes. Ca2+-ATPase 2b calcium cycling mechanism is selective to beige adipocytes. It remains unknown how the multiple thermogenic mechanisms are coordinately regulated. The discovery of UCP1-independent thermogenic mechanisms potential offer new opportunities for improving obesity and type 2 diabetes particularly in groups such as elderly and obese populations who do not possess UCP1 positive adipocytes.Mammals have two types of thermogenic adipocytes: brown adipocytes and beige adipocytes. Thermogenic adipocytes express high levels of uncoupling protein 1 (UCP1) to dissipates energy in the form of heat by uncoupling the mitochondrial proton gradient from mitochondrial respiration. There is much evidence that UCP1 is the center of BAT thermogenesis and systemic energy homeostasis. Recently, UCP1 independent thermogenic pathway identified in thermogenic adipocytes. Importantly, the thermogenic pathways are different in brown and beige adipocytes. Ca2+-ATPase 2b calcium cycling mechanism is selective to beige adipocytes. It remains unknown how the multiple thermogenic mechanisms are coordinately regulated. The discovery of UCP1-independent thermogenic mechanisms potential offer new opportunities for improving obesity and type 2 diabetes particularly in groups such as elderly and obese populations who do not possess UCP1 positive adipocytes.
AbstractList Mammals have two types of thermogenic adipocytes: brown adipocytes and beige adipocytes. Thermogenic adipocytes express high levels of uncoupling protein 1 (UCP1) to dissipates energy in the form of heat by uncoupling the mitochondrial proton gradient from mitochondrial respiration. There is much evidence that UCP1 is the center of BAT thermogenesis and systemic energy homeostasis. Recently, UCP1 independent thermogenic pathway identified in thermogenic adipocytes. Importantly, the thermogenic pathways are different in brown and beige adipocytes. Ca 2+ -ATPase 2b calcium cycling mechanism is selective to beige adipocytes. It remains unknown how the multiple thermogenic mechanisms are coordinately regulated. The discovery of UCP1-independent thermogenic mechanisms potential offer new opportunities for improving obesity and type 2 diabetes particularly in groups such as elderly and obese populations who do not possess UCP1 positive adipocytes.
Mammals have two types of thermogenic adipocytes: brown adipocytes and beige adipocytes. Thermogenic adipocytes express high levels of uncoupling protein 1 (UCP1) to dissipates energy in the form of heat by uncoupling the mitochondrial proton gradient from mitochondrial respiration. There is much evidence that UCP1 is the center of BAT thermogenesis and systemic energy homeostasis. Recently, UCP1 independent thermogenic pathway identified in thermogenic adipocytes. Importantly, the thermogenic pathways are different in brown and beige adipocytes. Ca2+-ATPase 2b calcium cycling mechanism is selective to beige adipocytes. It remains unknown how the multiple thermogenic mechanisms are coordinately regulated. The discovery of UCP1-independent thermogenic mechanisms potential offer new opportunities for improving obesity and type 2 diabetes particularly in groups such as elderly and obese populations who do not possess UCP1 positive adipocytes.
Mammals have two types of thermogenic adipocytes: brown adipocytes and beige adipocytes. Thermogenic adipocytes express high levels of uncoupling protein 1 (UCP1) to dissipates energy in the form of heat by uncoupling the mitochondrial proton gradient from mitochondrial respiration. There is much evidence that UCP1 is the center of BAT thermogenesis and systemic energy homeostasis. Recently, UCP1 independent thermogenic pathway identified in thermogenic adipocytes. Importantly, the thermogenic pathways are different in brown and beige adipocytes. Ca2+-ATPase 2b calcium cycling mechanism is selective to beige adipocytes. It remains unknown how the multiple thermogenic mechanisms are coordinately regulated. The discovery of UCP1-independent thermogenic mechanisms potential offer new opportunities for improving obesity and type 2 diabetes particularly in groups such as elderly and obese populations who do not possess UCP1 positive adipocytes.Mammals have two types of thermogenic adipocytes: brown adipocytes and beige adipocytes. Thermogenic adipocytes express high levels of uncoupling protein 1 (UCP1) to dissipates energy in the form of heat by uncoupling the mitochondrial proton gradient from mitochondrial respiration. There is much evidence that UCP1 is the center of BAT thermogenesis and systemic energy homeostasis. Recently, UCP1 independent thermogenic pathway identified in thermogenic adipocytes. Importantly, the thermogenic pathways are different in brown and beige adipocytes. Ca2+-ATPase 2b calcium cycling mechanism is selective to beige adipocytes. It remains unknown how the multiple thermogenic mechanisms are coordinately regulated. The discovery of UCP1-independent thermogenic mechanisms potential offer new opportunities for improving obesity and type 2 diabetes particularly in groups such as elderly and obese populations who do not possess UCP1 positive adipocytes.
Author Ikeda, Kenji
Yamada, Tetsuya
AuthorAffiliation Department of Molecular Endocrinology and Metabolism, Tokyo Medical and Dental University , Bunkyo , Japan
AuthorAffiliation_xml – name: Department of Molecular Endocrinology and Metabolism, Tokyo Medical and Dental University , Bunkyo , Japan
Author_xml – sequence: 1
  givenname: Kenji
  surname: Ikeda
  fullname: Ikeda, Kenji
– sequence: 2
  givenname: Tetsuya
  surname: Yamada
  fullname: Yamada, Tetsuya
BookMark eNp1kc1vVCEUxYlpY2vt3uVbupmRzwdsTNqx6pgmumjXhI_7pjRvYIQ3Nv3vZWaqsSZlwwXO-QH3vEFHKSdA6B3Bc8aU_jBACnlOMcVzjLlWr9Ap6Xs-o0zTo3_qE3Re6z1ug2OitXqNThhVXFMlT9G328UP0n2CTYNBmjqbQrds5Z_1zR2UdV5BghprF1N3WfJD2ssuIa6guwhxk_3jBPUtOh7sWOH8aT5Dt5-vbhZfZ9ffvywXF9czL7CYZhIzQYUWwREfhoFp2_dBOidJcCGoPgSCuWCOMCdpz-UAIIJVTlorMQySnaHlgRuyvTebEte2PJpso9lv5LIytkzRj2AsZ8o6rweqCadCagGEOhIwgKeDFo318cDabN0agm9fLnZ8Bn1-kuKdWeVfRjKtW9Mb4P0ToOSfW6iTWcfqYRxtgrythnImFeet202KD1Jfcq0Fhr_XEGx2iZp9omaXqNkn2iz9fxYfJzvFvHtMHF82_gYB3KfF
CitedBy_id crossref_primary_10_1080_15384101_2023_2169521
crossref_primary_10_4162_nrp_2023_17_5_870
crossref_primary_10_1016_j_tcb_2022_07_009
crossref_primary_10_1016_j_zool_2024_126195
crossref_primary_10_1017_neu_2024_58
crossref_primary_10_3390_ijms22179623
crossref_primary_10_3390_ph14111078
crossref_primary_10_1016_j_crfs_2024_100728
crossref_primary_10_1172_JCI170072
crossref_primary_10_3390_nu13041238
crossref_primary_10_1002_1873_3468_14213
crossref_primary_10_3390_nu14132617
crossref_primary_10_1016_j_bbrc_2024_150919
crossref_primary_10_1080_10408398_2024_2416481
crossref_primary_10_1016_j_bbalip_2023_159364
crossref_primary_10_1186_s12944_024_02300_z
crossref_primary_10_1016_j_lfs_2024_122758
crossref_primary_10_1016_j_abb_2023_109581
crossref_primary_10_1126_sciadv_abl6496
crossref_primary_10_1038_s41392_022_01178_6
crossref_primary_10_3389_fphar_2022_852858
crossref_primary_10_3390_ijms221910470
crossref_primary_10_1016_j_prmcm_2024_100540
crossref_primary_10_1016_j_celrep_2023_113584
crossref_primary_10_1186_s40168_024_01944_4
crossref_primary_10_3390_foods12193671
crossref_primary_10_3390_nu17010143
crossref_primary_10_1111_jpn_13947
crossref_primary_10_1007_s12257_024_00126_1
crossref_primary_10_1186_s12967_024_05547_3
crossref_primary_10_1007_s12011_023_03854_2
crossref_primary_10_1038_s41467_022_35219_z
crossref_primary_10_3390_genes15081017
crossref_primary_10_1038_s41598_024_69356_w
crossref_primary_10_3390_biom11121830
crossref_primary_10_1016_j_bcp_2024_116042
crossref_primary_10_1016_j_fmre_2021_05_004
crossref_primary_10_3390_ijms25126303
crossref_primary_10_1113_JP286669
crossref_primary_10_1016_j_peptides_2023_170962
crossref_primary_10_20517_jca_2024_01
crossref_primary_10_1016_j_biopha_2022_112656
crossref_primary_10_1186_s40101_025_00387_6
crossref_primary_10_3389_fphar_2023_1339744
crossref_primary_10_3390_nu16152436
crossref_primary_10_3390_md20060370
crossref_primary_10_1124_molpharm_121_000465
crossref_primary_10_3389_fendo_2022_883092
crossref_primary_10_1002_jsfa_13565
crossref_primary_10_18632_aging_206179
crossref_primary_10_3390_cells10061327
crossref_primary_10_3233_JBR_200670
crossref_primary_10_3390_ijms222413528
crossref_primary_10_3390_nano14161363
crossref_primary_10_1038_s12276_023_01121_x
crossref_primary_10_3390_ijms23042394
crossref_primary_10_3724_zdxbyxb_2024_0355
crossref_primary_10_1007_s11154_021_09690_w
crossref_primary_10_1080_09712119_2022_2042001
crossref_primary_10_1113_JP282999
crossref_primary_10_1515_hmbci_2022_0044
crossref_primary_10_1016_j_abb_2024_109975
crossref_primary_10_3390_ijms24043868
crossref_primary_10_3390_medicina59081378
crossref_primary_10_1111_jne_12947
crossref_primary_10_1007_s42770_023_01057_4
crossref_primary_10_1016_j_cophys_2022_100626
crossref_primary_10_1039_D4FO00759J
crossref_primary_10_3389_fphar_2023_1182937
crossref_primary_10_1039_D3MD00107E
crossref_primary_10_3390_ijms26062501
crossref_primary_10_1016_j_cca_2023_117359
crossref_primary_10_1080_13813455_2023_2206983
crossref_primary_10_1016_j_jtherbio_2022_103333
crossref_primary_10_1016_j_coemr_2023_100446
crossref_primary_10_2337_db21_0799
crossref_primary_10_1016_j_arcmed_2023_04_001
crossref_primary_10_3390_ijms25126681
crossref_primary_10_1007_s00266_023_03782_5
crossref_primary_10_1007_s00424_023_02816_w
crossref_primary_10_3390_biom15030446
crossref_primary_10_3389_fendo_2023_1265175
crossref_primary_10_1016_j_lfs_2024_122607
crossref_primary_10_1016_j_compbiolchem_2024_108252
crossref_primary_10_3390_ph16040572
crossref_primary_10_1146_annurev_pharmtox_032322_093904
crossref_primary_10_1186_s13062_023_00388_4
crossref_primary_10_1007_s13596_021_00580_9
crossref_primary_10_36425_rehab345206
crossref_primary_10_1002_oby_23948
crossref_primary_10_1016_j_celrep_2022_111018
crossref_primary_10_3389_fendo_2025_1562431
crossref_primary_10_1002_mco2_664
crossref_primary_10_1097_MD_0000000000032181
crossref_primary_10_1111_brv_12885
crossref_primary_10_3390_ijms241814052
crossref_primary_10_1002_aro2_82
crossref_primary_10_1152_ajpendo_00160_2023
crossref_primary_10_1016_j_gde_2023_102058
crossref_primary_10_1007_s12257_022_0319_y
crossref_primary_10_1128_spectrum_03540_22
crossref_primary_10_1186_s12944_021_01547_0
crossref_primary_10_1080_21623945_2024_2330355
crossref_primary_10_1016_j_celrep_2025_115284
crossref_primary_10_1007_s12257_022_0242_2
crossref_primary_10_1038_s41586_021_04019_8
crossref_primary_10_1016_j_jnutbio_2023_109268
crossref_primary_10_3390_nu15184072
crossref_primary_10_3390_ijms24021679
crossref_primary_10_3389_fphys_2023_1207529
crossref_primary_10_3390_cells12050714
crossref_primary_10_1007_s10522_023_10067_6
crossref_primary_10_1016_j_cbpc_2023_109787
crossref_primary_10_3389_fphar_2023_1176443
crossref_primary_10_2174_0929867329666220806115518
crossref_primary_10_7554_eLife_72989
crossref_primary_10_1016_j_bbalip_2022_159276
crossref_primary_10_1186_s12872_023_03453_y
crossref_primary_10_3390_ijms25010191
crossref_primary_10_1016_j_isci_2023_106455
crossref_primary_10_1016_j_jff_2022_105022
crossref_primary_10_3389_fendo_2023_1198984
crossref_primary_10_3390_ijms232416166
crossref_primary_10_5937_fk78_56774
crossref_primary_10_3389_fphys_2023_1132830
crossref_primary_10_1038_s41598_021_00074_3
crossref_primary_10_1016_j_jnutbio_2022_109230
crossref_primary_10_1038_s12276_022_00741_z
crossref_primary_10_3390_cancers14081948
crossref_primary_10_3390_nu15173713
crossref_primary_10_3389_fphar_2024_1386794
crossref_primary_10_5534_wjmh_220224
crossref_primary_10_1016_j_nut_2023_112253
crossref_primary_10_1016_j_omtn_2022_09_015
crossref_primary_10_1002_oby_23924
crossref_primary_10_4014_jmb_2306_06041
crossref_primary_10_1016_j_jlr_2023_100408
crossref_primary_10_3390_life12020228
crossref_primary_10_3390_nu17040706
crossref_primary_10_4093_dmj_2020_0291
crossref_primary_10_1186_s41110_021_00135_7
crossref_primary_10_1210_clinem_dgab921
crossref_primary_10_1002_oby_23473
crossref_primary_10_3390_biomedicines9111739
crossref_primary_10_1093_jb_mvac055
crossref_primary_10_1016_j_heliyon_2023_e22487
crossref_primary_10_2174_1871530322666220902143401
crossref_primary_10_1038_s41467_024_54763_4
crossref_primary_10_1038_s41467_023_36836_y
crossref_primary_10_1016_j_mce_2021_111402
crossref_primary_10_1016_j_jnutbio_2023_109404
crossref_primary_10_51249_hs_v4i05_2265
crossref_primary_10_1155_2022_4483009
crossref_primary_10_3389_fcell_2022_854120
crossref_primary_10_1007_s12257_024_00106_5
Cites_doi 10.1073/pnas.1705287114
10.1016/j.cmet.2008.12.014
10.1038/nm.3017
10.1096/fj.00-0536fje
10.1002/oby.21542
10.1016/j.physbeh.2009.02.003
10.1016/j.cmet.2017.03.002
10.1038/nm.3713
10.1096/fj.07-8581com
10.1016/j.cmet.2017.12.005
10.1016/j.cmet.2017.09.007
10.1016/j.ddmec.2010.09.009
10.1016/j.cmet.2015.04.019
10.1038/nm.3819
10.1152/ajpendo.2000.279.4.E941
10.1002/jcp.20847
10.1016/j.cmet.2017.09.004
10.1002/cphy.c160030
10.1152/ajpendo.00691.2006
10.1093/hmg/10.3.189
10.1371/journal.pone.0049452
10.15252/embr.201438775
10.1074/jbc.M100466200
10.1016/0005-2728(95)00067-S
10.1172/JCI44271
10.1016/S0005-2728(00)00247-4
10.1002/jcp.10031
10.2337/db09-0530
10.1152/ajpendo.00197.2003
10.1101/gad.177857.111
10.1016/j.cell.2013.12.021
10.1016/j.cell.2016.05.071
10.1038/nm.3891
10.1038/nm.2897
10.1186/s13023-015-0310-1
10.1016/j.cell.2015.09.035
10.2337/db14-0513
10.1016/j.cmet.2017.09.002
10.1172/JCI200315737
10.1038/nm.4429
10.1016/j.molmet.2015.04.006
10.2337/db15-0227
10.2170/jjphysiol.46.171
10.1056/NEJMoa0808718
10.1016/j.bbabio.2010.02.033
10.1016/j.cmet.2019.07.001
10.1146/annurev.ph.56.030194.002535
10.1074/jbc.M115.636878
10.1042/bj3610277
10.1038/s41467-020-15589-y
10.1038/366740a0
10.1016/j.celrep.2015.04.046
10.1016/j.cmet.2017.07.016
10.1016/j.cell.2012.05.016
10.1016/j.cmet.2016.01.008
10.1152/ajpendo.00387.2005
10.1074/jbc.M112.436915
10.1007/s00726-016-2291-3
10.1152/ajpregu.00021.2009
10.1074/jbc.M600678200
10.1038/nature12652
10.1172/JCI68993
10.1172/JCI67803
10.1074/jbc.M606114200
10.1074/jbc.M308280200
10.1016/j.cbpa.2011.12.012
10.1016/j.cmet.2014.06.011
10.1056/NEJMoa0808949
10.1038/nm.3112
10.1038/387090a0
10.1056/NEJMoa0810780
10.1016/j.cmet.2015.09.007
ContentType Journal Article
Copyright Copyright © 2020 Ikeda and Yamada.
Copyright © 2020 Ikeda and Yamada. 2020 Ikeda and Yamada
Copyright_xml – notice: Copyright © 2020 Ikeda and Yamada.
– notice: Copyright © 2020 Ikeda and Yamada. 2020 Ikeda and Yamada
DBID AAYXX
CITATION
7X8
5PM
DOA
DOI 10.3389/fendo.2020.00498
DatabaseName CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1664-2392
ExternalDocumentID oai_doaj_org_article_a438abc9f291425795e12b1d0eec2f95
PMC7399049
10_3389_fendo_2020_00498
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
EMOBN
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
OK1
PGMZT
RPM
7X8
5PM
ID FETCH-LOGICAL-c505t-70352595db1cdff39a66d7bb71dbdd86dd10453b13b72647fee5da8b7aa70ef73
IEDL.DBID DOA
ISSN 1664-2392
IngestDate Wed Aug 27 01:05:00 EDT 2025
Thu Aug 21 13:21:19 EDT 2025
Fri Jul 11 11:34:58 EDT 2025
Tue Jul 01 04:27:28 EDT 2025
Thu Apr 24 22:56:41 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c505t-70352595db1cdff39a66d7bb71dbdd86dd10453b13b72647fee5da8b7aa70ef73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
Edited by: Matthias Johannes Betz, University Hospital of Basel, Switzerland
Reviewed by: Vibha Singhal, Massachusetts General Hospital, United States; Marco Infante, University of Miami, United States
This article was submitted to Obesity, a section of the journal Frontiers in Endocrinology
OpenAccessLink https://doaj.org/article/a438abc9f291425795e12b1d0eec2f95
PMID 32849287
PQID 2437844492
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_a438abc9f291425795e12b1d0eec2f95
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7399049
proquest_miscellaneous_2437844492
crossref_primary_10_3389_fendo_2020_00498
crossref_citationtrail_10_3389_fendo_2020_00498
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-07-28
PublicationDateYYYYMMDD 2020-07-28
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-28
  day: 28
PublicationDecade 2020
PublicationTitle Frontiers in endocrinology (Lausanne)
PublicationYear 2020
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Nedergaard (B25) 2001; 1504
Moyers (B67) 2007; 210
Hofmann (B26) 2001; 276
Wakatsuki (B42) 1996; 46
Rosenberg (B50) 2015; 10
Hanssen (B16) 2015; 21
Golozoubova (B27) 2006; 291
Leiria (B66) 2019; 30
Golozoubova (B24) 2001; 15
Tiso (B59) 2001; 10
Marks (B60) 2002; 190
Hasegawa (B62) 2018; 27
Kazak (B40) 2017; 26
Andersson (B58) 2010; 7
Veniant (B69) 2015; 21
Stanford (B1) 2015; 64
Shabalina (B36) 2010; 1797
Cohen (B38) 2014; 156
Periasamy (B48) 2017; 7
Smith (B51) 2002; 361
Shinoda (B12) 2015; 21
Ukropec (B30) 2006; 281
Streijger (B45) 2009; 97
Kajimura (B61) 2015; 22
Kazak (B28) 2015; 163
Samms (B70) 2015; 11
Maurya (B55) 2015; 290
Fisher (B68) 2012; 26
Keipert (B71) 2017; 26
Keipert (B29) 2015; 4
Monemdjou (B35) 2000; 279
Mineo (B34) 2012; 161
Meyer (B33) 2010; 299
Li (B21) 2014; 15
Block (B49) 1994; 56
Cypess (B5) 2009; 360
de Meis (B46) 2003; 278
Lowell (B19) 1993; 366
Sahoo (B52) 2013; 288
de Meis (B47) 2006; 281
Nedergaard (B7) 2007; 293
van der Lans (B14) 2013; 123
Saito (B4) 2009; 58
Bal (B53) 2012; 18
Kramarova (B56) 2008; 22
Sharp (B10) 2012; 7
Leitner (B17) 2017; 114
Lidell (B8) 2013; 19
Enerback (B18) 1997; 387
Feldmann (B39) 2009; 9
Shin (B23) 2017; 26
Tajima (B72) 2020; 11
Rowland (B54) 2016; 24
van Marken Lichtenbelt (B3) 2009; 360
Yamashita (B43) 1995; 1230
Ohno (B37) 2013; 504
Perna (B44) 2016; 48
Bertholet (B41) 2017; 25
Liu (B32) 2003; 111
Cypess (B11) 2013; 19
Yoneshiro (B15) 2013; 123
Wang (B65) 2014; 20
Seale (B57) 2011; 121
Ikeda (B31) 2017; 23
Wu (B9) 2012; 150
Lee (B13) 2014; 63
Schreiber (B22) 2017; 26
Petruzzelli (B2) 2014; 20
Granneman (B20) 2003; 285
Svensson (B63) 2016; 23
Virtanen (B6) 2009; 360
Long (B64) 2016; 166
References_xml – volume: 114
  start-page: 8649
  year: 2017
  ident: B17
  article-title: Mapping of human brown adipose tissue in lean and obese young men
  publication-title: Proc Natl Acad Sci USA.
  doi: 10.1073/pnas.1705287114
– volume: 9
  start-page: 203
  year: 2009
  ident: B39
  article-title: UCP1 ablation induces obesity and abolishes diet-induced thermogenesis in mice exempt from thermal stress by living at thermoneutrality
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2008.12.014
– volume: 19
  start-page: 631
  year: 2013
  ident: B8
  article-title: Evidence for two types of brown adipose tissue in humans
  publication-title: Nat Med.
  doi: 10.1038/nm.3017
– volume: 15
  start-page: 2048
  year: 2001
  ident: B24
  article-title: Only UCP1 can mediate adaptive nonshivering thermogenesis in the cold
  publication-title: FASEB J.
  doi: 10.1096/fj.00-0536fje
– volume: 24
  start-page: 1430
  year: 2016
  ident: B54
  article-title: Sarcolipin and uncoupling protein 1 play distinct roles in diet-induced thermogenesis and do not compensate for one another
  publication-title: Obesity (Silver Spring).
  doi: 10.1002/oby.21542
– volume: 97
  start-page: 76
  year: 2009
  ident: B45
  article-title: Mice lacking brain-type creatine kinase activity show defective thermoregulation
  publication-title: Physiol Behav.
  doi: 10.1016/j.physbeh.2009.02.003
– volume: 25
  start-page: 811
  year: 2017
  ident: B41
  article-title: Mitochondrial patch clamp of beige adipocytes reveals UCP1-positive and UCP1-negative cells both exhibiting futile creatine cycling
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2017.03.002
– volume: 20
  start-page: 1436
  year: 2014
  ident: B65
  article-title: The brown fat-enriched secreted factor Nrg4 preserves metabolic homeostasis through attenuation of hepatic lipogenesis
  publication-title: Nat Med.
  doi: 10.1038/nm.3713
– volume: 22
  start-page: 55
  year: 2008
  ident: B56
  article-title: Mitochondrial ATP synthase levels in brown adipose tissue are governed by the c-Fo subunit P1 isoform
  publication-title: FASEB J.
  doi: 10.1096/fj.07-8581com
– volume: 27
  start-page: 180
  year: 2018
  ident: B62
  article-title: Repression of adipose tissue fibrosis through a PRDM16-GTF2IRD1 complex improves systemic glucose homeostasis
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2017.12.005
– volume: 26
  start-page: 693
  year: 2017
  ident: B40
  article-title: Genetic depletion of adipocyte creatine metabolism inhibits diet-induced thermogenesis and drives obesity
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2017.09.007
– volume: 7
  start-page: e151
  year: 2010
  ident: B58
  article-title: Fixing ryanodine receptor Ca leak - a novel therapeutic strategy for contractile failure in heart and skeletal muscle
  publication-title: Drug Disc Today Dis Mech.
  doi: 10.1016/j.ddmec.2010.09.009
– volume: 21
  start-page: 731
  year: 2015
  ident: B69
  article-title: Pharmacologic effects of FGF21 are independent of the “browning” of white adipose tissue
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2015.04.019
– volume: 21
  start-page: 389
  year: 2015
  ident: B12
  article-title: Genetic and functional characterization of clonally derived adult human brown adipocytes
  publication-title: Nat Med.
  doi: 10.1038/nm.3819
– volume: 279
  start-page: E941
  year: 2000
  ident: B35
  article-title: Increased mitochondrial proton leak in skeletal muscle mitochondria of UCP1-deficient mice
  publication-title: Am J Physiol Endocrinol Metab.
  doi: 10.1152/ajpendo.2000.279.4.E941
– volume: 210
  start-page: 1
  year: 2007
  ident: B67
  article-title: Molecular determinants of FGF-21 activity-synergy and cross-talk with PPARgamma signaling
  publication-title: J Cell Physiol.
  doi: 10.1002/jcp.20847
– volume: 26
  start-page: 753
  year: 2017
  ident: B22
  article-title: Cold-induced thermogenesis depends on ATGL-mediated lipolysis in cardiac muscle, but not brown adipose tissue
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2017.09.004
– volume: 7
  start-page: 879
  year: 2017
  ident: B48
  article-title: Role of SERCA pump in muscle thermogenesis and metabolism
  publication-title: Compreh Physiol.
  doi: 10.1002/cphy.c160030
– volume: 293
  start-page: E444
  year: 2007
  ident: B7
  article-title: Unexpected evidence for active brown adipose tissue in adult humans
  publication-title: Am J Phys Endocrinol Metab.
  doi: 10.1152/ajpendo.00691.2006
– volume: 10
  start-page: 189
  year: 2001
  ident: B59
  article-title: Identification of mutations in the cardiac ryanodine receptor gene in families affected with arrhythmogenic right ventricular cardiomyopathy type 2 (ARVD2)
  publication-title: Hum Mol Genet.
  doi: 10.1093/hmg/10.3.189
– volume: 7
  start-page: e49452
  year: 2012
  ident: B10
  article-title: Human BAT possesses molecular signatures that resemble beige/brite cells
  publication-title: PLoS ONE.
  doi: 10.1371/journal.pone.0049452
– volume: 15
  start-page: 1069
  year: 2014
  ident: B21
  article-title: Taking control over intracellular fatty acid levels is essential for the analysis of thermogenic function in cultured primary brown and brite/beige adipocytes
  publication-title: EMBO Rep.
  doi: 10.15252/embr.201438775
– volume: 276
  start-page: 12460
  year: 2001
  ident: B26
  article-title: Effects of genetic background on thermoregulation and fatty acid-induced uncoupling of mitochondria in UCP1-deficient mice
  publication-title: J Biol Chem.
  doi: 10.1074/jbc.M100466200
– volume: 1230
  start-page: 69
  year: 1995
  ident: B43
  article-title: Increased growth of brown adipose tissue but its reduced thermogenic activity in creatine-depleted rats fed beta-guanidinopropionic acid
  publication-title: Biochim Biophys Acta.
  doi: 10.1016/0005-2728(95)00067-S
– volume: 121
  start-page: 96
  year: 2011
  ident: B57
  article-title: Prdm16 determines the thermogenic program of subcutaneous white adipose tissue in mice
  publication-title: J Clin Invest.
  doi: 10.1172/JCI44271
– volume: 1504
  start-page: 82
  year: 2001
  ident: B25
  article-title: UCP1: the only protein able to mediate adaptive non-shivering thermogenesis and metabolic inefficiency
  publication-title: Biochim Biophys Acta.
  doi: 10.1016/S0005-2728(00)00247-4
– volume: 190
  start-page: 1
  year: 2002
  ident: B60
  article-title: Involvement of the cardiac ryanodine receptor/calcium release channel in catecholaminergic polymorphic ventricular tachycardia
  publication-title: J Cell Physiol.
  doi: 10.1002/jcp.10031
– volume: 58
  start-page: 1526
  year: 2009
  ident: B4
  article-title: High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity
  publication-title: Diabetes.
  doi: 10.2337/db09-0530
– volume: 285
  start-page: E1230
  year: 2003
  ident: B20
  article-title: White adipose tissue contributes to UCP1-independent thermogenesis
  publication-title: Am J Physiol Endocrinol Metab.
  doi: 10.1152/ajpendo.00197.2003
– volume: 26
  start-page: 271
  year: 2012
  ident: B68
  article-title: FGF21 regulates PGC-1alpha and browning of white adipose tissues in adaptive thermogenesis
  publication-title: Genes Dev.
  doi: 10.1101/gad.177857.111
– volume: 156
  start-page: 304
  year: 2014
  ident: B38
  article-title: Ablation of PRDM16 and beige adipose causes metabolic dysfunction and a subcutaneous to visceral fat switch
  publication-title: Cell.
  doi: 10.1016/j.cell.2013.12.021
– volume: 166
  start-page: 424
  year: 2016
  ident: B64
  article-title: The secreted enzyme PM20D1 regulates lipidated amino acid uncouplers of Mitochondria
  publication-title: Cell.
  doi: 10.1016/j.cell.2016.05.071
– volume: 21
  start-page: 863
  year: 2015
  ident: B16
  article-title: Short-term cold acclimation improves insulin sensitivity in patients with type 2 diabetes mellitus
  publication-title: Nat Med.
  doi: 10.1038/nm.3891
– volume: 18
  start-page: 1575
  year: 2012
  ident: B53
  article-title: Sarcolipin is a newly identified regulator of muscle-based thermogenesis in mammals
  publication-title: Nat Med.
  doi: 10.1038/nm.2897
– volume: 10
  start-page: 93
  year: 2015
  ident: B50
  article-title: Malignant hyperthermia: a review
  publication-title: Orphanet J Rare Dis.
  doi: 10.1186/s13023-015-0310-1
– volume: 163
  start-page: 643
  year: 2015
  ident: B28
  article-title: A creatine-driven substrate cycle enhances energy expenditure and thermogenesis in beige fat
  publication-title: Cell.
  doi: 10.1016/j.cell.2015.09.035
– volume: 63
  start-page: 3686
  year: 2014
  ident: B13
  article-title: Temperature-acclimated brown adipose tissue modulates insulin sensitivity in humans
  publication-title: Diabetes.
  doi: 10.2337/db14-0513
– volume: 26
  start-page: 764
  year: 2017
  ident: B23
  article-title: Lipolysis in brown adipocytes is not essential for cold-induced thermogenesis in mice
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2017.09.002
– volume: 111
  start-page: 399
  year: 2003
  ident: B32
  article-title: Paradoxical resistance to diet-induced obesity in UCP1-deficient mice
  publication-title: J Clin Invest.
  doi: 10.1172/JCI200315737
– volume: 23
  start-page: 1454
  year: 2017
  ident: B31
  article-title: UCP1-independent signaling involving SERCA2b-mediated calcium cycling regulates beige fat thermogenesis and systemic glucose homeostasis
  publication-title: Nat Med.
  doi: 10.1038/nm.4429
– volume: 4
  start-page: 537
  year: 2015
  ident: B29
  article-title: Genetic disruption of uncoupling protein 1 in mice renders brown adipose tissue a significant source of FGF21 secretion
  publication-title: Mol Metab.
  doi: 10.1016/j.molmet.2015.04.006
– volume: 64
  start-page: 2361
  year: 2015
  ident: B1
  article-title: Exercise effects on white adipose tissue: beiging and metabolic adaptations
  publication-title: Diabetes.
  doi: 10.2337/db15-0227
– volume: 46
  start-page: 171
  year: 1996
  ident: B42
  article-title: Thermogenic responses to high-energy phosphate contents and/or hindlimb suspension in rats
  publication-title: Japan J Physiol.
  doi: 10.2170/jjphysiol.46.171
– volume: 360
  start-page: 1500
  year: 2009
  ident: B3
  article-title: Cold-activated brown adipose tissue in healthy men
  publication-title: N Engl J Med.
  doi: 10.1056/NEJMoa0808718
– volume: 1797
  start-page: 968
  year: 2010
  ident: B36
  article-title: Cold tolerance of UCP1-ablated mice: a skeletal muscle mitochondria switch toward lipid oxidation with marked UCP3 up-regulation not associated with increased basal, fatty acid- or ROS-induced uncoupling or enhanced GDP effects
  publication-title: Biochim Biophys Acta.
  doi: 10.1016/j.bbabio.2010.02.033
– volume: 30
  start-page: 768
  year: 2019
  ident: B66
  article-title: 12-lipoxygenase regulates cold adaptation and glucose metabolism by producing the omega-3 lipid 12-HEPE from brown fat
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2019.07.001
– volume: 56
  start-page: 535
  year: 1994
  ident: B49
  article-title: Thermogenesis in muscle
  publication-title: Annu Rev Physiol.
  doi: 10.1146/annurev.ph.56.030194.002535
– volume: 290
  start-page: 10840
  year: 2015
  ident: B55
  article-title: Sarcolipin is a key determinant of the basal metabolic rate, and its overexpression enhances energy expenditure and resistance against diet-induced obesity
  publication-title: J Biol Chem.
  doi: 10.1074/jbc.M115.636878
– volume: 361
  start-page: 277
  year: 2002
  ident: B51
  article-title: Sarcolipin uncouples hydrolysis of ATP from accumulation of Ca2+ by the Ca2+-ATPase of skeletal-muscle sarcoplasmic reticulum
  publication-title: Biochem J.
  doi: 10.1042/bj3610277
– volume: 11
  start-page: 1730
  year: 2020
  ident: B72
  article-title: Wireless optogenetics protects against obesity via stimulation of non-canonical fat thermogenesis
  publication-title: Nat Commun.
  doi: 10.1038/s41467-020-15589-y
– volume: 366
  start-page: 740
  year: 1993
  ident: B19
  article-title: Development of obesity in transgenic mice after genetic ablation of brown adipose tissue
  publication-title: Nature.
  doi: 10.1038/366740a0
– volume: 11
  start-page: 991
  year: 2015
  ident: B70
  article-title: Discrete aspects of FGF21 in vivo pharmacology do not require UCP1
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2015.04.046
– volume: 26
  start-page: 437
  year: 2017
  ident: B71
  article-title: Long-term cold adaptation does not require FGF21 or UCP1
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2017.07.016
– volume: 150
  start-page: 366
  year: 2012
  ident: B9
  article-title: Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human
  publication-title: Cell.
  doi: 10.1016/j.cell.2012.05.016
– volume: 23
  start-page: 454
  year: 2016
  ident: B63
  article-title: A secreted Slit2 fragment regulates adipose tissue thermogenesis and metabolic function
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2016.01.008
– volume: 291
  start-page: E350
  year: 2006
  ident: B27
  article-title: UCP1 is essential for adaptive adrenergic nonshivering thermogenesis
  publication-title: Am J Physiol Endocrinol Metab.
  doi: 10.1152/ajpendo.00387.2005
– volume: 288
  start-page: 6881
  year: 2013
  ident: B52
  article-title: Sarcolipin protein interaction with sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA) is distinct from phospholamban protein, and only sarcolipin can promote uncoupling of the SERCA pump
  publication-title: J Biol Chem.
  doi: 10.1074/jbc.M112.436915
– volume: 48
  start-page: 2057
  year: 2016
  ident: B44
  article-title: Creatine transporter deficiency leads to increased whole body and cellular metabolism
  publication-title: Amino acids.
  doi: 10.1007/s00726-016-2291-3
– volume: 299
  start-page: R1396
  year: 2010
  ident: B33
  article-title: Adaptive thermogenesis and thermal conductance in wild-type and UCP1-KO mice
  publication-title: Am J Physiol Regul Integr Comp Physiol.
  doi: 10.1152/ajpregu.00021.2009
– volume: 281
  start-page: 16384
  year: 2006
  ident: B47
  article-title: Identification of a Ca2+-ATPase in brown adipose tissue mitochondria: regulation of thermogenesis by ATP and Ca2+
  publication-title: J Biol Chem.
  doi: 10.1074/jbc.M600678200
– volume: 504
  start-page: 163
  year: 2013
  ident: B37
  article-title: EHMT1 controls brown adipose cell fate and thermogenesis through the PRDM16 complex
  publication-title: Nature.
  doi: 10.1038/nature12652
– volume: 123
  start-page: 3395
  year: 2013
  ident: B14
  article-title: Cold acclimation recruits human brown fat and increases nonshivering thermogenesis
  publication-title: J Clin Invest.
  doi: 10.1172/JCI68993
– volume: 123
  start-page: 3404
  year: 2013
  ident: B15
  article-title: Recruited brown adipose tissue as an antiobesity agent in humans
  publication-title: J Clin Invest.
  doi: 10.1172/JCI67803
– volume: 281
  start-page: 31894
  year: 2006
  ident: B30
  article-title: UCP1-independent thermogenesis in white adipose tissue of cold-acclimated Ucp1-/- mice
  publication-title: J Biol Chem.
  doi: 10.1074/jbc.M606114200
– volume: 278
  start-page: 41856
  year: 2003
  ident: B46
  article-title: Brown adipose tissue Ca2+-ATPase: uncoupled ATP hydrolysis and thermogenic activity
  publication-title: J Biol Chem.
  doi: 10.1074/jbc.M308280200
– volume: 161
  start-page: 395
  year: 2012
  ident: B34
  article-title: Chronic cold acclimation increases thermogenic capacity, non-shivering thermogenesis and muscle citrate synthase activity in both wild-type and brown adipose tissue deficient mice
  publication-title: Comp Biochem Physiol A, Mol Integr Physiol.
  doi: 10.1016/j.cbpa.2011.12.012
– volume: 20
  start-page: 433
  year: 2014
  ident: B2
  article-title: A switch from white to brown fat increases energy expenditure in cancer-associated cachexia
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2014.06.011
– volume: 360
  start-page: 1518
  year: 2009
  ident: B6
  article-title: Functional brown adipose tissue in healthy adults
  publication-title: N Engl J Med.
  doi: 10.1056/NEJMoa0808949
– volume: 19
  start-page: 635
  year: 2013
  ident: B11
  article-title: Anatomical localization, gene expression profiling and functional characterization of adult human neck brown fat
  publication-title: Nat Med.
  doi: 10.1038/nm.3112
– volume: 387
  start-page: 90
  year: 1997
  ident: B18
  article-title: Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese
  publication-title: Nature.
  doi: 10.1038/387090a0
– volume: 360
  start-page: 1509
  year: 2009
  ident: B5
  article-title: Identification and importance of brown adipose tissue in adult humans
  publication-title: N Engl J Med.
  doi: 10.1056/NEJMoa0810780
– volume: 22
  start-page: 546
  year: 2015
  ident: B61
  article-title: Brown and beige fat: physiological roles beyond heat generation
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2015.09.007
SSID ssj0000401998
Score 2.5826468
SecondaryResourceType review_article
Snippet Mammals have two types of thermogenic adipocytes: brown adipocytes and beige adipocytes. Thermogenic adipocytes express high levels of uncoupling protein 1...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 498
SubjectTerms adipogenesis
beige adipocyte
brown adipocyte
Endocrinology
thermogenic fat
uncoupling protein 1
SummonAdditionalLinks – databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWgSIgLKl9iaYuMxIVD6Nqx4_iAqrZQlUqLOLBSb5Y_xttIJSm7qdT-e8bedCFSxYlrYivJs2fmvdieIeS990oAirSi0ioUgotQaK6qwtpgQULlpjEdTp59q07n4uxcnv85Hj0AuLpX2qV6UvPl5cebX7cHaPCfkuLEeLsfoQ3pHB9Pu7SErh-SRxiXVCrkMBvIfvbLKCVQXKzXKu_tOIpNOYX_iHeOd03-FYZOtsnTgT_Sw_WAPyMPoH1OHs-GFfIX5Gx-_J3Rz0Np257aNtCvm1K3PcVpsfzZLZKHa1a0aWnW4bnZETQLoIehuer8LTLQl2R-8uXH8Wkx1EsoPPKYvlA5t6mWwTEfYiy1raqgnFMsuBDqKgTUXrJ0rHQKeZCKADLY2ilr1RSiKl-RrbZr4TWhUAJH92OljlKEuna89AJtX0THWAzlhOzfIWX8kEw81bS4NCgqErYmY2sStiZjOyEfNj2u1ok0_tH2KIG_aZdSYOcL3XJhBosyVpS1dV5HrllyPFoC446FKYDnUcsJeXc3dAZNJq2D2Ba665VJORhrIYTmE6JGYzp64vhO21zk5NsKGR2-45v_8Yo75En66PSrmNe7ZKtfXsMecpzevc1T9zdJ0P25
  priority: 102
  providerName: Scholars Portal
Title UCP1 Dependent and Independent Thermogenesis in Brown and Beige Adipocytes
URI https://www.proquest.com/docview/2437844492
https://pubmed.ncbi.nlm.nih.gov/PMC7399049
https://doaj.org/article/a438abc9f291425795e12b1d0eec2f95
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQD4gL4lMsXzISFw7Rrh0nto9toZRKiziw0t4s2zMukSBbtemBf8_YSVebC1y4-JBMFOd5bM-L7TeMvY9RKySSVrVWQ6WkgspK3Vbeg8cG27BK-XDy-mt7vlEX22Z7kOor7wkb5YFH4JZe1caHaJO0IvuXbVDIIGCFGGWyRb2U5rwDMlXGYKINRCTGdUliYXaZsId82E_mrVzKmtk8VOT6ZzHmfIfkwZRz9og9nGJFfjzW8TG7h_0Tdn89rYY_ZReb02-Cf5zS2A7c98C_7NPaDpxc4PrX7jKPZt0N73peOHcxO8HuEvkxdFe7-JuizWdsc_bp--l5NeVGqCLFLEOli46pbSCICCnV1rct6BC0gABgWgDiWU0dRB00xTw6ITbgTdDe6xUmXT9nR_2uxxeMY42Shhrf2NQoMCbIOirq5yoFIRLUC7a8Q8rFSTg856_46YhAZGxdwdZlbF3BdsE-7J-4GkUz_mJ7ksHf22W563KBnMBNTuD-5QQL9u6u6Rx1j7zm4Xvc3d64rLdolFJWLpietensjfM7ffejCG1rit6oji__RxVfsQf5o_NvYWles6Ph-hbfUDwzhLfFdan8vBVUrpX5A-Nc93c
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=UCP1+Dependent+and+Independent+Thermogenesis+in+Brown+and+Beige+Adipocytes&rft.jtitle=Frontiers+in+endocrinology+%28Lausanne%29&rft.au=Kenji+Ikeda&rft.au=Tetsuya+Yamada&rft.date=2020-07-28&rft.pub=Frontiers+Media+S.A&rft.eissn=1664-2392&rft.volume=11&rft_id=info:doi/10.3389%2Ffendo.2020.00498&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_a438abc9f291425795e12b1d0eec2f95
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-2392&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-2392&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-2392&client=summon