Common substitution mutation F348Y of acetylcholinesterase gene contributes to organophosphate and carbamate resistance in Cimex lectularius and C. hemipterus

Bed bug control highly depends on insecticides with a limited number of modes of action, especially since the global prevalence of pyrethroid resistance. De facto insecticide options against bed bugs in Japan are acetylcholinesterase inhibitors (AChEis) that consist of organophosphates and carbamate...

Full description

Saved in:
Bibliographic Details
Published inInsect Biochemistry and Molecular Biology Vol. 138; p. 103637
Main Authors Komagata, Osamu, Kasai, Shinji, Itokawa, Kentaro, Minagawa, Keiko, Kazuma, Toru, Mizutani, Kiyoshi, Muto, Atsuhiko, Tanikawa, Tsutomu, Adachi, Masaya, Komatsu, Noriyuki, Tomita, Takashi
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.11.2021
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Bed bug control highly depends on insecticides with a limited number of modes of action, especially since the global prevalence of pyrethroid resistance. De facto insecticide options against bed bugs in Japan are acetylcholinesterase inhibitors (AChEis) that consist of organophosphates and carbamates. However, the status of AChEi resistance and the mechanisms involved have not been ascertained. An amino acid substitution mutation, F348Y (or F331Y in standard numbering), occurring at an acyl-binding site of the paralogous AChE gene (p-Ace), was identified among AChEi-resistant colonies of both common and tropical bed bugs (Cimex lectularius and C. hemipterus, respectively). This mutation was genetically associated with propoxur and fenitrothion resistance in F348Y-segregating colonies of C. hemipterus. Inhibition of heterologously expressed C. lectularius p-Ace with insecticides revealed that the sensitivities of F348Y-carrying AChE decreased by orders of 10- to more than 100-fold for diazoxon, carbaryl, fenitroxon, paraoxon, chlorpyrifos-methyl, malaoxon, azamethiphos, methyl-paraoxon, and propoxur. In contrast, the mutant AChE showed a slightly decreased degree of sensitivity for dichlorvos and almost unchanged sensitivity for metoxadiazone. Further studies are needed to ascertain whether the practical efficacies of dichlorvos and metoxadiazone are ensured against F348Y-carrying bed bugs and whether other resistance mechanisms are involved. [Display omitted] •Cimex lectularius resistant to organophosphates and carbamates were found.•F348Y (F331Y in standard numbering) amino acid mutations in p-Ace were identified.•F348Y mutation was also identified in the resistant C. hemipterus.•F348Y contributes to p-Ace low sensitivity for the insecticide activators.•F348Y is an important factor in insecticide resistance in both bed bugs.
AbstractList Bed bug control highly depends on insecticides with a limited number of modes of action, especially since the global prevalence of pyrethroid resistance. De facto insecticide options against bed bugs in Japan are acetylcholinesterase inhibitors (AChEis) that consist of organophosphates and carbamates. However, the status of AChEi resistance and the mechanisms involved have not been ascertained. An amino acid substitution mutation, F348Y (or F331Y in standard numbering), occurring at an acyl-binding site of the paralogous AChE gene (p-Ace), was identified among AChEi-resistant colonies of both common and tropical bed bugs (Cimex lectularius and C. hemipterus, respectively). This mutation was genetically associated with propoxur and fenitrothion resistance in F348Y-segregating colonies of C. hemipterus. Inhibition of heterologously expressed C. lectularius p-Ace with insecticides revealed that the sensitivities of F348Y-carrying AChE decreased by orders of 10- to more than 100-fold for diazoxon, carbaryl, fenitroxon, paraoxon, chlorpyrifos-methyl, malaoxon, azamethiphos, methyl-paraoxon, and propoxur. In contrast, the mutant AChE showed a slightly decreased degree of sensitivity for dichlorvos and almost unchanged sensitivity for metoxadiazone. Further studies are needed to ascertain whether the practical efficacies of dichlorvos and metoxadiazone are ensured against F348Y-carrying bed bugs and whether other resistance mechanisms are involved.Bed bug control highly depends on insecticides with a limited number of modes of action, especially since the global prevalence of pyrethroid resistance. De facto insecticide options against bed bugs in Japan are acetylcholinesterase inhibitors (AChEis) that consist of organophosphates and carbamates. However, the status of AChEi resistance and the mechanisms involved have not been ascertained. An amino acid substitution mutation, F348Y (or F331Y in standard numbering), occurring at an acyl-binding site of the paralogous AChE gene (p-Ace), was identified among AChEi-resistant colonies of both common and tropical bed bugs (Cimex lectularius and C. hemipterus, respectively). This mutation was genetically associated with propoxur and fenitrothion resistance in F348Y-segregating colonies of C. hemipterus. Inhibition of heterologously expressed C. lectularius p-Ace with insecticides revealed that the sensitivities of F348Y-carrying AChE decreased by orders of 10- to more than 100-fold for diazoxon, carbaryl, fenitroxon, paraoxon, chlorpyrifos-methyl, malaoxon, azamethiphos, methyl-paraoxon, and propoxur. In contrast, the mutant AChE showed a slightly decreased degree of sensitivity for dichlorvos and almost unchanged sensitivity for metoxadiazone. Further studies are needed to ascertain whether the practical efficacies of dichlorvos and metoxadiazone are ensured against F348Y-carrying bed bugs and whether other resistance mechanisms are involved.
Bed bug control highly depends on insecticides with a limited number of modes of action, especially since the global prevalence of pyrethroid resistance. De facto insecticide options against bed bugs in Japan are acetylcholinesterase inhibitors (AChEis) that consist of organophosphates and carbamates. However, the status of AChEi resistance and the mechanisms involved have not been ascertained. An amino acid substitution mutation, F348Y (or F331Y in standard numbering), occurring at an acyl-binding site of the paralogous AChE gene (p-Ace), was identified among AChEi-resistant colonies of both common and tropical bed bugs (Cimex lectularius and C. hemipterus, respectively). This mutation was genetically associated with propoxur and fenitrothion resistance in F348Y-segregating colonies of C. hemipterus. Inhibition of heterologously expressed C. lectularius p-Ace with insecticides revealed that the sensitivities of F348Y-carrying AChE decreased by orders of 10- to more than 100-fold for diazoxon, carbaryl, fenitroxon, paraoxon, chlorpyrifos-methyl, malaoxon, azamethiphos, methyl-paraoxon, and propoxur. In contrast, the mutant AChE showed a slightly decreased degree of sensitivity for dichlorvos and almost unchanged sensitivity for metoxadiazone. Further studies are needed to ascertain whether the practical efficacies of dichlorvos and metoxadiazone are ensured against F348Y-carrying bed bugs and whether other resistance mechanisms are involved.
Bed bug control highly depends on insecticides with a limited number of modes of action, especially since the global prevalence of pyrethroid resistance. De facto insecticide options against bed bugs in Japan are acetylcholinesterase inhibitors (AChEis) that consist of organophosphates and carbamates. However, the status of AChEi resistance and the mechanisms involved have not been ascertained. An amino acid substitution mutation, F348Y (or F331Y in standard numbering), occurring at an acyl-binding site of the paralogous AChE gene (p-Ace), was identified among AChEi-resistant colonies of both common and tropical bed bugs (Cimex lectularius and C. hemipterus, respectively). This mutation was genetically associated with propoxur and fenitrothion resistance in F348Y-segregating colonies of C. hemipterus. Inhibition of heterologously expressed C. lectularius p-Ace with insecticides revealed that the sensitivities of F348Y-carrying AChE decreased by orders of 10- to more than 100-fold for diazoxon, carbaryl, fenitroxon, paraoxon, chlorpyrifos-methyl, malaoxon, azamethiphos, methyl-paraoxon, and propoxur. In contrast, the mutant AChE showed a slightly decreased degree of sensitivity for dichlorvos and almost unchanged sensitivity for metoxadiazone. Further studies are needed to ascertain whether the practical efficacies of dichlorvos and metoxadiazone are ensured against F348Y-carrying bed bugs and whether other resistance mechanisms are involved. [Display omitted] •Cimex lectularius resistant to organophosphates and carbamates were found.•F348Y (F331Y in standard numbering) amino acid mutations in p-Ace were identified.•F348Y mutation was also identified in the resistant C. hemipterus.•F348Y contributes to p-Ace low sensitivity for the insecticide activators.•F348Y is an important factor in insecticide resistance in both bed bugs.
ArticleNumber 103637
Author Kazuma, Toru
Komatsu, Noriyuki
Komagata, Osamu
Minagawa, Keiko
Adachi, Masaya
Itokawa, Kentaro
Tomita, Takashi
Muto, Atsuhiko
Tanikawa, Tsutomu
Kasai, Shinji
Mizutani, Kiyoshi
Author_xml – sequence: 1
  givenname: Osamu
  orcidid: 0000-0002-8175-6402
  surname: Komagata
  fullname: Komagata, Osamu
  email: komagata@niid.go.jp
  organization: Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, 162-8640, Japan
– sequence: 2
  givenname: Shinji
  surname: Kasai
  fullname: Kasai, Shinji
  organization: Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, 162-8640, Japan
– sequence: 3
  givenname: Kentaro
  orcidid: 0000-0003-1300-9883
  surname: Itokawa
  fullname: Itokawa, Kentaro
  organization: Pathogen Genomics Center, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, 162-8640, Japan
– sequence: 4
  givenname: Keiko
  surname: Minagawa
  fullname: Minagawa, Keiko
  organization: Environmental Biology and Living Environmental Department, Japan Environmental Sanitation Center, Kawasaki-ku, Kawasaki, 210-0828, Japan
– sequence: 5
  givenname: Toru
  surname: Kazuma
  fullname: Kazuma, Toru
  organization: Environmental Biology and Living Environmental Department, Japan Environmental Sanitation Center, Kawasaki-ku, Kawasaki, 210-0828, Japan
– sequence: 6
  givenname: Kiyoshi
  surname: Mizutani
  fullname: Mizutani, Kiyoshi
  organization: Environmental Biology and Living Environmental Department, Japan Environmental Sanitation Center, Kawasaki-ku, Kawasaki, 210-0828, Japan
– sequence: 7
  givenname: Atsuhiko
  surname: Muto
  fullname: Muto, Atsuhiko
  organization: Environmental Biology and Living Environmental Department, Japan Environmental Sanitation Center, Kawasaki-ku, Kawasaki, 210-0828, Japan
– sequence: 8
  givenname: Tsutomu
  surname: Tanikawa
  fullname: Tanikawa, Tsutomu
  organization: Technical Research Laboratory, IKARI Shodoku Co., Ltd., Narashino, Chiba, 275-0024, Japan
– sequence: 9
  givenname: Masaya
  surname: Adachi
  fullname: Adachi, Masaya
  organization: 808 City Co., Ltd., Ota-ku, Tokyo, 143-0026, Japan
– sequence: 10
  givenname: Noriyuki
  surname: Komatsu
  fullname: Komatsu, Noriyuki
  organization: Civil International Corporation, Taito-ku, Tokyo, 110-0014, Japan
– sequence: 11
  givenname: Takashi
  surname: Tomita
  fullname: Tomita, Takashi
  organization: Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, 162-8640, Japan
BackLink https://cir.nii.ac.jp/crid/1874242817690961664$$DView record in CiNii
BookMark eNqFUstu1TAQtVCRuC38ACsvWLDJrR-Jk0hsUEShUiU2sGBlOc6kd64SO9gOoj_Tb8VpWLEoG9tjnzPHM2cuyYXzDgh5y9mRM66uz0fs5_4omOD5QipZvyAH3tRtwUTJLsiBtaoqeF02r8hljGfGWFlW9YE8dn6evaNx7WPCtCbMwbwm83S4kWXzg_qRGgvpYbInP6GDmCCYCPQeHFDrXQrYrwkiTZ76cG-cX04-LieTgBo3UGtCb-YtChAxJuMsUHS0wxl-0wlsWicTcI1P6O5ITzDjkkXW-Jq8HM0U4c3f_Yp8v_n0rftS3H39fNt9vCtsxapUqB6qgUPb8lq2ZmAjG4CXLYPRMtuA2d77WirOTC8HC8zyUfK-6odKjrKp5BV5v-ddgv-55gr1jNHCNBkHfo1aKKkaKURd_h9aKcWEqlWboc0OtcHHGGDUFvfOpmBw0pzpzT191pt7enNP7-5lqviHugScTXh4nvRuJznELLWteQZKUYqG5__kGeBKbRV82GGQO_oLIehoEbIpA4Zshh48PqfyB7G3w7M
CitedBy_id crossref_primary_10_1093_jme_tjac072
crossref_primary_10_3390_insects15100737
crossref_primary_10_1093_jee_toab205
crossref_primary_10_1016_j_drup_2024_101140
crossref_primary_10_1016_j_ijbiomac_2023_126824
crossref_primary_10_1093_jme_tjad038
crossref_primary_10_1021_acs_jafc_3c03493
crossref_primary_10_1021_acs_jafc_4c03157
crossref_primary_10_1016_j_pestbp_2022_105105
crossref_primary_10_1016_j_pestbp_2024_105957
crossref_primary_10_2174_1573396320666230406084801
Cites_doi 10.1021/bi00036a028
10.1038/srep26092
10.1111/j.0962-1075.2004.00517.x
10.1016/j.bbrc.2003.11.141
10.1038/423136b
10.1371/journal.pone.0124220
10.1303/aez.2007.367
10.1111/j.1365-2583.2011.01118.x
10.1186/1471-2148-4-4
10.1371/journal.pntd.0002948
10.1016/S0965-1748(03)00025-0
10.1016/j.bbrc.2008.11.046
10.1002/j.1460-2075.1986.tb04591.x
10.1016/j.ibmb.2014.02.006
10.1371/journal.pone.0232192
10.1186/s13071-017-2232-3
10.1016/S0006-291X(03)01101-X
10.1111/imb.12309
10.1111/j.0962-1075.2004.00513.x
10.1128/CMR.05015-11
10.1021/bi982261f
10.1016/j.ibmb.2011.12.003
10.1016/j.pestbp.2005.10.003
10.7601/mez.61.239
10.1093/milmed/139.11.884
10.1016/0006-2952(61)90145-9
10.1002/ps.1884
10.1016/j.pestbp.2012.04.003
10.1007/s00403-016-1661-8
10.1371/journal.pone.0146021
10.1016/j.pestbp.2004.12.003
10.1021/bi201284u
10.1303/aez.32.37
10.1016/j.pestbp.2005.02.004
10.1248/bpb.33.702
10.1002/ps.3880
10.1016/j.pestbp.2005.12.002
10.3390/molecules22122098
10.1016/j.pestbp.2004.03.002
10.1016/j.ibmb.2008.07.007
ContentType Journal Article
Copyright 2021 The Authors
Copyright © 2021. Published by Elsevier Ltd.
Copyright_xml – notice: 2021 The Authors
– notice: Copyright © 2021. Published by Elsevier Ltd.
DBID 6I.
AAFTH
RYH
AAYXX
CITATION
7X8
7S9
L.6
DOI 10.1016/j.ibmb.2021.103637
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CiNii Complete
CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Zoology
EISSN 1879-0240
ExternalDocumentID 10_1016_j_ibmb_2021_103637
S096517482100120X
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29I
4.4
457
4G.
53G
5GY
5VS
6I.
7-5
71M
8P~
9JM
AABVA
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABFNM
ABGRD
ABGSF
ABJNI
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADQTV
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CBWCG
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HLW
HVGLF
HZ~
IHE
J1W
KOM
LW9
LX3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SBG
SDF
SDG
SES
SEW
SPCBC
SSA
SSU
SSZ
T5K
UHS
WH7
WUQ
Y6R
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
ACVFH
ADCNI
AEIPS
AEUPX
AFPUW
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
RYH
SSH
AAYXX
ABWVN
ACRPL
ADNMO
AFJKZ
AGQPQ
CITATION
7X8
EFKBS
7S9
L.6
ID FETCH-LOGICAL-c505t-6be5d1e991739ad0f0de1490efc0c8ea6be5b73610ab3dce0c1f31b5bd53f3853
IEDL.DBID .~1
ISSN 0965-1748
1879-0240
IngestDate Sun Aug 24 03:38:45 EDT 2025
Tue Aug 05 11:02:51 EDT 2025
Thu Apr 24 23:12:34 EDT 2025
Tue Jul 01 01:50:46 EDT 2025
Thu Jun 26 22:14:11 EDT 2025
Fri Feb 23 02:43:15 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Insecticide resistance
Point mutation
Enzyme inhibitor
Cimex
Recombinant protein
Acetylcholinesterase
Enzyme kinetics
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c505t-6be5d1e991739ad0f0de1490efc0c8ea6be5b73610ab3dce0c1f31b5bd53f3853
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8175-6402
0000-0003-1300-9883
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S096517482100120X
PQID 2566026769
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2636832274
proquest_miscellaneous_2566026769
crossref_citationtrail_10_1016_j_ibmb_2021_103637
crossref_primary_10_1016_j_ibmb_2021_103637
nii_cinii_1874242817690961664
elsevier_sciencedirect_doi_10_1016_j_ibmb_2021_103637
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2021
2021-11-01
2021-11-00
20211101
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: November 2021
PublicationDecade 2020
PublicationTitle Insect Biochemistry and Molecular Biology
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Kikuchi, Okamura, Fukushi, Irie (bib21) 2010; 33
Dang, Doggett, Singham, Lee (bib8) 2017; 10
Romero, Potter, Haynes (bib37) 2007; 35
Michaelis, Menten, Johnson, Goody (bib28) 2011; 50
Kwon, Cha, Kim, Lee, Lee (bib23) 2012; 103
Doggett, Dwyer, Peñas, Russell (bib10) 2012; 25
Hall, Spierer (bib13) 1986; 5
Jiang, Qu, Denholm, Fang, Jiang, Han (bib17) 2009; 378
Toda, Komazaki, Tomita, Kono (bib42) 2004; 13
Baek, Kim, Lee, Chung, Miyata, Lee (bib5) 2005; 81
Anazawa, Tomita, Aiki, Kozaki, Kono (bib3) 2003; 33
Weill, Lutfalla, Mogensen, Chandre, Berthomieu, Berticat, Pasteur, Philips, Fort, Raymond (bib44) 2003; 423
Aiki, Kozaki, Mizuno, Kono (bib1) 2005; 82
Ordentlich, Barak, Kronman, Benschop, De Jong, Ariel, Barak, Segall, Velan, Shafferman (bib33) 1999; 38
Hosea, Berman, Taylor (bib14) 1995; 34
Seong, Kim, Kwon, Lee (bib41) 2012; 21
Romero, Potter, Potter, Haynes (bib38) 2007; 44
Lai, Ho, Glick, Jagdeo (bib25) 2016; 308
Dang, Toi, Lilly, Lee, Naylor, Tawatsin, Thavara, Bu, Doggett (bib9) 2014; 71
Gujar, Palli (bib12) 2016; 6
Menozzi, Shi, Lougarre, Tang, Fournier (bib27) 2004; 4
Russell, Claudianos, Campbell, Horne, Sutherland, Oakeshott (bib40) 2004; 79
Kono, Tomita (bib22) 2006; 85
Mamiya, Ishikawa, Kono (bib26) 1997; 32
Andrews, Callaghan, Field, Williamson, Moores (bib4) 2004; 13
Watanabe (bib43) 2010; 61
Nabeshima, Mori, Kozaki, Iwata, Hidoh, Harada, Kasai, Severson, Kono, Tomita (bib30) 2004; 313
Oh, Kozaki, Tomita, Kono (bib32) 2007; 42
Nabeshima, Kozaki, Tomita, Kono (bib29) 2003; 307
Bartley, Harlan (bib6) 1974; 139
Zhang, Yang, Li, Liu, Liu (bib45) 2017; 26
Oh, Kozaki, Mizuno, Tomita, Kono (bib31) 2006; 85
Ellman, Courtney, Andres, Feather-Stone (bib11) 1961; 7
Ori, Shimogama, Itoh, Takatsuki (bib34) 1967; 8
Ritz, Baty, Streibig, Gerhard (bib36) 2015; 10
Kasai, Komagata, Itokawa, Shono, Ng, Kobayashi, Tomita (bib18) 2014; 8
Alon, Alon, Nauen, Morin (bib2) 2008; 38
Itokawa, Hu, Sukehiro, Tsuda, Komagata, Kasai, Tomita, Minakawa, Sawabe (bib16) 2020; 15
Kaur, Helgesen, Bakke, Horsberg (bib19) 2015; 10
Khajehali, Leeuwen, Grispou, Morou, Alout, Weill, Tirry, Vontas, Tsagkarakou (bib20) 2010; 66
Rosenberry, Brazzolotto, Macdonald, Wandhammer, Trovaslet-Leroy, Darvesh, Nachon (bib39) 2017; 22
Boase (bib7) 2008
Ilias, Vontas, Tsagkarakou (bib15) 2014; 48
Kwon, Choi, Je, Lee (bib24) 2012; 42
(bib35) 2020
Khajehali (10.1016/j.ibmb.2021.103637_bib20) 2010; 66
Michaelis (10.1016/j.ibmb.2021.103637_bib28) 2011; 50
Weill (10.1016/j.ibmb.2021.103637_bib44) 2003; 423
Kasai (10.1016/j.ibmb.2021.103637_bib18) 2014; 8
Ritz (10.1016/j.ibmb.2021.103637_bib36) 2015; 10
Itokawa (10.1016/j.ibmb.2021.103637_bib16) 2020; 15
Mamiya (10.1016/j.ibmb.2021.103637_bib26) 1997; 32
Oh (10.1016/j.ibmb.2021.103637_bib31) 2006; 85
Rosenberry (10.1016/j.ibmb.2021.103637_bib39) 2017; 22
Jiang (10.1016/j.ibmb.2021.103637_bib17) 2009; 378
Ilias (10.1016/j.ibmb.2021.103637_bib15) 2014; 48
Zhang (10.1016/j.ibmb.2021.103637_bib45) 2017; 26
Lai (10.1016/j.ibmb.2021.103637_bib25) 2016; 308
Baek (10.1016/j.ibmb.2021.103637_bib5) 2005; 81
Kono (10.1016/j.ibmb.2021.103637_bib22) 2006; 85
Watanabe (10.1016/j.ibmb.2021.103637_bib43) 2010; 61
Doggett (10.1016/j.ibmb.2021.103637_bib10) 2012; 25
Kikuchi (10.1016/j.ibmb.2021.103637_bib21) 2010; 33
Kwon (10.1016/j.ibmb.2021.103637_bib24) 2012; 42
(10.1016/j.ibmb.2021.103637_bib35) 2020
Romero (10.1016/j.ibmb.2021.103637_bib37) 2007; 35
Seong (10.1016/j.ibmb.2021.103637_bib41) 2012; 21
Kwon (10.1016/j.ibmb.2021.103637_bib23) 2012; 103
Romero (10.1016/j.ibmb.2021.103637_bib38) 2007; 44
Dang (10.1016/j.ibmb.2021.103637_bib9) 2014; 71
Dang (10.1016/j.ibmb.2021.103637_bib8) 2017; 10
Hosea (10.1016/j.ibmb.2021.103637_bib14) 1995; 34
Ellman (10.1016/j.ibmb.2021.103637_bib11) 1961; 7
Ordentlich (10.1016/j.ibmb.2021.103637_bib33) 1999; 38
Andrews (10.1016/j.ibmb.2021.103637_bib4) 2004; 13
Nabeshima (10.1016/j.ibmb.2021.103637_bib29) 2003; 307
Oh (10.1016/j.ibmb.2021.103637_bib32) 2007; 42
Hall (10.1016/j.ibmb.2021.103637_bib13) 1986; 5
Anazawa (10.1016/j.ibmb.2021.103637_bib3) 2003; 33
Menozzi (10.1016/j.ibmb.2021.103637_bib27) 2004; 4
Kaur (10.1016/j.ibmb.2021.103637_bib19) 2015; 10
Toda (10.1016/j.ibmb.2021.103637_bib42) 2004; 13
Aiki (10.1016/j.ibmb.2021.103637_bib1) 2005; 82
Boase (10.1016/j.ibmb.2021.103637_bib7) 2008
Nabeshima (10.1016/j.ibmb.2021.103637_bib30) 2004; 313
Ori (10.1016/j.ibmb.2021.103637_bib34) 1967; 8
Gujar (10.1016/j.ibmb.2021.103637_bib12) 2016; 6
Alon (10.1016/j.ibmb.2021.103637_bib2) 2008; 38
Bartley (10.1016/j.ibmb.2021.103637_bib6) 1974; 139
Russell (10.1016/j.ibmb.2021.103637_bib40) 2004; 79
References_xml – volume: 35
  start-page: 42
  year: 2007
  end-page: 50
  ident: bib37
  article-title: Insecticide-resistant bed bugs: implications for the industry
  publication-title: Pest Contr. Technol.
– volume: 308
  start-page: 531
  year: 2016
  end-page: 538
  ident: bib25
  article-title: Bed bugs and possible transmission of human pathogens: a systematic review
  publication-title: Arch. Dermatol. Res.
– volume: 26
  start-page: 453
  year: 2017
  end-page: 460
  ident: bib45
  article-title: Point mutations in acetylcholinesterase 1 associated with chlorpyrifos resistance in the brown planthopper,
  publication-title: Insect Mol. Biol.
– volume: 32
  start-page: 37
  year: 1997
  end-page: 44
  ident: bib26
  article-title: Acetylcholinesterase in insecticide resistant
  publication-title: Appl. Entomol. Zool.
– volume: 423
  start-page: 136
  year: 2003
  end-page: 137
  ident: bib44
  article-title: Insecticide resistance in mosquito vectors
  publication-title: Nature
– volume: 7
  start-page: 89
  year: 1961
  end-page: 95
  ident: bib11
  article-title: A new and rapid colorimetric determination of acetylcholinesterase activity
  publication-title: Biochem. Pharmacol.
– volume: 34
  start-page: 11528
  year: 1995
  end-page: 11536
  ident: bib14
  article-title: Specificity and orientation of trigonal carboxyl esters and tetrahedral alkylphosphonyl esters in cholinesterases
  publication-title: Biochemistry
– volume: 42
  start-page: 212
  year: 2012
  end-page: 219
  ident: bib24
  article-title: The overexpression of acetylcholinesterase compensates for the reduced catalytic activity caused by resistance-conferring mutations in
  publication-title: Insect Biochem. Mol. Biol.
– volume: 15
  year: 2020
  ident: bib16
  article-title: Genetic analysis of
  publication-title: PloS One
– volume: 33
  start-page: 702
  year: 2010
  end-page: 706
  ident: bib21
  article-title: Piperidine-4-methanthiol ester derivatives for a selective acetylcholinesterase assay
  publication-title: Biol. Pharm. Bull.
– volume: 103
  start-page: 94
  year: 2012
  end-page: 100
  ident: bib23
  article-title: Cloning of the acetylcholinesterase 1 gene and identification of point mutations putatively associated with carbofuran resistance in
  publication-title: Pestic. Biochem. Physiol.
– volume: 378
  start-page: 269
  year: 2009
  end-page: 272
  ident: bib17
  article-title: Mutation in acetylcholinesterase1 associated with triazophos resistance in rice stem borer,
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 42
  start-page: 367
  year: 2007
  end-page: 373
  ident: bib32
  article-title: Biochemical properties of recombinant acetylcholinesterases with amino acid substitutions in the active site
  publication-title: Appl. Entomol. Zool.
– volume: 50
  start-page: 8264
  year: 2011
  end-page: 8269
  ident: bib28
  article-title: The original Michaelis constant: Translation of the 1913 michaelis–menten paper
  publication-title: Biochemistry-us
– volume: 313
  start-page: 794
  year: 2004
  end-page: 801
  ident: bib30
  article-title: An amino acid substitution attributable to insecticide-insensitivity of acetylcholinesterase in a Japanese encephalitis vector mosquito,
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 61
  start-page: 239
  year: 2010
  end-page: 244
  ident: bib43
  article-title: Insecticide susceptibility and effect of heat treatment on bedbug,
  publication-title: Med. Entomol. Zool.
– volume: 21
  start-page: 149
  year: 2012
  end-page: 159
  ident: bib41
  article-title: Identification and characterization of three cholinesterases from the common bed bug,
  publication-title: Insect Mol. Biol.
– volume: 33
  start-page: 509
  year: 2003
  end-page: 514
  ident: bib3
  article-title: Sequence of a cDNA encoding acetylcholinesterase from susceptible and resistant two-spotted spider mite, Tetranychus urticae
  publication-title: Insect Biochem. Mol. Biol.
– volume: 22
  start-page: 2098
  year: 2017
  ident: bib39
  article-title: Comparison of the binding of reversible inhibitors to human butyrylcholinesterase and acetylcholinesterase: a crystallographic, kinetic and calorimetric study
  publication-title: Molecules
– volume: 38
  start-page: 940
  year: 2008
  end-page: 949
  ident: bib2
  article-title: Organophosphates' resistance in the B-biotype of
  publication-title: Insect Biochem. Mol. Biol.
– volume: 38
  start-page: 3055
  year: 1999
  end-page: 3066
  ident: bib33
  article-title: Exploring the active center of human acetylcholinesterase with stereomers of an organophosphorus inhibitor with two chiral centers
  publication-title: Biochemistry
– year: 2020
  ident: bib35
  article-title: R: A Language and Environment for Statistical Computing
– volume: 79
  start-page: 84
  year: 2004
  end-page: 93
  ident: bib40
  article-title: Two major classes of target site insensitivity mutations confer resistance to organophosphate and carbamate insecticides
  publication-title: Pestic. Biochem. Physiol.
– volume: 82
  start-page: 154
  year: 2005
  end-page: 161
  ident: bib1
  article-title: Amino acid substitution in Ace paralogous acetylcholinesterase accompanied by organophosphate resistance in the spider mite
  publication-title: Pestic. Biochem. Physiol.
– volume: 85
  start-page: 46
  year: 2006
  end-page: 51
  ident: bib31
  article-title: Expression of Ace-paralogous acetylcholinesterase of
  publication-title: Pestic. Biochem. Physiol.
– volume: 81
  start-page: 164
  year: 2005
  end-page: 175
  ident: bib5
  article-title: Identification and characterization of ace1-type acetylcholinesterase likely associated with organophosphate resistance in
  publication-title: Pestic. Biochem. Physiol.
– volume: 48
  start-page: 17
  year: 2014
  end-page: 28
  ident: bib15
  article-title: Global distribution and origin of target site insecticide resistance mutations in
  publication-title: Insect Biochem. Mol. Biol.
– volume: 25
  start-page: 164
  year: 2012
  end-page: 192
  ident: bib10
  article-title: Bed bugs: clinical relevance and control options
  publication-title: Clin. Microbiol. Rev.
– volume: 8
  start-page: 166
  year: 1967
  end-page: 169
  ident: bib34
  article-title: Field experiment of controlling common bed bug by residual spray [in Japanese]
  publication-title: Endem. Dis. Bull. Nagasaki Univ.
– start-page: 7
  year: 2008
  end-page: 14
  ident: bib7
  article-title: Bed bugs (Hemiptera: cimicidae): an evidence-based analysis of the current situation
  publication-title: Proceedings of the Sixth International Conference on Urban Pests, Proceedings of the Sixth International Conference on Urban Pests
– volume: 66
  start-page: 220
  year: 2010
  end-page: 228
  ident: bib20
  article-title: Acetylcholinesterase point mutations in European strains of
  publication-title: Pest Manag. Sci.
– volume: 10
  start-page: 318
  year: 2017
  ident: bib8
  article-title: Insecticide resistance and resistance mechanisms in bed bugs,
  publication-title: Parasites Vectors
– volume: 85
  start-page: 123
  year: 2006
  end-page: 132
  ident: bib22
  article-title: Amino acid substitutions conferring insecticide insensitivity in Ace-paralogous acetylcholinesterase
  publication-title: Pestic. Biochem. Physiol.
– volume: 139
  start-page: 884
  year: 1974
  end-page: 886
  ident: bib6
  article-title: Bed bug infestation: its control and management
  publication-title: Mil. Med.
– volume: 6
  start-page: 26092
  year: 2016
  ident: bib12
  article-title: Krüppel homolog 1 and E93 mediate Juvenile hormone regulation of metamorphosis in the common bed bug, Cimex lectularius
  publication-title: Sci Rep-uk
– volume: 5
  start-page: 2949
  year: 1986
  end-page: 2954
  ident: bib13
  article-title: The Ace locus of
  publication-title: EMBO J.
– volume: 307
  start-page: 15
  year: 2003
  end-page: 22
  ident: bib29
  article-title: An amino acid substitution on the second acetylcholinesterase in the pirimicarb-resistant strains of the peach potato aphid,
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 10
  year: 2015
  ident: bib19
  article-title: Mechanism behind resistance against the organophosphate azamethiphos in salmon lice (
  publication-title: PloS One
– volume: 13
  start-page: 555
  year: 2004
  end-page: 561
  ident: bib4
  article-title: Identification of mutations conferring insecticide-insensitive AChE in the cotton-melon aphid,
  publication-title: Insect Mol. Biol.
– volume: 44
  start-page: 175
  year: 2007
  end-page: 178
  ident: bib38
  article-title: Insecticide resistance in the bed bug: a factor in the pests sudden resurgence?
  publication-title: J. Med. Entomol.
– volume: 4
  start-page: 4
  year: 2004
  ident: bib27
  article-title: Mutations of acetylcholinesterase which confer insecticide resistance in Drosophila melanogaster populations
  publication-title: BMC Evol. Biol.
– volume: 8
  start-page: e2948
  year: 2014
  ident: bib18
  article-title: Mechanisms of pyrethroid resistance in the dengue mosquito vector, Aedes aegypti: target site insensitivity, penetration, and metabolism
  publication-title: PLoS Neglected Trop. Dis.
– volume: 71
  start-page: 1015
  year: 2014
  end-page: 1020
  ident: bib9
  article-title: Identification of putative kdr mutations in the tropical bed bug,
  publication-title: Pest Manag. Sci.
– volume: 10
  year: 2015
  ident: bib36
  article-title: Dose-response analysis using R
  publication-title: PloS One
– volume: 13
  start-page: 549
  year: 2004
  end-page: 553
  ident: bib42
  article-title: Two amino acid substitutions in acetylcholinesterase associated with pirimicarb and organophosphorous insecticide resistance in the cotton aphid,
  publication-title: Insect Mol. Biol.
– volume: 34
  start-page: 11528
  year: 1995
  ident: 10.1016/j.ibmb.2021.103637_bib14
  article-title: Specificity and orientation of trigonal carboxyl esters and tetrahedral alkylphosphonyl esters in cholinesterases
  publication-title: Biochemistry
  doi: 10.1021/bi00036a028
– volume: 6
  start-page: 26092
  year: 2016
  ident: 10.1016/j.ibmb.2021.103637_bib12
  article-title: Krüppel homolog 1 and E93 mediate Juvenile hormone regulation of metamorphosis in the common bed bug, Cimex lectularius
  publication-title: Sci Rep-uk
  doi: 10.1038/srep26092
– volume: 13
  start-page: 555
  year: 2004
  ident: 10.1016/j.ibmb.2021.103637_bib4
  article-title: Identification of mutations conferring insecticide-insensitive AChE in the cotton-melon aphid, Aphis gossypii Glover
  publication-title: Insect Mol. Biol.
  doi: 10.1111/j.0962-1075.2004.00517.x
– volume: 313
  start-page: 794
  year: 2004
  ident: 10.1016/j.ibmb.2021.103637_bib30
  article-title: An amino acid substitution attributable to insecticide-insensitivity of acetylcholinesterase in a Japanese encephalitis vector mosquito, Culex tritaeniorhynchus
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2003.11.141
– volume: 423
  start-page: 136
  year: 2003
  ident: 10.1016/j.ibmb.2021.103637_bib44
  article-title: Insecticide resistance in mosquito vectors
  publication-title: Nature
  doi: 10.1038/423136b
– volume: 10
  year: 2015
  ident: 10.1016/j.ibmb.2021.103637_bib19
  article-title: Mechanism behind resistance against the organophosphate azamethiphos in salmon lice (Lepeophtheirus salmonis)
  publication-title: PloS One
  doi: 10.1371/journal.pone.0124220
– volume: 42
  start-page: 367
  year: 2007
  ident: 10.1016/j.ibmb.2021.103637_bib32
  article-title: Biochemical properties of recombinant acetylcholinesterases with amino acid substitutions in the active site
  publication-title: Appl. Entomol. Zool.
  doi: 10.1303/aez.2007.367
– volume: 44
  start-page: 175
  year: 2007
  ident: 10.1016/j.ibmb.2021.103637_bib38
  article-title: Insecticide resistance in the bed bug: a factor in the pests sudden resurgence?
  publication-title: J. Med. Entomol.
– volume: 21
  start-page: 149
  year: 2012
  ident: 10.1016/j.ibmb.2021.103637_bib41
  article-title: Identification and characterization of three cholinesterases from the common bed bug, Cimex lectularius
  publication-title: Insect Mol. Biol.
  doi: 10.1111/j.1365-2583.2011.01118.x
– volume: 4
  start-page: 4
  year: 2004
  ident: 10.1016/j.ibmb.2021.103637_bib27
  article-title: Mutations of acetylcholinesterase which confer insecticide resistance in Drosophila melanogaster populations
  publication-title: BMC Evol. Biol.
  doi: 10.1186/1471-2148-4-4
– volume: 8
  start-page: e2948
  year: 2014
  ident: 10.1016/j.ibmb.2021.103637_bib18
  article-title: Mechanisms of pyrethroid resistance in the dengue mosquito vector, Aedes aegypti: target site insensitivity, penetration, and metabolism
  publication-title: PLoS Neglected Trop. Dis.
  doi: 10.1371/journal.pntd.0002948
– volume: 8
  start-page: 166
  year: 1967
  ident: 10.1016/j.ibmb.2021.103637_bib34
  article-title: Field experiment of controlling common bed bug by residual spray [in Japanese]
  publication-title: Endem. Dis. Bull. Nagasaki Univ.
– volume: 33
  start-page: 509
  year: 2003
  ident: 10.1016/j.ibmb.2021.103637_bib3
  article-title: Sequence of a cDNA encoding acetylcholinesterase from susceptible and resistant two-spotted spider mite, Tetranychus urticae
  publication-title: Insect Biochem. Mol. Biol.
  doi: 10.1016/S0965-1748(03)00025-0
– volume: 378
  start-page: 269
  year: 2009
  ident: 10.1016/j.ibmb.2021.103637_bib17
  article-title: Mutation in acetylcholinesterase1 associated with triazophos resistance in rice stem borer, Chilo suppressalis (Lepidoptera: Pyralidae)
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2008.11.046
– volume: 5
  start-page: 2949
  year: 1986
  ident: 10.1016/j.ibmb.2021.103637_bib13
  article-title: The Ace locus of Drosophila melanogaster: structural gene for acetylcholinesterase with an unusual 5′ leader
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1986.tb04591.x
– volume: 48
  start-page: 17
  year: 2014
  ident: 10.1016/j.ibmb.2021.103637_bib15
  article-title: Global distribution and origin of target site insecticide resistance mutations in Tetranychus urticae
  publication-title: Insect Biochem. Mol. Biol.
  doi: 10.1016/j.ibmb.2014.02.006
– volume: 15
  year: 2020
  ident: 10.1016/j.ibmb.2021.103637_bib16
  article-title: Genetic analysis of Aedes aegypti captured at two international airports serving to the Greater Tokyo Area during 2012–2015
  publication-title: PloS One
  doi: 10.1371/journal.pone.0232192
– volume: 10
  start-page: 318
  year: 2017
  ident: 10.1016/j.ibmb.2021.103637_bib8
  article-title: Insecticide resistance and resistance mechanisms in bed bugs, Cimex spp. (Hemiptera: cimicidae)
  publication-title: Parasites Vectors
  doi: 10.1186/s13071-017-2232-3
– volume: 307
  start-page: 15
  year: 2003
  ident: 10.1016/j.ibmb.2021.103637_bib29
  article-title: An amino acid substitution on the second acetylcholinesterase in the pirimicarb-resistant strains of the peach potato aphid, Myzus persicae
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/S0006-291X(03)01101-X
– volume: 26
  start-page: 453
  year: 2017
  ident: 10.1016/j.ibmb.2021.103637_bib45
  article-title: Point mutations in acetylcholinesterase 1 associated with chlorpyrifos resistance in the brown planthopper, Nilaparvata lugens Stål
  publication-title: Insect Mol. Biol.
  doi: 10.1111/imb.12309
– volume: 13
  start-page: 549
  year: 2004
  ident: 10.1016/j.ibmb.2021.103637_bib42
  article-title: Two amino acid substitutions in acetylcholinesterase associated with pirimicarb and organophosphorous insecticide resistance in the cotton aphid, Aphis gossypii Glover (Homoptera: aphididae)
  publication-title: Insect Mol. Biol.
  doi: 10.1111/j.0962-1075.2004.00513.x
– start-page: 7
  year: 2008
  ident: 10.1016/j.ibmb.2021.103637_bib7
  article-title: Bed bugs (Hemiptera: cimicidae): an evidence-based analysis of the current situation
– volume: 25
  start-page: 164
  year: 2012
  ident: 10.1016/j.ibmb.2021.103637_bib10
  article-title: Bed bugs: clinical relevance and control options
  publication-title: Clin. Microbiol. Rev.
  doi: 10.1128/CMR.05015-11
– volume: 38
  start-page: 3055
  year: 1999
  ident: 10.1016/j.ibmb.2021.103637_bib33
  article-title: Exploring the active center of human acetylcholinesterase with stereomers of an organophosphorus inhibitor with two chiral centers
  publication-title: Biochemistry
  doi: 10.1021/bi982261f
– year: 2020
  ident: 10.1016/j.ibmb.2021.103637_bib35
– volume: 42
  start-page: 212
  year: 2012
  ident: 10.1016/j.ibmb.2021.103637_bib24
  article-title: The overexpression of acetylcholinesterase compensates for the reduced catalytic activity caused by resistance-conferring mutations in Tetranychus urticae
  publication-title: Insect Biochem. Mol. Biol.
  doi: 10.1016/j.ibmb.2011.12.003
– volume: 85
  start-page: 46
  year: 2006
  ident: 10.1016/j.ibmb.2021.103637_bib31
  article-title: Expression of Ace-paralogous acetylcholinesterase of Culex tritaeniorhynchus with an amino acid substitution conferring insecticide insensitivity in baculovirus-insect cell system
  publication-title: Pestic. Biochem. Physiol.
  doi: 10.1016/j.pestbp.2005.10.003
– volume: 61
  start-page: 239
  year: 2010
  ident: 10.1016/j.ibmb.2021.103637_bib43
  article-title: Insecticide susceptibility and effect of heat treatment on bedbug, Cimex lectularius
  publication-title: Med. Entomol. Zool.
  doi: 10.7601/mez.61.239
– volume: 139
  start-page: 884
  year: 1974
  ident: 10.1016/j.ibmb.2021.103637_bib6
  article-title: Bed bug infestation: its control and management
  publication-title: Mil. Med.
  doi: 10.1093/milmed/139.11.884
– volume: 7
  start-page: 89
  year: 1961
  ident: 10.1016/j.ibmb.2021.103637_bib11
  article-title: A new and rapid colorimetric determination of acetylcholinesterase activity
  publication-title: Biochem. Pharmacol.
  doi: 10.1016/0006-2952(61)90145-9
– volume: 66
  start-page: 220
  year: 2010
  ident: 10.1016/j.ibmb.2021.103637_bib20
  article-title: Acetylcholinesterase point mutations in European strains of Tetranychus urticae (Acari: Tetranychidae) resistant to organophosphates
  publication-title: Pest Manag. Sci.
  doi: 10.1002/ps.1884
– volume: 103
  start-page: 94
  year: 2012
  ident: 10.1016/j.ibmb.2021.103637_bib23
  article-title: Cloning of the acetylcholinesterase 1 gene and identification of point mutations putatively associated with carbofuran resistance in Nilaparvata lugens
  publication-title: Pestic. Biochem. Physiol.
  doi: 10.1016/j.pestbp.2012.04.003
– volume: 308
  start-page: 531
  year: 2016
  ident: 10.1016/j.ibmb.2021.103637_bib25
  article-title: Bed bugs and possible transmission of human pathogens: a systematic review
  publication-title: Arch. Dermatol. Res.
  doi: 10.1007/s00403-016-1661-8
– volume: 10
  year: 2015
  ident: 10.1016/j.ibmb.2021.103637_bib36
  article-title: Dose-response analysis using R
  publication-title: PloS One
  doi: 10.1371/journal.pone.0146021
– volume: 35
  start-page: 42
  year: 2007
  ident: 10.1016/j.ibmb.2021.103637_bib37
  article-title: Insecticide-resistant bed bugs: implications for the industry
  publication-title: Pest Contr. Technol.
– volume: 81
  start-page: 164
  year: 2005
  ident: 10.1016/j.ibmb.2021.103637_bib5
  article-title: Identification and characterization of ace1-type acetylcholinesterase likely associated with organophosphate resistance in Plutella xylostella
  publication-title: Pestic. Biochem. Physiol.
  doi: 10.1016/j.pestbp.2004.12.003
– volume: 50
  start-page: 8264
  year: 2011
  ident: 10.1016/j.ibmb.2021.103637_bib28
  article-title: The original Michaelis constant: Translation of the 1913 michaelis–menten paper
  publication-title: Biochemistry-us
  doi: 10.1021/bi201284u
– volume: 32
  start-page: 37
  year: 1997
  ident: 10.1016/j.ibmb.2021.103637_bib26
  article-title: Acetylcholinesterase in insecticide resistant Culex tritaeniorhynchus: characteristics accompanying insensitivity to inhibitors
  publication-title: Appl. Entomol. Zool.
  doi: 10.1303/aez.32.37
– volume: 82
  start-page: 154
  year: 2005
  ident: 10.1016/j.ibmb.2021.103637_bib1
  article-title: Amino acid substitution in Ace paralogous acetylcholinesterase accompanied by organophosphate resistance in the spider mite Tetranychus kanzawai
  publication-title: Pestic. Biochem. Physiol.
  doi: 10.1016/j.pestbp.2005.02.004
– volume: 33
  start-page: 702
  year: 2010
  ident: 10.1016/j.ibmb.2021.103637_bib21
  article-title: Piperidine-4-methanthiol ester derivatives for a selective acetylcholinesterase assay
  publication-title: Biol. Pharm. Bull.
  doi: 10.1248/bpb.33.702
– volume: 71
  start-page: 1015
  year: 2014
  ident: 10.1016/j.ibmb.2021.103637_bib9
  article-title: Identification of putative kdr mutations in the tropical bed bug, Cimex hemipterus (Hemiptera: cimicidae)
  publication-title: Pest Manag. Sci.
  doi: 10.1002/ps.3880
– volume: 85
  start-page: 123
  year: 2006
  ident: 10.1016/j.ibmb.2021.103637_bib22
  article-title: Amino acid substitutions conferring insecticide insensitivity in Ace-paralogous acetylcholinesterase
  publication-title: Pestic. Biochem. Physiol.
  doi: 10.1016/j.pestbp.2005.12.002
– volume: 22
  start-page: 2098
  year: 2017
  ident: 10.1016/j.ibmb.2021.103637_bib39
  article-title: Comparison of the binding of reversible inhibitors to human butyrylcholinesterase and acetylcholinesterase: a crystallographic, kinetic and calorimetric study
  publication-title: Molecules
  doi: 10.3390/molecules22122098
– volume: 79
  start-page: 84
  year: 2004
  ident: 10.1016/j.ibmb.2021.103637_bib40
  article-title: Two major classes of target site insensitivity mutations confer resistance to organophosphate and carbamate insecticides
  publication-title: Pestic. Biochem. Physiol.
  doi: 10.1016/j.pestbp.2004.03.002
– volume: 38
  start-page: 940
  year: 2008
  ident: 10.1016/j.ibmb.2021.103637_bib2
  article-title: Organophosphates' resistance in the B-biotype of Bemisia tabaci (Hemiptera: aleyrodidae) is associated with a point mutation in an ace1-type acetylcholinesterase and overexpression of carboxylesterase
  publication-title: Insect Biochem. Mol. Biol.
  doi: 10.1016/j.ibmb.2008.07.007
SSID ssj0004457
ssib006546618
Score 2.407362
Snippet Bed bug control highly depends on insecticides with a limited number of modes of action, especially since the global prevalence of pyrethroid resistance. De...
SourceID proquest
crossref
nii
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 103637
SubjectTerms Acetylcholinesterase
amino acid substitution
Animals
azamethiphos
Bedbugs
Carbamates
carbaryl
chlorpyrifos-methyl
Cimex
Cimex lectularius
dichlorvos
Enzyme inhibitor
Enzyme kinetics
Female
fenitrothion
genes
insect biochemistry
Insect Proteins
Insecticide Resistance
Insecticides
Japan
malaoxon
Male
molecular biology
mutants
Mutation
Organophosphates
paraoxon
Point mutation
propoxur
pyrethrins
Recombinant protein
Species Specificity
Title Common substitution mutation F348Y of acetylcholinesterase gene contributes to organophosphate and carbamate resistance in Cimex lectularius and C. hemipterus
URI https://dx.doi.org/10.1016/j.ibmb.2021.103637
https://cir.nii.ac.jp/crid/1874242817690961664
https://www.proquest.com/docview/2566026769
https://www.proquest.com/docview/2636832274
Volume 138
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Ni9RAEG3WFdGL6Kq46i4teJPspKc7nZ7jEhxGxb3owuil6a-wkZ0kmAT04k_xt1rVSRRR5uBlIJkKU3RVql5N1-si5AW8ywwyt01YZm0irHHJKjMiSeXSq1QYpQwWiu8u5OZSvNlm2wNSzFwYbKucYv8Y02O0nu4sptVctFW1eI_nlgCeVksWGaBbZLCLHL387PvvNg8hxtM-QThB6Yk4M_Z4VXZnoUZcMuSeS5yF_u_kdKOuqr-CdcxA63vk7gQd6fmo3X1yEOojcruYJ7YdkVufmvgn-QPyA3kfTU07CAuxFwBWn-6GcdudrrlQH2lTUuNC_-0aAyA2vyMXuQsUPCrQ2MGOo7BCR_uGxtlPTXvVdO0VgFNqak8d7lTs8AoqdkShsHS0qmlR7cJXGpkpUDVXQxelizOKirbwI0P3kFyuX30oNsk0iSFxgJD6RNqQeRYAS-Z8ZXxapj5AaZWG0qVOBYPf25wDFDOWexdSx0rObGZ9xksOiOAROaybOjwm1AhmuJRWQl4USgqVGg93uIfCR6ZBHBM2m0C76ZhynJZxred-tM8azabRbHo02zF5-euZdjykY690NltW_-FqGrLI3udOwA1AKfzEUYaAbhTL5Qqn5kgJmj-fHUSD4XHjxdShGToNsDJO-pKrPTKSS4yuuXjyn_o9JXfwaiRKPiOH_ZchnABi6u1pfCVOyc3z1283Fz8Bsu8VGw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELVKESoXBAVEoQUjwQmlG8eO13voAS2stvTjQistXIydOGpQN4maRNBLf0r_BH-QGScBIdAekHpZaRNHO8qzZ96sZ_wIeQVrmUHktgGLrQ2ENUkwiY0IQhmlKhRGKYOJ4tGxnJ-KD4t4sUZ-DL0wWFbZ-_7Op3tv3V8Z9W9zVOX56COeWwJ8WkXMd4Au-srKA3f5DfK2em__HYD8Oopm70-m86CXFggSCPlNIK2LU-aAHI35xKRhFqYOcoXQZUmYKGfwvh1z4BbG8jRxYcIyzmxs05hnXKFUBPj92wLcBcom7F79risRojteFKwL0Ly-U6crKsvt0kJSGjFsdpcovv7vaHiryPO_ooMPebP75F7PVenb7nU8IGuu2CQb00EibpPc-Vz6f-UfkmtsNCkLWoMf8sUHADddtt0-P51xoT7RMqMmcc3lOXpcrLbH5ufaUZjCjvqSedTecjVtSurFpsrqrKyrM2DD1BQpTXBrZInfLlyNtBewonlBp_nSfae-FQbS9Lyt_ejpLkVDK_iRtn5ETm8En8dkvSgL94RQI5jhUloJgVgoKVRoUrjCU8i0ZOjEFmEDBDrpz0VHeY5zPRTAfdUIm0bYdAfbFnnz65mqOxVk5eh4QFb_Mbc1hK2Vz-3ANACj8BO1E4FOKTaWE5TpkRIsfzlMEA3A406PKVzZ1hp4rJcWk5MVYySX6M7H4ul_2veCbMxPjg714f7xwTNyF-90XZrbZL25aN0O0LXGPvfLg5IvN70efwIszlI5
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Common+substitution+mutation+F348Y+of+acetylcholinesterase+gene+contributes+to+organophosphate+and+carbamate+resistance+in+Cimex+lectularius+and+C.+hemipterus&rft.jtitle=Insect+biochemistry+and+molecular+biology&rft.au=Komagata%2C+Osamu&rft.au=Kasai%2C+Shinji&rft.au=Itokawa%2C+Kentaro&rft.au=Minagawa%2C+Keiko&rft.date=2021-11-01&rft.pub=Elsevier+Ltd&rft.issn=0965-1748&rft.eissn=1879-0240&rft.volume=138&rft_id=info:doi/10.1016%2Fj.ibmb.2021.103637&rft.externalDocID=S096517482100120X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0965-1748&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0965-1748&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0965-1748&client=summon