Common substitution mutation F348Y of acetylcholinesterase gene contributes to organophosphate and carbamate resistance in Cimex lectularius and C. hemipterus
Bed bug control highly depends on insecticides with a limited number of modes of action, especially since the global prevalence of pyrethroid resistance. De facto insecticide options against bed bugs in Japan are acetylcholinesterase inhibitors (AChEis) that consist of organophosphates and carbamate...
Saved in:
Published in | Insect Biochemistry and Molecular Biology Vol. 138; p. 103637 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.11.2021
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Bed bug control highly depends on insecticides with a limited number of modes of action, especially since the global prevalence of pyrethroid resistance. De facto insecticide options against bed bugs in Japan are acetylcholinesterase inhibitors (AChEis) that consist of organophosphates and carbamates. However, the status of AChEi resistance and the mechanisms involved have not been ascertained. An amino acid substitution mutation, F348Y (or F331Y in standard numbering), occurring at an acyl-binding site of the paralogous AChE gene (p-Ace), was identified among AChEi-resistant colonies of both common and tropical bed bugs (Cimex lectularius and C. hemipterus, respectively). This mutation was genetically associated with propoxur and fenitrothion resistance in F348Y-segregating colonies of C. hemipterus. Inhibition of heterologously expressed C. lectularius p-Ace with insecticides revealed that the sensitivities of F348Y-carrying AChE decreased by orders of 10- to more than 100-fold for diazoxon, carbaryl, fenitroxon, paraoxon, chlorpyrifos-methyl, malaoxon, azamethiphos, methyl-paraoxon, and propoxur. In contrast, the mutant AChE showed a slightly decreased degree of sensitivity for dichlorvos and almost unchanged sensitivity for metoxadiazone. Further studies are needed to ascertain whether the practical efficacies of dichlorvos and metoxadiazone are ensured against F348Y-carrying bed bugs and whether other resistance mechanisms are involved.
[Display omitted]
•Cimex lectularius resistant to organophosphates and carbamates were found.•F348Y (F331Y in standard numbering) amino acid mutations in p-Ace were identified.•F348Y mutation was also identified in the resistant C. hemipterus.•F348Y contributes to p-Ace low sensitivity for the insecticide activators.•F348Y is an important factor in insecticide resistance in both bed bugs. |
---|---|
AbstractList | Bed bug control highly depends on insecticides with a limited number of modes of action, especially since the global prevalence of pyrethroid resistance. De facto insecticide options against bed bugs in Japan are acetylcholinesterase inhibitors (AChEis) that consist of organophosphates and carbamates. However, the status of AChEi resistance and the mechanisms involved have not been ascertained. An amino acid substitution mutation, F348Y (or F331Y in standard numbering), occurring at an acyl-binding site of the paralogous AChE gene (p-Ace), was identified among AChEi-resistant colonies of both common and tropical bed bugs (Cimex lectularius and C. hemipterus, respectively). This mutation was genetically associated with propoxur and fenitrothion resistance in F348Y-segregating colonies of C. hemipterus. Inhibition of heterologously expressed C. lectularius p-Ace with insecticides revealed that the sensitivities of F348Y-carrying AChE decreased by orders of 10- to more than 100-fold for diazoxon, carbaryl, fenitroxon, paraoxon, chlorpyrifos-methyl, malaoxon, azamethiphos, methyl-paraoxon, and propoxur. In contrast, the mutant AChE showed a slightly decreased degree of sensitivity for dichlorvos and almost unchanged sensitivity for metoxadiazone. Further studies are needed to ascertain whether the practical efficacies of dichlorvos and metoxadiazone are ensured against F348Y-carrying bed bugs and whether other resistance mechanisms are involved.Bed bug control highly depends on insecticides with a limited number of modes of action, especially since the global prevalence of pyrethroid resistance. De facto insecticide options against bed bugs in Japan are acetylcholinesterase inhibitors (AChEis) that consist of organophosphates and carbamates. However, the status of AChEi resistance and the mechanisms involved have not been ascertained. An amino acid substitution mutation, F348Y (or F331Y in standard numbering), occurring at an acyl-binding site of the paralogous AChE gene (p-Ace), was identified among AChEi-resistant colonies of both common and tropical bed bugs (Cimex lectularius and C. hemipterus, respectively). This mutation was genetically associated with propoxur and fenitrothion resistance in F348Y-segregating colonies of C. hemipterus. Inhibition of heterologously expressed C. lectularius p-Ace with insecticides revealed that the sensitivities of F348Y-carrying AChE decreased by orders of 10- to more than 100-fold for diazoxon, carbaryl, fenitroxon, paraoxon, chlorpyrifos-methyl, malaoxon, azamethiphos, methyl-paraoxon, and propoxur. In contrast, the mutant AChE showed a slightly decreased degree of sensitivity for dichlorvos and almost unchanged sensitivity for metoxadiazone. Further studies are needed to ascertain whether the practical efficacies of dichlorvos and metoxadiazone are ensured against F348Y-carrying bed bugs and whether other resistance mechanisms are involved. Bed bug control highly depends on insecticides with a limited number of modes of action, especially since the global prevalence of pyrethroid resistance. De facto insecticide options against bed bugs in Japan are acetylcholinesterase inhibitors (AChEis) that consist of organophosphates and carbamates. However, the status of AChEi resistance and the mechanisms involved have not been ascertained. An amino acid substitution mutation, F348Y (or F331Y in standard numbering), occurring at an acyl-binding site of the paralogous AChE gene (p-Ace), was identified among AChEi-resistant colonies of both common and tropical bed bugs (Cimex lectularius and C. hemipterus, respectively). This mutation was genetically associated with propoxur and fenitrothion resistance in F348Y-segregating colonies of C. hemipterus. Inhibition of heterologously expressed C. lectularius p-Ace with insecticides revealed that the sensitivities of F348Y-carrying AChE decreased by orders of 10- to more than 100-fold for diazoxon, carbaryl, fenitroxon, paraoxon, chlorpyrifos-methyl, malaoxon, azamethiphos, methyl-paraoxon, and propoxur. In contrast, the mutant AChE showed a slightly decreased degree of sensitivity for dichlorvos and almost unchanged sensitivity for metoxadiazone. Further studies are needed to ascertain whether the practical efficacies of dichlorvos and metoxadiazone are ensured against F348Y-carrying bed bugs and whether other resistance mechanisms are involved. Bed bug control highly depends on insecticides with a limited number of modes of action, especially since the global prevalence of pyrethroid resistance. De facto insecticide options against bed bugs in Japan are acetylcholinesterase inhibitors (AChEis) that consist of organophosphates and carbamates. However, the status of AChEi resistance and the mechanisms involved have not been ascertained. An amino acid substitution mutation, F348Y (or F331Y in standard numbering), occurring at an acyl-binding site of the paralogous AChE gene (p-Ace), was identified among AChEi-resistant colonies of both common and tropical bed bugs (Cimex lectularius and C. hemipterus, respectively). This mutation was genetically associated with propoxur and fenitrothion resistance in F348Y-segregating colonies of C. hemipterus. Inhibition of heterologously expressed C. lectularius p-Ace with insecticides revealed that the sensitivities of F348Y-carrying AChE decreased by orders of 10- to more than 100-fold for diazoxon, carbaryl, fenitroxon, paraoxon, chlorpyrifos-methyl, malaoxon, azamethiphos, methyl-paraoxon, and propoxur. In contrast, the mutant AChE showed a slightly decreased degree of sensitivity for dichlorvos and almost unchanged sensitivity for metoxadiazone. Further studies are needed to ascertain whether the practical efficacies of dichlorvos and metoxadiazone are ensured against F348Y-carrying bed bugs and whether other resistance mechanisms are involved. [Display omitted] •Cimex lectularius resistant to organophosphates and carbamates were found.•F348Y (F331Y in standard numbering) amino acid mutations in p-Ace were identified.•F348Y mutation was also identified in the resistant C. hemipterus.•F348Y contributes to p-Ace low sensitivity for the insecticide activators.•F348Y is an important factor in insecticide resistance in both bed bugs. |
ArticleNumber | 103637 |
Author | Kazuma, Toru Komatsu, Noriyuki Komagata, Osamu Minagawa, Keiko Adachi, Masaya Itokawa, Kentaro Tomita, Takashi Muto, Atsuhiko Tanikawa, Tsutomu Kasai, Shinji Mizutani, Kiyoshi |
Author_xml | – sequence: 1 givenname: Osamu orcidid: 0000-0002-8175-6402 surname: Komagata fullname: Komagata, Osamu email: komagata@niid.go.jp organization: Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, 162-8640, Japan – sequence: 2 givenname: Shinji surname: Kasai fullname: Kasai, Shinji organization: Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, 162-8640, Japan – sequence: 3 givenname: Kentaro orcidid: 0000-0003-1300-9883 surname: Itokawa fullname: Itokawa, Kentaro organization: Pathogen Genomics Center, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, 162-8640, Japan – sequence: 4 givenname: Keiko surname: Minagawa fullname: Minagawa, Keiko organization: Environmental Biology and Living Environmental Department, Japan Environmental Sanitation Center, Kawasaki-ku, Kawasaki, 210-0828, Japan – sequence: 5 givenname: Toru surname: Kazuma fullname: Kazuma, Toru organization: Environmental Biology and Living Environmental Department, Japan Environmental Sanitation Center, Kawasaki-ku, Kawasaki, 210-0828, Japan – sequence: 6 givenname: Kiyoshi surname: Mizutani fullname: Mizutani, Kiyoshi organization: Environmental Biology and Living Environmental Department, Japan Environmental Sanitation Center, Kawasaki-ku, Kawasaki, 210-0828, Japan – sequence: 7 givenname: Atsuhiko surname: Muto fullname: Muto, Atsuhiko organization: Environmental Biology and Living Environmental Department, Japan Environmental Sanitation Center, Kawasaki-ku, Kawasaki, 210-0828, Japan – sequence: 8 givenname: Tsutomu surname: Tanikawa fullname: Tanikawa, Tsutomu organization: Technical Research Laboratory, IKARI Shodoku Co., Ltd., Narashino, Chiba, 275-0024, Japan – sequence: 9 givenname: Masaya surname: Adachi fullname: Adachi, Masaya organization: 808 City Co., Ltd., Ota-ku, Tokyo, 143-0026, Japan – sequence: 10 givenname: Noriyuki surname: Komatsu fullname: Komatsu, Noriyuki organization: Civil International Corporation, Taito-ku, Tokyo, 110-0014, Japan – sequence: 11 givenname: Takashi surname: Tomita fullname: Tomita, Takashi organization: Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, 162-8640, Japan |
BackLink | https://cir.nii.ac.jp/crid/1874242817690961664$$DView record in CiNii |
BookMark | eNqFUstu1TAQtVCRuC38ACsvWLDJrR-Jk0hsUEShUiU2sGBlOc6kd64SO9gOoj_Tb8VpWLEoG9tjnzPHM2cuyYXzDgh5y9mRM66uz0fs5_4omOD5QipZvyAH3tRtwUTJLsiBtaoqeF02r8hljGfGWFlW9YE8dn6evaNx7WPCtCbMwbwm83S4kWXzg_qRGgvpYbInP6GDmCCYCPQeHFDrXQrYrwkiTZ76cG-cX04-LieTgBo3UGtCb-YtChAxJuMsUHS0wxl-0wlsWicTcI1P6O5ITzDjkkXW-Jq8HM0U4c3f_Yp8v_n0rftS3H39fNt9vCtsxapUqB6qgUPb8lq2ZmAjG4CXLYPRMtuA2d77WirOTC8HC8zyUfK-6odKjrKp5BV5v-ddgv-55gr1jNHCNBkHfo1aKKkaKURd_h9aKcWEqlWboc0OtcHHGGDUFvfOpmBw0pzpzT191pt7enNP7-5lqviHugScTXh4nvRuJznELLWteQZKUYqG5__kGeBKbRV82GGQO_oLIehoEbIpA4Zshh48PqfyB7G3w7M |
CitedBy_id | crossref_primary_10_1093_jme_tjac072 crossref_primary_10_3390_insects15100737 crossref_primary_10_1093_jee_toab205 crossref_primary_10_1016_j_drup_2024_101140 crossref_primary_10_1016_j_ijbiomac_2023_126824 crossref_primary_10_1093_jme_tjad038 crossref_primary_10_1021_acs_jafc_3c03493 crossref_primary_10_1021_acs_jafc_4c03157 crossref_primary_10_1016_j_pestbp_2022_105105 crossref_primary_10_1016_j_pestbp_2024_105957 crossref_primary_10_2174_1573396320666230406084801 |
Cites_doi | 10.1021/bi00036a028 10.1038/srep26092 10.1111/j.0962-1075.2004.00517.x 10.1016/j.bbrc.2003.11.141 10.1038/423136b 10.1371/journal.pone.0124220 10.1303/aez.2007.367 10.1111/j.1365-2583.2011.01118.x 10.1186/1471-2148-4-4 10.1371/journal.pntd.0002948 10.1016/S0965-1748(03)00025-0 10.1016/j.bbrc.2008.11.046 10.1002/j.1460-2075.1986.tb04591.x 10.1016/j.ibmb.2014.02.006 10.1371/journal.pone.0232192 10.1186/s13071-017-2232-3 10.1016/S0006-291X(03)01101-X 10.1111/imb.12309 10.1111/j.0962-1075.2004.00513.x 10.1128/CMR.05015-11 10.1021/bi982261f 10.1016/j.ibmb.2011.12.003 10.1016/j.pestbp.2005.10.003 10.7601/mez.61.239 10.1093/milmed/139.11.884 10.1016/0006-2952(61)90145-9 10.1002/ps.1884 10.1016/j.pestbp.2012.04.003 10.1007/s00403-016-1661-8 10.1371/journal.pone.0146021 10.1016/j.pestbp.2004.12.003 10.1021/bi201284u 10.1303/aez.32.37 10.1016/j.pestbp.2005.02.004 10.1248/bpb.33.702 10.1002/ps.3880 10.1016/j.pestbp.2005.12.002 10.3390/molecules22122098 10.1016/j.pestbp.2004.03.002 10.1016/j.ibmb.2008.07.007 |
ContentType | Journal Article |
Copyright | 2021 The Authors Copyright © 2021. Published by Elsevier Ltd. |
Copyright_xml | – notice: 2021 The Authors – notice: Copyright © 2021. Published by Elsevier Ltd. |
DBID | 6I. AAFTH RYH AAYXX CITATION 7X8 7S9 L.6 |
DOI | 10.1016/j.ibmb.2021.103637 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CiNii Complete CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Zoology |
EISSN | 1879-0240 |
ExternalDocumentID | 10_1016_j_ibmb_2021_103637 S096517482100120X |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29I 4.4 457 4G. 53G 5GY 5VS 6I. 7-5 71M 8P~ 9JM AABVA AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABFNM ABGRD ABGSF ABJNI ABMAC ABUDA ABXDB ABYKQ ACDAQ ACGFS ACIUM ACRLP ADBBV ADEZE ADMUD ADQTV ADUVX AEBSH AEHWI AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CBWCG CS3 DOVZS DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HLW HVGLF HZ~ IHE J1W KOM LW9 LX3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SBG SDF SDG SES SEW SPCBC SSA SSU SSZ T5K UHS WH7 WUQ Y6R ~G- ~KM AAHBH AATTM AAXKI AAYWO ACVFH ADCNI AEIPS AEUPX AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV RYH SSH AAYXX ABWVN ACRPL ADNMO AFJKZ AGQPQ CITATION 7X8 EFKBS 7S9 L.6 |
ID | FETCH-LOGICAL-c505t-6be5d1e991739ad0f0de1490efc0c8ea6be5b73610ab3dce0c1f31b5bd53f3853 |
IEDL.DBID | .~1 |
ISSN | 0965-1748 1879-0240 |
IngestDate | Sun Aug 24 03:38:45 EDT 2025 Tue Aug 05 11:02:51 EDT 2025 Thu Apr 24 23:12:34 EDT 2025 Tue Jul 01 01:50:46 EDT 2025 Thu Jun 26 22:14:11 EDT 2025 Fri Feb 23 02:43:15 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Insecticide resistance Point mutation Enzyme inhibitor Cimex Recombinant protein Acetylcholinesterase Enzyme kinetics |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c505t-6be5d1e991739ad0f0de1490efc0c8ea6be5b73610ab3dce0c1f31b5bd53f3853 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-8175-6402 0000-0003-1300-9883 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S096517482100120X |
PQID | 2566026769 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2636832274 proquest_miscellaneous_2566026769 crossref_citationtrail_10_1016_j_ibmb_2021_103637 crossref_primary_10_1016_j_ibmb_2021_103637 nii_cinii_1874242817690961664 elsevier_sciencedirect_doi_10_1016_j_ibmb_2021_103637 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2021 2021-11-01 2021-11-00 20211101 |
PublicationDateYYYYMMDD | 2021-11-01 |
PublicationDate_xml | – month: 11 year: 2021 text: November 2021 |
PublicationDecade | 2020 |
PublicationTitle | Insect Biochemistry and Molecular Biology |
PublicationYear | 2021 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Kikuchi, Okamura, Fukushi, Irie (bib21) 2010; 33 Dang, Doggett, Singham, Lee (bib8) 2017; 10 Romero, Potter, Haynes (bib37) 2007; 35 Michaelis, Menten, Johnson, Goody (bib28) 2011; 50 Kwon, Cha, Kim, Lee, Lee (bib23) 2012; 103 Doggett, Dwyer, Peñas, Russell (bib10) 2012; 25 Hall, Spierer (bib13) 1986; 5 Jiang, Qu, Denholm, Fang, Jiang, Han (bib17) 2009; 378 Toda, Komazaki, Tomita, Kono (bib42) 2004; 13 Baek, Kim, Lee, Chung, Miyata, Lee (bib5) 2005; 81 Anazawa, Tomita, Aiki, Kozaki, Kono (bib3) 2003; 33 Weill, Lutfalla, Mogensen, Chandre, Berthomieu, Berticat, Pasteur, Philips, Fort, Raymond (bib44) 2003; 423 Aiki, Kozaki, Mizuno, Kono (bib1) 2005; 82 Ordentlich, Barak, Kronman, Benschop, De Jong, Ariel, Barak, Segall, Velan, Shafferman (bib33) 1999; 38 Hosea, Berman, Taylor (bib14) 1995; 34 Seong, Kim, Kwon, Lee (bib41) 2012; 21 Romero, Potter, Potter, Haynes (bib38) 2007; 44 Lai, Ho, Glick, Jagdeo (bib25) 2016; 308 Dang, Toi, Lilly, Lee, Naylor, Tawatsin, Thavara, Bu, Doggett (bib9) 2014; 71 Gujar, Palli (bib12) 2016; 6 Menozzi, Shi, Lougarre, Tang, Fournier (bib27) 2004; 4 Russell, Claudianos, Campbell, Horne, Sutherland, Oakeshott (bib40) 2004; 79 Kono, Tomita (bib22) 2006; 85 Mamiya, Ishikawa, Kono (bib26) 1997; 32 Andrews, Callaghan, Field, Williamson, Moores (bib4) 2004; 13 Watanabe (bib43) 2010; 61 Nabeshima, Mori, Kozaki, Iwata, Hidoh, Harada, Kasai, Severson, Kono, Tomita (bib30) 2004; 313 Oh, Kozaki, Tomita, Kono (bib32) 2007; 42 Nabeshima, Kozaki, Tomita, Kono (bib29) 2003; 307 Bartley, Harlan (bib6) 1974; 139 Zhang, Yang, Li, Liu, Liu (bib45) 2017; 26 Oh, Kozaki, Mizuno, Tomita, Kono (bib31) 2006; 85 Ellman, Courtney, Andres, Feather-Stone (bib11) 1961; 7 Ori, Shimogama, Itoh, Takatsuki (bib34) 1967; 8 Ritz, Baty, Streibig, Gerhard (bib36) 2015; 10 Kasai, Komagata, Itokawa, Shono, Ng, Kobayashi, Tomita (bib18) 2014; 8 Alon, Alon, Nauen, Morin (bib2) 2008; 38 Itokawa, Hu, Sukehiro, Tsuda, Komagata, Kasai, Tomita, Minakawa, Sawabe (bib16) 2020; 15 Kaur, Helgesen, Bakke, Horsberg (bib19) 2015; 10 Khajehali, Leeuwen, Grispou, Morou, Alout, Weill, Tirry, Vontas, Tsagkarakou (bib20) 2010; 66 Rosenberry, Brazzolotto, Macdonald, Wandhammer, Trovaslet-Leroy, Darvesh, Nachon (bib39) 2017; 22 Boase (bib7) 2008 Ilias, Vontas, Tsagkarakou (bib15) 2014; 48 Kwon, Choi, Je, Lee (bib24) 2012; 42 (bib35) 2020 Khajehali (10.1016/j.ibmb.2021.103637_bib20) 2010; 66 Michaelis (10.1016/j.ibmb.2021.103637_bib28) 2011; 50 Weill (10.1016/j.ibmb.2021.103637_bib44) 2003; 423 Kasai (10.1016/j.ibmb.2021.103637_bib18) 2014; 8 Ritz (10.1016/j.ibmb.2021.103637_bib36) 2015; 10 Itokawa (10.1016/j.ibmb.2021.103637_bib16) 2020; 15 Mamiya (10.1016/j.ibmb.2021.103637_bib26) 1997; 32 Oh (10.1016/j.ibmb.2021.103637_bib31) 2006; 85 Rosenberry (10.1016/j.ibmb.2021.103637_bib39) 2017; 22 Jiang (10.1016/j.ibmb.2021.103637_bib17) 2009; 378 Ilias (10.1016/j.ibmb.2021.103637_bib15) 2014; 48 Zhang (10.1016/j.ibmb.2021.103637_bib45) 2017; 26 Lai (10.1016/j.ibmb.2021.103637_bib25) 2016; 308 Baek (10.1016/j.ibmb.2021.103637_bib5) 2005; 81 Kono (10.1016/j.ibmb.2021.103637_bib22) 2006; 85 Watanabe (10.1016/j.ibmb.2021.103637_bib43) 2010; 61 Doggett (10.1016/j.ibmb.2021.103637_bib10) 2012; 25 Kikuchi (10.1016/j.ibmb.2021.103637_bib21) 2010; 33 Kwon (10.1016/j.ibmb.2021.103637_bib24) 2012; 42 (10.1016/j.ibmb.2021.103637_bib35) 2020 Romero (10.1016/j.ibmb.2021.103637_bib37) 2007; 35 Seong (10.1016/j.ibmb.2021.103637_bib41) 2012; 21 Kwon (10.1016/j.ibmb.2021.103637_bib23) 2012; 103 Romero (10.1016/j.ibmb.2021.103637_bib38) 2007; 44 Dang (10.1016/j.ibmb.2021.103637_bib9) 2014; 71 Dang (10.1016/j.ibmb.2021.103637_bib8) 2017; 10 Hosea (10.1016/j.ibmb.2021.103637_bib14) 1995; 34 Ellman (10.1016/j.ibmb.2021.103637_bib11) 1961; 7 Ordentlich (10.1016/j.ibmb.2021.103637_bib33) 1999; 38 Andrews (10.1016/j.ibmb.2021.103637_bib4) 2004; 13 Nabeshima (10.1016/j.ibmb.2021.103637_bib29) 2003; 307 Oh (10.1016/j.ibmb.2021.103637_bib32) 2007; 42 Hall (10.1016/j.ibmb.2021.103637_bib13) 1986; 5 Anazawa (10.1016/j.ibmb.2021.103637_bib3) 2003; 33 Menozzi (10.1016/j.ibmb.2021.103637_bib27) 2004; 4 Kaur (10.1016/j.ibmb.2021.103637_bib19) 2015; 10 Toda (10.1016/j.ibmb.2021.103637_bib42) 2004; 13 Aiki (10.1016/j.ibmb.2021.103637_bib1) 2005; 82 Boase (10.1016/j.ibmb.2021.103637_bib7) 2008 Nabeshima (10.1016/j.ibmb.2021.103637_bib30) 2004; 313 Ori (10.1016/j.ibmb.2021.103637_bib34) 1967; 8 Gujar (10.1016/j.ibmb.2021.103637_bib12) 2016; 6 Alon (10.1016/j.ibmb.2021.103637_bib2) 2008; 38 Bartley (10.1016/j.ibmb.2021.103637_bib6) 1974; 139 Russell (10.1016/j.ibmb.2021.103637_bib40) 2004; 79 |
References_xml | – volume: 35 start-page: 42 year: 2007 end-page: 50 ident: bib37 article-title: Insecticide-resistant bed bugs: implications for the industry publication-title: Pest Contr. Technol. – volume: 308 start-page: 531 year: 2016 end-page: 538 ident: bib25 article-title: Bed bugs and possible transmission of human pathogens: a systematic review publication-title: Arch. Dermatol. Res. – volume: 26 start-page: 453 year: 2017 end-page: 460 ident: bib45 article-title: Point mutations in acetylcholinesterase 1 associated with chlorpyrifos resistance in the brown planthopper, publication-title: Insect Mol. Biol. – volume: 32 start-page: 37 year: 1997 end-page: 44 ident: bib26 article-title: Acetylcholinesterase in insecticide resistant publication-title: Appl. Entomol. Zool. – volume: 423 start-page: 136 year: 2003 end-page: 137 ident: bib44 article-title: Insecticide resistance in mosquito vectors publication-title: Nature – volume: 7 start-page: 89 year: 1961 end-page: 95 ident: bib11 article-title: A new and rapid colorimetric determination of acetylcholinesterase activity publication-title: Biochem. Pharmacol. – volume: 34 start-page: 11528 year: 1995 end-page: 11536 ident: bib14 article-title: Specificity and orientation of trigonal carboxyl esters and tetrahedral alkylphosphonyl esters in cholinesterases publication-title: Biochemistry – volume: 42 start-page: 212 year: 2012 end-page: 219 ident: bib24 article-title: The overexpression of acetylcholinesterase compensates for the reduced catalytic activity caused by resistance-conferring mutations in publication-title: Insect Biochem. Mol. Biol. – volume: 15 year: 2020 ident: bib16 article-title: Genetic analysis of publication-title: PloS One – volume: 33 start-page: 702 year: 2010 end-page: 706 ident: bib21 article-title: Piperidine-4-methanthiol ester derivatives for a selective acetylcholinesterase assay publication-title: Biol. Pharm. Bull. – volume: 103 start-page: 94 year: 2012 end-page: 100 ident: bib23 article-title: Cloning of the acetylcholinesterase 1 gene and identification of point mutations putatively associated with carbofuran resistance in publication-title: Pestic. Biochem. Physiol. – volume: 378 start-page: 269 year: 2009 end-page: 272 ident: bib17 article-title: Mutation in acetylcholinesterase1 associated with triazophos resistance in rice stem borer, publication-title: Biochem. Biophys. Res. Commun. – volume: 42 start-page: 367 year: 2007 end-page: 373 ident: bib32 article-title: Biochemical properties of recombinant acetylcholinesterases with amino acid substitutions in the active site publication-title: Appl. Entomol. Zool. – volume: 50 start-page: 8264 year: 2011 end-page: 8269 ident: bib28 article-title: The original Michaelis constant: Translation of the 1913 michaelis–menten paper publication-title: Biochemistry-us – volume: 313 start-page: 794 year: 2004 end-page: 801 ident: bib30 article-title: An amino acid substitution attributable to insecticide-insensitivity of acetylcholinesterase in a Japanese encephalitis vector mosquito, publication-title: Biochem. Biophys. Res. Commun. – volume: 61 start-page: 239 year: 2010 end-page: 244 ident: bib43 article-title: Insecticide susceptibility and effect of heat treatment on bedbug, publication-title: Med. Entomol. Zool. – volume: 21 start-page: 149 year: 2012 end-page: 159 ident: bib41 article-title: Identification and characterization of three cholinesterases from the common bed bug, publication-title: Insect Mol. Biol. – volume: 33 start-page: 509 year: 2003 end-page: 514 ident: bib3 article-title: Sequence of a cDNA encoding acetylcholinesterase from susceptible and resistant two-spotted spider mite, Tetranychus urticae publication-title: Insect Biochem. Mol. Biol. – volume: 22 start-page: 2098 year: 2017 ident: bib39 article-title: Comparison of the binding of reversible inhibitors to human butyrylcholinesterase and acetylcholinesterase: a crystallographic, kinetic and calorimetric study publication-title: Molecules – volume: 38 start-page: 940 year: 2008 end-page: 949 ident: bib2 article-title: Organophosphates' resistance in the B-biotype of publication-title: Insect Biochem. Mol. Biol. – volume: 38 start-page: 3055 year: 1999 end-page: 3066 ident: bib33 article-title: Exploring the active center of human acetylcholinesterase with stereomers of an organophosphorus inhibitor with two chiral centers publication-title: Biochemistry – year: 2020 ident: bib35 article-title: R: A Language and Environment for Statistical Computing – volume: 79 start-page: 84 year: 2004 end-page: 93 ident: bib40 article-title: Two major classes of target site insensitivity mutations confer resistance to organophosphate and carbamate insecticides publication-title: Pestic. Biochem. Physiol. – volume: 82 start-page: 154 year: 2005 end-page: 161 ident: bib1 article-title: Amino acid substitution in Ace paralogous acetylcholinesterase accompanied by organophosphate resistance in the spider mite publication-title: Pestic. Biochem. Physiol. – volume: 85 start-page: 46 year: 2006 end-page: 51 ident: bib31 article-title: Expression of Ace-paralogous acetylcholinesterase of publication-title: Pestic. Biochem. Physiol. – volume: 81 start-page: 164 year: 2005 end-page: 175 ident: bib5 article-title: Identification and characterization of ace1-type acetylcholinesterase likely associated with organophosphate resistance in publication-title: Pestic. Biochem. Physiol. – volume: 48 start-page: 17 year: 2014 end-page: 28 ident: bib15 article-title: Global distribution and origin of target site insecticide resistance mutations in publication-title: Insect Biochem. Mol. Biol. – volume: 25 start-page: 164 year: 2012 end-page: 192 ident: bib10 article-title: Bed bugs: clinical relevance and control options publication-title: Clin. Microbiol. Rev. – volume: 8 start-page: 166 year: 1967 end-page: 169 ident: bib34 article-title: Field experiment of controlling common bed bug by residual spray [in Japanese] publication-title: Endem. Dis. Bull. Nagasaki Univ. – start-page: 7 year: 2008 end-page: 14 ident: bib7 article-title: Bed bugs (Hemiptera: cimicidae): an evidence-based analysis of the current situation publication-title: Proceedings of the Sixth International Conference on Urban Pests, Proceedings of the Sixth International Conference on Urban Pests – volume: 66 start-page: 220 year: 2010 end-page: 228 ident: bib20 article-title: Acetylcholinesterase point mutations in European strains of publication-title: Pest Manag. Sci. – volume: 10 start-page: 318 year: 2017 ident: bib8 article-title: Insecticide resistance and resistance mechanisms in bed bugs, publication-title: Parasites Vectors – volume: 85 start-page: 123 year: 2006 end-page: 132 ident: bib22 article-title: Amino acid substitutions conferring insecticide insensitivity in Ace-paralogous acetylcholinesterase publication-title: Pestic. Biochem. Physiol. – volume: 139 start-page: 884 year: 1974 end-page: 886 ident: bib6 article-title: Bed bug infestation: its control and management publication-title: Mil. Med. – volume: 6 start-page: 26092 year: 2016 ident: bib12 article-title: Krüppel homolog 1 and E93 mediate Juvenile hormone regulation of metamorphosis in the common bed bug, Cimex lectularius publication-title: Sci Rep-uk – volume: 5 start-page: 2949 year: 1986 end-page: 2954 ident: bib13 article-title: The Ace locus of publication-title: EMBO J. – volume: 307 start-page: 15 year: 2003 end-page: 22 ident: bib29 article-title: An amino acid substitution on the second acetylcholinesterase in the pirimicarb-resistant strains of the peach potato aphid, publication-title: Biochem. Biophys. Res. Commun. – volume: 10 year: 2015 ident: bib19 article-title: Mechanism behind resistance against the organophosphate azamethiphos in salmon lice ( publication-title: PloS One – volume: 13 start-page: 555 year: 2004 end-page: 561 ident: bib4 article-title: Identification of mutations conferring insecticide-insensitive AChE in the cotton-melon aphid, publication-title: Insect Mol. Biol. – volume: 44 start-page: 175 year: 2007 end-page: 178 ident: bib38 article-title: Insecticide resistance in the bed bug: a factor in the pests sudden resurgence? publication-title: J. Med. Entomol. – volume: 4 start-page: 4 year: 2004 ident: bib27 article-title: Mutations of acetylcholinesterase which confer insecticide resistance in Drosophila melanogaster populations publication-title: BMC Evol. Biol. – volume: 8 start-page: e2948 year: 2014 ident: bib18 article-title: Mechanisms of pyrethroid resistance in the dengue mosquito vector, Aedes aegypti: target site insensitivity, penetration, and metabolism publication-title: PLoS Neglected Trop. Dis. – volume: 71 start-page: 1015 year: 2014 end-page: 1020 ident: bib9 article-title: Identification of putative kdr mutations in the tropical bed bug, publication-title: Pest Manag. Sci. – volume: 10 year: 2015 ident: bib36 article-title: Dose-response analysis using R publication-title: PloS One – volume: 13 start-page: 549 year: 2004 end-page: 553 ident: bib42 article-title: Two amino acid substitutions in acetylcholinesterase associated with pirimicarb and organophosphorous insecticide resistance in the cotton aphid, publication-title: Insect Mol. Biol. – volume: 34 start-page: 11528 year: 1995 ident: 10.1016/j.ibmb.2021.103637_bib14 article-title: Specificity and orientation of trigonal carboxyl esters and tetrahedral alkylphosphonyl esters in cholinesterases publication-title: Biochemistry doi: 10.1021/bi00036a028 – volume: 6 start-page: 26092 year: 2016 ident: 10.1016/j.ibmb.2021.103637_bib12 article-title: Krüppel homolog 1 and E93 mediate Juvenile hormone regulation of metamorphosis in the common bed bug, Cimex lectularius publication-title: Sci Rep-uk doi: 10.1038/srep26092 – volume: 13 start-page: 555 year: 2004 ident: 10.1016/j.ibmb.2021.103637_bib4 article-title: Identification of mutations conferring insecticide-insensitive AChE in the cotton-melon aphid, Aphis gossypii Glover publication-title: Insect Mol. Biol. doi: 10.1111/j.0962-1075.2004.00517.x – volume: 313 start-page: 794 year: 2004 ident: 10.1016/j.ibmb.2021.103637_bib30 article-title: An amino acid substitution attributable to insecticide-insensitivity of acetylcholinesterase in a Japanese encephalitis vector mosquito, Culex tritaeniorhynchus publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2003.11.141 – volume: 423 start-page: 136 year: 2003 ident: 10.1016/j.ibmb.2021.103637_bib44 article-title: Insecticide resistance in mosquito vectors publication-title: Nature doi: 10.1038/423136b – volume: 10 year: 2015 ident: 10.1016/j.ibmb.2021.103637_bib19 article-title: Mechanism behind resistance against the organophosphate azamethiphos in salmon lice (Lepeophtheirus salmonis) publication-title: PloS One doi: 10.1371/journal.pone.0124220 – volume: 42 start-page: 367 year: 2007 ident: 10.1016/j.ibmb.2021.103637_bib32 article-title: Biochemical properties of recombinant acetylcholinesterases with amino acid substitutions in the active site publication-title: Appl. Entomol. Zool. doi: 10.1303/aez.2007.367 – volume: 44 start-page: 175 year: 2007 ident: 10.1016/j.ibmb.2021.103637_bib38 article-title: Insecticide resistance in the bed bug: a factor in the pests sudden resurgence? publication-title: J. Med. Entomol. – volume: 21 start-page: 149 year: 2012 ident: 10.1016/j.ibmb.2021.103637_bib41 article-title: Identification and characterization of three cholinesterases from the common bed bug, Cimex lectularius publication-title: Insect Mol. Biol. doi: 10.1111/j.1365-2583.2011.01118.x – volume: 4 start-page: 4 year: 2004 ident: 10.1016/j.ibmb.2021.103637_bib27 article-title: Mutations of acetylcholinesterase which confer insecticide resistance in Drosophila melanogaster populations publication-title: BMC Evol. Biol. doi: 10.1186/1471-2148-4-4 – volume: 8 start-page: e2948 year: 2014 ident: 10.1016/j.ibmb.2021.103637_bib18 article-title: Mechanisms of pyrethroid resistance in the dengue mosquito vector, Aedes aegypti: target site insensitivity, penetration, and metabolism publication-title: PLoS Neglected Trop. Dis. doi: 10.1371/journal.pntd.0002948 – volume: 8 start-page: 166 year: 1967 ident: 10.1016/j.ibmb.2021.103637_bib34 article-title: Field experiment of controlling common bed bug by residual spray [in Japanese] publication-title: Endem. Dis. Bull. Nagasaki Univ. – volume: 33 start-page: 509 year: 2003 ident: 10.1016/j.ibmb.2021.103637_bib3 article-title: Sequence of a cDNA encoding acetylcholinesterase from susceptible and resistant two-spotted spider mite, Tetranychus urticae publication-title: Insect Biochem. Mol. Biol. doi: 10.1016/S0965-1748(03)00025-0 – volume: 378 start-page: 269 year: 2009 ident: 10.1016/j.ibmb.2021.103637_bib17 article-title: Mutation in acetylcholinesterase1 associated with triazophos resistance in rice stem borer, Chilo suppressalis (Lepidoptera: Pyralidae) publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2008.11.046 – volume: 5 start-page: 2949 year: 1986 ident: 10.1016/j.ibmb.2021.103637_bib13 article-title: The Ace locus of Drosophila melanogaster: structural gene for acetylcholinesterase with an unusual 5′ leader publication-title: EMBO J. doi: 10.1002/j.1460-2075.1986.tb04591.x – volume: 48 start-page: 17 year: 2014 ident: 10.1016/j.ibmb.2021.103637_bib15 article-title: Global distribution and origin of target site insecticide resistance mutations in Tetranychus urticae publication-title: Insect Biochem. Mol. Biol. doi: 10.1016/j.ibmb.2014.02.006 – volume: 15 year: 2020 ident: 10.1016/j.ibmb.2021.103637_bib16 article-title: Genetic analysis of Aedes aegypti captured at two international airports serving to the Greater Tokyo Area during 2012–2015 publication-title: PloS One doi: 10.1371/journal.pone.0232192 – volume: 10 start-page: 318 year: 2017 ident: 10.1016/j.ibmb.2021.103637_bib8 article-title: Insecticide resistance and resistance mechanisms in bed bugs, Cimex spp. (Hemiptera: cimicidae) publication-title: Parasites Vectors doi: 10.1186/s13071-017-2232-3 – volume: 307 start-page: 15 year: 2003 ident: 10.1016/j.ibmb.2021.103637_bib29 article-title: An amino acid substitution on the second acetylcholinesterase in the pirimicarb-resistant strains of the peach potato aphid, Myzus persicae publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/S0006-291X(03)01101-X – volume: 26 start-page: 453 year: 2017 ident: 10.1016/j.ibmb.2021.103637_bib45 article-title: Point mutations in acetylcholinesterase 1 associated with chlorpyrifos resistance in the brown planthopper, Nilaparvata lugens Stål publication-title: Insect Mol. Biol. doi: 10.1111/imb.12309 – volume: 13 start-page: 549 year: 2004 ident: 10.1016/j.ibmb.2021.103637_bib42 article-title: Two amino acid substitutions in acetylcholinesterase associated with pirimicarb and organophosphorous insecticide resistance in the cotton aphid, Aphis gossypii Glover (Homoptera: aphididae) publication-title: Insect Mol. Biol. doi: 10.1111/j.0962-1075.2004.00513.x – start-page: 7 year: 2008 ident: 10.1016/j.ibmb.2021.103637_bib7 article-title: Bed bugs (Hemiptera: cimicidae): an evidence-based analysis of the current situation – volume: 25 start-page: 164 year: 2012 ident: 10.1016/j.ibmb.2021.103637_bib10 article-title: Bed bugs: clinical relevance and control options publication-title: Clin. Microbiol. Rev. doi: 10.1128/CMR.05015-11 – volume: 38 start-page: 3055 year: 1999 ident: 10.1016/j.ibmb.2021.103637_bib33 article-title: Exploring the active center of human acetylcholinesterase with stereomers of an organophosphorus inhibitor with two chiral centers publication-title: Biochemistry doi: 10.1021/bi982261f – year: 2020 ident: 10.1016/j.ibmb.2021.103637_bib35 – volume: 42 start-page: 212 year: 2012 ident: 10.1016/j.ibmb.2021.103637_bib24 article-title: The overexpression of acetylcholinesterase compensates for the reduced catalytic activity caused by resistance-conferring mutations in Tetranychus urticae publication-title: Insect Biochem. Mol. Biol. doi: 10.1016/j.ibmb.2011.12.003 – volume: 85 start-page: 46 year: 2006 ident: 10.1016/j.ibmb.2021.103637_bib31 article-title: Expression of Ace-paralogous acetylcholinesterase of Culex tritaeniorhynchus with an amino acid substitution conferring insecticide insensitivity in baculovirus-insect cell system publication-title: Pestic. Biochem. Physiol. doi: 10.1016/j.pestbp.2005.10.003 – volume: 61 start-page: 239 year: 2010 ident: 10.1016/j.ibmb.2021.103637_bib43 article-title: Insecticide susceptibility and effect of heat treatment on bedbug, Cimex lectularius publication-title: Med. Entomol. Zool. doi: 10.7601/mez.61.239 – volume: 139 start-page: 884 year: 1974 ident: 10.1016/j.ibmb.2021.103637_bib6 article-title: Bed bug infestation: its control and management publication-title: Mil. Med. doi: 10.1093/milmed/139.11.884 – volume: 7 start-page: 89 year: 1961 ident: 10.1016/j.ibmb.2021.103637_bib11 article-title: A new and rapid colorimetric determination of acetylcholinesterase activity publication-title: Biochem. Pharmacol. doi: 10.1016/0006-2952(61)90145-9 – volume: 66 start-page: 220 year: 2010 ident: 10.1016/j.ibmb.2021.103637_bib20 article-title: Acetylcholinesterase point mutations in European strains of Tetranychus urticae (Acari: Tetranychidae) resistant to organophosphates publication-title: Pest Manag. Sci. doi: 10.1002/ps.1884 – volume: 103 start-page: 94 year: 2012 ident: 10.1016/j.ibmb.2021.103637_bib23 article-title: Cloning of the acetylcholinesterase 1 gene and identification of point mutations putatively associated with carbofuran resistance in Nilaparvata lugens publication-title: Pestic. Biochem. Physiol. doi: 10.1016/j.pestbp.2012.04.003 – volume: 308 start-page: 531 year: 2016 ident: 10.1016/j.ibmb.2021.103637_bib25 article-title: Bed bugs and possible transmission of human pathogens: a systematic review publication-title: Arch. Dermatol. Res. doi: 10.1007/s00403-016-1661-8 – volume: 10 year: 2015 ident: 10.1016/j.ibmb.2021.103637_bib36 article-title: Dose-response analysis using R publication-title: PloS One doi: 10.1371/journal.pone.0146021 – volume: 35 start-page: 42 year: 2007 ident: 10.1016/j.ibmb.2021.103637_bib37 article-title: Insecticide-resistant bed bugs: implications for the industry publication-title: Pest Contr. Technol. – volume: 81 start-page: 164 year: 2005 ident: 10.1016/j.ibmb.2021.103637_bib5 article-title: Identification and characterization of ace1-type acetylcholinesterase likely associated with organophosphate resistance in Plutella xylostella publication-title: Pestic. Biochem. Physiol. doi: 10.1016/j.pestbp.2004.12.003 – volume: 50 start-page: 8264 year: 2011 ident: 10.1016/j.ibmb.2021.103637_bib28 article-title: The original Michaelis constant: Translation of the 1913 michaelis–menten paper publication-title: Biochemistry-us doi: 10.1021/bi201284u – volume: 32 start-page: 37 year: 1997 ident: 10.1016/j.ibmb.2021.103637_bib26 article-title: Acetylcholinesterase in insecticide resistant Culex tritaeniorhynchus: characteristics accompanying insensitivity to inhibitors publication-title: Appl. Entomol. Zool. doi: 10.1303/aez.32.37 – volume: 82 start-page: 154 year: 2005 ident: 10.1016/j.ibmb.2021.103637_bib1 article-title: Amino acid substitution in Ace paralogous acetylcholinesterase accompanied by organophosphate resistance in the spider mite Tetranychus kanzawai publication-title: Pestic. Biochem. Physiol. doi: 10.1016/j.pestbp.2005.02.004 – volume: 33 start-page: 702 year: 2010 ident: 10.1016/j.ibmb.2021.103637_bib21 article-title: Piperidine-4-methanthiol ester derivatives for a selective acetylcholinesterase assay publication-title: Biol. Pharm. Bull. doi: 10.1248/bpb.33.702 – volume: 71 start-page: 1015 year: 2014 ident: 10.1016/j.ibmb.2021.103637_bib9 article-title: Identification of putative kdr mutations in the tropical bed bug, Cimex hemipterus (Hemiptera: cimicidae) publication-title: Pest Manag. Sci. doi: 10.1002/ps.3880 – volume: 85 start-page: 123 year: 2006 ident: 10.1016/j.ibmb.2021.103637_bib22 article-title: Amino acid substitutions conferring insecticide insensitivity in Ace-paralogous acetylcholinesterase publication-title: Pestic. Biochem. Physiol. doi: 10.1016/j.pestbp.2005.12.002 – volume: 22 start-page: 2098 year: 2017 ident: 10.1016/j.ibmb.2021.103637_bib39 article-title: Comparison of the binding of reversible inhibitors to human butyrylcholinesterase and acetylcholinesterase: a crystallographic, kinetic and calorimetric study publication-title: Molecules doi: 10.3390/molecules22122098 – volume: 79 start-page: 84 year: 2004 ident: 10.1016/j.ibmb.2021.103637_bib40 article-title: Two major classes of target site insensitivity mutations confer resistance to organophosphate and carbamate insecticides publication-title: Pestic. Biochem. Physiol. doi: 10.1016/j.pestbp.2004.03.002 – volume: 38 start-page: 940 year: 2008 ident: 10.1016/j.ibmb.2021.103637_bib2 article-title: Organophosphates' resistance in the B-biotype of Bemisia tabaci (Hemiptera: aleyrodidae) is associated with a point mutation in an ace1-type acetylcholinesterase and overexpression of carboxylesterase publication-title: Insect Biochem. Mol. Biol. doi: 10.1016/j.ibmb.2008.07.007 |
SSID | ssj0004457 ssib006546618 |
Score | 2.407362 |
Snippet | Bed bug control highly depends on insecticides with a limited number of modes of action, especially since the global prevalence of pyrethroid resistance. De... |
SourceID | proquest crossref nii elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 103637 |
SubjectTerms | Acetylcholinesterase amino acid substitution Animals azamethiphos Bedbugs Carbamates carbaryl chlorpyrifos-methyl Cimex Cimex lectularius dichlorvos Enzyme inhibitor Enzyme kinetics Female fenitrothion genes insect biochemistry Insect Proteins Insecticide Resistance Insecticides Japan malaoxon Male molecular biology mutants Mutation Organophosphates paraoxon Point mutation propoxur pyrethrins Recombinant protein Species Specificity |
Title | Common substitution mutation F348Y of acetylcholinesterase gene contributes to organophosphate and carbamate resistance in Cimex lectularius and C. hemipterus |
URI | https://dx.doi.org/10.1016/j.ibmb.2021.103637 https://cir.nii.ac.jp/crid/1874242817690961664 https://www.proquest.com/docview/2566026769 https://www.proquest.com/docview/2636832274 |
Volume | 138 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Ni9RAEG3WFdGL6Kq46i4teJPspKc7nZ7jEhxGxb3owuil6a-wkZ0kmAT04k_xt1rVSRRR5uBlIJkKU3RVql5N1-si5AW8ywwyt01YZm0irHHJKjMiSeXSq1QYpQwWiu8u5OZSvNlm2wNSzFwYbKucYv8Y02O0nu4sptVctFW1eI_nlgCeVksWGaBbZLCLHL387PvvNg8hxtM-QThB6Yk4M_Z4VXZnoUZcMuSeS5yF_u_kdKOuqr-CdcxA63vk7gQd6fmo3X1yEOojcruYJ7YdkVufmvgn-QPyA3kfTU07CAuxFwBWn-6GcdudrrlQH2lTUuNC_-0aAyA2vyMXuQsUPCrQ2MGOo7BCR_uGxtlPTXvVdO0VgFNqak8d7lTs8AoqdkShsHS0qmlR7cJXGpkpUDVXQxelizOKirbwI0P3kFyuX30oNsk0iSFxgJD6RNqQeRYAS-Z8ZXxapj5AaZWG0qVOBYPf25wDFDOWexdSx0rObGZ9xksOiOAROaybOjwm1AhmuJRWQl4USgqVGg93uIfCR6ZBHBM2m0C76ZhynJZxred-tM8azabRbHo02zF5-euZdjykY690NltW_-FqGrLI3udOwA1AKfzEUYaAbhTL5Qqn5kgJmj-fHUSD4XHjxdShGToNsDJO-pKrPTKSS4yuuXjyn_o9JXfwaiRKPiOH_ZchnABi6u1pfCVOyc3z1283Fz8Bsu8VGw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELVKESoXBAVEoQUjwQmlG8eO13voAS2stvTjQistXIydOGpQN4maRNBLf0r_BH-QGScBIdAekHpZaRNHO8qzZ96sZ_wIeQVrmUHktgGLrQ2ENUkwiY0IQhmlKhRGKYOJ4tGxnJ-KD4t4sUZ-DL0wWFbZ-_7Op3tv3V8Z9W9zVOX56COeWwJ8WkXMd4Au-srKA3f5DfK2em__HYD8Oopm70-m86CXFggSCPlNIK2LU-aAHI35xKRhFqYOcoXQZUmYKGfwvh1z4BbG8jRxYcIyzmxs05hnXKFUBPj92wLcBcom7F79risRojteFKwL0Ly-U6crKsvt0kJSGjFsdpcovv7vaHiryPO_ooMPebP75F7PVenb7nU8IGuu2CQb00EibpPc-Vz6f-UfkmtsNCkLWoMf8sUHADddtt0-P51xoT7RMqMmcc3lOXpcrLbH5ufaUZjCjvqSedTecjVtSurFpsrqrKyrM2DD1BQpTXBrZInfLlyNtBewonlBp_nSfae-FQbS9Lyt_ejpLkVDK_iRtn5ETm8En8dkvSgL94RQI5jhUloJgVgoKVRoUrjCU8i0ZOjEFmEDBDrpz0VHeY5zPRTAfdUIm0bYdAfbFnnz65mqOxVk5eh4QFb_Mbc1hK2Vz-3ANACj8BO1E4FOKTaWE5TpkRIsfzlMEA3A406PKVzZ1hp4rJcWk5MVYySX6M7H4ul_2veCbMxPjg714f7xwTNyF-90XZrbZL25aN0O0LXGPvfLg5IvN70efwIszlI5 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Common+substitution+mutation+F348Y+of+acetylcholinesterase+gene+contributes+to+organophosphate+and+carbamate+resistance+in+Cimex+lectularius+and+C.+hemipterus&rft.jtitle=Insect+biochemistry+and+molecular+biology&rft.au=Komagata%2C+Osamu&rft.au=Kasai%2C+Shinji&rft.au=Itokawa%2C+Kentaro&rft.au=Minagawa%2C+Keiko&rft.date=2021-11-01&rft.pub=Elsevier+Ltd&rft.issn=0965-1748&rft.eissn=1879-0240&rft.volume=138&rft_id=info:doi/10.1016%2Fj.ibmb.2021.103637&rft.externalDocID=S096517482100120X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0965-1748&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0965-1748&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0965-1748&client=summon |