Monitoring cerebral blood flow pressure autoregulation in pediatric patients during cardiac surgery
The limits of cerebral blood flow-pressure autoregulation have not been adequately defined for pediatric patients. Mean arterial blood pressure below these limits might contribute to brain injury during cardiac surgery. The purpose of this pilot study was to assess a novel method of determining the...
Saved in:
Published in | Stroke (1970) Vol. 41; no. 9; pp. 1957 - 1962 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.09.2010
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The limits of cerebral blood flow-pressure autoregulation have not been adequately defined for pediatric patients. Mean arterial blood pressure below these limits might contribute to brain injury during cardiac surgery. The purpose of this pilot study was to assess a novel method of determining the lower limits of pressure autoregulation in pediatric patients supported with cardiopulmonary bypass.
A prospective, observational pilot study was conducted in children (n=54) undergoing cardiac surgery with cardiopulmonary bypass for correction of congenital heart defects. Cerebral oximetry index (COx) was calculated as a moving, linear correlation coefficient between slow waves of arterial blood pressure and cerebral oximetry measured with near-infrared spectroscopy. An autoregulation curve was constructed for each patient with averaged COx values sorted by arterial blood pressure.
Hypotension was associated with increased values of COx (P<0.0001). For 77% of patients, an individual estimate of lower limits of pressure autoregulation could be determined using a threshold COx value of 0.4. The mean lower limits of pressure autoregulation for the cohort using this method was 42+/-7 mm Hg.
This pilot study of COx monitoring in pediatric patients demonstrates an association between hypotension during cardiopulmonary bypass and impairment of autoregulation. The COx may be useful to identify arterial blood pressure-dependent limits of cerebral autoregulation during cardiopulmonary bypass. Larger trials with neurological outcomes are indicated. |
---|---|
AbstractList | Background and Purpose—
The limits of cerebral blood flow-pressure autoregulation have not been adequately defined for pediatric patients. Mean arterial blood pressure below these limits might contribute to brain injury during cardiac surgery. The purpose of this pilot study was to assess a novel method of determining the lower limits of pressure autoregulation in pediatric patients supported with cardiopulmonary bypass.
Methods—
A prospective, observational pilot study was conducted in children (n=54) undergoing cardiac surgery with cardiopulmonary bypass for correction of congenital heart defects. Cerebral oximetry index (COx) was calculated as a moving, linear correlation coefficient between slow waves of arterial blood pressure and cerebral oximetry measured with near-infrared spectroscopy. An autoregulation curve was constructed for each patient with averaged COx values sorted by arterial blood pressure.
Results—
Hypotension was associated with increased values of COx (
P
<0.0001). For 77% of patients, an individual estimate of lower limits of pressure autoregulation could be determined using a threshold COx value of 0.4. The mean lower limits of pressure autoregulation for the cohort using this method was 42±7 mm Hg.
Conclusions—
This pilot study of COx monitoring in pediatric patients demonstrates an association between hypotension during cardiopulmonary bypass and impairment of autoregulation. The COx may be useful to identify arterial blood pressure-dependent limits of cerebral autoregulation during cardiopulmonary bypass. Larger trials with neurological outcomes are indicated. The limits of cerebral blood flow-pressure autoregulation have not been adequately defined for pediatric patients. Mean arterial blood pressure below these limits might contribute to brain injury during cardiac surgery. The purpose of this pilot study was to assess a novel method of determining the lower limits of pressure autoregulation in pediatric patients supported with cardiopulmonary bypass. A prospective, observational pilot study was conducted in children (n=54) undergoing cardiac surgery with cardiopulmonary bypass for correction of congenital heart defects. Cerebral oximetry index (COx) was calculated as a moving, linear correlation coefficient between slow waves of arterial blood pressure and cerebral oximetry measured with near-infrared spectroscopy. An autoregulation curve was constructed for each patient with averaged COx values sorted by arterial blood pressure. Hypotension was associated with increased values of COx (P<0.0001). For 77% of patients, an individual estimate of lower limits of pressure autoregulation could be determined using a threshold COx value of 0.4. The mean lower limits of pressure autoregulation for the cohort using this method was 42+/-7 mm Hg. This pilot study of COx monitoring in pediatric patients demonstrates an association between hypotension during cardiopulmonary bypass and impairment of autoregulation. The COx may be useful to identify arterial blood pressure-dependent limits of cerebral autoregulation during cardiopulmonary bypass. Larger trials with neurological outcomes are indicated. BACKGROUND: and Purpose- The limits of cerebral blood flow-pressure autoregulation have not been adequately defined for pediatric patients. Mean arterial blood pressure below these limits might contribute to brain injury during cardiac surgery. The purpose of this pilot study was to assess a novel method of determining the lower limits of pressure autoregulation in pediatric patients supported with cardiopulmonary bypass. METHODS: A prospective, observational pilot study was conducted in children (n=54) undergoing cardiac surgery with cardiopulmonary bypass for correction of congenital heart defects. Cerebral oximetry index (COx) was calculated as a moving, linear correlation coefficient between slow waves of arterial blood pressure and cerebral oximetry measured with near-infrared spectroscopy. An autoregulation curve was constructed for each patient with averaged COx values sorted by arterial blood pressure. RESULTS: Hypotension was associated with increased values of COx (P<0.0001). For 77% of patients, an individual estimate of lower limits of pressure autoregulation could be determined using a threshold COx value of 0.4. The mean lower limits of pressure autoregulation for the cohort using this method was 42 plus or minus 7 mm Hg. CONCLUSIONS: This pilot study of COx monitoring in pediatric patients demonstrates an association between hypotension during cardiopulmonary bypass and impairment of autoregulation. The COx may be useful to identify arterial blood pressure-dependent limits of cerebral autoregulation during cardiopulmonary bypass. Larger trials with neurological outcomes are indicated. BACKGROUND AND PURPOSEThe limits of cerebral blood flow-pressure autoregulation have not been adequately defined for pediatric patients. Mean arterial blood pressure below these limits might contribute to brain injury during cardiac surgery. The purpose of this pilot study was to assess a novel method of determining the lower limits of pressure autoregulation in pediatric patients supported with cardiopulmonary bypass. METHODSA prospective, observational pilot study was conducted in children (n=54) undergoing cardiac surgery with cardiopulmonary bypass for correction of congenital heart defects. Cerebral oximetry index (COx) was calculated as a moving, linear correlation coefficient between slow waves of arterial blood pressure and cerebral oximetry measured with near-infrared spectroscopy. An autoregulation curve was constructed for each patient with averaged COx values sorted by arterial blood pressure. RESULTSHypotension was associated with increased values of COx (P<0.0001). For 77% of patients, an individual estimate of lower limits of pressure autoregulation could be determined using a threshold COx value of 0.4. The mean lower limits of pressure autoregulation for the cohort using this method was 42+/-7 mm Hg. CONCLUSIONSThis pilot study of COx monitoring in pediatric patients demonstrates an association between hypotension during cardiopulmonary bypass and impairment of autoregulation. The COx may be useful to identify arterial blood pressure-dependent limits of cerebral autoregulation during cardiopulmonary bypass. Larger trials with neurological outcomes are indicated. |
Author | Vricella, Luca A Hogue, Charles W Lee, Jennifer K Brady, Ken M Mytar, Jennifer O Cameron, Duke E Easley, R Blaine Thompson, W Reid |
Author_xml | – sequence: 1 givenname: Ken M surname: Brady fullname: Brady, Ken M email: Kbrady5@jhmi.edu organization: Department of Anesthesiology and Critical Care Medicine, Johns Hopkins Hospital, Baltimore, MD, USA. Kbrady5@jhmi.edu – sequence: 2 givenname: Jennifer O surname: Mytar fullname: Mytar, Jennifer O – sequence: 3 givenname: Jennifer K surname: Lee fullname: Lee, Jennifer K – sequence: 4 givenname: Duke E surname: Cameron fullname: Cameron, Duke E – sequence: 5 givenname: Luca A surname: Vricella fullname: Vricella, Luca A – sequence: 6 givenname: W Reid surname: Thompson fullname: Thompson, W Reid – sequence: 7 givenname: Charles W surname: Hogue fullname: Hogue, Charles W – sequence: 8 givenname: R Blaine surname: Easley fullname: Easley, R Blaine |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20651273$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU9PFTEUxRuDkQf6DYzpztU82un_jckLQSFASBTXTadz51Gd147tjIZvT8lDoitWN7nnd07uzTlCBzFFQOg9JWtKJT0pc04_wd25NSVmLZSgUr1CKypa3nDZ6gO0IoSZpuXGHKKjUn4QQlqmxRt02BIpaKvYCvnrFMOccohb7CFDl92IuzGlHg9j-oOnDKUsGbBbKgXbZXRzSBGHiCfog5tz8HiqO4hzwf2yD3K5Sh5X4xby_Vv0enBjgXdP8xh9_3x2e3reXN18uTjdXDVeEDE3knWaKql6DrpzPfOGc-5dx4DR1nNqmDECOm68HrgRw-CqAlAx4JpJxY7Rp33utHQ76H09qX5jpxx2Lt_b5IL9X4nhzm7Tbyu40croGvDxKSCnXwuU2e5C8TCOLkJaitVKScIIpS-SihtCuWSPJN-TPqdSMgzP91BiH4u0326_3lyebc43dWPsvshq-_DvL8-mv82xBxvyoJA |
CitedBy_id | crossref_primary_10_3389_fneur_2020_00938 crossref_primary_10_1111_pan_13161 crossref_primary_10_1016_j_earlhumdev_2018_01_019 crossref_primary_10_1097_EJA_0000000000000782 crossref_primary_10_1111_pan_13205 crossref_primary_10_1016_j_radcr_2020_10_057 crossref_primary_10_3389_fped_2023_1110453 crossref_primary_10_1117_1_JBO_17_6_067008 crossref_primary_10_1016_j_medengphy_2014_03_002 crossref_primary_10_1177_2150135118775964 crossref_primary_10_1179_1743132812Y_0000000150 crossref_primary_10_3171_2021_6_PEDS21143 crossref_primary_10_1007_s42804_019_0001_0 crossref_primary_10_1177_0885066619828293 crossref_primary_10_1007_s12028_023_01737_x crossref_primary_10_1152_ajpregu_00487_2013 crossref_primary_10_1007_s13312_018_1281_9 crossref_primary_10_1016_j_jtcvs_2016_03_082 crossref_primary_10_1073_pnas_1212785110 crossref_primary_10_1007_s13244_018_0628_z crossref_primary_10_1016_j_jtcvs_2012_12_060 crossref_primary_10_1016_j_pediatrneurol_2015_11_010 crossref_primary_10_1186_s13019_023_02413_z crossref_primary_10_1007_s00246_020_02492_y crossref_primary_10_1152_japplphysiol_00238_2013 crossref_primary_10_1016_j_jtcvs_2019_09_038 crossref_primary_10_1016_j_bja_2024_01_043 crossref_primary_10_1097_CCM_0b013e31826ab3a1 crossref_primary_10_1016_j_clp_2020_05_003 crossref_primary_10_1097_MAT_0000000000002107 crossref_primary_10_7130_jject_39_132 crossref_primary_10_1179_1743132812Y_0000000145 crossref_primary_10_1097_CCM_0000000000003908 crossref_primary_10_3390_diagnostics11091591 crossref_primary_10_1016_j_bas_2024_102834 crossref_primary_10_1038_s41390_018_0141_6 crossref_primary_10_1093_ejcts_ezs010 crossref_primary_10_1164_rccm_202103_0732OC crossref_primary_10_1891_0730_0832_11_T_678 crossref_primary_10_1053_j_jvca_2018_03_032 crossref_primary_10_1016_j_jacc_2022_10_029 crossref_primary_10_1111_pan_14555 crossref_primary_10_1111_pan_14558 crossref_primary_10_1007_s12055_016_0481_y crossref_primary_10_1177_0271678X17747833 crossref_primary_10_1038_s41372_020_0626_0 crossref_primary_10_1111_aas_14066 crossref_primary_10_3389_fped_2018_00117 crossref_primary_10_1053_j_jvca_2019_08_048 crossref_primary_10_1016_j_jtcvs_2018_08_097 crossref_primary_10_1016_j_athoracsur_2015_03_036 crossref_primary_10_1038_s41390_024_03161_z crossref_primary_10_1111_pan_14146 crossref_primary_10_1016_j_mvr_2017_08_006 crossref_primary_10_3389_fped_2022_762739 crossref_primary_10_1038_s41390_021_01525_3 crossref_primary_10_1111_pan_12401 crossref_primary_10_1093_ejcts_ezv018 crossref_primary_10_1016_j_jpedsurg_2019_11_026 crossref_primary_10_1097_CCM_0000000000002251 crossref_primary_10_1007_s00246_022_02889_x crossref_primary_10_1038_jp_2011_17 crossref_primary_10_1007_s00246_023_03326_3 crossref_primary_10_1213_ANE_0000000000000930 crossref_primary_10_1213_ANE_0b013e31824762d5 crossref_primary_10_4103_ija_ija_1065_21 crossref_primary_10_1111_pan_12671 crossref_primary_10_1097_MCC_0000000000000704 crossref_primary_10_1111_pan_12397 crossref_primary_10_1097_WNF_0000000000000309 crossref_primary_10_1007_s10877_015_9774_8 crossref_primary_10_1213_ANE_0000000000001870 crossref_primary_10_4037_ajcc2018672 crossref_primary_10_1117_1_NPh_5_4_045005 crossref_primary_10_3389_fped_2017_00046 crossref_primary_10_1111_apa_12817 crossref_primary_10_1007_s12028_023_01741_1 crossref_primary_10_3389_fneur_2021_740185 crossref_primary_10_1038_s41598_020_66346_6 crossref_primary_10_2217_iim_13_29 crossref_primary_10_3389_fped_2018_00097 crossref_primary_10_1097_01_aco_0000432517_70844_a6 crossref_primary_10_1213_ANE_0000000000002844 crossref_primary_10_1016_j_jtcvs_2017_04_091 crossref_primary_10_1017_S1047951117001573 crossref_primary_10_1111_pan_13597 crossref_primary_10_1111_pan_13194 crossref_primary_10_1016_j_ejvs_2020_07_076 crossref_primary_10_1007_s00464_014_4009_5 crossref_primary_10_1007_s12630_011_9529_z crossref_primary_10_1111_pan_12943 crossref_primary_10_1111_pan_14328 crossref_primary_10_3390_pediatric15010002 crossref_primary_10_1111_pan_12301 crossref_primary_10_1016_j_accpm_2022_101190 crossref_primary_10_1053_j_jvca_2024_03_021 crossref_primary_10_1053_j_jvca_2016_01_012 crossref_primary_10_1177_1089253215570064 crossref_primary_10_3389_fped_2021_678890 crossref_primary_10_1016_S1474_4422_15_00111_8 crossref_primary_10_1097_ALN_0000000000003005 crossref_primary_10_1161_JAHA_122_028147 crossref_primary_10_1583_10_3224C_1 crossref_primary_10_1177_1089253220924523 crossref_primary_10_1053_j_jvca_2016_01_026 crossref_primary_10_1055_s_0040_1702934 crossref_primary_10_1093_icvts_ivv371 crossref_primary_10_1255_jnirs_972 crossref_primary_10_1097_CCM_0000000000003947 crossref_primary_10_1016_j_semperi_2022_151586 crossref_primary_10_1177_2333794X20947924 crossref_primary_10_3390_brainsci13081165 crossref_primary_10_3390_s20174844 crossref_primary_10_1177_0271678X241261944 crossref_primary_10_7759_cureus_51216 crossref_primary_10_1542_peds_2012_1702 crossref_primary_10_1016_j_bja_2021_10_035 crossref_primary_10_1016_j_jpeds_2016_11_080 crossref_primary_10_1016_j_jtcvs_2023_12_003 crossref_primary_10_1038_nrneurol_2013_11 crossref_primary_10_1093_ejcts_ezs581 crossref_primary_10_1016_j_clp_2019_08_003 crossref_primary_10_1053_j_jvca_2017_05_036 crossref_primary_10_1093_bja_aer324 crossref_primary_10_3389_fped_2021_748345 crossref_primary_10_1097_PCC_0000000000002438 crossref_primary_10_1513_AnnalsATS_201507_454OC crossref_primary_10_1016_j_bja_2021_12_013 crossref_primary_10_1097_ACO_0b013e32834458c5 crossref_primary_10_1016_j_jtcvs_2013_07_069 crossref_primary_10_1016_j_coph_2012_01_013 crossref_primary_10_3389_fneur_2021_732176 |
Cites_doi | 10.1016/j.jtcvs.2008.08.022 10.1161/01.cir.0000032908.33237.b1 10.1007/s007010200032 10.3171/jns.1965.22.6.0581 10.1097/00006123-199707000-00005 10.1007/s12028-008-9140-5 10.1161/strokeaha.108.536094 10.1161/STROKEAHA.109.575159 10.1161/str.27.10.1829 10.1203/01.PDR.0000147576.84092.F9 10.1097/01.hco.0000153451.68212.68 10.1007/BF03012304 10.1007/s12028-008-9175-7 10.1161/circulationaha.105.594804 10.1016/j.amjsurg.2005.05.029 10.1002/0471722146 10.1016/j.jtcvs.2003.09.053 10.1161/strokeaha.108.514877 10.1542/peds.2007-1066 10.1161/strokeaha.107.485706 10.1097/00003246-200204000-00002 10.2307/2531248 |
ContentType | Journal Article |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 7TK 5PM |
DOI | 10.1161/strokeaha.109.575167 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic Neurosciences Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic Neurosciences Abstracts |
DatabaseTitleList | CrossRef MEDLINE Neurosciences Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1524-4628 |
EndPage | 1962 |
ExternalDocumentID | 10_1161_STROKEAHA_109_575167 20651273 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: R01 HL092259 |
GroupedDBID | --- .3C .55 .GJ .XZ .Z2 01R 0R~ 123 1J1 2WC 3O- 40H 4Q1 4Q2 4Q3 53G 5RE 5VS 6PF 71W 77Y 7O~ A9M AAAAV AAAXR AAGIX AAHPQ AAIQE AAJCS AAMOA AAMTA AAQKA AAQQT AARTV AASCR AASOK AAUEB AAXQO AAYEP AAYJJ ABASU ABBUW ABDIG ABJNI ABQRW ABVCZ ABXVJ ABZAD ACCJW ACDDN ACEWG ACGFS ACGOD ACILI ACLDA ACWDW ACWRI ACXJB ACXNZ ADBBV ADFPA ADGGA ADHPY ADNKB AE3 AE6 AEBDS AEETU AENEX AFDTB AFEXH AFFNX AFSOK AFUWQ AGINI AHMBA AHOMT AHQNM AHRYX AHVBC AIJEX AINUH AJIOK AJNWD AJNYG AJZMW AKULP ALMA_UNASSIGNED_HOLDINGS ALMTX AMJPA AMKUR AMNEI AOHHW AWKKM AYCSE BAWUL BCGUY BOYCO BQLVK BS7 C45 CGR CS3 CUY CVF DIK DIWNM DU5 DUNZO E.X E3Z EBS ECM EEVPB EIF EJD ERAAH EX3 F2K F2L F2M F2N F5P FCALG FL- FW0 GNXGY GQDEL GX1 H0~ H13 HLJTE HZ~ IKREB IKYAY IN~ IPNFZ J5H JF9 JG8 JK3 JK8 K8S KD2 KMI KQ8 L-C L7B M18 N4W N9A NPM N~7 N~B N~M O9- OAG OAH OB3 OCUKA ODA ODMTH OGROG OHYEH OJAPA OK1 OL1 OLG OLH OLU OLV OLW OLY OLZ OPUJH ORVUJ OUVQU OVD OVDNE OVIDH OVLEI OVOZU OWBYB OWU OWV OWW OWX OWY OWZ OXXIT P-K P2P PQQKQ R58 RAH RHF RIG RLZ S4R S4S T8P TEORI TSPGW TWZ V2I VVN W3M W8F WH7 WOQ WOW X3V X3W X7M XXN XYM YCJ YFH YHZ YQJ YYP ZB8 ZGI ZZMQN AAYXX CITATION 7X8 7TK 5PM |
ID | FETCH-LOGICAL-c505t-63b81767d4e8bad3c9444cab3e312c4193995eb49c8f495ffa3e3eec94e483673 |
ISSN | 0039-2499 1524-4628 |
IngestDate | Tue Sep 17 21:27:11 EDT 2024 Wed Dec 04 07:43:00 EST 2024 Wed Dec 04 09:47:57 EST 2024 Fri Dec 06 03:12:41 EST 2024 Tue Oct 15 23:39:08 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | Reprints: Information about reprints can be found online at: http://www.lww.com/reprints |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c505t-63b81767d4e8bad3c9444cab3e312c4193995eb49c8f495ffa3e3eec94e483673 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
OpenAccessLink | https://doi.org/10.1161/strokeaha.109.575167 |
PMID | 20651273 |
PQID | 749014631 |
PQPubID | 23479 |
PageCount | 6 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5498798 proquest_miscellaneous_877603011 proquest_miscellaneous_749014631 crossref_primary_10_1161_STROKEAHA_109_575167 pubmed_primary_20651273 |
PublicationCentury | 2000 |
PublicationDate | 2010-09-01 |
PublicationDateYYYYMMDD | 2010-09-01 |
PublicationDate_xml | – month: 09 year: 2010 text: 2010-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Stroke (1970) |
PublicationTitleAlternate | Stroke |
PublicationYear | 2010 |
References | 9836033 - Can J Anaesth. 1998 Oct;45(10):960-78 8841340 - Stroke. 1996 Oct;27(10 ):1829-34 19185170 - J Thorac Cardiovasc Surg. 2009 Feb;137(2):459-64 12354718 - Circulation. 2002 Sep 24;106(12 Suppl 1):I109-14 3719049 - Biometrics. 1986 Mar;42(1):121-30 19286593 - Stroke. 2009 May;40(5):1820-6 15711194 - Curr Opin Cardiol. 2005 Mar;20(2):94-9 17761921 - Stroke. 2007 Oct;38(10):2818-25 5832775 - J Neurosurg. 1965 Jun;22(6):581-90 19127448 - Neurocrit Care. 2009;10(3):373-86 18381503 - Pediatrics. 2008 Apr;121(4):e759-67 1567028 - Anesth Analg. 1992 May;74(5):636-42 18669896 - Stroke. 2008 Sep;39(9):2531-7 16023448 - Am J Surg. 2005 Aug;190(2):289-94 9218290 - Neurosurgery. 1997 Jul;41(1):11-7; discussion 17-9 18807218 - Neurocrit Care. 2009;10(1):122-8 16418448 - Circulation. 2006 Jan 17;113(2):183-5 15531739 - Pediatr Res. 2005 Jan;57(1):35-41 15001897 - J Thorac Cardiovasc Surg. 2004 Mar;127(3):692-704 20651274 - Stroke. 2010 Sep;41(9):1951-6 11956937 - Acta Neurochir (Wien). 2002 Mar;144(3):243-54 11940737 - Crit Care Med. 2002 Apr;30(4):733-8 e_1_3_2_9_2 e_1_3_2_15_2 e_1_3_2_8_2 e_1_3_2_16_2 e_1_3_2_7_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_18_2 e_1_3_2_1_2 e_1_3_2_20_2 e_1_3_2_10_2 e_1_3_2_21_2 e_1_3_2_5_2 e_1_3_2_11_2 e_1_3_2_22_2 e_1_3_2_4_2 e_1_3_2_12_2 e_1_3_2_23_2 e_1_3_2_3_2 e_1_3_2_13_2 e_1_3_2_2_2 e_1_3_2_14_2 (e_1_3_2_19_2) 1992; 74 |
References_xml | – ident: e_1_3_2_23_2 doi: 10.1016/j.jtcvs.2008.08.022 – ident: e_1_3_2_2_2 doi: 10.1161/01.cir.0000032908.33237.b1 – ident: e_1_3_2_13_2 doi: 10.1007/s007010200032 – ident: e_1_3_2_14_2 doi: 10.3171/jns.1965.22.6.0581 – ident: e_1_3_2_15_2 doi: 10.1097/00006123-199707000-00005 – ident: e_1_3_2_10_2 doi: 10.1007/s12028-008-9140-5 – ident: e_1_3_2_12_2 doi: 10.1161/strokeaha.108.536094 – ident: e_1_3_2_11_2 doi: 10.1161/STROKEAHA.109.575159 – ident: e_1_3_2_22_2 doi: 10.1161/str.27.10.1829 – ident: e_1_3_2_21_2 doi: 10.1203/01.PDR.0000147576.84092.F9 – ident: e_1_3_2_4_2 doi: 10.1097/01.hco.0000153451.68212.68 – volume: 74 start-page: 636 year: 1992 ident: e_1_3_2_19_2 publication-title: Anesth Analg – ident: e_1_3_2_3_2 doi: 10.1007/BF03012304 – ident: e_1_3_2_20_2 doi: 10.1007/s12028-008-9175-7 – ident: e_1_3_2_6_2 doi: 10.1161/circulationaha.105.594804 – ident: e_1_3_2_7_2 doi: 10.1016/j.amjsurg.2005.05.029 – ident: e_1_3_2_18_2 doi: 10.1002/0471722146 – ident: e_1_3_2_1_2 doi: 10.1016/j.jtcvs.2003.09.053 – ident: e_1_3_2_9_2 doi: 10.1161/strokeaha.108.514877 – ident: e_1_3_2_5_2 doi: 10.1542/peds.2007-1066 – ident: e_1_3_2_8_2 doi: 10.1161/strokeaha.107.485706 – ident: e_1_3_2_16_2 doi: 10.1097/00003246-200204000-00002 – ident: e_1_3_2_17_2 doi: 10.2307/2531248 |
SSID | ssj0002385 |
Score | 2.4494536 |
Snippet | The limits of cerebral blood flow-pressure autoregulation have not been adequately defined for pediatric patients. Mean arterial blood pressure below these... Background and Purpose— The limits of cerebral blood flow-pressure autoregulation have not been adequately defined for pediatric patients. Mean arterial blood... BACKGROUND AND PURPOSEThe limits of cerebral blood flow-pressure autoregulation have not been adequately defined for pediatric patients. Mean arterial blood... BACKGROUND: and Purpose- The limits of cerebral blood flow-pressure autoregulation have not been adequately defined for pediatric patients. Mean arterial blood... |
SourceID | pubmedcentral proquest crossref pubmed |
SourceType | Open Access Repository Aggregation Database Index Database |
StartPage | 1957 |
SubjectTerms | Adolescent Blood Flow Velocity - physiology Blood Pressure - physiology Cardiopulmonary Bypass - instrumentation Cerebrovascular Circulation - physiology Child Child, Preschool Female Homeostasis - physiology Humans Hypotension - physiopathology Infant Infant, Newborn Logistic Models Male Monitoring, Intraoperative - methods Oximetry Pilot Projects Prospective Studies Spectroscopy, Near-Infrared - methods |
Title | Monitoring cerebral blood flow pressure autoregulation in pediatric patients during cardiac surgery |
URI | https://www.ncbi.nlm.nih.gov/pubmed/20651273 https://search.proquest.com/docview/749014631 https://search.proquest.com/docview/877603011 https://pubmed.ncbi.nlm.nih.gov/PMC5498798 |
Volume | 41 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKIiEuiDflJR-4VSmbxPXjWEJXFVVZYLvS3qI4dbQVu-kqpIflZ_CLmbGdNGWLBHuJqtiuW8-XyYz9zQwh7yJRgOPDo0CNTAQOih4FShse5MKomOtMiiVuDcw_8-kp-3Q2Ouv1fnVYS5taD_Ofe-NKbiNVuAdyxSjZ_5Bs-6VwAz6DfOEKEobrP8nYPZCWQZeYCo-ALwYfkIk-OLrAEDfrSldmMMZEBa7ovKc2thU6MEf_yka5fXQBi4mFTA4a5Ua89Eldrb9bmzRU4rCzh4AH8tc-ymcwH7ZCvK4dfbuh0AyO27aGANS0zNqWJLs0leMCWOrIZNjdmcBDddXsTHhtG-PpjSuANDRewUYswHjYrgZmYQdpqqNOQ-WyV_tXM2iLaL_a56j2TxbfjmeT8XSMObKGeKDkKn10kHB1aaEQgeEVRq6Gym4O7i_zBDxmKZS8Q-5ickWsxzD7us1ADyaOq4rh_5sPx4Rf8H7f_Jhs2k-2a_nccGf-ZOV2zJzFQ_LA-yd07MD2iPRM-Zjcm3sGxhOSbzFHG8xRizmKmKMN5ugu5uiqpC3maIM56jBHPeaox9xTcno0WSTTwBfqCHIwoOuAx1qGgoslM1JnyzhXjLE807jBHuUMfAQFqkAzlcsCHPKiyKDFGOhmmIy5iJ-Rg3JdmheEMpaBSWXYsog0g5ePzA-X2hQjCcMFDO-ToFnE9MrlY0mtH8vDtF1_pFWkbv37hDYrnYLixNOwrDTrzY9UMGQQ8Dj8excpBLdbBn3y3MmmnbMRap-IHam1HTBt-25LuTq36ds9vl7eeuQrcn_7uL0mB3W1MW_ANK71W4vV33e6t58 |
link.rule.ids | 230,314,780,784,885,27924,27925 |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Monitoring+Cerebral+Blood+Flow+Pressure+Autoregulation+in+Pediatric+Patients+During+Cardiac+Surgery&rft.jtitle=Stroke+%281970%29&rft.au=Brady%2C+Ken+M.&rft.au=Mytar%2C+Jennifer+O.&rft.au=Lee%2C+Jennifer+K.&rft.au=Cameron%2C+Duke+E.&rft.date=2010-09-01&rft.issn=0039-2499&rft.eissn=1524-4628&rft.volume=41&rft.issue=9&rft.spage=1957&rft.epage=1962&rft_id=info:doi/10.1161%2FSTROKEAHA.109.575167&rft_id=info%3Apmid%2F20651273&rft.externalDBID=PMC5498798 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0039-2499&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0039-2499&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0039-2499&client=summon |