UCP1 Dependent and Independent Thermogenesis in Brown and Beige Adipocytes
Mammals have two types of thermogenic adipocytes: brown adipocytes and beige adipocytes. Thermogenic adipocytes express high levels of uncoupling protein 1 (UCP1) to dissipates energy in the form of heat by uncoupling the mitochondrial proton gradient from mitochondrial respiration. There is much ev...
Saved in:
Published in | Frontiers in endocrinology (Lausanne) Vol. 11; p. 498 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Frontiers Media S.A
28.07.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 1664-2392 1664-2392 |
DOI | 10.3389/fendo.2020.00498 |
Cover
Loading…
Abstract | Mammals have two types of thermogenic adipocytes: brown adipocytes and beige adipocytes. Thermogenic adipocytes express high levels of uncoupling protein 1 (UCP1) to dissipates energy in the form of heat by uncoupling the mitochondrial proton gradient from mitochondrial respiration. There is much evidence that UCP1 is the center of BAT thermogenesis and systemic energy homeostasis. Recently, UCP1 independent thermogenic pathway identified in thermogenic adipocytes. Importantly, the thermogenic pathways are different in brown and beige adipocytes. Ca2+-ATPase 2b calcium cycling mechanism is selective to beige adipocytes. It remains unknown how the multiple thermogenic mechanisms are coordinately regulated. The discovery of UCP1-independent thermogenic mechanisms potential offer new opportunities for improving obesity and type 2 diabetes particularly in groups such as elderly and obese populations who do not possess UCP1 positive adipocytes.Mammals have two types of thermogenic adipocytes: brown adipocytes and beige adipocytes. Thermogenic adipocytes express high levels of uncoupling protein 1 (UCP1) to dissipates energy in the form of heat by uncoupling the mitochondrial proton gradient from mitochondrial respiration. There is much evidence that UCP1 is the center of BAT thermogenesis and systemic energy homeostasis. Recently, UCP1 independent thermogenic pathway identified in thermogenic adipocytes. Importantly, the thermogenic pathways are different in brown and beige adipocytes. Ca2+-ATPase 2b calcium cycling mechanism is selective to beige adipocytes. It remains unknown how the multiple thermogenic mechanisms are coordinately regulated. The discovery of UCP1-independent thermogenic mechanisms potential offer new opportunities for improving obesity and type 2 diabetes particularly in groups such as elderly and obese populations who do not possess UCP1 positive adipocytes. |
---|---|
AbstractList | Mammals have two types of thermogenic adipocytes: brown adipocytes and beige adipocytes. Thermogenic adipocytes express high levels of uncoupling protein 1 (UCP1) to dissipates energy in the form of heat by uncoupling the mitochondrial proton gradient from mitochondrial respiration. There is much evidence that UCP1 is the center of BAT thermogenesis and systemic energy homeostasis. Recently, UCP1 independent thermogenic pathway identified in thermogenic adipocytes. Importantly, the thermogenic pathways are different in brown and beige adipocytes. Ca
2+
-ATPase 2b calcium cycling mechanism is selective to beige adipocytes. It remains unknown how the multiple thermogenic mechanisms are coordinately regulated. The discovery of UCP1-independent thermogenic mechanisms potential offer new opportunities for improving obesity and type 2 diabetes particularly in groups such as elderly and obese populations who do not possess UCP1 positive adipocytes. Mammals have two types of thermogenic adipocytes: brown adipocytes and beige adipocytes. Thermogenic adipocytes express high levels of uncoupling protein 1 (UCP1) to dissipates energy in the form of heat by uncoupling the mitochondrial proton gradient from mitochondrial respiration. There is much evidence that UCP1 is the center of BAT thermogenesis and systemic energy homeostasis. Recently, UCP1 independent thermogenic pathway identified in thermogenic adipocytes. Importantly, the thermogenic pathways are different in brown and beige adipocytes. Ca2+-ATPase 2b calcium cycling mechanism is selective to beige adipocytes. It remains unknown how the multiple thermogenic mechanisms are coordinately regulated. The discovery of UCP1-independent thermogenic mechanisms potential offer new opportunities for improving obesity and type 2 diabetes particularly in groups such as elderly and obese populations who do not possess UCP1 positive adipocytes. Mammals have two types of thermogenic adipocytes: brown adipocytes and beige adipocytes. Thermogenic adipocytes express high levels of uncoupling protein 1 (UCP1) to dissipates energy in the form of heat by uncoupling the mitochondrial proton gradient from mitochondrial respiration. There is much evidence that UCP1 is the center of BAT thermogenesis and systemic energy homeostasis. Recently, UCP1 independent thermogenic pathway identified in thermogenic adipocytes. Importantly, the thermogenic pathways are different in brown and beige adipocytes. Ca2+-ATPase 2b calcium cycling mechanism is selective to beige adipocytes. It remains unknown how the multiple thermogenic mechanisms are coordinately regulated. The discovery of UCP1-independent thermogenic mechanisms potential offer new opportunities for improving obesity and type 2 diabetes particularly in groups such as elderly and obese populations who do not possess UCP1 positive adipocytes.Mammals have two types of thermogenic adipocytes: brown adipocytes and beige adipocytes. Thermogenic adipocytes express high levels of uncoupling protein 1 (UCP1) to dissipates energy in the form of heat by uncoupling the mitochondrial proton gradient from mitochondrial respiration. There is much evidence that UCP1 is the center of BAT thermogenesis and systemic energy homeostasis. Recently, UCP1 independent thermogenic pathway identified in thermogenic adipocytes. Importantly, the thermogenic pathways are different in brown and beige adipocytes. Ca2+-ATPase 2b calcium cycling mechanism is selective to beige adipocytes. It remains unknown how the multiple thermogenic mechanisms are coordinately regulated. The discovery of UCP1-independent thermogenic mechanisms potential offer new opportunities for improving obesity and type 2 diabetes particularly in groups such as elderly and obese populations who do not possess UCP1 positive adipocytes. |
Author | Ikeda, Kenji Yamada, Tetsuya |
AuthorAffiliation | Department of Molecular Endocrinology and Metabolism, Tokyo Medical and Dental University , Bunkyo , Japan |
AuthorAffiliation_xml | – name: Department of Molecular Endocrinology and Metabolism, Tokyo Medical and Dental University , Bunkyo , Japan |
Author_xml | – sequence: 1 givenname: Kenji surname: Ikeda fullname: Ikeda, Kenji – sequence: 2 givenname: Tetsuya surname: Yamada fullname: Yamada, Tetsuya |
BookMark | eNp1kc1vVCEUxYlpY2vt3uVbupmRzwdsTNqx6pgmumjXhI_7pjRvYIQ3Nv3vZWaqsSZlwwXO-QH3vEFHKSdA6B3Bc8aU_jBACnlOMcVzjLlWr9Ap6Xs-o0zTo3_qE3Re6z1ug2OitXqNThhVXFMlT9G328UP0n2CTYNBmjqbQrds5Z_1zR2UdV5BghprF1N3WfJD2ssuIa6guwhxk_3jBPUtOh7sWOH8aT5Dt5-vbhZfZ9ffvywXF9czL7CYZhIzQYUWwREfhoFp2_dBOidJcCGoPgSCuWCOMCdpz-UAIIJVTlorMQySnaHlgRuyvTebEte2PJpso9lv5LIytkzRj2AsZ8o6rweqCadCagGEOhIwgKeDFo318cDabN0agm9fLnZ8Bn1-kuKdWeVfRjKtW9Mb4P0ToOSfW6iTWcfqYRxtgrythnImFeet202KD1Jfcq0Fhr_XEGx2iZp9omaXqNkn2iz9fxYfJzvFvHtMHF82_gYB3KfF |
CitedBy_id | crossref_primary_10_1080_15384101_2023_2169521 crossref_primary_10_4162_nrp_2023_17_5_870 crossref_primary_10_1016_j_tcb_2022_07_009 crossref_primary_10_1016_j_zool_2024_126195 crossref_primary_10_1017_neu_2024_58 crossref_primary_10_3390_ijms22179623 crossref_primary_10_3390_ph14111078 crossref_primary_10_1016_j_crfs_2024_100728 crossref_primary_10_1172_JCI170072 crossref_primary_10_3390_nu13041238 crossref_primary_10_1002_1873_3468_14213 crossref_primary_10_3390_nu14132617 crossref_primary_10_1016_j_bbrc_2024_150919 crossref_primary_10_1080_10408398_2024_2416481 crossref_primary_10_1016_j_bbalip_2023_159364 crossref_primary_10_1186_s12944_024_02300_z crossref_primary_10_1016_j_lfs_2024_122758 crossref_primary_10_1016_j_abb_2023_109581 crossref_primary_10_1126_sciadv_abl6496 crossref_primary_10_1038_s41392_022_01178_6 crossref_primary_10_3389_fphar_2022_852858 crossref_primary_10_3390_ijms221910470 crossref_primary_10_1016_j_prmcm_2024_100540 crossref_primary_10_1016_j_celrep_2023_113584 crossref_primary_10_1186_s40168_024_01944_4 crossref_primary_10_3390_foods12193671 crossref_primary_10_3390_nu17010143 crossref_primary_10_1111_jpn_13947 crossref_primary_10_1007_s12257_024_00126_1 crossref_primary_10_1186_s12967_024_05547_3 crossref_primary_10_1007_s12011_023_03854_2 crossref_primary_10_1038_s41467_022_35219_z crossref_primary_10_3390_genes15081017 crossref_primary_10_1038_s41598_024_69356_w crossref_primary_10_3390_biom11121830 crossref_primary_10_1016_j_bcp_2024_116042 crossref_primary_10_1016_j_fmre_2021_05_004 crossref_primary_10_3390_ijms25126303 crossref_primary_10_1113_JP286669 crossref_primary_10_1016_j_peptides_2023_170962 crossref_primary_10_20517_jca_2024_01 crossref_primary_10_1016_j_biopha_2022_112656 crossref_primary_10_1186_s40101_025_00387_6 crossref_primary_10_3389_fphar_2023_1339744 crossref_primary_10_3390_nu16152436 crossref_primary_10_3390_md20060370 crossref_primary_10_1124_molpharm_121_000465 crossref_primary_10_3389_fendo_2022_883092 crossref_primary_10_1002_jsfa_13565 crossref_primary_10_18632_aging_206179 crossref_primary_10_3390_cells10061327 crossref_primary_10_3233_JBR_200670 crossref_primary_10_3390_ijms222413528 crossref_primary_10_3390_nano14161363 crossref_primary_10_1038_s12276_023_01121_x crossref_primary_10_3390_ijms23042394 crossref_primary_10_3724_zdxbyxb_2024_0355 crossref_primary_10_1007_s11154_021_09690_w crossref_primary_10_1080_09712119_2022_2042001 crossref_primary_10_1113_JP282999 crossref_primary_10_1515_hmbci_2022_0044 crossref_primary_10_1016_j_abb_2024_109975 crossref_primary_10_3390_ijms24043868 crossref_primary_10_3390_medicina59081378 crossref_primary_10_1111_jne_12947 crossref_primary_10_1007_s42770_023_01057_4 crossref_primary_10_1016_j_cophys_2022_100626 crossref_primary_10_1039_D4FO00759J crossref_primary_10_3389_fphar_2023_1182937 crossref_primary_10_1039_D3MD00107E crossref_primary_10_3390_ijms26062501 crossref_primary_10_1016_j_cca_2023_117359 crossref_primary_10_1080_13813455_2023_2206983 crossref_primary_10_1016_j_jtherbio_2022_103333 crossref_primary_10_1016_j_coemr_2023_100446 crossref_primary_10_2337_db21_0799 crossref_primary_10_1016_j_arcmed_2023_04_001 crossref_primary_10_3390_ijms25126681 crossref_primary_10_1007_s00266_023_03782_5 crossref_primary_10_1007_s00424_023_02816_w crossref_primary_10_3390_biom15030446 crossref_primary_10_3389_fendo_2023_1265175 crossref_primary_10_1016_j_lfs_2024_122607 crossref_primary_10_1016_j_compbiolchem_2024_108252 crossref_primary_10_3390_ph16040572 crossref_primary_10_1146_annurev_pharmtox_032322_093904 crossref_primary_10_1186_s13062_023_00388_4 crossref_primary_10_1007_s13596_021_00580_9 crossref_primary_10_36425_rehab345206 crossref_primary_10_1002_oby_23948 crossref_primary_10_1016_j_celrep_2022_111018 crossref_primary_10_3389_fendo_2025_1562431 crossref_primary_10_1002_mco2_664 crossref_primary_10_1097_MD_0000000000032181 crossref_primary_10_1111_brv_12885 crossref_primary_10_3390_ijms241814052 crossref_primary_10_1002_aro2_82 crossref_primary_10_1152_ajpendo_00160_2023 crossref_primary_10_1016_j_gde_2023_102058 crossref_primary_10_1007_s12257_022_0319_y crossref_primary_10_1128_spectrum_03540_22 crossref_primary_10_1186_s12944_021_01547_0 crossref_primary_10_1080_21623945_2024_2330355 crossref_primary_10_1016_j_celrep_2025_115284 crossref_primary_10_1007_s12257_022_0242_2 crossref_primary_10_1038_s41586_021_04019_8 crossref_primary_10_1016_j_jnutbio_2023_109268 crossref_primary_10_3390_nu15184072 crossref_primary_10_3390_ijms24021679 crossref_primary_10_3389_fphys_2023_1207529 crossref_primary_10_3390_cells12050714 crossref_primary_10_1007_s10522_023_10067_6 crossref_primary_10_1016_j_cbpc_2023_109787 crossref_primary_10_3389_fphar_2023_1176443 crossref_primary_10_2174_0929867329666220806115518 crossref_primary_10_7554_eLife_72989 crossref_primary_10_1016_j_bbalip_2022_159276 crossref_primary_10_1186_s12872_023_03453_y crossref_primary_10_3390_ijms25010191 crossref_primary_10_1016_j_isci_2023_106455 crossref_primary_10_1016_j_jff_2022_105022 crossref_primary_10_3389_fendo_2023_1198984 crossref_primary_10_3390_ijms232416166 crossref_primary_10_5937_fk78_56774 crossref_primary_10_3389_fphys_2023_1132830 crossref_primary_10_1038_s41598_021_00074_3 crossref_primary_10_1016_j_jnutbio_2022_109230 crossref_primary_10_1038_s12276_022_00741_z crossref_primary_10_3390_cancers14081948 crossref_primary_10_3390_nu15173713 crossref_primary_10_3389_fphar_2024_1386794 crossref_primary_10_5534_wjmh_220224 crossref_primary_10_1016_j_nut_2023_112253 crossref_primary_10_1016_j_omtn_2022_09_015 crossref_primary_10_1002_oby_23924 crossref_primary_10_4014_jmb_2306_06041 crossref_primary_10_1016_j_jlr_2023_100408 crossref_primary_10_3390_life12020228 crossref_primary_10_3390_nu17040706 crossref_primary_10_4093_dmj_2020_0291 crossref_primary_10_1186_s41110_021_00135_7 crossref_primary_10_1210_clinem_dgab921 crossref_primary_10_1002_oby_23473 crossref_primary_10_3390_biomedicines9111739 crossref_primary_10_1093_jb_mvac055 crossref_primary_10_1016_j_heliyon_2023_e22487 crossref_primary_10_2174_1871530322666220902143401 crossref_primary_10_1038_s41467_024_54763_4 crossref_primary_10_1038_s41467_023_36836_y crossref_primary_10_1016_j_mce_2021_111402 crossref_primary_10_1016_j_jnutbio_2023_109404 crossref_primary_10_51249_hs_v4i05_2265 crossref_primary_10_1155_2022_4483009 crossref_primary_10_3389_fcell_2022_854120 crossref_primary_10_1007_s12257_024_00106_5 |
Cites_doi | 10.1073/pnas.1705287114 10.1016/j.cmet.2008.12.014 10.1038/nm.3017 10.1096/fj.00-0536fje 10.1002/oby.21542 10.1016/j.physbeh.2009.02.003 10.1016/j.cmet.2017.03.002 10.1038/nm.3713 10.1096/fj.07-8581com 10.1016/j.cmet.2017.12.005 10.1016/j.cmet.2017.09.007 10.1016/j.ddmec.2010.09.009 10.1016/j.cmet.2015.04.019 10.1038/nm.3819 10.1152/ajpendo.2000.279.4.E941 10.1002/jcp.20847 10.1016/j.cmet.2017.09.004 10.1002/cphy.c160030 10.1152/ajpendo.00691.2006 10.1093/hmg/10.3.189 10.1371/journal.pone.0049452 10.15252/embr.201438775 10.1074/jbc.M100466200 10.1016/0005-2728(95)00067-S 10.1172/JCI44271 10.1016/S0005-2728(00)00247-4 10.1002/jcp.10031 10.2337/db09-0530 10.1152/ajpendo.00197.2003 10.1101/gad.177857.111 10.1016/j.cell.2013.12.021 10.1016/j.cell.2016.05.071 10.1038/nm.3891 10.1038/nm.2897 10.1186/s13023-015-0310-1 10.1016/j.cell.2015.09.035 10.2337/db14-0513 10.1016/j.cmet.2017.09.002 10.1172/JCI200315737 10.1038/nm.4429 10.1016/j.molmet.2015.04.006 10.2337/db15-0227 10.2170/jjphysiol.46.171 10.1056/NEJMoa0808718 10.1016/j.bbabio.2010.02.033 10.1016/j.cmet.2019.07.001 10.1146/annurev.ph.56.030194.002535 10.1074/jbc.M115.636878 10.1042/bj3610277 10.1038/s41467-020-15589-y 10.1038/366740a0 10.1016/j.celrep.2015.04.046 10.1016/j.cmet.2017.07.016 10.1016/j.cell.2012.05.016 10.1016/j.cmet.2016.01.008 10.1152/ajpendo.00387.2005 10.1074/jbc.M112.436915 10.1007/s00726-016-2291-3 10.1152/ajpregu.00021.2009 10.1074/jbc.M600678200 10.1038/nature12652 10.1172/JCI68993 10.1172/JCI67803 10.1074/jbc.M606114200 10.1074/jbc.M308280200 10.1016/j.cbpa.2011.12.012 10.1016/j.cmet.2014.06.011 10.1056/NEJMoa0808949 10.1038/nm.3112 10.1038/387090a0 10.1056/NEJMoa0810780 10.1016/j.cmet.2015.09.007 |
ContentType | Journal Article |
Copyright | Copyright © 2020 Ikeda and Yamada. Copyright © 2020 Ikeda and Yamada. 2020 Ikeda and Yamada |
Copyright_xml | – notice: Copyright © 2020 Ikeda and Yamada. – notice: Copyright © 2020 Ikeda and Yamada. 2020 Ikeda and Yamada |
DBID | AAYXX CITATION 7X8 5PM DOA |
DOI | 10.3389/fendo.2020.00498 |
DatabaseName | CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1664-2392 |
ExternalDocumentID | oai_doaj_org_article_a438abc9f291425795e12b1d0eec2f95 PMC7399049 10_3389_fendo_2020_00498 |
GroupedDBID | 53G 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ACXDI ADBBV ADRAZ AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK EMOBN GROUPED_DOAJ GX1 HYE KQ8 M48 M~E OK1 PGMZT RPM 7X8 5PM |
ID | FETCH-LOGICAL-c505t-70352595db1cdff39a66d7bb71dbdd86dd10453b13b72647fee5da8b7aa70ef73 |
IEDL.DBID | DOA |
ISSN | 1664-2392 |
IngestDate | Wed Aug 27 01:05:00 EDT 2025 Thu Aug 21 13:21:19 EDT 2025 Fri Jul 11 11:34:58 EDT 2025 Tue Jul 01 04:27:28 EDT 2025 Thu Apr 24 22:56:41 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c505t-70352595db1cdff39a66d7bb71dbdd86dd10453b13b72647fee5da8b7aa70ef73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 Edited by: Matthias Johannes Betz, University Hospital of Basel, Switzerland Reviewed by: Vibha Singhal, Massachusetts General Hospital, United States; Marco Infante, University of Miami, United States This article was submitted to Obesity, a section of the journal Frontiers in Endocrinology |
OpenAccessLink | https://doaj.org/article/a438abc9f291425795e12b1d0eec2f95 |
PMID | 32849287 |
PQID | 2437844492 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a438abc9f291425795e12b1d0eec2f95 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7399049 proquest_miscellaneous_2437844492 crossref_primary_10_3389_fendo_2020_00498 crossref_citationtrail_10_3389_fendo_2020_00498 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-07-28 |
PublicationDateYYYYMMDD | 2020-07-28 |
PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-28 day: 28 |
PublicationDecade | 2020 |
PublicationTitle | Frontiers in endocrinology (Lausanne) |
PublicationYear | 2020 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Nedergaard (B25) 2001; 1504 Moyers (B67) 2007; 210 Hofmann (B26) 2001; 276 Wakatsuki (B42) 1996; 46 Rosenberg (B50) 2015; 10 Hanssen (B16) 2015; 21 Golozoubova (B27) 2006; 291 Leiria (B66) 2019; 30 Golozoubova (B24) 2001; 15 Tiso (B59) 2001; 10 Marks (B60) 2002; 190 Hasegawa (B62) 2018; 27 Kazak (B40) 2017; 26 Andersson (B58) 2010; 7 Veniant (B69) 2015; 21 Stanford (B1) 2015; 64 Shabalina (B36) 2010; 1797 Cohen (B38) 2014; 156 Periasamy (B48) 2017; 7 Smith (B51) 2002; 361 Shinoda (B12) 2015; 21 Ukropec (B30) 2006; 281 Streijger (B45) 2009; 97 Kajimura (B61) 2015; 22 Kazak (B28) 2015; 163 Samms (B70) 2015; 11 Maurya (B55) 2015; 290 Fisher (B68) 2012; 26 Keipert (B71) 2017; 26 Keipert (B29) 2015; 4 Monemdjou (B35) 2000; 279 Mineo (B34) 2012; 161 Meyer (B33) 2010; 299 Li (B21) 2014; 15 Block (B49) 1994; 56 Cypess (B5) 2009; 360 de Meis (B46) 2003; 278 Lowell (B19) 1993; 366 Sahoo (B52) 2013; 288 de Meis (B47) 2006; 281 Nedergaard (B7) 2007; 293 van der Lans (B14) 2013; 123 Saito (B4) 2009; 58 Bal (B53) 2012; 18 Kramarova (B56) 2008; 22 Sharp (B10) 2012; 7 Leitner (B17) 2017; 114 Lidell (B8) 2013; 19 Enerback (B18) 1997; 387 Feldmann (B39) 2009; 9 Shin (B23) 2017; 26 Tajima (B72) 2020; 11 Rowland (B54) 2016; 24 van Marken Lichtenbelt (B3) 2009; 360 Yamashita (B43) 1995; 1230 Ohno (B37) 2013; 504 Perna (B44) 2016; 48 Bertholet (B41) 2017; 25 Liu (B32) 2003; 111 Cypess (B11) 2013; 19 Yoneshiro (B15) 2013; 123 Wang (B65) 2014; 20 Seale (B57) 2011; 121 Ikeda (B31) 2017; 23 Wu (B9) 2012; 150 Lee (B13) 2014; 63 Schreiber (B22) 2017; 26 Petruzzelli (B2) 2014; 20 Granneman (B20) 2003; 285 Svensson (B63) 2016; 23 Virtanen (B6) 2009; 360 Long (B64) 2016; 166 |
References_xml | – volume: 114 start-page: 8649 year: 2017 ident: B17 article-title: Mapping of human brown adipose tissue in lean and obese young men publication-title: Proc Natl Acad Sci USA. doi: 10.1073/pnas.1705287114 – volume: 9 start-page: 203 year: 2009 ident: B39 article-title: UCP1 ablation induces obesity and abolishes diet-induced thermogenesis in mice exempt from thermal stress by living at thermoneutrality publication-title: Cell Metab. doi: 10.1016/j.cmet.2008.12.014 – volume: 19 start-page: 631 year: 2013 ident: B8 article-title: Evidence for two types of brown adipose tissue in humans publication-title: Nat Med. doi: 10.1038/nm.3017 – volume: 15 start-page: 2048 year: 2001 ident: B24 article-title: Only UCP1 can mediate adaptive nonshivering thermogenesis in the cold publication-title: FASEB J. doi: 10.1096/fj.00-0536fje – volume: 24 start-page: 1430 year: 2016 ident: B54 article-title: Sarcolipin and uncoupling protein 1 play distinct roles in diet-induced thermogenesis and do not compensate for one another publication-title: Obesity (Silver Spring). doi: 10.1002/oby.21542 – volume: 97 start-page: 76 year: 2009 ident: B45 article-title: Mice lacking brain-type creatine kinase activity show defective thermoregulation publication-title: Physiol Behav. doi: 10.1016/j.physbeh.2009.02.003 – volume: 25 start-page: 811 year: 2017 ident: B41 article-title: Mitochondrial patch clamp of beige adipocytes reveals UCP1-positive and UCP1-negative cells both exhibiting futile creatine cycling publication-title: Cell Metab. doi: 10.1016/j.cmet.2017.03.002 – volume: 20 start-page: 1436 year: 2014 ident: B65 article-title: The brown fat-enriched secreted factor Nrg4 preserves metabolic homeostasis through attenuation of hepatic lipogenesis publication-title: Nat Med. doi: 10.1038/nm.3713 – volume: 22 start-page: 55 year: 2008 ident: B56 article-title: Mitochondrial ATP synthase levels in brown adipose tissue are governed by the c-Fo subunit P1 isoform publication-title: FASEB J. doi: 10.1096/fj.07-8581com – volume: 27 start-page: 180 year: 2018 ident: B62 article-title: Repression of adipose tissue fibrosis through a PRDM16-GTF2IRD1 complex improves systemic glucose homeostasis publication-title: Cell Metab. doi: 10.1016/j.cmet.2017.12.005 – volume: 26 start-page: 693 year: 2017 ident: B40 article-title: Genetic depletion of adipocyte creatine metabolism inhibits diet-induced thermogenesis and drives obesity publication-title: Cell Metab. doi: 10.1016/j.cmet.2017.09.007 – volume: 7 start-page: e151 year: 2010 ident: B58 article-title: Fixing ryanodine receptor Ca leak - a novel therapeutic strategy for contractile failure in heart and skeletal muscle publication-title: Drug Disc Today Dis Mech. doi: 10.1016/j.ddmec.2010.09.009 – volume: 21 start-page: 731 year: 2015 ident: B69 article-title: Pharmacologic effects of FGF21 are independent of the “browning” of white adipose tissue publication-title: Cell Metab. doi: 10.1016/j.cmet.2015.04.019 – volume: 21 start-page: 389 year: 2015 ident: B12 article-title: Genetic and functional characterization of clonally derived adult human brown adipocytes publication-title: Nat Med. doi: 10.1038/nm.3819 – volume: 279 start-page: E941 year: 2000 ident: B35 article-title: Increased mitochondrial proton leak in skeletal muscle mitochondria of UCP1-deficient mice publication-title: Am J Physiol Endocrinol Metab. doi: 10.1152/ajpendo.2000.279.4.E941 – volume: 210 start-page: 1 year: 2007 ident: B67 article-title: Molecular determinants of FGF-21 activity-synergy and cross-talk with PPARgamma signaling publication-title: J Cell Physiol. doi: 10.1002/jcp.20847 – volume: 26 start-page: 753 year: 2017 ident: B22 article-title: Cold-induced thermogenesis depends on ATGL-mediated lipolysis in cardiac muscle, but not brown adipose tissue publication-title: Cell Metab. doi: 10.1016/j.cmet.2017.09.004 – volume: 7 start-page: 879 year: 2017 ident: B48 article-title: Role of SERCA pump in muscle thermogenesis and metabolism publication-title: Compreh Physiol. doi: 10.1002/cphy.c160030 – volume: 293 start-page: E444 year: 2007 ident: B7 article-title: Unexpected evidence for active brown adipose tissue in adult humans publication-title: Am J Phys Endocrinol Metab. doi: 10.1152/ajpendo.00691.2006 – volume: 10 start-page: 189 year: 2001 ident: B59 article-title: Identification of mutations in the cardiac ryanodine receptor gene in families affected with arrhythmogenic right ventricular cardiomyopathy type 2 (ARVD2) publication-title: Hum Mol Genet. doi: 10.1093/hmg/10.3.189 – volume: 7 start-page: e49452 year: 2012 ident: B10 article-title: Human BAT possesses molecular signatures that resemble beige/brite cells publication-title: PLoS ONE. doi: 10.1371/journal.pone.0049452 – volume: 15 start-page: 1069 year: 2014 ident: B21 article-title: Taking control over intracellular fatty acid levels is essential for the analysis of thermogenic function in cultured primary brown and brite/beige adipocytes publication-title: EMBO Rep. doi: 10.15252/embr.201438775 – volume: 276 start-page: 12460 year: 2001 ident: B26 article-title: Effects of genetic background on thermoregulation and fatty acid-induced uncoupling of mitochondria in UCP1-deficient mice publication-title: J Biol Chem. doi: 10.1074/jbc.M100466200 – volume: 1230 start-page: 69 year: 1995 ident: B43 article-title: Increased growth of brown adipose tissue but its reduced thermogenic activity in creatine-depleted rats fed beta-guanidinopropionic acid publication-title: Biochim Biophys Acta. doi: 10.1016/0005-2728(95)00067-S – volume: 121 start-page: 96 year: 2011 ident: B57 article-title: Prdm16 determines the thermogenic program of subcutaneous white adipose tissue in mice publication-title: J Clin Invest. doi: 10.1172/JCI44271 – volume: 1504 start-page: 82 year: 2001 ident: B25 article-title: UCP1: the only protein able to mediate adaptive non-shivering thermogenesis and metabolic inefficiency publication-title: Biochim Biophys Acta. doi: 10.1016/S0005-2728(00)00247-4 – volume: 190 start-page: 1 year: 2002 ident: B60 article-title: Involvement of the cardiac ryanodine receptor/calcium release channel in catecholaminergic polymorphic ventricular tachycardia publication-title: J Cell Physiol. doi: 10.1002/jcp.10031 – volume: 58 start-page: 1526 year: 2009 ident: B4 article-title: High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity publication-title: Diabetes. doi: 10.2337/db09-0530 – volume: 285 start-page: E1230 year: 2003 ident: B20 article-title: White adipose tissue contributes to UCP1-independent thermogenesis publication-title: Am J Physiol Endocrinol Metab. doi: 10.1152/ajpendo.00197.2003 – volume: 26 start-page: 271 year: 2012 ident: B68 article-title: FGF21 regulates PGC-1alpha and browning of white adipose tissues in adaptive thermogenesis publication-title: Genes Dev. doi: 10.1101/gad.177857.111 – volume: 156 start-page: 304 year: 2014 ident: B38 article-title: Ablation of PRDM16 and beige adipose causes metabolic dysfunction and a subcutaneous to visceral fat switch publication-title: Cell. doi: 10.1016/j.cell.2013.12.021 – volume: 166 start-page: 424 year: 2016 ident: B64 article-title: The secreted enzyme PM20D1 regulates lipidated amino acid uncouplers of Mitochondria publication-title: Cell. doi: 10.1016/j.cell.2016.05.071 – volume: 21 start-page: 863 year: 2015 ident: B16 article-title: Short-term cold acclimation improves insulin sensitivity in patients with type 2 diabetes mellitus publication-title: Nat Med. doi: 10.1038/nm.3891 – volume: 18 start-page: 1575 year: 2012 ident: B53 article-title: Sarcolipin is a newly identified regulator of muscle-based thermogenesis in mammals publication-title: Nat Med. doi: 10.1038/nm.2897 – volume: 10 start-page: 93 year: 2015 ident: B50 article-title: Malignant hyperthermia: a review publication-title: Orphanet J Rare Dis. doi: 10.1186/s13023-015-0310-1 – volume: 163 start-page: 643 year: 2015 ident: B28 article-title: A creatine-driven substrate cycle enhances energy expenditure and thermogenesis in beige fat publication-title: Cell. doi: 10.1016/j.cell.2015.09.035 – volume: 63 start-page: 3686 year: 2014 ident: B13 article-title: Temperature-acclimated brown adipose tissue modulates insulin sensitivity in humans publication-title: Diabetes. doi: 10.2337/db14-0513 – volume: 26 start-page: 764 year: 2017 ident: B23 article-title: Lipolysis in brown adipocytes is not essential for cold-induced thermogenesis in mice publication-title: Cell Metab. doi: 10.1016/j.cmet.2017.09.002 – volume: 111 start-page: 399 year: 2003 ident: B32 article-title: Paradoxical resistance to diet-induced obesity in UCP1-deficient mice publication-title: J Clin Invest. doi: 10.1172/JCI200315737 – volume: 23 start-page: 1454 year: 2017 ident: B31 article-title: UCP1-independent signaling involving SERCA2b-mediated calcium cycling regulates beige fat thermogenesis and systemic glucose homeostasis publication-title: Nat Med. doi: 10.1038/nm.4429 – volume: 4 start-page: 537 year: 2015 ident: B29 article-title: Genetic disruption of uncoupling protein 1 in mice renders brown adipose tissue a significant source of FGF21 secretion publication-title: Mol Metab. doi: 10.1016/j.molmet.2015.04.006 – volume: 64 start-page: 2361 year: 2015 ident: B1 article-title: Exercise effects on white adipose tissue: beiging and metabolic adaptations publication-title: Diabetes. doi: 10.2337/db15-0227 – volume: 46 start-page: 171 year: 1996 ident: B42 article-title: Thermogenic responses to high-energy phosphate contents and/or hindlimb suspension in rats publication-title: Japan J Physiol. doi: 10.2170/jjphysiol.46.171 – volume: 360 start-page: 1500 year: 2009 ident: B3 article-title: Cold-activated brown adipose tissue in healthy men publication-title: N Engl J Med. doi: 10.1056/NEJMoa0808718 – volume: 1797 start-page: 968 year: 2010 ident: B36 article-title: Cold tolerance of UCP1-ablated mice: a skeletal muscle mitochondria switch toward lipid oxidation with marked UCP3 up-regulation not associated with increased basal, fatty acid- or ROS-induced uncoupling or enhanced GDP effects publication-title: Biochim Biophys Acta. doi: 10.1016/j.bbabio.2010.02.033 – volume: 30 start-page: 768 year: 2019 ident: B66 article-title: 12-lipoxygenase regulates cold adaptation and glucose metabolism by producing the omega-3 lipid 12-HEPE from brown fat publication-title: Cell Metab doi: 10.1016/j.cmet.2019.07.001 – volume: 56 start-page: 535 year: 1994 ident: B49 article-title: Thermogenesis in muscle publication-title: Annu Rev Physiol. doi: 10.1146/annurev.ph.56.030194.002535 – volume: 290 start-page: 10840 year: 2015 ident: B55 article-title: Sarcolipin is a key determinant of the basal metabolic rate, and its overexpression enhances energy expenditure and resistance against diet-induced obesity publication-title: J Biol Chem. doi: 10.1074/jbc.M115.636878 – volume: 361 start-page: 277 year: 2002 ident: B51 article-title: Sarcolipin uncouples hydrolysis of ATP from accumulation of Ca2+ by the Ca2+-ATPase of skeletal-muscle sarcoplasmic reticulum publication-title: Biochem J. doi: 10.1042/bj3610277 – volume: 11 start-page: 1730 year: 2020 ident: B72 article-title: Wireless optogenetics protects against obesity via stimulation of non-canonical fat thermogenesis publication-title: Nat Commun. doi: 10.1038/s41467-020-15589-y – volume: 366 start-page: 740 year: 1993 ident: B19 article-title: Development of obesity in transgenic mice after genetic ablation of brown adipose tissue publication-title: Nature. doi: 10.1038/366740a0 – volume: 11 start-page: 991 year: 2015 ident: B70 article-title: Discrete aspects of FGF21 in vivo pharmacology do not require UCP1 publication-title: Cell Rep. doi: 10.1016/j.celrep.2015.04.046 – volume: 26 start-page: 437 year: 2017 ident: B71 article-title: Long-term cold adaptation does not require FGF21 or UCP1 publication-title: Cell Metab. doi: 10.1016/j.cmet.2017.07.016 – volume: 150 start-page: 366 year: 2012 ident: B9 article-title: Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human publication-title: Cell. doi: 10.1016/j.cell.2012.05.016 – volume: 23 start-page: 454 year: 2016 ident: B63 article-title: A secreted Slit2 fragment regulates adipose tissue thermogenesis and metabolic function publication-title: Cell Metab. doi: 10.1016/j.cmet.2016.01.008 – volume: 291 start-page: E350 year: 2006 ident: B27 article-title: UCP1 is essential for adaptive adrenergic nonshivering thermogenesis publication-title: Am J Physiol Endocrinol Metab. doi: 10.1152/ajpendo.00387.2005 – volume: 288 start-page: 6881 year: 2013 ident: B52 article-title: Sarcolipin protein interaction with sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA) is distinct from phospholamban protein, and only sarcolipin can promote uncoupling of the SERCA pump publication-title: J Biol Chem. doi: 10.1074/jbc.M112.436915 – volume: 48 start-page: 2057 year: 2016 ident: B44 article-title: Creatine transporter deficiency leads to increased whole body and cellular metabolism publication-title: Amino acids. doi: 10.1007/s00726-016-2291-3 – volume: 299 start-page: R1396 year: 2010 ident: B33 article-title: Adaptive thermogenesis and thermal conductance in wild-type and UCP1-KO mice publication-title: Am J Physiol Regul Integr Comp Physiol. doi: 10.1152/ajpregu.00021.2009 – volume: 281 start-page: 16384 year: 2006 ident: B47 article-title: Identification of a Ca2+-ATPase in brown adipose tissue mitochondria: regulation of thermogenesis by ATP and Ca2+ publication-title: J Biol Chem. doi: 10.1074/jbc.M600678200 – volume: 504 start-page: 163 year: 2013 ident: B37 article-title: EHMT1 controls brown adipose cell fate and thermogenesis through the PRDM16 complex publication-title: Nature. doi: 10.1038/nature12652 – volume: 123 start-page: 3395 year: 2013 ident: B14 article-title: Cold acclimation recruits human brown fat and increases nonshivering thermogenesis publication-title: J Clin Invest. doi: 10.1172/JCI68993 – volume: 123 start-page: 3404 year: 2013 ident: B15 article-title: Recruited brown adipose tissue as an antiobesity agent in humans publication-title: J Clin Invest. doi: 10.1172/JCI67803 – volume: 281 start-page: 31894 year: 2006 ident: B30 article-title: UCP1-independent thermogenesis in white adipose tissue of cold-acclimated Ucp1-/- mice publication-title: J Biol Chem. doi: 10.1074/jbc.M606114200 – volume: 278 start-page: 41856 year: 2003 ident: B46 article-title: Brown adipose tissue Ca2+-ATPase: uncoupled ATP hydrolysis and thermogenic activity publication-title: J Biol Chem. doi: 10.1074/jbc.M308280200 – volume: 161 start-page: 395 year: 2012 ident: B34 article-title: Chronic cold acclimation increases thermogenic capacity, non-shivering thermogenesis and muscle citrate synthase activity in both wild-type and brown adipose tissue deficient mice publication-title: Comp Biochem Physiol A, Mol Integr Physiol. doi: 10.1016/j.cbpa.2011.12.012 – volume: 20 start-page: 433 year: 2014 ident: B2 article-title: A switch from white to brown fat increases energy expenditure in cancer-associated cachexia publication-title: Cell Metab. doi: 10.1016/j.cmet.2014.06.011 – volume: 360 start-page: 1518 year: 2009 ident: B6 article-title: Functional brown adipose tissue in healthy adults publication-title: N Engl J Med. doi: 10.1056/NEJMoa0808949 – volume: 19 start-page: 635 year: 2013 ident: B11 article-title: Anatomical localization, gene expression profiling and functional characterization of adult human neck brown fat publication-title: Nat Med. doi: 10.1038/nm.3112 – volume: 387 start-page: 90 year: 1997 ident: B18 article-title: Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese publication-title: Nature. doi: 10.1038/387090a0 – volume: 360 start-page: 1509 year: 2009 ident: B5 article-title: Identification and importance of brown adipose tissue in adult humans publication-title: N Engl J Med. doi: 10.1056/NEJMoa0810780 – volume: 22 start-page: 546 year: 2015 ident: B61 article-title: Brown and beige fat: physiological roles beyond heat generation publication-title: Cell Metab. doi: 10.1016/j.cmet.2015.09.007 |
SSID | ssj0000401998 |
Score | 2.5826468 |
SecondaryResourceType | review_article |
Snippet | Mammals have two types of thermogenic adipocytes: brown adipocytes and beige adipocytes. Thermogenic adipocytes express high levels of uncoupling protein 1... |
SourceID | doaj pubmedcentral proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 498 |
SubjectTerms | adipogenesis beige adipocyte brown adipocyte Endocrinology thermogenic fat uncoupling protein 1 |
SummonAdditionalLinks | – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWgSIgLKl9iaYuMxIVD6Nqx4_iAqrZQlUqLOLBSb5Y_xttIJSm7qdT-e8bedCFSxYlrYivJs2fmvdieIeS990oAirSi0ioUgotQaK6qwtpgQULlpjEdTp59q07n4uxcnv85Hj0AuLpX2qV6UvPl5cebX7cHaPCfkuLEeLsfoQ3pHB9Pu7SErh-SRxiXVCrkMBvIfvbLKCVQXKzXKu_tOIpNOYX_iHeOd03-FYZOtsnTgT_Sw_WAPyMPoH1OHs-GFfIX5Gx-_J3Rz0Np257aNtCvm1K3PcVpsfzZLZKHa1a0aWnW4bnZETQLoIehuer8LTLQl2R-8uXH8Wkx1EsoPPKYvlA5t6mWwTEfYiy1raqgnFMsuBDqKgTUXrJ0rHQKeZCKADLY2ilr1RSiKl-RrbZr4TWhUAJH92OljlKEuna89AJtX0THWAzlhOzfIWX8kEw81bS4NCgqErYmY2sStiZjOyEfNj2u1ok0_tH2KIG_aZdSYOcL3XJhBosyVpS1dV5HrllyPFoC446FKYDnUcsJeXc3dAZNJq2D2Ba665VJORhrIYTmE6JGYzp64vhO21zk5NsKGR2-45v_8Yo75En66PSrmNe7ZKtfXsMecpzevc1T9zdJ0P25 priority: 102 providerName: Scholars Portal |
Title | UCP1 Dependent and Independent Thermogenesis in Brown and Beige Adipocytes |
URI | https://www.proquest.com/docview/2437844492 https://pubmed.ncbi.nlm.nih.gov/PMC7399049 https://doaj.org/article/a438abc9f291425795e12b1d0eec2f95 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQD4gL4lMsXzISFw7Rrh0nto9toZRKiziw0t4s2zMukSBbtemBf8_YSVebC1y4-JBMFOd5bM-L7TeMvY9RKySSVrVWQ6WkgspK3Vbeg8cG27BK-XDy-mt7vlEX22Z7kOor7wkb5YFH4JZe1caHaJO0IvuXbVDIIGCFGGWyRb2U5rwDMlXGYKINRCTGdUliYXaZsId82E_mrVzKmtk8VOT6ZzHmfIfkwZRz9og9nGJFfjzW8TG7h_0Tdn89rYY_ZReb02-Cf5zS2A7c98C_7NPaDpxc4PrX7jKPZt0N73peOHcxO8HuEvkxdFe7-JuizWdsc_bp--l5NeVGqCLFLEOli46pbSCICCnV1rct6BC0gABgWgDiWU0dRB00xTw6ITbgTdDe6xUmXT9nR_2uxxeMY42Shhrf2NQoMCbIOirq5yoFIRLUC7a8Q8rFSTg856_46YhAZGxdwdZlbF3BdsE-7J-4GkUz_mJ7ksHf22W563KBnMBNTuD-5QQL9u6u6Rx1j7zm4Xvc3d64rLdolFJWLpietensjfM7ffejCG1rit6oji__RxVfsQf5o_NvYWles6Ph-hbfUDwzhLfFdan8vBVUrpX5A-Nc93c |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=UCP1+Dependent+and+Independent+Thermogenesis+in+Brown+and+Beige+Adipocytes&rft.jtitle=Frontiers+in+endocrinology+%28Lausanne%29&rft.au=Kenji+Ikeda&rft.au=Tetsuya+Yamada&rft.date=2020-07-28&rft.pub=Frontiers+Media+S.A&rft.eissn=1664-2392&rft.volume=11&rft_id=info:doi/10.3389%2Ffendo.2020.00498&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_a438abc9f291425795e12b1d0eec2f95 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-2392&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-2392&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-2392&client=summon |