An Impact of Prolonged Electrolysis on the Electrochemical Performance and Surface Characteristics of NiFe-Modified Graphite Electrodes for Alkaline Water Electrolysis

This study investigates the influence of prolonged electrolysis on the electrochemical performance and surface characteristics of NiFe-modified compressed graphite electrodes used in alkaline water electrolysis. The electrochemical experiment was conducted over a two-week period at a constant temper...

Full description

Saved in:
Bibliographic Details
Published inMolecules (Basel, Switzerland) Vol. 29; no. 24; p. 5820
Main Authors Kuczyński, Mateusz, Mikołajczyk, Tomasz, Pierożyński, Bogusław, Bramowicz, Mirosław, Kulesza, Sławomir
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.12.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This study investigates the influence of prolonged electrolysis on the electrochemical performance and surface characteristics of NiFe-modified compressed graphite electrodes used in alkaline water electrolysis. The electrochemical experiment was conducted over a two-week period at a constant temperature of 60 °C. The electrodes were evaluated for changes in surface morphology and composition using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD). The results demonstrated stable electrochemical performance with minimal current variation. However, significant structural changes occurred, including the formation of new microstructures on the cathode and the emergence of KHCO3 (potassium bicarbonate) compound on both electrodes. Crystallographic analysis revealed an increase in crystallite size and tensile lattice strain on the cathode, while the anode exhibited compressive lattice strains and a reduction in crystallite size. These findings suggest that the observed changes were driven by electrochemical annealing processes, contributing to material redistribution and surface modifications during prolonged electrolysis. This study provides insight into optimizing NiFe-based catalysts for enhanced durability and efficiency in water splitting technologies.
AbstractList This study investigates the influence of prolonged electrolysis on the electrochemical performance and surface characteristics of NiFe-modified compressed graphite electrodes used in alkaline water electrolysis. The electrochemical experiment was conducted over a two-week period at a constant temperature of 60 °C. The electrodes were evaluated for changes in surface morphology and composition using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD). The results demonstrated stable electrochemical performance with minimal current variation. However, significant structural changes occurred, including the formation of new microstructures on the cathode and the emergence of KHCO3 (potassium bicarbonate) compound on both electrodes. Crystallographic analysis revealed an increase in crystallite size and tensile lattice strain on the cathode, while the anode exhibited compressive lattice strains and a reduction in crystallite size. These findings suggest that the observed changes were driven by electrochemical annealing processes, contributing to material redistribution and surface modifications during prolonged electrolysis. This study provides insight into optimizing NiFe-based catalysts for enhanced durability and efficiency in water splitting technologies.
This study investigates the influence of prolonged electrolysis on the electrochemical performance and surface characteristics of NiFe-modified compressed graphite electrodes used in alkaline water electrolysis. The electrochemical experiment was conducted over a two-week period at a constant temperature of 60 °C. The electrodes were evaluated for changes in surface morphology and composition using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD). The results demonstrated stable electrochemical performance with minimal current variation. However, significant structural changes occurred, including the formation of new microstructures on the cathode and the emergence of KHCO[sub.3] (potassium bicarbonate) compound on both electrodes. Crystallographic analysis revealed an increase in crystallite size and tensile lattice strain on the cathode, while the anode exhibited compressive lattice strains and a reduction in crystallite size. These findings suggest that the observed changes were driven by electrochemical annealing processes, contributing to material redistribution and surface modifications during prolonged electrolysis. This study provides insight into optimizing NiFe-based catalysts for enhanced durability and efficiency in water splitting technologies.
This study investigates the influence of prolonged electrolysis on the electrochemical performance and surface characteristics of NiFe-modified compressed graphite electrodes used in alkaline water electrolysis. The electrochemical experiment was conducted over a two-week period at a constant temperature of 60 °C. The electrodes were evaluated for changes in surface morphology and composition using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD). The results demonstrated stable electrochemical performance with minimal current variation. However, significant structural changes occurred, including the formation of new microstructures on the cathode and the emergence of KHCO (potassium bicarbonate) compound on both electrodes. Crystallographic analysis revealed an increase in crystallite size and tensile lattice strain on the cathode, while the anode exhibited compressive lattice strains and a reduction in crystallite size. These findings suggest that the observed changes were driven by electrochemical annealing processes, contributing to material redistribution and surface modifications during prolonged electrolysis. This study provides insight into optimizing NiFe-based catalysts for enhanced durability and efficiency in water splitting technologies.
This study investigates the influence of prolonged electrolysis on the electrochemical performance and surface characteristics of NiFe-modified compressed graphite electrodes used in alkaline water electrolysis. The electrochemical experiment was conducted over a two-week period at a constant temperature of 60 °C. The electrodes were evaluated for changes in surface morphology and composition using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD). The results demonstrated stable electrochemical performance with minimal current variation. However, significant structural changes occurred, including the formation of new microstructures on the cathode and the emergence of KHCO3 (potassium bicarbonate) compound on both electrodes. Crystallographic analysis revealed an increase in crystallite size and tensile lattice strain on the cathode, while the anode exhibited compressive lattice strains and a reduction in crystallite size. These findings suggest that the observed changes were driven by electrochemical annealing processes, contributing to material redistribution and surface modifications during prolonged electrolysis. This study provides insight into optimizing NiFe-based catalysts for enhanced durability and efficiency in water splitting technologies.This study investigates the influence of prolonged electrolysis on the electrochemical performance and surface characteristics of NiFe-modified compressed graphite electrodes used in alkaline water electrolysis. The electrochemical experiment was conducted over a two-week period at a constant temperature of 60 °C. The electrodes were evaluated for changes in surface morphology and composition using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD). The results demonstrated stable electrochemical performance with minimal current variation. However, significant structural changes occurred, including the formation of new microstructures on the cathode and the emergence of KHCO3 (potassium bicarbonate) compound on both electrodes. Crystallographic analysis revealed an increase in crystallite size and tensile lattice strain on the cathode, while the anode exhibited compressive lattice strains and a reduction in crystallite size. These findings suggest that the observed changes were driven by electrochemical annealing processes, contributing to material redistribution and surface modifications during prolonged electrolysis. This study provides insight into optimizing NiFe-based catalysts for enhanced durability and efficiency in water splitting technologies.
Audience Academic
Author Pierożyński, Bogusław
Mikołajczyk, Tomasz
Kuczyński, Mateusz
Bramowicz, Mirosław
Kulesza, Sławomir
Author_xml – sequence: 1
  givenname: Mateusz
  orcidid: 0000-0002-5948-6119
  surname: Kuczyński
  fullname: Kuczyński, Mateusz
– sequence: 2
  givenname: Tomasz
  orcidid: 0000-0003-0113-4804
  surname: Mikołajczyk
  fullname: Mikołajczyk, Tomasz
– sequence: 3
  givenname: Bogusław
  surname: Pierożyński
  fullname: Pierożyński, Bogusław
– sequence: 4
  givenname: Mirosław
  orcidid: 0000-0002-7716-544X
  surname: Bramowicz
  fullname: Bramowicz, Mirosław
– sequence: 5
  givenname: Sławomir
  orcidid: 0000-0003-2889-5611
  surname: Kulesza
  fullname: Kulesza, Sławomir
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39769911$$D View this record in MEDLINE/PubMed
BookMark eNp9kt9u0zAUhyM0xP7AA3CDLHHDTYft2LFzWVXbqDRgEiAuo1PnuHVJ4mKnF3siXpNTuhU2EIqUOEff77NPck6LoyEOWBQvBT8vy5q_7WOHbtthlrVU2kr-pDgRSvJJyVV99Mf6uDjNec25FEroZ8VxWZuqroU4KX5MBzbvN-BGFj27SbGLwxJbdkHmkd5uc8gsDmxc4X3NrbAPDjp2g8nH1MPgkMHQsk_b5IHWsxUkEmIKeQwu78QfwiVO3sc2-EDyqwSbVRgPxhYzIxObdt-gCwOyr0DpB2d4Xjz10GV8cfc8K75cXnyevZtcf7yaz6bXE6e5HieVrJST1QLopioouTYGnJGiBpRGC8_R1q2VeoEOK2lAuspa6RGM8qq15Vkx33vbCOtmk0IP6baJEJpfhZiWDSTqqsNGqNZYpbVRxiuwtnbKVpUXmnMtpa3I9Wbv2qT4fYt5bPqQHXYdDBi3uSmFLq0hWBD6-hG6jts0UKdEqdpwI7j5TS2B9g-DjyN96J20mVrqUWhlNFHn_6Doanf_jSbIB6o_CLy623y76LE9dH0_JQSIPeBSzDmhPyCCN7tJbP6aRMqYRxkXRhhDHOg0oftP8ifwPeR6
CitedBy_id crossref_primary_10_3390_molecules30051046
Cites_doi 10.1007/s10853-017-1882-z
10.1016/j.ijhydene.2024.07.428
10.1016/j.mssp.2018.02.008
10.1021/acscatal.3c03804
10.1107/S0021889869006558
10.1002/adma.202305074
10.1016/j.nanoen.2017.08.031
10.1016/j.apcatb.2017.01.010
10.1016/0001-6160(53)90006-6
10.1039/C8TA11273H
10.1021/acsenergylett.6b00219
10.1021/acsaem.2c01115
10.1002/cctc.202400286
10.1103/PhysRev.56.978
10.1039/D2RA05922C
10.1016/j.susc.2005.07.040
10.1007/s12678-014-0214-1
10.1021/acsami.7b14096
10.1016/j.jallcom.2019.153542
10.3390/en14030526
10.1007/s00339-007-3912-1
10.1016/j.apcatb.2020.119740
10.1016/j.ijhydene.2023.08.107
10.1021/acscatal.1c01190
10.1002/inf2.12608
10.3390/molecules29194755
10.1016/j.jpowsour.2014.12.085
10.1016/j.apcatb.2021.120937
10.1038/s41560-020-0576-y
10.1002/cey2.465
10.1039/D0SC06716D
10.1016/j.ceramint.2018.10.053
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
DOA
DOI 10.3390/molecules29245820
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni)
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
Publicly Available Content Database


PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1420-3049
ExternalDocumentID oai_doaj_org_article_14d78455747f4a889c4866f150052286
A821915475
39769911
10_3390_molecules29245820
Genre Journal Article
GeographicLocations Poland
GeographicLocations_xml – name: Poland
GrantInformation_xml – fundername: University of Warmia and Mazury in Olsztyn
  grantid: 30.610.001-110
GroupedDBID ---
0R~
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
A8Z
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABUWG
ACGFO
ACIWK
ACPRK
ACUHS
AEGXH
AENEX
AFKRA
AFPKN
AFRAH
AFZYC
AIAGR
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DIK
DU5
E3Z
EBD
EMOBN
ESX
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
HZ~
I09
IAO
IHR
ITC
KQ8
LK8
M1P
MODMG
O-U
O9-
OK1
P2P
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RPM
SV3
TR2
TUS
UKHRP
~8M
3V.
ABJCF
BBNVY
BHPHI
HCIFZ
KB.
M7P
M~E
NPM
PDBOC
PMFND
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
PUEGO
ID FETCH-LOGICAL-c505t-6264c26bac2646a30577ac7219ae2751f0e89d825bece627a2c6882fea74f4d83
IEDL.DBID 7X7
ISSN 1420-3049
IngestDate Wed Aug 27 01:07:09 EDT 2025
Fri Jul 11 04:10:35 EDT 2025
Fri Jul 25 23:05:09 EDT 2025
Tue Jun 17 22:01:27 EDT 2025
Tue Jun 10 21:09:39 EDT 2025
Sat Jan 11 01:32:13 EST 2025
Tue Jul 01 04:00:10 EDT 2025
Thu Apr 24 23:11:29 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 24
Keywords XRD
NiFe-modified electrodes
catalyst stability
alkaline water electrolysis
surface characterization
SEM/EDS
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c505t-6264c26bac2646a30577ac7219ae2751f0e89d825bece627a2c6882fea74f4d83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0113-4804
0000-0002-5948-6119
0000-0002-7716-544X
0000-0003-2889-5611
OpenAccessLink https://www.proquest.com/docview/3149707107?pq-origsite=%requestingapplication%
PMID 39769911
PQID 3149707107
PQPubID 2032355
ParticipantIDs doaj_primary_oai_doaj_org_article_14d78455747f4a889c4866f150052286
proquest_miscellaneous_3153870521
proquest_journals_3149707107
gale_infotracmisc_A821915475
gale_infotracacademiconefile_A821915475
pubmed_primary_39769911
crossref_primary_10_3390_molecules29245820
crossref_citationtrail_10_3390_molecules29245820
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Molecules (Basel, Switzerland)
PublicationTitleAlternate Molecules
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Williamson (ref_34) 1953; 1
Rietveld (ref_32) 1969; 2
Xu (ref_9) 2024; 6
Sun (ref_15) 2021; 284
Guan (ref_11) 2023; 35
Chung (ref_21) 2020; 5
Ciambriello (ref_13) 2024; 16
Sharshir (ref_19) 2024; 49
Beltramo (ref_28) 2007; 87
Wang (ref_1) 2016; 1
Abdelghafar (ref_10) 2022; 2
Liu (ref_7) 2017; 40
Han (ref_14) 2022; 304
Zhang (ref_20) 2023; 13
Kang (ref_24) 2021; 12
Patterson (ref_33) 1939; 56
Vladescu (ref_31) 2019; 45
Messaoudi (ref_23) 2022; 12
Giesen (ref_27) 2005; 595
Bao (ref_17) 2021; 11
Zhang (ref_12) 2024; 6
ref_25
Cai (ref_6) 2019; 7
Alsabet (ref_16) 2015; 6
Jiang (ref_3) 2015; 278
Park (ref_22) 2022; 5
Nava (ref_4) 2018; 53
ref_29
ref_26
Bramowicz (ref_30) 2018; 79
Zhan (ref_2) 2017; 205
Zhang (ref_5) 2020; 821
Kumar (ref_8) 2017; 9
Sebbahi (ref_18) 2024; 82
References_xml – volume: 53
  start-page: 4515
  year: 2018
  ident: ref_4
  article-title: Influence of Cobalt on Electrocatalytic Water Splitting in NiCoFe Layered Double Hydroxides
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-017-1882-z
– volume: 82
  start-page: 583
  year: 2024
  ident: ref_18
  article-title: A Comprehensive Review of Recent Advances in Alkaline Water Electrolysis for Hydrogen Production
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2024.07.428
– volume: 79
  start-page: 144
  year: 2018
  ident: ref_30
  article-title: Topographic Characterization of Thin Film Field-Effect Transistors of 2,6-Diphenyl Anthracene (DPA) by Fractal and AFM Analysis
  publication-title: Mater. Sci. Semicond. Process.
  doi: 10.1016/j.mssp.2018.02.008
– volume: 13
  start-page: 14975
  year: 2023
  ident: ref_20
  article-title: Unraveling the Mechanism of Self-Repair of NiFe-Based Electrocatalysts by Dynamic Exchange of Iron During the Oxygen Evolution Reaction
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.3c03804
– volume: 2
  start-page: 65
  year: 1969
  ident: ref_32
  article-title: A Profile Refinement Method for Nuclear and Magnetic Structures
  publication-title: J. Appl. Crystallogr.
  doi: 10.1107/S0021889869006558
– volume: 35
  start-page: 2305074
  year: 2023
  ident: ref_11
  article-title: Identifying a Universal Activity Descriptor and a Unifying Mechanism Concept on Perovskite Oxides for Green Hydrogen Production
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202305074
– volume: 40
  start-page: 264
  year: 2017
  ident: ref_7
  article-title: S-NiFe2O4 Ultra-Small Nanoparticle Built Nanosheets for Efficient Water Splitting in Alkaline and Neutral pH
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.08.031
– volume: 205
  start-page: 551
  year: 2017
  ident: ref_2
  article-title: Nitrogen Doped NiFe Layered Double Hydroxide/Reduced Graphene Oxide Mesoporous Nanosphere as an Effective Bifunctional Electrocatalyst for Oxygen Reduction and Evolution Reactions
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2017.01.010
– volume: 1
  start-page: 22
  year: 1953
  ident: ref_34
  article-title: X-Ray Line Broadening from Filed Aluminium and Wolfram
  publication-title: Acta Metall.
  doi: 10.1016/0001-6160(53)90006-6
– volume: 7
  start-page: 5069
  year: 2019
  ident: ref_6
  article-title: Recent Advances in Layered Double Hydroxide Electrocatalysts for the Oxygen Evolution Reaction
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA11273H
– volume: 1
  start-page: 445
  year: 2016
  ident: ref_1
  article-title: NiCoFe Layered Triple Hydroxides with Porous Structures as High-Performance Electrocatalysts for Overall Water Splitting
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.6b00219
– volume: 5
  start-page: 8592
  year: 2022
  ident: ref_22
  article-title: NiFe Layered Double Hydroxide Electrocatalysts for an Efficient Oxygen Evolution Reaction
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.2c01115
– volume: 16
  start-page: e202400286
  year: 2024
  ident: ref_13
  article-title: NiFe Catalysts for Oxygen Evolution Reaction: Is There an Optimal Thickness for Generating a Dynamically Stable Active Interface?
  publication-title: ChemCatChem
  doi: 10.1002/cctc.202400286
– volume: 56
  start-page: 978
  year: 1939
  ident: ref_33
  article-title: The Scherrer Formula for X-Ray Particle Size Determination
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.56.978
– volume: 12
  start-page: 29143
  year: 2022
  ident: ref_23
  article-title: Rational Design of NiFe Alloys for Efficient Electrochemical Hydrogen Evolution Reaction: Effects of Ni/Fe Molar Ratios
  publication-title: RSC Adv.
  doi: 10.1039/D2RA05922C
– volume: 595
  start-page: 127
  year: 2005
  ident: ref_27
  article-title: The Thermodynamics of Electrochemical Annealing
  publication-title: Surf. Sci.
  doi: 10.1016/j.susc.2005.07.040
– volume: 6
  start-page: 60
  year: 2015
  ident: ref_16
  article-title: Electrochemical Growth of Surface Oxides on Nickel. Part 3: Formation of β-NiOOH in Relation to the Polarization Potential, Polarization Time, and Temperature
  publication-title: Electrocatalysis
  doi: 10.1007/s12678-014-0214-1
– volume: 9
  start-page: 41906
  year: 2017
  ident: ref_8
  article-title: Porous NiFe-Oxide Nanocubes as Bifunctional Electrocatalysts for Efficient Water-Splitting
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b14096
– volume: 821
  start-page: 153542
  year: 2020
  ident: ref_5
  article-title: Recent Advances in Cobalt-Based Electrocatalysts for Hydrogen and Oxygen Evolution Reactions
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2019.153542
– ident: ref_26
  doi: 10.3390/en14030526
– ident: ref_29
– volume: 87
  start-page: 461
  year: 2007
  ident: ref_28
  article-title: Electrochemical Annealing and Its Relevance in Metal Electroplating: An Atomistic View
  publication-title: Appl. Phys. A
  doi: 10.1007/s00339-007-3912-1
– volume: 284
  start-page: 119740
  year: 2021
  ident: ref_15
  article-title: Rh-Engineered Ultrathin NiFe-LDH Nanosheets Enable Highly-Efficient Overall Water Splitting and Urea Electrolysis
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2020.119740
– volume: 49
  start-page: 458
  year: 2024
  ident: ref_19
  article-title: A Review of Recent Advances in Alkaline Electrolyzer for Green Hydrogen Production: Performance Improvement and Applications
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2023.08.107
– volume: 11
  start-page: 10537
  year: 2021
  ident: ref_17
  article-title: Host, Suppressor, and Promoter—The Roles of Ni and Fe on Oxygen Evolution Reaction Activity and Stability of NiFe Alloy Thin Films in Alkaline Media
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.1c01190
– volume: 6
  start-page: e12608
  year: 2024
  ident: ref_9
  article-title: Grain Boundary Engineering: An Emerging Pathway toward Efficient Electrocatalysis
  publication-title: InfoMat
  doi: 10.1002/inf2.12608
– ident: ref_25
  doi: 10.3390/molecules29194755
– volume: 278
  start-page: 445
  year: 2015
  ident: ref_3
  article-title: Nickel–Cobalt Layered Double Hydroxide Nanosheets as High-Performance Electrocatalyst for Oxygen Evolution Reaction
  publication-title: J. Power Source
  doi: 10.1016/j.jpowsour.2014.12.085
– volume: 304
  start-page: 120937
  year: 2022
  ident: ref_14
  article-title: Efficient NiFe-Based Oxygen Evolution Electrocatalysts and Origin of Their Distinct Activity
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2021.120937
– volume: 5
  start-page: 222
  year: 2020
  ident: ref_21
  article-title: Dynamic Stability of Active Sites in Hydr(Oxy)Oxides for the Oxygen Evolution Reaction
  publication-title: Nat. Energy
  doi: 10.1038/s41560-020-0576-y
– volume: 2
  start-page: 100144
  year: 2022
  ident: ref_10
  article-title: Designing Single-Atom Catalysts toward Improved Alkaline Hydrogen Evolution Reaction
  publication-title: Mater. Rep. Energy
– volume: 6
  start-page: e465
  year: 2024
  ident: ref_12
  article-title: Tuning Synergy between Nickel and Iron in Ruddlesden–Popper Perovskites through Controllable Crystal Dimensionalities towards Enhanced Oxygen-Evolving Activity and Stability
  publication-title: Carbon Energy
  doi: 10.1002/cey2.465
– volume: 12
  start-page: 3818
  year: 2021
  ident: ref_24
  article-title: Intrinsic Activity Modulation and Structural Design of NiFe Alloy Catalysts for an Efficient Oxygen Evolution Reaction
  publication-title: Chem. Sci.
  doi: 10.1039/D0SC06716D
– volume: 45
  start-page: 1710
  year: 2019
  ident: ref_31
  article-title: Influence of Ti, Zr or Nb Carbide Adhesion Layers on the Adhesion, Corrosion Resistance and Cell Proliferation of Titania Doped Hydroxyapatite to the Ti6Al4V Alloy Substrate, Utilizable for Orthopaedic Implants
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2018.10.053
SSID ssj0021415
Score 2.433875
Snippet This study investigates the influence of prolonged electrolysis on the electrochemical performance and surface characteristics of NiFe-modified compressed...
SourceID doaj
proquest
gale
pubmed
crossref
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
StartPage 5820
SubjectTerms alkaline water electrolysis
Annealing
Carbonates
catalyst stability
Diffraction
Efficiency
Electric properties
Electrochemistry
Electrodes
Electrolysis
Experiments
Fractals
Graphite
Hydrogen production
Morphology
NiFe-modified electrodes
Scanning electron microscopy
SEM/EDS
surface characterization
X-ray spectroscopy
X-rays
XRD
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3fa9UwFMeD7EVfxPmzOiWCIAhlt2na5D5eL7tOwTHQ4d7KaZrI2Gzl_vib9m_6PU173XWgL76U0qYh6TlNPocm3yPEG0BHqPNAqa5dkWpqspSask4LQxYeZm0IvdrnSXl8pj-dF-c3Un3xmrAoDxxf3GGmG2N1UQB7gyZrp07bsgzgmAnQwfZi25jzxmBqCLUyzEvxH2aOoP7wR0w161cK4UZhObn3jVmoF-u_PST_AZr9hLN4IO4PpChnsYX74o5vH4q78zFB2yNxPWvlx36To-yCPF1iGGu_-0Yexcw2vdaI7FoJxBuvuUEeQJ7-3i8gqW3kl80yEM7nu_rNXPHJxcKnn7vmIoBW5QcWuAamjjU2fiVRk5xdXRITq_wGeF3utOGxOFscfZ0fp0PehdSBh9YpYhztVFkTDrokjAjGkEOoOCWvTJGFibfTBqEl7O9LZUi5EqAePBkddGPzJ2Kv7Vr_TEjQRDbxrBhDCoG4plwr8gRq0uBlZRMxGe1QuUGUnHNjXFUITth01S3TJeLd9pGfUZHjb4Xfs3G3BVlMu78AF6sGF6v-5WKJeMuuUfEnj8Y5GnYuoIssnlXNLF4NUNQUiTjYKQmHcLu3R-eqhqFiVeWIUQ2DnknE6-1tfpKXv7W-23AZzEuG91kn4ml0ym2XGCgB-dnz_9HVF-KeArXF9ToHYm-93PiXoK51_ar_wH4BoEMo4A
  priority: 102
  providerName: Directory of Open Access Journals
Title An Impact of Prolonged Electrolysis on the Electrochemical Performance and Surface Characteristics of NiFe-Modified Graphite Electrodes for Alkaline Water Electrolysis
URI https://www.ncbi.nlm.nih.gov/pubmed/39769911
https://www.proquest.com/docview/3149707107
https://www.proquest.com/docview/3153870521
https://doaj.org/article/14d78455747f4a889c4866f150052286
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1db9MwFLVge4AXxPcCozISEhJStCZxYvcJdVW7gURVARN9ixzHniZGMtL2N_E3OTdxWsqkvURR4lhO7vX1OY59LmPvADpckTgdisKkodBlFOoyK8JUagUPU8q5Vu1znp1fiM_LdOkn3FZ-WWUfE9tAXdaG5shPEkB5SeOh_HjzO6SsUfR31afQuM8OSbqMlnTJ5Y5wRRiduj-ZCaj9ya8u4axdxSAdqaIU3_-MRa1k_-3A_B_cbIed2WP2yONFPu4M_ITds9VT9mDSp2l7xv6MK_6p3erIa8cXDYJZdWlLPu3y27SKI7yuOIBef814kQC-2O0a4Loq-bdN4zTOJ_sqzlTx_Gpmwy91eeWAWfkZyVzjw_Q1lnbFURMfX__UhFv5D0DYZq8Nz9nFbPp9ch767AuhASpah2A6wsRZoXEQmUZckFIbEMaRtrFMIze0alSCYMILbBZLHZsMcN1ZLYUTpUpesIOqruwR48AU0dCSboyOQceFTkSsrQZ2EkDNsQrYsLdDbrw0OWXIuM5BUch0-S3TBezD9pGbTpfjrsKnZNxtQZLUbi_UzWXueyg4UCmVSFPwKye0UiMjVJY5AOYhMKrKAvaeXCOnjo_GGe33L-AVSUIrHyt8GgBSmQbseK8kHMLs3-6dK_cBY5Xv3Dtgb7e36UlaBFfZekNlMDpJ2m0dsJedU25fiWAloH706u7KX7OHMVBZtx7nmB2sm419A1S1LgZt18FRzc4G7PB0Ol98HbQzFH8BUnkmKg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VcigXxBtDgUUCISFZddZr7-aAUAhNE9pGlWhFb2az3q0qil3yEOIXceM38o0fKaFSb71EkXc98mZmZ76Jd75h7BVAh5_E3oRyYpNQmrwTmjydhIkyGhamtfcV2-c4HR7JT8fJ8Rr709bC0LHK1idWjjovLf1HvhUDyiuKh-r9-Y-QukbR29W2hUZtFrvu10-kbLN3o4_Q72shBtuH_WHYdBUILaL9PASCl1akE4MPmRrYu1LGIhHqGidU0vGR090ciRNW51KhjLApYKh3Rkkvcx1D7g12U8Zxl3aUHuwsE7wOomH95hSD0db3usGtmwkkOYmmluL_xL6qRcDlQPAfvK3C3OAOu93gU96rDeouW3PFPbbRb9vC3We_ewUfVaWVvPT8YArnWZy4nG_X_XQqhhNeFhzAsr1mG1ICfnBRpcBNkfPPi6k3-N5fZY0mwePTgQv3y_zUAyPzHaLVhiJaibmbcUjivbNvhnAy_wLIPF15hgfs6Fr08pCtF2XhHjMODNOJHPHUGIH0X5pYCuMMsJoEShc6YFGrh8w2VOjUkeMsQ0pEqssuqS5gb5e3nNc8IFdN_kDKXU4kCu_qQjk9yRqPgJwrV1omCfI5L43WXSt1mnoA9AiYWKcBe0OmkZGjwcNZ09RLYIlE2ZX1NH4aAGCVBGxzZSYMwq4Ot8aVNQ5qll1sp4C9XA7TnXTornDlguYgGiqq7g7Yo9ool0siGIvUovPkauEv2MbwcH8v2xuNd5-yWwKIsD4LtMnW59OFewZEN588r7YRZ1-ve9_-BdmEXw8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4aQwJeEHcCA4wEQkKKmjhO7DwgVLqVlUFVCSb6ljmOPU2MZPQixC_iP_DrOCeXljJpb3uJosSx4p7bdxqf7wC8QNDh8shpX-Qm9oUuQl8XSe7HUivUMKWcq9k-x8n-ofgwjadb8KerhaFtlZ1PrB11URn6j7wXIZSXFA9lz7XbIia7w7dnP3zqIEVfWrt2Go2KHNhfPzF9m78Z7aKsX3I-3Psy2PfbDgO-wci_8BHNC8OTXONBJBp1X0ptMClKteUyDl1gVVpgEoUrtQmXmpsEIamzWgonChXhvFfgqozikGxMTtfJXoiRsfmKGkVp0PveNLu1c44JT6yovfg_cbBuF3A-KPwHdeuQN7wFN1usyvqNct2GLVvegeuDrkXcXfjdL9moLrNklWOTGTrS8tgWbK_prVOznbCqZAgyu2umJShgk3XFAtNlwT4vZ07j-WCTQZomHp8Mrf-pKk4c4mX2nii2URDdjIWdM5yJ9U-_acLM7CvC59nGO9yDw0uRy33YLqvSPgSGeCYMLHHWaC6SVOhIcG014jaBiJ0rD4JODplpadGpO8dphukRiS47JzoPXq8eOWs4QS4a_I6EuxpIdN71hWp2nLXeAfOvQioRx5jbOaGVSo1QSeIQrAeIj1XiwStSjYycDr6c0W3tBC6R6LuyvsKfBsGwjD3Y2RiJCmE2b3fKlbXOap6tTcuD56vb9CRtwCtttaQxGBklVXp78KBRytWSCNJimhE-unjyZ3ANLTb7OBofPIYbHMFhsy1oB7YXs6V9guBukT-trYjB0WWb7V8I2mM8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Impact+of+Prolonged+Electrolysis+on+the+Electrochemical+Performance+and+Surface+Characteristics+of+NiFe-Modified+Graphite+Electrodes+for+Alkaline+Water+Electrolysis&rft.jtitle=Molecules+%28Basel%2C+Switzerland%29&rft.au=Kuczy%C5%84ski%2C+Mateusz&rft.au=Miko%C5%82ajczyk%2C+Tomasz&rft.au=Piero%C5%BCy%C5%84ski%2C+Bogus%C5%82aw&rft.au=Bramowicz%2C+Miros%C5%82aw&rft.date=2024-12-01&rft.pub=MDPI+AG&rft.issn=1420-3049&rft.eissn=1420-3049&rft.volume=29&rft.issue=24&rft_id=info:doi/10.3390%2Fmolecules29245820&rft.externalDocID=A821915475
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1420-3049&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1420-3049&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1420-3049&client=summon